WorldWideScience

Sample records for primary loop piping

  1. Response of the primary piping loop to an HCDA

    International Nuclear Information System (INIS)

    Chang, Y.W.; Moneim, M.T.A.; Wang, C.Y.; Gvildys, J.

    1975-01-01

    The paper describes a method for analyzing the response of the primary piping loop that consists of straight pipes, elbows, and other components connected in series and subject to hypothetical core disruptive accident (HCDA) loads at both ends of the loop. The complete hydrodynamic equations in two-dimensions, that include both the nonlinear convective and viscous dissipation terms are used for the fluid dynamics together with the implicit ICE technique. The external walls of the pipes and components are treated as thin shells in which the analysis accounts for the membrane and bending strength of the wall, elastic-plastic material behavior, as well as large deformation under the effect of transient loading conditions. In the straight pipes, the flow is assumed to be axisymmetric; in the elbow regions, the two dimensions considered are the r and theta directions. The flow in the other components is also assumed to be axisymmetric; the components are modeled as a circular cylinder, in which the radius of the cylinder can be varied to conform with the outside shape of the component and the flow area inside can be changed independently from the outside shape. However, they must remain axially symmetric. The method is applied to a piping loop which consists of six elastic-plastic pipes and five rigid elbows connected in series and subjected to pressure pulses at both ends of the loop

  2. Stress analysis of primary pipe rigid support of the in pile loop

    International Nuclear Information System (INIS)

    Hasibuan, Dj.

    1998-01-01

    Base on requirement of the safety analysis report and operation planning preparation on the in pile loop by using the fuel bundle in the test section, the stress analysis of primary pipe support has been done. The analysis was performed for the 3 (three) points of pipe support, which are chosen by random selection, i.e.: GU 2001, GU 2002, and GU 2331. The analysis result showed that the maximum allowable stress was greater then the actual stress. It is concluded that the existing supports fulfil the safety requirement

  3. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  4. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  5. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  6. Belgian experience in applying the {open_quotes}leak-before-break{close_quotes} concept to the primary loop piping

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, R.; Malekian, C.; Meessen, O. [Tractebel Energy Engineering, Brussels (Belgium)

    1997-04-01

    The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports in the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.

  7. Belgian experience in applying the open-quotes leak-before-breakclose quotes concept to the primary loop piping

    International Nuclear Information System (INIS)

    Gerard, R.; Malekian, C.; Meessen, O.

    1997-01-01

    The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports in the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the open-quote two cutsclose quotes technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented

  8. Application of leak-before-break to primary loop piping to eliminate pipe whip restraints in a Spanish nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, M.; Esteban, A.

    1990-01-01

    The Spanish plant described in this study is a 982 MWe PWR with a three-loop primary circuit of piping made from centrifugally-cast stainless steel SA351 CF8A. The licensee requested from Consejo de Seguridad Nuclear (CSN) an exemption from the general design criterion, GDC-4, so as to avoid the need to postulate a guillotine rupture of the primary loop piping. The request was based on the generic work performed for a US PWR plant group in order to have such an exemption. As the piping material in the Spanish plant is different from that in the plants included in the generic work, CSN performed a review of the applicability of the generic results to the Spanish plant. Also, aspects such as fatigue evaluation, net section collapse, crack growth and leak detection, specifically analyzed for the Spanish plant, were reviewed. CSN found that fracture toughness test results from generic work are applicable to the Spanish plant; sufficient margin exists against unstable crack extension, and adequate leak detection capability exists with the leakage detection systems available in the plant. Exemption from GDC-4 was approved and CSN authorized the licensee to remove protection devices against dynamic loads from guillotine breaks in the primary coolant loops. (author)

  9. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  10. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  11. Mathematical Modeling of Loop Heat Pipes

    Science.gov (United States)

    Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.

    1998-01-01

    The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.

  12. Closed loop solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-01-01

    The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs

  13. Development of seamless forged pipe and fitting for BWR recirculation loop piping with improved resistance to intergranular stress corrosion cracking

    International Nuclear Information System (INIS)

    Ohnishi, Keizo; Tsukada, Hisashi; Kobayashi, Masayoshi; Iwadate, Tadao; Ono, Shinichi

    1981-01-01

    As a primary remedy for IGSCC of primary loop piping, especially Recirculation Loop Piping of BWR, extra low carbon stainless steel with high nitrogen content has become to be used. While, in order to make In-service Inspection easier and complete, new design of piping which decrease both number and total length of weld line has been considered. Japan Steel Works has developed the research on large size seamless forged pipe and fitting made from high nitrogen extra low carbon 316 stainless steel. This paper describes the key points of manufacturing technology as well as the material properties, especially strength and intergranular-corrosion and intergranular- stress-corrosion-cracking-resistivities of these forged pipe and fitting. (author)

  14. Analysis of breaks in pipe connections to the hot leg and to the loop seal in the primary system of Ringhals 2 PWR

    International Nuclear Information System (INIS)

    Nilsson, L.; Sjoeberg, A.

    1987-01-01

    Analysis has been made of seven different cases of breaks in pipes connected to the hot leg and to the loop seal in Ringhals 2 PWR. The pipes, in which guillotine breaks are postulated, have nominal diameters ranging from 1 to 14 inches. The purpose of the analysis is to supplement the basis for a review of the inspection procedures for the safety of pressure vessels prescribed by SKI. A similar analysis already exists concerning breaks in the cold leg connections. The analysis has been made using the thermal hydraulic computer code RELAPS/MOD2 and with best estimate assumptions. This means that normal operating conditions have been adopted for the input to the calculations. However, the capacity of the safety injection system was assumed to be reduced by having one pump not operating each of the low pressure and high pressure safety injection system. The results of the analysis are presented in tables and as computer plots. The analysis shows that the consequences with respect to increased fuel rod and cladding temperatures are quite harmless. Only the two cases with the largest break sizes lead to critical heat flux (CHF) and increased temperatures for the hottest rods in the core. The peak cladding temperature was 636 degrees C for the 12 inch break. In both cases rewetting occurred within 25 s of accident initiation. In the cases with breaks in connections of 6 inch diameter and smaller the RELAP5 calculations indicated a substantial margin to CHF throughout the transient. (authors)

  15. Overview of Loop Heat Pipe Operation

    Science.gov (United States)

    Ku, Jentung

    1999-01-01

    Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and

  16. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  17. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  18. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 9: PRAISE computer code user's manual. Final report

    International Nuclear Information System (INIS)

    Lim, E.Y.

    1981-08-01

    The PRAISE (Piping Reliability Analysis Including Seismic Events) computer code estimates the influence of earthquakes on the probability of failure at a weld joint in the primary coolant system of a pressurized water reactor. Failure, either a through-wall defect (leak) or a complete pipe severance (a large-LOCA), is assumed to be caused by fatigue crack growth of an as-fabricated interior surface circumferential defect. These defects are assumed to be two-dimensional and semi-elliptical in shape. The distribution of initial crack sizes is a function of crack depth and aspect ratio. Crack propagation rates are governed by a Paris-type relationship with separate RMS cyclic stress intensity factors for the depth and length. Both uniform through the wall and radial gradient thermal stresses are included in the calculation of the stress intensity factors. The failure probabilities are estimated by applying Monte Carlo methods to simulate the life histories of the selected weld joint. In order to maximize computational efficiency, a stratified sampling procedure is used to select the initial crack size. Hydrostatic proof test, pre-service inspection, and in-service inspection can be simulated. PRAISE treats the inter-arrival times of operating transients either as a constant or exponentially distributed according to observed or postulated rates. Leak rate and leak detection models are also included. The criterion for complete pipe severance is exceedance of a net section critical stress. Earthquakes of various intensity and arbitrary occurrence times can be modeled. PRAISE presently assumes that exactly one initial defect exists in the weld and that the earthquake of interest is the first earthquake experienced at the reactor

  19. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  20. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  1. Background noise of acoustic emission signals in sodium piping loop

    International Nuclear Information System (INIS)

    Mori, Y.; Aoki, K.; Kuribayashi, K.; Kishi, T.; Sakakibara, Y.

    1985-01-01

    Background noise measurement in the frequency range of acoustic emission (AE) signals was made on the sodium piping loops of a 50 MW steam generator test facility in the Power Reactor and Nuclear Fuel Development Corporation (PNC). During the dynamic characteristics test of the steam generator over a wide range of operating conditions, the background noise generated on the pipe surface was measured using wideband AE sensor externally mounted with waveguide. Data were obtained for the effect of power loads of steam generator on both amplitude and frequency spectra of background noise signals. Source and nature of background noise were established

  2. LOFT blowdown loop piping thermal analysis Class I review

    International Nuclear Information System (INIS)

    Kinnaman, T.L.

    1978-01-01

    In accordance with ASME Code, Section III requirements, all analyses of Class I components must be independently reviewed. Since the LOFT blowdown loop piping up through the blowdown valve is a Class I piping system, the thermal analyses are reviewed. The Thermal Analysis Branch comments to this review are also included. It is the opinion of the Thermal Analysis Branch that these comments satisfy all of the reviewers questions and that the analyses should stand as is, without additional considerations in meeting the ASME Code requirements and ANC Specification 60139

  3. Operational characteristics of miniature loop heat pipe with flat evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)

    2009-12-15

    Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)

  4. Solar chemical heat pipe in a closed loop

    International Nuclear Information System (INIS)

    Levy, M.

    1990-06-01

    The work on the solar CO 2 reforming of methane was completed. A computer program was developed for simulation of the whole process. The calculations agree reasonably well with the experimental results. The work was written up and submitted for publication in Solar Energy. A methanator was built and tested first with a CO/H 2 mixture from cylinders, and then with the products of the solar reformer. The loop was then closed by recirculating the products from the methanator into the solar reformer. Nine closed loop cycles were performed, so far, with the same original gas mixture. This is the first time that a closed loop solar chemical heat pipe was operated anywhere in the world. (author). 13 refs., 12 figs., 3 tabs

  5. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  6. Porous Foam Based Wick Structures for Loop Heat Pipes

    Science.gov (United States)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  7. WWER type reactor primary loop imitation on large test loop facility in MARIA reactor

    International Nuclear Information System (INIS)

    Moldysh, A.; Strupchevski, A.; Kmetek, Eh.; Spasskov, V.P.; Shumskij, A.M.

    1982-01-01

    At present in Poland in cooperation with USSR a nuclear water loop test facility (WL) in 'MARIA' reactor in Sverke is under construction. The program objective is to investigate processes occuring in WWER reactor under emergency conditions, first of all after the break of the mainprimary loop circulation pipe-line. WL with the power of about 600 kW consists of three major parts: 1) an active loop, imitating the undamaged loops of the WWER reactor; 2) a passive loop assignedfor modelling the broken loop of the WWER reactor; 3) the emergency core cooling system imitating the corresponding full-scale system. The fuel rod bundle consists of 18 1 m long rods. They were fabricated according to the standard WWER fuel technology. In the report some general principles of WWERbehaviour imitation under emergency conditions are given. They are based on the operation experience obtained from 'SEMISCALE' and 'LOFT' test facilities in the USA. A description of separate modelling factors and criteria effects on the development of 'LOCA'-type accident is presented (the break cross-section to the primary loop volume ratio, the pressure differential between inlet and outlet reactor chambers, the pressure drop rate in the loop, the coolant flow rate throuh the core etc.). As an example a comparison of calculated flow rate variations for the WWER-1000 reactor and the model during the loss-of-coolant accident with the main pipe-line break at the core inlet is given. Calculations have been carried out with the use of TECH'-M code [ru

  8. Study of a Loop Heat Pipe Using Neutron Radiography

    International Nuclear Information System (INIS)

    C. Thomas Conroy; A. A. El-Ganayni; David R. Riley; John M. Cimbala; Jack S. Brenizer, Jr.; Abel Po-Ya Chuang; Shane Hanna

    2001-01-01

    An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, has been identified with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design

  9. Failure probability of PWR reactor coolant loop piping

    International Nuclear Information System (INIS)

    Lo, T.; Woo, H.H.; Holman, G.S.; Chou, C.K.

