WorldWideScience

Sample records for primary nutrient source

  1. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  2. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  3. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  4. Study of nonpoint source nutrient loading in the Patuxent River basin, Maryland

    Science.gov (United States)

    Preston, S.D.

    1997-01-01

    Study of nonpoint-source (NPS) nutrient loading in Maryland has focused on the Patuxent watershed because of its importance and representativeness of conditions in the State. Evaluation of NPS nutrient loading has been comprehensive and has included long-term monitoring, detailed watershed modeling, and synoptic sampling studies. A large amount of information has been compiled for the watershed and that information is being used to identify primary controls and efficient management strategies for NPS nutrient loading. Results of the Patuxent NPS study have identified spatial trends in water quality that appear to be related to basin charcteristics such as land use, physiography, andgeology. Evaluation of the data compiled by the study components is continuing and is expected to provide more detailed assessments of the reasons for spatial trends. In particular, ongoing evaluation of the watershed model output is expected to provide detailed information on the relative importance of nutrient sources and transport pathways across the entire watershed. Planned future directions of NPS evaluation in the State of Maryland include continued study of water quality in the Patuxent watershed and a shift in emphasis to a statewide approach. Eventually, the statewide approach will become the primary approach usedby the State to evaluate NPS loading. The information gained in the Patuxent study and the tools developed will represent valuable assets indeveloping the statewide NPS assessment program.

  5. Food Sources of Energy and Nutrients among Adults in the US: NHANES 2003–2006

    Directory of Open Access Journals (Sweden)

    Theresa A. Nicklas

    2012-12-01

    Full Text Available Identification of current food sources of energy and nutrients among US adults is needed to help with public health efforts to implement feasible and appropriate dietary recommendations. To determine the food sources of energy and 26 nutrients consumed by US adults the 2003–2006 National Health and Nutrition Examination Survey (NHANES 24-h recall (Day 1 dietary intake data from a nationally representative sample of adults 19+ years of age (y (n = 9490 were analyzed. An updated USDA Dietary Source Nutrient Database was developed for NHANES 2003–2006 using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. The highest ranked sources of energy and nutrients among adults more than 19 years old were: energy — yeast bread/rolls (7.2% and cake/cookies/quick bread/pastry/pie (7.2%; protein—poultry (14.4% and beef (14.0%; total fat — other fats and oils (9.8%; saturated fatty acids — cheese (16.5% and beef (9.1%; carbohydrate — soft drinks/soda (11.4% and yeast breads/rolls (10.9%; dietary fiber — yeast breads/rolls (10.9% and fruit (10.2%; calcium — milk (22.5% and cheese (21.6%; vitamin D — milk (45.1% and fish/shellfish (14.4%; and potassium — milk (9.6% and coffee/tea/other non-alcoholic beverages (8.4%. Knowledge of primary food sources of energy and nutrients can help health professionals design effective strategies to reduce excess energy consumed by US adults and increase the nutrient adequacy of their diets.

  6. Food Sources of Energy and Nutrients among Adults in the US: NHANES 2003–2006

    Science.gov (United States)

    O’Neil, Carol E.; Keast, Debra R.; Fulgoni, Victor L.; Nicklas, Theresa A.

    2012-01-01

    Identification of current food sources of energy and nutrients among US adults is needed to help with public health efforts to implement feasible and appropriate dietary recommendations. To determine the food sources of energy and 26 nutrients consumed by US adults the 2003–2006 National Health and Nutrition Examination Survey (NHANES) 24-h recall (Day 1) dietary intake data from a nationally representative sample of adults 19+ years of age (y) (n = 9490) were analyzed. An updated USDA Dietary Source Nutrient Database was developed for NHANES 2003–2006 using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. The highest ranked sources of energy and nutrients among adults more than 19 years old were: energy—yeast bread/rolls (7.2%) and cake/cookies/quick bread/pastry/pie (7.2%); protein—poultry (14.4%) and beef (14.0%); total fat—other fats and oils (9.8%); saturated fatty acids—cheese (16.5%) and beef (9.1%); carbohydrate—soft drinks/soda (11.4%) and yeast breads/rolls (10.9%); dietary fiber—yeast breads/rolls (10.9%) and fruit (10.2%); calcium—milk (22.5%) and cheese (21.6%); vitamin D—milk (45.1%) and fish/shellfish (14.4%); and potassium—milk (9.6%) and coffee/tea/other non-alcoholic beverages (8.4%). Knowledge of primary food sources of energy and nutrients can help health professionals design effective strategies to reduce excess energy consumed by US adults and increase the nutrient adequacy of their diets. PMID:23363999

  7. Food sources of energy and nutrients among adults in the US: NHANES 2003–2006.

    Science.gov (United States)

    O'Neil, Carol E; Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A

    2012-12-19

    Identification of current food sources of energy and nutrients among US adults is needed to help with public health efforts to implement feasible and appropriate dietary recommendations. To determine the food sources of energy and 26 nutrients consumed by US adults the 2003-2006 National Health and Nutrition Examination Survey (NHANES) 24-h recall (Day 1) dietary intake data from a nationally representative sample of adults 19+ years of age (y) (n = 9490) were analyzed. An updated USDA Dietary Source Nutrient Database was developed for NHANES 2003-2006 using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. The highest ranked sources of energy and nutrients among adults more than 19 years old were: energy - yeast bread/rolls (7.2%) and cake/cookies/quick bread/pastry/pie (7.2%); protein-poultry (14.4%) and beef (14.0%); total fat - other fats and oils (9.8%); saturated fatty acids - cheese (16.5%) and beef (9.1%); carbohydrate - soft drinks/soda (11.4%) and yeast breads/rolls (10.9%); dietary fiber - yeast breads/rolls (10.9%) and fruit (10.2%); calcium - milk (22.5%) and cheese (21.6%); vitamin D - milk (45.1%) and fish/shellfish (14.4%); and potassium - milk (9.6%) and coffee/tea/other non-alcoholic beverages (8.4%). Knowledge of primary food sources of energy and nutrients can help health professionals design effective strategies to reduce excess energy consumed by US adults and increase the nutrient adequacy of their diets.

  8. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    Science.gov (United States)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  9. Distribution of nutrients, chlorophyll and phytoplankton primary ...

    African Journals Online (AJOL)

    Distribution of nutrients, chlorophyll and phytoplankton primary production in ... Two cruises were undertaken in the vicinity of the Cape Frio upwelling cell ... and concentrations of nitrate, phosphate, silicate, oxygen and chlorophyll a. ... Estimates of the annual primary production for each of the water bodies were calculated.

  10. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    Science.gov (United States)

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  11. Carbon footprint of urban source separation for nutrient recovery.

    Science.gov (United States)

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise

    Directory of Open Access Journals (Sweden)

    S. Bonnet

    2008-02-01

    Full Text Available Iron is an essential nutrient involved in a variety of biological processes in the ocean, including photosynthesis, respiration and dinitrogen fixation. Atmospheric deposition of aerosols is recognized as the main source of iron for the surface ocean. In high nutrient, low chlorophyll areas, it is now clearly established that iron limits phytoplankton productivity but its biogeochemical role in low nutrient, low chlorophyll environments has been poorly studied. We investigated this question in the unexplored southeast Pacific, arguably the most oligotrophic area of the global ocean. Situated far from any continental aerosol source, the atmospheric iron flux to this province is amongst the lowest of the world ocean. Here we report that, despite low dissolved iron concentrations (~0.1 nmol l−1 across the whole gyre (3 stations located in the center and at the western and the eastern edges, primary productivity are only limited by iron availability at the border of the gyre, but not in the center. The seasonal stability of the gyre has apparently allowed for the development of populations acclimated to these extreme oligotrophic conditions. Moreover, despite clear evidence of nitrogen limitation in the central gyre, we were unable to measure dinitrogen fixation in our experiments, even after iron and/or phosphate additions, and cyanobacterial nif H gene abundances were extremely low compared to the North Pacific Gyre. The South Pacific gyre is therefore unique with respect to the physiological status of its phytoplankton populations.

  13. Complete nutrient recovery from source-separated urine by nitrification and distillation.

    Science.gov (United States)

    Udert, K M; Wächter, M

    2012-02-01

    In this study we present a method to recover all nutrients from source-separated urine in a dry solid by combining biological nitrification with distillation. In a first process step, a membrane-aerated biofilm reactor was operated stably for more than 12 months, producing a nutrient solution with a pH between 6.2 and 7.0 (depending on the pH set-point), and an ammonium to nitrate ratio between 0.87 and 1.15 gN gN(-1). The maximum nitrification rate was 1.8 ± 0.3 gN m(-2) d(-1). Process stability was achieved by controlling the pH via the influent. In the second process step, real nitrified urine and synthetic solutions were concentrated in lab-scale distillation reactors. All nutrients were recovered in a dry powder except for some ammonia (less than 3% of total nitrogen). We estimate that the primary energy demand for a simple nitrification/distillation process is four to five times higher than removing nitrogen and phosphorus in a conventional wastewater treatment plant and producing the equivalent amount of phosphorus and nitrogen fertilizers. However, the primary energy demand can be reduced to values very close to conventional treatment, if 80% of the water is removed with reverse osmosis and distillation is operated with vapor compression. The ammonium nitrate content of the solid residue is below the limit at which stringent EU safety regulations for fertilizers come into effect; nevertheless, we propose some additional process steps that will increase the thermal stability of the solid product. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea

    International Nuclear Information System (INIS)

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-01-01

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ 13 C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. - Highlights: • Response of sources and composition of SOC to nutrient enrichment was observed. • Similar SOC sources and composition were observed in the two seagrass communities. • Nutrient enrichment enhanced seagrass and macroalgae and epiphytes contribution to SOC. • High nutrient concentration stimulated the MBC and the MBC/SOC ratio.

  15. Classification of nutrient emission sources in the Vistula River system

    International Nuclear Information System (INIS)

    Kowalkowski, Tomasz

    2009-01-01

    Eutrophication of the Baltic sea still remains one of the biggest problems in the north-eastern area of Europe. Recognizing the sources of nutrient emission, classification of their importance and finding the way towards reduction of pollution are the most important tasks for scientists researching this area. This article presents the chemometric approach to the classification of nutrient emission with respect to the regionalisation of emission sources within the Vistula River basin (Poland). Modelled data for mean yearly emission of nitrogen and phosphorus in 1991-2000 has been used for the classification. Seventeen subcatchements in the Vistula basin have been classified according to cluster and factor analyses. The results of this analysis allowed determination of groups of areas with similar pollution characteristics and indicate the need for spatial differentiation of policies and strategies. Three major factors indicating urban, erosion and agricultural sources have been identified as major discriminants of the groups. - Two classification methods applied to evaluate the results of nutrient emission allow definition of major sources of the emissions and classification of catchments with similar pollution.

  16. Investigating Primary Source Literacy

    Science.gov (United States)

    Archer, Joanne; Hanlon, Ann M.; Levine, Jennie A.

    2009-01-01

    Primary source research requires students to acquire specialized research skills. This paper presents results from a user study testing the effectiveness of a Web guide designed to convey the concepts behind "primary source literacy". The study also evaluated students' strengths and weaknesses when conducting primary source research. (Contains 3…

  17. Sources of Nutrients to Nearshore Areas of a Eutrophic Estuary: Implications for Nutrient-Enhanced Acidification in Puget Sound

    Science.gov (United States)

    Pacella, S. R.

    2016-02-01

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2 emission-driven acidification. This study sought to distinguish changes in pH caused by natural versus anthropogenically affected processes. We quantified the variability in water column pH attributable to primary production and respiration fueled by anthropogenically derived nitrogen in a shallow nearshore area. Two study sites were located in shallow subtidal areas of the Snohomish River estuary, a eutrophic system located in central Puget Sound, Washington. These sites were chosen due to the presence of heavy agricultural activity, urbanized areas with associated waste water treatment, as well as influence from deep, high CO2 marine waters transported through the Strait of Juan de Fuca and upwelled into the area during spring and summer. Data was collected from July-December 2015 utilizing continuous moorings and discrete water column sampling. Analysis of stable isotopes, δ15N, δ18O-NO3, δ15N-NH4, was used to estimate the relative contributions of anthropogenic versus upwelled marine nitrogen sources. Continuous monitoring of pH, dissolved oxygen, temperature, and salinity was conducted at both study sites to link changes in nutrient source and availability with changes in pH. We predicted that isotope data would indicate greater contributions of nitrogen from agriculture and wastewater rather than upwelling in the shallow, nearshore study sites. This study seeks to distinguish the relative magnitude of pH change stimulated by anthropogenic versus natural sources of nitrogen to inform public policy decisions in critically important nearshore ecosystems.

  18. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal.

    Science.gov (United States)

    Soares, Ana; Kampas, Pantelis; Maillard, Sarah; Wood, Elizabeth; Brigg, Jon; Tillotson, Martin; Parsons, Simon A; Cartmell, Elise

    2010-03-15

    There is a need to investigate processes that enable sludge re-use while enhancing sewage treatment efficiency. Mechanically disintegrated thickened surplus activated sludge (SAS) and fermented primary sludge were compared for their capacity to produce a carbon source suitable for BNR by completing nutrient removal predictive tests. Mechanically disintegration of SAS using a deflaker enhanced volatile fatty acids (VFAs) content from 92 to 374 mg l(-1) (4.1-fold increase). In comparison, primary sludge fermentation increased the VFAs content from 3.5 g l(-1) to a final concentration of 8.7 g l(-1) (2.5-fold increase). The carbon source obtained from disintegration and fermentation treatments improved phosphate (PO(4)-P) release and denitrification by up to 0.04 mg NO(3)-Ng(-1)VSS min(-1) and 0.031 mg PO(4)-Pg(-1)VSS min(-1), respectively, in comparison to acetate (0.023 mg NO(3)-Ng(-1)VSS min(-1)and 0.010 mg PO(4)-Pg(-1)VSS min(-1)). Overall, both types of sludge were suitable for BNR but disintegrated SAS displayed lower carbon to nutrient ratios of 8 for SCOD:PO(4)-P and 9 for SCOD:NO(3)-N. On the other hand, SAS increased the concentration of PO(4)-P in the settled sewage by a further 0.97 g PO(4)-P kg(-1)SCOD indicating its potential negative impact towards nutrient recycling in the BNR process. (c) 2009 Elsevier B.V. All rights reserved.

  19. Nitrogenous nutrients and primary production in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Devassy, V.P.

    Measurements of the concentrations of nitrogenous nutrients and primary production were made at 10 stations along 8 degrees N and 10 degrees N in the tropical oceanic Lakshadweep waters Inorganic nitrogen (NO3, NO2 and NH4) accounted for less than...

  20. Changes in Nutrients and Primary Production in Barrow Tundra Ponds Over the Past 40 Years

    Science.gov (United States)

    Lougheed, V.; Andresen, C.; Hernandez, C.; Miller, N.; Reyes, F.

    2012-12-01

    The Arctic tundra ponds at the International Biological Program (IBP) site in Barrow, Alaska were studied extensively in the 1970's; however, very little research has occurred there since that time. Due to the sensitivity of this region to climate warming, understanding any changes in the ponds' structure and function over the past 40 years can help identify any potential climate-related impacts. The goal of this study was to determine if the structure and function of primary producers had changed through time, and the association between these changes, urban encroachment and nutrient limitation. Nutrient levels, as well as the biomass of aquatic graminoids (Carex aquatilis and Arctophila fulva), phytoplankton and periphyton were determined in the IBP tundra ponds in both 1971-3 and 2010-12, and in 2010-11 from nearby ponds along an anthropogenic disturbance gradient. Uptake of 14C was also used to measure algal primary production in both time periods and nutrient addition experiments were performed to identify the nutrients limiting algal growth. Similar methods were utilized in the past and present studies. Overall, biomass of graminoids, phytoplankton and periphyton was greater in 2010-12 than that observed in the 1970s. This increased biomass was coincident with warmer water temperatures, increased water column nutrients and deeper active layer depth. Biomass of plants and algae was highest in the ponds closest to the village of Barrow, but no effect of urban encroachment was observed at the IBP ponds. Laboratory incubations indicated that nutrient release from thawing permafrost can explain part of these increases in nutrients and has likely contributed to changes in the primary limiting nutrient. Further studies are necessary to better understand the implications of these trends in primary production to nutrient budgets in the Arctic. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on

  1. Cost-effective nutrient sources for tissue culture of cassava ( Manihot ...

    African Journals Online (AJOL)

    Application of tissue culture technology is constrained by high costs making seedlings unaffordable. The objective of this study was to evaluate the possibility of using locally available fertilizers as alternative nutrient sources for cassava micropropagation. A Low Cost Medium (LCM) whereby the conventional sources of four ...

  2. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  3. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Science.gov (United States)

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  4. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    Science.gov (United States)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  5. Ethnic disparities among food sources of energy and nutrients of public health concern and nutrients to limit in adults in the United States: NHANES 2003-2006.

    Science.gov (United States)

    O'Neil, Carol E; Nicklas, Theresa A; Keast, Debra R; Fulgoni, Victor L

    2014-01-01

    Identification of current food sources of energy and nutrients among US non-Hispanic whites (NHW), non-Hispanic blacks (NHB), and Mexican American (MA) adults is needed to help with public health efforts in implementing culturally sensitive and feasible dietary recommendations. The objective of this study was to determine the food sources of energy and nutrients to limit [saturated fatty acids (SFA), added sugars, and sodium] and nutrients of public health concern (dietary fiber, vitamin D, calcium, and potassium) by NHW, NHB, and MA adults. This was a cross-sectional analysis of a nationally representative sample of NWH (n=4,811), NHB (2,062), and MA (n=1,950) adults 19+ years. The 2003-2006 NHANES 24-h recall (Day 1) dietary intake data were analyzed. An updated USDA Dietary Source Nutrient Database was developed using current food composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from food sources were sample-weighted. Percentages of total dietary intake contributed from food sources were ranked. Multiple differences in intake among ethnic groups were seen for energy and all nutrients examined. For example, energy intake was higher in MA as compared to NHB; SFA, added sugars, and sodium intakes were higher in NHW than NHB; dietary fiber was highest in MA and lowest in NHB; vitamin D was highest in NHW; calcium was lowest in NHB; and potassium was higher in NHW as compared to NHB. Food sources of these nutrients also varied. Identification of intake of nutrients to limit and of public health concern can help health professionals implement appropriate dietary recommendations and plan interventions that are ethnically appropriate.

  6. Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes

    Science.gov (United States)

    Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert

    2013-01-01

    We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.

  7. Using Primary Source Documents.

    Science.gov (United States)

    Mintz, Steven

    2003-01-01

    Explores the use of primary sources when teaching about U.S. slavery. Includes primary sources from the Gilder Lehrman Documents Collection (New York Historical Society) to teach about the role of slaves in the Revolutionary War, such as a proclamation from Lord Dunmore offering freedom to slaves who joined his army. (CMK)

  8. Treatment of Source-Separated Blackwater: A Decentralized Strategy for Nutrient Recovery towards a Circular Economy

    OpenAIRE

    Melesse Eshetu Moges; Daniel Todt; Arve Heistad

    2018-01-01

    Using a filter medium for organic matter removal and nutrient recovery from blackwater treatment is a novel concept and has not been investigated sufficiently to date. This paper demonstrates a combined blackwater treatment and nutrient-recovery strategy and establishes mechanisms for a more dependable source of plant nutrients aiming at a circular economy. Source-separated blackwater from a student dormitory was used as feedstock for a sludge blanket anaerobic-baffled reactor. The effluent f...

  9. Nutrient patterns and their food sources in an International Study Setting: report from the EPIC study.

    Directory of Open Access Journals (Sweden)

    Aurelie Moskal

    Full Text Available Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses.We identified nutrient patterns from food frequency questionnaires (FFQ in the European Prospective Investigation into Cancer and Nutrition (EPIC Study and used 24-hour dietary recall (24-HDR data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312. Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436 provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores.The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research

  10. Nutrient patterns and their food sources in an International Study Setting: report from the EPIC study.

    Science.gov (United States)

    Moskal, Aurelie; Pisa, Pedro T; Ferrari, Pietro; Byrnes, Graham; Freisling, Heinz; Boutron-Ruault, Marie-Christine; Cadeau, Claire; Nailler, Laura; Wendt, Andrea; Kühn, Tilman; Boeing, Heiner; Buijsse, Brian; Tjønneland, Anne; Halkjær, Jytte; Dahm, Christina C; Chiuve, Stephanie E; Quirós, Jose R; Buckland, Genevieve; Molina-Montes, Esther; Amiano, Pilar; Huerta Castaño, José M; Gurrea, Aurelio Barricarte; Khaw, Kay-Tee; Lentjes, Marleen A; Key, Timothy J; Romaguera, Dora; Vergnaud, Anne-Claire; Trichopoulou, Antonia; Bamia, Christina; Orfanos, Philippos; Palli, Domenico; Pala, Valeria; Tumino, Rosario; Sacerdote, Carlotta; de Magistris, Maria Santucci; Bueno-de-Mesquita, H Bas; Ocké, Marga C; Beulens, Joline W J; Ericson, Ulrika; Drake, Isabel; Nilsson, Lena M; Winkvist, Anna; Weiderpass, Elisabete; Hjartåker, Anette; Riboli, Elio; Slimani, Nadia

    2014-01-01

    Compared to food patterns, nutrient patterns have been rarely used particularly at international level. We studied, in the context of a multi-center study with heterogeneous data, the methodological challenges regarding pattern analyses. We identified nutrient patterns from food frequency questionnaires (FFQ) in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study and used 24-hour dietary recall (24-HDR) data to validate and describe the nutrient patterns and their related food sources. Associations between lifestyle factors and the nutrient patterns were also examined. Principal component analysis (PCA) was applied on 23 nutrients derived from country-specific FFQ combining data from all EPIC centers (N = 477,312). Harmonized 24-HDRs available for a representative sample of the EPIC populations (N = 34,436) provided accurate mean group estimates of nutrients and foods by quintiles of pattern scores, presented graphically. An overall PCA combining all data captured a good proportion of the variance explained in each EPIC center. Four nutrient patterns were identified explaining 67% of the total variance: Principle component (PC) 1 was characterized by a high contribution of nutrients from plant food sources and a low contribution of nutrients from animal food sources; PC2 by a high contribution of micro-nutrients and proteins; PC3 was characterized by polyunsaturated fatty acids and vitamin D; PC4 was characterized by calcium, proteins, riboflavin, and phosphorus. The nutrients with high loadings on a particular pattern as derived from country-specific FFQ also showed high deviations in their mean EPIC intakes by quintiles of pattern scores when estimated from 24-HDR. Center and energy intake explained most of the variability in pattern scores. The use of 24-HDR enabled internal validation and facilitated the interpretation of the nutrient patterns derived from FFQs in term of food sources. These outcomes open research opportunities and

  11. Potash—A vital agricultural nutrient sourced from geologic deposits

    Science.gov (United States)

    Yager, Douglas B.

    2016-11-15

    This report summarizes the primary sources of potash in the United States. Potash is an essential nutrient that, along with phosphorus and nitrogen, is used as fertilizer for growing crops. Plants require sufficient potash to activate enzymes, which in turn catalyze chemical reactions important for water uptake and photosynthesis. When potassium is available in quantities necessary for healthy plant growth, disease resistance and physical quality are improved and crop yield and shelf life are increased. Potash is a water-soluble compound of potassium formed by geologic and hydrologic processes. The principal potash sources discussed are the large, stratiform deposits that formed during retreat and evaporation of intracontinental seas. The Paradox, Delaware, Holbrook, Michigan, and Williston sedimentary basins in the United States are examples where extensive potash beds were deposited. Ancient marine-type potash deposits that are close to the surface can be mined using conventional underground mining methods. In situ solution mining can be used where beds are too deep, making underground mining cost-prohibitive, or where underground mines are converted to in situ solution mines. Quaternary brine is another source of potash that is recovered by solar evaporation in manmade ponds. Groundwater from Pleistocene Lake Bonneville (Wendover, Utah) and the present-day Great Salt Lake in Utah are sources of potashbearing brine. Brine from these sources pumped to solar ponds is evaporated and potash concentrated for harvesting, processing, and refinement. Although there is sufficient potash to meet near-term demand, the large marine-type deposits are either geographically restricted to a few areas or are too deep to easily mine. Other regions lack sources of potash brine from groundwater or surface water. Thus, some areas of the world rely heavily on potash imports. Political, economic, and global population pressures may limit the ability of some countries from securing

  12. Nutrient removal by prairie filter strips in agricultural landscapes

    Science.gov (United States)

    X. Zhou; M.J. Helmers; H. Asbjornsen; R. Kolka; M.D. Tomer; R.M. Cruse

    2014-01-01

    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial...

  13. Geographical Distribution and Sources of Nutrients in Atmospheric Aerosol Over the Pacific Ocean

    Science.gov (United States)

    Uematsu, M.

    2016-12-01

    The Pacific Ocean, the world's largest (occupying about 30% of the Earth's total surface area) has several distinguishing biogeochemical features. In the western Pacific, dust particles originating from arid and semi-arid regions in Asia and Australia are transported to the north and south, respectively. Biomass burning emissions from Southeast Asia are exported to the tropical Pacific, and anthropogenic substances flowing out of Asia and Eurasia spread both regionally and globally. Over high primary productive areas such as the subarctic North Pacific, the equatorial Pacific and the Southern Ocean, biogenic gasses are released to the atmosphere and transported to other areas. These processes may affect cloud and rainfall patterns, air quality, and the radiative balance of downwind regions. The deposition of atmospheric aerosols containing iron and other essential nutrients is important for biogeochemical cycles in the oceans because this source of nutrients helps sustain primary production and affects food-web structure; these effects in turn influence the chemical properties of marine atmosphere. From an atmospheric chemistry standpoint, sea-salt aerosols produced by strong winds and marine biogenic gases emitted from highly productive waters affect the physicochemical characteristics of marine aerosols. As phytoplankton populations are patchy and atmospheric processes sporadic, the interactions between atmospheric chemical constituents and marine biota vary for different regions as well as seasonally and over longer timescales. To address these and other emerging issues, and more generally to better understand the important biogeochemical processes and interactions occurring over the open oceans, more long-term recurrent research cruises with standardized atmospheric shipboard measurements will be needed in the future.

  14. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea.

    Science.gov (United States)

    Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping

    2016-09-15

    To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tracing nutrient sources in the Mississippi River Basin, U.S.A

    International Nuclear Information System (INIS)

    Kendall, C.; Silva, S.R.; Chang, C.C.Y.; Wankel, S.D.; Hooper, R.P.; Frey, J.W.; Crain, A.S.; Delong, M.D.

    2003-01-01

    2000-2001, designed to investigate the usefulness of isotopic techniques for determining nutrient sources in 24 medium and large watersheds in the Basin, found that nitrate and POM from basins with different land uses (e.g., row crops, animal farming, urban development, and undeveloped) had moderately distinctive isotopic compositions. The nitrate δ 18 O and δ 15 N values of the large rivers sites resembled the compositions seen in sites dominated by row crops. Sites with livestock tended to have high δ 15 N values characteristic of manure, and urban and undeveloped sites tended to have higher δ 18 O values characteristic of a significant fraction of atmospheric nitrate. The δ 18 O data were critical in showing abrupt changes in nitrate sources with discharge. Because of the success of the pilot studies, a more thorough study of nutrient sources in the Ohio River Basin was initiated in 2002. For this study, nitrate, POM, and water were collected 15-20 times each year at 6 small NAWQA-program watersheds in the White River-Miami River basins, and at the 7 large river NASQAN-program sites in the Ohio River Basin. Nitrate samples were analyzed for δ 15 N and δ 18 O, POM for δ 15 N and δ 13 C, and water for δ 18 O and δ 2 H. We have also attempted to use the δ 15 N and δ 13 C of fish as indicators of nutrient sources. Other studies have also indicated that POM consists primarily of phytoplankton. Additionally, these studies indicated that POM transported in the water column, particularly size fractions < 1-mm diameter, were the primary food source for food webs in the Ohio and Upper Mississippi Rivers. The sites being sampled are part of ongoing USGS studies to investigate a) transport and fate of agricultural contaminants and b) nutrient enrichment effects on aquatic biota in the Ohio River Basin. Questions we hope to answer in this pilot study are: (1) Are there event-related shifts in isotopic values and hence nitrate and POM sources? (2) Are there

  16. Turning the table: plants consume microbes as a source of nutrients.

    Directory of Open Access Journals (Sweden)

    Chanyarat Paungfoo-Lonhienne

    Full Text Available Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively, we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles.

  17. Primary production, nutrient dynamics and mineralisation in a northeastern Greenland fjord during the summer thaw

    DEFF Research Database (Denmark)

    Rysgaard, S.; Finster, K.; Dahlgaard, H.

    1996-01-01

    This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m(...

  18. Food sources of energy and nutrients in Finnish girls and boys 6-8 years of age - the PANIC study.

    Science.gov (United States)

    Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A; Lindi, Virpi

    2016-01-01

    Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls ( n =213) and boys ( n =217) aged 6-8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil-based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil-based spreads provided a higher proportion of these nutrients among girls. Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil-based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and health policy decision making.

  19. Using Stable Isotopes to Link Nutrient Sources in the Everglades and Biological Sinks in Florida Bay: A Biogeochemical Approach to Evaluate Ecosystem Response to Changing Nutrient Regimes

    Science.gov (United States)

    Hoare, A. M.; Hollander, D. J.; Heil, C.; Glibert, P.; Murasko, S.; Revilla, M.; Alexander, J.

    2005-05-01

    Anthropogenic influences in South Florida have led to deterioration of its two major ecosystems, the Everglades wetlands and the Florida Bay estuary. Consequently, the Comprehensive Everglades Restoration Plan has been proposed to restore the Everglades ecosystem; however, restoration efforts will likely exert new ecological changes in the Everglades and ultimately Florida Bay. The success of the Florida Everglades restoration depends on our understanding and ability to predict how regional changes in the distribution and composition of dissolved organic and inorganic nutrients will direct the downstream biogeochemical dynamics of Florida Bay. While the transport of freshwater and nutrients to Florida Bay have been studied, much work remains to directly link nutrient dynamics in Florida Bay to nutrient sources in the Everglades. Our study uses stable C and N isotopic measurements of chemical and biological materials from the Everglades and Florida Bay as part of a multi-proxy approach to link nutrient sources in the Everglades to biological sinks in Florida Bay. Isotopic analyses of dissolved and particulate species of water, aquatic vegetation and sedimentary organic matter show that the watersheds within the Everglades are chemically distinct and that these signatures are also reflected in the bay. A large east-west gradient in both carbon and nitrogen (as much as 10‰ for δ15N POM) reflect differing nutrient sources for each region of Florida Bay and is strongly correlated with upstream sources in the Everglades. Isotopic signatures also reflect seasonal relationships associated with wet and dry periods. High C and N measurements of DOM and POM measurements suggest significant influence from waste water in Canal C-111 in eastern Florida Bay, particularly during the dry season. These observations show that nutrients from the Everglades watersheds enter Florida Bay and are important in controlling biogeochemical processes in the bay. This study proves that

  20. Influence of Sources and Rates of Manure on Yield and Nutrient ...

    African Journals Online (AJOL)

    of University of Maiduguri to assess the effects of sources and rates of manure ... Cow manure treatment on average, produced the best of growth, yield and nutrient uptake (N,P, and K ... fertilizers coupled with their inability to condition the soil.

  1. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    Science.gov (United States)

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    Science.gov (United States)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  3. Treatment of Source-Separated Blackwater: A Decentralized Strategy for Nutrient Recovery towards a Circular Economy

    Directory of Open Access Journals (Sweden)

    Melesse Eshetu Moges

    2018-04-01

    Full Text Available Using a filter medium for organic matter removal and nutrient recovery from blackwater treatment is a novel concept and has not been investigated sufficiently to date. This paper demonstrates a combined blackwater treatment and nutrient-recovery strategy and establishes mechanisms for a more dependable source of plant nutrients aiming at a circular economy. Source-separated blackwater from a student dormitory was used as feedstock for a sludge blanket anaerobic-baffled reactor. The effluent from the reactor, with 710 mg L−1 NH4–N and 63 mg L−1 PO4–P, was treated in a sequence of upflow and downflow filtration columns using granular activated carbon, Cocos char and polonite as filter media at a flow rate of 600 L m−2 day−1 and organic loading rate of 430 g chemical oxygen demand (COD m−2 day−1. Filtration treatment of the anaerobic effluent with carbon adsorbents removed 80% of the residual organic matter, more than 90% of suspended solids, and turbidity while releasing more than 76% NH4–N and 85% of PO4–P in the liquid phase. The treatment train also removed total coliform bacteria and E. coli in the effluent, achieving concentrations below detection limit after the integration of ultraviolet (UV light. These integrated technological pathways ensure simultaneous nutrient recovery as a nutrient solution, pathogen inactivation, and reduction of active organic substances. The treated nutrient-rich water can be applied as a source of value creation for various end-use options.

  4. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  5. Insects - a natural nutrient source for poultry - a review

    OpenAIRE

    Józefiak, D; Josefiak, A; Kieronczyk, B; Rawski, M; Swiatkiewicz, S; Dlugosz, Jakub; Engberg, Ricarda Greuel

    2016-01-01

    The consumption of poultry meat and eggs is expected to increase considerably in the nearest future, which creates the demand for new poultry feed ingredients in order to support sustainable intensive production. Moreover, the constant improvement of the genetic potential of poultry has resulted in an increased nutrient density in poultry feeds, which limits the possibility to include low quality feed ingredients. Therefore, the feed industry needs new sources of highly digestible protein wit...

  6. Primary production, nutrients, and size spectra of suspended particles in the southern North Sea

    NARCIS (Netherlands)

    Gieskes, W.W.C.

    1972-01-01

    The effect of nutrient enrichment from the Rhine on some major characteristics of the phytoplankton ecosystem of Dutch coastal waters was studied with 14C, liquid scintillation and Coulter Counter techniques. The magnitude of primary production in the most eutrophic waters closest to

  7. Can We Manage Nonpoint-Source Pollution Using Nutrient Concentrations during Seasonal Baseflow?

    Directory of Open Access Journals (Sweden)

    James A. McCarty

    2016-05-01

    Full Text Available Nationwide, a substantial amount of resources has been targeted toward improving water quality, particularly focused on nonpoint-source pollution. This study was conducted to evaluate the relationship between nutrient concentrations observed during baseflow and runoff conditions from 56 sites across five watersheds in Arkansas. Baseflow and stormflow concentrations for each site were summarized using geometric mean and then evaluated for directional association. A significant, positive correlation was found for NO–N, total N, soluble reactive P, and total P, indicating that sites with high baseflow concentrations also had elevated runoff concentrations. Those landscape factors that influence nutrient concentrations in streams also likely result in increased runoff, suggesting that high baseflow concentrations may reflect elevated loads from the watershed. The results highlight that it may be possible to collect water-quality data during baseflow to help define where to target nonpoint-source pollution best management practices within a watershed.

  8. Modelling nutrient fluxes from source to river load : a macroscopic analysis applied to the Rhine and Elbe basins

    NARCIS (Netherlands)

    Wit, de M.

    2000-01-01

    In many European rivers, including the major streams of the Rhine and Elbe basins, the nutrient load (N and P) still exceeds target levels. In this paper, a model is presented that describes the river nutrient load as a function of nutrient sources, runoff and lithology in the upstream basin. The

  9. Food Sources of Energy and Nutrients among Children in the United States: National Health and Nutrition Examination Survey 2003–2006

    Science.gov (United States)

    Keast, Debra R.; Fulgoni III, Victor L.; Nicklas, Theresa A.; O’Neil, Carol E.

    2013-01-01

    Background: Recent detailed analyses of data on dietary sources of energy and nutrients in US children are lacking. The objective of this study was to identify food sources of energy and 28 nutrients for children in the United States. Methods: Analyses of food sources were conducted using a single 24-h recall collected from children 2 to 18 years old (n = 7332) in the 2003–2006 National Health and Nutrition Examination Survey. Sources of nutrients contained in foods were determined using nutrient composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from the total diet and from each food group were adjusted for the sample design using appropriate weights. Percentages of the total dietary intake that food sources contributed were tabulated by rank order. Results: The two top ranked food/food group sources of energy and nutrients were: energy—milk (7% of energy) and cake/cookies/quick bread/pastry/pie (7%); protein—milk (13.2%) and poultry (12.8%); total carbohydrate—soft drinks/soda (10.5%) and yeast bread/rolls (9.1%); total sugars—soft drinks/soda (19.2%) and yeast breads and rolls (12.7%); added sugars—soft drinks/soda (29.7%) and candy/sugar/sugary foods (18.6%); dietary fiber—fruit (10.4%) and yeast bread/rolls (10.3%); total fat—cheese (9.3%) and crackers/popcorn/pretzels/chips (8.4%); saturated fatty acids—cheese (16.3%) and milk (13.3%); cholesterol—eggs (24.2%) and poultry (13.2%); vitamin D—milk (60.4%) and milk drinks (8.3%); calcium—milk (33.2%) and cheese (19.4%); potassium—milk (18.8%) and fruit juice (8.0%); and sodium—salt (18.5%) and yeast bread and rolls (8.4%). Conclusions: Results suggest that many foods/food groupings consumed by children were energy dense, nutrient poor. Awareness of dietary sources of energy and nutrients can help health professionals design effective strategies to reduce energy consumption and increase the nutrient density of

  10. Food sources of energy and nutrients among children in the United States: National Health and Nutrition Examination Survey 2003–2006.

    Science.gov (United States)

    Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A; O'Neil, Carol E

    2013-01-22

    Recent detailed analyses of data on dietary sources of energy and nutrients in US children are lacking. The objective of this study was to identify food sources of energy and 28 nutrients for children in the United States. Analyses of food sources were conducted using a single 24-h recall collected from children 2 to 18 years old (n = 7332) in the 2003-2006 National Health and Nutrition Examination Survey. Sources of nutrients contained in foods were determined using nutrient composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from the total diet and from each food group were adjusted for the sample design using appropriate weights. Percentages of the total dietary intake that food sources contributed were tabulated by rank order. The two top ranked food/food group sources of energy and nutrients were: energy - milk (7% of energy) and cake/cookies/quick bread/pastry/pie (7%); protein - milk (13.2%) and poultry (12.8%); total carbohydrate - soft drinks/soda (10.5%) and yeast bread/rolls (9.1%); total sugars - soft drinks/soda (19.2%) and yeast breads and rolls (12.7%); added sugars - soft drinks/soda (29.7%) and candy/sugar/sugary foods (18.6%); dietary fiber - fruit (10.4%) and yeast bread/rolls (10.3%); total fat - cheese (9.3%) and crackers/popcorn/pretzels/chips (8.4%); saturated fatty acids - cheese (16.3%) and milk (13.3%); cholesterol - eggs (24.2%) and poultry (13.2%); vitamin D - milk (60.4%) and milk drinks (8.3%); calcium - milk (33.2%) and cheese (19.4%); potassium - milk (18.8%) and fruit juice (8.0%); and sodium - salt (18.5%) and yeast bread and rolls (8.4%). Results suggest that many foods/food groupings consumed by children were energy dense, nutrient poor. Awareness of dietary sources of energy and nutrients can help health professionals design effective strategies to reduce energy consumption and increase the nutrient density of children's diets.

  11. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  12. A Conceptual Framework for Primary Source Practices

    Science.gov (United States)

    Ensminger, David C.; Fry, Michelle L.

    2012-01-01

    This article introduces a descriptive conceptual framework to provide teachers with a means of recognizing and describing instructional activities that use primary sources. The framework provides structure for professional development programs that have been established to train teachers to access and integrate primary sources into lessons. The…

  13. Food sources of energy and nutrients in Finnish girls and boys 6–8 years of age – the PANIC study

    Science.gov (United States)

    Eloranta, Aino-Maija; Venäläinen, Taisa; Soininen, Sonja; Jalkanen, Henna; Kiiskinen, Sanna; Schwab, Ursula; Lakka, Timo A.; Lindi, Virpi

    2016-01-01

    Background Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. Objective To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. Design We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls (n=213) and boys (n=217) aged 6–8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Results Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake), vitamin D (32%), potassium (20%), calcium (39%), magnesium (17%), and zinc (16%). Vegetable oils (15%) and high-fat vegetable oil–based spreads (14%) were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27%) and iron (12%). Non-root vegetables were the top source of folate (14%) and vitamin C (22%). Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil–based spreads provided a higher proportion of these nutrients among girls. Conclusion Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil–based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education, and

  14. Food sources of energy and nutrients in Finnish girls and boys 6–8 years of age – the PANIC study

    Directory of Open Access Journals (Sweden)

    Aino-Maija Eloranta

    2016-09-01

    Full Text Available Background: Data on food sources of nutrients are needed to improve strategies to enhance nutrient intake among girls and boys in Western countries. Objective: To identify major food sources of energy, energy nutrients, dietary fibre, and micronutrients, and to study gender differences in these food sources among children. Design: We assessed food consumption and nutrient intake using 4-day food records in a population sample of Finnish girls (n=213 and boys (n=217 aged 6–8 years from the Physical Activity and Nutrition in Children Study. We calculated the percentual contribution of 55 food groups for energy and nutrient intake using the population proportion method. Results: Low-fibre grain products, skimmed milk, and high-fibre bread provided almost 23% of total energy intake. Skimmed milk was the top source of protein (18% of total intake, vitamin D (32%, potassium (20%, calcium (39%, magnesium (17%, and zinc (16%. Vegetable oils (15% and high-fat vegetable oil–based spreads (14% were the top sources of polyunsaturated fat. High-fibre bread was the top source of fibre (27% and iron (12%. Non-root vegetables were the top source of folate (14% and vitamin C (22%. Sugar-sweetened beverages provided 21% of sucrose intake. Pork was a more important source of protein and sausage was a more important source of total fat and monounsaturated fat in boys than in girls. Vegetable oils provided a higher proportion of unsaturated fat and vitamin E among boys, whereas high-fat vegetable oil–based spreads provided a higher proportion of these nutrients among girls. Conclusion: Commonly recommended foods, such as skimmed milk, high-fibre grain products, vegetables, vegetable oil, and vegetable oil–based spreads, were important sources of several nutrients, whereas sugar-sweetened beverages provided the majority of sucrose intake among children. This knowledge can be used in improving health among children by dietary interventions, nutrition education

  15. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    Science.gov (United States)

    Craig, P. I.; Mickol, R. L.; Archer, P. D.; Kral, T. A.

    2017-01-01

    Clay minerals have been identified on Mars' oldest (Noachian) terrain and their presence suggests long-term water-rock interactions. The most commonly identified clay minerals on Mars to date are nontronite (Fe-smectite) and montmorillonite (Al-smectite) [1], both of which contain variable amounts of water both adsorbed on their surface and within their structural layers. Over Mars' history, these clay miner-al-water assemblages may have served as nutrient sources for microbial life.

  16. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    Science.gov (United States)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  17. Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source

    Directory of Open Access Journals (Sweden)

    Louise Lins de Sousa

    2014-04-01

    Full Text Available The aim of this work was to study growth potential of the green microalgae Nannochloropsis sp. using brackish groundwater from a well in the semi-arid northeast region of Brazil as culture medium. The medium was supplemented with (% 19.4, 22.0, 44.0 and 50.0% of municipal wastewater after UASB treatment as a low-cost nutrient source. The results showed that the culture tested was capable of growing in the brackish groundwater even at salinity levels as low as 2 ppt. Furthermore it was shown that municipal wastewater could be used as a sole nutrient source for Nannochloropsis sp.

  18. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  19. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    Science.gov (United States)

    Panassa, Essowè; Santana-Casiano, J. Magdalena; González-Dávila, Melchor; Hoppema, Mario; van Heuven, Steven M. A. C.; Völker, Christoph; Wolf-Gladrow, Dieter; Hauck, Judith

    2018-03-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.

  20. Food Sources of Energy and Nutrients among Children in the United States: National Health and Nutrition Examination Survey 2003–2006

    Directory of Open Access Journals (Sweden)

    Victor L. Fulgoni

    2013-01-01

    Full Text Available Background: Recent detailed analyses of data on dietary sources of energy and nutrients in US children are lacking. The objective of this study was to identify food sources of energy and 28 nutrients for children in the United States. Methods: Analyses of food sources were conducted using a single 24-h recall collected from children 2 to 18 years old (n = 7332 in the 2003–2006 National Health and Nutrition Examination Survey. Sources of nutrients contained in foods were determined using nutrient composition databases. Food grouping included ingredients from disaggregated mixtures. Mean energy and nutrient intakes from the total diet and from each food group were adjusted for the sample design using appropriate weights. Percentages of the total dietary intake that food sources contributed were tabulated by rank order. Results: The two top ranked food/food group sources of energy and nutrients were: energy — milk (7% of energy and cake/cookies/quick bread/pastry/pie (7%; protein — milk (13.2% and poultry (12.8%; total carbohydrate — soft drinks/soda (10.5% and yeast bread/rolls (9.1%; total sugars — soft drinks/soda (19.2% and yeast breads and rolls (12.7%; added sugars — soft drinks/soda (29.7% and candy/sugar/sugary foods (18.6%; dietary fiber — fruit (10.4% and yeast bread/rolls (10.3%; total fat — cheese (9.3% and crackers/popcorn/pretzels/chips (8.4%; saturated fatty acids — cheese (16.3% and milk (13.3%; cholesterol — eggs (24.2% and poultry (13.2%; vitamin D — milk (60.4% and milk drinks (8.3%; calcium — milk (33.2% and cheese (19.4%; potassium — milk (18.8% and fruit juice (8.0%; and sodium — salt (18.5% and yeast bread and rolls (8.4%. Conclusions: Results suggest that many foods/food groupings consumed by children were energy dense, nutrient poor. Awareness of dietary sources of energy and nutrients can help health professionals design effective strategies to reduce energy consumption and increase the nutrient

  1. Human waste: An underestimated source of nutrient pollution in coastal seas of Bangladesh, India and Pakistan.

    Science.gov (United States)

    Amin, Md Nurul; Kroeze, Carolien; Strokal, Maryna

    2017-05-15

    Many people practice open defecation in south Asia. As a result, lot of human waste containing nutrients such as nitrogen (N) and phosphorus (P) enter rivers. Rivers transport these nutrients to coastal waters, resulting in marine pollution. This source of nutrient pollution is, however, ignored in many nutrient models. We quantify nutrient export by large rivers to coastal seas of Bangladesh, India and Pakistan, and the associated eutrophication potential in 2000 and 2050. Our new estimates for N and P inputs from human waste are one to two orders of magnitude higher than earlier model calculations. This leads to higher river export of nutrients to coastal seas, increasing the risk of coastal eutrophication potential (ICEP). The newly calculated future ICEP, for instance, Godavori river is 3 times higher than according to earlier studies. Our modeling approach is simple and transparent and can easily be applied to other data-poor basins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Proximate and Ultimate Limiting Nutrients in the Mississippi River Plume: Implications for Hypoxia Reduction Through Nutrient Management

    Science.gov (United States)

    Fennel, K.; Laurent, A.

    2016-02-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is by how much nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable over natural variability. We have performed a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the `ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect

  3. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems.

    Science.gov (United States)

    Kjerstadius, H; Haghighatafshar, S; Davidsson, Å

    2015-01-01

    In the last decades, the focus on waste and wastewater treatment systems has shifted towards increased recovery of energy and nutrients. Separation of urban food waste (FW) and domestic wastewaters using source control systems could aid this increase; however, their effect on overall sustainability is unknown. To obtain indicators for sustainability assessments, five urban systems for collection, transport, treatment and nutrient recovery from blackwater, greywater and FW were investigated using data from implementations in Sweden or northern Europe. The systems were evaluated against their potential for biogas production and nutrient recovery by the use of mass balances for organic material, nutrients and metals over the system components. The resulting indicators are presented in units suitable for use in future sustainability studies or life-cycle assessment of urban waste and wastewater systems. The indicators show that source control systems have the potential to increase biogas production by more than 70% compared with a conventional system and give a high recovery of phosphorus and nitrogen as biofertilizer. The total potential increase in gross energy equivalence for source control systems was 20-100%; the greatest increase shown is for vacuum-based systems.

  4. Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study

    Directory of Open Access Journals (Sweden)

    Cees Buisman

    2013-07-01

    Full Text Available Separation of different domestic wastewater streams and targeted on-site treatment for resource recovery has been recognized as one of the most promising sanitation concepts to re-establish the balance in carbon, nutrient and water cycles. In this study a model was developed based on literature data to compare energy and water balance, nutrient recovery, chemical use, effluent quality and land area requirement in four different sanitation concepts: (1 centralized; (2 centralized with source-separation of urine; (3 source-separation of black water, kitchen refuse and grey water; and (4 source-separation of urine, feces, kitchen refuse and grey water. The highest primary energy consumption of 914 MJ/capita(cap/year was attained within the centralized sanitation concept, and the lowest primary energy consumption of 437 MJ/cap/year was attained within source-separation of urine, feces, kitchen refuse and grey water. Grey water bio-flocculation and subsequent grey water sludge co-digestion decreased the primary energy consumption, but was not energetically favorable to couple with grey water effluent reuse. Source-separation of urine improved the energy balance, nutrient recovery and effluent quality, but required larger land area and higher chemical use in the centralized concept.

  5. Dietary sources of energy and nutrients in the contemporary diet of Inuit adults: results from the 2007-08 Inuit Health Survey.

    Science.gov (United States)

    Kenny, Tiff-Annie; Hu, Xue Feng; Kuhnlein, Harriet V; Wesche, Sonia D; Chan, Hing Man

    2018-05-01

    To characterize the major components of the contemporary Inuit diet and identify the primary sources of energy and essential nutrients. Dietary data were derived from the 24 h recall collected by the Inuit Health Survey (IHS) from 2007 to 2008. The population proportion method was used to determine the percentage contribution of each group. Unique food items/preparations (ninety-three country foods and 1591 market foods) were classified into eight country food groups and forty-one market food groups. Nutrient composition of each food item was obtained from the Canadian Nutrient File. Thirty-six communities across three Inuit regions of northern Canada. A representative sample (n 2095) of non-pregnant Inuit adults (≥18 years), selected through stratified random sampling. Despite their modest contribution to total energy intake (6·4-19·6 %, by region) country foods represented a major source of protein (23-52 %), Fe (28-54 %), niacin (24-52 %) and vitamins D (up to 73 %), B6 (18-55 %) and B12 (50-82 %). By contrast, the three most popular energy-yielding market foods (i.e. sweetened beverages, added sugar and bread) collectively contributed approximately 20 % of total energy, while contributing minimally to most micronutrients. A notable exception was the contribution of these foods to Ca (13-21 %) and vitamins E (17-35 %) and C (as much as 50 %). Solid fruits were consumed by less than 25 % of participants while vegetables were reported by 38-59 % of respondents. Country foods remain a critical dimension of the contemporary Inuit diet.

  6. Analysis of primary teacher stress' sources

    Directory of Open Access Journals (Sweden)

    Katja Depolli Steiner

    2011-12-01

    Full Text Available Teachers are subject to many different work stressors. This study focused on differences in intensity and frequency of potential stressors facing primary schoolteachers and set the goal to identify the most important sources of teacher stress in primary school. The study included 242 primary schoolteachers from different parts of Slovenia. We used Stress Inventory that is designed for identification of intensity and frequency of 49 situations that can play the role of teachers' work stressors. Findings showed that the major sources of stress facing teachers are factors related to work overload, factors stemming from pupils' behaviour and motivation and factors related to school system. Results also showed some small differences in perception of stressors in different groups of teachers (by gender and by teaching level.

  7. Wool-waste as organic nutrient source for container-grown plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State University, North Mississippi Research and Extension Center, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Stratton, Glenn W [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Pincock, James [Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3 (Canada); Butler, Stephanie [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Jeliazkova, Ekaterina A [Mississippi State University, Department of Plant and Soil Sciences, Mississippi State, MS 39762 (United States); Nedkov, Nedko K [Research Institute for Roses and Aromatic Crops, 49 Osvobojdenie Blv., Kazanluk (Bulgaria); Gerard, Patrick D [Department of Applied Economics and Statistics, Clemson University, Clemson, SC 29634 (United States)

    2009-07-15

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  8. Wool-waste as organic nutrient source for container-grown plants

    International Nuclear Information System (INIS)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James; Butler, Stephanie; Jeliazkova, Ekaterina A.; Nedkov, Nedko K.; Gerard, Patrick D.

    2009-01-01

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO 3 -N and NH 4 -N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

  9. Effects of Maize Source and Complex Enzymes on Performance and Nutrient Utilization of Broilers

    Directory of Open Access Journals (Sweden)

    Defu Tang

    2014-12-01

    Full Text Available The objective of this study was to investigate the effect of maize source and complex enzymes containing amylase, xylanase and protease on performance and nutrient utilization of broilers. The experiment was a 4×3 factorial design with diets containing four source maize samples (M1, M2, M3, and M4 and without or with two kinds of complex enzyme A (Axtra XAP and B (Avizyme 1502. Nine hundred and sixty day old Arbor Acres broiler chicks were used in the trial (12 treatments with 8 replicate pens of 10 chicks. Birds fed M1 diet had better body weight gain (BWG and lower feed/gain ratio compared with those fed M3 diet and M4 diet (p0.05, respectively. The fresh feces output was significantly decreased by the addition of enzyme B (p<0.05. Maize source affects the nutrients digestibility and performance of broilers, and a combination of amylase, xylanase and protease is effective in improving the growth profiles of broilers fed maize-soybean-rapeseed-cotton mixed diets.

  10. Aspectos econômicos do uso de fontes orgânicas de nutrientes associadas a sistemas de preparo do solo Economical aspects of organic nutrient sources associated with soil tillage systems

    Directory of Open Access Journals (Sweden)

    Carla Maria Pandolfo

    2008-09-01

    ário, P e K, após nove anos de aplicação das fontes de nutrientes, tem importante participação no desempenho econômico das mesmas.Economical analysis is important to make decision on the use of organic nutrient sources. The objective of this study was to elaborate an economical analysis of different nutrient sources to help farmers and technicians to make decision about the use of these sources at different soil management. The study was carried out at the Epagri Experimental Station of Campos Novos, using a long-term experiment. The treatments were a combination of five tillage systems (no-till; chisel plow; conventional tillage; conventional tillage with crop residues burned and conventional tillage with crop residues removed from the field, with four nutrient sources (TES=control, no fertilizer; AM=mineral fertilizer according with technical recommendation for each crop; EA=5mg ha-1 of moisture poultry litter; ELB=60m³ ha-1 of liquid cattle manure; and ELS=40m³ ha-1 of slurry pig manure. The economical attributes used were variable costs of production, total income, and the cost of the necessity of lime and fertilizers application to improve soil chemical condition after nine years of applying treatments. A model was used to quantify and analyse the effect of nutrient sources in economical aspects, for each nutrient source within each soil tillage. The outputs were triangular pictures and their areas with 90% confidence limits. It was concluded that economical aspect effects of the organic nutrient sources were dependent on tillage systems, and the better performance was in no-till system. EA and ELS showed better economical results. ELS and ELB, even showing different picture areas, were the sources that showed lesser variability in economical attribute evaluated, and did not have one highlight attribute among them. The use of cost of the necessity of lime and fertilizers application to improve soil chemical condition after nine years of applying treatments

  11. Teaching Discrete Mathematics Entirely from Primary Historical Sources

    Science.gov (United States)

    Barnett, Janet Heine; Bezhanishvili, Guram; Lodder, Jerry; Pengelley, David

    2016-01-01

    We describe teaching an introductory discrete mathematics course entirely from student projects based on primary historical sources. We present case studies of four projects that cover the content of a one-semester course, and mention various other courses that we have taught with primary source projects.

  12. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    Science.gov (United States)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  13. Food Sources of Energy and Nutrients in Infants, Toddlers, and Young Children from the Mexican National Health and Nutrition Survey 2012.

    Science.gov (United States)

    Denney, Liya; Afeiche, Myriam C; Eldridge, Alison L; Villalpando-Carrión, Salvador

    2017-05-13

    Food sources of nutrients in Mexican children are not well known. To fill the knowledge gap, dietary intake was assessed in 2057 children using a 24-hour dietary recall. All reported foods and beverages were assigned to one of 76 food groups. Percent contribution of each food group to nutrient intake was estimated for four age groups: 0-5.9, 6-11.9, 12-23.9, and 24-47.9 months. Breast milk, infant formula, and cow's milk were the top sources of energy and nutrients, especially in younger groups. Among infants aged 6-11.9 months, the top food sources of energy included soups and stews, cookies, fruit, tortillas, eggs and egg dishes, and traditional beverages. The same foods plus sweetened breads, dried beans, and sandwiches and tortas were consumed as the top sources of energy among toddlers and young children. Milk, soups, and stews were the top contributors for all nutrients and tortillas, eggs, and egg dishes were among the top contributors for iron and zinc. This study showed that low nutrient-dense cookies, sweetened breads, and traditional beverages were among the core foods consumed early in life in Mexico. This compromises the intake of more nutritious foods such as vegetables and fortified cereals and increases the risk of obesity.

  14. Teaching and Learning Mathematics from Primary Historical Sources

    Science.gov (United States)

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2016-01-01

    Why would anyone think of teaching and learning mathematics directly from primary historical sources? We aim to answer this question while sharing our own experiences, and those of our students across several decades. We will first describe the evolution of our motivation for teaching with primary sources, and our current view of the advantages…

  15. Modeling the Sensitivity of Primary Production in Lake Michigan to Nutrient Loads with and without Dreissenid Mussels

    Science.gov (United States)

    Dreissenid (quagga) mussels became established in large numbers in Lake Michigan beginning around 2004. Since then, significant changes have been observed in Lake Michigan open-water chlorophyll and nutrient concentrations, and in primary production. We updated the LM3-Eutro mode...

  16. Multiple-source tracking: Investigating sources of pathogens, nutrients, and sediment in the Upper Little River Basin, Kentucky, water years 2013–14

    Science.gov (United States)

    Crain, Angela S.; Cherry, Mac A.; Williamson, Tanja N.; Bunch, Aubrey R.

    2017-09-20

    The South Fork Little River (SFLR) and the North Fork Little River (NFLR) are two major headwater tributaries that flow into the Little River just south of Hopkinsville, Kentucky. Both tributaries are included in those water bodies in Kentucky and across the Nation that have been reported with declining water quality. Each tributary has been listed by the Kentucky Energy and Environment Cabinet—Kentucky Division of Water in the 303(d) List of Waters for Kentucky Report to Congress as impaired by nutrients, pathogens, and sediment for contact recreation from point and nonpoint sources since 2002. In 2009, the Kentucky Energy and Environment Cabinet—Kentucky Division of Water developed a pathogen total maximum daily load (TMDL) for the Little River Basin including the SFLR and NFLR Basins. Future nutrient and suspended-sediment TMDLs are planned once nutrient criteria and suspended-sediment protocols have been developed for Kentucky. In this study, different approaches were used to identify potential sources of fecal-indicator bacteria (FIB), nitrate, and suspended sediment; to inform the TMDL process; and to aid in the implementation of effective watershed-management activities. The main focus of source identification was in the SFLR Basin.To begin understanding the potential sources of fecal contamination, samples were collected at 19 sites for densities of FIB (E. coli) in water and fluvial sediment and at 11 sites for Bacteroidales genetic markers (General AllBac, human HF183, ruminant BoBac, canid BacCan, and waterfowl GFD) during the recreational season (May through October) in 2013 and 2014. Results indicated 34 percent of all E. coli water samples (n=227 samples) did not meet the U.S. Environmental Protection Agency 2012 recommended national criteria for primary recreational waters. No criterion currently exists for E. coli in fluvial sediment. By use of the Spearman’s rank correlation test, densities of FIB in fluvial sediments were observed to have a

  17. Nutrient fluxes from coastal California catchments with suburban development

    Science.gov (United States)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  18. Impact of biomass burning on nutrient deposition to the global ocean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15

  19. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2016-12-24

    As coastal plants that can survive in salt water, mangroves play an essential role in large marine ecosystems (LMEs). The Red Sea, where the growth of mangroves is stunted, is one of the least studied LMEs in the world. Mangroves along the Central Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week-old seedlings of Avicennia marina to identify limiting nutrients and stoichiometric effects. We measured height, number of leaves, number of nodes and root development at different time periods as well as the leaf content of C, N, P, Fe, and Chl a in the experimental seedlings. Height, number of nodes and number of leaves differed significantly among treatments. Iron treatment resulted in significantly taller plants compared with other nutrients, demonstrating that iron is the primary limiting nutrient in the tested mangrove population and confirming Liebig\\'s law of the minimum: iron addition alone yielded results comparable to those using complete fertilizer. This result is consistent with the biogenic nature of the sediments in the Red Sea, which are dominated by carbonates, and the lack of riverine sources of iron.

  20. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  1. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  2. Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream

    Science.gov (United States)

    John M. Davis; Amy D. Rosemond; Sue L. Eggert; Wyatt F. Cross; J. Bruce. Wallace

    2010-01-01

    We assessed how a 5-yr nutrient enrichment affected the responses of different size classes of primary consumers and predators in a detritus-based headwater stream. We hypothesized that alterations in detritus availability because of enrichment would decrease the abundance and biomass of large-bodied consumers. In contrast, we found that 2 yr of enrichment increased...

  3. Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine.

    Directory of Open Access Journals (Sweden)

    Mohamed M Ali

    2014-06-01

    Full Text Available Salmonella enterica serovar Typhimurium (Salmonella is one of the most significant food-borne pathogens affecting both humans and agriculture. We have determined that Salmonella encodes an uptake and utilization pathway specific for a novel nutrient, fructose-asparagine (F-Asn, which is essential for Salmonella fitness in the inflamed intestine (modeled using germ-free, streptomycin-treated, ex-germ-free with human microbiota, and IL10-/- mice. The locus encoding F-Asn utilization, fra, provides an advantage only if Salmonella can initiate inflammation and use tetrathionate as a terminal electron acceptor for anaerobic respiration (the fra phenotype is lost in Salmonella SPI1- SPI2- or ttrA mutants, respectively. The severe fitness defect of a Salmonella fra mutant suggests that F-Asn is the primary nutrient utilized by Salmonella in the inflamed intestine and that this system provides a valuable target for novel therapies.

  4. Nutrients and clam contamination by Escherichia coli in a meso-tidal coastal lagoon: Seasonal variation in counter cycle to external sources

    International Nuclear Information System (INIS)

    Botelho, Maria João; Soares, Florbela; Matias, Domitília; Vale, Carlos

    2015-01-01

    Highlights: • Sources of nutrients and E. coli in Ria Formosa linked to tourism in summer. • Lower nutrient values and clam contamination by E. coli in summer. • Bactericide effect of temperature and solar radiation causes lower E. coli. • Higher biological consumption of nutrients in warmer periods. • Results mirror possible effects of climate changes on coastal lagoons. - Abstract: The clam Ruditapes decussatus was transplanted from a natural recruitment area of Ria Formosa to three sites, surveyed for nutrients in water and sediments. Specimens were sampled monthly for determination of Escherichia coli, condition index and gonadal index. Higher nutrient values in low tide reflect drainage, anthropogenic sources or sediment regeneration, emphasising the importance of water mixing in the entire lagoon driven by the tide. Despite the increase of effluent discharges in summer due to tourism, nutrient concentrations and E. coli in clams were lower in warmer periods. The bactericide effect of temperature and solar radiation was better defined in clams from the inlet channel site than from sites closer to urban effluents. High temperature in summer and torrential freshwater inputs to Ria Formosa may anticipate climate change scenarios for south Europe. Seasonal variation of nutrients and clam contamination may thus point to possible alterations in coastal lagoons and their ecosystem services

  5. Effects of different sources of protein on digestive characteristics, microbial efficiency, and nutrient flow in dairy goats

    Directory of Open Access Journals (Sweden)

    Nivea Regina de Oliveira Felisberto

    2011-10-01

    Full Text Available Diets formulated with protein sources presenting different resistance to ruminal degradation were compared by evaluating ruminal parameters, production and microbial efficiency and nutrients flow to the omasum in goats. Eight rumen cannulated non-lactating, non-pregnant goats were distributed in a 4 × 4 Latin square design with two replicates. Treatments consisted of four diets where different sources of plant protein accounted for the major protein source named soybean meal, source of higher ruminal degradability, and three other sources of higher resistance of degradation: roasted soybean, corn gluten meal, and cottonseed cake. Amounts of rumen protein were similar among rations; however, flows of dry matter, protein and non-fiber carbohydrate to omasum were higher for diets with protein source with reduced rumen degradation rate. Higher values of rumen ammonia were obtained by using ration with soybean meal as major source of protein. Higher values of pH were obtained for rations with roasted soybean e cottonseed cake. Regarding kinetic of transit, similar values were found among rations. Diets with protein sources presenting reduced ruminal degradation increase nutrients flow to the omasum in goats and alter digestive parameters such as pH and ammonia without compromising bacteria growth and efficiency, which grants their use for dairy goats with similar efficiency to rations using more degradable sources of protein.

  6. Primary Sources and Inquiry Learning

    Science.gov (United States)

    Pappas, Marjorie L.

    2006-01-01

    In this article, the author discusses inquiry learning and primary sources. Inquiry learning puts students in the active role of investigators. Questioning, authentic and active learning, and interactivity are a few of the characteristics of inquiry learning that put the teacher and library media specialist in the role of coaches while students…

  7. Fusarium spp. is able to grow and invade healthy human nails as a single source of nutrients.

    Science.gov (United States)

    Galletti, J; Negri, M; Grassi, F L; Kioshima-Cotica, É S; Svidzinski, T I E

    2015-09-01

    Onychomycosis caused by Fusarium spp. is emerging, but some factors associated with its development remain unclear, such as whether this genus is keratinolytic. The main aim of the present study was to evaluate the ability of Fusarium to use the human nail as a single source of nutrients. We also performed an epidemiological study and antifungal susceptibility testing of Fusarium spp. that were isolated from patients with onychomycosis. The epidemiological study showed that Fusarium species accounted for 12.4 % of onychomycosis cases, and it was the most common among nondermatophyte molds. The most frequent species identified were F. oxysporum (36.5 %), F. solani (31.8 %), and F. subglutinans (8.3 %). Fluconazole was not active against Fusarium spp., and the response to terbinafine varied according to species. Fusarium was able to grow in vitro without the addition of nutrients and invade healthy nails. Thus, we found that Fusarium uses keratin as a single source of nutrients, and the model proposed herein may be useful for future studies on the pathogenesis of onychomycosis.

  8. Multiple metabolic alterations exist in mutant PI3K cancers, but only glucose is essential as a nutrient source.

    Directory of Open Access Journals (Sweden)

    Rebecca Foster

    Full Text Available Targeting tumour metabolism is becoming a major new area of pharmaceutical endeavour. Consequently, a systematic search to define whether there are specific energy source dependencies in tumours, and how these might be dictated by upstream driving genetic mutations, is required. The PI3K-AKT-mTOR signalling pathway has a seminal role in regulating diverse cellular processes including cell proliferation and survival, but has also been associated with metabolic dysregulation. In this study, we sought to define how mutations within PI3KCA may affect the metabolic dependency of a cancer cell, using precisely engineered isogenic cell lines. Studies revealed gene expression signatures in PIK3CA mutant cells indicative of a consistent up-regulation of glycolysis. Interestingly, the genes up- and down-regulated varied between isogenic models suggesting that the primary node of regulation is not the same between models. Additional gene expression changes were also observed, suggesting that metabolic pathways other than glycolysis, such as glutaminolysis, were also affected. Nutrient dependency studies revealed that growth of PIK3CA mutant cells is highly dependent on glucose, whereas glutamine dependency is independent of PIK3CA status. In addition, the glucose dependency exhibited by PIK3CA mutant cells could not be overridden by supplementation with other nutrients. This specific dependence on glucose for growth was further illustrated by studies evaluating the effects of targeted disruption of the glycolytic pathway using siRNA and was also found to be present across a wider panel of cancer cell lines harbouring endogenous PIK3CA mutations. In conclusion, we have found that PIK3CA mutations lead to a shift towards a highly glycolytic phenotype, and that despite suggestions that cancer cells are adept at utilising alternative nutrient sources, PIK3CA mutant cells are not able to compensate for glucose withdrawal. Understanding the metabolic

  9. Determination of the Effects of Nutrient sources on Enhancement of Crop Tolerance to Bean Root Rot and Bean Stem Maggot in Western Kenya

    International Nuclear Information System (INIS)

    Otsyula, R.M.; Nderitu, J.H.

    1999-01-01

    Field bean phaseolus vulgaris tolerance to root rot (BRR) and bean stem maggot (BSM) is enhanced by improvement of soil nutrients. Organic and inorganic sources of soil nutrients were evaluated in this study to determine their effects on crop tolerance to BRR and BSM. Three variety of GLP 585 susceptible to BRR and BSM; GLP X92 tolerant to BRR and BSM; and KK-8 resistant to BRR and BSM were used. The study was conducted in farmer's field with high level of BRR and BSM over three seasons in a split plot design. Nutrient sources were laid down in main plots while varieties were in subplots. KK-8 gave the highest plant survival and yield over the seasons. GLP 585 had the lowest mean yield and plant survival. Crop tolerance was greatly improved by application of DAP as applied as nutrient sources and varieties for crop tolerance were identified

  10. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which d...

  11. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.

    Science.gov (United States)

    Kampas, P; Parsons, S A; Pearce, P; Ledoux, S; Vale, P; Churchley, J; Cartmell, E

    2007-04-01

    The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mgl(-1), for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 microm after 15 min of disintegration with the simultaneous release of proteins (1550 mgl(-1)) and carbohydrates (307 mgl(-1)) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (>or=10 min or >or=9000 kJkg(-1)TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.

  12. Biomass burning: A significant source of nutrients for Andean rainforests

    Science.gov (United States)

    Fabian, P. F.; Rollenbeck, R.; University Of Marburg, Germany

    2010-12-01

    Regular rain and fogwater sampling in the Podocarpus National Park,on the humid eastern slopes of the Ecuadorian Andes,has been carried out since 2002.The samples,accumulated over about 1-week intervals,were analysed for pH,conductivity,and major ions (K+, Na+, NH4+, Ca2+, Mg2+, Cl-, SO4 2-, NO3-, PO4 3- ).Annual deposition rates of these ions which, due to poor acidic soils with low mineralization rates,constitute the dominant nutrient supply to the mountaineous rainforests, and major ion sources could be determined using back trajectories,along with satellite data. While most of the Na, Cl, and K as well as Ca and Mg input was found to originate from natural oceanic and desert dust sources,respectively (P.Fabian et al.,Adv.Geosci.22,85-94, 2009), NO3, NH4, and about 90% of SO4 (about 10 % is from active volcanoes) are almost entirely due to anthropogenic sources,most likely biomass burning. Industrial and transportation emissions and other pollutants,however,act in a similar way as the precursors produced by biomass burning.For quantifying the impacts of biomass burning vs. those of anthropogenic sources other than biomass burning we used recently established emission inventories,along with simplified model calculations on back trajectories.First results yielding significant contributions of biomass burning will be discussed.

  13. Total primary production and the balance between benthic and pelagic plants in different nutrient regimes in a shallow estuary

    DEFF Research Database (Denmark)

    Markager, Svend Stiig; Krause-Jensen, Dorte; Dalsgaard, Tage

    on a large monitoring data set in combination with historical information we have quantified and compared the benthic and the pelagic primary production along nutrient gradients in space and time for the shallow estuary Limfjorden, Denmark. As expected, increases in nutrient load stimulated the pelagic...... was again reduced, and the ecosystem entered a phase of oligotrophication, pelagic GPP declined gradually while benthic GPP did not increase correspondingly leading to an decline in overall GPP. Instead the ecosystem showed a resistance or time lag against return to a clear water state with benthic...

  14. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    Science.gov (United States)

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  15. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    International Nuclear Information System (INIS)

    Cao, Di; Cao, Wenzhi; Liang, Ying; Huang, Zheng

    2016-01-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ"1"3C, δ"1"5N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ"1"3C and δ"1"5N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ"1"5N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management. - Highlights: • The

  16. Nutrient variations and isotopic evidences of particulate organic matter provenance in fringing reefs, South China

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Di; Cao, Wenzhi, E-mail: wzcao@xmu.edu.cn; Liang, Ying; Huang, Zheng

    2016-10-01

    Nutrient over-enrichment is considered to be one of the causes of coral decline. Increase in traditional fishing in the Xuwen National Coral Reefs Reserve tract (XW) and tourism around the Sanya National Coral Reefs Reserve tract (SY) are causing this coral decline. This study reviews the current state of knowledge of the nutrient status of coastal fringing reefs in South China and evaluates the primary sources of nutrients using stable isotope method. Surveys of seawater nutrients showed that the seawater remained clean in both the XW and SY coastal coral reef areas. Based on the isotopic differences between anthropogenic sewage and naturally occurring aquatic nutrients, the isotopic values of particulate organic matter (POM) and the C/N ratios were successfully used to identify the presence of anthropogenic nutrients in aquatic environments. The δ{sup 13}C, δ{sup 15}N and C/N compositions of POM from XW and SY (− 21.18 ± 2.11‰, 10.30 ± 5.54‰, and 5.35 ± 0.69 and − 20.80 ± 1.34‰, 7.06 ± 3.95‰, and 5.77 ± 2.15, respectively) showed statistically significant variations with the season. The δ{sup 13}C and δ{sup 15}N values of POM suggest marine and terrestrial-derived nutrient sources. Organic carbon is a mixture of marine phytoplankton, marine benthic algae and terrestrial-derived plants. The δ{sup 15}N values suggest terrestrial-derived sewage and upwelling-dominated nitrogen sources. In the presence of natural upwelling and coastal currents, coastal coral reef areas are more vulnerable to the increasing anthropogenic nutrient inputs. Anthropogenic activities might lead to large increases in the nutrient concentrations and could trigger the shift from coral- to macroalgae-dominated ecosystems, which would ultimately result in the degradation of the coastal coral reef ecosystem. These results provide some understanding of the declining coral reef ecosystem and the importance of conservation areas and coastal coral reef resource management

  17. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  18. Seasonal variability of mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.

    -1 Seasonal variability of mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity S. Prasanna Kumar and Jayu Narvekar National Institute of Oceanography, Dona Paula, Goa-403 004, India... on a 2? x 4? grids up to a depth of 500m. Monthly mean temperature and salinity data were used to calculate the sigma-t values (UNESCO, 1981). We also used nitrate, chlorophyll a and primary productivity data in the upper 120m water column...

  19. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (P)

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (N)

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  1. Insects - a natural nutrient source for poultry - a review

    DEFF Research Database (Denmark)

    Józefiak, D; Josefiak, A; Kieronczyk, B

    2016-01-01

    , such as fishmeal. With estimated 1.5 to 3 million species, the class of insects harbours the largest species variety in the world including species providing a high protein and sulphur amino acids content, which can be successfully exploited as feed for poultry. The aim of this paper is to review the present state...... of knowledge concerning the use of insect protein in poultry nutrition and the possibilities of mass production of insects for the feed industry. There is no doubt that insects have an enormous potential as a source of nutrients (protein) and active substances (polyunsaturated fatty acids, antimicrobial...... peptides) for poultry. It can be concluded, based on many experimental results, that meals from insects being members of the orders Diptera (black soldier fly, housefly), Coleoptera (mealworms) and Orthoptera (grasshoppers, locust, crickets and katylids), may be successfully used as feed material...

  2. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Siccardi, Anthony J. [Texas AgriLife Research Mariculture Lab., Corpus Christi, TX (United States); Huysman, Nathan D. [Texas AgriLife Research Mariculture Lab., Corpus Christi, TX (United States); Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hewson, John C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lane, Todd W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-26

    In this paper, the suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ~20 ± 4 g AFDW/m2/day). Finally, analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.

  3. Dietary intake of energy-dense, nutrient-poor and nutrient-dense food sources in children with cystic fibrosis.

    Science.gov (United States)

    Sutherland, Rosie; Katz, Tamarah; Liu, Victoria; Quintano, Justine; Brunner, Rebecca; Tong, Chai Wei; Collins, Clare E; Ooi, Chee Y

    2018-04-30

    Prescription of a high-energy, high-fat diet is a mainstay of nutrition management in cystic fibrosis (CF). However, families may be relying on energy-dense, nutrient-poor (EDNP) foods rather than nutrient-dense (ND) foods to meet dietary targets. We aimed to evaluate the relative contribution of EDNP and ND foods to the usual diets of children with CF and identify sociodemographic factors associated with higher EDNP intakes. This is a cross-sectional comparison of children with CF aged 2-18 years and age- and gender-matched controls. Dietary intake was assessed using the Australian Child and Adolescent Eating Survey (ACAES) food frequency questionnaire. Children with CF (n = 80: 37 males; mean age 9.3 years) consumed significantly more EDNP foods than controls (mean age 9.8 years) in terms of both total energy (median [IQR]: 1301 kcal/day (843-1860) vs. 686 kcal/day (480-1032); p energy intake (median [IQR]: 44% (34-51) vs. 31% (24-43); p energy requirements (median [IQR]: 158% (124-187) vs. 112% (90-137); p energy- and fat-dense CF diet is primarily achieved by overconsumption of EDNP foods, rather than ND sources. This dietary pattern may not be optimal for the future health of children with CF, who are now expected to survive well into adulthood. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  4. Food Sources of Total Energy and Nutrients among U.S. Infants and Toddlers: National Health and Nutrition Examination Survey 2005-2012.

    Science.gov (United States)

    Grimes, Carley A; Szymlek-Gay, Ewa A; Campbell, Karen J; Nicklas, Theresa A

    2015-08-14

    Understanding the dietary intakes of infants and toddlers is important because early life nutrition influences future health outcomes. The aim of this study was to determine the dietary sources of total energy and 16 nutrients in a nationally representative sample of U.S. infants and toddlers aged 0-24 months. Data from the 2005-2012 National Health and Nutrition Examination Survey were analyzed. Dietary intake was assessed in 2740 subjects using one 24-h dietary recall. The population proportion was used to determine the contribution of foods and beverages to nutrient intakes. Overall infant formulas and baby foods were the leading sources of total energy and nutrients in infants aged 0-11.9 months. In toddlers, the diversity of food groups contributing to nutrient intakes was much greater. Important sources of total energy included milk, 100% juice and grain based mixed dishes. A number of foods of low nutritional quality also contributed to energy intakes including sweet bakery products, sugar-sweetened beverages and savory snacks. Overall non-flavored milks and ready-to-eat cereals were the most important contributors to micronutrient intakes. In conclusion this information can be used to guide parents regarding appropriate food selection as well as inform targeted dietary strategies within public health initiatives to improve the diets of infants and toddlers.

  5. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    Science.gov (United States)

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  6. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  7. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    Science.gov (United States)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  8. Daily consumption of foods and nutrients from institutional and home sources among young children attending two contrasting day-care centers in Guatemala City.

    Science.gov (United States)

    Vossenaar, M; Jaramillo, P M; Soto-Méndez, M-J; Panday, B; Hamelinck, V; Bermúdez, O I; Doak, C M; Mathias, P; Solomons, N W

    2012-12-01

    Adequate nutrition is critical to child development and institutions such as day-care centers could potentially complement children's diets to achieve optimal daily intakes. The aim of the study was to describe the full-day diet of children, examining and contrasting the relative contribution of home-derived versus institutional energy and nutrient sources. The present comparison should be considered in the domain of a case-study format. The diets of 33, 3-6 y old children attending low-income day-care centers serving either 3 or a single meal were examined. The home-diet was assessed by means of 3 non-consecutive 24-hr recalls. Estimated energy and nutrient intakes at the centers and at home were assessed and related to Recommended Nutrient Intakes (RNI). Nutrient densities, critical densities and main sources of nutrients were computed. We observed that in children attending the day-care center serving three meals, home-foods contributed less than half the daily energy (47.7%) and between 29.9% and 53.5% of daily nutrients. In children receiving only lunch outside the home, energy contribution from the home was 83.9% and 304 kcal lower than for children receiving 3 meals. Furthermore, between 59.0% and 94.8% of daily nutrients were provided at home. Daily energy, nutrient intakes and nutrient densities were well above the nutrient requirements for this age group, and particularly high for vitamin A. The overall dietary variety was superior in the situation of greater contribution of home fare, but overall the nutrient density and adequacy of the aggregate intakes did not differ in any important manner.

  9. Common Prairie feeds with different soluble and insoluble fractions used for CPM diet formulation in dairy cattle: Impact of carbohydrate-protein matrix structure on protein and other primary nutrient digestion

    Science.gov (United States)

    Peng, Quanhui; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang

    2014-03-01

    An experiment was conducted to investigate the relationship of carbohydrates molecular spectral characteristics to rumen degradability of primary nutrients in Prairie feeds in dairy cattle. In total, 12 different types of feeds were selected, each type of feed was from three different source with total 37 samples. Six types of them were energy-sourced feeds and the others were protein-sourced feeds. The carbohydrates molecular spectral intensity of various functional groups were collected using Fourier transform infrared attenuated total reflectance (ATR-FT/IR) spectroscopy. In the in situ study, the results showed that the rumen digestibility and digestible fractions of primary nutrients (DM, OM, NCP, and CP) were significantly different (P digestibility and digestible fractions of DM, OM and NCP. Spectral intensities of H_1150, H_1015, A_1, and A_3 were weakly negatively associated with in situ rumen degradation of CP. Spectral intensities of A_1240 and H_1240, mainly associated with cellulosic compounds, were correlated with rumen CP degradation. The multiple regression analysis demonstrated that the spectral intensities of A_3 and H_1415 played the most important role and could be used as a potential tool to predict rumen protein degradation of feeds in dairy cattle. In conclusion, this study showed that the carbohydrates as a whole have an effect on protein rumen degradation, rather than cellulose alone, indicating carbohydrate-protein matrix structure impact protein utilization in dairy cattle. The non-invasive molecular spectral technique (ATR-FT/IR) could be used as a rapid potential tool to predict rumen protein degradation of feedstuffs by using molecular spectral bands intensities in carbohydrate fingerprint region.

  10. Access to primary energy sources - the basis of national energy security

    Science.gov (United States)

    Szlązak, Jan; Szlązak, Rafał A.

    2017-11-01

    National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

  11. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Science.gov (United States)

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  12. Isotope-aided studies of nutrient cycling and soil fertility assessment in humid pasture systems

    International Nuclear Information System (INIS)

    Wilkinson, S.R.

    1983-01-01

    Maintenance of primary productivity in grazed ecosystems depends on the orderly cycling of mineral nutrients. Potential applications of nuclear techniques to the study of soil fertility assessment and nutrient cycling are discussed for the plant nutrients N, P, K and S. The bioavailability of extrinsic and intrinsic sources of mineral nutrients are also discussed. With improvements in analytical technology, it appears feasible to use 15 N in grazed pasture ecosystems for N cycling studies. Sulphur cycling in soil/plant/grazing animal systems has been successfully studied, and further opportunities exist using 35 S to study nutrient flows in grazed grassland systems. Opportunities also appear for increased application of tracer technology in the evaluation of mineral intakes and mineral bioavailability to ruminants grazing semi-arid grassland herbage under native soil fertility, with supplemental fertilization, and in the evaluation of mineral supplementation procedures. Root system distribution and function also can be studied advantageously using tracer techniques. (author)

  13. Source contributions and regional transport of primary particulate matter in China

    International Nuclear Information System (INIS)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-01-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50–80%), POC (60%–90%), and PPM (30–70%). For summer/fall, industrial contributes 30–50% for EC/POC and 40–60% for PPM. Transportation is more important for EC (20–30%) than POC/PPM ( 90% in Beijing. - Highlights: • A source-oriented CMAQ was established for primary particulate matter (PPM). • Source and region contributions to EC, POC and PPM in China were quantified. • Residential is major in spring/winter and industrial dominates in summer/fall. • Open burning is more important for southern while dust is in contrast. • Both local and Heibei emissions contribute to PPM in Beijing. - Source and region contributions to primary particulate matter in China were quantified for four months during 2012-2013. Residential and industrial are the major contributors.

  14. Sediment and Nutrient Sources as well as Interspecific Competition Control Growth of 2 Common Species of Coral Reef Macroalgae

    Science.gov (United States)

    Moore, T.; Fong, P.; Cuker, B.

    2016-02-01

    Aquatic communities worldwide are increasingly subjected to multiple anthropogenic stressors that often result in shifts in structure and function. On coral reefs, human impacts have been associated with phase-shifts from coral to algal domination. We hypothesized that the proliferation of these algal communities, especially on fringing reefs, may be facilitated by human alterations in nutrient enrichment and input of sediments from developed watersheds, which may also influence competitive outcomes among dominant algal species. To evaluate how changes in these abiotic stressors as well as competition may affect the growth of 2 common species of calcifying coral reef algae, Galaxaura fasciculata and Padina boryana, we conducted 3 separate 2 factor mesocosm experiments modeling fringing reefs in Moorea, French Polynesia. In the first experiment, we varied sediment source (marine vs. terrestrial) and water column nutrients (ambient vs. enriched) for each species separately and measured growth after 7 days. While both algae grew faster in enriched compared to ambient nutrients, P. boryana performed best with marine sediment (+27% change in biomass) and G. fasciculata with terrestrial sediment (+14% change in biomass). Next, we varied sediment source (as above) as well as sediment nutrients (ambient/enriched) for each species. While P. boryana lost 44% biomass in the eutrophic terrestrial sediment treatment, G. fasciculata performed the best and gained 19% biomass. Finally, we varied competition (alone/together) and terrestrial sediment nutrients (ambient/enriched). Over the 7 day period, P. boryana lost 64% biomass when in competition with G. fasciculata in the enriched treatment while G. fasciculata gained 38% biomass when in competition with P. boryana in the ambient treatment. These results indicate that, while growth of both species of macroalgae was regulated by nutrients, sediments, and competition, each responded uniquely to these controlling factors.

  15. Bring History Alive with Primary Sources

    Science.gov (United States)

    Lehman, Kathy

    2010-01-01

    Using primary sources such as a photograph from the Library of Congress American Memory collection engages learners to think about the past and relate it to their life today. Some artifacts come with an explanation, while some do not. These require critical thinking and investigation to locate information and hypothesize answers to questions posed…

  16. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management.

    Science.gov (United States)

    Ishii, Stephanie K L; Boyer, Treavor H

    2015-08-01

    Alternative approaches to wastewater management including urine source separation have the potential to simultaneously improve multiple aspects of wastewater treatment, including reduced use of potable water for waste conveyance and improved contaminant removal, especially nutrients. In order to pursue such radical changes, system-level evaluations of urine source separation in community contexts are required. The focus of this life cycle assessment (LCA) is managing nutrients from urine produced in a residential setting with urine source separation and struvite precipitation, as compared with a centralized wastewater treatment approach. The life cycle impacts evaluated in this study pertain to construction of the urine source separation system and operation of drinking water treatment, decentralized urine treatment, and centralized wastewater treatment. System boundaries include fertilizer offsets resulting from the production of urine based struvite fertilizer. As calculated by the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), urine source separation with MgO addition for subsequent struvite precipitation with high P recovery (Scenario B) has the smallest environmental cost relative to existing centralized wastewater treatment (Scenario A) and urine source separation with MgO and Na3PO4 addition for subsequent struvite precipitation with concurrent high P and N recovery (Scenario C). Preliminary economic evaluations show that the three urine management scenarios are relatively equal on a monetary basis (<13% difference). The impacts of each urine management scenario are most sensitive to the assumed urine composition, the selected urine storage time, and the assumed electricity required to treat influent urine and toilet water used to convey urine at the centralized wastewater treatment plant. The importance of full nutrient recovery from urine in combination with the substantial chemical inputs required for N recovery

  17. A smart market for nutrient credit trading to incentivize wetland construction

    Science.gov (United States)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  18. Seasonal changes in nutrient limitation and nitrate sources in the green macroalga Ulva lactuca at sites with and without green tides in a northeastern Pacific embayment.

    Science.gov (United States)

    Van Alstyne, Kathryn L

    2016-02-15

    In Penn Cove, ulvoid green algal mats occur annually. To examine seasonal variation in their causes, nitrogen and carbon were measured in Ulva lactuca in May, July, and September and stable nitrogen and oxygen isotope ratios were quantified in U. lactuca, Penn Cove seawater, upwelled water from Saratoga Passage, water near the Skagit River outflow, and effluents from wastewater treatment facilities. Ulvoid growth was nitrogen limited and the sources of nitrogen used by the algae changed during the growing season. Algal nitrogen concentrations were 0.85-4.55% and were highest in September and at sites where algae were abundant. Upwelled waters were the primary nitrogen source for the algae, but anthropogenic sources also contributed to algal growth towards the end of the growing season. This study suggests that small nitrogen inputs can result in crossing a "tipping point", causing the release of nutrient limitation and localized increases in algal growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    Science.gov (United States)

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  20. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system

    Science.gov (United States)

    Scharler, U.M.; Ulanowicz, Robert E.; Fogel, M.L.; Wooller, M.J.; Jacobson-Meyers, M.E.; Lovelock, C.E.; Feller, I.C.; Frischer, M.; Lee, R.; Mckee, Karen L.; Romero, I.C.; Schmit, J.P.; Shearer, C.

    2015-01-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  1. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    Science.gov (United States)

    Williams, Mark R.; Livingston, Stanley J.; Penn, Chad J.; Smith, Douglas R.; King, Kevin W.; Huang, Chi-hua

    2018-04-01

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key components driving nutrient delivery processes during storm events in four nested agricultural watersheds (298-19,341 ha) in the western Lake Erie basin with poorly drained soils and an extensive artificial drainage network typical of the Midwestern U.S. Concentration-discharge hysteresis patterns of nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (DRP), and particulate phosphorus (PP) occurring during 47 storm events over a 6 year period (2004-2009) were evaluated. An assessment of the factors producing nutrient hysteresis was completed following a factor analysis on a suite of measured environmental variables representing the fluvial and wider watershed conditions prior to, and during the monitored storm events. Results showed the artificial drainage network (i.e., surface tile inlets and subsurface tile drains) in these watersheds was the primary flow pathway for nutrient delivery to streams, but nutrient behavior and export during storm events was regulated by the flow paths to and the intensity of the drainage network, the availability of nutrients, and the relative contributions of upland and in-stream nutrient sources. Potential sources and flow pathways for transport varied among NO3-N, PP, and DRP with results underscoring the challenge of mitigating nutrient loss in these watersheds. Conservation practices addressing both nutrient management and hydrologic connectivity will likely be required to decrease nutrient loss in artificially drained landscapes.

  2. Water-quality assessment of the Lower Susquehanna River Basin, Pennsylvania and Maryland; sources, characteristics, analysis and limitations of nutrient and suspended-sediment data, 1975-90

    Science.gov (United States)

    Hainly, R.A.; Loper, C.A.

    1997-01-01

    This report describes analyses of available information on nutrients and suspended sediment collected in the Lower Susquehanna River Basin during water years 1975-90. Most of the analyses were applied to data collected during water years 1980-89. The report describes the spatial and temporal availability of nutrient and suspended-sediment data and presents a preliminary concept of the spatial and temporal patterns of concentrations and loads within the basin. Where data were available, total and dissolved forms of nitrogen and phosphorus species from precipitation, surface water, ground water, and springwater, and bottom material from streams and reservoirs were evaluated. Suspended-sediment data from streams also were evaluated. The U.S. Geological Survey National Water Information System (NWIS) database was selected as the primary database for the analyses. Precipitation-quality data from the National Atmospheric Deposition Program (NADP) and bottom-material-quality data from the National Uranium Resource Evaluation (NURE) were used to supplement the water-quality data from NWIS. Concentrations of nutrients were available from 3 precipitation sites established for longterm monitoring purposes, 883 wells (854 synoptic areal survey sites and 29 project and research sites), 23 springs (17 synoptic areal survey sites and 6 project and research sites), and 894 bottom-material sites (840 synoptic areal survey sites and 54 project and research sites). Concentrations of nutrients and (or) suspended sediment were available from 128 streams (36 long-term monitoring sites, 51 synoptic areal survey sites, and 41 project and research sites). Concentrations of nutrients and suspended sediment in streams varied temporally and spatially and were related to land use, agricultural practices, and streamflow. A general north-to-south pattern of increasing median nitrate concentrations, from 2 to 5 mg/L, was detected in samples collected in study unit streams. In streams that drain

  3. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    Science.gov (United States)

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  4. Agronomic efficiency of potassium fertilization in lettuce fertilized with alternative nutrient sources Eficiência agronômica da adubação potássica na alface adubada com fontes alternativas de nutrientes

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi-Silva

    2013-06-01

    Full Text Available The aim of this study was to evaluate the effect of alternative sources of nutrients on the nutrition, yield and efficiency of potassium fertilization in lettuce. The experiment was carried out in a greenhouse, using 3.7 kg pots filled with a dystrophic red-yellow Latosol of medium texture. The experimental design was randomized, with treatments divided into a 4 x 6 factorial: four doses of potassium (0; 200; 400; 600 kg ha-1 K2O and six alternative sources of nutrients (breccia, ultramafic, biotite schist, phlogopite, and mining and Chapada by-products, with four replications. Content and accumulation were determined for potassium (K, copper (Cu, zinc (Zn and nickel (Ni in the lettuce shoots, and from these data two indices were calculated for the efficiency of potassium as a fertilizer. The application of increasing values of alternative sources of nutrients promoted improvements in nutrition and increases in lettuce yield. The efficiency of potassium fertilization decreased with the increase in values of potassium taken from alternative nutrient sources, with the mining by-products and the ultramafic being superior to the other sources. Crushed silicate rocks and mining by-products can therefore both be used as fertilizer in organic and conventional production systems.O objetivo desse estudo foi avaliar o efeito da aplicação de fontes alternativas de nutrientes na nutrição, produção e eficiência da adubação potássica na alface. O experimento foi conduzido em casa de vegetação, em vasos com 3,7 kg preenchidos com um Latossolo Vermelho Amarelo distrófico de textura média. O delineamento experimental foi inteiramente casualizado e os tratamentos foram distribuídos em arranjo fatorial 4 x 6, sendo quatro doses de potássio (0; 200; 400; 600 kg ha-1 de K2O e seis fontes alternativas de nutrientes (brecha, ultramáfica, biotita xisto, flogopitito, subproduto de mineração e subproduto de chapada, com quatro repetições. Foram

  5. The potential contribution of yellow cassava to dietary nutrient adequacy of primary-school children in Eastern Kenya; the use of linear programming.