    1984-02-01

    This paper describes the results of assessments performed on the PWR coolant loop piping of Westinghouse and Combustion Engineering plants. For direct double-ended guillotine break (DEGB), consideration was given to crack existence probability, initial crack size distribution, hydrostatic proof test, preservice inspection, leak detection probability, crack growth characteristics, and failure criteria based on the net section stress failure and tearing modulus stability concept. For indirect DEGB, fragilities of major component supports were estimated. The system level fragility was then calculated based on the Boolean expression involving these fragilities. Indirect DEGB due to seismic effects was calculated by convolving the system level fragility and the seismic hazard curve. The results indicate that the probability of occurrence of both direct and indirect DEGB is extremely small, thus, postulation of DEGB in design should be eliminated and replaced by more realistic criteria

  10. Microstructural characterization of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.

    1986-01-01

    Atom probe field-ion microscopy, analytical electron microscopy, and optical microscopy have been used to investigate the changes that occur in the microstructure of cast CF 8 primary coolant pipe stainless steel after long term thermal aging. The cast duplex microstructure consisted of austenite with 15% delta-ferrite. Investigation of the aged material revealed that the ferrite spinodally decomposed into a fine scaled network of α and α'. A fine G-phase precipitate was also observed in the ferrite. The observed degradation in mechanical properties is probably a consequence of the spinodal decomposition in the ferrite

  11. Thermal aging of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The long term mechanical integrity of the pipes used to carry the primary cooling water in a pressurized water nuclear reactor is of the utmost importance for safe operation. A combined atom probe field-ion microscopy (APFIM) and transmission electron microscopy (TEM) study was performed to characterize the microstructure of this cast stainless steel and to determine the changes that occur during long-term low-temperature thermal aging. The material used in this investigation was a commercial CF 8 type stainless. The steel was examined in the as-cast, unaged condition and also after aging for 7500 h at 673K. 3 refs., 4 figs., 2 tabs

  12. Development of forging technology for PWR primary piping

    International Nuclear Information System (INIS)

    Morin, F.; Badeau, J.P.; Lambs, R.

    1996-01-01

    The purpose of this presentation is to give information on the changes in the design and manufacture of Primary Piping for electronuclear boilers of the Pressurized Water Reactor type (PWR) which has resulted in the making of one-piece forged lines including stub pipes and arcs. The optimization of these items is aimed at improving the life of the new power stations as well as guaranteeing their safety, while reducing inspection and maintenance requirements in service. The demonstration of the manufacturing feasibility has just been completed. It has taken material form in the installation, on the CIVAUX 1 section, of the first one-piece cold leg in the world. It will shortly be followed by the installation on the CIVAUX 2 section of a complete loop of bent forged pipes. Therefore, this new know-how is going to be incorporated in the French Rules (RCC-M) and can be directly taken into consideration both in the next work to be done and in the design and definition of a future nuclear reactor

  13. Full instantaneous traversal rupture of the primary loop pipeline

    International Nuclear Information System (INIS)

    Baytelesov, S.A.; Kungurov, F.R.

    2010-01-01

    Accident, reflecting full immediate cross rupture of primary loop pipe of WWR-SM research reactor of INP AS RUz is observed in this paper. Calculations for accident situation and analysis for different reactor cores, formed from fully IRT-3M type high enriched fuel (36% enrichment on 235 U), first mixed core, compiled from 16 IRT-3M fuel assemblies and 4 IRT-4M type fuel assemblies with low enriched fuel (19,7% enrichment on 235 U) and the core fully formed from low enriched fuel are carried out

  14. Loop Heat Pipe Manufacturing via DMLS for CubeSAT Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a low-cost Loop Heat Pipe (LHP) evaporator using a technique known as Direct Metal Laser Sintering...

  15. Loop Heat Pipe Manufacturing via DMLS for CubeSAT Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a low-cost Loop Heat Pipe (LHP) evaporator using a technique known as Direct Metal Laser Sintering...

  16. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  17. Study of PTFE wick structure applied to loop heat pipe

    International Nuclear Information System (INIS)

    Wu, Shen-Chun; Gu, Tzu-Wei; Wang, Dawn; Chen, Yau-Ming

    2015-01-01

    This study investigated the use of sintered PTFE (polytetrafluoroethylene) particles as the wick material of loop heat pipe (LHP), taking advantage of PTFE's low thermal conductivity to reduce the heat leakage problem during LHP's operation. Different PTFE particle sizes were tried to find the one that resulted in the best wick; LHP performance tests were then conducted, and PTFE's potential for application to LHP was examined. Using PTFE particles ranging from 300–500 μm in size, the best wick properties were effective pore radius of 1.7 μm, porosity of 50%, and permeability of 6.2 × 10 −12  m 2 . LHP performance tests showed that, under typical electronic devices' operating temperature of 85 °C, the heat load reached 450 W, the thermal resistance was 0.145 °C/W, and the critical heat load (dryout heat load) reached 600 W. Compared to LHP with a nickel wick, LHP with a PTFE wick had a significantly lower operating temperature, indicating reduced heat leakage during operation, while having comparable performance; also, during the manufacturing process, a PTFE wick required lower sintering temperature, needed shorter sintering time, and had no need for hydrogen gas during sintering. The results of this study showed that, for high heat transfer capacity cooling devices, PTFE wicks possess great potential for applications to LHPs. - Highlights: • The performances of PTFE and nickel wicks in LHP are comparable for the first time. • PTFE wick allows for lower operating temperature and thus pressure in LHP system. • A wick requiring lower temperature and manufacturing cost and less time was made. • PTFE wick has potential to replace metal wick and enhance performance of LHP

  18. Temperature Oscillations in Loop Heat Pipes - A Revisit

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    Three types of temperature oscillation have been observed in the loop heat pipes. The first type is an ultra-high frequency temperature oscillation with a period on the order of seconds or less. This type of temperature oscillation is of little significance in spacecraft thermal control because the amplitude is in the noise level. The second type is a high frequency, low amplitude temperature oscillation with a period on the order of seconds to minutes and an amplitude on the order of one Kelvin. It is caused by the back-and-forth movement of the vapor front near the inlet or outlet of the condenser. The third type is a low frequency, high amplitude oscillation with a period on the order of hours and an amplitude on the order of tens of Kelvin. It is caused by the modulation of the net heat load into the evaporator by the attached large thermal mass which absorbs and releases energy alternately. Several papers on LHP temperature oscillation have been published. This paper presents a further study on the underlying physical processes during the LHP temperature oscillation, with an emphasis on the third type of temperature oscillation. Specifically, equations governing the thermal and hydraulic behaviors of LHP operation will be used to describe interactions among LHP components, heat source, and heat sink. The following sequence of events and their interrelationship will also be explored: 1) maxima and minima of reservoir and thermal mass temperatures; 2) the range of the vapor front movement inside the condenser; 3) rates of change of the reservoir and thermal mass temperatures; 4) the rate of heat absorption and heat release by the thermal mass and the rate of vapor front movement; and 5) inflection points of the reservoir and thermal mass temperatures.

  19. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  20. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  1. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  2. An ultra-thin miniature loop heat pipe cooler for mobile electronics

    International Nuclear Information System (INIS)

    Zhou, Guohui; Li, Ji; Lv, Lucang

    2016-01-01

    Highlights: • A 1.2 mm thick miniature loop heat pipe was developed. • The mLHP can manage a wide range of heat loads at natural convection. • A minimum mLHP thermal resistance of 0.111 °C/W was achieved at 11 W. • The proposed mLHP is a promising solution for cooling mobile electronics. - Abstract: In this paper, we present a miniature loop heat pipe (mLHP) employing a 1.2 mm thick flat evaporator and a vapor line, liquid line and condenser with a 1.0 mm thickness. The mLHP employs an internal wick structure fabricated of sintered fine copper mesh, comprised of a primary wick structure in the evaporator to provide the driving force for circulating the working fluid, and a secondary wick inside the liquid line to promote the flow of condensed working fluid back to the evaporator. All tests were conducted under air natural convection at an ambient temperature of 24 ± 1 °C. The proposed mLHP demonstrated stable start-up behavior at a low heat load of 2 W in the horizontal orientation with an evaporator temperature of 43.9 °C and efficiently dissipates a maximum heat load of 12 W without dry-out occurring. A minimum mLHP thermal resistance of 0.111 °C/W was achieved at a heat load of 11 W in a gravity favorable operation mode, at which the evaporator temperature was about 97.2 °C. In addition, an analytical analysis was conducted, and the devised equation could be used to evaluate the performance of the mLHP.

  3. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  4. Correlation to predict heat transfer of an oscillating loop heat pipe consisting of three interconnected columns

    International Nuclear Information System (INIS)

    Arslan, Goekhan; Ozdemir, Mustafa

    2008-01-01

    In this paper, heat transfer in an oscillating loop heat pipe is investigated experimentally. The oscillation of the liquid columns at the evaporator and condenser sections of the heat pipe are driven by gravitational force and the phase lag between evaporation and condensation because the dimensions of the heat pipe are large enough to neglect the effect of capillary forces. The overall heat transfer coefficient based on the temperature difference between the evaporator and condenser surfaces is introduced by a correlation function of dimensionless numbers such as kinetic Reynolds number, c p ΔT/h fg and the geometric parameters

  5. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  6. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  7. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    Science.gov (United States)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation

  8. Experimental studies of PWR primary piping under loca

    International Nuclear Information System (INIS)

    Caumette, Pierre; Garcia, J.L.

    1980-07-01

    The experimental program performed on AQUITAINE II facility is directed to study the mechanical behavior of primary PWR pipes and the forces exerted on the neighbouring structures as a consequence of a breach opening. It has been developed in the form of a quadripartite agreement between the Commissariat a l'Energie Atomique, Framatome, Electricite de France and Westinghouse. Some forty tests have been carried out with different pipe configurations (straight tube, elbow, S- or U-shaped tube) and different break types (single or double guillotine). The following aspects are investigated: - the dynamic behavior of the pipe and in particular the formation of a plastic hinge at the restraint; - the impact function of a pipe or an energy-absorbing bumper; - the lateral stability of both ends of a pipe, after a double-guillotine break [fr

  9. Fatigue analysis of HANARO primary cooling system piping

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs

  10. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  11. Review of application code and standards for mechanical and piping design of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the propriety of application code and standards for mechanical and piping of HANARO fuel test loop and to decide the technical specification of FTL systems. (author). 18 refs., 8 tabs., 6 figs.

  12. Bypass line assisted start-up of a loop heat pipe with a flat evaporator

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Jung, Eui Guk

    2009-01-01

    Loop heat pipes often experience start-up problems especially under low thermal loads. A bypass line was installed between the evaporator and the liquid reservoir to alleviate the difficulties associated with start-up of a loop heat pipe with flat evaporator. The evaporator and condenser had dimensions of 40 mm (W) by 50 mm (L). The wall and tube materials were stainless steel and the working fluid was methanol. Axial grooves were provided in the flat evaporator to serve as vapor passages. The inner diameters of liquid and vapor transport lines were 2 mm and 4 mm, respectively, and the length of the two lines was 0.5 m each. The thermal load range was up to 130 W for horizontal alignment with the condenser temperature of 10 .deg. C. The experimental results showed that the minimum thermal load for start-up was lowered by 37% when the bypass line was employed

  13. Assessment of cracked pipes in primary piping systems of PWR nuclear reactors

    International Nuclear Information System (INIS)

    Jong, Rudolf Peter de

    2004-01-01

    Pipes related to the Primary System of Pressurized Water Reactors (PWR) are manufactured from high toughness austenitic and low alloy ferritic steels, which are resistant to the unstable growth of defects. A crack in a piping system should cause a leakage in a considerable rate allowing its identification, before its growth could cause a catastrophic rupture of the piping. This is the LBB (Leak Before Break) concept. An essential step in applying the LBB concept consists in the analysis of the stability of a postulated through wall crack in a specific piping system. The methods for the assessment of flawed components fabricated from ductile materials require the use of Elasto-Plastic Fracture Mechanics (EPFM). Considering that the use of numerical methods to apply the concepts of EPFM may be expensive and time consuming, the existence of the so called simplified methods for the assessment of flaws in piping are still considered of great relevance. In this work, some of the simplified methods, normalized procedures and criteria for the assessment of the ductile behavior of flawed components available in literature are described and evaluated. Aspects related to the selection of the material properties necessary for the application of these methods are also discussed. In a next .step, the methods are applied to determine the instability load in some piping configurations under bending and containing circumferential through wall cracks. Geometry and material variations are considered. The instability loads, obtained for these piping as the result of the application of the selected methods, are analyzed and compared among them and with some experimental results obtained from literature. The predictions done with the methods demonstrated that they provide consistent results, with good level of accuracy with regard to the determination of maximum loads. These methods are also applied to a specific Study Case. The obtained results are then analyzed in order to give

  14. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    OpenAIRE

    Pereira, H; Haug, F; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of...

  15. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W [European Space Agency / ESTEC. Thermal control and life support division (France)

    1997-12-31

    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  16. Anti-Gravity Loop-shaped heat pipe with graded pore-size wick

    International Nuclear Information System (INIS)

    Tang Yong; Zhou Rui; Lu Longsheng; Xie Zichun

    2012-01-01

    An Anti-Gravity Loop-Shaped Heat Pipe (AGLSHP) with a Continuous Graded Pore-Size Wick (CGPSW) was developed for the cooling of electronic devices at the anti-gravity orientation on the ground. At this orientation, heat is transferred toward the direction of the gravitational field. The AGLSHP consists of an evaporator, a condenser, a vapor line and a liquid line. The CGPSW is formed by sintered copper powders and it is filled inside the evaporator and the liquid line. The corresponding test system was developed to investigate the start-up characteristics and heat transfer performance of the AGLSHP at the anti-gravity orientation. The experimental result shows that, the AGLSHP has the capability to start-up reliably without any temperature overshoot or oscillation at the test heat loads. And the AGLSHP is able to keep the temperature of the evaporator below 105 °C and the overall thermal resistance below 0.24 °C/W at the heat load of 100 W. It is also found that the ideal heat load range of the AGLSHP at the anti-gravity orientation is from 30 W to 90 W. In this power range the overall thermal resistance stabilizes at about 0.15 °C/W, and the maximum temperature of the evaporator is lower than 84 °C at the heat load of 90 W. - Highlights: ► We present a loop-shaped heat pipe for the anti-gravity application on the ground. ► We present the continuous graded pore-size wick and its fabrication process. ► We test the start-up and heat transfer performance of this loop-shaped heat pipe. ► This loop-shaped heat pipe starts up reliably and has satisfying heat transfer capability.

  17. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W. [European Space Agency / ESTEC. Thermal control and life support division (France)

    1996-12-31

    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  18. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  19. Impact of the amount of working fluid in loop heat pipe to remove waste heat from electronic component

    Directory of Open Access Journals (Sweden)

    Smitka Martin

    2014-03-01

    Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.

  20. Aircraft Thermal Management Using Loop Heat Pipes: Experimental Simulation of High Acceleration Environments Using the Centrifuge Table Test Bed (Postprint)

    National Research Council Canada - National Science Library

    Fleming, Andrew J; Leland, Quinn H; Yerkes, Kirk L; Elston, Levi J; Thomas, Scott K

    2006-01-01

    The objective of this paper is to describe the design of an experiment that will examine the effects of elevated acceleration environments on a high-temperature, titanium-water loop heat pipe for actuator cooling...

  1. LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.

  2. Protection of WWER type primary loops against extreme effects

    International Nuclear Information System (INIS)

    Podrouzek, J.; Rejent, B.

    1985-01-01

    Dynamic analyses of the WWER-440 primary loops for the Mochovce nuclear power plant showed that the unprotected primary loop is very soft with a first eigenfrequency of 0.38 Hz. Protection with amortisseurs and viscous shock absorbers was compared and the viscous shock absorber in all cases proved to be more suitable. GERB viscous absorbers will be installed at the Mochovce nuclear power plant. First calculations of the dynamic resistance of the WWER-1000 primary loops for the Temelin nuclear power plant to extreme events were also made. It was shown that the unprotected primary loop is rather soft with a first eigenfrequency of 0.9 Hz, or 0.6 Hz at the pressurizer branch. It will therefore be necessary to protect the primary loops with viscous shock absorbers. (Z.M.)

  3. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  4. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  5. IEA-R1 renewed primary coolant piping system stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was conducted in 2014. The aim of this work is to perform the stress analysis of the renewed primary piping system of the IEA-R1, taking into account the as built conditions and the pipe modifications. The nuclear research reactor IEA-R1 is a pool type reactor designed by Babcox-Willcox, which is operated by IPEN since 1957. The primary coolant system is responsible for removing the residual heat of the Reactor core. As a part of the life management, a regular inspection detected some degradation in the primary piping system. In consequence, part of the piping system was replaced. The partial renewing of the primary piping system did not imply in major piping layout modifications. However, the stress condition of the piping systems had to be reanalyzed. The structural stress analysis of the primary piping systems is now presented and the final results are discussed. (author)

  6. Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; Bai, Lizhan; Bu, Xueqin; Zhang, Hongxing; He, Jiang; Miao, Jianyin; Wen, Dongsheng

    2016-01-01

    Highlights: • A CLHP-based thermal control system with redundancy design was proposed. • Four possible working modes for the supercritical startup were defined. • Transport line with smaller diameter led to much longer supercritical startup time. • Auxiliary operation of secondary evaporator is necessary for the backup conversion. • Temperature oscillation was observed and investigated in the dual operation mode. - Abstract: Cryogenic loop heat pipe (CLHP) is one of the key components in the future space infrared exploration system, which enables effective and efficient cryogenic heat transport over a long distance with a flexible thermal link. To realize reliable and long life operation, a CLHP-based thermal control system with redundancy design was proposed in this work, where two nitrogen-charged CLHPs were employed to provide cryocooling at 80–100 K. This study focused on the supercritical startup of the CLHPs with redundancy design, and an extensive experimental study under four possible working modes was conducted. Experimental results showed that with 2.5 W applied to the secondary evaporator, each CLHP could realize the supercritical startup successfully in the normal working mode; however, the required time differed a lot because the difference in the transport line diameter significantly affected the cryocooling capacity to the primary evaporator. In the backup conversion mode, instant switch of the two primary evaporators may cause an operation failure, and an auxiliary operation of the secondary evaporator in advance was necessary to make the primary liquid line filled with liquid. In the malfunction conversion mode, the simulated infrared detector had to be first shut down, but the time needed for the backup CLHP to realize the supercritical startup became obviously shorter than that in the normal working mode, because the primary evaporator of the backup CLHP was always in a cryogenic state. In the dual operation mode, the two CLHPs could

  7. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB Vincotte Nuclear, Brussels (Belgium)

    1997-04-01

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  8. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  9. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  10. Fractal Loop Heat Pipe Performance Comparisons of a Soda Lime Glass and Compressed Carbon Foam Wick

    Science.gov (United States)

    Myre, David; Silk, Eric A.

    2014-01-01

    This study compares heat flux performance of a Loop Heat Pipe (LHP) wick structure fabricated from compressed carbon foam with that of a wick structure fabricated from sintered soda lime glass. Each wick was used in an LHP containing a fractal based evaporator. The Fractal Loop Heat Pipe (FLHP) was designed and manufactured by Mikros Manufacturing Inc. The compressed carbon foam wick structure was manufactured by ERG Aerospace Inc., and machined to specifications comparable to that of the initial soda lime glass wick structure. Machining of the compressed foam as well as performance testing was conducted at the United States Naval Academy. Performance testing with the sintered soda lime glass wick structures was conducted at NASA Goddard Space Flight Center. Heat input for both wick structures was supplied via cartridge heaters mounted in a copper block. The copper heater block was placed in contact with the FLHP evaporator which had a circular cross-sectional area of 0.88 cm(sup 2). Twice distilled, deionized water was used as the working fluid in both sets of experiments. Thermal performance data was obtained for three different Condenser/Subcooler temperatures under degassed conditions. Both wicks demonstrated comparable heat flux performance with a maximum of 75 W/cm observed for the soda lime glass wick and 70 W /cm(sup 2) for the compressed carbon foam wick.

  11. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  12. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Directory of Open Access Journals (Sweden)

    Patrik Nemec

    2014-01-01

    Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.

  13. Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures

    Science.gov (United States)

    Smitka, Martin; Malcho, Milan

    2014-01-01

    Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622

  14. Primary coolant pipe rupture event in liquid metal cooled reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-08-01

    In liquid-metal cooled fast reactors (LMFR) the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). However, the primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors (Indira Gandhi Centre for Atomic Research, Kalpakkam, India, 13-17 January 2003) was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the technical meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the technical meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  15. Removal of Shippingport Station primary system components and piping

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Lipsett, S.M.

    1987-01-01

    The dismantling workscope for the Shippingport Station Decommissioning Project was divided into subtasks to permit the work to be subcontracted to the maximum extent practicable. Major subtasks were identified and described by Activity specifications which could then be grouped into logical work packages to be put out for bid. Two of the largest dismantling work packages, removal of piping and components, were grouped together and designated as Activity Specifications 4 and 5. TLG Services, Inc. and Cleveland Wrecking Company formed a Joint Venture to perform this work during a two-year period at a cost of approximately $7 million. The major portions of this dismantling workscope are described. The primary system components within this workscope consist of the stainless steel reactor coolant piping, check valves, reactor coolant pumps, steam generators, and reactor purification demineralizers and coolers. The work performed, the heavy rigging preparations and procedures, the cutting tools used, component draining/capping techniques to prevent spills, contamination containment, airborne control techniques, and lessons learned during the removal of these primary system components are described. Summaries of crew size and composition, labor hours, duration hours and radiation exposure to workers are provided and discussed briefly. The successful completion of this work is evidence of the engineering, planning, equipment, materials and labor pool available to remove large, radioactively contaminated components safely. This experience will help decommissioning planners to prepare for the removal of reactor components in future decommissioning

  16. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Wang, Minglu; Cheng, Ye

    2014-01-01

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m 2 /s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10 −2 m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m 2 /s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow rate and

  17. The thermal performance of a loop-type heat pipe for passively removing residual heat from spent fuel pool

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhenqin [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Gu, Hanyang, E-mail: guhanyang@stu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Wang, Minglu [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Cheng, Ye [Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233 (China)

    2014-12-15

    Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m{sup 2}/s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10{sup −2} m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m{sup 2}/s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow

  18. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    Science.gov (United States)

    Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  19. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    Science.gov (United States)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  20. An experimental study towards the practical application of closed-loop flat-plate pulsating heat pipes

    NARCIS (Netherlands)

    Groeneveld, Gerben; Van Gerner, Henk Jan; Wits, Wessel W.