    Science.gov (United States)

    Talsma, Elise F; Borgonjen-van den Berg, Karin J; Melse-Boonstra, Alida; Mayer, Eva V; Verhoef, Hans; Demir, Ayşe Y; Ferguson, Elaine L; Kok, Frans J; Brouwer, Inge D

    2018-02-01

    Introduction of biofortified cassava as school lunch can increase vitamin A intake, but may increase risk of other deficiencies due to poor nutrient profile of cassava. We assessed the potential effect of introducing a yellow cassava-based school lunch combined with additional food-based recommendations (FBR) on vitamin A and overall nutrient adequacy using Optifood (linear programming tool). Cross-sectional study to assess dietary intakes (24 h recall) and derive model parameters (list of foods consumed, median serving sizes, food and food (sub)group frequency distributions, food cost). Three scenarios were modelled, namely daily diet including: (i) no school lunch; (ii) standard 5d school lunch with maize/beans; and (iii) 5d school lunch with yellow cassava. Each scenario and scenario 3 with additional FBR were assessed on overall nutrient adequacy using recommended nutrient intakes (RNI). Eastern Kenya. Primary-school children (n 150) aged 7-9 years. Best food pattern of yellow cassava-based lunch scenario achieved 100 % RNI for six nutrients compared with no lunch (three nutrients) or standard lunch (five nutrients) scenario. FBR with yellow cassava and including small dried fish improved nutrient adequacy, but could not ensure adequate intake of fat (52 % of average requirement), riboflavin (50 % RNI), folate (59 % RNI) and vitamin A (49 % RNI). Introduction of yellow cassava-based school lunch complemented with FBR potentially improved vitamin A adequacy, but alternative interventions are needed to ensure dietary adequacy. Optifood is useful to assess potential contribution of a biofortified crop to nutrient adequacy and to develop additional FBR to address remaining nutrient gaps.

  6. Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity

    Directory of Open Access Journals (Sweden)

    JULIE EKASARI

    2010-09-01

    Full Text Available Application of bio-flocs technology (BFT in aquaculture offers a solution to avoid environmental impact of high nutrient discharges and to reduce the use of artificial feed. In BFT, excess of nutrients in aquaculture systems are converted into microbial biomass, which can be consumed by the cultured animals as a food source. In this experiment, upconcentrated pond water obtained from the drum filter of a freshwater tilapia farm was used for bio-flocs reactors. Two carbon sources, sugar and glycerol, were used as the first variable, and two different levels of salinity, 0 and 30 ppt, were used as the second variable. Bio-flocs with glycerol as a carbon source had higher total n-6 PUFAs (19.1 ± 2.1 and 22.3 ± 8.6 mg/g DW at 0 and 30 ppt, respectively than that of glucose (4.0 ± 0.1 and 12.6 ± 2.5 mg/g DW at 0 and 30 ppt. However, there was no effect of carbon source or salinity on crude protein, lipid, and total n-3 PUFAs contents of the bio-flocs.

  7. Nutrients fluxes from groundwater discharge into Mangueira Lagoon (Rio Grande do Sul, Brazil); Fluxos de nutrientes associados as descargas de agua subterranea para a Lagoa Mangueira (Rio Grande do Sul, Brasil)

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Carlos F.F.; Niencheski, Luis F.H.; Attisano, Karina K.; Milani, Marcio R., E-mail: pgofcfa@furg.br [Instituto de Oceanografia, Universidade Federal do Rio Grande, Campus Carreiros, Rio Grande, RS (Brazil); Santos, Isaac R. [Department of Oceanography, Florida State University, Tallahassee, FL (United States); Milani, Idel C. [Departamento de Engenharia Hidrica, Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas, Campus Porto, Pelotas, RS (Brazil)

    2012-07-01

    This study assesses the importance of groundwater discharge to dissolved nutrient levels in Mangueira Lagoon. A transect of an irrigation canal in the margin of Lagoon demonstrated a strong geochemical gradient due to high groundwater inputs in this area. Using {sup 222}Rn as a quantitative groundwater tracer, we observed that the flux of dissolved inorganic nitrogen (DIN), silicate and phosphate (1178 and 1977; 26190 and 35652; 167 and 188 mol d{sup -1} for winter and summer, respectively) can continually supply/sustain primary production. The irrigation canals act as an artificial underground tributary and represent a new source of nutrients to coastal lagoons. (author)

  8. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-01-01

    the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied

  9. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  10. Food Sources of Total Energy and Nutrients among U.S. Infants and Toddlers: National Health and Nutrition Examination Survey 2005–2012

    Directory of Open Access Journals (Sweden)

    Carley A. Grimes

    2015-08-01

    Full Text Available Understanding the dietary intakes of infants and toddlers is important because early life nutrition influences future health outcomes. The aim of this study was to determine the dietary sources of total energy and 16 nutrients in a nationally representative sample of U.S. infants and toddlers aged 0–24 months. Data from the 2005–2012 National Health and Nutrition Examination Survey were analyzed. Dietary intake was assessed in 2740 subjects using one 24-h dietary recall. The population proportion was used to determine the contribution of foods and beverages to nutrient intakes. Overall infant formulas and baby foods were the leading sources of total energy and nutrients in infants aged 0–11.9 months. In toddlers, the diversity of food groups contributing to nutrient intakes was much greater. Important sources of total energy included milk, 100% juice and grain based mixed dishes. A number of foods of low nutritional quality also contributed to energy intakes including sweet bakery products, sugar-sweetened beverages and savory snacks. Overall non-flavored milks and ready-to-eat cereals were the most important contributors to micronutrient intakes. In conclusion this information can be used to guide parents regarding appropriate food selection as well as inform targeted dietary strategies within public health initiatives to improve the diets of infants and toddlers.

  11. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012.

    Science.gov (United States)

    Yang, Qichun; Tian, Hanqin; Li, Xia; Ren, Wei; Zhang, Bowen; Zhang, Xuesong; Wolf, Julie

    2016-01-15

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.8 9 ± 0.64 Tg N yr.(-1) (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg Pyr.(-1) (1 Tg = 10(12)g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930-1969 and 1987-2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of global

  12. The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Directory of Open Access Journals (Sweden)

    Richard P. Taylor

    2018-06-01

    Full Text Available Brewery effluent (BE needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301, grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP effluent, compared with those irrigated with post-constructed-wetland (CW effluent or tap water only (p < 0.0001. However, cabbage yield when grown using BE was 13% lower than that irrigated with a nutrient-solution and fresh water; the electrical conductivity of BE (3019.05 ± 48.72 µs/cm2 may have been responsible for this. Post-CW and post-high-rate-algal-pond (HRAP BE was least suitable due to their higher conductivity and lower nutrient concentration. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium concentration and sodium adsorption ratio (3919 ± 94.77 & 8.18 ± 0.17 mg/kg than soil irrigated with a commercial nutrient-solution (920.58 ± 27.46 & 2.20 ± 0.05 mg/kg. However, this was not accompanied by a deterioration in the soil's hydro-physical properties, nor a change in the metabolic community structure of the soil. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, and job creation. Future studies should investigate methods to reduce the build-up of salt in the soil when treated BE is used to irrigate crops. Keywords: Wastewater irrigation, Nutrient recovery, Agriculture, Brewery effluent

  13. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P.

    Science.gov (United States)

    McKew, Boyd A; Metodieva, Gergana; Raines, Christine A; Metodiev, Metodi V; Geider, Richard J

    2015-10-01

    Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Research on Primary Shielding Calculation Source Generation Codes

    Science.gov (United States)

    Zheng, Zheng; Mei, Qiliang; Li, Hui; Shangguan, Danhua; Zhang, Guangchun

    2017-09-01

    Primary Shielding Calculation (PSC) plays an important role in reactor shielding design and analysis. In order to facilitate PSC, a source generation code is developed to generate cumulative distribution functions (CDF) for the source particle sample code of the J Monte Carlo Transport (JMCT) code, and a source particle sample code is deveoped to sample source particle directions, types, coordinates, energy and weights from the CDFs. A source generation code is developed to transform three dimensional (3D) power distributions in xyz geometry to source distributions in r θ z geometry for the J Discrete Ordinate Transport (JSNT) code. Validation on PSC model of Qinshan No.1 nuclear power plant (NPP), CAP1400 and CAP1700 reactors are performed. Numerical results show that the theoretical model and the codes are both correct.

  15. Nutrient Intake Is Insufficient among Senegalese Urban School Children and Adolescents: Results from Two 24 h Recalls in State Primary Schools in Dakar

    Directory of Open Access Journals (Sweden)

    Marion Fiorentino

    2016-10-01

    Full Text Available Due to rapid urbanization and high food prices and in the absence of nutrition programs, school children from urban areas in West Africa often have insufficient and inadequate diet leading to nutrient deficiencies that affect their health and schooling performance. Acute malnutrition and micronutrient deficiencies are prevalent in children from primary state schools of Dakar (Senegal. The objectives of the present study were to assess the overall diet of these children, to report insufficient/excessive energy and nutrient intakes and to investigate association between insufficient nutrient intake and micronutrient deficiencies. Children attending urban state primary schools in the Dakar area were selected through a two-stage random cluster sampling (30 schools × 20 children. Dietary intake data were obtained from two 24 h recalls and blood samples were collected from 545 children (aged 5–17 years, 45% < 10 years, 53% girls and adjusted for intra-individual variability to estimate nutrient usual intakes. Energy intake was insufficient and unbalanced with insufficient contribution of protein and excessive contribution of fat to global energy intake in one third of the children. Proportions of children with insufficient intake were: 100% for calcium, 100% for folic acid, 79% for vitamin A, 69% for zinc, 53% for vitamin C and 46% for iron. Insufficient iron and protein intake were risk factors for iron deficiency (odds ratio, OR 1.5, 2.2. Insufficient zinc intake and energy intake from protein were risk factors for zinc deficiency (OR 1.8, 3.0, 1.7, 2.9. Insufficient iron and vitamin C intake, and insufficient energy intake from protein were risk factors for marginal vitamin A status (OR 1.8, 1.8, 3.3. To address nutritional deficiencies associated with a diet deficient in energy, protein and micronutrients, nutrition education or school feeding programs are needed in urban primary schools of Senegal.

  16. Nutrient Intake Is Insufficient among Senegalese Urban School Children and Adolescents: Results from Two 24 h Recalls in State Primary Schools in Dakar

    Science.gov (United States)

    Fiorentino, Marion; Landais, Edwige; Bastard, Guillaume; Carriquiry, Alicia; Wieringa, Frank T.; Berger, Jacques

    2016-01-01

    Due to rapid urbanization and high food prices and in the absence of nutrition programs, school children from urban areas in West Africa often have insufficient and inadequate diet leading to nutrient deficiencies that affect their health and schooling performance. Acute malnutrition and micronutrient deficiencies are prevalent in children from primary state schools of Dakar (Senegal). The objectives of the present study were to assess the overall diet of these children, to report insufficient/excessive energy and nutrient intakes and to investigate association between insufficient nutrient intake and micronutrient deficiencies. Children attending urban state primary schools in the Dakar area were selected through a two-stage random cluster sampling (30 schools × 20 children). Dietary intake data were obtained from two 24 h recalls and blood samples were collected from 545 children (aged 5–17 years, 45% < 10 years, 53% girls) and adjusted for intra-individual variability to estimate nutrient usual intakes. Energy intake was insufficient and unbalanced with insufficient contribution of protein and excessive contribution of fat to global energy intake in one third of the children. Proportions of children with insufficient intake were: 100% for calcium, 100% for folic acid, 79% for vitamin A, 69% for zinc, 53% for vitamin C and 46% for iron. Insufficient iron and protein intake were risk factors for iron deficiency (odds ratio, OR 1.5, 2.2). Insufficient zinc intake and energy intake from protein were risk factors for zinc deficiency (OR 1.8, 3.0, 1.7, 2.9). Insufficient iron and vitamin C intake, and insufficient energy intake from protein were risk factors for marginal vitamin A status (OR 1.8, 1.8, 3.3). To address nutritional deficiencies associated with a diet deficient in energy, protein and micronutrients, nutrition education or school feeding programs are needed in urban primary schools of Senegal. PMID:27775598

  17. Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

    Directory of Open Access Journals (Sweden)

    M. Wanapat

    2013-07-01

    Full Text Available The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a 2×2 factorial arrangement in a 4×4 Latin square design. Factor A was carbohydrate source; cassava chip (CC and CC+rice bran at a ratio 3:1 (CR3:1, and factor B was level of cottonseed meal (CM; 109 g CP/kg (LCM and 328 g CP/kg (HCM in isonitrogenous diets (490 g CP/kg. Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05. Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p0.05. Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

  18. Evidence of chronic anthropogenic nutrient within coastal lagoon reefs adjacent to urban and tourism centers, Kenya: A stable isotope approach.

    Science.gov (United States)

    Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph

    2017-06-30

    The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ 15 N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ 15 N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ 15 N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mass-Balance Constraints on Nutrient Cycling in Tropical Seagrass Beds

    NARCIS (Netherlands)

    Erftemeijer, P.L.A.; Middelburg, J.J.

    1995-01-01

    A relatively simple mass balance model is presented to study the cycling of nutrients (nitrogen and phosphorus) in tropical seagrass beds. The model is based on quantitative data on nutrient availability, seagrass primary production, community oxygen metabolism, seagrass tissue nutrient contents,

  20. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun, E-mail: qichun.yang@pnnl.gov [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849 (United States); Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Tian, Hanqin, E-mail: tianhan@auburn.edu [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849 (United States); Li, Xia [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849 (United States); Ren, Wei [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849 (United States); Department of Plant & Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506 (United States); Zhang, Bowen [International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849 (United States); Zhang, Xuesong [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 (United States); Wolf, Julie [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States)

    2016-01-15

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.89 ± 0.64 Tg N yr.{sup −1} (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg P yr.{sup −1} (1 Tg = 10{sup 12} g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930–1969 and 1987–2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in

  1. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012

    International Nuclear Information System (INIS)

    Yang, Qichun; Tian, Hanqin; Li, Xia; Ren, Wei; Zhang, Bowen; Zhang, Xuesong; Wolf, Julie

    2016-01-01

    Manure nitrogen (N) and phosphorus (P) from livestock husbandry are important components of terrestrial biogeochemical cycling. Assessment of the impacts of livestock manure on terrestrial biogeochemistry requires a compilation and analysis of spatial and temporal patterns of manure nutrients. In this study, we reconstructed county-level manure nutrient data of the conterminous United States (U.S.) in 4- to 5-year increments from 1930 to 2012. Manure N and P were 5.89 ± 0.64 Tg N yr. −1 (Mean ± Standard Deviation) and 1.73 ± 0.29 Tg P yr. −1 (1 Tg = 10 12 g), and increased by 46% and 92% from 1930 to 2012, respectively. Prior to 1970, manure provided more N to the U.S. lands than chemical fertilizer use. Since 1970, however, increasing chemical N fertilizer use has exceeded manure N production. Manure was the primary P source in the U.S. during 1930–1969 and 1987–2012, but was lower than P fertilizer use in 1974, 1978, and 1982. High-nutrient-production regions shifted towards eastern and western areas of the U.S. Decreasing small farms and increasing Concentrated Animal Feeding Operations (CAFOs) induced concentrated spatial patterns in manure nutrient loads. Counties with cattle or poultry as the primary manure nutrient contributors expanded significantly from 1930 to 2012, whereas regions with sheep and hog as the primary contributors decreased. We identified regions facing environmental threats associated with livestock farming. Effective management of manure should consider the impacts of CAFOs in manure production, and changes in livestock population structure. The long-term county-level manure nutrient dataset provides improved spatial and temporal information on manure nutrients in the U.S. This dataset is expected to help advance research on nutrient cycling, ammonia volatilization, greenhouse gas (GHG) emissions from livestock husbandry, recovery and reuse of manure nutrients, and impacts of livestock feeding on human health in the context of

  2. Nutrient Patterns and Their Food Sources in Older Persons from France and Quebec: Dietary and Lifestyle Characteristics

    Directory of Open Access Journals (Sweden)

    Benjamin Allès

    2016-04-01

    Full Text Available Background: Dietary and nutrient patterns have been linked to health outcomes related to aging. Food intake is influenced by environmental and genetic factors. The aim of the present study was to compare nutrient patterns across two elderly populations sharing a common ancestral cultural background, but living in different environments. Methods: The diet quality, lifestyle and socioeconomic characteristics of participants from the Three-City Study (3C, France, n = 1712 and the Québec Longitudinal Study on Nutrition and Successful Aging (NuAge, Quebec, Canada, n = 1596 were analyzed. Nutrient patterns and their food sources were identified in the two samples using principal component analysis. Diet quality was compared across sample-specific patterns by describing weekly food intake and associations with the Canadian Healthy Eating Index (C-HEI. Results: Three nutrient patterns were retained in each study: a healthy, a Western and a more traditional pattern. These patterns accounted for 50.1% and 53.5% of the total variance in 3C and NuAge, respectively. Higher education and non-physical occupations over lifetime were associated with healthy patterns in both studies. Other characteristics such as living alone, having a body mass index lower than 25 and being an ex-smoker were associated with the healthy pattern in NuAge. No association between these characteristics and the nutrient patterns was noted in 3C. The healthy and Western patterns from each sample also showed an inverse association with C-HEI. Conclusion: The two healthy patterns showed important similarities: adequate food variety, consumption of healthy foods and associations with common sociodemographic factors. This work highlights that nutrient patterns derived using a posteriori methods may be useful to compare the nutritional quality of the diet of distinct populations.

  3. Nutrient Patterns and Their Food Sources in Older Persons from France and Quebec: Dietary and Lifestyle Characteristics.

    Science.gov (United States)

    Allès, Benjamin; Samieri, Cécilia; Lorrain, Simon; Jutand, Marthe-Aline; Carmichael, Pierre-Hugues; Shatenstein, Bryna; Gaudreau, Pierrette; Payette, Hélène; Laurin, Danielle; Barberger-Gateau, Pascale

    2016-04-19

    Dietary and nutrient patterns have been linked to health outcomes related to aging. Food intake is influenced by environmental and genetic factors. The aim of the present study was to compare nutrient patterns across two elderly populations sharing a common ancestral cultural background, but living in different environments. The diet quality, lifestyle and socioeconomic characteristics of participants from the Three-City Study (3C, France, n = 1712) and the Québec Longitudinal Study on Nutrition and Successful Aging (NuAge, Quebec, Canada, n = 1596) were analyzed. Nutrient patterns and their food sources were identified in the two samples using principal component analysis. Diet quality was compared across sample-specific patterns by describing weekly food intake and associations with the Canadian Healthy Eating Index (C-HEI). Three nutrient patterns were retained in each study: a healthy, a Western and a more traditional pattern. These patterns accounted for 50.1% and 53.5% of the total variance in 3C and NuAge, respectively. Higher education and non-physical occupations over lifetime were associated with healthy patterns in both studies. Other characteristics such as living alone, having a body mass index lower than 25 and being an ex-smoker were associated with the healthy pattern in NuAge. No association between these characteristics and the nutrient patterns was noted in 3C. The healthy and Western patterns from each sample also showed an inverse association with C-HEI. The two healthy patterns showed important similarities: adequate food variety, consumption of healthy foods and associations with common sociodemographic factors. This work highlights that nutrient patterns derived using a posteriori methods may be useful to compare the nutritional quality of the diet of distinct populations.

  4. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  5. The World of Barilla Taylor: Bringing History to Life through Primary Sources.

    Science.gov (United States)

    Stearns, Liza

    1997-01-01

    Presents a lesson plan using material from a primary source-based curriculum kit titled "The World of Barilla Taylor." The kit uses personal letters, maps, hospital and work records, and other primary sources to document the life of a young woman working in the textile mills in 19th-century Massachusetts. (MJP)

  6. Recent Warming, Rather than Industrial Emissions of Bioavailable Nutrients, Is the Dominant Driver of Lake Primary Production Shifts across the Athabasca Oil Sands Region.

    Directory of Open Access Journals (Sweden)

    Jamie C Summers

    Full Text Available Freshwaters in the Athabasca Oil Sands Region (AOSR are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla profiles (including diagenetic products from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal

  7. Scale and legacy controls on catchment nutrient export regimes

    Science.gov (United States)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  8. Nutrient Budgets Calculated in Floodwaters Using a Whole-Ecosystem Experimental Manipulation

    Science.gov (United States)

    Talbot, C. J.; Paterson, M. J.; Xenopoulos, M. A.

    2017-12-01

    Flooding provides pathways for nutrients to move into surface waters and alter nutrient concentrations, therefore influencing downstream ecosystems and increasing events of eutrophication. Nutrient enrichment will likely affect water quality, primary production, and overall ecosystem function. Quantifying nutrient movement post-flood will help evaluate the risks or advantages that flooding will have on ecosystem processes. Here we constructed nutrient budgets using data collected as part of the Flooded Upland Dynamics Experiment (FLUDEX) at the Experimental Lakes Area (ELA) in northwestern Ontario. Three experimental reservoirs with varying amounts of stored carbon were created by flooding forested land from May through September annually from 1999 to 2003. Organic matter became a significant source of nutrients under flooded conditions and elevated reservoir total nitrogen (TN) and total phosphorus (TP) concentrations within one week of flooding. The highest TN (2.6 mg L-1) and TP (579 µg L-1) concentrations throughout the entire flooding experiment occurred in the medium carbon reservoir within the first two weeks of flooding in 1999. TN and TP fluxes were positive in all years of flooding. TP fluxes decreased after each flooding season therefore, TP production may be less problematic in floodplains subject to frequent repeated flooding. However, TN fluxes remained large even after repeated flooding. Therefore, flooding, whether naturally occurring or from anthropogenic flow alteration, may be responsible for producing significant amounts of nitrogen and phosphorus in aquatic ecosystems.

  9. Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille

    Science.gov (United States)

    El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.-L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.-L.

    2011-03-01

    Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning and the aggregate emissions from three industrial processes (heavy fuel oil combustion/shipping, coke production and steel manufacturing) as well as some primary biogenic emissions. This source apportionment exercise is well corroborated by 14C measurements. Primary OC estimated by the CMB accounts on average for 22% of total OC and is dominated by the vehicular emissions that contribute on average for 17% of OC mass concentration (vehicular PM contributes for 17% of PM2.5). Even though industrial emissions contribute only 2.3% of the total OC (7% of PM2.5), they are associated with ultrafine particles (Dpheavy metals such as Pb, Ni and V. On one hand, given that industrial emissions governed key primary markers, their omission would lead to substantial uncertainties in the CMB analysis performed in areas heavily impacted by such sources, hindering accurate estimation of non-industrial primary sources and secondary sources. On the other hand, being associated with bursts of submicron particles and carcinogenic and mutagenic components such as PAH, these emissions are most likely related with acute ill-health outcomes and should be regulated despite their small contributions to OC. Another important result is the fact that 78% of OC mass cannot be attributed to the major primary sources and, thus, remains un-apportioned. We have consequently critically investigated the uncertainties

  10. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin

    Science.gov (United States)

    Robertson, Dale M.; Saad, David A.

    2013-01-01

    Nitrogen (N) and phosphorus (P) loading from the Mississippi/Atchafalaya River Basin (MARB) has been linked to hypoxia in the Gulf of Mexico. To describe where and from what sources those loads originate, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were constructed for the MARB using geospatial datasets for 2002, including inputs from wastewater treatment plants (WWTPs), and calibration sites throughout the MARB. Previous studies found that highest N and P yields were from the north-central part of the MARB (Corn Belt). Based on the MARB SPARROW models, highest N yields were still from the Corn Belt but centered over Iowa and Indiana, and highest P yields were widely distributed throughout the center of the MARB. Similar to that found in other studies, agricultural inputs were found to be the largest N and P sources throughout most of the MARB: farm fertilizers were the largest N source, whereas farm fertilizers, manure, and urban inputs were dominant P sources. The MARB models enable individual N and P sources to be defined at scales ranging from SPARROW catchments (∼50 km2) to the entire area of the MARB. Inputs of P from WWTPs and urban areas were more important than found in most other studies. Information from this study will help to reduce nutrient loading from the MARB by providing managers with a description of where each of the sources of N and P are most important, thus providing a basis for prioritizing management actions and ultimately reducing the extent of Gulf hypoxia.

  11. Common Prairie feeds with different soluble and insoluble fractions used for CPM diet formulation in dairy cattle: impact of carbohydrate-protein matrix structure on protein and other primary nutrient digestion.

    Science.gov (United States)

    Peng, Quanhui; Wang, Zhisheng; Zhang, Xuewei; Yu, Peiqiang

    2014-01-01

    An experiment was conducted to investigate the relationship of carbohydrates molecular spectral characteristics to rumen degradability of primary nutrients in Prairie feeds in dairy cattle. In total, 12 different types of feeds were selected, each type of feed was from three different source with total 37 samples. Six types of them were energy-sourced feeds and the others were protein-sourced feeds. The carbohydrates molecular spectral intensity of various functional groups were collected using Fourier transform infrared attenuated total reflectance (ATR-FT/IR) spectroscopy. In the in situ study, the results showed that the rumen digestibility and digestible fractions of primary nutrients (DM, OM, NCP, and CP) were significantly different (P<0.05) among the feeds. The spectral bands features were significantly different (P<0.05) among the feeds. Spectral intensities of A_Cell, H_1415 and H_1370 were weakly positively correlated with in situ rumen digestibility and digestible fractions of DM, OM and NCP. Spectral intensities of H_1150, H_1015, A_1, and A_3 were weakly negatively associated with in situ rumen degradation of CP. Spectral intensities of A_1240 and H_1240, mainly associated with cellulosic compounds, were correlated with rumen CP degradation. The multiple regression analysis demonstrated that the spectral intensities of A_3 and H_1415 played the most important role and could be used as a potential tool to predict rumen protein degradation of feeds in dairy cattle. In conclusion, this study showed that the carbohydrates as a whole have an effect on protein rumen degradation, rather than cellulose alone, indicating carbohydrate-protein matrix structure impact protein utilization in dairy cattle. The non-invasive molecular spectral technique (ATR-FT/IR) could be used as a rapid potential tool to predict rumen protein degradation of feedstuffs by using molecular spectral bands intensities in carbohydrate fingerprint region. Copyright © 2013 Elsevier B

  12. The primary ion source for construction and optimization of operation parameters

    International Nuclear Information System (INIS)

    Synowiecki, A.; Gazda, E.

    1986-01-01

    The construction of primary ion source for SIMS has been presented. The influence of individual operation parameters on the properties of ion source has been investigated. Optimization of these parameters has allowed to appreciate usefulness of the ion source for SIMS study. 14 refs., 8 figs., 2 tabs. (author)

  13. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    Science.gov (United States)

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Metals, organic compounds, and nutrients in Long Island Sound: sources, magnitudes, trends, and impacts

    Science.gov (United States)

    Mullaney, John R.; Varekamp, J.C.; MCElroy, A.E.; Brsslin, V.T.

    2014-01-01

    Long Island Sound (LIS) is a relatively shallow estuary with a mean depth of 20 m (maximum depth 49 m) and a unique hydrology and history of pollutant loading. Those factors have contributed to a wide variety of contamination problems in its muddy sediments, aquatic life and water column. The LIS sediments are contaminated with a host of legacy and more recently released toxic compounds and elements related to past and present wastewater discharges and runoff. These include non-point and storm water runoff and groundwater discharges, whose character has changed over the years along with the evolution of its watershed and industrial history. Major impacts have resulted from the copious amounts of nutrients discharged into LIS through atmospheric deposition (N), domestic and industrial waste water flows, fertilizer releases, and urban runoff. All these sources and their effects are in essence the result of human presence and activities in the watershed, and the severity of pollutant loading and their impacts generally scales with total population in the watersheds surrounding LIS. Environmental legislation passed since the mid-to late 1900s (e.g., Clean Air Act, Clean Water Act) has had a beneficial effect, however, and contaminant loadings for many toxic organic and inorganic chemicals and nutrients have diminished over the last few decades (O’Shea and Brosnan 2000; Trench, et al, 2012; O’Connor and Lauenstein 2006; USEPA 2007). Major strides have been made in reducing the inflow of nutrients into LIS, but cultural eutrophication is still an ongoing problem and nutrient control efforts will need to continue. Nonetheless, LIS is still a heavily human impacted estuary (an ‘Urban Estuary’, as described for San Francisco Bay by Conomos, 1979), and severe changes in water quality and sediment toxicity as well as ecosystem shifts have been witnessed over the relatively short period since European colonization in the early 1600s (Koppelman et al., 1976).

  15. Evaluation of nutrient and energy sources of the deepest known serpentinite-hosted ecosystem using stable carbon, nitrogen, and sulfur isotopes.

    Science.gov (United States)

    Onishi, Yuji; Yamanaka, Toshiro; Okumura, Tomoyo; Kawagucci, Shinsuke; Watanabe, Hiromi Kayama; Ohara, Yasuhiko

    2018-01-01

    The Shinkai Seep Field (SSF) in the southern Mariana forearc discovered in 2010 is the deepest (~5,700 m in depth) known serpentinite-hosted ecosystem dominated by a vesicomyid clam, Calyptogena (Abyssogena) mariana. The pioneering study presumed that the animal communities are primary sustained by reducing fluid originated from the serpentinization of mantle peridotite. For understanding the nutrient and energy sources for the SSF community, this study conducted four expeditions to the SSF and collected additional animal samples such as polychaetes and crustaceans as well as sediments, fragments of chimneys developing on fissures of serpentinized peridotite, seeping fluid on the chimneys, and pore water within the chimneys. Geochemical analyses of seeping fluids on the chimneys and pore water of the chimneys revealed significantly high pH (~10) that suggest subseafloor serpentinization controlling fluid chemistry. Stable isotope systematics (carbon, nitrogen, and sulfur) among animals, inorganic molecules, and environmental organic matter suggest that the SSF animal community mostly relies on the chemosynthetic production while some organisms appear to partly benefit from photosynthetic production despite the great depth of SSF.

  16. Digestate as nutrient source for biomass production of sida, lucerne and maize

    Science.gov (United States)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  17. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    Science.gov (United States)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  18. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  19. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    Science.gov (United States)

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  20. Potential of thin stillage as a low-cost nutrient source for direct cellulose fermentation by Clostridium thermocellum

    Directory of Open Access Journals (Sweden)

    Rumana Islam

    2015-11-01

    Full Text Available Utilization of thin stillage (TS, derived from grain-based ethanol production, was investigated as an alternative source for microbial growth nutrients during direct conversion of cellulose by Clostridium thermocellum DSM 1237. Fermentation end-products synthesized by C. thermocellum grown on media prepared with various concentrations (50-400 g/L of TS were compared to those synthesized by C. thermocellum grown on reagent grade chemical (reference medium. Cell-growth in TS media, monitored with the aid of quantitative polymerase chain reactions (qPCR technique, showed prolonged growth with increasing TS concentration. Final fermentation end-product concentrations from TS media were comparable with those from the reference medium despite lower growth-rates. The volumetric H2 production generated by C. thermocellum grown with medium containing a low concentration (50 g/L of TS matched the volumetric H2 production by C. thermocellum grown in the reference medium, while higher concentrations (200 g/L of TS resulted in greater synthesis of ethanol. Supplementation of TS-media with Mg++ enhanced ethanol production, while hydrogen production remained unchanged. These results suggest that TS, an attractive source of low-cost nutrients, is capable of supporting the growth of C. thermocellum and that high concentrations of TS favor synthesis of ethanol over hydrogen from cellulose.

  1. USDA updates nutrient values for fast food pizza

    Science.gov (United States)

    Consumption of quick service pizza has increased as Americans are spending more on food away from home. Pizza is consistently a primary Key Food in the USDA National Food and Nutrient Analysis Program (NFNAP) because it is a contributor of more than 14 nutrients of public health significance to the...

  2. Aerobic mineralization of selected organic nutrient sources for soil ...

    African Journals Online (AJOL)

    Administrator

    food synthesis (Lavelle and Spain, 2001). Multipurpose trees such .... The soil and organic nutrient resource ... treatments. Simple correlation analysis was carried out to measure ..... Germination Ecology of Two Endemic Multipurpose. Species ...

  3. Development of the Dutch primary standard for beta-emitting brachytherapy sources

    International Nuclear Information System (INIS)

    Marel, J. an der; Dijk, E. van

    2002-01-01

    The application of β-radiation emitting radioactive sources in medicine is rapidly expanding. An important new application is the use of β-radiation emitting radioactive sources in endovascular brachytherapy to avoid restenosis. Another well-known application is the use of the ophthalmic applicator (flat or concave surface source) for the treatment of tumors in the eye. Dose and dose distributions are very important characteristics of brachytherapy sources. The absorbed dose in the treated tissue should be known accurately to assure a good quality of the treatment and to develop new treatment methods and source configurations. At the Nederland s Meetinstituut (NMi) a project is going on for the development of a primary standard for betadosimetry. With this standard, dose and dose distributions of β-sources as used in brachytherapy can be measured in terms of absorbed dose to water. The primary standard is based on an extrapolation chamber. The extrapolation chamber will become part of a quality assurance system in Dutch hospitals for endovascular brachytherapy sources. The quality assurance system will further consist of transfer standards like well-type ionisation chambers, plastic scintillator systems and radiochromic film dosimetry. Apart from the endovascular sources the extrapolation chamber will be used to characterize ophthalmic applicators

  4. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  5. The Challenges of Primary Sources, Collaboration, and the K-16 Elizabeth Murray Project

    Science.gov (United States)

    Cleary, Patricia; Neumann, David

    2009-01-01

    In recent years, the use of primary sources in the history and social studies classroom has been increasingly promoted as a necessary and welcome practice, one designed to improve the quality of history education and to encourage student interest and engagement. Although some K-12 educators have been wary of adopting the use of primary sources,…

  6. Growth Responses of Three Dominant Wetland Plant Species to Various Flooding and Nutrient Levels

    Science.gov (United States)

    Barrett, S.; Shaffer, G. P.

    2017-12-01

    Coastal Louisiana is experiencing a greater rate of wetland loss than any other wetland system in the United States. This is primarily due to anthropogenic stressors such as flood control levees, backfilling and development of wetlands, and other hydrologic modifications. Methods employed to mitigate wetland loss include the construction of river diversions and assimilation wetlands, which can provide consistent sources of freshwater influx and nutrients to impounded swamps and marshes. It is well known that prolonged flooding causes strain on wetland plant communities and facilitates or exacerbates wetland degradation. However, because river diversions and assimilation wetlands bring high nutrient loads along with freshwater, there is debate over whether prolonged flooding or high influx of nutrients is the primary cause of stress in river diversion and assimilation wetland discharge areas. This mesocosm experiment addresses this question by isolating the effects of flooding and nutrients on the biomass of baldcypress (Taxodium distichum), maidencane (Panicum hemitomon), and cordgrass (Spartina patens) over the course of a growing season. The results of this study provide clarity as to whether flooding stress, high nutrient loads, or both cause a reduction in wetland plant productivity. By evaluating the growth responses of T. distichum, P. hemitomon, and S. patens at varying nutrient regimes, we gain insight on how these more dominant species will react to high nutrient discharges from large river diversions, such as those proposed in Louisiana's 2017 Master Plan.

  7. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  8. Eyewitness Culture and History: Primary Written Sources. The Iconoclast.

    Science.gov (United States)

    McMurtry, John

    1995-01-01

    Asserts that contemporary history and historiography is "official" history that ignores the daily struggles of people for their continued survival. Argues that, while public illiteracy has nearly disappeared, individuals are ignorant of the wealth of primary-source materials of other cultures' histories. (CFR)

  9. Report Assesses Nutrient Pollution in U.S. Streams and Aquifers

    Science.gov (United States)

    Showstack, Randy

    2010-10-01

    Concentrations of nutrients in many U.S. streams and aquifers have remained the same or have increased since the early 1990s, according to a new decadal assessment entitled “Nutrients in the nation's streams and groundwater, 1992-2004,” released by the U.S. Geological Survey (USGS) on 24 September. “Despite improvements in water quality made by reducing point sources of nutrients, our data show that nonpoint sources of nutrients have resulted in concentrations of both nitrogen and phosphorus far above criteria recommended by [the U.S. Environmental Protection Agency] for the protection of aquatic life,” Neil Dubrovsky, project chief for USGS's National Water-Quality Assessment (NAWQA) Program, said at a briefing when the report was released. While USGS continues to sample for nutrient concentrations, the report assessment period concluded in 2004.

  10. Nutrient and Phytoplankton Analysis of a Mediterranean Coastal Area

    Science.gov (United States)

    Sebastiá, M. T.; Rodilla, M.

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected ( Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  11. Nutrient and phytoplankton analysis of a Mediterranean coastal area.

    Science.gov (United States)

    Sebastiá, M T; Rodilla, M

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  12. The Importance of Animal Source Foods for Nutrient Sufficiency in the Developing World: The Zambia Scenario.

    Science.gov (United States)

    Zhang, Zhiying; Goldsmith, Peter D; Winter-Nelson, Alex

    2016-05-05

    There have been successful interventions fortifying staple foods to mobilize micronutrients as well as agricultural efforts to raise yields of staple foods to increase food availability. Zambia serves as an interesting case study because since 1961 there has been a notable decline in the availability of animal source foods (ASFs) and pulses and a significant increase in the supply of cassava and vegetable oils. The shift in food availability was partly attributed to the agricultural success in high-yielding and drought-resistant varieties that made cassava and oil crops more affordable and readily available. In this research, we explore another policy strategy that involves ASF as a mechanism to help remedy micronutrient inadequacies in a population. A scenario modeling analysis compares the changes in the nutrient profile of the Zambian diet through adding either staple plant source foods (PSFs) or ASFs. The scenarios under study involve the addition of (1) 18 fl oz of whole cow's milk; (2) 60 g of beef, 30 g of chicken, and 5 g of beef liver; (3) milk plus meat; or (4) 83 g of maize flour, 123 g of cassava, and other staple PSF, that is, isocaloric to the "milk + meat" group. The findings alert program planners and policy makers to the value of increasing the availability, accessibility, and utilization of ASF to simultaneously address multiple nutrient deficiencies, as well as the nutrition challenges that remain when expanding the availability of plant-based staples. © The Author(s) 2016.

  13. Effect of three sources of nutrients on biomass and pigment production of freshwater microalgae Hyaloraphidium contortum

    Directory of Open Access Journals (Sweden)

    Caña, E.

    2016-05-01

    Full Text Available Multifunctionality of microalgae is becoming increasingly important, hence science develops new techniques to maximize their potential by providing food, sustainable and affordable fuels and innovative environmental solutions. In this study, we analyzed the effect of different nutrient sources (Nitrofoska®, Quimifol® and Guillard and sowing time on the kinetics of growth and pigment production of freshwater microalgae Hyaloraphidium contortum; besides of registering some physical and chemical variables in different growth mediums. Bioassays were performed in batch cultures by quadruplicate, continously maintaining and controlling temperature, ventilation and lighting. Growth was determined by cell count and production of pigments by spectrophotometry. The largest population densities and productivities per volume of culture were obtained in F/2 Guillard (9.7±0.2x107 cel mL-1 and 7.6x108 cel/L/ day and Nitrofoska® (8.7±0.5x107 cel mL-1 and 5.7x108 cel/L/day. The highest average chlorophyll a, chlorophyll b and total carotenoid concentration was achieved with foliar fertilizer Nitrofoska®, on days 18 and 24 (8, 3.29 and 2.2 μg mL-1, respectively, followed by the obtained by Guillard and Quimifol®. We conclude that this microalgae can be grown with commercial agricultural fertilizers as an alternative source of nutrients to produce biomass and pigments with applications in biotechnology and aquaculture industries.

  14. Potential of domestic sewage effluent treated as a source of water and nutrients in hydroponic lettuce

    Directory of Open Access Journals (Sweden)

    Renata da Silva Cuba

    2015-07-01

    Full Text Available The search for alternative sources of water for agriculture makes the use of treated sewage sludge an important strategy for achieving sustainability. This study evaluated the feasibility of reusing treated sewage effluent as alternative source of water and nutrients for the hydroponic cultivation of lettuce (Lactuca sativa L. The experiment was conducted in the greenhouse of the Center for Agricultural Sciences - UFSCar, in Araras, SP. The cultivation took place from February to March 2014. The hydroponic system used was the Nutrient Film Technique, and included three treatments: 1 water supply and mineral fertilizers (TA; 2 use of effluent treated and complemented with mineral fertilizers based on results of previous chemical analysis (TRA; and 3 use of treated effluent (TR. The applied experimental design was four randomly distributed blocks. We evaluated the fresh weight, nutritional status, the microbiological quality of the culture, and the amount of mineral fertilizers used in the treatments. The fresh weights were subjected to analysis of variance and means were compared by the Tukey test at 5% probability. Only the TR treatment showed a significant difference in the evaluated variables, as symptoms of nutritional deficiencies in plants and significant reduction in fresh weights (p <0.01 were found. There was no detectable presence of Escherichia coli in any treatment, and it was possible to use less of some fertilizers in the TRA treatment compared to TA.

  15. Tree root systems and nutrient mobilization

    DEFF Research Database (Denmark)

    Boyle, Jim; Rob, Harrison; Raulund-Rasmussen, Karsten

    sometimes stored at depth. Other recent studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Release profi les clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Review of evaluations......Roots mobilize nutrients via deep penetration and rhizosphere processes inducing weathering of primary minerals. These contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-term supplies...... of nutrient elements essential for forest growth and resilience. Research and techniques have signifi cantly advanced since Olof Tamm’s 1934 base mineral index for Swedish forest soils, and basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research in areas that include...

  16. Enzyme activities of phytoplankton in the South Shetland Islands (Antarctica in relation to nutrients and primary production Actividad enzimática en ensambles fitoplanctónicos en las Islas Shetland del Sur (Antártica en relación a los nutrientes y producción primaria

    Directory of Open Access Journals (Sweden)

    JOSÉ L IRIARTE

    2006-12-01

    Full Text Available Given the potential significance of enzyme activities as a link between internal metabolic pathways and environmental nutrients, we investigated the relationships of nitrate reductase (NR and alkaline phosphatase (AP with primary production and inorganic nutrients in South Shetland Islands, Antarctica. Enzymatic activities of the phytoplankton (0.7-210 µm, primary productivity, autotrophic biomass and inorganic nutrients were studied in the upper 100 m depth at nine stations during a cruise in the northwestern area of South Shetland Islands (Antarctica, during late austral spring (December 2000. NR activities fluctuated between 0 and 42.8 nmol L-1 h-1 (mean = 10.08 nmol L-1 h-1, SD = 10.42 nmol L-1 h-1, AP activities between 0.81 and 5.67 nmol L-1 h-1 (mean = 2.68 nmol L-1 h-1, SD = 0.95 nmol L-1 h-1. Stations with primary productivity (PP and chlorophyll a greater than 2 mg C m-3 h-1 and 0.75 mg chlorophyll a L-1, respectively, presented higher enzymatic activities of nitrate reductase, alkaline phosphatase than those stations characterized by primary productivity and chlorophyll a less than 2 mg C m-3 h-1 and 0.17 mg chlorophyll a L-1, respectively. The AP specific activity was negatively correlated with orthophosphate concentrations lower than 2.0 µM, which indicates that the microplankton were under phosphate deficient environment condition. Our results indicated that NR specific activity was positively associated with autotrophic biomass and primary productivity estimates, giving evidence of the use of nitrate by phytoplankton as external nitrogen source in surface waters. In addition, high NR activities were positively correlated with NO3-, suggesting the occurrence of nitrate respiration in the well oxygenated surface waters of AntarcticaDada la potencial importancia de la actividad enzimática de ensambles fitoplanctónicos, como indicador de su metabolismo interno dominante respecto de los nutrientes, este estudio investigó las

  17. Influence of cross-shelf water transport on nutrients and phytoplankton in the East China Sea: a model study

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2011-01-01

    Full Text Available A three dimensional coupled biophysical model was used to examine the supply of oceanic nutrients to the shelf of the East China Sea (ECS and its role in primary production over the shelf. The model consisted of two parts: the hydrodynamic module was based on a nested model with a horizontal resolution of 1/18 degree, whereas the biological module was a lower trophic level ecosystem model including two types of phytoplankton, three elements of nutrients, and biogenic organic material. The model results suggested that seasonal variations occurred in the distribution of nutrients and chlorophyll a over the shelf of the ECS. After comparison with available observed nutrients and chlorophyll a data, the model results were used to calculate volume and nutrients fluxes across the shelf break. The annual mean total fluxes were 1.53 Sv for volume, 9.4 kmol s−1 for DIN, 0.7 kmol s−1 for DIP, and 18.2 kmol s−1 for silicate. Two areas, northeast of Taiwan and southwest of Kyushu, were found to be major source regions of oceanic nutrients to the shelf. Although the onshore fluxes of nutrients and volume both had apparent seasonal variations, the seasonal variation of the onshore nutrient flux did not exactly follow that of the onshore volume flux. Additional calculations in which the concentration of nutrients in Kuroshio water was artificially increased suggested that the oceanic nutrients were distributed in the bottom layer from the shelf break to the region offshore of the Changjiang estuary from spring to summer and appeared in the surface layer from autumn to winter. The calculations also implied that the supply of oceanic nutrients to the shelf can change the consumption of pre-existing nutrients from rivers. The response of primary production over the shelf to the oceanic nutrients was confirmed not only in the surface layer (mainly at the outer shelf and shelf break in winter and in the region

  18. Hydrothermal carbonization of food waste for nutrient recovery and reuse.

    Science.gov (United States)

    Idowu, Ifeolu; Li, Liang; Flora, Joseph R V; Pellechia, Perry J; Darko, Samuel A; Ro, Kyoung S; Berge, Nicole D

    2017-11-01

    Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    Science.gov (United States)

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  20. Primary calibration of coiled 103Pd brachytherapy sources

    International Nuclear Information System (INIS)

    Paxton, Adam B.; Culberson, Wesley S.; DeWerd, Larry A.; Micka, John A.