    2017-01-01

    The thermal performance of a flat-plate closed-loop pulsating heat pipe (PHP) is experimentally obtained. The PHP is manufactured by means of CNC-milling and vacuum brazing of a stainless steel 316L bottom plate and lid. Each channel of the PHP has a 2×2 mm2 square cross section. In total 12

  1. Analysis of the CAREM reactor's primary loop stability

    International Nuclear Information System (INIS)

    Mazzi, R.

    1990-01-01

    The results obtained to determine the stability conditions of the CAREM reactor's primary loop, using techniques based on the frequential response to the system, are presented. The stability margins were evaluated employing different alternatives; all of them predict a behaviour acceptable to the nominal working conditions. (Author) [es

  2. Analysis of the FFTF primary pipe rupture transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Bari, R.A.; Chen, L.C.; Albright, D.C.

    1979-01-01

    The response of the Fast Flux Test Facility (FFTF) to hypothetical ruptures of the high pressure primary piping has been analyzed using two LMFBR plant systems codes, namely IANUS and DEMO. Comparisons of the average channel temperatures predicted by the two codes show good agreement for identical transients. However, the hot channel temperatures predicted by DEMO are about 60K higher than the corresponding IANUS predictions for severe transients. This difference is attributed to the dynamic hot channel factors employed in DEMO which discount the thermal inertia of the duct walls for rapid transients. DEMO also predicts more severe transients for hot-leg ruptures in FFTF than previously reported analyses for the CRBR

  3. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator

    International Nuclear Information System (INIS)

    Wang Shuangfeng; Huo Jiepeng; Zhang Xianfeng; Lin Zirong

    2012-01-01

    Miniature loop heat pipe (MLHP) with flat evaporator has been proved that it has the capability to fulfill the demand for the thermal management of high-power electronic system. To employ MLHP into practical application and obtain the best operating parameters, a copper-water MLHP with flat evaporator of 8 mm thick was fabricated and tested in the condition of different condenser locations and operating orientations. The results show that the condenser located close to the evaporator outlet and adverse orientation have positive impact on the operating temperature of the loop, but negative impact on the cooling capability of condenser. For better understanding of their effect on the heat transfer characteristics of MLHP, the start-up behaviors, thermal performance and the operating regimes are explored in detail. - Highlights: ► A copper-water MLHP with flat evaporator of only 8 mm thick was fabricated. ► The MLHP can be applied to electronic cooling. ► The effect of condenser locations was investigated for the first time. ► The experimental results were discussed and analyzed comprehensively. ► Some practical solutions for disadvantages of LHP operation were provided.

  4. Configuration analysis of pipe support for primary cooling using Ps + Caepipe code

    International Nuclear Information System (INIS)

    Sitandung, Y. B.; Pustandyo, W.; Sujalmo, S.

    1998-01-01

    Pipe stress evaluation and support loads has been analyzed on piping segment of RSG-GAS primary cooling system. This paper describes an analysis method of piping system with the use of computer Code PS + CAEPIPE Version 3.4.05.W. From the selected pipe segment, the data of pipe characteristic, material properties, operation condition, equipment and supports were used input. The final evaluation result of primary cooling pipe segment show that actual stress dead weight and seismic load are less than allowable limits (stress ratio 0.101 for deadweight 0.35 for seismic load). From the above ratio, it can be concluded that ratio of pipe support configuration to stress distribution is acceptable, and based on analysis result, the Code used by INTERATOM was sufficiently accurate

  5. Corrosion and deposition behaviour of 60Co and 54Mn in the SNR mockup loop for the primary sodium system

    International Nuclear Information System (INIS)

    Menken, G.; Reichel, H.

    1976-01-01

    The SNR corrosion mockup loop, simulating the SNR primary system is described. The influence of hydraulic conditions and temperature on the deposition behaviour is studied. γ-spectroscopy measurements at the pipe-work and removable samples allowed to determine the distribution of radioactive corrosion products in the loop and by-pass system. The release rate of Mn 54 could be reduced by a factor of 3 by decreasing the cold trap temperature from 165 0 C to 105 0 C while the Co 60 release rate could be reduced by a factor of 14, respectively. High temperature loop sections (873K) representing 13% of the loop surface absorbed 50-60% of the released Co 60 and only 8 - 18% of the Mn 54. The cold trap absorbed not more than 1% of the Co 60 and 10% of the Mn 54 inventory. (author)

  6. First domestic primary loop recircuration pump for boiling water reactor

    International Nuclear Information System (INIS)

    Fukuda, Minoru; Taka, Shusei; Kato, Hiroyuki

    1981-01-01

    Two primary loop recirculation (PLR) pumps for the second unit of the Fukushima No. 2 Nuclear Power Station of the Tokyo Electric Power Co., Inc., have been manufactured by Ebara Corporation. They are the first domestically produced pumps for commercial power plants and were manufactured under license from Byron Jackson Pump Division of Borg Warner Corporation. This article describes the special features of pump design and stress analysis, and the results of the 700 hours of factory loop tests, which are all essential for the PLR pump. (author)

  7. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  8. Temperature distribution in the Temelin NPP primary circuit piping

    International Nuclear Information System (INIS)

    Blaha, V.; Maca, K.; Kodl, P.; Kroj, L.

    2004-01-01

    Temperature non-homogeneity in the VVER 1000 reactor primary piping hot legs was detected during the commissioning of Temelin units 1 and 2. A quantification of temperature differences was carried out and explanation of its causes was presented. Mathematical analysis of the effect was carried out using the PHOENICS 3.4 code, and the results were processed graphically by means of a post processor PHOTON and by means of a user program allowing statistic evaluation of temperature profiles at the core outlet and in the area of the temperature-measurement pits. The coolant temperatures in the core area increased gradually following the given radial and axial distribution of output from the inlet temperature of 288.1 degC to 315-331 degC at the core outlet. The temperature profile was balanced and in the IO piping in the area of temperature-measurement pits the difference of the maximum and minimum temperature value was approx. 1 degC according to the calculation. The temperature field shape is mainly determined by the radial distribution of the core output. The mean outlet temperature from the core weighted through mass flow is determined by the flow through the core and by the total output. The calculated temperature span at the core outlet in the range of 315 - 331 degC corresponded well with the measured values during the operation. The values were in the range of 310-333 degC, however, the in-core thermocouple inaccuracy should also be taken into consideration. On the other hand, the temperature span in the area of temperature-measurement pits was actually about 4 times higher than the calculated temperature (observed: 4 degC as against the calculated 1 degC). A good agreement was reached between the analysis results and the actual condition of the nuclear unit in the area of the core outlet. (P.A.)

  9. Water hammer characteristics of integral pressurized water reactor primary loop

    International Nuclear Information System (INIS)

    Zuo, Qiaolin; Qiu, Suizheng; Lu, Wei; Tian, Wenxi; Su, Guanghui; Xiao, Zejun

    2013-01-01

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions

  10. Water hammer characteristics of integral pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Qiaolin [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Lu, Wei; Tian, Wenxi; Su, Guanghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Xiao, Zejun [Nuclear Power Institute of China, Chengdu, Sichuan 610041 (China)

    2013-08-15

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions.

  11. Comparative study of a novel liquid–vapour separator incorporated gravitational loop heat pipe against the conventional gravitational straight and loop heat pipes – Part I: Conceptual development and theoretical analyses

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; He, Wei; Xu, Peng; Zhao, Xudong; Tan, Junyi

    2015-01-01

    Highlights: • We proposed a liquid–vapour separator incorporated gravity-assisted loop heat pipe. • Comparative study of the thermal performance of three heat pipes were conducted. • A dedicated steady-state thermal model of three heat pipes were developed. • Optimum operational settings of the new loop heat pipe were recommended. • The new loop heat pipe could achieve a significantly enhanced heat transfer effect. - Abstract: Aim of the paper is to investigate the thermal performance of a novel liquid–vapour separator incorporated gravity-assisted loop heat pipe (GALHP) (T1), against a conventional GALHP (T2) and a gravitational straight heat pipe (T3), from the conceptual and theoretical aspects. This involved a dedicated conceptual formation, thermo-fluid analyses, and computer modelling and results discussion. The innovative feature of the new GALHP lies in the integration of a dedicated liquid–vapour separator on top of its evaporator section, which removes the potential entrainment between the heat pipe liquid and vapour flows and meanwhile, resolves the inherent ‘dry-out’ problem exhibited in the conventional GALHP. Based on this recognised novelty, a dedicated steady-state thermal model covering the mass continuity, energy conservation and Darcy equations was established. The model was operated at different sets of conditions, thus generating the temperature/pressure contours of the vapour and liquid flows at the evaporator section, the overall thermal resistance, the effective thermal conductivity, and the flow resistances across entire loop. Comparison among these results led to determination of the optimum operational settings of the new GALHP and assessment of the heat-transfer enhancement rate of the new GALHP against the conventional heat pipes. It was suggested that the overall thermal resistance of the three heat pipes (T1, T2, and T3) were 0.10 °C/W, 0.49 °C/W and 0.22 °C/W, while their effective thermal conductivities were

  12. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  13. Primary loop simulation of the SP-100 space nuclear reactor

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F.

    2011-01-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  14. Reactor primary coolant system pipe rupture study. Progress report No. 33, January--June 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase 1), analytical and experimental efforts (Phase 2) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue crack growth rate studies focused on LWR primary piping materials in a simulated BWR primary coolant environment, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, (c) studies directed at quantifying weld sensitization in Type 304 stainless steel, (d) support studies to characterize the electrochemical potential behavior of a typical BWR primary water environment and (e) special tests related to simulation of fracture surfaces characteristic of IGSCC field failures

  15. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  16. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  17. Thermo-hydrodynamics of closed loop pulsating heat pipe: an experimental study

    International Nuclear Information System (INIS)

    Pachghare, Pramod R.; Mahalle, Ashish

    2014-01-01

    The experimental result on the thermal performance of closed loop pulsating heat pipe (CLPHP) is presented. The CLPHP is made of copper capillary tubes, having inner and outer diameters of 2.0 mm and 3.6 mm respectively. The working fluids employed are water, ethanol, methanol and acetone also binary mixture (1:1 by volume) of water-ethanol, water-methanol and water-acetone. For all experimentations, filling ratio (FR) 50%, two-turns and vertical bottom heat mode position was maintained. The lengths of evaporator, condenser and adiabatic section are selected as 42 mm, 50 mm and 170 mm, respectively. The transparent adiabatic section is partially made of glass tube having length 80 mm, for flow visualization. The CFD analysis by VOF model in Star CCM+ simulation is carried out to validate the experimental results. The result shows that the thermal resistance decreases smoothly up to 40W heat input, thereafter reasonably steady. In comparison with all working fluids, water-acetone binary working fluid has shown the best thermal performance over other working fluids used in CLPHPs.

  18. Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera

    Science.gov (United States)

    Meng, Qingliang; Yang, Tao; Li, Chunlin

    2016-10-01

    As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.

  19. Thermal performance of a small-scale loop heat pipe for terrestrial application

    International Nuclear Information System (INIS)

    Chung, Won Bok; Boo, Joon Hong

    2004-01-01

    A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm x 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of 100 .deg. C. The minimum thermal load of 10 W (0.8 W/cm 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 .deg. C with horizontal position

  20. Low-noise cooling system for PC on the base of loop heat pipes

    International Nuclear Information System (INIS)

    Pastukhov, Vladimir G.; Maydanik, Yury F.

    2007-01-01

    The problem of current importance connected with a wide use of personal computers (PC) and a rapid growth of their performance is a decrease in the noise level created at the operation of cooling system fans. One of the possible ways of solving this problem may be the creation of passive or semi-passive systems on the base of loop heat pipes (LHPs) in which the heat sink is an external radiator cooled by natural and/or forced air convection. The paper presents the results of development and tests of several variants of such systems, which are capable of sustaining an operating temperature of 72-78 deg. C on the heat source thermal interface which dissipates 100 W at an ambient temperature of 22 deg. C. It is also shown that the use of additional means of active cooling in combination with LHPs allows to increase the value of dissipated heat up to 180 W and to decrease the system thermal resistance down to 0.29 deg. C/W

  1. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    CERN Document Server

    Pereira, H; Silva, P; Wu, J; Koettig, T

    2010-01-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...

  2. Thermal performance of horizontal closed-loop oscillating heat-pipe with check valves

    International Nuclear Information System (INIS)

    Rittidech, S.; Pipatpaiboon, N.; Thongdaeng, S.

    2010-01-01

    This research investigated the thermal performance of various horizontal closed-loop oscillating heat-pipe systems with check valves (HCLOHPs/CVs). Numerous test systems were constructed using copper capillary tubes with assorted inner diameters, evaporator lengths, and check valves. The test systems were evaluated under normal operating conditions using ethanol, R123, and distilled water as working fluids. The system's evaporator sections were heated by hot water from a hot bath, and the heat was removed from the condenser sections by cold water from a cool bath. The adiabatic sections were well insulated with foam insulators. The heat-transfer performance of the various systems was evaluated in terms of the rate of heat transferred to the cold water at the condenser. The results showed that the heat-transfer performance of an HCLOHP/CV system could be improved by decreasing the evaporator length. The highest performance of all tested systems was obtained when the maximum number of system check valves was 2. The maximum heat flux occurred with a 2 mm inner diameter tube, and R123 was determined to be the most suitable working fluid

  3. Condenser design optimization and operation characteristics of a novel miniature loop heat pipe

    International Nuclear Information System (INIS)

    Wan Zhenping; Wang Xiaowu; Tang Yong

    2012-01-01

    Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.

  4. Thermo-hydrodynamics of closed loop pulsating heat pipe: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Pachghare, Pramod R. [Government College of Engineering, Amravati (India); Mahalle, Ashish [Laxminarayan Institute of Technology, Nagpur (India)

    2014-08-15

    The experimental result on the thermal performance of closed loop pulsating heat pipe (CLPHP) is presented. The CLPHP is made of copper capillary tubes, having inner and outer diameters of 2.0 mm and 3.6 mm respectively. The working fluids employed are water, ethanol, methanol and acetone also binary mixture (1:1 by volume) of water-ethanol, water-methanol and water-acetone. For all experimentations, filling ratio (FR) 50%, two-turns and vertical bottom heat mode position was maintained. The lengths of evaporator, condenser and adiabatic section are selected as 42 mm, 50 mm and 170 mm, respectively. The transparent adiabatic section is partially made of glass tube having length 80 mm, for flow visualization. The CFD analysis by VOF model in Star CCM+ simulation is carried out to validate the experimental results. The result shows that the thermal resistance decreases smoothly up to 40W heat input, thereafter reasonably steady. In comparison with all working fluids, water-acetone binary working fluid has shown the best thermal performance over other working fluids used in CLPHPs.

  5. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  6. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  7. Pressure and Temperature of the Room 1 for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R

    2005-08-15

    This report deals with the prediction of the pressure and temperature of the room 1 for the pipe break accidents of the 3-pin fuel test loop. The 3-pin fuel test loop is an experimental facility for nuclear fuel tests at the operation conditions similar to those of PWR and CANDU power plants. Because the most processing systems of the 3-pin fuel test loop are placed in the room 1. The structural integrity of the room 1 should be evaluated for the postulated accident conditions. Therefore the pressures and temperatures of the room 1 needed for the structural integrity evaluation have been calculated by using MARS code. The pressures and temperatures of the room 1 have been calculated in various conditions such as the thermal hydraulic operation parameters, the locations of pipe break, and the thermal properties of the room 1 wall. It is assumed that the pipe break accident occurs in the letdown operation without regeneration, because the mass and energy release to the room 1 is expected to be the largest. As a result of the calculations the maximum pressure and temperature are predicted to be 208kPa and 369.2K(96.0 .deg. C) in case the heat transfer is considered in the room 1 wall. However the pressure and temperature are asymptotically 243kPa and 378.1K(104.9 .deg. C) assuming that the heat transfer does not occur in the room 1 wall.

  8. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  9. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  10. Steady 3D Numerical Simulation of the Evaporator and Compensation Chamber of a Loop Heat Pipe

    Directory of Open Access Journals (Sweden)

    A. V. Nedayvozov

    2017-01-01

    Full Text Available The paper presents results of a steady three-dimensional numerical simulation of a flat evaporator and compensation chamber (CC of a loop heat pipe (LHP and describes a procedure of the thermal state calculation of the evaporator and the compensation chamber.The LHP is an efficient heat transfer device operating on the principle of evaporation-condensation cycle. It is successfully used in space technology and also to cool the heat-stressed components of electronic devices and computer equipment. The authors carried out a numerical study of the influence of the condensate pipeline length, immersed in water, on the thermal state of the evaporator and the compensation chamber.  The paper shows the influence of the mass forces field on the calculation results. Presents all the numerical studies carried out by the authors for a brass flat evaporator with a thermal load of 80 W. Water is used as a LHP heat-transfer fluid. Fields of temperature, pressure and velocity are presented for each design option.Based on the calculation results, the authors came to the following conclusions:Influence of the mass forces field for the LHP of this type is significant and leads to arising water vortex flow in the condensate pipeline and CC, thereby mixing and equalizing the water temperature in the CC and in the porous element, reducing the maximum temperature of the porous element;The increasing section length of the condensate pipeline in the CC leads to increasing velocity of the heat-transfer fluid in the CC and in the porous element, decreasing mixing zone of the condensate in the CC, and increasing temperature non-uniformity of the porous element.

  11. Analytical Investigation of the Heat-Transfer Limits of a Novel Solar Loop-Heat Pipe Employing a Mini-Channel Evaporator

    Directory of Open Access Journals (Sweden)

    Thierno M. O. Diallo

    2018-01-01

    Full Text Available This paper presents an analytical investigation of heat-transfer limits of a novel solar loop-heat pipe developed for space heating and domestic hot water use. In the loop-heat pipe, the condensate liquid returns to the evaporator via small specially designed holes, using a mini-channel evaporator. The study considered the commonly known heat-transfer limits of loop-heat pipes, namely, the viscous, sonic, entrainment, boiling and heat-transfer limits due to the two-phase pressure drop in the loop. The analysis considered the main factors that affect the limits in the mini-channel evaporator: the operating temperature, mini-channel aspect ratio, evaporator length, evaporator inclination angle, evaporator-to-condenser height difference and the dimension of the holes. It was found that the entrainment is the main governing limit of the system operation. With the specified loop design and operational conditions, the solar loop-heat pipe can achieve a heat-transport capacity of 725 W. The analytical model presented in this study can be used to optimise the heat-transfer capacity of the novel solar loop-heat pipe.

  12. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident.

  13. Primary pipe rupture accident analysis for the Clinch River Breeder Reactor

    International Nuclear Information System (INIS)

    Albright, D.C.; Bari, R.A.

    1976-04-01

    In this report, the thermal transient response of the CRBR to a severe primary coolant flow perturbation, initiated by a rupture of the primary heat transport system piping, is analyzed. This hypothetical accident is studied under the further assumption that the plant protection system does function according to current design descriptions for the CRBR. Although a brief discussion of an unprotected (no scram) pipe rupture accident is presented, the major emphasis of the present report is on the protected accident

  14. Investigation of the conservatism associated with different combinations between primary and secondary piping responses

    International Nuclear Information System (INIS)

    Wang, Y.K.; Subudhi, M.; Bezler, P.

    1983-01-01

    This report includes the findings of an investigation of the conservatism associated with different combinations between the primary and secondary stress components for piping systems under dynamic loading, such as in an earthquake event. The primary stresses are induced by piping response to its mass inertia effects. The secondary stresses are induced by relative displacements of piping supports. The study involves an independnent time history analysis of several typical piping models to predict a best estimate of the actual dynamic and pseudo-static pipe responses to an earthquake. These piping systems are also analyzed using the response spectrum method to obtain the maximum primary stress components. Secondary stresses are next calculated by performing a set of static analyses which provide the worst stress condition. The two components are then combined by both SRSS and absolute sum methods as the results are compared with time history solutions. It is found that the SRSS combination of the primary and secondary stress components yield acceptable results provided the secondary stress component is calculated in the most unfavorable phasing relationship among displacements of piping supports

  15. Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe

    International Nuclear Information System (INIS)

    Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin

    2017-01-01

    Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.

  16. Identifying and mitigating flow-induced vibration in recycle loop gas piping at a centrifugal compressor station

    Energy Technology Data Exchange (ETDEWEB)

    Broerman, Eugene L.; Gatewood, Jason T.; O' Grady, James T. [Southwest Research Institute, San Antonio, TX (United States); Troy, Russell F. [Spectra Energy, Houston, TX (United States); Rand, Charles L.; Stroud, Gary T. [R-S-H Engineering, Monroe, LA (United States)

    2010-07-01

    The South East Supply Header joining Delhi, Louisiana, to Coden, Alabama, was put into service in 2008. During start-up of the mainline compressor station, located near Lucedale, MS, high amplitude vibration was detected on the second elbow downstream of the anti-surge valve/fast stop valve piping tee in the recycle loop piping. The aim of this paper is to present the issue and the solution adopted. An investigation of the high vibration was carried out and was followed by Strouhal and acoustic analyses. A solution to the problem was then proposed and mechanically analyzed. It was found that upfront analyses of these types can give an accurate prediction of the vibration and could have avoided the problem encountered and saved a lot of time and money since the modification costs were about 10 times higher than those for a typical analysis made at the installation design phase would have been.

  17. Remote mechanized equipment for the repair and replacement of boiling water reactor recirculation loop piping

    International Nuclear Information System (INIS)

    Mauser, D.; Busch, D.F.

    1983-01-01

    Equipment has been assembled for the remote repair or replacement of boiling water reactor nuclear plant piping in the diameter range of 4 to 28 inches (10-71 cm). The objectives of this program were to produce high-quality pipe welds, reduce plant downtime, and reduce man-rem exposure. The repair strategy was to permit repair personnel to install and check out the repair subsystems and then leave the radiation zone allowing the operations to be conducted at a distance of up to 300 feet (91 m) from the operator. The complete repair system comprises subsystems for pipe severing, dimensional gaging, joint preparation, counterboring, welding, postweld nondestructive inspection (conceptual design), and audio, electronic, and visual monitoring of all operations. Components for all subsystems, excluding those for postweld nondestructive inspection, were purchased and modified as needed for integration into the repair system. Subsystems were designed for two sizes of Type 304 stainless steelpipe. For smaller, 12-inch-diameter (30.5 cm) pipe, severing is accomplished by a power hack saw and joint preparation and counterboring by an internally mounted lathe. The 22-inch-diameter (56 cm) pipe is severed, prepared, and counterbored using an externally mounted, single-point machining device. Dimensional gaging is performed to characterize the pipe geometry relative to a fixed external reference surface, allowing the placement of the joint preparation and the counterbore to be optimized. For both pipe sizes, a track-mounted gas tungsten-arc welding head with filler wire feed is used

  18. Mechanical Properties of Post Irradiation Primary Cooling Piping of Bandung Research Reactor

    International Nuclear Information System (INIS)

    Histori; Renaningsih S; Sri Nitiswati; Ari Triyadi

    2003-01-01

    Testing on primary coolant piping of research reactor Bandung have been done. Primary coolant piping were made from Al 6061-T6. The goal of this activity is to investigate the mechanical properties changes caused by aging process after 33 years in irradiated. Type of testing i.e visual examination, thickness measurement, tensile and hardness test were done. The test data shown that there was a deposit at the inside surface of pipe, thickness decreased about 0.2 mm, tensile strength is 293 MPa, yield strength is 262 MPa, while the hardness is about 83 HRE (mean value). The test data than compared with ASTM standard. As the conclusion tensile and yield strength of pipe still fulfill the ASTM requirements, except the hardness is unsignificantly less/decreased. (author)

  19. Oil in the FFTF secondary loop cover gas piping. Final unusual occurrence report

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the discovery of oil in the FFTF secondary sodium system cover gas piping. A thorough evaluation has been performed and corrective actions have been implemented to prevent a recurrence of this event

  20. A leak-before-break strategy for CANDU primary piping systems

    International Nuclear Information System (INIS)

    Aggarwal, M.L.; Kozluk, M.J.; Lin, T.C.; Manning, B.W.; Vijay, D.K.