    2008-01-01

    Coiled 103 Pd brachytherapy sources have been developed by RadioMed Corporation for use as low-dose-rate (LDR) interstitial implants. The coiled sources are provided in integer lengths from 1 to 6 cm and address many common issues seen with traditional LDR brachytherapy sources. The current standard for determining the air-kerma strength (S K ) of low-energy LDR brachytherapy sources is the National Institute of Standards and Technology's Wide-Angle Free-Air Chamber (NIST WAFAC). Due to geometric limitations, however, the NIST WAFAC is unable to determine the S K of sources longer than 1 cm. This project utilized the University of Wisconsin's Variable-Aperture Free-Air Chamber (UW VAFAC) to determine the S K of the longer coiled sources. The UW VAFAC has shown agreement in S K values of 1 cm length coils to within 1% of those determined with the NIST WAFAC, but the UW VAFAC does not share the same geometric limitations as the NIST WAFAC. A new source holder was constructed to hold the coiled sources in place during measurements with the UW VAFAC. Correction factors for the increased length of the sources have been determined and applied to the measurements. Using the new source holder and corrections, the S K of 3 and 6 cm coiled sources has been determined. Corrected UW VAFAC data and ionization current measurements from well chambers have been used to determine calibration coefficients for use in the measurement of 3 and 6 cm coiled sources in well chambers. Thus, the UW VAFAC has provided the first transferable, primary measurement of low-energy LDR brachytherapy sources with lengths greater than 1 cm

  1. Nutrient load estimates for Manila Bay, Philippines using population data

    NARCIS (Netherlands)

    Sotto, Lara Patricia A; Beusen, Arthur H W; Villanoy, Cesar L.; Bouwman, Lex F.; Jacinto, Gil S.

    2015-01-01

    A major source of nutrient load to periodically hypoxic Manila Bay is the urban nutrient waste water flow from humans and industries to surface water. In Manila alone, the population density is as high as 19,137 people/km2. A model based on a global point source model by Morée et al. (2013) was used

  2. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  3. Primary Sources of Corporate Investment in Hungary

    Directory of Open Access Journals (Sweden)

    Katona Klára

    2017-06-01

    Full Text Available This research aims to reveal how Hungarian companies have financed investments over the last two decades. Which financing strategy characterized them: was internal capital accumulation or external resources, such as bank loans or foreign capital the primary source of corporate investments? The study gives an overview of the conditions typical in the Hungarian financing and capital market over the last 25 years through an empirical analysis. Using a linear regression model, the paper examines the main investments sources among the top 5000 Hungarian firms according to revenues between 1996 and 2014. The model proved that the effect of loans in financing investments was significant and positive in all examined firms, independently from their ownership in the whole period. The rate of indebtedness of foreign companies was mainly attributable to local bank credits and not loans granted by mother companies.

  4. Effects of agricultural subsidies of nutrients and detritus on fish and plankton of shallow-reservoir ecosystems.

    Science.gov (United States)

    Pilati, Alberto; Vanni, Michael J; González, María J; Gaulke, Alicia K

    2009-06-01

    Agricultural activities increase exports of nutrients and sediments to lakes, with multiple potential impacts on recipient ecosystems. Nutrient inputs enhance phytoplankton and upper trophic levels, and sediment inputs can shade phytoplankton, interfere with feeding of consumers, and degrade benthic habitats. Allochthonous sediments are also a potential food source for detritivores, as is sedimenting autochthonous phytodetritus, the production of which is stimulated by nutrient inputs. We examined effects of allochthonous nutrient and sediment subsidies on fish and plankton, with special emphasis on gizzard shad (Dorosoma cepedianum). This widespread and abundant omnivorous fish has many impacts on reservoir ecosystems, including negative effects on water quality via nutrient cycling and on fisheries via competition with sportfish. Gizzard shad are most abundant in agriculturally impacted, eutrophic systems; thus, agricultural subsidies may affect reservoir food webs directly and by enhancing gizzard shad biomass. We simulated agricultural subsidies of nutrients and sediment detritus by manipulating dissolved nutrients and allochthonous detritus in a 2 x 2 factorial design in experimental ponds. Addition of nutrients alone increased primary production and biomass of zooplanktivorous fish (bluegill and young-of-year gizzard shad). Addition of allochthonous sediments alone increased algal sedimentation and decreased seston and sediment C:P ratios. Ponds receiving both nutrients and sediments showed highest levels of phytoplankton and total phosphorus. Adult and juvenile gizzard shad biomass was enhanced equally by nutrient or sediment addition, probably because this apparently P-limited detritivore ingested similar amounts of P in all subsidy treatments. Nutrient excretion rates of gizzard shad were higher in ponds with nutrient additions, where sediments were composed mainly of phytodetritus. Therefore, gizzard shad can magnify the direct effects of nutrient

  5. Seasonal Variation and Sources of Dissolved Nutrients in the Yellow River, China

    Directory of Open Access Journals (Sweden)

    Yao Gong

    2015-08-01

    Full Text Available The rapid growth of the economy in China has caused dramatic growth in the industrial and agricultural development in the Yellow River (YR watershed. The hydrology of the YR has changed dramatically due to the climate changes and water management practices, which have resulted in a great variation in the fluxes of riverine nutrients carried by the YR. To study these changes dissolved nutrients in the YR were measured monthly at Lijin station in the downstream region of the YR from 2002 to 2004. This study provides detailed information on the nutrient status for the relevant studies in the lower YR and the Bohai Sea. The YR was enriched in nitrate (average 314 μmol·L−1 with a lower concentration of dissolved silicate (average 131 μmol·L−1 and relatively low dissolved phosphate (average 0.35 μmol·L−1. Nutrient concentrations exhibited substantial seasonal and yearly variations. The annual fluxes of dissolved inorganic nitrogen, phosphate, and silicate in 2004 were 5.3, 2.5, and 4.2 times those in 2002, respectively, primarily due to the increase in river discharge. The relative contributions of nutrient inputs to nitrogen in the YR were: wastewater > fertilizer > atmospheric deposition > soil; while to phosphorus were: wastewater > fertilizer > soil > atmospheric deposition. The ratios of N, P and Si suggest that the YR at Lijin is strongly P-limited with respect to potential phytoplankton growth.

  6. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  7. Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition

    Directory of Open Access Journals (Sweden)

    Megan Migliozzi

    2015-11-01

    Full Text Available Lentil (Lens culinaris Medik. is a nutritious food and a staple for millions of people. Not only are lentils a good source of energy, they also contain a range of micronutrients and prebiotic carbohydrates. Kale (Brassica oleracea v. acephala has been considered as a health food, but its full range of benefits and composition has not been extensively studied. Recent studies suggest that foods are enrich in prebiotic carbohydrates and dietary fiber that can potentially reduce risks of non-communicable diseases, including obesity, cancer, heart disease, and diabetes. Lentil and kale added to a cereal-based diet would enhance intakes of essential minerals and vitamins to combat micronutrient malnutrition. This review provides an overview of lentil and kale as a complementary nutrient-rich whole food source to combat global malnutrition and calorie issues. In addition, prebiotic carbohydrate profiles and the genetic potential of these crops for further micronutrient enrichment are briefly discussed with respect to developing sustainable and nutritious food systems.

  8. Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition.

    Science.gov (United States)

    Migliozzi, Megan; Thavarajah, Dil; Thavarajah, Pushparajah; Smith, Powell

    2015-11-11

    Lentil (Lens culinaris Medik.) is a nutritious food and a staple for millions of people. Not only are lentils a good source of energy, they also contain a range of micronutrients and prebiotic carbohydrates. Kale (Brassica oleracea v. acephala) has been considered as a health food, but its full range of benefits and composition has not been extensively studied. Recent studies suggest that foods are enrich in prebiotic carbohydrates and dietary fiber that can potentially reduce risks of non-communicable diseases, including obesity, cancer, heart disease, and diabetes. Lentil and kale added to a cereal-based diet would enhance intakes of essential minerals and vitamins to combat micronutrient malnutrition. This review provides an overview of lentil and kale as a complementary nutrient-rich whole food source to combat global malnutrition and calorie issues. In addition, prebiotic carbohydrate profiles and the genetic potential of these crops for further micronutrient enrichment are briefly discussed with respect to developing sustainable and nutritious food systems.

  9. Nutrient budgets for large Chinese estuaries

    Directory of Open Access Journals (Sweden)

    S. M. Liu

    2009-10-01

    Full Text Available Chinese rivers deliver about 5–10% of global freshwater input and 15–20% of the global continental sediment to the world ocean. We report the riverine fluxes and concentrations of major nutrients (nitrogen, phosphorus, and silicon in the rivers of the contiguous landmass of China and Korea in the northeast Asia. The rivers are generally enriched with dissolved inorganic nitrogen (DIN and depleted in dissolved inorganic phosphate (PO43− with very high DIN: PO43− concentration ratios. DIN, phosphorus, and silicon levels and loads in rivers are mainly affected by agriculture activities and urbanization, anthropogenic activities and adsorption on particulates, and rock types, climate and physical denudation intensity, respectively. Nutrient transports by rivers in the summer are 3–4 times higher than those in the winter with the exception of NH4+. The flux of NH4+ is rather constant throughout the year due to the anthropogenic sources such as the sewer discharge. As nutrient composition has changed in the rivers, ecosystems in estuaries and coastal sea have also changed in recent decades. Among the changes, a shift of limiting nutrients from phosphorus to nitrogen for phytoplankton production with urbanization is noticeable and in some areas silicon becomes the limiting nutrient for diatom productivity. A simple steady-state mass-balance box model was employed to assess nutrient budgets in the estuaries. The major Chinese estuaries export <15% of nitrogen, <6% of phosphorus required for phytoplankton production and ~4% of silicon required for diatom growth in the Chinese Seas (Bohai, Yellow Sea, East China Sea, South China Sea. This suggests that land-derived nutrients are largely confined to the immediate estuaries, and ecosystem in the coastal sea beyond the estuaries is mainly supported by other nutrient sources such as regeneration, open ocean and

  10. Effects of Storm Events on Bacteria and Nutrients in the Bayou Chico Watershed

    Science.gov (United States)

    Hobbs, S. E.; Truong, S.

    2017-12-01

    Levels of Escherichia coli and abiotic nutrients often increase in response to storm events due to urban runoff. The urban setting, aging septic systems, and ample pet waste (predominant sources of bacterial and nutrient contamination) that surround Bayou Chico, provide abundant possibilities for contamination. E. coli is a gram-negative, rod shaped bacteria commonly found in the intestines of animals; while some strains are harmless, others produce dangerous toxins that can cause side effects and sometimes death. Along with E. coli, inorganic nutrient concentrations (orthophosphate, nitrate/nitrite, and ammonium) are key indicators of water quality. Dissolved nutrients promote the growth of primary producers and excessive amounts lead to algal blooms, often reducing biodiversity. Four sites were sampled weekly in June and July 2017; during which, June had the highest rainfall in comparison to the past three years; these four sites represented three different sub-watersheds of the Bayou Chico Watershed, with differing land-use at each site. Historical nutrient and bacterial data from the Bream Fishermen Association was also compared and examined to determine long term trends and obtain a more in-depth understanding of the dynamics of water quality in th urban setting. E. coli levels were universally high (ranging from 98 to 12,997 MPN/100mL) for all sites and did not show observable correlations to rainfall; possibly influenced by the systemic and anomalous heavy precipitation during most of the summer study period. Nitrate was detected at levels between 2.5 and 154.0 µM, while ammonium levels ranged from 0 to 16.1 µM. Three of four stations showed extremely elevated dissolved inorganic nitrogen and ammonium while one station showed low levels of these nutrients. Correlations between these nutrient loads and rainfall, support the hypothesis that runoff into tributary creeks contributes significant inorganic nutrient loads to the Bayou Chico urban estuary.

  11. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Science.gov (United States)

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...

  12. Source contributions and regional transport of primary particulate matter in China.

    Science.gov (United States)

    Hu, Jianlin; Wu, Li; Zheng, Bo; Zhang, Qiang; He, Kebin; Chang, Qing; Li, Xinghua; Yang, Fumo; Ying, Qi; Zhang, Hongliang

    2015-12-01

    A source-oriented CMAQ was applied to determine source sector/region contributions to primary particulate matter (PPM) in China. Four months were simulated with emissions grouped to eight regions and six sectors. Predicted elemental carbon (EC), primary organic carbon (POC), and PPM concentrations and source contributions agree with measurements and have significant spatiotemporal variations. Residential is a major contributor to spring/winter EC (50-80%), POC (60%-90%), and PPM (30-70%). For summer/fall, industrial contributes 30-50% for EC/POC and 40-60% for PPM. Transportation is more important for EC (20-30%) than POC/PPM (Guangzhou and Chongqing. Dust contributes to 1/3-1/2 in spring/fall of Beijing, Xi'an and Chongqing. Based on sector-region combination, local residential/transportation and residential/industrial from Heibei are major contributors to spring PPM in Beijing. In summer/fall, local industrial is the largest. In winter, residential/industrial from local and Hebei account for >90% in Beijing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Implementing Open Source Platform for Education Quality Enhancement in Primary Education: Indonesia Experience

    Science.gov (United States)

    Kisworo, Marsudi Wahyu

    2016-01-01

    Information and Communication Technology (ICT)-supported learning using free and open source platform draws little attention as open source initiatives were focused in secondary or tertiary educations. This study investigates possibilities of ICT-supported learning using open source platform for primary educations. The data of this study is taken…

  14. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    Science.gov (United States)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  15. THE INFORMATION CONTENT OF THE FARM AND UNIT LEVEL NUTRIENT BALANCES FOR THE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    T SOMOGYI

    2007-07-01

    Full Text Available The farm gate balance is well known from the environmental literature. This method is not suitable in every case to show the nutrient load for the environment of agricultural companies that is the reason why unit level internal nutrient balances are applied to express the level of nutrient pollution on the environment. These also help to determine the source of the pollution. With the survey of the nutrient flows within the farm we determine the keystones of nutrient management to control the nutrient load of the pollution sources. On the basis of the results and the controlled data of the unit level internal balances we make recommendations for the most appropriate environmental policy instrument to reduce the nutrient pollution.

  16. Gustatory and metabolic perception of nutrient stress in Drosophila.

    Science.gov (United States)

    Linford, Nancy J; Ro, Jennifer; Chung, Brian Y; Pletcher, Scott D

    2015-02-24

    Sleep loss is an adaptive response to nutrient deprivation that alters behavior to maximize the chances of feeding before imminent death. Organisms must maintain systems for detecting the quality of the food source to resume healthy levels of sleep when the stress is alleviated. We determined that gustatory perception of sweetness is both necessary and sufficient to suppress starvation-induced sleep loss when animals encounter nutrient-poor food sources. We further find that blocking specific dopaminergic neurons phenocopies the absence of gustatory stimulation, suggesting a specific role for these neurons in transducing taste information to sleep centers in the brain. Finally, we show that gustatory perception is required for survival, specifically in a low nutrient environment. Overall, these results demonstrate an important role for gustatory perception when environmental food availability approaches zero and illustrate the interplay between sensory and metabolic perception of nutrient availability in regulating behavioral state.

  17. Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development.

    Science.gov (United States)

    Castle, Sarah C; Sullivan, Benjamin W; Knelman, Joseph; Hood, Eran; Nemergut, Diana R; Schmidt, Steven K; Cleveland, Cory C

    2017-11-01

    A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.

  18. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  19. Food web interactions and nutrients dynamics in polyculture ponds

    NARCIS (Netherlands)

    Rahman, M.M.

    2006-01-01

    Artificial feed and fertilizers are the main sources of nutrients supporting fish growth in aquaculture ponds. The majority of the added nutrients are lost to the sediment, where they are no longer available for natural food production. By increasing resuspension of the sediment through the

  20. Food crop production, nutrient availability, and nutrient intakes in Bangladesh: exploring the agriculture-nutrition nexus with the 2010 Household Income and Expenditure Survey.

    Science.gov (United States)

    Fiedler, John L

    2014-12-01

    Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.

  1. Stakeholder co-development of farm level nutrient management software

    Science.gov (United States)

    Buckley, Cathal; Mechan, Sarah; Macken-Walsh, Aine; Heanue, Kevin

    2013-04-01

    Over the last number of decades intensification in the use nitrogen (N) and phosphorus (P) in agricultural production has lead to excessive accumulations of these nutrients in soils, groundwaters and surface water bodies (Sutton et al., 2011). According to the European Environment Agency (2012) despite some progress diffuse pollution from agriculture is still significant in more than 40% of Europe's water bodies in rivers and coastal waters, and in one third of the water bodies in lakes and transitional waters. Recently it was estimated that approximately 29% of monitored river channel length is polluted to some degree across the Republic of Ireland. Agricultural sources were suspected in 47 per cent of cases (EPA, 2012). Farm level management practices to reduce nutrient transfers from agricultural land to watercourses can be divided into source reduction and source interception approaches (Ribaudo et al., 2001). Source interception approaches involve capturing nutrients post mobilisation through policy instruments such as riparian buffer zones or wetlands. Conversely, the source reduction approach is preventative in nature and promotes strict management of nutrient at farm and field level to reduce risk of mobilisation in the first instance. This has the potential to deliver a double dividend of reduced nutrient loss to the wider ecosystem while maximising economic return to agricultural production at the field and farm levels. Adoption and use of nutrient management plans among farmers is far from the norm. This research engages key farmer and extension stakeholders to explore how current nutrient management planning software and outputs should be developed to make it more user friendly and usable in a practical way. An open innovation technology co-development approach was adopted to investigate what is demanded by the end users - farm advisors and farmers. Open innovation is a knowledge management strategy that uses the input of stakeholders to improve

  2. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  3. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  4. Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach

    International Nuclear Information System (INIS)

    Crilley, Leigh R.; Qadir, Raeed M.; Ayoko, Godwin A.; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Orasche, Jürgen; Zimmermann, Ralf; Morawska, Lidia

    2014-01-01

    Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children's exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools. - Highlights: • Selected organic molecular markers at 11 urban schools were analyzed. • Four sources of primary organic aerosols were identified by PMF at the schools. • Both local and regional sources were found to influence exposure at the schools. • The results have implications for mitigation of children's exposure at schools. - The identification of the most important sources of primary organic aerosols at urban schools has implications for control strategies for mitigating children's exposure at schools

  5. Dietary sources of energy and nutrient intake among children and adolescents with chronic kidney disease.

    Science.gov (United States)

    Chen, Wen; Ducharme-Smith, Kirstie; Davis, Laura; Hui, Wun Fung; Warady, Bradley A; Furth, Susan L; Abraham, Alison G; Betoko, Aisha

    2017-07-01

    Our purpose was to identify the main food contributors to energy and nutrient intake in children with chronic kidney disease (CKD). In this cross-sectional study of dietary intake assessed using Food Frequency Questionnaires (FFQ) in the Chronic Kidney Disease in Children (CKiD) cohort study, we estimated energy and nutrient intake and identified the primary contributing foods within this population. Completed FFQs were available for 658 children. Of those, 69.9% were boys, median age 12 (interquartile range (IQR) 8-15 years). The average daily energy intake was 1968 kcal (IQR 1523-2574 kcal). Milk was the largest contributor to total energy, protein, potassium, and phosphorus intake. Fast foods were the largest contributors to fat and sodium intake, the second largest contributors to energy intake, and the third largest contributors to potassium and phosphorus intake. Fruit contributed 12.0%, 8.7%, and 6.7% to potassium intake for children aged 2-5, 6-13, and 14-18 years old, respectively. Children with CKD consumed more sodium, protein, and calories but less potassium than recommended by the National Kidney Foundation (NKF) guidelines for pediatric CKD. Energy, protein, and sodium intake is heavily driven by consumption of milk and fast foods. Limiting contribution of fast foods in patients with good appetite may be particularly important for maintaining recommended energy and sodium intake, as overconsumption can increase the risk of obesity and cardiovascular complications in that population.

  6. Nutrient storage rates in a national marsh receiving waste water

    Science.gov (United States)

    J.A. Nyman

    2000-01-01

    Artificial wetlands are commonly used to improve water quality in rivers and the coastal zone. In most wetlands associated with rivers, denitrification is probably the primary process that reduces nutrient loading. Where rivers meet oceans, however, significant amounts of nutrients might be permanently buried in wetlands because of global sea-level rise and regional...

  7. Safety Analysis Report for Primary Capsule of Ir-192 Radiation Source

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Choi, W. S.; Seo, K. S.; Son, K. J.; Park, W. J.

    2008-12-01

    All of the source capsules to transport a special form radioactive material should be designed and fabricated in accordance with the design criteria prescribed in IAEA standards and domestic regulations. The objective of this project is to prove the safety of a primary capsule for Ir-192 radiation source which produced in the HANARO. The safety tests of primary capsules were carried out for the impact, percussion and heat conditions. And leakage tests were carried out before and after the each tests. The capsule showed slight scratches and their deformations were not found after each tests. It also met the allowable limits of leakage rate after each test. Therefore, it has been verified that the capsule was designed and fabricated to meet all requirements for the special form radioactive materials

  8. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea

    Science.gov (United States)

    Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run

    2016-04-01

    This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The

  9. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon

    International Nuclear Information System (INIS)

    Furnas, Miles; Mitchell, Alan; Skuza, Michele; Brodie, Jon

    2005-01-01

    Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from ∼1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ( 15 N) and indirect ( 14 C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone

  10. Primary Sources. Update: Teachers' Views on Common Core State Standards

    Science.gov (United States)

    Scholastic Inc. and the Bill & Melinda Gates Foundation, 2014

    2014-01-01

    Scholastic and the Bill & Melinda Gates Foundation fielded the third edition of the "Primary Sources" survey of America's teachers in July 2013 (see ED562664). Twenty thousand pre-K through grade 12 public school teachers responded, sharing their perspectives on issues important to their profession, including the Common Core State…

  11. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Kumblad, Linda [Stockholm Univ. (Sweden). Dept. of Systems Ecology; Kautsky, Ulrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment.

  12. Models for transport and fate of carbon, nutrients and point source released radionuclides to an aquatic ecosystem

    International Nuclear Information System (INIS)

    Kumblad, Linda

    2004-09-01

    In this report three ecosystem models are described in terms of structure, initial data, and results. All models are dynamic, mass-balanced and describe the transport and fate of elements in an open aquatic ecosystem. The models are based on ecologically sound principles, provide model results with high resolution and transparency, and are constrained by the nutrient dynamics of the ecosystem itself. The processes driving the transport in all the models are both the biological processes such as primary production, consumption, respiration and excretion, and abiotic e.g. water exchange and air-sea exchange. The first model, the CNP-model, describes the distribution and fluxes of carbon and nutrients for the coastal ecosystem off Forsmark. The second model, the C-14 model, is an extension of the CNP-model and describes the transport and distribution of hypothetically released C-14 from the underground repository SFR-1 to the ecosystem above. The third model, the RN-model, is a generic radionuclide flow model that models the transport and distribution of radionuclides other than C-14 hypothetically discharged to the ecosystem. The model also analyses the importance of some radionuclide specific mechanisms for the radionuclide flow. The generic radionuclide model is also based on the CNP-model, but has radionuclide specific mechanisms connected to each compartment

  13. Response of phytoplankton to nutrient enrichment with high growth rates in a tropical monsoonal estuary - Zuari estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Mochemadkar, S.; Gauns, M.; Pratihary, A.K.; Thorat, B.R.; Roy, R.; Pai, I.K.; Naqvi, S.W.A.

    nitzschioides exhibited the ability to withstand hypoxic condition. [Keywords: Zuari estuary, Premonsoon, Nutrient uptake, Phytoplankton, Hypoxic] Introduction Phytoplanktons are responsible for nearly half of global primary production1. Diatoms... and fresh water inputs. Light and nutrients are the primary factors regulating phytoplankton growth4,5 followed by temperature and salinity6 . Major (macro) nutrients essential for plant growth are nitrogen, phosphorous and silicon7. Phytoplankton...

  14. Primary source of income is associated with differences in HIV risk behaviors in street-recruited samples.

    Science.gov (United States)

    Essien, E James; Ross, Michael W; Williams, Mark L; Meshack, Angela F; Fernández-Esquer, Maria E; Peters, Ronald J; Ogungbade, GO

    2004-06-17

    BACKGROUND: The relationship between primary source of income and HIV risk behaviors and the racial/ethnic differences in risk behavior profiles among disadvantaged populations have not been fully explored. This is unusual given that the phenomenon of higher risk in more disadvantaged populations is well-known but the mechanisms remain unclear. We examined the relationship between primary source of income and differences in HIV risk behaviors among four racial/ethnic groups in the southern United States. METHODS: Self-reported data on primary source of income and HIV risk behaviors were collected from 1494 African American, Hispanic, Asian, and White men and women in places of public congregation in Houston, Texas. Data were analyzed using calculation of percentages and by chi-square tests with Yates correction for discontinuity where appropriate. RESULTS: Data revealed that a higher proportion of whites were involved in sex for money exchanges compared to the other racial groups in this sample. The data suggest that similar street sampling approaches are likely to recruit different proportions of people by primary income source and by ethnicity. It may be that the study locations sampled are likely to preferentially attract those involved in illegal activities, specifically the white population involved in sex for drug or money exchanges. Research evidence has shown that people construct highly evolved sexual marketplaces that are localized and most unlikely to cross racial, ethnic, and socioeconomic or geographical boundaries. Thus, the areas that we sampled may have straddled a white sexual marketplace more than that of the other groups, leading to an over-representation of sex exchange in this group. Drug use was highest among those with illegal primary sources of income (sex exchange and drug dealing and theft), and they were also those most likely to have injected drugs rather than administered them by any other route (p primary source of income category. The

  15. THE SOURCES OF NUTRIENTS IN WATERS OF RIVERS IN THE WETLAND AREAS OF NAREW NATIONAL PARK IN NORTH-EASTERN POLAND

    Directory of Open Access Journals (Sweden)

    Mirosław Skorbiłowicz

    2013-07-01

    Full Text Available The study aimed at the attempt to identify and to evaluate the interaction intensity, and to classify the sources of river waters nutrients in the catchment of upper river Narew within Narew National Park (north-eastern Poland. The studies were carried out on Narew river within borders of Narew National Park, where 5 measurement-control points were localized as well as one near estuaries of its 5 tributaries (Awissa, Czaplinianka, Horodnianka, Turośnianka and Supraśl. Factor analysis (FA from multi-dimensional group was applied for statistical processing of study results, because it is commonly used to describe and explore a large number of data. concentrations of analyzed chemicals depended on a water sampling point that was under anthropopression and geogenic conditions. Studies and results from analyses (FA and CA allowed for identifying the main sources of river Narew nutrients within Narew National Park. These are: tributaries of river Narew, point and distributed runoffs, as well as shallow ground waters that transport components having anthropogenic and partially geogenic-lithologic origin. River Turośnianka supplies the largest loads of studied parameters to river Narew within Narew National Park boundaries. River Supraśl is the most contaminated tributary of river Narew.

  16. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    Science.gov (United States)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and

  17. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    Science.gov (United States)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  18. Evaluation of glass leaching as nutrient source for microalgae growth

    International Nuclear Information System (INIS)

    Grabska, N.; Tamayo, A.; Mazo, M. A.; Pascual, L.; Rubio, J.

    2015-01-01

    Three glasses with an elemental composition similar to the nutrient ratio required for Spirulina platensis growth and with different SiO 2 content have been prepared. The glasses were crushed and sieved into 2 different fractions and the effect of the particle size has been studied in terms of the leaching kinetics of each element. The chemical analysis of the leaching water was used for obtaining the dissolution rate curves for each element taking part of the glass composition. From the calculation of the leaching rate constant and the exponential constant of the lixiviation reaction, it has been evaluated the Spirulina platensis growth in ambient normal conditions of light, temperature and pH of the growing media. It has been concluded that, either from the modification of the chemical composition of the glass or its particle size, it is possible to tune the delivery of the nutrients to match the growth rate of Spirulina platensis. (Author)

  19. legume and mineral fertilizer derived nutrient use efficiencies

    African Journals Online (AJOL)

    as nutrient source relative to inorganic fertilizers. Experimentations included ... le maïs a été estimée par les taux de recouvrement (TRN, TRP) et l'importance des légumineuses comme source de ...... soil fertility domains on smallholder farms.

  20. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  1. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003-2006.

    Science.gov (United States)

    Marriott, Bernadette P; Olsho, Lauren; Hadden, Louise; Connor, Patty

    2010-03-01

    In the Institute of Medicine (IOM) macronutrient report the Committee recommended a maximal intake of added sugars. The primary objectives of this study were to utilize National Health and Nutrition Examination Survey (NHANES) to update the reference table data on intake of added sugars from the IOM report and compute food sources of added sugars. We combined data from NHANES with the United States Department of Agriculture (USDA) MyPyramid Equivalents Database (MPED) and calculated individual added sugars intake as percent of total energy then classified individuals into 8 added sugars percent energy categories, calculated usual intake with the National Cancer Institute (NCI) method, and compared intakes to the Dietary Reference Intakes (DRIs). Nutrients at most risk for inadequacy based on the Estimated Average Requirements (EARs) were vitamins E, A, C, and magnesium. Nutrient intake was less with each 5% increase in added sugars intake above 5-10%. Thirteen percent of the population had added sugars intake > 25%. The mean g-eq added sugars intake of 83.1 g-eq/day and added sugars food sources were comparable to the mid-1990s. Higher added sugars intakes were associated with higher proportions of individuals with nutrient intakes below the EAR, but the overall high calorie and the low quality of the U.S. diet remained the predominant issue. With over 80% of the population at risk for select nutrient inadequacy, guidance may need to focus on targeted healthful diet communication to reach the highest risk demographic groups for specific life stage nutrient inadequacies.

  2. Primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Parulekar, A.H.

    Photosynthetic production in the oceans in relation to light, nutrients and mixing processes is discussed. Primary productivity in the estuarine region is reported to be high in comparison to coastal and oceanic waters. Upwelling phenomenon...

  3. Modeling the relative importance of nutrient and carbon loads ...

    Science.gov (United States)

    The Louisiana continental shelf (LCS) in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In order to gain a more fundamental understanding of the controlling factors leading to hypoxia, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM) was applied to this area to simulate dissolved oxygen concentrations in the water as a function of various nutrient loadings. The model is a numerical, biogeochemical, three-dimensional ecological model that receives its physical transport data from the Navy Coastal Ocean Model (NCOM-LCS). GoMDOM was calibrated to a large set of nutrient, phytoplankton, dissolved oxygen, sediment nutrient flux, sediment oxygen demand (SOD), primary production, and respiration data collected in 2006 and corroborated with field data collected in 2003. The primary objective was to use the model to estimate a nutrient load reduction of both nitrogen and phosphorus necessary to reduce the size of the hypoxic area to 5,000 km2, a goal established in the 2008 Gulf of Mexico Hypoxia Action Plan prepared by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. Using the year 2006 as a test case, the model results suggest that the nitrogen and phosphorus load reduction from the Atchafalaya and Mississippi River basins would need to be reduced by 64% to achieve the target hypoxia area. The Louisiana continental shelf (LCS) in the northern part of the Gulf of Mexico has a history of subsurface hypoxia in the summer.

  4. Environmental geochemistry of dissolved and biogenic silicon and its nutrient limitation effects in an inland lake, China.

    Science.gov (United States)

    Lü, Changwei; He, Jiang; Wang, Bing; Zhou, Bin; Wang, Wei; Fan, Mingde

    2015-07-01

    Silicon (Si) processing and retention play a key role in nutrients biogeochemistry cycling in aquatic environment. In order to interpret the possibility of Si limitation, multivariate analysis was performed based on stoichiometric nutrients balance, distribution characteristics of dissolved silicon (DSi) and biogenic silica (BSi), adsorption behavior, and response relation of BSi with paleoenvironment in water-sediment system of Lake Daihai. The spatial distributions of DSi and BSi in the water-sediment system indicated that terrigenous inputs (such as the weathering of rock and soil in the drainage basin) was the main sources of Si. Meanwhile, grain sizes of sediments, water hydrogeochemistry, and space competition between diatoms and submergent or emerging plants also played important roles in regulating BSi spatial distributions. The sediments from the lake presented obvious releasing trend of Si at low initial concentrations (≤ 3 mg/L) in adsorption experiments, indicating that the sediments were the source of Si to the overlying water. Furthermore, the good response relation between BSi and paleoenvironment observed in the sediment profiles from Lake Daihai indicated that the main reasons for Si limitation to siliceous plankton were different during different periods. The multi-evidences of distribution characteristics, stoichiometric nutrient balance, adsorption behaviors, and response to paleoenvironment were jointly indicative of Si limitation on the primary production of siliceous plankton in Lake Daihai.

  5. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor

    NARCIS (Netherlands)

    Tuantet, K.; Temmink, B.G.; Zeeman, G.; Janssen, M.G.J.; Wijffels, R.H.; Buisman, C.J.N.

    2014-01-01

    Due to the high nitrogen and phosphorus content, source-separated urine can serve as a major nutrient source for microalgae production. The aim of this study was to evaluate the nutrient removal rate and the biomass production rate of Chlorella sorokiniana being grown continuously in urine employing

  6. Stress Sources and Manifestations in a Nationwide Sample of Pre-Primary, Primary, and Secondary Educators in Greece.

    Science.gov (United States)

    Kourmousi, Ntina; Alexopoulos, Evangelos C

    2016-01-01

    Teachers experience high levels of stress as a result of their professional duties, and research has shown a growing interest in this phenomenon during the recent years. Aim of this study was to explore the associations of stress sources and manifestations with individual and job-related characteristics in educators of all levels. In a cross-sectional design, following an informative e-campaign on the study aims through the official and the main teachers' portals in Greece, respondents completed online the teachers stress inventory (TSI) and the 14-item Perceived Stress Scale. Nine hundred seventy-four male and 2473 female pre-primary, primary, and secondary educators with a mean age of 41.2 years responded. Women and younger teachers reported significantly higher levels of stress, mainly due to lack of time and other work-related stressors, and also more emotional and gastronomic manifestations. Increased age and working experience were associated with lower levels of several stress sources. Teachers of administrative positions had increased time management stressors, but less professional distress, professional investment, and discipline and motivation stressors. Additionally, working and residing far from family increased teachers' stress levels associated with control, motivation, and investment. Teachers of pre-primary education had reduced professional investment and motivation stress factors, while vocational lyceum teachers of secondary education reported less work-related stressors and manifestations and more discipline and motivation-related ones. Having students supported or in need of support from special educators and students with difficulties in speaking or comprehension was associated with most of the teachers' stress sources and manifestations (i.e., TSI subscales). Finally, colleagues' and mainly supervisors' support seemed to provide a strong and consistent protection against both stress sources and manifestations. Stress factors and

  7. Contribution of fish farming to the nutrient loading of the Mediterranean

    Directory of Open Access Journals (Sweden)

    Ioannis Karakassis

    2005-06-01

    Full Text Available Mediterranean fish farming has grown exponentially during the last 20 years. Although there is little evidence of the impact on the trophy status around fish farms, there are concerns that the release of solute wastes from aquaculture might affect larger scales in the ecosystem by changing the nutrient load. After combining information from various sources on waste production and on nutrient loads, it was concluded that the overall N and P waste from fish farms in the Mediterranean represents less than 5% of the total annual anthropogenic discharge, and the overall annual increase in P and N pools in the Mediterranean, under a production rate of 150000 tons, is less than 0.01%. The proportion of fish farming discharged nutrients was slightly higher in the eastern Mediterranean. A simple model was used to assess the long-term effects of nutrients released from various sources taking into account the water renewal rate in the Mediterranean. We conclude that, in the long term, fish farm waste could cause a 1% increase in nutrient concentrations in contrast to other anthropogenic activities which might double the Mediterranean nutrient pool.

  8. THE DIGESTIBILITY OF NUTRIENTS AT DIFFERENT LEVELS AND SOURCES OF LIPIDS IN DUCK DIETS

    Directory of Open Access Journals (Sweden)

    M.Yu. Sychov

    2016-04-01

    Full Text Available The estimation of digestibility of nutrients in ducklings was performed by use of feed contained the lipids from different levels and sources. Experimental studies were conducted in terms of problem research laboratory of feed additives of National Agriculture University of Ukraine. The material for scientific experiments was the ducklings of cross STAR 53 H.Y. Experiment was carried out by group-analog method. We determined the optimal content of crude fat in fodder of young ducks at the first stage of experiment and the best source of lipids at second stage. We increased the crude fat in duckling feed by the introduction of sunflower oil at first stage. The amount of fat in the duck feed was 5% in control group and this were 3% and 7% in group II and III. The ducks from experimental groups received feed with sunflower oil at the second stage of experiment, the ducks of group II and III obtained feed from soya, rapeseed, and palm fat. Feeding the ducks was done per group twice per day – in morning and evening. It was registered that the feeding of 8-14 days ducks by food with crude fat of 7% plausible increased the digestibility of protein by 3.2%, of fat by 5.1%, and nitrogen-free extractives matters by 2.7%. At the same time the use of feed for 36-42 days ducks with crude fat of 7% allows to get the best results with the more higher level of protein and fat digestibility by 4.9% and 4.8% respectively. The use of feed with the addition of soybean oil for duck feeding have a positive effect towards increasing the level of digestibility of organic matter, protein, fat, and fiber in all the duck age groups. At the same time the use of feed containing palm oil reduces the digestibility of fat by 4,1-6,7%  compared to control group, that obtained feed with sunflower oil . We confirmed the prospect of further research in order to to establish the optimal ratio of saturated and unsaturated fatty acids in the diet of ducks and to determine their

  9. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources

    Directory of Open Access Journals (Sweden)

    Andrea F. S. Costa

    2017-10-01

    Full Text Available Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin–Schramm (HS medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL]. A jeans laundry was also tested. None of the tested sources (beside CSL worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film

  10. Supplementing the energy and plant nutrient requirements through organic recycling

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, S. S.; Misra, R. V.

    1980-03-15

    In context of dwindling non-renewable energy resources and increasing health hazards because of environmental pollution, recycling of organic residues obtained through various sources like crops, animals, and human beings is becoming increasingly important. The organic residues obtained as wastes through these sources can be recycled effectively to meet scarce resources of energy and the plant nutrients, so vitally needed for our day-to-day activities and for raising agricultural production. Agriculture is the main stay of the Indian economy. Considerable quantities of crop residues available from agriculture can be utilized to serve as a source of organic fertilizers which not only provide plant nutrients but also improve soil health. The country has a large animal and human population. The animal and human wastes can be successfully used for production of energy and organic fertilizer by routing through biogas system. There is a need to develop an integrated energy and nutrient supply program. An action program is outlined.

  11. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska

    2006-08-01

    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  12. Nutrient bioassimilation capacity of aquacultured oysters: quantification of an ecosystem service.

    Science.gov (United States)

    Higgins, Colleen B; Stephenson, Kurt; Brown, Bonnie L

    2011-01-01

    Like many coastal zones and estuaries, the Chesapeake Bay has been severely degraded by cultural eutrophication. Rising implementation costs and difficulty achieving nutrient reduction goals associated with point and nonpoint sources suggests that approaches supplemental to source reductions may prove useful in the future. Enhanced oyster aquaculture has been suggested as one potential policy initiative to help rid the Bay waters of excess nutrients via harvest of bioassimilated nutrients. To assess this potential, total nitrogen (TN), total phosphorous (TP), and total carbon (TC) content were measured in oyster tissue and shell at two floating-raft cultivation sites in the Chesapeake Bay. Models were developed based on the common market measurement of total length (TL) for aquacultured oysters, which was strongly correlated to the TN (R2 = 0.76), TP (R2 = 0.78), and TC (R2 = 0.76) content per oyster tissue and shell. These models provide resource managers with a tool to quantify net nutrient removal. Based on model estimates, 10(6) harvest-sized oysters (76 mm TL) remove 132 kg TN, 19 kg TP, and 3823 kg TC. In terms of nutrients removed per unit area, oyster harvest is an effective means of nutrient removal compared with other nonpoint source reduction strategies. At a density of 286 oysters m(-2), assuming no mortality, harvest size nutrient removal rates can be as high as 378 kg TN ha(-1), 54 kg TP ha(-1), and 10,934 kg TC ha(-1) for 76-mm oysters. Removing 1 t N from the Bay would require harvesting 7.7 million 76-mm TL cultivated oysters.

  13. Growth and nutrient balance of Enterolobium contortsiliquum seedlings with addition of organic substrates and wastewater

    Directory of Open Access Journals (Sweden)

    Emanuel França Araújo

    2016-06-01

    Full Text Available Given the strong generation of solid organic waste and wastewater, the use of these materials as a primary source of nutrients is an important practice in environmental management, especially in the production of seedlings with emphasis on degraded areas. The objective of this study was to evaluate growth and nutrient balance of “tamboril” (Enterolobium contortsiliquum (Vell. Morong seedlings grown on substrates with different formulations proportions of organic matter irrigated with wastewater. It was tested five ratios of organic composts and soil: 0:100; 20:80; 40:60; 60:40 and 80:20 v/v. Two procedences of irrigation water was tested: water supply and wastewater from swine farming, arranged in a completely randomized design in a factorial scheme 5 x 2, with four replications. At 90 days, we evaluate seedlings morphological variables, the integrate diagnosis recommendation index and the nutrient balance index. The organic residue contributes to seedlings growth and nutritional balance. The proportion 80:20 proved to be the most suitable for “tamboril” seedlings production. Seedlings presented lower growth and nutritional balance when irrigate with swine farm wastewater.

  14. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    Science.gov (United States)

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  15. Sources of nutrients to nearshore areas of a eutrophic estuary: Implications for nutrient-enhanced acidification in Puget Sound

    Science.gov (United States)

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2emission-driven acidific...

  16. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  17. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  18. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  19. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  20. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  1. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    Science.gov (United States)

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  3. Characterization of selenium in ambient aerosols and primary emission sources.

    Science.gov (United States)

    De Santiago, Arlette; Longo, Amelia F; Ingall, Ellery D; Diaz, Julia M; King, Laura E; Lai, Barry; Weber, Rodney J; Russell, Armistead G; Oakes, Michelle

    2014-08-19

    Atmospheric selenium (Se) in aerosols was investigated using X-ray absorption near-edge structure (XANES) spectroscopy and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the oxidation state and elemental associations of Se in common primary emission sources and ambient aerosols collected from the greater Atlanta area. In the majority of ambient aerosol and primary emission source samples, the spectroscopic patterns as well as the absence of elemental correlations suggest Se is in an elemental, organic, or oxide form. XRF microscopy revealed numerous Se-rich particles, or hotspots, accounting on average for ∼16% of the total Se in ambient aerosols. Hotspots contained primarily Se(0)/Se(-II). However, larger, bulk spectroscopic characterizations revealed Se(IV) as the dominant oxidation state in ambient aerosol, followed by Se(0)/Se(-II) and Se(VI). Se(IV) was the only observed oxidation state in gasoline, diesel, and coal fly ash, while biomass burning contained a combination of Se(0)/Se(-II) and Se(IV). Although the majority of Se in aerosols was in the most toxic form, the Se concentration is well below the California Environmental Protection Agency chronic exposure limit (∼20000 ng/m(3)).

  4. Soil nutrient and sediment loss as affected by erosion barriers and nutrient source in semi-arid Burkina Faso

    NARCIS (Netherlands)

    Zougmore, R.; Mando, A.; Stroosnijder, L.

    2009-01-01

    In semi-arid Sahel, soil erosion by water is one major factor accounting for negative nutrient balances in agricultural systems. A field experiment was conducted on a Ferric Lixisol in Burkina Faso to assess the effects of soil and water conservation barriers (stone rows or grass strips of

  5. Particle water and pH in the Eastern Mediterranean: sources variability and implications for nutrients availability

    Science.gov (United States)

    Nikolaou, P.; Bougiatioti, A.; Stavroulas, I.; Kouvarakis, G.; Nenes, A.; Weber, R.; Kanakidou, M.; Mihalopoulos, N.

    2015-10-01

    Particle water (LWC) and aerosol pH drive the aerosol phase, heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition and atmospheric fluxes of nutrients to ecosystems. Few measurements of in-situ LWC and pH however exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg) and organic (Worg) components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between August and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope = 0.92, R2 = 0.8, n = 5201 points). Based on the scattering measurements a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH)) within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10-15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 μg m-3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with organics, Worg, was equal to 0.56 ± 0.37 μg m-3, thus organics contributed about 27.5 % to the total aerosol water, mostly

  6. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Weber, Rodney; Nenes, Athanasios; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    Particle water (liquid water content, LWC) and aerosol pH are important parameters of the aerosol phase, affecting heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition, and atmospheric fluxes of nutrients to ecosystems. Few measurements of in situ LWC and pH, however, exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity, and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg) and organic (Worg) components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between June and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict the pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope = 0.92, R2 = 0.8, n = 5201 points). Based on the scattering measurements, a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH)) within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10-15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 µg m-3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with organics, Worg, was equal to 0.56 ± 0.37 µg m-3; thus, organics

  7. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  8. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    Science.gov (United States)

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  9. Model Simulations of a Mesocosm Experiment Investigating the Response of a Low Nutrient Low Chlorophyll (LNLC Marine Ecosystem to Atmospheric Deposition Events

    Directory of Open Access Journals (Sweden)

    Kostas P. Tsiaras

    2017-05-01

    Full Text Available Atmospheric deposition of nitrogen and phosphorus represents an important source of nutrients, enhancing the marine productivity in oligotrophic areas, e.g., the Mediterranean. A comprehensive biogeochemical model (ERSEM was setup and customized to simulate a mesocosm experiment, where dissolved inorganic nitrogen and phosphorus by means of atmospheric dust (single addition/SA and repetitive addition/RA in three successive doses was added in controlled tanks and compared with a control (blank, all with Cretan Sea (Eastern Mediterranean water. Observations on almost all components of the pelagic ecosystem in a ten-day period allowed investigating the effect of atmospheric deposition and the pathways of the added nutrients. The model was able to reasonably capture the observed variability of different ecosystem components and reproduce the main features of the experiment. An enhancement of primary production and phytoplankton biomass with added nutrients was simulated, in agreement with observations. A significant increase of bacterial production was also reproduced, while the model underestimated the observed increase and variability in bacterial biomass, but this deviation could be partly removed considering a lower carbon conversion factor from cell abundance data. A slightly stronger overall response was simulated with the single dust addition, compared to the repetitive that showed a few days delay. The simulated carbon pathways indicated that nutrient additions did not modify the microbial food web structure, but just increased its trophic status. Changes in model assumptions and parameter set that were necessary to reproduce the observed variability in the mesocosm experiment were discussed through a series of sensitivity simulations. Bacterial production was assumed to be mostly affected by the in situ produced labile organic matter, while it was further stimulated by the addition of inorganic nutrients, adopting a function of external

  10. Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi

    Science.gov (United States)

    Harned, D. A.; Harvill, J. S.; McMahon, G.