    1986-01-01

    Recent advances in elastic-plastic fracture mechanics have made it possible to assess the stability of cracks in ductile piping systems. These technological developments have been used by Ontario Hydro as the nucleus of an approach for demonstrating that CANDU primary heat transport piping systems will not break catastrophically; at worst they would leak at a detectable rate. This leak-before-break approach has been taken on the Darlington nuclear generating station as a design stage alternative to the provision of pipe whip restraints on large diameter, primary heat transport system piping. Positive conclusions reached via this approach are considered sufficient to exclude the requirement to provide protective devices, such as pipe whip restraints. In arriving at the proposed leak-before-break approach a review of current and proposed leak-before-break licensing positions of other jurisdictions (particularly those in the United States and the Federal Republic of Germany) was carried out. The approach presented makes use of recent American developments in the area of elastic-plastic fracture mechanics. It also gives consideration to aspects which are unique to the pressurized heavy water (CANDU) reactors used by Ontario Hydro. The proposed leak-before-break approach is described and its use is illustrated by applying it to the Darlington generating station primary heat transport system pump suction piping. (author)

  1. Team collaborative innovation management based on primary pipes automatic welding project

    International Nuclear Information System (INIS)

    Li Jing; Wang Dong; Zhang Ke

    2012-01-01

    The welding quality of primary pipe directly affects the safe operation of nuclear power plants. Primary pipe automatic welding, first of its kind in China, is a complex systematic project involving many facets, such as design, manufacturing, material, and on-site construction. A R and D team was formed by China Guangdong Nuclear Power Engineering Co., Ltd. (CNPEC) together with other domestic nuclear power design institutes, and manufacturing and construction enterprises. According to the characteristics of nuclear power plant construction, and adopting team collaborative innovation management mode, through project co-ordination, resources allocation and building production, education and research collaborative innovation platform, CNPEC successfully developed the primary pipe automatic welding technique which has been widely applied to the construction of nuclear power plant, creating considerable economic benefits. (authors)

  2. Reactor Primary Coolant System Pipe Rupture Study. Progress report No. 32, July--December 1974

    International Nuclear Information System (INIS)

    1975-03-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase I), analytical and experimental efforts (Phase II) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue studies focused on Elastic/Plastic ASME Code Design Rules, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, and (c) studies directed at quantifying weld sensitization in T-304 stainless steel. (auth)

  3. SCC of Alloy 600 components in PWR primary loop

    International Nuclear Information System (INIS)

    Gomez-Briceno, Dolores; Lapena, Jesus; Castano, M. Luisa; Blazquez, Fernando

    2002-01-01

    initiation time has been determined. A detailed fractographic study of the fracture surface points out that the appearance of the fracture, intergranular in all the cases, is related to the susceptibility of the material. For the crack growth rate test, CT specimens tested under constant load were used. Specimens were fabricated from five Alloy 600 heats (two forged bars, cold work and hot work tubes, and a plate) with yield strength ranging from 280 to 413 MPa. Crack growth rate data were obtained at temperatures between 290 and 330 deg. C. Activation energy for both processes, crack initiation and propagation has been determined. On the other hand, in January 1994, during a refueling outage, an ID axial throughwall crack was detected in one of the RVH nozzle of Jose Cabrera Nuclear Plant in Spain. Extensive NDE examination of all the vessel head penetrations confirmed ID axially oriented indications in several of the nozzles. The cause of the extensive cracking detected was identified as an IGA/SCC process in primary water contaminated with sulphur species due to a cation resin ingress in the primary loop during the early 1980s. In order to confirm the postulated degradation process and to assess its relevance for other alloy 600 components in the reactor primary loop, an experimental program was performed. The scope of this program included to study the behaviour of sensitised alloy 600 in the water conditions postulated as the cause of the cracking and to obtain crack growth rate data in similar conditions, at 285 and 325 deg. C. In addition, the behaviour of the sensitised alloy 600 in shutdown conditions was also studied. In this paper the main results of these experimental programs, including no published data, will be presented and discussed in the light of the available results from other laboratories. (author)

  4. Piping Flexibility Analysis of the Primary Cooling System of TRIGA 2000 Bandung Reactor due to Earthquake

    International Nuclear Information System (INIS)

    Rahardjo, H.P.

    2011-01-01

    Earthquakes in a nuclear installation can overload a piping system which is not flexible enough. These loads can be forces, moments and stresses working on the pipes or equipment. If the load is too large and exceed the allowable limits, the piping and equipment can be damaged and lead to overall system operation failure. The load received by piping systems can be reduced by making adequate piping flexibility, so all the loads can be transmitted homogeneously throughout the pipe without load concentration at certain point. In this research the analysis of piping stress has been conducted to determine the size of loads that occurred in the piping of primary cooling system of TRIGA 2000 Reactor, Bandung if an earthquake happened in the reactor site. The analysis was performed using Caesar II software-based finite element method. The ASME code B31.1 arranging the design of piping systems for power generating system (Power Piping Code) was used as reference analysis method. Modeling of piping systems was based on the cooling piping that has already been installed and the existing data reported in Safety Analysis Reports (SARs) of TRIGA 2000 reactor, Bandung. The quake considered in this analysis is the earthquake that occurred due to the Lembang fault, since it has the Peak Ground Acceleration (PGA) in the Bandung TRIGA 2000 reactor site. The analysis results showed that in the static condition for sustain and expansion loads, the stress fraction in all piping lines does not exceed the allowable limit. However, during operation moment, in dynamic condition, the primary cooling system is less flexible at sustain load, expansion load, and combination load and the stress fraction have reached 95,5%. Therefore a pipeline modification (re-routing) is needed to make pipe stress does not exceed the allowable stress. The pipeline modification was carried out by applied a gap of 3 mm in the X direction of the support at node 25 and eliminate the support at the node 30, also a

  5. Evaluation of ASME code flaw analysis procedure using the influence function method for application to PWR primary piping

    International Nuclear Information System (INIS)

    Hong, S.Y.; Yeater, M.L.

    1985-01-01

    This paper discusses stress intensity factor calculations and fatigue analysis for a PWR primary coolant piping system. The influence function method is applied to evaluate ASME Code Section XI Appendix A ''analysis of flaw indication'' for the application to a PWR primary piping. Results of the analysis are discussed in detail. (orig.)

  6. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Harvey, Karen; Ferrada, Juan J.

    2011-01-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  7. IEA-R1 primary and secondary coolant piping systems coupled stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A.; Mattar Neto, Miguel

    2013-01-01

    The aim of this work is to perform the stress analysis of a coupled primary and secondary piping system of the IEA-R1 based on tridimensional model, taking into account the as built conditions. The nuclear research reactor IEA-R1 is a pool type reactor projected by Babcox-Willcox, which is operated by IPEN since 1957. The operation to 5 MW power limit was only possible after the conduction of life management and modernization programs in the last two decades. In these programs the components of the coolant systems, which are responsible for the water circulation into the reactor core to remove the heat generated inside it, were almost totally refurbished. The changes in the primary and secondary systems, mainly the replacement of pump and heat-exchanger, implied in piping layout modifications, and, therefore, the stress condition of the piping systems had to be reanalyzed. In this paper the structural stress assessment of the coupled primary and secondary piping systems is presented and the final results are discussed. (author)

  8. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    International Nuclear Information System (INIS)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

    2016-01-01

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  9. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa, E-mail: farahnazifanourin@gmail.com; Salsabil, Zaimaa; Yasmin, Nusrat, E-mail: nusratyasmin015@gmail.com [Military Institute of Science and Technology, Mirpur Cantonment, Dhaka -1216 (Bangladesh); Ali, Mohammad [Bangladesh University of Engineering and Technology, Dhaka -1000 (Bangladesh)

    2016-07-12

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  10. An experimental study on the performance of closed loop pulsating heat pipe (CLPHP) with methanol as a working fluid

    Science.gov (United States)

    Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad

    2016-07-01

    Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2mm,outer diameter is 2.5mm and 250mm long. The CLPHP has 8 loops where the evaporation section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.

  11. Contributions to the initial development of a microelectromechanical loop heat pipe, which is based on coherent porous silicon

    Science.gov (United States)

    Cytrynowicz, Debra G.

    The research project itself was the initiation of the development of a planar miniature loop heat pipe based on a capillary wick structure made of coherent porous silicon. Work on this project fell into four main categories, which were component fabrication, test system construction, characterization testing and test data collection, performance analysis and thermal modeling. Component fabrication involved the production of various components for the evaporator. When applicable, these components were to be produced by microelectronic and MEMS or microelectromechanical fabrication techniques. Required work involved analyses and, where necessary, modifications to the wafer processing sequence, the photo-electrochemical etching process, system and controlling computer program to make it more reliable, flexible and efficient. The development of more than one wick production process was also extremely necessary in the event of equipment failure. Work on developing this alternative also involved investigations into various details of the photo-electrochemical etching process itself. Test system construction involved the actual assembly of open and closed loop test systems. Characterization involved developing and administering a series of tests to evaluate the performance of the wicks and test systems. Although there were some indications that the devices were operating according to loop heat pipe theory, they were transient and unstable. Performance analysis involved the construction of a transparent evaporator, which enabled the visual observation of the phenomena, which occurred in the evaporator during operation. It also involved investigating the effect of the quartz wool secondary wick on the operation of the device. Observations made during the visualization study indicated that the capillary and boiling limits were being reached at extremely low values of input power. The work was performed in a collaborative effort between the Biomedical Nanotechnology Research

  12. Primary coolant pipe rupture study AT(49-24)-0202

    International Nuclear Information System (INIS)

    Hale, D.A.; Clarke, W.L. Jr.

    1977-01-01

    Fatigue crack growth rate tests were conducted on 304 stainless steel and 516 carbon steel in a simulated BWR primary water environment. A study was carried out to determine the feasibility of measuring sensitization in type 304 SS by use of an Electrochemical Potentiokinetic Reactivation (EPR) technique, develop correlations between degree of sensitization (as measured electrochemically) and the intergranular stress corrosion cracking (IGSCC) resistance of type 304 SS, and provide technical data for evaluating the degree of sensitization and IGSCC susceptibility of welded components. 27 figures, 8 tables

  13. Applications and Prospects of Modularization Technology in HTR Project Starting from Primary Loop Cavity Construction

    International Nuclear Information System (INIS)

    Yang Guokang; Chen Jing; Huang Wen; Lin Lizhi; Sun Yunlun; Chen Yan; Mao Jiaxin; Wang Yougang; Wang Jinwen; Lin Mingfeng; Yang Mingshan

    2014-01-01

    Primary loop cavity is one of the key areas and major difficulties in HTR-PM project construction. In order to shorten the construction schedule and improve the construction quality, researches on modular design and construction of primary loop cavity has been carried out and the results have been applied in HTR-PM project construction, and got significant application benefit. This paper summarizes the modularization technology application research and project implementation results of primary loop cavity, and analyzes the application and prospects of modularization technology in the HTR project construction. (author)

  14. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  15. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  16. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Patel, Vipul M.; Gaurav; Mehta, Hemantkumar B.