    2001-12-01

    The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7

  11. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  12. Assessment of nutrient loadings of a large multipurpose prairie reservoir

    Science.gov (United States)

    Morales-Marín, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-07-01

    The relatively low water flow velocities in reservoirs cause them to have high capacities for retaining sediments and pollutants, which can lead to a reduction in downstream nutrient loading. Hence, nutrients can progressively accumulate in reservoirs, resulting in the deterioration of aquatic ecosystems and water quality. Lake Diefenbaker (LD) is a large multipurpose reservoir, located on the South Saskatchewan River (SSR), that serves as a major source of freshwater in Saskatchewan, Canada. Over the past several years, changes in land use (e.g. expansion of urban areas and industrial developments) in the reservoir's catchment have heightened concerns about future water quality in the catchment and in the reservoir. Intensification of agricultural activities has led to an increase in augmented the application of manure and fertilizer for crops and pasture. Although previous research has attempted to quantify nutrient retention in LD, there is a knowledge gap related to the identification of major nutrient sources and quantification of nutrient export from the catchment at different spatial scales. Using the SPAtially Referenced Regression On Watershed (SPARROW) model, this gap has been addressed by assessing water quality regionally, and identifying spatial patterns of factors and processes that affect water quality in the LD catchment. Model results indicate that LD retains about 70% of the inflowing total nitrogen (TN) and 90% of the inflowing total phosphorus (TP) loads, of which fertilizer and manure applied to agricultural fields contribute the greatest proportion. The SPARROW model will be useful as a tool to guide the optimal implementation of nutrient management plans to reduce nutrient inputs to LD.

  13. Stress sources and manifestations in a nation-wide sample of pre-primary, primary and secondary educators in Greece

    Directory of Open Access Journals (Sweden)

    Nadia eKourmousi

    2016-04-01

    Full Text Available BackgroundTeachers experience high levels of stress as a result of their professional duties and research has shown a growing interest in this phenomenon during the recent years. Aim of this study was to explore the associations of stress sources and manifestations with individual and job-related characteristics in educators of all levels. MethodsIn a cross–sectional design, following an informative e-campaign on the study aims through the official and the main teachers’ portals in Greece, respondents completed online the Teachers Stress Inventory (TSI and the 14-item Perceived Stress Scale (PSS-14. 974 male and 2473 female pre-primary, primary and secondary educators with a mean age of 41.2 years responded. ResultsWomen and younger teachers reported significantly higher levels of stress, mainly due to lack of time and other work-related stressors, and also more emotional and gastronomic manifestations. Increased age and working experience were associated with lower levels of several stress sources. Teachers of administrative positions had increased time management stressors, but less professional distress, professional investment and discipline and motivation stressors. Additionally, working and residing far from family increased teachers’ stress levels associated to control, motivation and investment. Teachers of pre-primary education had reduced professional investment and motivation stress factors while vocational lyceum teachers of secondary education reported less work-related stressors and manifestations and more discipline and motivation related ones. Having students supported or in need of support from special educators and students with difficulties in speaking or comprehension was associated with most of the teachers' stress sources and manifestations (i.e. TSI subscales. Finally, colleagues’ and mainly supervisors' support seemed to provide a strong and consistent protection against both stress sources and manifestations

  14. Influence of Wheat and Maize Starch on Fermentation in the Rumen, Duodenal Nutrient Flow and Nutrient Digestibility

    Directory of Open Access Journals (Sweden)

    Milan Šimko

    2010-01-01

    Full Text Available We investigated the effects of feeding diets with different starch sources on fermentation in the rumen, duodenal nutrient flow and nutrient digestibility. The basis of the diets was maize silage and alfalfa hay supplemented with wheat meal in diet W, or maize meal in diet M. The experiment was performed on four Black-Spotted bulls with mean live weight of 525 kg, which were fed twice daily at 06.30 and 18.30 h. Experimental animals were fitted with ruminal fistulae and duodenal T-shaped cannulae. Cr2O3 was used as a marker of nutrient flow to the duodenum. Rations were formulated so that the ratio of starch to crude fibre (CF was 2.1:1 and the percentage of CF was maintained at 17% (DM. Duodenal chymus was collected at 2-h time intervals. Starch origin significantly affected ruminal fermentation. Concentration of propionic, butyric and lactic acid was higher with wheat than with maize meal. When the maize meal was the source of starch there was a significantly higher flow of fat, CF, nitrogen-free extract, and starch into duodenum. Differences in duodenal flow of crude protein were not significant across the starch sources. Intake of wheat meal or maize meal increased duodenal flow relative to intake by 33% or 42 % respectively. The apparent digestibility of dry matter (76 ± 2%, crude protein (67 ± 0.9%, CF (64 ± 1.9%, nitrogen-free extract (82 ± 1.5% and organic matter (76 ± 1.3% was significantly higher by offering wheat meal.

  15. A comparison of nutrient density scores for 100% fruit juices.

    Science.gov (United States)

    Rampersaud, G C

    2007-05-01

    The 2005 Dietary Guidelines for Americans recommend that consumers choose a variety of nutrient-dense foods. Nutrient density is usually defined as the quantity of nutrients per calorie. Food and nutrition professionals should be aware of the concept of nutrient density, how it might be quantified, and its potential application in food labeling and dietary guidance. This article presents the concept of a nutrient density score and compares nutrient density scores for various 100% fruit juices. One hundred percent fruit juices are popular beverages in the United States, and although they can provide concentrated sources of a variety of nutrients, they can differ considerably in their nutrient profiles. Six methodologies were used to quantify nutrient density and 7 100% fruit juices were included in the analysis: apple, grape, pink grapefruit, white grapefruit, orange, pineapple, and prune. Food composition data were obtained from the USDA National Nutrient Database for Standard Reference, Release 18. Application of the methods resulted in nutrient density scores with a range of values and magnitudes. The relative scores indicated that citrus juices, particularly pink grapefruit and orange juice, were more nutrient dense compared to the other nonfortified 100% juices included in the analysis. Although the methods differed, the relative ranking of the juices based on nutrient density score was similar for each method. Issues to be addressed regarding the development and application of a nutrient density score include those related to food fortification, nutrient bioavailability, and consumer education and behavior.

  16. Perceived Sources of Occupational Stress among Primary School Teachers in Delta State of Nigeria

    Science.gov (United States)

    Akpochafo, G. O.

    2012-01-01

    This study investigated the most prevalent sources of occupational stress and also the demographic variables of gender, age and length of service among primary school teachers in Delta State. Two research questions and three hypotheses guided the study. The study used a descriptive survey design. The population was the primary school teachers in…

  17. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  18. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    International Nuclear Information System (INIS)

    2013-05-01

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  19. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  20. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  1. How phosphorus limitation can control climatic gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  2. Nutrient flux fuels the summer primary productivity in the oligotrophic waters of the Gulf of Aqaba, Red Sea

    Directory of Open Access Journals (Sweden)

    Tariq Al-Najjar

    2005-03-01

    Full Text Available The thermohaline characteristics of the Gulf of Aqaba, Red Sea,depict a well-defined seasonal pattern of winter mixing from December toApril and summer stratification from May to November. This thermohalinestructure is a major controlling factor of the nutrient, chlorophyll aand primary productivity seasonal cycles. The nitrate and chlorophyll aconcentration records generated down to 200 m at a vertical resolution of25 m - weekly during 1994, 1995 and every two weeks from April 1997 throughto December 2000 - are employed to assess the nitrogen flux across the summerthermocline of the Gulf of Aqaba. The flux calculations are based on a simplediffusion model that incorporates the physical stress eddy diffusivity factorKz and a biological stress factor k. Both Kz and k arecalculated using the Michaelis-Menten equation and the nitrate concentrationgradient. The total nitrate flux of the Gulf of Aqaba during the seven summermonths (May-November is estimated at 0.52 mole N m-2. In relation toestablished primary productivity values (75.5 g C m-2 (MayNovember-1 and the generated chlorophyll a records, thisyields an f fraction of new to total primary production of 0.50. Thisrelatively high f value is discussed with respect to the geophysicalcharacteristics of the Gulf of Aqaba and similar oceanic basins. The remaining50% is accounted for by cross-sectional flow from the relativelynutrient-rich coral reef coastal habitat and rapid recycling, triggered byhigh irradiance and water temperature.

  3. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    Science.gov (United States)

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.

    Science.gov (United States)

    Zhang, Ke; Su, YongZhong; Yang, Rong

    2017-07-01

    The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.

  5. LBA-ECO ND-08 Biomass, Nutrients, and Decomposition in Eucalyptus and Primary Forests

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the concentrations of the nutrients nitrogen (N), phosphorus (P), magnesium (Mg), calcium (Ca), and potassium (K) in roots,...

  6. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Qilin; Ding, Jie; Ren, Nan-Qi

    2016-04-15

    Waste activated sludge is a valuable resource containing multiple nutrients, but is currently treated and disposed of as an important source of pollution. In this work, waste activated sludge after ultrasound pretreatment was reused as multiple nutrients for biofuel production. The nutrients trapped in sludge floc were transferred into liquid medium by ultrasonic disintegration during first 30 min, while further increase of pretreatment time only resulted in slight increase of nutrients release. Hydrogen production by Ethanoligenens harbinense B49 from glucose significantly increased with the concentration of ultrasonic sludge, and reached maximum yield of 1.97 mol H2/mol glucose at sludge concentration of 7.75 g volatile suspended solids/l. Without addition of any other chemicals, waste molasses rich in carbohydrate was efficiently turned into hydrogen with yield of 189.34 ml H2/g total sugar by E. harbinense B49 using ultrasonic sludge as nutrients. The results also showed that hydrogen production using pretreated sludge as multiple nutrients was higher than those using standard nutrients. Acetic acid produced by E. harbinense B49 together with the residual nutrients in the liquid medium were further converted into hydrogen (271.36 ml H2/g total sugar) by Rhodopseudomonas faecalis RLD-53 through photo fermentation, while ethanol was the sole end product with yield of 220.26 mg/g total sugar. Thus, pretreated sludge was an efficient nutrients source for biofuel production, which could replace the standard nutrients. This research provided a novel strategy to achieve environmental friendly sludge disposal and simultaneous efficient biofuel recovery from organic waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nutrient mitigation in a temporary river basin.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Cooper, David; Kassotaki, Elissavet

    2014-04-01

    We estimate the nutrient budget in a temporary Mediterranean river basin. We use field monitoring and modelling tools to estimate nutrient sources and transfer in both high and low flow conditions. Inverse modelling by the help of PHREEQC model validated the hypothesis of a losing stream during the dry period. Soil and Water Assessment Tool model captured the water quality of the basin. The 'total daily maximum load' approach is used to estimate the nutrient flux status by flow class, indicating that almost 60% of the river network fails to meet nitrogen criteria and 50% phosphate criteria. We recommend that existing well-documented remediation measures such as reforestation of the riparian area or composting of food process biosolids should be implemented to achieve load reduction in close conjunction with social needs.

  8. Potentials of raw and cooked walnuts (Tetracapidium conophorum) as sources of valuable nutrients for good health.

    Science.gov (United States)

    Moyib, O K; Falegbe, O; Moyib, F R

    2015-12-01

    The present study estimated nutrient composition of walnuts before and after cooking with respect to its potential as valuable source of nutrients for daily intake. Walnut fruits were purchased from five different markets in Ijebu-Ode local government area and its environs. The fruits samples were divided into two portions, labelled R (for raw) and C (cooked). The C samples were cooked at 100 degrees C for 1 hr and allowed to cool to room temperature. The seeds of both C and R samples were ground and analyzed for proximate, macro and micro minerals using methods of Association of Official Chemists. The results obtained showed that both raw and cooked walnuts are rich in fat, iron (Fe), manganese (Mn), and copper (Cu) in amounts that are within daily recommended intake per 100 g of walnut seeds. They also contained appreciable levels of protein, phosphorus (P), calcium (Ca), and magnesium (Mg) but with low content of moisture (MC), carbohydrate, fiber, sodium (Na) and potassium (K). Boiling significantly affected the levels of protein, carbohydrate, ash, moisture content, fat, nitrogen, calcium, sodium, copper, zinc, phosphorus, potassium, manganese and iron The study reveals that walnut is nutritious due to its appreciable level of protein and presence of various essential and macro minerals. Its low content of sodium and potassium is beneficiary in hypertensive condition as snack. The study suggests future bio-fortification of walnut with zinc, which may bring about a co-increase in Ca and protein content.

  9. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Harrison, Robert; Stupak, Inge

    2016-01-01

    studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Nutrient release profiles clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Reviewing potential sustainability of nutrient supplies......Roots mobilize nutrients via deep soil penetration and rhizosphere processes inducing weathering of primary minerals. These processes contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long......-term supplies of nutrient elements essential for forest growth and resilience. Research and techniques have significantly advanced since Olof Tamm’s 1934 “base mineral index” for Swedish forest soils, and the basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research...

  10. LBA-ECO ND-08 Biomass, Nutrients, and Decomposition in Eucalyptus and Primary Forests

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the concentrations of the nutrients nitrogen (N), phosphorus (P), magnesium (Mg), calcium (Ca), and potassium (K) in roots, litterfall, leaves,...

  11. The implications of phasing out conventional nutrient supply in organic agriculture

    DEFF Research Database (Denmark)

    Oelofse, Myles; Jensen, Lars Stoumann; Magid, Jakob

    2013-01-01

    Soil fertility management in organic systems, regulated by the organic standards, should seek to build healthy, fertile soils and reduce reliance on external inputs. The use of nutrients from conventional sources, such as animal manures from conventional farms, is currently permitted......, with restrictions, in the organic regulations. However, the reliance of organic agriculture on the conventional system is considered problematic. In light of this, the organic sector in Denmark has recently decided to gradually phase out, and ultimately ban, the use of conventional manures and straws in organic...... agriculture in Denmark. Core focal areas for phasing out conventional nutrients are as follows: (1) amendments to crop selection and rotations, (2) alternative nutrient sources (organic wastes) and (3) increased cooperation between organic livestock and arable farmers. Using Denmark as a case, this article...

  12. The Baghdad that Was: Using Primary Sources to Teach World History

    Science.gov (United States)

    Schur, Joan Brodsky

    2009-01-01

    That primary source documents have the power to bring the past alive is no news to social studies teachers. What is new in the last 10 years is the number of digitized documents available online that teachers can download and use in their classrooms. Encouraging teachers to utilize this ever-increasing treasure trove of resources was the goal of…

  13. Grain Foods Are Contributors of Nutrient Density for American Adults and Help Close Nutrient Recommendation Gaps: Data from the National Health and Nutrition Examination Survey, 2009-2012.

    Science.gov (United States)

    Papanikolaou, Yanni; Fulgoni, Victor L

    2017-08-14

    The 2015-2020 Dietary Guidelines for Americans (2015-2020 DGA) maintains recommendations for increased consumption of whole grains while limiting intake of enriched/refined grains. A variety of enriched grains are sources of several shortfall nutrients identified by 2015-2020 DGA, including dietary fiber, folate, iron, and magnesium. The purpose of this study was to determine food sources of energy and nutrients for free-living U.S. adults using data from the National Health and Nutrition Examination Survey, 2009-2012. Analyses of grain food sources were conducted using a single 24-h recall collected in adults ≥19 years of age ( n = 10,697). Sources of nutrients contained in all grain foods were determined using United States Department of Agriculture nutrient composition databases and the food grouping scheme for grains (excluding mixed dishes). Mean energy and nutrient intakes from the total diet and from various grain food groups were adjusted for the sample design using appropriate weights. All grains provided 285 ± 5 kcal/day or 14 ± 0.2% kcal/day in the total diet in adult ≥19 years of age. In the total daily diet, the grain category provided 7.2 ± 0.2% (4.9 ± 0.1 g/day) total fat, 5.4 ± 0.2% (1.1 ± 0.03 g/day) saturated fat, 14.6 ± 0.3% (486 ± 9 mg/day) sodium, 7.9 ± 0.2% (7.6 ± 0.2 g/day) total sugar, 22.8 ± 0.4% (3.9 ± 0.1 g/day) dietary fiber, 13.2 ± 0.3% (122 ± 3 mg/day) calcium, 33.6 ± 0.5% (219 ± 4 mcg dietary folate equivalents (DFE)/day) folate, 29.7 ± 0.4% (5.3 ± 0.1 mg/day) iron, and 13.9 ± 0.3% (43.7 ± 1.1 mg/day) magnesium. Individual grain category analyses showed that breads, rolls and tortillas and ready-to-eat cereals provided minimal kcal/day in the total diet in men and women ≥19 years of age. Similarly, breads, rolls and tortillas, and ready-to-eat cereals supplied meaningful contributions of shortfall nutrients, including dietary fiber, folate and iron, while concurrently providing minimal amounts of nutrients to

  14. Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health

    Directory of Open Access Journals (Sweden)

    Mohammad A. Hoque

    2015-12-01

    Full Text Available Drinking water, a fluid primarily for human hydration, is also a source of mineral nutrients. Groundwater, a drinking water source for more than 70% of inhabitants living in Asian deltas, has received much attention because of its naturally occurring arsenic, but the linkage of arsenic toxicity with other water constituents has not been studied. In addition, although nutrients are generally provided by food, in under developed rural settings, where people subsist on low nutrient diets, drinking-water-nutrients may supply quantities critical to human health thereby preventing diseases. Here, we show, using augmented datasets from three Asian deltas (Bengal, Mekong, and Red River, that the chemical content of groundwater is so substantial that in some areas individuals obtain up to 50% or more of the recommended daily intake (RDI of some nutrients (e.g., calcium, magnesium, iron from just two litres of drinking water. We also show some indications of a spatial association of groundwater nutrients and health outcome using demographic health data from Bangladesh. We therefore suggest that an understanding of the association of non-communicable disease and poor nutrition cannot be developed, particularly in areas with high levels of dissolved solids in water sources, without considering the contribution of drinking water to nutrient and mineral supply.

  15. Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health.

    Science.gov (United States)

    Hoque, Mohammad A; Butler, Adrian P

    2015-12-26

    Drinking water, a fluid primarily for human hydration, is also a source of mineral nutrients. Groundwater, a drinking water source for more than 70% of inhabitants living in Asian deltas, has received much attention because of its naturally occurring arsenic, but the linkage of arsenic toxicity with other water constituents has not been studied. In addition, although nutrients are generally provided by food, in under developed rural settings, where people subsist on low nutrient diets, drinking-water-nutrients may supply quantities critical to human health thereby preventing diseases. Here, we show, using augmented datasets from three Asian deltas (Bengal, Mekong, and Red River), that the chemical content of groundwater is so substantial that in some areas individuals obtain up to 50% or more of the recommended daily intake (RDI) of some nutrients (e.g., calcium, magnesium, iron) from just two litres of drinking water. We also show some indications of a spatial association of groundwater nutrients and health outcome using demographic health data from Bangladesh. We therefore suggest that an understanding of the association of non-communicable disease and poor nutrition cannot be developed, particularly in areas with high levels of dissolved solids in water sources, without considering the contribution of drinking water to nutrient and mineral supply.

  16. Primary source of income is associated with differences in HIV risk behaviors in street-recruited samples

    Directory of Open Access Journals (Sweden)

    Fernández-Esquer Maria E

    2004-06-01

    Full Text Available Abstract Background The relationship between primary source of income and HIV risk behaviors and the racial/ethnic differences in risk behavior profiles among disadvantaged populations have not been fully explored. This is unusual given that the phenomenon of higher risk in more disadvantaged populations is well-known but the mechanisms remain unclear. We examined the relationship between primary source of income and differences in HIV risk behaviors among four racial/ethnic groups in the southern United States. Methods Self-reported data on primary source of income and HIV risk behaviors were collected from 1494 African American, Hispanic, Asian, and White men and women in places of public congregation in Houston, Texas. Data were analyzed using calculation of percentages and by chi-square tests with Yates correction for discontinuity where appropriate. Results Data revealed that a higher proportion of whites were involved in sex for money exchanges compared to the other racial groups in this sample. The data suggest that similar street sampling approaches are likely to recruit different proportions of people by primary income source and by ethnicity. It may be that the study locations sampled are likely to preferentially attract those involved in illegal activities, specifically the white population involved in sex for drug or money exchanges. Research evidence has shown that people construct highly evolved sexual marketplaces that are localized and most unlikely to cross racial, ethnic, and socioeconomic or geographical boundaries. Thus, the areas that we sampled may have straddled a white sexual marketplace more than that of the other groups, leading to an over-representation of sex exchange in this group. Drug use was highest among those with illegal primary sources of income (sex exchange and drug dealing and theft, and they were also those most likely to have injected drugs rather than administered them by any other route (p Conclusions

  17. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.

    Science.gov (United States)

    Saito, Mak A; McIlvin, Matthew R; Moran, Dawn M; Goepfert, Tyler J; DiTullio, Giacomo R; Post, Anton F; Lamborg, Carl H

    2014-09-05

    Marine primary productivity is strongly influenced by the scarcity of required nutrients, yet our understanding of these nutrient limitations is informed by experimental observations with sparse geographical coverage and methodological limitations. We developed a quantitative proteomic method to directly assess nutrient stress in high-light ecotypes of the abundant cyanobacterium Prochlorococcus across a meridional transect in the central Pacific Ocean. Multiple peptide biomarkers detected widespread and overlapping regions of nutritional stress for nitrogen and phosphorus in the North Pacific Subtropical Gyre and iron in the equatorial Pacific. Quantitative protein analyses demonstrated simultaneous stress for these nutrients at biome interfaces. This application of proteomic biomarkers to diagnose ocean metabolism demonstrated Prochlorococcus actively and simultaneously deploying multiple biochemical strategies for low-nutrient conditions in the oceans. Copyright © 2014, American Association for the Advancement of Science.

  18. Effects of nutrient loading on the carbon balance of coastal wetland sediments

    Science.gov (United States)

    Morris, J.T.; Bradley, P.M.

    1999-01-01

    Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.

  19. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  20. Measurement and calculation of radiation sources in the primary cooling system of JOYO

    International Nuclear Information System (INIS)

    Suzuki, S.; Iizawa, K.; Ohtani, N.; Kobayashi, T.; Horie, J.; Handa, H.

    1987-01-01

    Production and transfer of radiation sources in the primary cooling system are important consideration in the LMFBR plant from the viewpoint of radiation protection and shielding design. These items were evaluated with calculations and/or measurements in the Japanese experimental fast reactor JOYO. In this study, calculations were made with the DOT3.5 0 two-dimensional discrete ordinate transport code to determine the neutron flux and production rate distributions of radiation sources in the reactor vessel. Using the DOT results, the behavior in primary coolant sodium of the CP (radioactive corrosion products) which were released from the reactor structural material was also calculationally analyzed with the PSYCHE code developed by PNC. These analytical results were compared with the measured results to get the verification of analysis methods and to estimate the accuracy of calculations

  1. Environmental conditions and primary production in a Sahelian ...

    African Journals Online (AJOL)

    Environmental descriptors (nutrient, water transparency, temperature ... Nutrient concentrations were low, with high variability (from 0 to 30 µg.l-1 for DIN and from 0 to 18 µg.l-1 for. PO4). The primary ... and permanent interventions of sea water.

  2. Nutrient allocation among stem, leaf and inflorescence of jatropha plants

    Directory of Open Access Journals (Sweden)

    Rosiane L. S. de Lima

    2015-08-01

    Full Text Available ABSTRACTInformation on the partitioning of nutrients among various organs in jatropha plants, as a complementary tool for the recommendation of fertilization, is still not available. This study aimed to evaluate the contents of macro and micronutrients in stems, leaves and inflorescences of jatropha branches at the beginning of flowering. At the beginning of flowering, adult jatropha plants were sampled and divided into five compartments: inflorescences, leaves from vegetative branches, leaves from flowering branches, stems from vegetative branches and stems from flowering branches. Jatropha inflorescences are a drain of nutrients. Leaves are important sources of nutrients demanded by the inflorescences at the beginning of flowering. The higher allocation of nutrients in the inflorescences suggests the need for preventive/corrective fertilizations, which must be performed at least 30 days before flowering, providing plants with nutrients in adequate amounts for a good yield.

  3. Extent of Head Teachers' Utilization of Innovative Sources of Funding Primary Schools in Enugu State of Nigeria

    Science.gov (United States)

    Amogechukwu, Eze Thecla; Unoma, Chidobi Roseline

    2017-01-01

    The purpose of this study was to examine the extent Head teachers utilize innovative sources of funding primary schools in Enugu State of Nigeria. Descriptive survey design was employed to examine the extent head teachers utilize innovative sources of funding primary schools in Enugu State. Data were collected through a 14-item questionnaire…

  4. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    Science.gov (United States)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  5. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    Science.gov (United States)

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent

  6. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  8. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    Science.gov (United States)

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  9. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    Science.gov (United States)

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  10. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    Science.gov (United States)

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  11. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability

    Directory of Open Access Journals (Sweden)

    A. Bougiatioti

    2016-04-01

    Full Text Available Particle water (liquid water content, LWC and aerosol pH are important parameters of the aerosol phase, affecting heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition, and atmospheric fluxes of nutrients to ecosystems. Few measurements of in situ LWC and pH, however, exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity, and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg and organic (Worg components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between June and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict the pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope  =  0.92, R2  =  0.8, n  =  5201 points. Based on the scattering measurements, a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10–15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 µg m−3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with

  12. Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    J. M. S. Franz

    2012-11-01

    Full Text Available Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ, are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N and increasing release of sediment-bound phosphate (P into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP and particulate (POC, PON, POP organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and

  13. Nutrients for the aging eye

    Directory of Open Access Journals (Sweden)

    Rasmussen HM

    2013-06-01

    Full Text Available Helen M Rasmussen,1 Elizabeth J Johnson2 1Educational Studies, Lesley University, Cambridge, MA, USA; 2Carotenoid and Health Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA Abstract: The incidence of age-related eye diseases is expected to rise with the aging of the population. Oxidation and inflammation are implicated in the etiology of these diseases. There is evidence that dietary antioxidants and anti-inflammatories may provide benefit in decreasing the risk of age-related eye disease. Nutrients of interest are vitamins C and E, β-carotene, zinc, lutein, zeaxanthin, and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. While a recent survey finds that among the baby boomers (45–65 years old, vision is the most important of the five senses, well over half of those surveyed were not aware of the important nutrients that play a key role in eye health. This is evident from a national survey that finds that intake of these key nutrients from dietary sources is below the recommendations or guidelines. Therefore, it is important to educate this population and to create an awareness of the nutrients and foods of particular interest in the prevention of age-related eye disease. Keywords: nutrition, aging, eye health

  14. Spatial and temporal shifts in gross primary productivity, respiration, and nutrient concentrations in urban streams impacted by wastewater treatment plant effluent

    Science.gov (United States)

    Ledford, S. H.; Toran, L.

    2017-12-01

    Impacts of wastewater treatment plant effluent on nutrient retention and stream productivity are highly varied. The working theory has been that large pulses of nutrients from plants may hinder in-stream nutrient retention. We evaluated nitrate, total dissolved phosphorus, and dissolved oxygen in Wissahickon Creek, an urban third-order stream in Montgomery and Philadelphia counties, PA, that receives effluent from four wastewater treatment plants. Wastewater treatment plant effluent had nitrate concentrations of 15-30 mg N/L and total dissolved phosphorus of 0.3 to 1.8 mg/L. Seasonal longitudinal water quality samples showed nitrate concentrations were highest in the fall, peaking at 22 mg N/L, due to low baseflow, but total dissolved phosphorous concentrations were highest in the spring, reaching 0.6 mg/L. Diurnal dissolved oxygen patterns above and below one of the treatment plants provided estimates of gross primary productivity (GPP) and ecosystem respiration (ER). A site 1 km below effluent discharge had higher GPP in April (80 g O2 m-2 d-1) than the site above the plant (28 g O2 m-2 d-1). The pulse in productivity did not continue downstream, as the site 3 km below the plant had GPP of only 12 g O2 m-2 d-1. Productivity fell in June to 1-2 g O2 m-2 d-1 and the differences in productivity above and below plants were minimal. Ecosystem respiration followed a similar pattern in April, increasing from -17 g O2 m-2 d-1 above the plant to -47 g O2 m-2 d-1 1 km below the plant, then decreasing to -8 g O2 m-2 d-1 3 km below the plant. Respiration dropped to -3 g O2 m-2 d-1 above the plant in June but only fell to -9 to -10 g O2 m-2 d-1 at the two downstream sites. These findings indicate that large nutrient pulses from wastewater treatment plants spur productivity and respiration, but that these increases may be strongly seasonally dependent. Examining in-stream productivity and respiration is critical in wastewater impacted streams to understanding the seasonal and

  15. Groundwater – The disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.

    2015-01-01

    Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high

  16. Growth characteristics and nutrient removal capability of eco-ditch plants in mesocosm sediment receiving primary domestic wastewater.

    Science.gov (United States)

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Muyembe, Diana Kavidia; Dzakpasu, Mawuli

    2017-10-01

    Eco-ditches are being explored to maximize their capability of capturing pollutants and mitigate any harmful side effects in rivers. In this study, mesocosm plastic drum sediment and field experiments were set up to screen 18 plant species found in ditches and identify those with potential for high biomass production and nutrients removal. Terrestrial plants grown in the mesocosm system were shown to be able to acclimate to aquatic conditions and to survive in primary domestic sewage. About 73-95% increase in plant biomass was recorded. Removal efficiencies for total nitrogen, total phosphorus, and ammonium-nitrogen from the sewage of 72-99%, 64-99%, and 75-100%, respectively, were recorded. Furthermore, complete removal of the applied nitrate-nitrogen load was achieved in mesocosm systems. Findings also show that all species, but especially Acorus calamus, Canna indica, Canna lily, Cyperus alternifolius, Colocasia gigantea, Eichhornia crassipes, Iris sibirica, and Typha latifolia had the highest efficiencies for nitrogen and phosphorous removal. The N and P mass balance analysis demonstrated that plant uptake and sediment N and P accumulation accounted for 41-86% and 18-49% of the total influent TN and TP loads, respectively. In addition, the amounts of nitrogen and phosphorous uptake by these plant species were influenced significantly by biomass. The field-culture experiment further identified Canna indica followed by Cyperus alternifolius as the most promising for high biomass production and nutrients uptake. Therefore, these plants may be recommended for extensive use in treating highly eutrophicated rivers. Outcomes of this work can be useful for model design specifications in eco-ditch mitigation of sewage pollution.

  17. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  18. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes

    DEFF Research Database (Denmark)

    Bogard, Jessica R.; Thilsted, Shakuntala H.; Marks, Geoffrey C.

    2015-01-01

    Fish, in Bangladesh where malnutrition remains a significant development challenge, is an irreplaceable animal-source food in the diet of millions. However, existing data on the nutrient composition of fish do not reflect the large diversity available and have focused on only a few select nutrien...... indigenous species, which should guide policy and programmes to improve food and nutrition security in Bangladesh....

  19. Ultrastructural biomarkers in symbiotic algae reflect the availability of dissolved inorganic nutrients and particulate food to the reef coral holobiont

    OpenAIRE

    Sabrina eRosset; Cecilia eD'Angelo; Jörg eWiedenmann; Jörg eWiedenmann

    2015-01-01

    Reef building corals associated with symbiotic algae (zooxanthellae) can access environmental nutrients from different sources, most significantly via the uptake of dissolved inorganic nutrients by the algal symbiont and heterotrophic feeding of the coral host. Climate change is expected to alter the nutrient environment in coral reefs with the potential to benefit or disturb coral reef resilience. At present, the relative importance of the two major nutrient sources is not well understood, m...

  20. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    Science.gov (United States)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  1. Effect of nutrient sources on bench scale vinegar production using response surface methodology Efeito das fontes de nutrientes sobre a produção de vinagre em escala de bancada, usando-se a metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Joelma M. Ferreira

    2005-03-01

    Full Text Available The present work aims to evaluate on a bench scale, the effects of nitrogen and phosphorous nutrient source concentrations in vinegar production, a process that is used by small scale industries in the State of Paraiba. The response surface methodology has been utilized for modeling and optimization of the fermentation process. Initially a 2³ complete factorial design was used, where the effects of initial concentrations of ethyl alcohol, phosphorous and nitrogen sources were observed. After this analysis the concentration range of the nutrient variables were extended and a two level plus a star configuration factorial experimental design was performed. The experimental values are well represented by the linear and quadratic model equations obtained. The optimum concentration of ethanol was 4% in which the yield and the productivity of the acetic acid were maximized to the values of 70% and 0.87 g L-1 h-1 respectively, for a 24 hours fermentation period. The evaluation of the quadratic models showed that the yield of vinegar is maximized from 28.1 to 51.04% and the productivity from 0.69 to 1.29 g L-1 h-1 when the concentration of the nitrogen nutrient in the medium is increased from 0.2 to 2.3 g mL-1. Thus, at the optimized nitrogen nutrient concentration both the yield and the productivity of the vinegar are increased by 1.85 times.Objetivou-se com o presente trabalho, estudar em escala de bancada, os efeitos de concentrações de fontes dos nutrientes nitrogênio e fósforo sobre a produção de vinagre de álcool, um processo muito utilizado nas indústrias de pequeno porte do Estado da Paraíba. A metodologia de superfície de resposta foi usada na modelagem e otimização de processo de fermentação acética. Inicialmente, a metodologia de planejamento fatorial completo 2³ foi utilizada, onde os efeitos das concentrações iniciais de etanol, de fontes de fósforo e de nitrogênio foram observados. Após esta análise as faixas das

  2. Animal pee in the sea: consumer-mediated nutrient dynamics in the world's changing oceans.

    Science.gov (United States)

    Allgeier, Jacob E; Burkepile, Deron E; Layman, Craig A

    2017-06-01

    Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top-down changes for biogeochemical cycles via consumer-mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom-up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity-ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems. © 2017 John Wiley & Sons Ltd.

  3. An RF ion source based primary ion gun for secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Menon, Ranjini; Nabhiraj, P.Y.; Bhandari, R.K.

    2011-01-01

    In this article we present the design, development and characterization of an RF plasma based ion gun as a primary ion gun for SIMS application. RF ion sources, in particular Inductively Coupled Plasma (ICP) ion sources are superior compared to LMIS and duoplasmtron ion sources since they are filamentless, can produce ions of gaseous elements. At the same time, ICP ion sources offer high angular current density which is an important factor in producing high current in small spot size on the target. These high current microprobes improve the signal to noise ratio by three orders as compared to low current ion sources such as LMIS. In addition, the high current microprobes have higher surface and depth profiling speeds. In this article we describe a simple ion source in its very basic form, two lens optical column and characteristics of microprobe

  4. Development of an epiphyte indicator of nutrient enrichment. A ...

    Science.gov (United States)

    An extensive review of the literature on epiphytes on submerged aquatic vegetation (SAV), primarily seagrasses but including some brackish and freshwater rooted macrophytes, was conducted in order to evaluate the evidence for response of epiphyte metrics to increased nutrients. Evidence from field observational studies together with laboratory and field mesocosm experiments was assembled from the literature and evaluated for evidence of a hypothesized positive response to nutrient addition. There was general consistency in the results to confirm that elevated nutrients tended to increase the load of epiphytes on the surface of SAV, in the absence of other limiting factors. In spite of multiple sources of uncontrolled variation, positive relationships of epiphyte load to nutrient concentration or load (either N or P) were often observed along strong anthropogenic or natural nutrient gradients in coastal regions, although response patterns may only be evident for parts of the year. Mesocosm nutrient studies tended to be more common for temperate regions and field addition studies more common for tropical and subtropical regions. Addition of nutrients via the water column tended to elicit stronger epiphyte responses than sediment additions, and may be a factor in the lack of epiphyte response reported in some studies. Mesograzer activity is a critical covariate for epiphyte response under experimental nutrient elevation, but the epiphyte response is highly de

  5. Two tales of legacy effects on stream nutrient behaviour

    Science.gov (United States)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high

  6. Assessment of Nutrient Concentration in Sokori River, Southwest ...

    African Journals Online (AJOL)

    Nutrient enrichment leads to excessive growth of primary producers as well as heterotrophic bacteria and fungi, which increases the metabolic activities of stream water leading to a depletion of dissolved oxygen. The low discharge of stream and its fairly flat terrain nature also influenced the metabolic activities in the mid- ...

  7. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    Science.gov (United States)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  8. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  9. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Morteza Oghbaei

    2016-12-01

    Full Text Available Cereals and legumes are important part of dietaries and contribute substantially to nutrient intake of human beings. They are significant source of energy, protein, dietary fiber, vitamins, minerals, and phytochemicals. Primary processing of cereals and legumes is an essential component of their preparation before use. For some grains, dehusking is an essential step, whereas for others, it could be milling the grain into flour. Grains are subjected to certain processing treatments to impart special characteristics and improve organoleptic properties such as expanded cereals. All these treatments result in alteration of their nutritional quality which could either be reduction in nutrients, phytochemicals and antinutrients or an improvement in digestibility or availability of nutrients. It is important to understand these changes occurring in grain nutritional quality on account of pre-processing treatments to select appropriate techniques to obtain maximum nutritional and health benefits. This review attempts to throw light on nutritional alterations occurring in grains due to pre-processing treatments.

  10. Nutrient availability limits biological production in Arctic sea ice melt ponds

    DEFF Research Database (Denmark)

    Sørensen, Heidi Louise; Thamdrup, Bo; Jeppesen, Erik

    2017-01-01

    nutrient limitation in melt ponds. We also document that the addition of nutrients, although at relative high concentrations, can stimulate biological productivity at several trophic levels. Given the projected increase in first-year ice, increased melt pond coverage during the Arctic spring and potential......Every spring and summer melt ponds form at the surface of polar sea ice and become habitats where biological production may take place. Previous studies report a large variability in the productivity, but the causes are unknown. We investigated if nutrients limit the productivity in these first...... additional nutrient supply from, e.g. terrestrial sources imply that biological activity of melt ponds may become increasingly important for the sympagic carbon cycling in the future Arctic....

  11. A coastal surface seawater analyzer for nitrogenous nutrient mapping

    Science.gov (United States)

    Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.

    2017-11-01

    Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.

  12. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies.

    Science.gov (United States)

    Vonder Haar, Cole; Peterson, Todd C; Martens, Kris M; Hoane, Michael R

    2016-06-01

    With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Linking source region and ocean wave parameters with the observed primary microseismic noise

    Science.gov (United States)

    Juretzek, C.; Hadziioannou, C.

    2017-12-01

    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  14. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-08-01

    Full Text Available To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m−3 and 64.3 ± 36.2 μg m−3 (average ± standard deviation, below as the same at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance model and secondary organic aerosol (SOA tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  15. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production

    International Nuclear Information System (INIS)

    Cai, Ting; Park, Stephen Y.; Racharaks, Ratanachat; Li, Yebo

    2013-01-01

    Highlights: • Cultivation of Nannochloropsis salina with effluent of anaerobic digestion (AD). • The highest biomass yield was obtained at 6% AD effluent loading. • Lipid content and productivity decreased with increased effluent loading from 3% to 18%. • Biomass productivity increased by up to 49% as harvest ratio increased from 25% to 50%. - Abstract: The biomass and lipid productivities and the nutrient removal capacity of microalgae Nannochloropsis salina grown using anaerobically digested municipal wastewater effluent as a nutrient source were evaluated in this study. Results from bench-scale batch reactors showed that N. salina grew well under 3%, 6%, 12%, and 18% (v/v) anaerobic digestion (AD) effluent loading with the highest growth rate being 0.645 d −1 obtained at 6% AD effluent loading. The growth of N. salina decreased when the effluent loading was increased to 24%. The highest biomass productivity of 92 mg l −1 d −1 was obtained with 6% effluent loading. Three harvesting frequencies (1, 2, and 3 d intervals) and two harvesting ratios (25% and 50%, v/v) were tested in semi-continuous bench-scale reactors with 6% effluent loading. The highest lipid productivity of 38.7 mg l −1 d −1 was achieved with a 2-d harvesting interval and 50% harvesting ratio, where nitrogen and phosphorus were removed at rates of 35.3 mg l −1 d −1 and 3.8 mg l −1 d −1 , respectively. The fatty acid (FA) profile showed that palmitic acid (C16:0), palmitoleic acid (C16:1), and eicosapentaenoic acid (C20:5) were the major components, accounting for 32.1%, 26%, and 15.7% of the total FAs, respectively

  16. Evaluation of glass leaching as nutrient source for microalgae growth; Evaluacion del comportamiento de vidrios lixiviados como nutrientes de algas

    Energy Technology Data Exchange (ETDEWEB)

    Grabska, N.; Tamayo, A.; Mazo, M. A.; Pascual, L.; Rubio, J.

    2015-10-01

    Three glasses with an elemental composition similar to the nutrient ratio required for Spirulina platensis growth and with different SiO{sub 2} content have been prepared. The glasses were crushed and sieved into 2 different fractions and the effect of the particle size has been studied in terms of the leaching kinetics of each element. The chemical analysis of the leaching water was used for obtaining the dissolution rate curves for each element taking part of the glass composition. From the calculation of the leaching rate constant and the exponential constant of the lixiviation reaction, it has been evaluated the Spirulina platensis growth in ambient normal conditions of light, temperature and pH of the growing media. It has been concluded that, either from the modification of the chemical composition of the glass or its particle size, it is possible to tune the delivery of the nutrients to match the growth rate of Spirulina platensis. (Author)

  17. Water Quality Protection from Nutrient Pollution: Case Analysis

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...

  18. Suspended matter and nutrient gradients of a small-scale river plume in Sepetiba Bay, SE-Brazil

    Directory of Open Access Journals (Sweden)

    Raphael Paiva Rodrigues

    2009-04-01

    Full Text Available Coastal river plumes represent one of the final stages of material transport across the land-sea interface. Most studies, however have focused on the behavior of medium to large sized river plumes of coastal-shelf waters, whereas small sized river plumes acting within estuaries have been neglected. This study addressed the behavior of suspended particulate matter (SPM, dissolved inorganic nutrients (DIN, DIP and DSi and Chlorophyll a (Chl. a of a small sized river plume derived from the closely lain São Francisco and Guandú river channels, set in the Sepetiba Bay estuary, SE-Brazil. Two surface water sampling campaigns were conducted, one in January 2003 (humid summer conditions and the other in June 2003 (dry winter conditions. On both occasions, the plumes dispersed in a SE direction towards the inner portion of the bay. The "wet" event plume was more turbid, nutrient rich and dispersed beyond nearshore waters, whereas the "dry" event plume proliferated as a narrow, less turbid and more nutrient poor film alongshore. Both exhibited a marked degree of patchiness, induced by the differential input of materials from the river sources and resuspension processes from the shallow nearshore bottom. The São Francisco river channel was the main source of freshwater, SPM and nutrients, except for ammonia (NH4+-N derived from domestic effluents of the Guandú river. The mesohaline portion of the estuarine mixing zone of the plumes behaved as a slight source for SPM, DSi and DIP, due to bottom resuspension processes. N:P molar ratios ranged between 80:1 and 20:1 along the estuarine gradient, being higher in the summer than in the winter event, indicating that DIP was the potential nutrient limiting primary production. Chl. a concentrations increased at the outer premises of the plume, suggesting that the short residence times and turbidity of the plume waters, hampered primary production nearshore, particularly during the summer occasion. The small

  19. Magnesium-aerial primary current source

    Directory of Open Access Journals (Sweden)

    Barba I. N.

    2007-12-01

    Full Text Available Novel metal-air chemical power sources (CPS 3,0-ВМБ-7,5 have been developed. They have an unlimited shelf life and, even after decades of storage, give almost 100% of the designed capacity. These sources are water-activated. An aqueous salt solution is used as an electrolyte. Such sources are designed for single continuous or discontinuous discharge. The paper presents electrochemical reactions at the electrodes during CPS discharge. Comparison of electrical characteristics of the developed power source and various types of "dry cells" has shown that the developed sources have higher energy characteristics.

  20. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the National Health and Nutrition Examination Survey (2003-2006).

    Science.gov (United States)

    Huth, Peter J; Fulgoni, Victor L; Keast, Debra R; Park, Keigan; Auestad, Nancy

    2013-08-08

    The risk of chronic disease cannot be predicted simply by the content of a single nutrient in a food or food group in the diet. The contribution of food sources of calories, added sugars and saturated fat (SFA) to intakes of dietary fiber and micronutrients of public health importance is also relevant to understanding the overall dietary impact of these foods. Identify the top food sources of calories, added sugars and SFA in the U.S. diet and quantify their contribution to fiber and micronutrient intakes. Single 24-hour dietary recalls (Day 1) collected from participants ≥2 years (n = 16,822) of the What We Eat in America, National Health and Nutrition Examination Survey (WWEIA/NHANES 2003-2006) were analyzed. All analyses included sample weights to account for the survey design. Calorie and nutrient intakes from foods included contributions from disaggregated food mixtures and tabulated by rank order. No one food category contributes more than 7.2% of calories to the overall U.S. diet, but half of the top 10 contribute 10% or more of total dietary fiber and micronutrients. Three of the top 10 sources of calories and SFA (beef, milk and cheese) contribute 46.3% of the calcium, 49.5% of the vitamin D, 42.3% of the vitamin B12 as well as other essential nutrients to the American diet. On the other hand, foods categorized as desserts, snacks, or beverages, contribute 13.6% of total calories, 83% of added sugar intake, and provide little or no nutritional value. Including food components of disaggregated recipes more accurately estimated the contribution of foods like beef, milk or cheese to overall nutrient intake compared to "as consumed" food categorizations. Some food sources of calories, added sugars and SFA make major contributions to American dietary fiber and micronutrient intakes. Dietary modifications targeting reductions in calories, added sugar, or SFA need to take these key micronutrient sources into account so as not to have the unintended

  1. Nutrients, Toxins, and Water in Terrestrial and Aquatic Ecosystems Treated with Sewage Plant Effluents. Final Report of the Upland Recharge Program

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G. M.; Ballard, J. T.; Clinton, J.; Pecan, E. V.

    1976-01-01

    The objective of this work was to appraise the capacity of terrestrial and aquatic plant communities for absorbing and retaining nutrients and organic matter in sewage and for releasing ''clean'' water. Experimental systems included a sere representative of the Eastern Deciduous Forest, a timothy field, two Phalaris arundinacea meadows, a freshwater marsh, a pond, and a marsh-pond complex. Sewage of two qualities was applied at the rate of 5 cm per week; one treatment was equivalent to the release from a primary treatment sewage plant, the second to that from a secondary treatment plant. Under normal circumstances, without the addition of water or nutrients in sewage, the flux of nutrients into the groundwater was greatest under the agricultural communities and least under the late successional forest communities. All the terrestrial communities were net sources of most elements. Because the agricultural communities were fertilized and a substantial fraction of the fertilizer applied remained after the first year, the agricultural communities appeared to be net sinks during the first year of the experiment. The highest concentrations of nutrients in the percolate of the untreated communities commonly occurred in the earliest stages of succession. This relationship was especially conspicuous for nitrogen. Phosphorus and iron appeared to be held tightly within most ecosystems.

  2. Application of the “4R” nutrient stewardship concept to horticultural crops: getting nutrients in the “right” place

    Science.gov (United States)

    The 4R nutrient stewardship concept was introduced in 2009 by International Plant Nutrition Institute to define the right source, rate, time, and place to apply fertilizers to produce not only the most economical outcome in any given crop but to also to provide desirable social and environmental ben...

  3. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    Science.gov (United States)

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  4. Determination of the algal growth-limiting nutrients in strip mine ponds

    International Nuclear Information System (INIS)

    Bucknavage, M.J.; Aharrah, E.C.

    1984-01-01

    Using both a test organism, Ankistrodesmus falcatus, and natural phytoplankton, the Printz Algal Assay Bottle Test was used to determine the algal growth limiting nutrients in two strip mine ponds. Nitrogen, phosphorus, and iron were investigated, singly and in combination, as possible limiting nutrients. A synthetic chelator, Na 2 EDTA, was also used in the assay to test for the presence of metal toxicants and/or trace metal limitation. Because bacteria have a major influence on water chemistry, a separate assay incorporating the natural bacteria population was performed. In both ponds, assay results using test alga indicate phosphorus to be the primary limiting nutrient and nitrogen as a secondary factor. The presence of EDTA in combination with phosphate containing treatment promoted a higher algal concentration in both ponds. Iron was determined to be a secondary limiting nutrient in only one of the ponds. Natural phytoplankton of the two ponds responded in a similar manner to nutrient increases. Only one pond had the same results produced by both assays. Nutrient availability was influenced by the presence of bacteria in one pond but not in the other

  5. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    Science.gov (United States)

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  6. Sewage discharges and nutrient levels in Marimba River, Zimbabwe ...

    African Journals Online (AJOL)

    Sewage discharges and nutrient levels in Marimba River, Zimbabwe. ... Population distribution, land-use, industrial activity, urban agricultural ... River, one of the major inflow rivers into the Lake Chivero, Harare city\\'s main water supply source.

  7. Farm structure or farm management: effective ways to reduce nutrient surpluses on dairy farms and their financial impacts

    NARCIS (Netherlands)

    Ondersteijn, C.J.M.; Beldman, A.C.G.; Daatselaar, C.H.G.; Giesen, G.W.J.; Huirne, R.B.M.

    2003-01-01

    .To control and prevent nutrient pollution from agricultural non-point sources, the Dutch government introduced the Mineral Accounting System (MINAS), a nutrient bookkeeping system which taxes farms with nutrient surpluses exceeding safe threshold values. Since the levies can be severe it is

  8. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  9. Giving Women the Vote: Using Primary Source Documents to Teach about the Fight for Women's Suffrage.

    Science.gov (United States)

    Jacobsen, Margaret

    1988-01-01

    Presents a lesson in which students use primary sources to learn about the organizing strategies used in the fight for women's suffrage. These sources will provide insights into the past and help students develop appreciation for the hardships suffragists endured. Includes objectives, procedures, and suggestions for activities. (LS)

  10. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  11. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    Science.gov (United States)

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    ) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.

  12. Chemical composition, true nutrient digestibility, and true metabolizable energy of novel pet food protein sources using the precision-fed cecectomized rooster assay.

    Science.gov (United States)

    Deng, P; Utterback, P L; Parsons, C M; Hancock, L; Swanson, K S

    2016-08-01

    A wide variety of animal protein-based ingredients is commonly used in the pet food products. The raw ingredients and processing procedures used may greatly affect protein quality. Testing the quality of alternative protein sources is necessary and contributes to the sustainability of pet foods. The objective of this study was to test the chemical composition of 8 protein sources intended for use in dog and cat foods (calamari meal, pork peptone, alligator meal, lamb meal, venison meal, chicken meal, and 2 duck meals), and evaluate their true nutrient digestibility and nitrogen-corrected true ME (TMEn) using the precision-fed cecectomized rooster assay. Calamari meal and pork peptone had lower ash (4.4 and 3.6% of DM, respectively) but greater CP (88.1 and 80.5% of DM, respectively) and either greater or similar GE (5.6 and 5.3 kcal/g of DM, respectively) compared with alligator, lamb, venison, chicken, and duck meals (11.8 to 24.5% ash, 58.7 to 65.9% CP, and 4.6 to 5.3 kcal GE/g). Acid-hydrolyzed fat (AHF) was lower in calamari meal (8.7% of DM) compared with the other proteins tested (15.5-22.1% of DM). True nutrient digestibility was variable among the protein sources (52 to 79% of DM, 60 to 83% of OM, 78 to 92% of AHF, and 70 to 89% of GE) with pork peptone having the highest DM, AHF, and GE digestibility and calamari meal having the highest OM digestibility. True indispensable AA digestibility was highest for calamari meal, with all AA having a digestibility greater than 90%. Except for histidine, all indispensable AA had a digestibility over 85% for pork peptone. In contrast, true indispensable AA digestibility was lowest for lamb meal, with histidine having digestibility less than 70% and the other entire indispensable AA having digestibility between 72 and 88%. The TMEn of calamari meal (4.82 kcal/g DM and 86.9% of GE) was greater ( digestibility among protein sources intended for use in dog and cat foods and justifies further in vivo testing of novel

  13. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer

    Science.gov (United States)

    Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...

  14. Reducing future river export of nutrients to coastal waters of China in optimistic scenarios

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Ma, Lin

    2017-01-01

    Coastal waters of China are rich in nitrogen (N) and phosphorus (P) and thus often eutrophied. This is because rivers export increasing amounts of nutrients to coastal seas. Animal production and urbanization are important sources of nutrients in Chinese rivers. In this study we explored the

  15. Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.

    Science.gov (United States)

    Hu, Xiang; Sobotka, Dominika; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO 2 -N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).

  16. The Application of Isotope Techniques in Nutrient Assessment and Management in Riverine Systems. Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M.; Newman, B. D. [International Atomic Energy Agency, Isotope Hydrology Section, Vienna (Austria); Hadwen, W. L. [Australian Rivers Institute, Griffith School of Environment, Griffith University - Nathan Campus, Brisbane, Queensland (Australia); Rogers, K. [National Isotope Center, GNS Science, Lower Hutt (New Zealand); Mayer, B. [Department of Geoscience, University of Calgary, Calgary, Alberta (Canada); Hein, T. [Wasser Cluster Lunz, Interuniversitary Center for Aquatic Research, Lunz-See, and University of Natural Resources and Applied Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna (Austria); Stellato, L. [Centre for Isotopic Research on Cultural and Environmental Heritage (CIRCE), Seconda Universita degli Studi di Napoli, Caserta (Italy); Ohte, N. [Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo (Japan); Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, California (United States)

    2013-05-15

    A variety of sources contribute to nutrients in rivers and nutrients may subsequently take various pathways and undergo different transformation processes. We first review representative types of isotopes and the roles of isotope techniques that have been or could be used for nutrient assessment and management. We then present technical, financial and logistical matters to be considered in selecting appropriate isotope techniques for nutrient assessment and management. Lastly we propose several approaches on the application of isotope techniques to make more effective the studies and management of nutrients in rivers in the near future. (author)

  17. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  18. Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics

    Science.gov (United States)

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    Urbanization can alter nutrient cycling. This research evaluated how urbanization affected nutrient dynamics in the subtropics. We established 17–0.04 ha plots in five different land cover types—slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n= 3), rural natural oak forests (n=4), urban pine forests (n=3) and urban oak forests (n=4) in the...

  19. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20 omega-3 fatty acids (EFA measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST and chlorophyll-a (Chla, and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  20. Utilization of supplemental methionine sources by primary cultures of chick hepatocytes

    International Nuclear Information System (INIS)

    Dibner, J.J.

    1983-01-01

    Utilization of 2-hydroxy-4-(methylthio) butanoic acid (HMB) as a substrate for protein synthesis was studied by using primary cultures of chick liver cells. Cultures were prepared by enzymatic dissociation of livers from week old Hubbard broiler chicks and were maintained for 4 days under nonproliferative conditions. Hepatocyte differentiation was verified by using dexamethasone induction of tyrosine aminotransferase activity. Conversion of [14C]HMB to L-methionine was shown by chromatographic analysis of hepatocyte protein hydrolysate and incorporation into protein was proven by cycloheximide inhibition of synthesis. When incorporation of HMB was compared to that of DL-methionine (DLM) equimolar quantities of the two sources were found in liver cell protein. These results support, at a cellular level, the conclusion that HMB and DLM are biochemically equivalent sources of methionine for protein synthesis

  1. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    Science.gov (United States)

    Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.

    2017-10-01

    The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  2. Effects of changes in nutrient loading and composition on hypoxia dynamics and internal nutrient cycling of a stratified coastal lagoon

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-10-01

    Full Text Available The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads, which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria. Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.

  3. Computer model of hydroponics nutrient solution pH control using ammonium.

    Science.gov (United States)

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  4. Benthic Nutrient Fluxes from Mangrove Sediments of an Anthropogenically Impacted Estuary in Southern China

    Directory of Open Access Journals (Sweden)

    David Kaiser

    2015-06-01

    Full Text Available Mangroves serve as either sinks or sources for inorganic and organic nutrients and can mitigate anthropogenic nutrient pollution, control the production in adjacent systems, and prevent eutrophication. To better understand the nutrient dynamics in a subtropical mangrove, we employed a three-way approach in the Nanliu River Estuary, southern China: Pore water profiles and sediment incubations revealed benthic early diagenesis as well as sediment–water exchange of dissolved nutrients and oxygen, while tidal sampling of estuarine and mangrove water identified source and sink functions of the entire mangrove forest. Fluxes of oxygen during incubations were always directed into the sediment, indicating heterotrophy of the system. There was a net uptake of dissolved inorganic nitrogen, mainly caused by nitrate influx, while ammonium and nitrite showed variable flux direction. Despite high pore water concentrations, phosphate and silica showed net uptake. Fluxes of dissolved organic carbon were generally low except for high efflux in the dark following a storm event. Due to the combination of small forest area and strong anthropogenic nutrient input, the net sink function for dissolved nitrogen and phosphorus provides no significant buffer against the eutrophication of coastal waters.

  5. Occurrence of anthropogenic organic compounds and nutrients in source and finished water in the Sioux Falls area, South Dakota, 2009-10

    Science.gov (United States)

    Hoogestraat, Galen K.

    2012-01-01

    Anthropogenic organic compounds (AOCs) in drinking-water sources commonly are derived from municipal, agricultural, and industrial wastewater sources, and are a concern for water-supply managers. A cooperative study between the city of Sioux Falls, S. Dak., and the U.S. Geological Survey was initiated in 2009 to (1) characterize the occurrence of anthropogenic organic compounds in the source waters (groundwater and surface water) to water supplies in the Sioux Falls area, (2) determine if the compounds detected in the source waters also are present in the finished water, and (3) identify probable sources of nitrate in the Big Sioux River Basin and determine if sources change seasonally or under different hydrologic conditions. This report presents analytical results of water-quality samples collected from source waters and finished waters in the Sioux Falls area. The study approach included the collection of water samples from source and finished waters in the Sioux Falls area for the analyses of AOCs, nutrients, and nitrogen and oxygen isotopes in nitrate. Water-quality constituents monitored in this study were chosen to represent a variety of the contaminants known or suspected to occur within the Big Sioux River Basin, including pesticides, pharmaceuticals, sterols, household and industrial products, polycyclic aromatic hydrocarbons, antibiotics, and hormones. A total of 184 AOCs were monitored, of which 40 AOCs had relevant human-health benchmarks. During 11 sampling visits, 45 AOCs (24 percent) were detected in at least one sample of source or finished water, and 13 AOCs were detected in at least 20 percent of all samples. Concentrations of detected AOCs were all less than 1 microgram per liter, except for two AOCs in multiple samples from the Big Sioux River, and one AOC in finished-water samples. Concentrations of AOCs were less than 0.1 microgram per liter in more than 75 percent of the detections. Nutrient concentrations varied seasonally in source

  6. Primary Sources: America's Teachers on Teaching in an Era of Change. Third Edition

    Science.gov (United States)

    Scholastic Inc. and the Bill & Melinda Gates Foundation, 2013

    2013-01-01

    This third edition of "Primary Sources" represents a joint project of Scholastic and the Bill & Melinda Gates Foundation. It reports the views of more than 20,000 public school teachers on important issues related to their profession. Fielded in July 2013, the survey asks teachers about their motivation, new learning standards,…

  7. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  8. Foods, Fortificants, and Supplements: Where Do Americans Get Their Nutrients?123

    Science.gov (United States)

    Fulgoni, Victor L.; Keast, Debra R.; Bailey, Regan L.; Dwyer, Johanna

    2011-01-01

    Limited data are available on the source of usual nutrient intakes in the United States. This analysis aimed to assess contributions of micronutrients to usual intakes derived from all sources (naturally occurring, fortified and enriched, and dietary supplements) and to compare usual intakes to the Dietary Reference Intake for U.S. residents aged ≥2 y according to NHANES 2003–2006 (n = 16,110). We used the National Cancer Institute method to assess usual intakes of 19 micronutrients by source. Only a small percentage of the population had total usual intakes (from dietary intakes and supplements) below the estimated average requirement (EAR) for the following: vitamin B-6 (8%), folate (8%), zinc (8%), thiamin, riboflavin, niacin, vitamin B-12, phosphorus, iron, copper, and selenium (supplements further reduced the percentage of the population consuming less than the EAR for all nutrients. The percentage of the population with total intakes greater than the tolerable upper intake level (UL) was very low for most nutrients, whereas 10.3 and 8.4% of the population had intakes greater than the UL for niacin and zinc, respectively. Without enrichment and/or fortification and supplementation, many Americans did not achieve the recommended micronutrient intake levels set forth in the Dietary Reference Intake. PMID:21865568

  9. Nutrient co-limitation at the boundary of an oceanic gyre

    Science.gov (United States)

    Browning, Thomas J.; Achterberg, Eric P.; Rapp, Insa; Engel, Anja; Bertrand, Erin M.; Tagliabue, Alessandro; Moore, C. Mark

    2017-11-01

    Nutrient limitation of oceanic primary production exerts a fundamental control on marine food webs and the flux of carbon into the deep ocean. The extensive boundaries of the oligotrophic sub-tropical gyres collectively define the most extreme transition in ocean productivity, but little is known about nutrient limitation in these zones. Here we present the results of full-factorial nutrient amendment experiments conducted at the eastern boundary of the South Atlantic gyre. We find extensive regions in which the addition of nitrogen or iron individually resulted in no significant phytoplankton growth over 48 hours. However, the addition of both nitrogen and iron increased concentrations of chlorophyll a by up to approximately 40-fold, led to diatom proliferation, and reduced community diversity. Once nitrogen-iron co-limitation had been alleviated, the addition of cobalt or cobalt-containing vitamin B12 could further enhance chlorophyll a yields by up to threefold. Our results suggest that nitrogen-iron co-limitation is pervasive in the ocean, with other micronutrients also approaching co-deficiency. Such multi-nutrient limitations potentially increase phytoplankton community diversity.

  10. Bioremediation of soil contaminated with hydrocarbons using sewage sludge as an alternative source of nutrients; Biorremediacion de suelo contaminado con hidrocarburos empleando lodos residuales como fuente alterna de nutrientes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Prado, Adriana [Instituto Tecnologico de Durango, Durango, Durango (Mexico)]. E-mail: adriana.martinez@orst.edu; Perez Lopez, Ma. Elena [Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (IPN-CIIDIR) Unidad Durango, Durango, Durango (Mexico); Pinto Espinoza, Joaquin; Gurrola Nevarez, Blanca Amelia; Osorio Rodriguez, Ana Lilia [Instituto Tecnologico de Durango, Durango, Durango (Mexico)

    2011-07-01

    In this research an aerobic bioremediation process, of a petroleum hydrocarbon contaminated soil, was evaluated using residual sludge (biosolids) from a local domestic wastewater treatment plant, as an alternative micro and macro nutrient source. Contamination of the soil resulted from accidental spills with hydrocarbons, mainly diesel, gasoline, and residual oils, from the San Antonio mining unit which belongs to Goldcorp Mexico Company, located in Tayoltita, from the municipality of San Dimas, Durango. Laboratory and pilot experiments were conducted, adjusting soil water content to field capacity and carbon:nitrogen (C:N) ratio to 10:1, evaluating the effect of addition of nutrients, density of the material being remediated, and the influence of soil particle size in the remediation process. It was demonstrated that the biosolids stimulated the native microorganisms of the polluted soil; consequently the hydrocarbon degradation process was accelerated. The hydrocarbons were used as carbon and electron donor source, coupling the oxidation-reduction reaction with oxygen which served as the electron acceptor. Treated soil was remediated and reached the maximum permissible limit (MPL), established in the Mexican current regulations (NOM-138-SEMARNAT/SS-2003), at both stages, and it is recommended as an optional process to the mining company to fulfill with the Clean Industry Program. [Spanish] En la presente investigacion se evaluo el proceso de biorremediacion aerobica de un suelo contaminado con hidrocarburos de petroleo empleando lodos residuales (biosolidos), provenientes de una planta de tratamiento de aguas residuales (PTAR) domesticas de la localidad, como fuente alterna de macro y micronutrientes. La contaminacion del suelo fue resultado de derrames accidentales de diesel, aceite y grasas en la unidad minera San Antonio perteneciente al grupo Goldcorp Mexico, ubicada en el municipio de San Dimas, en Tayoltita, Durango. Se realizaron experimentos a escala

  11. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    Science.gov (United States)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils

  12. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth.

    Science.gov (United States)

    Finke, Mark D

    2015-11-01

    Commercially raised feeder insects used to feed captive insectivores are a good source of many nutrients but are deficient in several key nutrients. Current methods used to supplement insects include dusting and gut-loading. Here, we report on the nutrient composition of four species of commercially raised feeder insects fed a special diet to enhance their nutrient content. Crickets, mealworms, superworms, and waxworms were analyzed for moisture, crude protein, fat, ash, acid detergent fiber, total dietary fiber, minerals, amino acids, fatty acids, vitamins, taurine, carotenoids, inositol, and cholesterol. All four species contained enhanced levels of vitamin E and omega 3 fatty acids when compared to previously published data for these species. Crickets, superworms, and mealworms contained β-carotene although using standard conversion factors only crickets and superworms would likely contain sufficient vitamin A activity for most species of insectivores. Waxworms did not contain any detectable β-carotene but did contain zeaxanthin which they likely converted from dietary β-carotene. All four species contained significant amounts of both inositol and cholesterol. Like previous reports all insects were a poor source of calcium and only superworms contained vitamin D above the limit of detection. When compared to the nutrient requirements as established by the NRC for growing rats or poultry, these species were good sources of most other nutrients although the high fat and low moisture content of both waxworms and superworms means when corrected for energy density these two species were deficient in more nutrients than crickets or mealworms. These data show the value of modifying the diet of commercially available insects as they are growing to enhance their nutrient content. They also suggest that for most insectivores properly supplemented lower fat insects such as crickets, or smaller mealworms should form the bulk of the diet. © 2015 The Authors. Zoo Biology

  13. Interpreting stream sediment fingerprints against primary and secondary source signatures in agricultural catchments

    Science.gov (United States)

    Blake, Will H.; Haley, Steve; Smith, Hugh G.; Taylor, Alex; Goddard, Rupert; Lewin, Sean; Fraser, David

    2013-04-01

    Many sediment fingerprinting studies adopt a black box approach to source apportionment whereby the properties of downstream sediment are compared quantitatively to the geochemical fingerprints of potential catchment sources without consideration of potential signature development or modification during transit. Working within a source-pathway-receptor framework, this study aimed to undertake sediment source apportionment within 6 subcatchments of an agricultural river basin with specific attention to the potential role of contaminants (vehicle emissions and mine waste) in development of stream sediment signatures. Fallout radionuclide (FRN) and geochemical fingerprinting methods were adopted independently to establish source signatures for primary sediment sources of surface and subsurface soil materials under various land uses plus reworked mine and 'secondary' soil material deposited, in transit, along road networks. FRN data demonstrated expected variability between surface soil (137Cs = 14 ± 3 Bq kg-1; 210Pbxs = 40 ± 7 Bq kg-1) and channel bank materials (137Cs = 3 ± 1 Bq kg-1; 210Pbxs = 24 ± 5 Bq kg-1) but road transported soil material was considerably elevated in 210Pbxs (up to 673 ± 51 Bq kg-1) due to sediment interaction with pluvial surface water within the road network. Geochemical discrimination between surface and subsurface soil materials was dominated by alkaline earth and alkali metals e.g. Ba, Rb, Ca, K, Mg which are sensitive to weathering processes in soil. Magnetic susceptibility and heavy metals were important discriminators of road transported material which demonstrated transformation of the signatures of material transported via the road network. Numerical unmixing of stream sediment indicated that alongside channel bank erosion, road transported material was an important component in some systems in accord with FRN evidence. While mining spoil also ranked as a significant source in an affected catchment, perhaps related to legacy

  14. Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas

    Science.gov (United States)

    Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High

  15. ENSO-driven nutrient variability recorded by central equatorial Pacific corals

    Science.gov (United States)

    LaVigne, M.; Nurhati, I. S.; Cobb, K. M.; McGregor, H. V.; Sinclair, D. J.; Sherrell, R. M.

    2012-12-01

    Recent evidence for shifts in global ocean primary productivity suggests that surface ocean nutrient availability is a key link between global climate and ocean carbon cycling. Time-series records from satellite, in situ buoy sensors, and bottle sampling have documented the impact of the El Niño Southern Oscillation (ENSO) on equatorial Pacific hydrography and broad changes in biogeochemistry since the late 1990's, however, data are sparse prior to this. Here we use a new paleoceanographic nutrient proxy, coral P/Ca, to explore the impact of ENSO on nutrient availability in the central equatorial Pacific at higher-resolution than available from in situ nutrient data. Corals from Christmas (157°W 2°N) and Fanning (159°W 4°N) Islands recorded a well-documented decrease in equatorial upwelling as a ~40% decrease in P/Ca during the 1997-98 ENSO cycle, validating the application of this proxy to Pacific Porites corals. We compare the biogeochemical shifts observed through the 1997-98 event with two pre-TOGA-TAO ENSO cycles (1982-83 and 1986-87) reconstructed from a longer Christmas Island core. All three corals revealed ~30-40% P/Ca depletions during ENSO warming as a result of decreased regional wind stress, thermocline depth, and equatorial upwelling velocity. However, at the termination of each El Niño event, surface nutrients did not return to pre-ENSO levels for ~4-12 months after, SST as a result of increased biological draw down of surface nutrients. These records demonstrate the utility of high-resolution coral nutrient archives for understanding the impact of tropical Pacific climate on the nutrient and carbon cycling of this key region.

  16. Spatial distribution and assessment of nutrient pollution in Lake Toba using 2D-multi layers hydrodynamic model and DPSIR framework

    Science.gov (United States)

    Sunaryani, A.; Harsono, E.; Rustini, H. A.; Nomosatryo, S.

    2018-02-01

    Lake Toba is the largest lake in Indonesia utilized as a source of life-support for drinking and clean water, energy sources, aquaculture and tourism. Nowadays the water quality in Lake Toba has decreased due to the presence of excessive nutrient (nitrogen: N and phosphorus: P). This study aims to describe the spatial distribution of nutrient pollution and to develop a decision support tool for the identification and evaluation of nutrient pollution control in Lake Toba. Spatial distribution method was conducted by 2D-multi layers hydrodynamic model, while DPSIR Framework is used as a tool for the assessment. The results showed that the concentration of nutrient was low and tended to increase along the water depth, but nutrient concentration in aquaculture zones was very high and the trophic state index has reached eutrophic state. The principal anthropogenic driving forces were population growth and the development of aquaculture, livestock, agriculture, and tourism. The main environmental pressures showed that aquaculture and livestock waste are the most important nutrient sources (93% of N and 87% of P loads). State analysis showed that high nutrient concentration and increased algal growth lead to oxygen depletion. The impacts of these conditions were massive fish kills, loss of amenities and tourism value, also decreased usability of clean water supply. This study can be a useful information for decision-makers to evaluate nutrient pollution control. Nutrient pollution issue in Lake Toba requires the attention of local government and public society to maintain its sustainability.

  17. Food web of a tropical high mountain stream: Effects of nutrient addition

    International Nuclear Information System (INIS)

    Castro Rebolledo, Maria Isabel; Munoz Gracia, Isabel; Donato Rondon, John Charles

    2014-01-01

    Using a nutrient enrichment experiment in an Andean mountain stream, we used stable isotope ratios (δ 15n and δ13c) to analyze different trophic compartments: 1) basal level: CPOM and biofilm; 2) primary consumers - macro invertebrates: collector-gatherers(heterelmissp, thraulodessp andtrichorythodessp), and collector-filterers (simuliumsp); 3) predators - fish (oncorhynchusmykiss and trichomycterusbogotensis). the average fractionation of nitrogen among the primary consumers with respect to CPOM was 4.7 and 1.7 with respect to biofilm. predators incremented their δ15n signal by 5.9% with respect to primary consumers. A depletion of δ15n was observed in impact with respect to control reach after fertilization in different compartments (biofilm, heterelmissp., simuliumsp. andtricorythodessp.), while depletion was not significant for top predators. In most cases, the δ13c signal of biofilm overlapped with that of primary consumers, but a clear enrichment was observed with respect to CPOM. The macro invertebrates referred to were selected to analyze their gut content and the results showed us that fine detritus is the most abundant food in invertebrates, and onlyheterelmis sp. showed significant differences in fine detritus and vegetal matter between control and impact reaches after the nutrient addition.

  18. The Pedagogy of Primary Historical Sources in Mathematics: Classroom Practice Meets Theoretical Frameworks

    Science.gov (United States)

    Barnett, Janet Heine; Lodder, Jerry; Pengelley, David

    2014-01-01

    We analyze our method of teaching with primary historical sources within the context of theoretical frameworks for the role of history in teaching mathematics developed by Barbin, Fried, Jahnke, Jankvist, and Kjeldsen and Blomhøj, and more generally from the perspective of Sfard's theory of learning as communication. We present case studies…

  19. Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.

    Science.gov (United States)

    Bouskill, N.; Zhu, Q.; Riley, W. J.

    2017-12-01

    Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical

  20. Short-Term Effects of Drying-Rewetting and Long-Term Effects of Nutrient Loading on Periphyton N:P Stoichiometry

    Directory of Open Access Journals (Sweden)

    Andres D. Sola

    2018-01-01

    Full Text Available Nitrogen (N and phosphorus (P concentrations and N:P ratios critically influence periphyton productivity and nutrient cycling in aquatic ecosystems. In coastal wetlands, variations in hydrology and water source (fresh or marine influence nutrient availability, but short-term effects of drying and rewetting and long-term effects of nutrient exposure on periphyton nutrient retention are uncertain. An outdoor microcosm experiment simulated short-term exposure to variation in drying-rewetting frequency on periphyton mat nutrient retention. A 13-year dataset from freshwater marshes of the Florida Everglades was examined for the effect of long-term proximity to different N and P sources on mat-forming periphyton nutrient standing stocks and stoichiometry. Field sites were selected from one drainage with shorter hydroperiod and higher connectivity to freshwater anthropogenic nutrient supplies (Taylor Slough/Panhandle, TS/Ph and another drainage with longer hydroperiod and higher connectivity to marine nutrient supplies (Shark River Slough, SRS. Total P, but not total N, increased in periphyton mats exposed to both low and high drying-rewetting frequency with respect to the control mats in our experimental microcosm. In SRS, N:P ratios slightly decreased downstream due to marine nutrient supplies, while TS/Ph increased. Mats exposed to short-term drying-rewetting had higher nutrient retention, similar to nutrient standing stocks from long-term field data. Periphyton mat microbial communities may undergo community shifts upon drying-rewetting and chronic exposure to nutrient loads. Additional work on microbial species composition may further explain how periphyton communities interact with drying-rewetting dynamics to influence nutrient cycling and retention in wetlands.

  1. Present and Past Impact of Glacially Sourced Dust on Iron Fertilization of the Southern Ocean

    Science.gov (United States)

    Shoenfelt, E. M.; Winckler, G.; Kaplan, M. R.; Sambrotto, R.; Bostick, B. C.

    2016-12-01

    An increase in iron-containing dust flux and a more efficient biological pump in the Southern Ocean have been associated with the CO2 drawdown and global cooling of the Last Glacial Maximum (LGM). While iron (Fe) mineralogy is known to affect Fe bioavailability through its impact on Fe solubility, there are limited studies investigating the importance of Fe mineralogy in dust fluxes to the Southern Ocean, and no previous studies investigating interactions between eukaryotic phytoplankton and particulate-phase Fe in natural dusts applicable to Southern Ocean environments. Since physically weathered bedrock becomes less soluble as it becomes weathered and oxidized, we hypothesized that glacially sourced dusts would contain more Fe(II)-rich primary minerals and would be more bioavailable than dusts from areas not impacted by glaciers. We used a series of natural dusts from Patagonia as the sole Fe source in incubation experiments with the model diatom Phaeodactylum tricornutum, and evaluated Fe bioavailability using culture growth rates, cell density, and variable fluorescence. Monod curves were also used to evaluate the efficiency of the different particulates as sources of nutrient Fe. Using these Monod curves fit to growth rates plotted against particulate Fe concentrations, we observed that 1) Fe(II)-rich primary silicates were significantly more effective as an Fe source to diatoms than Fe(III)-rich oxides, that 2) Fe(II) content itself was responsible for the difference in Fe bioavailability/efficiency of the Fe nutrient source, and that 3) surface interactions with the particulates were important. In an effort to explore the possibility that Fe mineralogy impacted Fe bioavailability in past oceans, we will present our hypotheses regarding productivity and Fe mineralogy/bioavailability through the last glacial cycle.

  2. Fine particle water and pH in the Eastern Mediterranean: Sources, variability and implications for nutrients availability

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Nenes, Athanasios; Weber, Rodney; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    total calculated water. Particle pH is also calculated with the help of ISORROPIA-II, and during the studied period, values varied from 0.5 to 2.8, indicating that the aerosol was highly acidic. pH values were also studied depending on the source/origin of the sampled air masses and biomass burning aerosol was found to exhibit the highest values of PM1 pH and the lowest values in total water mass concentrations. The two natural sources, namely mineral and marine origin, contained the largest amounts of total submicron water and the lowest contribution of organic water, as expected. The low pH values estimated for the studied period in the submicron mode and independently of the air masses' origin could potentially have important implications for nutrient availability, especially for phosphorus solubility, which is the nutrient limiting sea water productivity of the Eastern Mediterranean.

  3. Evolution of nutrient uptake reveals a trade-off in the ecological stoichiometry of plant-herbivore interactions

    NARCIS (Netherlands)

    Branco, P.; Stomp, M.; Egas, M.; Huisman, J.

    2010-01-01

    Nutrient limitation determines the primary production and species composition of many ecosystems. Here we apply an adaptive dynamics approach to investigate evolution of the ecological stoichiometry of primary producers and its implications for plant‐herbivore interactions. The model predicts a

  4. Nutrient Composition of Retail Samples of Australian Beef Sausages

    Directory of Open Access Journals (Sweden)

    Judy Cunningham

    2015-11-01

    Full Text Available Some nutrient data for beef sausages in Australia’s food composition table, NUTTAB 2010, is over 25 years old and may no longer reflect the composition of this popular food. To update this, 41 retail samples of fresh beef sausages were purchased in Melbourne, Australia, in May 2015. Each purchase was analysed, uncooked, for moisture, protein and fat. Sausages were then grouped by fat content into one of three composites and analysed for a wide range of nutrients, before and after dry heat cooking, the most popular sausage cooking method. Fat content in raw sausages averaged 14.9 g/100 g, 30% lower than NUTTAB values, varying from 7.3 to 22.6 g/100 g. This indicates it is possible to formulate leaner sausages that meet consumer expectations and may qualify for certain nutrition labelling statements. Under current Australian labelling requirements, two low fat sausages contain sufficient protein, B12, niacin, phosphorus and zinc to qualify as a good source of these nutrients and sufficient iron, selenium and vitamin A to qualify as a source of these. Sodium levels are higher than fresh beef, ranging from 680 to 840 mg/100 g. These data will be used to update NUTTAB and support product labelling and consumer education.

  5. Eutrophication study at the Panjiakou-Daheiting Reservoir system, northern Hebei Province, People's Republic of China: Chlorophyll-a model and sources of phosphorus and nitrogen

    Science.gov (United States)

    Domagalski, Joseph L.; Lin, Chao; Luo, Yang; Kang, Jie; Wang, Shaoming; Brown, Larry R.; Munn, Mark D.

    2007-01-01

    Concentrations, loads, and sources of nitrate and total phosphorus were investigated at the Panjiakou and Daheiting Reservoir system in northern Hebei Province, People's Republic of China. The Luan He River is the primary source of water to these reservoirs, and the upstream watershed has a mix of land uses including agriculture, forest, and one large urban center. The reservoirs have a primary use for storage of drinking water and partially supply Tianjin City with its annual needs. Secondary uses include flood control and aqua culture (fish cages). The response of the reservoir system from phosphorus input, with respect to chlorophyll-a production from algae, was fitted to a model of normalized phosphorus loading that regresses the average summer-time chlorophyll-a concentration to the average annual phosphorus concentration of the reservoir. Comparison of the normalized phosphorus loading and chlorophyll-a response of this system to other reservoirs throughout the world indicate a level of eutrophication that will require up to an approximate 5–10-fold decrease in annual phosphorus load to bring the system to a more acceptable level of algal productivity. Isotopes of nitrogen and oxygen in dissolved nitrate were measured from the headwater streams and at various locations along the major rivers that provide the majority of water to these reservoirs. Those isotopic measurements indicate that the sources of nitrate change from natural background in the rivers to animal manure and septic waste upstream of the reservoir. Although the isotopic measurements suggest that animal and septic wastes are a primary source of nutrients, measurements of the molar ratio of nitrogen to phosphorus are more indicative of row-cropping practices. Options for reduction of nutrient loads include changing the management practices of the aqua culture, installation of new sewage treatment systems in the large urbanized area of the upper watershed, and agricultural management practices

  6. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    Science.gov (United States)

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  7. Azolla pinnata growth performance in different water sources.

    Science.gov (United States)

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  8. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  9. The nutrient value of Imbrasia belina Lepidoptera: Saturnidae (madora).

    Science.gov (United States)

    Onigbinde, A O; Adamolekun, B

    1998-05-01

    To determine the pattern of consumption of Imbrasia belina (madora) and other edible insects and also compare the nutrient values of madora larvae and two of its variants (Anaphe venata and Cirina forda) to those of some conventional sources of protein. University of Zimbabwe. 100 workers who admitted to a history of entomophagy. Popularity score of madora compared with those of other edible insects and approximate compositions of nutrients in the larvae compared with standard proteins. Most respondents (65%) were introduced to entomophagy by their parents. Termites were the most frequently consumed, followed by madora. More respondents ate insects because of their perceived nutritional value than because of their relative availability. There was no association of entomophagy with significant side effects. The protein, fat and mineral contents of the larvae were superior to those of beef and chicken. There were no major differences in the nutrient composition of the three Lepidoptera variants. The high nutrient value and low cost of these larvae make them an important protein supplement, especially for people in the low income group.

  10. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania

    Directory of Open Access Journals (Sweden)

    Amber L. Pearson

    2016-01-01

    Full Text Available Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1 To what degree do households in Uganda (UG and Tanzania (TZ change primary water source type between wet and dry seasons?; and (2 How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG and 9% (TZ of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG and 0% (TZ of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources.

  11. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    International Nuclear Information System (INIS)

    Sadat-Noori, Mahmood; Santos, Isaac R.; Tait, Douglas R.; Maher, Damien T.

    2016-01-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO_3, PO_4, NH_4, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and saline GW the

  12. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    Science.gov (United States)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  13. Characterization of biochars from different sources and evaluation of release of nutrients and contaminants

    Directory of Open Access Journals (Sweden)

    Natália Aragão de Figueredo

    Full Text Available ABSTRACT The biochar, product of pyrolysis of organic waste, has been used as a soil conditioner and alternative on solid waste management. However, the raw material and pyrolysis temperature used influence the quantity and dynamics of release of nutrients and contaminants from the biochar. The objective was to evaluate the use of waste sugarcane bagasse, eucalyptus and sewage sludge for production of biochar and determine the chemical, physical, mineralogical properties and acid extraction of these materials produced at 350 °C and 500 °C. Were evaluated the proportion of C, H, N, O; ashes; macro and micronutrients, plus some contaminants; characterization of mineral phases by diffractometry of X- rays; functional groups by infrared absorption spectroscopy (FTIR. Moreover, it was determined the release of nutrients and contaminants for the extraction in increasing concentration of HNO3 (0,01 - 2,0 mol L-1. The O/C and H/C relations decreased with increasing temperature of pyrolysis, which define a greater stability of the C of biochars. Sewage sludge biochar (BC-L had the highest nutrient release rates and contaminant metals (Cd, Cr, Ni and Pb. Acid extraction of other biochars was very low (<20% of the total content. The results indicate that the carbon fraction of biochar contributes to the low rate of release of the elements in acid place.

  14. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats.

    Science.gov (United States)

    Dickinson, K E; Bjornsson, W J; Garrison, L L; Whitney, C G; Park, K C; Banskota, A H; McGinn, P J

    2015-01-01

    The primary aim of this study was to investigate the capacity of a microalga, Scenedesmus sp. AMDD, to remediate nutrients from municipal wastewater, either as the sole nutrient source or after blending with wastewater obtained from the anaerobic digestion of swine manure. A complimentary aim was to study and define the effects of these wastewaters on microalgal growth, biomass productivity and composition which have important implications for a commercial biofuels production system. A microalga, Scenedesmus sp. AMDD, was grown in continuous chemostats in municipal wastewater or wastewater supplemented with 1·6× or 2·4× higher levels of nitrogen (N) obtained through supplementation with anaerobic digestates. Biomass productivity increased with increasing nutrient supplementation, but was limited by light at high cell densities. Cellular quotas of carbon (C), nitrogen and phosphorus (P) all increased in direct proportion to their concentrations in the combined wastewaters. At higher cell densities, total carbohydrate decreased while protein increased. Fatty acid content remained relatively constant. Under high nutrient levels, the fatty acid profiles contained a higher concentration of polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Chlorophyll a was 2·5 times greater in the treatment of greatest nutrient supplementation compared to the treatment with the least. Ammonium (NH4(+)) and phosphate (PO4(3-)) were completely removed by algal growth in all treatments and with maximal removal rates of 41·2 mg N l(-1) d(-1) and 6·7 mg P l(-1) d(-1) observed in wastewater amended with 2·4× higher N level. The study is the first to report stable, long-term continuous algal growth and productivity obtained by combining wastewaters of different sources. The study is supported by detailed analyses of the composition of the cultivated biomass and links composition to the nutrient and light availabilities in the cultures. Simultaneous remediation

  15. Sanitary landfill leachate as a source of nutrients on the initial growth of sunflower plants

    Directory of Open Access Journals (Sweden)

    Francisco H. Nunes Júnior

    Full Text Available ABSTRACT The aim of this study was to evaluate the initial growth of sunflower seedlings under different concentrations of sanitary landfill leachate, considering the feasibility of its use as source of nutrients for agricultural production. Biometric and vigor variables were analyzed through the measurements of collar diameter, shoot height, number of leaves and shoot and root fresh and dry matters, from January to February 2015. The experimental design was completely randomized in a 5 x 4 factorial scheme: five leachate concentrations (0, 40, 60, 80 and 100 kg N ha-1 x four harvest periods (14, 21, 25 and 29 days after sowing, with five replicates each containing two plants. The data were subjected to analysis of variance and polynomial regression, and the results of the last harvest (29 DAS were compared by Tukey test (p ≤ 0.05. The use of sanitary landfill leachate increased all analyzed variables in sunflower plants when compared to the control plants (without leachate, especially in the treatment of 100 kg N ha-1. There was no inhibitory effect of the leachate on the initial growth of sunflower seedlings under adopted experimental conditions.

  16. Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Spångberg, J. [Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, 750 07 Uppsala (Sweden); Tidåker, P. [Swedish Institute of Agricultural and Environmental Engineering, P.O. Box 7033, 750 07 Uppsala (Sweden); Jönsson, H., E-mail: hakan.jonsson@slu.se [Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, 750 07 Uppsala (Sweden)

    2014-09-15

    Human excreta are potential sources of plant nutrients, but are today usually considered a waste to be disposed of. The requirements on wastewater treatment plants (WWTPs) to remove nitrogen and phosphorus are increasing and to meet these requirements, more energy and chemicals are needed by WWTPs. Separating the nutrient-rich wastewater fractions at source and recycling them to agriculture as fertiliser is an alternative to removing them at the WWTP. This study used life cycle assessment methodology to compare the environmental impact of different scenarios for recycling the nutrients in the human excreta as fertiliser to arable land or removing them in an advanced WWTP. Three scenarios were assessed. In blackwater scenario, blackwater was source-separated and used as fertiliser. In urine scenario, the urine fraction was source-separated and used as fertiliser and the faecal water treated in an advanced WWTP. In NP scenario, chemical fertiliser was used as fertiliser and the toilet water treated in an advanced WWTP. The emissions from the WWTP were the same for all scenarios. This was fulfilled by the enhanced reduction in the WWTP fully removing the nutrients from the excreta that were not source-separated in the NP and urine scenarios. Recycling source-separated wastewater fractions as fertilisers in agriculture proved efficient for conserving energy and decreasing global warming potential (GWP). However, the blackwater and urine scenarios had a higher impact on potential eutrophication and potential acidification than the WWTP-chemical fertiliser scenario, due to large impacts by the ammonia emitted from storage and after spreading of the fertilisers. The cadmium input to the arable soil was very small with urine fertiliser. Source separation and recycling of excreta fractions as fertiliser thus has potential for saving energy and decreasing GWP emissions associated with wastewater management. However, for improved sustainability, the emissions from storage and

  17. Effects of Nutrient Dynamics, Light and Temperature on the Patchiness of Phytoplankton and Primary Production in the Estuarine and Coastal Zones of Liaodong Bay, China: A Typical Case Study

    Science.gov (United States)

    Pei, S.; Laws, E. A.; Ye, S.

    2017-12-01

    Fluvial inputs of nutrients and efficient nutrient recycling mechanisms make estuarine and coastal zones highly productive bodies of water. For the same reasons, they are susceptible to eutrophication problems. In China, eutrophication problems along coasts are becoming serious because of discharges of domestic sewage and industrial wastewater and runoff of agricultural fertilizer. Addressing these problems requires an informed assessment of the factors that controlling algal production. Our study aims at determining the factors that controlling patchiness of phytoplankton and primary production in Liaodong Bay, China that receives large inputs of nutrients from human activities in its watershed, and examining the variation patterns of phytoplankton photosynthesis under both stressors of climate change and human activities. Results of our field study suggest that nutrient concentrations were above growth-rate-saturating concentrations throughout Liaodong bay, with the possible exception of phosphate at some stations. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. Two large patches of high biomass and production with dimensions on the order of 10 km reflect the effects of water temperature and variation of light penetration restricted by water turbidity. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Popt), light-conditioned Popt values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). In this model, light-conditioned Popt values increased with temperatures from 22°C to roughly 25°C but declined precipitously at higher temperatures. The relatively high Popt values and low ratios of light absorbed to photosynthesis at coastal stations suggest the highly efficient usage of absorbed light by

  18. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index.

    Science.gov (United States)

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  19. Ultrastructural biomarkers in symbiotic algae reflect the availability of dissolved inorganic nutrients and particulate food to the reef coral holobiont

    Directory of Open Access Journals (Sweden)

    Sabrina eRosset

    2015-11-01

    Full Text Available Reef building corals associated with symbiotic algae (zooxanthellae can access environmental nutrients from different sources, most significantly via the uptake of dissolved inorganic nutrients by the algal symbiont and heterotrophic feeding of the coral host. Climate change is expected to alter the nutrient environment in coral reefs with the potential to benefit or disturb coral reef resilience. At present, the relative importance of the two major nutrient sources is not well understood, making predictions of the responses of corals to changes in their nutrient environment difficult. Therefore, we have examined the long-term effects of the availability of different concentrations of dissolved inorganic nutrients and of nutrients in particulate organic form on the model coral Euphyllia paradivisa. Coral and algal biomass showed a significantly stronger increase in response to elevated levels of dissolved inorganic nutrients as compared to the supply with particulate food. Also, changes in the zooxanthellae ultrastructure, determined by transmission electron microscopy (TEM, were mostly driven by the availability of dissolved inorganic nutrients under the present experimental conditions. The larger size of symbiont cells, their increased accumulation of lipid bodies, a higher number of starch granules and the fragmentation of their accumulation body could be established as reliable biomarkers of low availability of dissolved inorganic nutrients to the coral holobiont.