    2017-01-01

    Highlights: • Startup mechanism and thermal performance of a CLPHP is reported. • Influence of pure fluids, water-based binary fluids and surfactant solutions are investigated. • Startup heat flux is observed lower for acetone and higher for water compared to all other working fluids. • Thermal resistance is observed to decrease with increase in heat input irrespective of working fluids. • CLPHP is observed to perform better with acetone, water-acetone, water-45 PPM and water-60 PPM surfactant solutions. - Abstract: Development of efficient cooling system is a tricky and challenging task in the field of electronics. Pulsating heat pipe has a great prospect in the upcoming days for an effective cooling solution due to its excellent heat transfer characteristics. Experimental investigations are reported on a Closed Loop Pulsating Heat Pipe (CLPHP). The influence of working fluids on startup mechanism and thermal performance of a CLPHP are carried out on 2 mm, nine turn copper capillary. Total eleven (11) working fluids are prepared and investigated. Deionized (DI) Water (H_2O), ethanol (C_2H_6O), methanol (CH_3OH) and acetone (C_3H_6O) are used as pure fluids. The water-based mixture (1:1) of acetone, methanol and ethanol are used as binary fluids. Sodium Dodecyl Sulphate (SDS, NaC_1_2H_2_5SO_4) is used as a surfactant to prepare the water-based surfactant solutions of 30 PPM, 45 PPM, 60 PPM and 100 PPM. The filling ratio is kept as 50%. The vertical bottom heating position of a CLPHP is considered. Heat input is varied in the range of 10–110 W. Significant influence is observed for water-based binary fluids and surfactant solutions on startup mechanism and thermal performance of a CLPHP compared to DI water used as the pure working fluid.

  17. Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Spinato, Giulia; Borhani, Navid; Thome, John R.

    2015-01-01

    In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained. - Highlights: • A novel synchronized thermal and visual investigation technique was applied to a CLPHP. • Thermal and hydrodynamic behaviors were analyzed by means of spectral analysis. • 3D frequency spectra for temperature and flow data show significant trends. • A spring-mass-damper system model was developed for the two-phase flow motion. • System stiffness and mass have an effect on the two-phase flow dynamics.

  18. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.

  19. A lead-before-break strategy for primary heat transport piping of 500 MWe Indian PHWR

    International Nuclear Information System (INIS)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    1997-01-01

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work related to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300 degrees C. Two important observations of the experiments are - appreciable drop in maximum load at 300 degrees C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis

  20. Model for cobalt 60/58 deposition on primary coolant piping in a boiling water reactor

    International Nuclear Information System (INIS)

    Dehollander, W.R.

    1979-01-01

    A first principles model for deposition of radioactive metals into the corrosion films of primary coolant piping is proposed. It is shown that the predominant mechanism is the inclusion of the radioactive species such as Cobalt 60 into the spinel structure of the corrosion film during the act of active corrosion. This deposition can occupy only a defined fraction of the available plus 2 valence sites of the spinel. For cobalt ions, this ratio is roughly 4.6 x 10 -3 of the total iron sites. Since no distinction is made between Cobalt 60, Cobalt 58, and Cobalt 59 in this process, the radioactivity associated with this inclusion is a function of the ratio of the radioactive species to the nonradioactive species in the water causing the corrosion of the pipe metal. The other controlling parameter is the corrosion rate of the pipe material. This can be a function of time, for example, and it shown that freshly descaled metal when exposed to the cobalt containing water can incorporate as much as 10 x 10 -3 cobalt ions per iron atom in the initial corrosion period. This has implications for the problem of decontaminating nuclear reactor piping. Equations and selected observations are presented without reference to any specifically identified reactor or utility, so as to protect any proprietary interest

  1. Piping Stress analysis for primary system of nuclear power plant AP-600

    International Nuclear Information System (INIS)

    Tjahjono, Hendro; Arhatari, B.D.; W, Pustandyo; Sitandung, J.B; Sudarmaji, Djoko

    1999-01-01

    Piping stress analysis for AP-600 primary system has been done using software CAEPIPE and PS-CAEPIPE. The loading applied to the system are static and seismic category I and II piping in reactor building have been analysed, those are PXS-900, CVS-110, PCS-030, CAS-700 and CCS-050. These system contain pipes with the normal diameter of 1 , 2 , 4 a nd 8 . The design pressures are in the range of 150oF to 300oF. The acceleration taken as input in PS-CAEPIPE is based on seismic response spectra of floor the piping is located. In CAEPIPE, the acceleration taken from the peak of response spectra multiplied by 1.7 all of the acceleration in this case are no more than 0.36g. The result shows that after locating some supports, all system are acceptable without snubbers. The maximum stress are 11210 psi for deadweight load and 35593 psi for total load (the allowable values are 15000 psi and 45000 psi). The maximum displacement are 0.123 in for deadweight load, 1.474 in for hot load seismic load (the allowable values are 0.125 in for deadweight and 2.5 in for total load). The difference results of the both software is mainly in seismic calculation where mare parameters can be evaluated by PS-CAEPIPE including to evaluate valves acceleration in seismic condition

  2. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  3. Vibration test on KMRR reactor structure and primary cooling system piping

    International Nuclear Information System (INIS)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author)

  4. Mathematical Modeling of Loop Heat Pipes with Multiple Capillary Pumps and Multiple Condensers. Part 1; Stead State Stimulations

    Science.gov (United States)

    Hoang, Triem T.; OConnell, Tamara; Ku, Jentung

    2004-01-01

    Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.

  5. Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick

    International Nuclear Information System (INIS)

    Boo, Joon Hong; Chung, Won Bok

    2005-01-01

    A small-scale Loop Heat Pipe (LHP) with polypropylene wick was fabricated and tested for investigation of its thermal performance. The container and tubing of the system were made of stainless steel and several working fluids were tested including methanol, ethanol, and acetone. The heating area was 35 mm x 35 mm and nine axial grooves were provided in the evaporator to provide vapor passages. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 μm to 25 μm. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 mm. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. Start-up characteristics as well as steady-state performance was analyzed and discussed. The minimum thermal load of 10 W (0.8W/cam 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 deg. C with horizontal position

  6. Thermal resistance of rotating closed-loop pulsating heat pipes: Effects of working fluids and internal diameters

    Directory of Open Access Journals (Sweden)

    Kammuang-Lue Niti

    2017-01-01

    Full Text Available The objective of this study was to experimentally investigate the effects of working fluids and internal diameters on the thermal resistance of rotating closed-loop pul¬sating heat pipes (RCLPHP. The RCLPHP were made of a copper tube with internal diameters of 1.50 mm and 1.78 mm, bent into the shape of a flower petal, and arranged into a circle with 11 turns. The evaporator section was located at the outer end of the tube bundle. R123, ethanol, and water were filled as the working fluids. The RCLPHP was rotated at centrifugal accelerations 0.5, 1, 3, 5, 10, and 20 times of the gravitational acceleration considered at the connection between the evaporator and the condenser sections. The heat input was varied from 30 W to 50 W, and then to 100 W, 150 W, and 200 W. It can be concluded that when the latent heat of evaporation increases, the pressure difference between the evaporator and the condenser sections decreases, and the thermal resistance increases. Moreover, when the internal diameter increases, the driving force increases and the frictional force proportionally decreases, or the Karman number increases, and the thermal resistance decreases.

  7. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  8. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1992-03-01

    The behavior of stress corrosion cracking (SCC) was studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants (NPPs). Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and tubes of heat transfer, such as Incoloy-800, Inconel-600 and 321 SS which are used for steam generator in PWR NPPs. The effects of material metallurgy, shot peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC were considered

  9. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1993-01-01

    The behavior of stress corrosion cracking (SCC) is studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants. Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and steam generator tubes, such as Incoloy-800, Inconel-600, Inconel-690 and 321 SS which are used for steam generator in PWR. The effects of material metallurgy, shot-peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC are investigated

  10. LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld

    International Nuclear Information System (INIS)

    Howell, S.K.

    1978-01-01

    A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report

  11. Ratchetting behavior of primary heat transport (PHT) piping material SA-333 carbon steel subjected to cyclic loads at room temperature

    International Nuclear Information System (INIS)

    Kulkarni, S.; Desai, Y.M.; Kant, T.; Reddy, G.R.; Gupta, C.; Chakravarthy, J.K.

    2004-01-01

    Ratchetting behavior of SA-333 Gr. 6 carbon steel used as primary heat transport (PHT) piping material has been investigated with three constitutive models proposed by Armstrong-Frederick, Chaboche and Ohno-Wang involving different hardening rules. Performance of the above mentioned models have been evaluated for a broad set of uniaxial and biaxial loading histories. The uniaxial ratchetting simulations have been performed for a range of stress ratios (R) by imposing different stress amplitudes and mean stress conditions. Numerical simulations indicated significant ratchetting and opening of hysteresis loop for negative stress ratio with constant mean stress. Application of cyclic stress without mean stress (R = -1.0) has been observed to produce negligible ratchet-strain accumulation in the material. Simulation under the biaxial stress condition was based on modeling of an internally pressurized thin walled pipe subjected to cyclic bending load. Numerical results have been validated with the experiments as per simulation conditions. All three models have been found to predict the observed accumulation of circumferential strain with increasing number of cycles. However, the Armstrong Frederick (A-F) model was found to be inadequate in simulating the ratchetting response for both uniaxial as well as biaxial loading cases. The A-F model actually over-predicted the ratchetting strain in comparison with the experimental strain values. On the other hand, results obtained with the Chaboche and the Ohno-Wang models for both the uniaxial as well as biaxial loading histories have been observed to closely simulate the experimental results. The Ohno-Wang model resulted in better simulation for the presents sets of experimental results in comparison with the Chaboche model. It can be concluded that the Ohno-Wang model suited well compared to the Chaboche model for above sets of uniaxial and biaxial loading histories. (authors)

  12. Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe

    International Nuclear Information System (INIS)

    Al-Kayiem, Ali; Yu, Zhibin

    2016-01-01

    A new configuration (“a looped-tube with a bypass pipe”) was recently proposed for low temperature travelling wave thermoacoustic engines and a prototype using atmospheric air as the working gas achieved an onset temperature difference as low as 65 °C. However, no further research has been reported about this new configuration to reveal its advantages and disadvantages. This paper aims to analyse this type of engine through a comprehensive numerical research. An engine of this type having dimensions similar to the reported prototype was firstly modelled. The calculated results were then qualitatively compared with the reported experimental data, showing a good agreement. The working principle of the engine was demonstrated and analysed. The research results show that an engine with such a bypass configuration essentially operates on the same thermodynamic principle as other travelling wave thermoacoustic engines, differing only in the design of the acoustic resonator. Both extremely short regenerators and a near-travelling wave resonator minimise the engine's acoustic losses, and thus significantly reduce its onset temperature difference. However, such short regenerators likely cause severe heat conduction losses, especially if the engine is applied to heat sources with higher temperatures. Furthermore, the acoustic power flowing back to the engine core is relatively low, while a large stream of acoustic power has to propagate within its resonator to maintain an acoustic resonance, potentially leading to low power density. The model was then applied to design an engine with a much longer regenerator and higher mean pressure to increase its power density. A thermoacoustic cooler was also added to the engine to utilise its acoustic power, allowing the evaluation of thermal efficiency. The pros and cons of the engine configuration are then discussed. - Highlights: • Analysed the working principle of a bypass type thermoacoustic engine. • Analysed the pros and

  13. Swift BAT Thermal Recovery After Loop Heat Pipe #0 Secondary Heater Controller Failure in October 2015

    Science.gov (United States)

    Choi, Michael K.