  20. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: data from the national health and nutrition examination survey (2003–2006)

    Science.gov (United States)

    2013-01-01

    Background The risk of chronic disease cannot be predicted simply by the content of a single nutrient in a food or food group in the diet. The contribution of food sources of calories, added sugars and saturated fat (SFA) to intakes of dietary fiber and micronutrients of public health importance is also relevant to understanding the overall dietary impact of these foods. Objective Identify the top food sources of calories, added sugars and SFA in the U.S. diet and quantify their contribution to fiber and micronutrient intakes. Methods Single 24-hour dietary recalls (Day 1) collected from participants ≥2 years (n = 16,822) of the What We Eat in America, National Health and Nutrition Examination Survey (WWEIA/NHANES 2003–2006) were analyzed. All analyses included sample weights to account for the survey design. Calorie and nutrient intakes from foods included contributions from disaggregated food mixtures and tabulated by rank order. Results No one food category contributes more than 7.2% of calories to the overall U.S. diet, but half of the top 10 contribute 10% or more of total dietary fiber and micronutrients. Three of the top 10 sources of calories and SFA (beef, milk and cheese) contribute 46.3% of the calcium, 49.5% of the vitamin D, 42.3% of the vitamin B12 as well as other essential nutrients to the American diet. On the other hand, foods categorized as desserts, snacks, or beverages, contribute 13.6% of total calories, 83% of added sugar intake, and provide little or no nutritional value. Including food components of disaggregated recipes more accurately estimated the contribution of foods like beef, milk or cheese to overall nutrient intake compared to “as consumed” food categorizations. Conclusions Some food sources of calories, added sugars and SFA make major contributions to American dietary fiber and micronutrient intakes. Dietary modifications targeting reductions in calories, added sugar, or SFA need to take these key micronutrient

  1. A modification of the Regional Nutrient Management model (ReNuMa) to identify long-term changes in riverine nitrogen sources

    Science.gov (United States)

    Hu, Minpeng; Liu, Yanmei; Wang, Jiahui; Dahlgren, Randy A.; Chen, Dingjiang

    2018-06-01

    Source apportionment is critical for guiding development of efficient watershed nitrogen (N) pollution control measures. The ReNuMa (Regional Nutrient Management) model, a semi-empirical, semi-process-oriented model with modest data requirements, has been widely used for riverine N source apportionment. However, the ReNuMa model contains limitations for addressing long-term N dynamics by ignoring temporal changes in atmospheric N deposition rates and N-leaching lag effects. This work modified the ReNuMa model by revising the source code to allow yearly changes in atmospheric N deposition and incorporation of N-leaching lag effects into N transport processes. The appropriate N-leaching lag time was determined from cross-correlation analysis between annual watershed individual N source inputs and riverine N export. Accuracy of the modified ReNuMa model was demonstrated through analysis of a 31-year water quality record (1980-2010) from the Yongan watershed in eastern China. The revisions considerably improved the accuracy (Nash-Sutcliff coefficient increased by ∼0.2) of the modified ReNuMa model for predicting riverine N loads. The modified model explicitly identified annual and seasonal changes in contributions of various N sources (i.e., point vs. nonpoint source, surface runoff vs. groundwater) to riverine N loads as well as the fate of watershed anthropogenic N inputs. Model results were consistent with previously modeled or observed lag time length as well as changes in riverine chloride and nitrate concentrations during the low-flow regime and available N levels in agricultural soils of this watershed. The modified ReNuMa model is applicable for addressing long-term changes in riverine N sources, providing decision-makers with critical information for guiding watershed N pollution control strategies.

  2. Simulated nutrient dissolution of Asian aerosols in various atmospheric waters: Potential links to marine primary productivity

    Science.gov (United States)

    Wang, Lingyan; Bi, Yanfeng; Zhang, Guosen; Liu, Sumei; Zhang, Jing; Xu, Zhaomeng; Ren, Jingling; Zhang, Guiling

    2017-09-01

    To probe the bioavailability and environmental mobility of aerosol nutrient elements (N, P, Si) in atmospheric water (rainwater, cloud and fog droplets), ten total suspended particulate (TSP) samples were collected at Fulong Mountain, Qingdao from prevailing air mass trajectory sources during four seasons. Then, a high time-resolution leaching experiment with simulated non-acidic atmospheric water (non-AAW, Milli-Q water, pH 5.5) and subsequently acidic atmospheric water (AAW, hydrochloric acid solution, pH 2) was performed. We found that regardless of the season or source, a monotonous decreasing pattern was observed in the dissolution of N, P and Si compounds in aerosols reacted with non-AAW, and the accumulated dissolved curves of P and Si fit a first-order kinetic model. No additional NO3- + NO2- dissolved out, while a small amount of NH4+ in Asian dust (AD) samples was released in AAW. The similar dissolution behaviour of P and Si from non-AAW to AAW can be explained by the Transition State Theory. The sources of aerosols related to various minerals were the natural reasons that affected the amounts of bioavailable phosphorus and silicon in aerosols (i.e., solubility), which can be explained by the dissolution rate constant of P and Si in non-AAW with lower values in mineral aerosols. The acid/particle ratio and particle/liquid ratio also have a large effect on the solubility of P and Si, which was implied by Pearson correlation analysis. Acid processing of aerosols may have great significance for marine areas with limited P and Si and post-acidification release increases of 1.1-10-fold for phosphorus and 1.2-29-fold for silicon. The decreasing mole ratio of P and Si in AAW indicates the possibility of shifting from a Si-limit to a P-limit in aerosols in the ocean, which promotes the growth of diatoms prior to other algal species.

  3. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    Science.gov (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  4. Vitamin D nutrient intake for all life stages.

    LENUS (Irish Health Repository)

    McKenna, M

    2011-04-01

    Vitamin D, unlike other nutrients, is a conditionally required nutrient being obtained from two sources – predominantly by skin production upon exposure to natural ultraviolet (UV) solar radiation, and to a lesser extent by oral intake. Being a fat soluble vitamin it has a long half-life of about two weeks and is stored in fat tissues.1 For nearly six months of the year from October to March in Ireland, skin production is absent and the population is dependent on oral intake from natural foodstuffs, (which are consumed in small quantities only), fortified foodstuffs (most notably some milk products for the past 25 years) and vitamin D supplements, either in multivitamin tablets or in combination with calcium tablets.

  5. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies

    Directory of Open Access Journals (Sweden)

    K. Fennel

    2018-05-01

    Full Text Available The occurrence of hypoxia in coastal oceans is a long-standing and growing problem worldwide and is clearly linked to anthropogenic nutrient inputs. While the need for reducing anthropogenic nutrient loads is generally accepted, it is costly and thus requires scientifically sound nutrient-reduction strategies. Issues under debate include the relative importance of nitrogen (N and phosphorus (P as well as the magnitude of the reduction requirements. The largest anthropogenically induced hypoxic area in North American coastal waters (of 15 000 ± 5000 km2 forms every summer in the northern Gulf of Mexico where the Mississippi and Atchafalaya rivers deliver large amounts of freshwater and nutrients to the shelf. A 2001 plan for reducing this hypoxic area by nutrient management in the watershed called for a reduction of N loads. Since then evidence of P limitation during the time of hypoxia formation has arisen, and a dual nutrient-reduction strategy for this system has been endorsed. Here we report the first systematic analysis of the effects of single and dual nutrient load reductions from a spatially explicit physical–biogeochemical model for the northern Gulf of Mexico. The model has been shown previously to skillfully represent the processes important for hypoxic formation. Our analysis of an ensemble of simulations with stepwise reductions in N, P, and N and P loads provides insight into the effects of both nutrients on primary production and hypoxia, and it allows us to estimate what nutrient reductions would be required for single and dual nutrient-reduction strategies to reach the hypoxia target. Our results show that, despite temporary P limitation, N is the ultimate limiting nutrient for primary production in this system. Nevertheless, a reduction in P load would reduce hypoxia because primary production is P limited in the region where density stratification is conducive to hypoxia development, but reductions in N load have

  7. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Science.gov (United States)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  8. An energy evaluation of coupling nutrient removal from wastewater with algal biomass production

    International Nuclear Information System (INIS)

    Sturm, Belinda S.M.; Lamer, Stacey L.

    2011-01-01

    Recently, several life cycle analyses of algal biodiesel from virtual production facilities have outlined the potential environmental benefits and energetic balance of the process. There are a wide range of assumptions that have been utilized for these calculations, including the addition of fertilizers and carbon dioxide to achieve high algal yields in open ponds. This paper presents an energy balance of microalgal production in open ponds coupled with nutrient removal from wastewater. Actual microalgal yields and nutrient removal rates were obtained from four pilot-scale reactors (2500 gallons each) fed with wastewater effluent from a conventional activated sludge process for 6 months, and the data was used to estimate an energy balance for treating the total average 12 million gallons per day processed by the wastewater treatment plant. Since one of the most energy-intensive steps is the dewatering of algal cultures, several thickening and dewatering processes were compared. This analysis also includes the energy offset from removing nutrients with algal reactors rather than the biological nutrient removal processes typically utilized in municipal wastewater treatment. The results show that biofuel production is energetically favorable for open pond reactors utilizing wastewater as a nutrient source, even without an energy credit for nutrient removal. The energy content of algal biomass was also considered as an alternate to lipid extraction and biodiesel production. Direct combustion of algal biomass may be a more viable energy source than biofuel production, especially when the lipid content of dry biomass (10% in this field experiment) is lower than the high values reported in lab-scale reactors (50-60%).

  9. Counterintuitive effects of global warming-induced wind patterns on primary production in the Northern Humboldt Current System.

    Science.gov (United States)

    Mogollón, Rodrigo; R Calil, Paulo H

    2018-04-14

    It has been hypothesized that global warming will strengthen upwelling-favorable winds in the Northern Humboldt Current System (NHCS) as a consequence of the increase of the land-sea thermal gradient along the Peruvian coast. The effect of strengthened winds in this region is assessed with the use of a coupled physical-biogeochemical model forced with projected and climatological winds. Strengthened winds induce an increase in primary production of 2% per latitudinal degree from 9.5°S to 5°S. In some important coastal upwelling sites primary production is reduced. This is due to a complex balance between nutrient availability, nutrient use efficiency, as well as eddy- and wind-driven factors. Mesoscale activity induces a net offshore transport of inorganic nutrients, thus reducing primary production in the coastal upwelling region. Wind mixing, in general disadvantageous for primary producers, leads to shorter residence times in the southern and central coastal zones. Overall, instead of a proportional enhancement in primary production due to increased winds, the NHCS becomes only 5% more productive (+5 mol C m -2 year -1 ), 10% less limited by nutrients and 15% less efficient due to eddy-driven effects. It is found that regions with a initial strong nutrient limitation are more efficient in terms of nutrient assimilation which makes them more resilient in face of the acceleration of the upwelling circulation. © 2018 John Wiley & Sons Ltd.

  10. Atmospheric deposition impacts on nutrients and biological budgets of the Mediterranean Sea, results from the high resolution coupled model NEMOMED12/PISCES

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Desboeufs, Karine; Nabat, Pierre; Guieu, Cécile; Aumont, Olivier; Palmieri, Julien

    2016-04-01

    Atmospheric deposition is at present not included in regional oceanic biogeochemical models of the Mediterranean Sea, whereas, along with river inputs, it represents a significant source of nutrients at the basin scale, especially through intense desert dust events. Moreover, observations (e.g. DUNE campaign, Guieu et al. 2010) show that these events significantly modify the biogeochemistry of the oligotrophic Mediterranean Sea. We use a high resolution (1/12°) version of the 3D coupled model NEMOMED12/PISCES to investigate the effects of high resolution atmospheric dust deposition forcings on the biogeochemistry of the Mediterranean basin. The biogeochemical model PISCES represents the evolution of 24 prognostic tracers including five nutrients (nitrate, ammonium, phosphate, silicate and iron) and two phytoplankton and zooplanktons groups (Palmiéri, 2014). From decadal simulations (1982-2012) we evaluate the influence of natural dust and anthropogenic nitrogen deposition on the budget of nutrients in the basin and its impact on the biogeochemistry (primary production, plankton distributions...). Our results show that natural dust deposition accounts for 15% of global PO4 budget and that it influences primarily the southern part of the basin. Anthropogenic nitrogen accounts for 50% of bioavailable N supply for the northern part. Deposition events significantly affect biological production; primary productivity enhancement can be as high as 30% in the areas of high deposition, especially during the stratified period. Further developments of the model will include 0D and 1D modeling of bacteria in the frame of the PEACETIME project.

  11. Nutrient Density and the Cost of Vegetables from Elementary School Lunches.

    Science.gov (United States)

    Ishdorj, Ariun; Capps, Oral; Murano, Peter S

    2016-01-01

    Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. © 2016 American Society for Nutrition.

  12. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  13. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); De Michelis, Ida [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy)

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  14. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  15. Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka

    Science.gov (United States)

    Ratnayake, R. R.; Seneviratne, G.; Kulasooriya, S. A.

    2013-05-01

    Carbohydrates supply carbon sources for microbial activities that contribute to mineral nutrient production in soil. Their role on soil nutrient availability has not yet been properly elucidated. This was studied in forests and cultivated lands in Sri Lanka. Soil organic matter (SOM) fractions affecting carbohydrate availability were also determined. Soil litter contributed to sugars of plant origin (SPO) in croplands. The negative relationship found between clay bound organic matter (CBO) and glucose indicates higher SOM fixation in clay that lower its availability in cultivated lands. In forests, negative relationships between litter and sugars of microbial origin (SMO) showed that litter fuelled microbes to produce sugars. Fucose and glucose increased the availability of Cu, Zn and Mn in forests. Xylose increased Ca availability in cultivated lands. Arabinose, the main carbon source of soil respiration reduced the P availability. This study showed soil carbohydrates and their relationships with mineral nutrients could provide vital information on the availability of limiting nutrients in tropical ecosystems.

  16. Nutrient Digestibility, Rumen Fermentation Parameters, and Production Performance in Response to Dietary Grain Source and Oil Supplement of Holstein Dairy Cows

    Directory of Open Access Journals (Sweden)

    Shahryar Kargar

    2016-04-01

    Full Text Available Introduction High-producing dairy cows require large amounts of concentrates that are rich in energy and crude protein to meet their nutrient requirements. Cereal grains and oil supplements are commonly used for increasing energy density of diets fed to high-producing dairy cows. Dietary grain source (barley vs. corn and oil supplement (soybean- vs. fish oil resulted in varied dry matter intake and milk production responses in different research studies based on effects on nutrient digestibility and rumen fermentation characteristics. Therefore, the main purpose of this study was to determine the effects of, and interactions between, grain source and oil supplement on the feed intake, rumen fermentation characteristics, nutrient digestibility and lactational performance of Holstein cows. Materials and Methods Eight lactating multiparous Holstein cows (parity = 3.3 ± 1.3 and days in milk = 77 ± 22.1; mean ± SD, were used in a replicated 4 × 4 Latin square design with 25-d periods. Each experimental period consisted of an 18-d diet adaptation period and a 7-d collection period. Cows within a square were assigned randomly to dietary treatments. Cows were blocked into 2 squares of 4 cows each based upon milk production, and days in milk, and within blocks were assigned to 1 of the 4 experimental diets with a 2 × 2 factorial arrangement: 1 BF = barley-based diet supplemented with fish oil at 2% of dietary DM, 2 BS = barley-based diet supplemented with soybean oil at 2% of dietary DM, 3 CF = corn-based diet supplemented with fish oil at 2% of dietary DM, and 4 CS = corn-based diet supplemented with soybean oil at 2% of dietary DM. The TMR amounts offered and refused were measured daily for each cow and DMI determined daily for each cow. Cows were milked three times daily at 0200, 1000, and 1800 h in a herringbone milking parlor. Milk yield for all cows was recorded and sampled at each milking during the last 7 d of each period. Milk samples were

  17. Use of point-of-sale data to assess food and nutrient quality in remote stores.

    Science.gov (United States)

    Brimblecombe, Julie; Liddle, Robyn; O'Dea, Kerin

    2013-07-01

    To examine the feasibility of using point-of-sale data to assess dietary quality of food sales in remote stores. A multi-site cross-sectional assessment of food and nutrient composition of food sales. Point-of-sale data were linked to Australian Food and Nutrient Data and compared across study sites and with nutrient requirements. Remote Aboriginal Australia. Six stores. Point-of-sale data were readily available and provided a low-cost, efficient and objective assessment of food and nutrient sales. Similar patterns in macronutrient distribution, food expenditure and key food sources of nutrients were observed across stores. In all stores, beverages, cereal and cereal products, and meat and meat products comprised approximately half of food sales (range 49–57 %). Fruit and vegetable sales comprised 10.4 (SD 1.9) % on average. Carbohydrate contributed 54.4 (SD 3.0) % to energy; protein 13.5 (SD 1.1) %; total sugars 28.9 (SD 4.3) %; and the contribution of total saturated fat to energy ranged from 11.0 to 14.4% across stores. Mg, Ca, K and fibre were limiting nutrients, and Na was four to five times higher than the midpoint of the average intake range. Relatively few foods were major sources of nutrients. Point-of-sale data enabled an assessment of dietary quality within stores and across stores with no burden on communities and at no cost, other than time required for analysis and reporting. Similar food spending patterns and nutrient profiles were observed across the six stores. This suggests potential in using point-of-sale data to monitor and evaluate dietary quality in remote Australian communities.

  18. Nutrient Density and the Cost of Vegetables from Elementary School Lunches123

    Science.gov (United States)

    Ishdorj, Ariun; Capps, Oral; Murano, Peter S

    2016-01-01

    Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. PMID:26773034

  19. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  20. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    Science.gov (United States)

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  1. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  2. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids.

    Science.gov (United States)

    Stabler, Daniel; Paoli, Pier P; Nicolson, Susan W; Wright, Geraldine A

    2015-03-01

    Animals carefully regulate the amount of protein that they consume. The quantity of individual essential amino acids (EAAs) obtained from dietary protein depends on the protein source, but how the proportion of EAAs in the diet affects nutrient balancing has rarely been studied. Recent research using the Geometric Framework for Nutrition has revealed that forager honeybees who receive much of their dietary EAAs from floral nectar and not from solid protein have relatively low requirements for dietary EAAs. Here, we examined the nutritional requirements for protein and carbohydrates of foragers of the buff-tailed bumblebee Bombus terrestris. By using protein (sodium caseinate) or an equimolar mixture of the 10 EAAs, we found that the intake target (nutritional optimum) of adult workers depended on the source and proportion of dietary EAAs. When bees consumed caseinate-containing diets in a range of ratios between 1:250 and 1:25 (protein to carbohydrate), they achieved an intake target (IT) of 1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets had an IT more biased towards carbohydrates (1:560 w/w) but also had a greater risk of death than those fed caseinate. We also tested how the dietary source of EAAs affected free AAs in bee haemolymph. Bees fed diets near their IT had similar haemolymph AA profiles, whereas bees fed diets high in caseinate had elevated levels of leucine, threonine, valine and alanine in the haemolymph. We found that like honeybees, bumblebee workers prioritize carbohydrate intake and have a relatively low requirement for protein. The dietary source of EAAs influenced both the ratio of protein/EAA to carbohydrate and the overall amount of carbohydrate eaten. Our data support the idea that EAAs and carbohydrates in haemolymph are important determinants of nutritional state in insects. © 2015. Published by The Company of Biologists Ltd.

  3. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  4. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    Science.gov (United States)

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  5. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  6. Metal and nutrient dynamics on an aged intensive green roof

    International Nuclear Information System (INIS)

    Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L.

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO 3 − retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input–output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. -- Highlights: • Runoff from an aged intensive green roof was characterised. • Nutrient levels were not problematic for runoff quality. • High concentrations of Cu, Pb and Zn were found in the runoff. • Soil contamination was a likely source of metals in roof runoff. • Historic Pb atmospheric deposition may be the source of contamination. -- Aged green roofs may act as a store of legacy lead pollution

  7. Longitudinal stress fracture: patterns of edema and the importance of the nutrient foramen

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Joseph G.; Widman, David; Holsbeeck, Marnix van [Department of Radiology, Henry Ford Hospital, Detroit, MI 48202 (United States)

    2003-01-01

    We reviewed the MR appearances of six cases of longitudinal stress fracture of the lower extremity.Results. One fracture was in the femur and five were in the tibia. Four of the tibial fractures showed edema starting in the mid-tibia at the level of the nutrient foramen with the fracture on the anteromedial cortex. The other tibial fracture started at the nutrient foramen. Three fractures (two tibial and the femur fracture) showed eccentric marrow edema; all fractures showed either eccentric periosteal reaction or soft tissue edema.Conclusion. Primary diagnosis of longitudinal stress fracture is made by finding a vertical cleft on one or more axial images. Secondary signs of position of the nutrient foramen and patterns of edema may be useful. (orig.)

  8. Study of Nutrient Content Variation in Bulb And Stalk of Onions ...

    African Journals Online (AJOL)

    acer

    Keywords: Onion bulbs and stalks, proximate, nutrient elements, vitamins A and C; oxalate. ... application of fertilizers, manure, compost and ..... iron products, the use of natural source of Fe such .... in Fish and Sediment from Kubanni River,.

  9. River Metabolism and Nutrient Cycling at the Point Scale: Insights from In Situ Sensors in Benthic Chambers

    Science.gov (United States)

    Cohen, M. J.; Reijo, C. J.; Hensley, R. T.

    2017-12-01

    Riverine processing of nutrients and carbon is a local process, subject to heterogeneity in sediment, biotic, insolation, and flow velocity drivers. Measurements at the reach scale aggregate across riverscapes, limiting their utility for enumerating these drivers, and thus for scaling to river networks. Using a combination of in situ sensors that sample water chemistry at high temporal resolution and open benthic chambers that isolate the biogeochemical impacts of a small footprint of benthic surface area, we explored controls on metabolism and nutrient cycling. We specifically sought to answer two questions. First, what are the controls on primary production, with a particular emphasis on the relative roles of light vs. nutrient limitation? Second, what are the pathways of nutrient retention, and do the reaction kinetics of these different pathways differ? We demonstrate the considerable utility of these benthic chambers, reasoning that they provide experimental units for river processes that are not attainable at the reach or network scale. Specifically, in addition to their ability to sample the heterogeneity of the river bed as well as observe nutrient depletion to create concentrations well below ambient levels, they enable manipulative experiments (e.g., nutrient enrichment, light reduction, grazer adjustments) while retaining key elements of the natural system. Across several of Florida's spring-fed river sites, our results strongly support the primacy of light limitation of primary production, with very little evidence of any incremental effects of nutrient enrichment. Nutrient depletion assays further support the dominance of two N retention mechanisms (denitrification and assimilation), the kinetics of which differ markedly, with denitrification exhibiting nearly first-order reactions, and assimilation following zero-order or Michaelis-Menten kinetics over the range of observed concentrations. This latter result helps explain the absence of strong

  10. NODC Standard Format Primary Productivity 1 (F029) Data (1958-1983) (NODC Accession 0014152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains data from measurements of primary productivity. The data are collected to provide information on nutrient levels and nutrient flow in offshore...

  11. Plant availability of nutrients recovered as solids from human urine tested in climate chamber on Triticum aestivum L.

    Science.gov (United States)

    Ganrot, Zsófia; Dave, Göran; Nilsson, Eva; Li, Bo

    2007-11-01

    Recovered nutrients by freezing-thawing from human urine in combination with struvite precipitation and nitrogen adsorption on zeolite and activated carbon have been tested in pot trials with wheat, Triticum aestivum L., in a climate chamber during 21 days. A simple test design using sand as substrate was chosen to give a first, general evaluation of the nutrient (P and N) availability from these sources. Dry weight, plant growth morphology, total-P and total-N were analysed. The tests show a slow-release of nutrients (P and N) from struvite and from N-adsorbents. The nitrogen in all treatments was in the deficiency range for optimum yield for wheat. Higher pH than usual for soil tests contributed to the difficulties in plant uptake, especially in the pots with only struvite (with highest MgO addition) as nutrient source.

  12. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry.

    Science.gov (United States)

    Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki

    2014-08-11

    The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

  13. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment.

    Science.gov (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo

    2018-04-16

    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  14. Nutrient load estimates for Manila Bay, Philippines using population data

    Science.gov (United States)

    Sotto, Lara Patricia A.; Beusen, Arthur H. W.; Villanoy, Cesar L.; Bouwman, Lex F.; Jacinto, Gil S.

    2015-06-01

    A major source of nutrient load to periodically hypoxic Manila Bay is the urban nutrient waste water flow from humans and industries to surface water. In Manila alone, the population density is as high as 19,137 people/km2. A model based on a global point source model by Morée et al. (2013) was used to estimate the contribution of the population to nitrogen and phosphorus emissions which was then used in a water transport model to estimate the nitrogen (N) and phosphorus (P) loads to Manila Bay. Seven scenarios for 2050 were tested, with varying degrees and amounts for extent of sewage treatment, and population growth rates were also included. In scenario 1, the sewage connection and treatment remains the same as 2010; in scenario 2, sewage connection is improved but the treatment is the same; in scenario 3, the sewage connection as well as treatment is improved (70% tertiary); and in scenario 4, a more realistic situation of 70% primary treatment achieved with 100% connection to pipes is tested. Scenarios 5, 6, and 7 have the same parameters as 1, 2, and 3 respectively, but with the population growth rate per province reduced to half of what was used in 1, 2, and 3. In all scenarios, a significant increase in N and P loads was observed (varying from 27% to 469% relative to 2010 values). This was found even in scenario 3 where 70% of the waste water undergoes tertiary treatment which removes 80% N and 90% P. However, the lowest increase in N and P load into the bay was achieved in scenarios 5 to 7 where population growth rate is reduced to half of 2010 values. The results suggest that aside from improving sewage treatment, the continued increase of the human population in Manila at current growth rates will be an important determinant of N and P load into Manila Bay.

  15. Effect of combined water and nutrient management on runoff and sorghum yield in semi-arid Burkina Faso

    NARCIS (Netherlands)

    Zougmoré, R.; Mando, A.; Ringersma, J.; Stroosnijder, L.

    2003-01-01

    In the semiarid regions of sub-Saharan Africa, fertilizer recovery and nutrient release from organic sources are often moisture limited. Moreover, in these regions runoff brings about large nutrient losses from fertilizer or organic inputs. This study was conducted in the north sudanian climate zone

  16. Nutrient production from dairy cattle manure and loading on arable land

    Directory of Open Access Journals (Sweden)

    Seunggun Won

    2017-01-01

    Full Text Available Objective Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods Through investigation of 41 dairy farms, weight reduction and volatile solids (VS, total nitrogen (TN, and total phosphorus (TP changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i experiment, ii reference, and iii theoretical changes in phosphorus content (ΔP = 0. Results The data revealed the nutrient loading coefficients (NLCs of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

  17. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    Science.gov (United States)

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  18. Canadian infants' nutrient intakes from complementary foods during the first year of life

    Directory of Open Access Journals (Sweden)

    Prowse Daniel

    2010-06-01

    Full Text Available Abstract Background Complementary feeding is currently recommended after six months of age, when the nutrients in breast milk alone are no longer adequate to support growth. Few studies have examined macro- and micro-nutrient intakes from complementary foods (CF only. Our purpose was to assess the sources and nutritional contribution of CF over the first year of life. Methods In July 2003, a cross-sectional survey was conducted on a nationally representative sample of mothers with infants aged three to 12 months. The survey was administered evenly across all regions of the country and included a four-day dietary record to assess infants' CF intakes in household (tablespoon measures (breast milk and formula intakes excluded. Records from 2,663 infants were analyzed for nutrient and CF food intake according to 12 categories. Mean daily intakes for infants at each month of age from CF were pooled and compared to the Dietary Reference Intakes for the respective age range. Results At three months of age, 83% of infants were already consuming infant cereals. Fruits and vegetables were among the most common foods consumed by infants at all ages, while meats were least common at all ages except 12 months. Macro- and micro-nutrient intakes from CF generally increased with age. All mean nutrient intakes, except vitamin D and iron, met CF recommendations at seven to 12 months. Conclusions Complementary foods were introduced earlier than recommended. Although mean nutrient intakes from CF at six to 12 months appear to be adequate among Canadian infants, further attention to iron and vitamin D intakes and sources may be warranted.

  19. The Treatment Train approach to reducing non-point source pollution from agriculture

    Science.gov (United States)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  20. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    Science.gov (United States)

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  1. Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment.

    Science.gov (United States)

    Wang, Jilong; Yan, Dalai; Dixon, Ray; Wang, Yi-Ping

    2016-07-19

    A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the "dream" of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable

  2. A critical assessment of the ecological assumptions underpinning compensatory mitigation of salmon-derived nutrients

    Science.gov (United States)

    Collins, Scott F.; Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2015-01-01

    We critically evaluate some of the key ecological assumptions underpinning the use of nutrient replacement as a means of recovering salmon populations and a range of other organisms thought to be linked to productive salmon runs. These assumptions include: (1) nutrient mitigation mimics the ecological roles of salmon, (2) mitigation is needed to replace salmon-derived nutrients and stimulate primary and invertebrate production in streams, and (3) food resources in rearing habitats limit populations of salmon and resident fishes. First, we call into question assumption one because an array of evidence points to the multi-faceted role played by spawning salmon, including disturbance via redd-building, nutrient recycling by live fish, and consumption by terrestrial consumers. Second, we show that assumption two may require qualification based upon a more complete understanding of nutrient cycling and productivity in streams. Third, we evaluate the empirical evidence supporting food limitation of fish populations and conclude it has been only weakly tested. On the basis of this assessment, we urge caution in the application of nutrient mitigation as a management tool. Although applications of nutrients and other materials intended to mitigate for lost or diminished runs of Pacific salmon may trigger ecological responses within treated ecosystems, contributions of these activities toward actual mitigation may be limited.

  3. Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Noori, Mahmood, E-mail: mahmood.sadat-noori@scu.edu.au [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Santos, Isaac R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); Tait, Douglas R. [National Marine Science Centre, School of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, NSW (Australia); School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia); Maher, Damien T. [School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW (Australia)

    2016-10-01

    The role of groundwater in transporting nutrients to coastal aquatic systems has recently received considerable attention. However, the relative importance of fresh versus saline groundwater-derived nutrient inputs to estuaries and how these groundwater pathways may alter surface water N:P ratios remains poorly constrained. We performed detailed time series measurements of nutrients in a tidal estuary (Hat Head, NSW, Australia) and used radium to quantify the contribution of fresh and saline groundwater to total surface water estuarine exports under contrasting hydrological conditions (wet and dry season). Tidally integrated nutrient fluxes showed that the estuary was a source of nutrients to the coastal waters. Dissolved inorganic nitrogen (DIN) export was 7-fold higher than the average global areal flux rate for rivers likely due to the small catchment size, surrounding wetlands and high groundwater inputs. Fresh groundwater discharge was dominant in the wet season accounting for up to 45% of total dissolved nitrogen (TDN) and 48% of total dissolved phosphorus (TDP) estuarine exports. In the dry season, fresh and saline groundwater accounted for 21 and 33% of TDN export, respectively. The combined fresh and saline groundwater fluxes of NO{sub 3}, PO{sub 4}, NH{sub 4}, DON, DOP, TDN and TDP were estimated to account for 66, 58, 55, 31, 21, 53 and 47% of surface water exports, respectively. Groundwater-derived nitrogen inputs to the estuary were responsible for a change in the surface water N:P ratio from typical N-limiting conditions to P-limiting as predicted by previous studies. This shows the importance of both fresh and saline groundwater as a source of nutrients for coastal productivity and nutrient budgets of coastal waters. - Highlights: • Groundwater TDN and TDP fluxes account for 53 and 47% of surface water exports. • The estuary DIN export was 7-fold higher than the average global areal flux. • Fresh GW nutrient input dominated the wet season and

  4. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  5. Reducing Nutrient Losses with Directed Fertilization of Degraded Soils

    Science.gov (United States)

    Menzies, E.; Walter, M. T.; Schneider, R.

    2016-12-01

    Degraded soils around the world are stunting agricultural productivity in places where people need it the most. In China, hundreds of years of agriculture and human activity have turned large swaths of productive grasslands into expanses of sandy soils where nothing can grow. Returning soils such as these to healthy productive landscapes is crucial to the livelihoods of rural families and to feeding the expanding population of China and the world at large. Buried wood chips can be used to improve the soils' water holding capacity but additional nutrient inputs are crucial to support plant growth and completely restore degraded soils in China and elsewhere. Improperly applied fertilizer can cause large fluxes of soluble nutrients such as nitrogen (N) and phosphorus (P) to pollute groundwater, and reach surface water bodies causing harmful algal blooms or eutrophication. Similarly, fertilization can create increases in nutrient losses in the form of greenhouse gases (GHGs). It is imperative that nutrient additions to this system be done in a way that fosters restoration and a return to productivity, but minimizes nutrient losses to adjacent surface water bodies and the atmosphere. The primary objective of this study is to characterize soluble and gaseous N and P losses from degraded sandy soils with wood chip and fertilizer amendments in order to identify optimal fertilization methods, frequencies, and quantities for soil restoration. A laboratory soil column study is currently underway to begin examining these questions results of this study will be presented at the Fall Meeting.

  6. Baseline water-quality sampling to infer nutrient and contaminant sources at Kaloko-Honokōhau National Historical Park, Island of Hawai‘i, 2009

    Science.gov (United States)

    Hunt, Charles D.

    2015-01-01

    ). Potential nutrient sources between the uplands and coastal lowlands that could contribute to enrichment include rock weathering, natural vegetation, fertilizers, septic leachate, and atmospheric deposition – including motor-vehicle exhaust.

  7. Nutrient Losses from Non-Point Sources or from Unidentified Point Sources? Application Examples of the Smartphone Based Nitrate App.

    Science.gov (United States)

    Rozemeijer, J.; Ekkelenkamp, R.; van der Zaan, B.

    2017-12-01

    In 2016 Deltares launched the free to use Nitrate App which accurately reads and interprets nitrate test strips. The app directly displays the measured concentration and gives the option to share the result. Shared results are visualised in map functionality within the app and online. Since its introduction we've been seeing an increasing number of nitrate app applications. In this presentation we show some unanticipated types of application. The Nitrate App was originally intended to enable farmers to measure nitrate concentrations on their own farms. This may encourage farmers to talk to specialists about the right nutrient best management practices (BMP's) for their farm. Several groups of farmers have recently started to apply the Nitrate App and to discuss their results with each other and with the authorities. Nitrate concentration routings in catchments have proven to be another useful application. Within a day a person can generate a catchment scale nitrate concentration map identifying nitrate loss hotspots. In several routings in agricultural catchments clear point sources were found, for example at small scale manure processing plants. These routings proved that the Nitrate App can help water managers to target conservation practices more accurately to areas with the highest nitrate concentrations and loads. Other current applications are the screening of domestic water wells in California, the collection of extra measurements (also pH and NH4) in the National Monitoring Network for the Evaluation of the Manure Policy in the Netherlands, and several educational initiatives in cooperation with schools and universities.

  8. Exportação de nutrientes pelos frutos de melancia em função de épocas de cultivo, fontes e doses de potássio Nutrients recruitment of watermelon fruits in relation to seasons, potassium sources and doses

    Directory of Open Access Journals (Sweden)

    Leilson C. Grangeiro

    2004-12-01

    Full Text Available Foram conduzidos dois experimentos em propriedades rurais, localizadas próxima a cidade de Borborema (SP, de outubro a dezembro/2001 e de fevereiro a abril/2002, com o objetivo de determinar as quantidades exportadas de nutrientes pelos frutos de melancia, em função de fontes e doses de potássio, em duas épocas de cultivo. O delineamento experimental utilizado foi o de blocos casualizados completos, em esquema fatorial 3x4, com três repetições, sendo avaliados as fontes: cloreto, nitrato e sulfato de potássio e as doses: 50; 100; 200 e 300 kg ha-1 de K2O. Com exceção do Mg, as maiores exportações de nutrientes pelos frutos foram obtidas no cultivo de outubro a dezembro. A massa seca e as exportações de N, P, K, e Ca aumentaram de forma quadrática com as doses de potássio. A aplicação KCl aumentou respectivamente, de forma quadrática e linear, as exportações de S e Cl pelos frutos de melancia.Two field experiments were conducted in Borborema, São Paulo State, Brazil, from October to December 2001 and February to April 2002, to evaluate the nutrients recruitment of watermelon fruits, Tide hybrid, as a result of potassium sources and doses. The experimental design was a randomized complete block, with three replications, in 3x4 factorial scheme, the sources being evaluated: potassium chloride, nitrate and sulphate and doses of 50; 100; 200 and 300 kg ha-1 K2O. Greater recruitment of N, P, K, Ca, S and Cl by watermelon fruits was obtained in the first trial, while the recruitment of Mg was observed in the second trial. The dry mass and recruitment of N, P, K, and Ca increased with potassium doses. S and Cl of the watermelon fruits increased with the increase of KCl doses in a quadratic and linear form, respectively.

  9. The Estuaries Contribution for Supplying Nutrients (N and P) in Jepara Using Numerical Modelling Approach

    Science.gov (United States)

    Maslukah, Lilik; Yulina Wulandari, Sri; Budi Prasetyawan, Indra

    2018-02-01

    Coastal water is dynamic area since it is influenced by both ocean and land. It has high primary productivity that determined fishing ground area. Increased supply of nutrients in coastal water is significantly influenced by seasons and the presence of the river estuaries carrying water masses from the mainland. This study focused on the rivers (Serang, Wiso, Grenjengan Mlonggo and Pasokan rivers) contributed nutrients supply spatially and temporally to Jepara water using numerical modeling. The results showed nutrients content of N (Nitrate) and P (Phosphate) from those rivers were 39.19 tons N/month and 2.26 tons P/month in June, 19.94 tons N/month and 1.96 tons P/month in August. From simulation modeling nutrient of N and P showed that the distribution pattern of N and P was larger during the neap tide than the spring tide. Furthermore, compared with the other rivers, Serang river was the highest nutrient supplier to Jepara water.

  10. Study on shrimp waste water and vermicompost as a nutrient source for bell peppers

    Science.gov (United States)

    The aquaculture industry generates significant nutrient-rich wastewater that is released into streams and rivers causing environmental concern. The objective of this controlled environment study was to evaluate the effect of waste shrimp water (SW), vermicompost (VC), at rates of 10%, 20%, 40%, and ...

  11. Feeding Infants and Toddlers Study: do vitamin and mineral supplements contribute to nutrient adequacy or excess among US infants and toddlers?

    Science.gov (United States)

    Briefel, Ronette; Hanson, Charlotte; Fox, Mary Kay; Novak, Timothy; Ziegler, Paula

    2006-01-01

    users and nonusers in mean daily intakes of nutrients or nutrient density from foods alone, and few differences in food consumption. Overall, the prevalence of inadequate intakes was low (vitamin E intakes less than the Estimated Average Requirement. Excessive intakes (ie, intakes above the Tolerable Upper Intake Level) were noted for both supplement users and nonusers for vitamin A (97% and 15% of toddlers) and zinc (60% and 59% of older infants and 68% and 38% of toddlers) as well as for folate among supplement users (18% of toddlers). Generally, healthy infants and toddlers can achieve recommended levels of intake from food alone. Dietetics professionals should encourage caregivers to use foods rather than supplements as the primary source of nutrients in children's diets. Vitamin and mineral supplements can help infants and toddlers with special nutrient needs or marginal intakes achieve adequate intakes, but care must be taken to ensure that supplements do not lead to excessive intakes. This is especially important for nutrients that are widely used as food fortificants, including vitamin A, zinc, and folate.

  12. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.

    Directory of Open Access Journals (Sweden)

    Kelly Ortega-Cisneros

    Full Text Available This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N and the tanaid Apseudes digitalis (%N, C:N. These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that

  13. Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.

    Science.gov (United States)

    Ortega-Cisneros, Kelly; Scharler, Ursula M

    2015-01-01

    This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine

  14. Transport of biologically important nutrients by wind in an eroding cold desert

    Science.gov (United States)

    Sankey, Joel B.; Germino, Matthew J.; Benner, Shawn G.; Glenn, Nancy F.; Hoover, Amber N.

    2012-01-01

    Wind erosion following fire is an important landscape process that can result in the redistribution of ecologically important soil resources. In this study we evaluated the potential for a fire patch in a desert shrubland to serve as a source of biologically important nutrients to the adjacent, downwind, unburned ecosystem. We analyzed nutrient concentrations (P, K, Ca, Mg, Cu, Fe, Mn, Al) in wind-transported sediments, and soils from burned and adjacent unburned surfaces, collected during the first to second growing seasons after a wildfire that burned in 2007 in Idaho, USA in sagebrush steppe; a type of cold desert shrubland. We also evaluated the timing of potential wind erosion events and weather conditions that might have contributed to nutrient availability in downwind shrubland. Findings indicated that post-fire wind erosion resulted in an important, but transient, addition of nutrients on the downwind shrubland. Aeolian sediments from the burned area were enriched relative to both the up- and down-wind soil and indicated the potential for a fertilization effect through the deposition of the nutrient-enriched sediment during the first, but not second, summer after wildfire. Weather conditions that could have produced nutrient transport events might have provided increased soil moisture necessary to make nutrients accessible for plants in the desert environment. Wind transport of nutrients following fire is likely important in the sagebrush steppe as it could contribute to pulses of resource availability that might, for example, affect plant species differently depending on their phenology, and nutrient- and water-use requirements.

  15. Street foods contribute to nutrient intakes among children from rural ...

    African Journals Online (AJOL)

    The contribution of Street Foods (SF) to the energy and nutrient intakes of young children in rural African communities has been understudied. Under the Enhancing Child Nutrition through Animal Source Food Management (ENAM) project, a microcredit and nutrition education intervention with caregivers of children 2-to ...

  16. Modelling Macroalgae Productivity In An Estuary. A Biorremediation To Nutrient Discharges In The Ecosystems.

    Science.gov (United States)

    Alvera-Azcárate, A.; Ferreira, J. G.; Nunes, J. P.

    Enhanced nutrient load to estuaries and coastal waters due to anthropogenic activities is damaging aquatic ecosystems, resulting in water pollution and eutrophication prob- lems. It is important to quantify the production of photosynthetic organisms, as they play an important role in controlling nitrogen removal and nitrogen fluxes between the sediments and the water column. In turbid estuaries, such as those on the NE Atlantic coast of Europe, benthic primary producers such as macroalgae may play an important part in carbon fixation and nutrient removal, since pelagic production is often strongly light-limited. Estuarine seaweeds are primarily located in intertidal areas, which are characterised by shallow waters and strong tidal currents. Due to high concentrations of suspended particulate matter in the water column, light is rapidly attenuated, limiting macroal- gae production during part of the tidal cycle. An accurate representation of sediment dynamics is essential for the determination of the light energy available for the algae, which is a key factor in reliable primary production estimates. In tidal flats, the sedi- ment dynamics is made more complex by the formation of tidal pools during low tide, where water quickly becomes clear, allowing more light to penetrate through the water column. In the present work a model is developed to calculate macroalgae production in the intertidal areas of estuaries, considering the factors mentioned above. The model is tested for the Tagus estuary (Portugal), and a Gross Primary Production of 3300 g m-2 y-1 was obtained. That results in a total nitrogen removal of 440 gN m-2 y-1. The results show that the macroalgae community plays an impor- tant role in the nitrogen cycle in estuaries and nutrient export to the open sea, acting as a biorremediation for the increased nutrient loading problem.

  17. Analysis of the primary source term for meltdown accidents using MELCOR 1.8.2

    International Nuclear Information System (INIS)

    Schmuck, P.

    1995-01-01

    The MELCOR code describing accident phenomena in the core and primary systems was used for source term calculations and - in the context of the MELCOR Cooperative Assessment Programme - for studying two-phase flows through components such as valves and chokes. Results of the latter studies in comparison to experiments gave hints for an improved calculation of momentum transfer between the phases. (orig.)

  18. Physics and national socialism an anthology of primary sources

    CERN Document Server

    1996-01-01

    This anthology of primary sources is a collection of 121 documents in English translation portraying the role of physics, both perceived and actual, in the Nazi state. These texts were written predominantly by influential German scientists, particularly physicists, both inside and outside Germany in the period from 1933 to 1945. The semipopular articles, private correspondence, and official memoranda selected for the volume reflect the contemporary developments in science as well as the change in political climate and working conditions after the National Socialists' rise to power. The extensive annotation is clearly distinguished from the original text, and the appendix provides an aid to the reader with biographical information on the more important figures and brief outlines of frequently mentioned institutions, journals and companies. The introduction surveys the latest results in the secondary literature.   ------    (…) the envisaged audience includes not only scholars and students of science, hist...

  19. Bayesian Modeling of the Assimilative Capacity Component of Stream Nutrient Export

    Science.gov (United States)

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a TMDL load capacity is developed...

  20. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers(OTCs) of ambient [CO2](≈ 390 μmol L-1) and elevated [CO2] environment(25% above ambient) during wet and dry seasons in 2011–2013at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer(CF), integration of chemical and organic sources, and application of increased(25% higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  1. Effect of elevated [CO2] and nutrient management on wet and dry season rice production in subtropical India

    Institute of Scientific and Technical Information of China (English)

    Sushree Sagarika Satapathy; Dillip Kumar Swain; Surendranath Pasupalak; Pratap Bhanu Singh Bhadoria

    2015-01-01

    The present experiment was conducted to evaluate the effect of elevated [CO2] with varying nutrient management on rice–rice production system. The experiment was conducted in the open field and inside open-top chambers (OTCs) of ambient [CO2] (≈390μmol L−1) and elevated [CO2] environment (25%above ambient) during wet and dry seasons in 2011–2013 at Kharagpur, India. The nutrient management included recommended doses of N, P, and K as chemical fertilizer (CF), integration of chemical and organic sources, and application of increased (25%higher) doses of CF. The higher [CO2] level in the OTC increased aboveground biomass but marginally decreased filled grains per panicle and grain yield of rice, compared to the ambient environment. However, crop root biomass was increased significantly under elevated [CO2]. With respect to nutrient management, increasing the dose of CF increased grain yield significantly in both seasons. At the recommended dose of nutrients, integrated nutrient management was comparable to CF in the wet season, but significantly inferior in the dry season, in its effect on growth and yield of rice. The [CO2] elevation in OTC led to a marginal increase in organic C and available P content of soil, but a decrease in available N content. It was concluded that increased doses of nutrients via integration of chemical and organic sources in the wet season and chemical sources alone in the dry season will minimize the adverse effect of future climate on rice production in subtropical India.

  2. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris

    Science.gov (United States)

    Mayhead, Elyssia; Llewellyn, Carole A.; Fuentes-Grünewald, Claudio

    2018-01-01

    The nutrient removal efficiency of Chlorella vulgaris cultivated in domestic wastewater was investigated, along with the potential to use membrane filtration as a pre-treatment tool during the wastewater treatment process. Chlorella vulgaris was batch cultivated for 12 days in a bubble column system with two different wastewater treatments. Maximum uptake of 94.18% ammonium (NH4-N) and 97.69% ortho-phosphate (PO4-P) occurred in 0.2 μm membrane filtered primary wastewater. Membrane filtration enhanced the nutrient uptake performance of C. vulgaris by removing bacteria, protozoa, colloidal particles and suspended solids, thereby improving light availability for photosynthesis. The results of this study suggest that growing C. vulgaris in nutrient rich membrane filtered wastewater provides an option for domestic wastewater treatment to improve the quality of the final effluent. PMID:29351200

  3. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Angelini, Thomas E; Brenner, Michael P; Weitz, David A

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  4. Tropical Fruits and Nectars Typically Consumed in Latino Communities Are Excellent Sources of Vitamins A, C, and Other Nutrients

    Science.gov (United States)

    Latinos are the largest minority group in the U.S. The Nutrient Data Laboratory (NDL) is sampling and analyzing foods commonly consumed by Latin Americans in order to improve the quality and quantity of data on ethnic foods in the USDA National Nutrient Database for Standard Reference. Guanabana, gu...