    2016-01-01

    The Swift BAT LHP #0 primary heater controller failed on March 31, 2010. It has been disabled. On October 31, 2015, the secondary heater controller of this LHP failed. On November 1, 2015, the LHP #0 CC temperature increased to as 18.6 C, despite that the secondary heater controller set point was 8.8 C. It caused the average DM XA1 temperature to increase to 25.9 C, which was 5 C warmer than nominal. As a result, the detectors became noisy. To solve this problem, the LHP #1 secondary heater controller set point was decreased in 0.5 C decrements to 2.2 C. The set-point decrease restored the average DM XA1 temperature to a nominal value of 19.7 C on November 21.

  14. Correlation of analysis with high level vibration test results for primary coolant piping

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1992-01-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results

  15. Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid

    Science.gov (United States)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2018-02-01

    A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.

  16. Reliability of CRBR primary piping: critique of stress-strength overlap method for cold-leg inlet downcomer

    International Nuclear Information System (INIS)

    Bari, R.A.; Buslik, A.J.; Papazoglou, I.A.

    1976-04-01

    A critique is presented of the strength-stress overlap method for the reliability of the CRBR primary heat transport system piping. The report addresses, in particular, the reliability assessment of WARD-D-0127 (Piping Integrity Status Report), which is part of the CRBR PSAR docket. It was found that the reliability assessment is extremely sensitive to the assumed shape for the probability density function for the strength (regarded as a random variable) of the cold-leg inlet downcomer section of the primary piping. Based on the rigorous Chebyschev inequality, it is shown that the piping failure probability is less than 10 -2 . On the other hand, it is shown that the failure probability can be much larger than approximately 10 -13 , the typical value put forth in WARD-D-0127

  17. Analysis on the heat balance between CEFR and the primary loop system

    International Nuclear Information System (INIS)

    Liu Shangbo; Yang Hongyi; Li Jing; Wang Xiongying

    2013-01-01

    The heat balance ability of reactor is very important to design and operation. Special heat balance analysis and calculation software shall be available. This article analyzes and calculates in details the heat source and cooling power of the main cooling system of the primary loop in China Experimental Faster Reactor (CEFR), and develops a calculation code. By using the steady state heat balance data of 26.5% Pn and 40% Pn in CEFR during power start-up, the heat balance ability of the primary loop is verified. The results show that the calculation model is reliable, and can provide technical support to building heat balance in CEFR operation. (authors)

  18. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application

    International Nuclear Information System (INIS)

    Putra, Nandy; Ariantara, Bambang; Pamungkas, Rangga Aji

    2016-01-01

    Highlights: • Flat plate loop heat pipe (FPLHP) is studied in the thermal management system for electric vehicle. • Distilled water, alcohol, and acetone on thermal performances of FPLHP were tested. • The FPLHP can start up at fairly low heat load. • Temperature overshoot phenomena were observed during the start-up period. - Abstract: The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this growth is accompanied by the risk of thermal runaway, which can cause serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight and compact size, and they do not require external power supply. This study examined experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol, and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gave the best performance that produces a thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm"2.

  19. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  20. Development of new design mechanical seal tester for Primary Loop Recirculation Pump (PLR Pump)

    International Nuclear Information System (INIS)

    Fukushima, Naoki; Koshiba, Koremutsu

    1995-01-01

    The mechanical seal for a Primary Loop Recirculation Pump (PLR Pump) is an important part of a BWR plant. This study describes a new mechanical seal tester developed to certify mechanical seal performance before installation in a PLR Pump on site. (author)

  1. A study on heat transfer through the fin-wick structure mounted in the evaporator for a plate loop heat pipe system

    International Nuclear Information System (INIS)

    Nguyen, Xuan Hung; Sung, Byung Ho; Choi, Jee Hoon; Kim, Chul Ju; Yoo, Jung Hyung; Seo, Min Whan

    2008-01-01

    This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components

  2. One-Loop Operation of Primary Heat Transport System in MONJU During Heat Transport System Modifications

    International Nuclear Information System (INIS)

    Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.

    2006-01-01

    MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)

  3. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  4. 平板型MLHP温度波动研究%Investigation of Temperature Oscillation in Miniature Loop Heat Pipe with Flat Evaporator

    Institute of Scientific and Technical Information of China (English)

    盖东兴; 刘伟; 刘志春; 杨金国

    2009-01-01

    环路热管(Loop Heat Pipe,LHP)是一种靠蒸发器的毛细芯产生毛细力驱动回路运行,利用工质相变来传递热量的高效传热装置.研制了一套平板式蒸发器、风冷式冷凝器的小型环路热管(MLHP),MLHP的毛细芯为500目不锈钢丝网,工质为丙酮,蒸发器、冷凝器以及所有管路均由紫铜制成.主要研究了平板型MLHP在不同热负荷条件下的温度波动特性,并重点研究了倾角以及充灌量等对MLHP系统温度波动的影响,且给出相应的合理解释.实验结果表明,平板式MLHP在2~3W/cm~2热流密度区间范围内容易发生温度波动.%Loop heat pipes are heat transfer devices based on the evaporation and condensation of a working fluid, and using capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (MLHP) with flat evaporator and a fin-and-tube type condenser. The loop was made of pure copper with stainless mesh wick and acetone was used as the working fluid. At low heat loads, temperature oscillations were observed throughout the loop. The characteristics of temperature oscillation of the flat MLHP at heat fluxes from 2W/cm~2 to 3W/cm~2were studied. The compensation chamber was considered as the most critical component of the MLHP and its hydrodynamic state dictated the extent and the characteristics of the temperature oscillations for the input heat load. The heat leaks from the evaporator to the compensation chamber, the heat loss to ambient and subcooled liquid temperature dictated the vapor condition inside the compensation chamber, and the rate of vapor growth or dissipation dictated the nature of the temperature oscillation. The effects of different liquid charging ratio and the tilt angle to the temperature oscillations were studied in detail.

  5. On the failure probability of the primary piping of the PWR

    International Nuclear Information System (INIS)

    Schueller, G.I.; Hampl, N.C.

    1984-01-01

    A methodology for quantification of the structural reliability of the primary piping (PP) of a PWR under operational and accidental conditions is developed. Biblis B is utilized as reference plant. The PP structure is modeled utilizing finite element procedures. Based on the properties of the operational and internal accidental conditions, a static analysis suffices. However, a dynamic analysis considering non-linear effects of the soil-structure-interaction is to be used to determine load effects due to earthquake induced loading. Considering realistically the presence of initial cracks in welds and considering annual frequencies of occurrence of the various loading conditions, a crack propagation calculation utilizing the Forman model is carried out. Simultaneously leak and break probabilities using the 'Two Criteria'-Aproach are computed. A Monte Carlo simulation procedure is used as method of solution. (Author) [pt

  6. Presentation of accessibility equipment for primary pipings, IHX, pumps and appertaining manipulator tests

    International Nuclear Information System (INIS)

    Hahn, G.; Hoeft, E.

    1980-01-01

    Accessibility and inservice procedure of SNR-300 components are described. Due to the high radiation level in the primary system it was necessary to develop special equipment to permit access to the testing components. The pertinent examination methods for surveying welding seams are acoustic (ultrasonic) and optical procedures (TV cameras, surface crack tests). This can be done by remote-controlled manipulators and special devices, which can transport the inspection system by rails to the testing position. Presently, relatively limited experience exists for such remote-controlled handling in nuclear power plants. Thus model experiments were carried out on a model pipe section at INTERATOM. The performed test shows that the concept planned to perform inservice by using remote-controlled manipulators can be realized successfully. (author)

  7. International piping integrity research group (IPIRG) program final report

    International Nuclear Information System (INIS)

    Schmidt, R.; Wilkowski, G.; Scott, P.; Olsen, R.; Marschall, C.; Vieth, P.; Paul, D.

    1992-04-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Programme. The IPIRG Programme was an international group programme managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United states. The objective of the programme was to develop data needed to verify engineering methods for assessing the integrity of nuclear power plant piping that contains circumferential defects. The primary focus was an experimental task that investigated the behaviour of circumferentially flawed piping and piping systems to high-rate loading typical of seismic events. To accomplish these objectives a unique pipe loop test facility was designed and constructed. The pipe system was an expansion loop with over 30 m of 406-mm diameter pipe and five long radius elbows. Five experiments on flawed piping were conducted to failure in this facility with dynamic excitation. The report: provides background information on leak-before-break and flaw evaluation procedures in piping; summarizes the technical results of the programme; gives a relatively detailed assessment of the results from the various pipe fracture experiments and complementary analyses; and, summarizes the advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG Program

  8. Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Afrose, Tonima; Tahmina, Halima Khatun; Rinky, Rumana Parvin; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new innovation in the modern era of miniaturizes thermal management system for its higher heating and cooling capacity. The objective of this experiment is to observe the performance of open loop pulsating heat pipe using two fluids at different filling ratios. This OLPHP is a copper capillary tube of 2.5mm outer diameter and 2mm inner diameter. It consists of 8 loops where the evaporative section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is conducted with distilled water and acetone at 40%, 50%, 60%, and 70% filling ratios where 0° (vertical) is considered as definite angle of inclination. Distilled water and acetone are selected as working fluids considering their different latent heat of vaporization and surface tension. It is found that acetone shows lower thermal resistance than water at all heat inputs. Best performance of acetone is attained at 70% filling ratio. Water displays better heat transfer capability at 50% filling ratio.

  9. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  10. Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines

    Science.gov (United States)

    Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji

    Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.

  11. Dose rates modeling of pressurized water reactor primary loop components with SCALE6.0

    International Nuclear Information System (INIS)

    Matijević, Mario; Pevec, Dubravko; Trontl, Krešimir

    2015-01-01

    Highlights: • Shielding analysis of the typical PWR primary loop components was performed. • FW-CADIS methodology was thoroughly investigated using SCALE6.0 code package. • Versatile ability of SCALE6.0/FW-CADIS for deep penetration models was proved. • The adjoint source with focus on specific material can improve MC modeling. - Abstract: The SCALE6.0 simulation model of a typical PWR primary loop components for effective dose rates calculation based on hybrid deterministic–stochastic methodology was created. The criticality sequence CSAS6/KENO-VI of the SCALE6.0 code package, which includes KENO-VI Monte Carlo code, was used for criticality calculations, while neutron and gamma dose rates distributions were determined by MAVRIC/Monaco shielding sequence. A detailed model of a combinatorial geometry, materials and characteristics of a generic two loop PWR facility is based on best available input data. The sources of ionizing radiation in PWR primary loop components included neutrons and photons originating from critical core and photons from activated coolant in two primary loops. Detailed calculations of the reactor pressure vessel and the upper reactor head have been performed. The efficiency of particle transport for obtaining global Monte Carlo dose rates was further examined and quantified with a flexible adjoint source positioning in phase-space. It was demonstrated that generation of an accurate importance map (VR parameters) is a paramount step which enabled obtaining Monaco dose rates with fairly uniform uncertainties. Computer memory consumption by the S N part of hybrid methodology represents main obstacle when using meshes with large number of cells together with high S N /P N parameters. Detailed voxelization (homogenization) process in Denovo together with high S N /P N parameters is essential for precise VR parameters generation which will result in optimized MC distributions. Shielding calculations were also performed for the reduced PWR

  12. Application of the leak-before-break concept to the primary circuit piping of the Leningrad NPP

    Energy