  5. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.

    Science.gov (United States)

    Atkinson, Carla L; Vaughn, Caryn C; Forshay, Kenneth J; Cooper, Joshua T

    2013-06-01

    Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the

  7. Uses of nutrient profiling to address public health needs: from regulation to reformulation.

    Science.gov (United States)

    Drewnowski, Adam

    2017-08-01

    Nutrient profiling (NP) models rate the nutritional quality of individual foods, based on their nutrient composition. Their goal is to identify nutrient-rich foods, generally defined as those that contain more nutrients than calories and are low in fat, sugar and salt. NP models have provided the scientific basis for evaluating nutrition and health claims and regulating marketing and advertising to children. The food industry has used NP methods to reformulate product portfolios. To help define what we mean by healthy foods, NP models need to be based on published nutrition standards, mandated serving sizes and open-source nutrient composition databases. Specifically, the development and testing of NP models for public health should follow the seven decision steps outlined by the European Food Safety Authority. Consistent with this scheme, the nutrient-rich food (NRF) family of indices was based on a variable number of qualifying nutrients (from six to fifteen) and on three disqualifying nutrients (saturated fat, added sugar, sodium). The selection of nutrients and daily reference amounts followed nutrient standards for the USA. The base of calculation was 418·4 kJ (100 kcal), in preference to 100 g, or serving sizes. The NRF algorithms, based on unweighted sums of percent daily values, subtracted negative (LIM) from positive (NRn) subscores (NRn - LIM). NRF model performance was tested with respect to energy density and independent measures of a healthy diet. Whereas past uses of NP modelling have been regulatory or educational, voluntary product reformulation by the food industry may have most impact on public health.

  8. Experimental evidence for enhanced top-down control of freshwater macrophytes with nutrient enrichment.

    Science.gov (United States)

    Bakker, Elisabeth S; Nolet, Bart A

    2014-11-01

    The abundance of primary producers is controlled by bottom-up and top-down forces. Despite the fact that there is consensus that the abundance of freshwater macrophytes is strongly influenced by the availability of resources for plant growth, the importance of top-down control by vertebrate consumers is debated, because field studies yield contrasting results. We hypothesized that these bottom-up and top-down forces may interact, and that consumer impact on macrophyte abundance depends on the nutrient status of the water body. To test this hypothesis, experimental ponds with submerged vegetation containing a mixture of species were subjected to a fertilization treatment and we introduced consumers (mallard ducks, for 8 days) on half of the ponds in a full factorial design. Over the whole 66-day experiment fertilized ponds became dominated by Elodea nuttallii and ponds without extra nutrients by Chara globularis. Nutrient addition significantly increased plant N and P concentrations. There was a strong interactive effect of duck presence and pond nutrient status: macrophyte biomass was reduced (by 50%) after the presence of the ducks on fertilized ponds, but not in the unfertilized ponds. We conclude that nutrient availability interacts with top-down control of submerged vegetation. This may be explained by higher plant palatability at higher nutrient levels, either by a higher plant nutrient concentration or by a shift towards dominance of more palatable plant species, resulting in higher consumer pressure. Including nutrient availability may offer a framework to explain part of the contrasting field observations of consumer control of macrophyte abundance.

  9. Evaluation of nutrient retention in vegetated filter strips using the SWAT model.

    Science.gov (United States)

    Elçi, Alper

    2017-11-01

    Nutrient fluxes in stream basins need to be controlled to achieve good water quality status. In stream basins with intensive agricultural activities, nutrients predominantly come from diffuse sources. Therefore, best management practices (BMPs) are increasingly implemented to reduce nutrient input to streams. The objective of this study is to evaluate the impact of vegetated filter strip (VFS) application as an agricultural BMP. For this purpose, SWAT is chosen, a semi-distributed water quality assessment model that works at the watershed scale, and applied on the Nif stream basin, a small-sized basin in Western Turkey. The model is calibrated with an automated procedure against measured monthly discharge data. Nutrient loads for each sub-basin are estimated considering basin-wide data on chemical fertilizer and manure usage, population data for septic tank effluents and information about the land cover. Nutrient loads for 19 sub-basins are predicted on an annual basis. Average total nitrogen and total phosphorus loads are estimated as 47.85 t/yr and 13.36 t/yr for the entire basin. Results show that VFS application in one sub-basin offers limited retention of nutrients and that a selection of 20-m filter width is most effective from a cost-benefit perspective.

  10. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks

    Science.gov (United States)

    Liu, Kun-hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen

    2018-01-01

    Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report novel Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators orchestrating primary nitrate responses. A chemical switch with the engineered CPK10(M141G) kinase enables conditional analyses of cpk10,30,32 to define comprehensive nitrate-associated regulatory and developmental programs, circumventing embryo lethality. Nitrate-CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors (TFs) to specify reprogramming of gene sets for downstream TFs, transporters, N-assimilation, C/N-metabolism, redox, signalling, hormones, and proliferation. Conditional cpk10,30,32 and nlp7 similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture. PMID:28489820

  11. Deoiledjatropha seed cake is a useful nutrient for pullulan production

    Directory of Open Access Journals (Sweden)

    Choudhury Anirban

    2012-03-01

    Full Text Available Abstract Background Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem. Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry. Results In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter. Conclusion This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on

  12. Local source impacts on primary and secondary aerosols in the Midwestern United States

    Science.gov (United States)

    Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.

    2016-04-01

    Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and

  13. Limitation of multi-elemental fingerprinting of wheat grains: Effect of cultivar, sowing date, and nutrient management

    DEFF Research Database (Denmark)

    Suarez-Tapia, Alfonso; Kucheryavskiy, Sergey V.; Christensen, Bent Tolstrup

    2017-01-01

    Multi-element fingerprinting demonstrates some potential for tracing the origin of agricultural products but not for discriminating among crop cultivars and nutrient management (source, rate). With principal component analysis (PCA) and univariate statistics, we examined 19 elements in grains from...... two winter wheat cultivars (Hereford, Mariboss) grown with different rates of animal manure (AM) or mineral fertilisers (NPK) in a long-term field experiment and two sowing dates (early, timely). Nitrogen, Cd and Mn related to NPK, and Mo and Na to AM. Barium, Fe, and P reflected nutrient rate......; these elements increased with nutrient rate regardless of source. Unmanured grains were enriched in Cu. Mariboss was characterized by higher concentrations of Sr, Ba and Sc compared to Hereford with Sr in grain as the main separator. Univariate statistics showed higher concentrations of N, P, Mg, Ba, Cu, Mo...

  14. Effect of Nutrient Formulations on Permeation of Proteins and Lipids ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of nutrient formulations on the permeation of proteins and lipids through porcine intestine in vitro. Method: In vitro permeation studies of proteins and lipids of two peptide-based formulations, composed of various compounds and sources of hydrolyzed protein was carried out, and compared ...

  15. Comportamento ingestivo de cordeiros e digestibilidade dos nutrientes de dietas contendo alta proporção de concentrado e diferentes fontes de fibra em detergente neutro Lamb feeding behavior and nutrient digestibility of high concentrate diets with different neutral detergent fiber sources

    Directory of Open Access Journals (Sweden)

    Clayton Quirino Mendes

    2010-03-01

    Full Text Available Dois experimentos foram realizados para avaliar os efeitos da substituição da fibra em detergente neutro (FDN do bagaço de cana-de-açúcar in natura pela FDN da casca de soja em dietas com alta proporção de concentrado sobre o comportamento ingestivo de cordeiros e a digestibilidade dos nutrientes. No primeiro experimento, 60 cordeiros com 16,4 ± 0,3 kg de peso corporal e idade inicial de 67 ± 2 dias foram distribuídos em delineamento de blocos completos casualizados, em esquema fatorial 2 × 2 + 1, composto de duas fontes de FDN (bagaço de cana in natura ou casca de soja, dois teores de FDN (14 ou 18% e uma dieta controle contendo 100% de concentrado. No segundo experimento, cinco cordeiros foram distribuídos em quadrado latino 5 × 5 e submetidos às mesmas dietas do experimento 1. As dietas contendo as fontes de fibra promoveram maior consumo de matéria seca, matéria orgânica e FDN e maior tempo de ingestão, ruminação e mastigação (minutos/dia em comparação à dieta contendo 100% de concentrado. As dietas contendo o bagaço de canade-açúcar in natura proporcionaram maior atividade de ruminação que aquelas com casca de soja. Entretanto, a utilização da casca de soja proporcionou menor atividade de mastigação e maior digestibilidade dos nutrientes em relação ao bagaço de cana-de-açúcar in natura. A casca de soja pode ser utilizada como única fonte adicional de FDN em dietas contendo alto teor de concentrado para cordeiros.Two experiments were performed to determine the effects of replacing the neutral detergent fiber from sugarcane bagasse with soybean hulls neutral detergent fiber in high concentrate diets on lamb feeding behavior and apparent nutrient digestibility. In the first experiment, 60 ram lambs with 16.4 ± 0.3 kg body weight and 67 ± 2 days old were allotted to a complete randomized block design as a 2 × 2 + 1 factorial arrangement of treatments, consisting of two neutral detergent fiber sources

  16. Effect of integrated nutrient management on nut production of coconut and soil environment: a review

    International Nuclear Information System (INIS)

    Baloch, P.A.; Rajpar, I.

    2014-01-01

    With the adoption of new technology of intensive cropping with high yielding varieties, there is a considerable demand on soil for supply of nutrients. However, the native fertility of our soils is poor and cannot sustain high yields. Sustainable agricultural production incorporates the idea that natural resources should be used to generate increased output and incomes, without depleting the natural resources. The solution is application of integrated nutrient management (INM). It is the system, which envisages the use of organic wastes, biofertilisers and inorganic fertilizers in judicious combinations to sustain soil productivity. The conjunctive use of organic and inorganic sources improves soil health and helps in maximization production as it involves utilization of local sources and, hence turned to be rational, realistic and economically viable way of supply of nutrients. Coconut is a versatile tree and is the most popular home garden crop in the world. It is very beneficial for health because of its high nutrient management affects on its growth and yield characteristics to a great extent. This paper, therefore, presents a review on various aspects of INM used to improve soil environment, coconut growth and yield characters. (author)

  17. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    Energy Technology Data Exchange (ETDEWEB)

    Holderman, Charlie [Kootenai Tribe of Idaho; Bonners Ferry, ID; Anders, Paul [Cramer Fish Sciences; Moscow, ID; Shafii, Bahman [Statistical Consulting Services; Clarkston, WA

    2009-07-01

    The Kootenai River ecosystem (spelled Kootenay in Canada) has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam on the river near Libby Montana, completed in 1972. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel downstream in Idaho and British Columbia (B.C.) severely reducing natural biological productivity and habitat diversity crucial to large river-floodplain ecosystem function. Libby Dam greatly reduces sediment and nutrient transport to downstream river reaches, and dam operations cause large changes in the timing, duration, and magnitude of river flows. These and other changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to large scale loss of nutrients, experimental nutrient addition was initiated in the North Arm of Kootenay Lake in 1992, in the South Arm of Kootenay Lake in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes baseline chlorophyll concentration and accrual (primary productivity) rates and diatom and algal community composition and ecological metrics in the Kootenai River for four years, one (2004) before, and three (2005 through 2007) after nutrient addition. The study area encompassed a 325 km river reach from the upper Kootenay River at Wardner, B.C. (river kilometer (rkm) 445) downstream through Montana and Idaho to Kootenay Lake in B.C. (rkm 120). Sampling reaches included an unimpounded reach furthest upstream and four reaches downstream from Libby Dam affected by impoundment: two in the canyon reach (one with and one without nutrient addition), a braided reach

  18. Basaltic substrate composition affects microbial community development and acts as a source of nutrients in the deep biosphere

    Science.gov (United States)

    Bailey, B.; Sudek, L.; Templeton, A.; Staudigel, H.; Tebo, B.; Moyer, C.; Davis, R.

    2006-12-01

    Studies of the oceanic crust over the past decade have revealed that in spite of the oligotrophic nature of this environment, a diverse biosphere is present in the upper 1 km of basaltic crust. The key energy source in this setting may be the high content of transistion metals (Fe, Mn) found in the basaltic glass, but in order to discover the role of Fe and Mn in the deep biosphere, we must first determine which microbes are present and how they attain the necessary metabolites for proliferation. Our work contributes to both questions through the use of molecular microbiology techniques and the exposure of specifically designed substrates on the ocean floor. Loihi Seamount off the southeast coast of the Big Island of Hawai'i provides a unique laboratory for the study of distribution and population of microbial communities associated with iron rich environments on the ocean floor. Iron oxide flocculent material (floc) dominates the direct and diffuse hydrothermal venting areas on Loihi which makes it a prime target for understanding the role of iron in biological systems in the deep biosphere. We collected iron oxide floc and basaltic glass from pillow basalts around several hydrothermal vents on the crater rim, within the pit crater Pele's Pit, and from deep off of the southern rift zone of Loihi using the HURL PISCES IV/V submersibles. We also deployed basaltic glass sand amended with various nutrients (phosphate, oxidized and reduced iron, manganese) and recovered them in subsequent years to determine how substrate composition affects community structure. We extracted DNA from both rock and iron flocs and used t-RFLP to obtain a genetic fingerprint of the microbial communities associated with each substrate. From olivine and tholeiitic basalt enrichments, it appears that substrate composition strongly influences microbial colonization and subsequent community development even when deployed in the same conditions. Culturing efforts have yielded several iron

  19. Simulation of dissolved nutrient export from the Dongjiang river basin with a grid-based NEWS model

    Science.gov (United States)

    Rong, Qiangqiang; Su, Meirong; Yang, Zhifeng; Cai, Yanpeng; Yue, Wencong; Dang, Zhi

    2018-06-01

    In this research, a grid-based NEWS model was proposed through coupling the geographic information system (GIS) with the Global NEWS model framework. The model was then applied to the Dongjiang River basin to simulate the dissolved nutrient export from this area. The model results showed that the total amounts of the dissolved nitrogen and phosphorus exported from the Dongjiang River basin were approximately 27154.87 and 1389.33 t, respectively. 90 % of the two loads were inorganic forms (i.e. dissolved inorganic nitrogen and phosphorus, DIN and DIP). Also, the nutrient export loads did not evenly distributed in the basin. The main stream watershed of the Dongjiang River basin has the largest DIN and DIP export loads, while the largest dissolved organic nitrogen and phosphorus (DON and DOP) loads were observed in the middle and upper stream watersheds of the basin, respectively. As for the nutrient exported from each subbasin, different sources had different influences on the output of each nutrient form. For the DIN load in each subbasin, fertilization application, atmospheric deposition and biological fixation were the three main contributors, while eluviation was the most important source for DON. In terms of DIP load, fertilizer application and breeding wastewater were the main contributors, while eluviation and fertilizer application were the two main sources for DOP.

  20. Agricultural production - Phase 2. Indonesia. Sources and sinks of nitrogen-E phosphorus-based nutrients in cropping systems

    International Nuclear Information System (INIS)

    Wetselaar, R.I.

    1992-01-01

    This document is the report of an expert mission to assist in the initiation of research on sustainable agriculture in rice-based cropping systems as related to the flow of plant nutrients, and on the use of legumes in upland cropping systems. Experimental suggestions include an investigation of the acid tolerance of different soybean strains under upland conditions, an analysis of ways to replace fertilizer nitrogen for rice crops by a green manure such as azolla, and a study of the increase in nutrient availability due to th presence of fish in a paddy field

  1. Cardiovascular disease: primary prevention, disease modulation and regenerative therapy.

    LENUS (Irish Health Repository)

    Sultan, Sherif

    2012-10-01

    Cardiovascular primary prevention and regeneration programs are the contemporary frontiers in functional metabolic vascular medicine. This novel science perspective harnesses our inherent ability to modulate the interface between specialized gene receptors and bioavailable nutrients in what is labeled as the nutrient-gene interaction. By mimicking a natural process through the conveyance of highly absorbable receptor specific nutrients, it is feasible to accelerate cell repair and optimize mitochondrial function, thereby achieving cardiovascular cure. We performed a comprehensive review of PubMed, EMBASE and Cochrane Review databases for articles relating to cardiovascular regenerative medicine, nutrigenomics and primary prevention, with the aim of harmonizing their roles within contemporary clinical practice. We searched in particular for large-scale randomized controlled trials on contemporary cardiovascular pharmacotherapies and their specific adverse effects on metabolic pathways which feature prominently in cardiovascular regenerative programs, such as nitric oxide and glucose metabolism. Scientific research on \\'cardiovascular-free\\' centenarians delineated that low sugar and low insulin are consistent findings. As we age, our insulin level increases. Those who can decelerate the rapidity of this process are prompting their cardiovascular rejuvenation. It is beginning to dawn on some clinicians that contemporary treatments are not only failing to impact on our most prevalent diseases, but they may be causing more damage than good. Primary prevention programs are crucial elements for a better outcome. Cardiovascular primary prevention and regeneration programs have enhanced clinical efficacy and quality of life and complement our conventional endovascular practice.

  2. A Geographic Information System approach to modeling nutrient and sediment transport

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Hunsaker, C.T.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Timmins, S.P. [Analysas Corp., Oak Ridge, TN (United States)

    1993-02-01

    The objective of this study was to develop a water quality model to quantify nonpoint-source (NPS) pollution that uses a geographic information system (GIS) to link statistical modeling of nutrient and sediment delivery with the spatial arrangement of the parameters that drive the model. The model predicts annual nutrient and sediment loading and was developed, calibrated, and tested on 12 watersheds within the Lake Ray Roberts drainage basin in north Texas. Three physiographic regions are represented by these watersheds, and model success, as measured by the accuracy of load estimates, was compared within and across these regions.

  3. Choice of primary health care source in an urbanized low-income community in Singapore: a mixed-methods study.

    Science.gov (United States)

    Wee, Liang En; Lim, Li Yan; Shen, Tong; Lee, Elis Yuexian; Chia, Yet Hong; Tan, Andrew Yen Siong; Koh, Gerald Choon-Huat

    2014-02-01

    Cost and misperceptions may discourage lower income Singaporeans from utilizing primary care. We investigated sources of primary care in a low-income Singaporean community in a mixed-methods study. Residents of a low-income public rental flat neighbourhood were asked for sociodemographic details and preferred source of primary care relative to their higher income neighbours. In the qualitative component, interviewers elicited, from patients and health care providers, barriers/enablers to seeking care from Western-trained doctors. Interviewees were selected via purposive sampling. Transcripts were analyzed thematically, and iterative analysis was carried out using established qualitative method. Participation was 89.8% (359/400). Only 11.1% (40/359) preferred to approach Western-trained doctors, 29.5% (106/359) preferred alternative medicine, 6.7% (24/359) approached family/friends and 52.6% (189/359) preferred self-reliance. Comparing against higher income neighbours, rental flat residents were more likely to turn to alternative medicine and family members but less likely to turn to Western-trained doctors (P Self-reliance was perceived as acceptable for 'small' illnesses but not for 'big' ones, communal spirit was cited as a reason for consulting family/friends and social distance from primary care practitioners was highlighted as a reason for not consulting Western-trained doctors. Western-trained physicians are not the first choice of lower income Singaporeans for seeking primary care. Knowledge, primary care characteristics and costs were identified as potential barriers/enablers.

  4. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  5. Nutrient cycling for biomass: Interactive proteomic/transcriptomic networks for global carbon management processes within poplar-mycorrhizal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cseke, Leland [Univ. of Alabama, Huntsville, AL (United States)

    2016-08-30

    This project addresses the need to develop system-scale models at the symbiotic interface between ectomycorrhizal fungi (Laccaria bicolor) and tree species (Populus tremuloides) in response to environmental nutrient availability / biochemistry. Using our now well-established laboratory Laccaria x poplar system, we address the hypothesis that essential regulatory and metabolic mechanisms can be inferred from genomic, transcriptomic and proteomic-level changes that occur in response to environmental nutrient availability. The project addresses this hypothesis by applying state-of-the-art protein-level analytic approaches to fill the gap in our understanding of how mycorrhizal regulatory and metabolic processes at the transcript-level translate to nutrient uptake, carbon management and ultimate net primary productivity of plants. In most cases, these techniques were not previously optimized for poplar trees or Laccaria. Thus, one of the major contributions of this project has been to provide avenues for new research in these species by overcoming the pitfalls that had previously prevented the use of techniques such as ChIP-Seq and SWATH-proteomics. Since it is the proteins that sense and interact with the environment, participate in signal cascades, activate and regulate gene expression, perform the activities of metabolism and ultimately sequester carbon and generate biomass, an understanding of protein activities during symbiosis-linked nutrient uptake is critical to any systems-level approach that links metabolic processes to the environment. This project uses a team of experts at The University of Alabama in Huntsville (UAH), The University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL) to address the above hypothesis using a multiple "omics" approach that combines gene and protein expression as well as protein modifications, and biochemical analyses (performed at Brookhaven National Laboratory (BNL)) in poplar trees under mycorrhizal and

  6. Radiation Protection Aspects of Primary Water Chemistry and Source-term Management Report

    International Nuclear Information System (INIS)

    2014-04-01

    Since the beginning of the 1990's, occupational exposures in nuclear power plant has strongly decreased, outlining efforts achieved by worldwide nuclear operators in order to reach and maintain occupational exposure as low as reasonably achievable (ALARA) in accordance with international recommendations and national regulations. These efforts have focused on both technical and organisational aspects. According to many radiation protection experts, one of the key features to reach this goal is the management of the primary system water chemistry and the ability to avoid dissemination of radioactivity within the system. It outlines the importance for radiation protection staff to work closely with chemistry staff (as well as operation staff) and thus to have sufficient knowledge to understand the links between chemistry and the generation of radiation field. This report was prepared with the primary objective to provide such knowledge to 'non-chemist'. The publication primarily focuses on three topics dealing with water chemistry, source term management and remediation techniques. One key objective of the report is to provide current knowledge regarding these topics and to address clearly related radiation protection issues. In that mind, the report prepared by the EGWC was also reviewed by radiation protection experts. In order to address various designs, PWRs, VVERs, PHWRs and BWRs are addressed within the document. Additionally, available information addressing current operating units and lessons learnt is outlined with choices that have been made for the design of new plants. Chapter 3 of this report addresses current practices regarding primary chemistry management for different designs, 'how to limit activity in the primary circuit and to minimise contamination'. General information is provided regarding activation, corrosion and transport of activated materials in the primary circuit (background on radiation field generation). Primary chemistry aspects that

  7. Nutrient supply to organic agriculture as governed by EU regulations and standards in six European countries

    DEFF Research Database (Denmark)

    Løes, Anne Kristin; Bünemann, E.K.; Cooper, J.

    2017-01-01

    -farm P sources include conventional animal manure, composted or anaerobically digested organic residues, rock phosphate, and some animal residues such as meat and bone meal. The recent proposed revision of EU regulations for organic production (2014) puts less emphasis on closing nutrient cycles...... as means are taken to ensure the quality and safety of these inputs. Awareness of the need to close nutrient cycles may contribute to adapting regulations and private standards to support recycling of nutrients from society to organic agriculture. A better definition of the term “natural substance...

  8. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Directory of Open Access Journals (Sweden)

    Thomas Larsen

    Full Text Available Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13C patterns among amino acids (δ(13CAA could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13CAA patterns in contrast to bulk δ(13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  9. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    Science.gov (United States)

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  10. Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J. M.; Oliveira, R. S.; Franco, A. R.; Ritz, K.; Nunan, N.; Castro, P. M. L.

    2010-07-01

    The mycorrhizal colonisation of plants grown in unmanaged soils from two restoration sites with a fire history in Northern Portugal was evaluated from the perspective of supporting restoration programmes. To promote restoration of original tree stands, Quercus ilex L. and Pinus pinaster Ait. were used as target species on two sites, denoted Site 1 and 2 respectively. The aim of the study was to assess whether mycorrhizal propagules that survived fire episodes could serve as in situ inoculum sources, and to analyse the spatial distribution of soil nutrients and mycorrhizal parameters. In a laboratory bioassay, P. pinaster and Q. ilex seedlings were grown on soils from the target sites and root colonisation by ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi was determined. The ECM root colonisation levels found indicated that soil from Site 2 contained sufficient ECM propagules to serve as a primary source of inoculum for P. pinaster. The low levels of ECM and AM colonisation obtained on the roots of plants grown in soil from Site 1 indicated that the existing mycorrhizal propagules might be insufficient for effective root colonisation of Q. ilex. Different ECM morphotypes were found in plants grown in soil from the two sites. At Site 2 mycorrhizal parameters were found to be spatially structured, with significant differences in ECM colonisation and soil P concentrations between regions of either side of an existing watercourse. The spatial distribution of mycorrhizal propagules was related to edaphic parameters (total C and extractable P), and correlations between soil nutrients and mycorrhizal parameters were found. (Author) 31 refs.

  11. δ15N and nutrient stoichiometry of water, aquatic organisms and environmental implications in Taihu lake, China.

    Science.gov (United States)

    Tao, Yu; Dan, Dai; Kun, Lei; Chengda, He; Haibing, Cong; Guo, Fu; Qiujin, Xu; Fuhong, Sun; Fengchang, Wu

    2018-06-01

    Nitrogen pollution has become a worldwide problem and the source identification is important for the development of pertinent control measures. In this study, isotope end members (rain, nitrogen fertilizer, untreated/treated sewage), and samples (river water discharging to Taihu lake, lake water, aquatic organisms of different trophic levels) were taken during 2010-2015 to examine their δ 15 N values and nutrient stoichiometry. Results indicated that phytoplankton (primary producers), which directly take up and incorporate N from the lake water, had a similar δ 15 N value (14.1‰ ± 3.2) to the end member of treated sewage (14.0‰ ± 7.5), and the most frequently observed δ 15 N value in the lake water was 8-12‰, both indicating the dominant impact of the sewage discharge. Relationship analysis between N isotope value of nitrate and nitrate concentration indicated that different N cycling existed between the algae-dominated northwest lake (NW) and the macrophyte-dominated southeast lake (SE), which is a result of both impacts of river inputs and denitrification. Our nutrient stoichiometry analysis showed that the lake water had a significantly higher N:P ratio than that of algae (p economic development in the watershed further confirmed that the rapid population increase and urbanization have resulted in a great change in the N loading and source proportion. We suggest that although P control is necessary in terms of eutrophication control, N pollution control is urgent for the water quality and ecological recovery for Taihu lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. The influence of continental air masses on the aerosols and nutrients deposition over the western North Pacific

    Science.gov (United States)

    Fu, Jiangping; Wang, Bo; Chen, Ying; Ma, Qingwei

    2018-01-01

    The air masses transported from East Asia have a strong impact on the aerosol properties and deposition in the marine boundary layer of the western North Pacific (WNP) during winter and spring. We joined a cruise between 17 Mar. and 22 Apr. 2014 and investigated the changes of aerosol composition and size distribution over the remote WNP and marginal seas. Although the secondary aerosol species (SO42-, NO3- and NH4+) in remote WNP were influenced significantly by the continental transport, NH4+ concentrations were lower than 2.7 μg m-3 in most sampling days and not correlated with non-sea-salt (nss)-SO42- suggesting that the ocean could be a primary source of NH4+. Moderate Cl- depletion (23%) was observed in remote WNP, and the inverse relationship between Cl- depletion percentages and nss-K+ in aerosols suggested that the transport of biomass burning smoke from East Asia might be a vital extra source of Cl-. Both Asian dust and haze events were encountered during the cruise. Asian dust carried large amounts of crustal elements such as Al and Ti to the WNP, and the dusty Fe deposition may double its background concentration in seawater. Differently, a dramatic increase of dry deposition flux of dissolved particulate inorganic nitrogen was observed during the haze event. Our study reveals that the transport of different continental air masses may have distinct biogeochemical impacts on the WNP by increasing the fluxes of different nutrient elements and potentially changing the nutrient stoichiometry.

  13. Food and nutrient availability in New Zealand: an analysis of supermarket sales data.

    Science.gov (United States)

    Hamilton, Sally; Mhurchu, Cliona Ni; Priest, Patricia

    2007-12-01

    To examine food and nutrient availability in New Zealand using supermarket sales data in conjunction with a brand-specific supermarket food composition database (SFD). The SFD was developed by selecting the top-selling supermarket food products and linking them to food composition data from a variety of sources, before merging with individualised sales data. Supermarket food and nutrient data were then compared with data from national nutrition and household budget/economic surveys. A supermarket in Wellington, New Zealand. Eight hundred and eighty-two customers (73% female; mean age 38 years) who shopped regularly at the participating supermarket store and for whom electronic sales data were available for the period February 2004-January 2005. Top-selling supermarket food products included full-fat milk, white bread, sugary soft drinks and butter. Key food sources of macronutrients were similar between the supermarket sales database and national nutrition surveys. For example, bread was the major source of energy and contributed 12-13% of energy in all three data sources. Proportional expenditure on fruit, vegetables, meat, poultry, fish, farm products and oils, and cereal products recorded in the Household Economic Survey and supermarket sales data were within 2% of each other. Electronic supermarket sales data can be used to evaluate a number of important aspects of food and nutrient availability. Many of our findings were broadly comparable with national nutrition and food expenditure survey data, and supermarket sales have the advantage of being an objective, convenient, up-to-date and cost-effective measure of household food purchases.

  14. Nutrient synchrony in preruminant calves

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.

    2006-01-01

    In animal nutrition, the nutrient composition of the daily feed supply is composed to match the nutrient requirements for the desired performance. The time of nutrient availability within a day is usually considered not to affect the fate of nutrients. The aim of this thesis was to evaluate effects

  15. How phosphorus limitation can control climate-active gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-06-01

    Since the 1950's, anthropogenic activities have increased nutrient river loads to European coastal areas. Subsequent implementation of nutrient reduction policies have led to considerably reduction of phosphorus (P) loads from the mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorus (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 30% due to DOP uptake under limiting DIP conditions. Consequently, simulated DMS emissions also increase proportionally while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake.

  16. The effects of nutrient enrichment on oil sands reclaimed wetlands : a field microcosm study

    International Nuclear Information System (INIS)

    Chen, H.; Farwell, A.; Dixon, G.

    2010-01-01

    Bitumen extraction processes generate large amounts of processed materials containing polycyclic aromatic hydrocarbons (PAHs), naphthenic acids (NA), and additional salts. The use of processed materials in reclaimed wetlands and lakes has an impact on aquatic faunal and floral colonization. This study investigated the effects on nutrient enrichment on reclaimed wetlands containing processed materials. Chlorophyll a and total biomass analyses were conducted in order to evaluate the influence of nutrient addition on primary production. The nutrients were added to microcosms with differing levels of fertility for 3 different water types with varying NA concentrations in 3 different reclamation substrates. Results of the study showed different levels of growth depending on both the water and substrate type. Combined planktonic and periphytic growth was highest in water with high levels of dissolved organic and inorganic carbon.

  17. Soil Aquifer Treatment (SAT) and Constructed Wetlands (CW) Applications for Nutrients and Organic Micropollutants (OMPs) Attenuation Using Primary and Secondary Wastewater Effluents

    KAUST Repository

    Hamadeh, Ahmed F.

    2014-06-01

    Constructed wetlands (CW) and soil aquifer treatment (SAT) represent natural wastewater treatment systems (NWTSs). The high costs of conventional wastewater treatment techniques encourage more studies to investigate lower cost treatment methods which make these appropriate for developing and also in developed countries. The main objective of this research was to investigate the removals of nutrients and organic micropollutants (OMPs) through SAT, CW and the CW-SAT hybrid system. CWs are an efficient technology to purify and remove different nutrients as well as OMPs from wastewater. They removed most of the dissolved organic matter (DOC), total nitrogen (TN), ammonium and phosphate. Furthermore, CWs aeration could be used as one of the alternatives to reduce CWs footprint by around 10%. The vegetation in CWs plays an essential role in the treatment especially for nitrogen and phosphate removals, it is responsible for the removal of 15%, 55%, 38%, and 22% for TN, dissolved organic nitrogen (DON), nitrate and phosphate, respectively. CWs achieved a very high removal for some OMPs; they attenuated acetaminophen, caffeine, fluoxetine and trimethoprim (>90%) under different redox conditions. Moreover, it was found that increasing temperature (up to 36 C) could enhance the removals of atenolol, caffeine, DEET and trimethoprim by 17%, 14%, 28% and 45%, respectively. On the other hand, some OMPs, were found to be removed by vegetation such as: acetaminophen, caffeine, fluoxetine, sulfamethoxazole, and trimethoprim. Moreover, atenolol, caffeine, fluoxetine and trimethoprim, showed high removal (>80%) through SAT system. It was also found that, temperature increasing and using primary instead of secondary effluent could enhance the removal of some OMPs. The CWs performance study showed that these systems are adapted to the prevailing extreme arid conditions and the average percent removals are about, 88%, 96%, 98%, 98% and 92%, for COD, BOD and TSS, ammonium and phosphate

  18. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  19. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  20. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  1. Nutrient resorption efficiency of cocoa plantson lowl and of Alluvial plain

    Directory of Open Access Journals (Sweden)

    Rudy Erwiyono

    2011-05-01

    most efficiently. As such, cocoa leaf litters still contained N, P, and K nutrients as much as 73%, 58%, and 76%, they are good sources for nutrients beside as organic matter. Key words: Nutrient retranslocation, nitrogen, phosphorus, kalium, cocoa, clone.

  2. Temperature, salinity, transmissivity, pressure, plankton, oxygen, nutrients, chlorophyll, and primary productivity data collected using CTD, bottle, and plankton net from the R/V Italica in the Ross Sea and Magellan Strait during 10th Italian Antarctic Expedition from 1994-11-13 to 1995-04-02 (NCEI Accession 0068289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, transmissivity, pressure, plankton, oxygen, nutrients, chlorophyll, and primary productivity data collected using CTD, bottle, and plankton...

  3. The Nutrient Density of Snacks

    Directory of Open Access Journals (Sweden)

    Julie Hess BA

    2017-03-01

    Full Text Available Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3, milk (52.5, and fruit (30.1 emerged as the most nutrient-dense snacks. Ice cream (−4.4, pies and cakes (−11.1, and carbonated soft drinks (−17.2 emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  4. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  5. Participatory scenario development for integrated assessment of nutrient flows in a Catalan river catchment

    Directory of Open Access Journals (Sweden)

    F. Caille

    2007-11-01

    Full Text Available Rivers in developed regions are under significant stress due to nutrient enrichment generated mainly by human activities. Excess nitrogen and phosphorus emissions are the product of complex dynamic systems influenced by various factors such as demographic, socio-economic and technological development. Using a Catalan river catchment, La Tordera (North-East of Spain, as a case study of an integrated and interdisciplinary environmental assessment of nutrient flows, we present and discuss the development of narrative socio-economic scenarios through a participatory process for the sustainable management of the anthropogenic sources of nutrients, nitrogen and phosphorus. In this context, scenarios are an appropriate tool to assist nutrient emissions modelling, and to assess impacts, possible pathways for socio-economic development and associated uncertainties. Evaluated against the 1993–2003 baseline period, scenarios target the 2030 horizon, i.e. through the implementation process of the Water Framework Directive (Directive 2000/60/EC. After a critical examination of the methodology used in the participatory development of socio-economic scenarios, we present four possible futures (or perspectives for the Catalan river catchment conceived by stakeholders invited to a workshop. Keys to the success of such a participatory process were trust, which enhanced openness, and disagreements, which fostered the group's creativity for scenario development. The translation of narrative socio-economic scenarios into meaningful nutrient emission scenarios is also discussed. By integrating findings of natural sciences and socio-economic analysis, we aim to assist decision makers and stakeholders in evaluating optimal management strategies for the anthropogenic sources of nitrogen and phosphorus.

  6. Export of nutrients in plants jambu under different fertilizationExportação de nutrientes em plantas de jambu, sob diferentes adubações

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The jambu is a broad vegetable consumption in Northern Brazil, especially in Pará, known by the jambu and other common names is native to the Amazon region has been used and cultivated for culinary and also recently in natural medicines by their chemical properties, attributed to the spilanthol compound. Knowing the amount of nutrient uptake in plants, especially at the taken, it is important to evaluate the removal of nutrients necessary for economic fertilizer recommendations. So the goal of this project was to determine the accumulation of nutrients in plants of jambu (leaf and inflorescence under different fertilizations. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. We evaluated the macronutrients of accumulation N, P, K, Ca, Mg, S and micronutrients of accumulation B, Cu, Fe and Zn in leaves and inflorescence. The plants responded more jambu nutrients of translocation phosphorus (P, magnesium (Mg, sulfhur (S, boron (B, copper (Cu and iron (Fe in the inflorescences and phosphorus (P, calcium (Ca, manganese (Mg, sulfur (S, boron (B, copper (Cu and iron (Fe in leaves to organic fertilization demonstrating the effectiveness of using this source of fertilizer nutrients indicating that this was a defining characteristic in response to the accumulation of nutrients in the leaves and inflorescences jambu. Plants jambu are more responsive to fertilizer for the mineral of translocation nitrogen (N and manganese (Mn for both the sheet and for the inflorescences of plants jambu. O jambu é uma hortaliça de largo consumo na região Norte do Brasil, conhecida por diferentes nomes populares, como agrião do Pará, erva maluca, botão de ouro, é uma espécie nativa da Amazônia, bastante utilizada na culinária regional e também em

  7. Possible Sources of Bias in Primary Care Electronic Health Record Data Use and Reuse.

    Science.gov (United States)

    Verheij, Robert A; Curcin, Vasa; Delaney, Brendan C; McGilchrist, Mark M

    2018-05-29

    Enormous amounts of data are recorded routinely in health care as part of the care process, primarily for managing individual patient care. There are significant opportunities to use these data for other purposes, many of which would contribute to establishing a learning health system. This is particularly true for data recorded in primary care settings, as in many countries, these are the first place patients turn to for most health problems. In this paper, we discuss whether data that are recorded routinely as part of the health care process in primary care are actually fit to use for other purposes such as research and quality of health care indicators, how the original purpose may affect the extent to which the data are fit for another purpose, and the mechanisms behind these effects. In doing so, we want to identify possible sources of bias that are relevant for the use and reuse of these type of data. This paper is based on the authors' experience as users of electronic health records data, as general practitioners, health informatics experts, and health services researchers. It is a product of the discussions they had during the Translational Research and Patient Safety in Europe (TRANSFoRm) project, which was funded by the European Commission and sought to develop, pilot, and evaluate a core information architecture for the learning health system in Europe, based on primary care electronic health records. We first describe the different stages in the processing of electronic health record data, as well as the different purposes for which these data are used. Given the different data processing steps and purposes, we then discuss the possible mechanisms for each individual data processing step that can generate biased outcomes. We identified 13 possible sources of bias. Four of them are related to the organization of a health care system, whereas some are of a more technical nature. There are a substantial number of possible sources of bias; very little is

  8. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview.

    Science.gov (United States)

    Pérez-Bibbins, B; Torrado-Agrasar, A; Salgado, J M; Oliveira, R Pinheiro de Souza; Domínguez, J M

    2015-06-01

    Lees are the wastes generated during the fermentation and aging processes of different industrial activities concerning alcoholic drinks such as wine, cider and beer. They must be conveniently treated to avoid uncontrolled dumping which causes environmental problems due to their high content of phenols, pesticides, heavy metals, and considerable concentrations of nitrogen, phosphate and potassium as well as high organic content. The companies involved must seek alternative environmental and economic physicochemical and biological treatments for their revalorization consisting in the recovery or transformation of the components of the lees into high value-added compounds. After describing the composition of lees and market of wine, beer and cider industries in Spain, this work aims to review the recent applications of wine, beer and cider lees reported in literature, with special attention to the use of lees as an endless sustainable source of nutrients and the production of yeast extract by autolysis or cell disruption. Lees and/or yeast extract can be used as nutritional supplements with potential exploitation in the biotechnological industry for the production of natural compounds such as xylitol, organic acids, and biosurfactants, among others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The relative importance of oceanic nutrient inputs for Bass Harbor Marsh Estuary at Acadia National Park, Maine

    Science.gov (United States)

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    years. Oceanic inputs of nitrate and ammonium were an important source of inorganic nitrogen to the estuary in both years. In both years, the total seasonal inputs of ammonium to the estuary in flood tides were much larger than the inputs from watershed runoff or direct precipitation. In 2011, the total seasonal input of nitrate from flood tides to the estuary was more than twice as large the inputs from watershed runoff and precipitation, but in 2012, the inputs from flood tides were only marginally larger than the inputs from watershed runoff and precipitation. Turbidity was measured intermittently in 2012, and the pattern that emerged from the measurements indicated that the estuary was a source of particulate matter to the ocean rather than the ocean being a source to the estuary. From the nutrient budgets determined for the estuary it is evident that oceanic sources of nitrate and ammonium are an important part of the supply of nutrients that are contributing to the growth of macroalgae in the estuary. The relative importance of these oceanic nutrients compared with sources within the watershed typically increases as the summer progresses and runoff decreases. It is likely that rising sea levels, estimated by the National Oceanic and Atmospheric Administration to be 11 centimeters from 1950 through 2006 in nearby Bar Harbor, have resulted in an increase in oceanic inputs (tidal volume and nutrients derived from oceanic sources).

  10. Nutrient cycling and ecosystem metabolism in boreal streams of the Central Siberian Plateau

    Science.gov (United States)

    Diemer, L.; McDowell, W. H.; Prokushkin, A. S.

    2013-12-01

    Arctic boreal streams are undergoing considerable change in carbon and nutrient biogeochemistry due to degrading permafrost and increasing fire activity. Recent studies show that fire increases transport of inorganic solutes from the boreal landscape to arctic streams in some regions; couple this with expected greater labile dissolved organic carbon (DOC) from deepening active layers, enhanced biomass production, and increased annual precipitation and boreal streams may experience greater in-stream primary production and respiration in the coming century. Little is known about the spatial and temporal dynamics of inorganic nutrients in relation to C availability in headwater streams of a major Arctic region, the Central Siberian Plateau. Our preliminary data of Central Siberian headwater streams show NO3 and PO4 concentrations near or below detection limits (e.g. nine samples taken in spring from a small stream near the Russian settlement of Tura averaged 10 μg/L NO3-N and 9.7 μg/L PO4-P), and recent studies in Central Siberia suggest that bioavailable organic matter and inorganic nutrients such as NO3 will likely increase with climate warming. We examined the fate of nutrients in Central Siberian streams using Tracer for Spiraling Curve Characterization (TASCC) additions of NO3, NH4, and PO4 along with conservative tracer, NaCl, in spring at high and low discharges in streams underlain by continuous permafrost in Central Siberia. We also sampled two sites in spring every 2 hours overnight for 24 hours to document any diel patterns in DOC and inorganic nutrients. Our results thus far show that NO3 uptake length may be strongly correlated with DOC concentration (a function of fire activity). Preliminary results also show that despite high discharge and cold temperatures (4-8°C) in mid to late spring, there appears to be biological activity stimulating a diel signal for NO3 with maximum concentration corresponding to low light (11 PM). Investigating the primary

  11. EFFECT OF ALTERNATIVE MULTINUTRIENT SOURCES ON SOIL CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Vanessa Martins

    2015-02-01

    Full Text Available The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol. The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

  12. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  13. Effect of nitrogen sources on the biodegradation of diesel fuel in unsaturated soil

    International Nuclear Information System (INIS)

    Brook, T. R.; Stiver, W. H.; Zytner, R. G.

    1997-01-01

    The various factors involved in controlling the rate and efficiency of the bioremediation process were studied, among them the type and concentration of contaminants, temperature, oxygen content and nutrient status. This study emphasized the effect of the nitrogen source on the degradation rate of diesel fuel in nutrient-limited soil. Various nitrogen sources were studied, including ammonium nitrate, urea, and urea oligomers. Treatment with urea produced the highest rate of hydrocarbon degradation, but ammonium levels were a better indicator of nutrient performance than total inorganic nitrogen. Other nitrogen sources produced little or no effect on the rate of biodegradation; there was no evidence that nitrate at 0.5 mg N/g concentration was inhibitory. 11 refs., 6 figs

  14. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    Science.gov (United States)

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future

  15. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    Science.gov (United States)

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    Science.gov (United States)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  17. Evaluasi Pertumbuhan Mikroalga Dalam Medium Pome : Variasi Jenis Mikroalga, Medium Dan Waktu Penambahan Nutrient

    OpenAIRE

    Mahdi, Muhammad Zaini; Titisari, Yasinta Nikita; Hadiyanto, H

    2012-01-01

    POME is a liquid waste produced by crude palm oil industry. POME has not been processed optimally and therefore it is problem for environment due to high level of COD and BOD. Algae is known as bioabsorbent which can neutralize pollutants components in the liquid waste. For its growth, microalgae needs nutrients containing carbon, nitrogen, and phosphor. These nutrients are required for photosynthetic to convert carbon source into biomass. POME contains large amount of C, N, P and therefore t...

  18. The World of Barilla Taylor: A Primary Source-Based Kit for Students in Grades 8-12.

    Science.gov (United States)

    Fellner, Kelly; Stearns, Liza

    1995-01-01

    Examines a primary source-based kit that describes the life of a young woman factory worker in early 19th-century New England. The kit includes five document sets, utilizing maps, newspaper articles, deeds, letters, poems, and other artifacts. The document sets illustrate various topics including mill life and personal life. (MJP)

  19. Growth characteristics and nutrient depletion of Miscanthus x ogiformis Honda 'Giganteus' suspension cultures

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted

    1998-01-01

    The growth characteristics and nutrient depletion in suspension cultures of Miscanthus ogiformis Honda ‘Giganteus' grown in media containing either Murashige and Skoog or N6 basal nutrient salts were studied during a culture period of 15 days. Proline was added to both media in concentrations from...... to the MS suspension cultures. Sucrose was hydrolysed into its monosaccharide components in the culture medium. Glucose was depleted faster than fructose indicating a preference for glucose as a carbohydrate source of the M. ogiformis cultures. The high water uptake by the suspension aggregates 12 to 15...

  20. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

    Science.gov (United States)

    James W. Dalling; Katherine Heineman; Grizelle Gonzalez; Rebecca Ostertag

    2016-01-01

    Tropicalmontane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry.With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests....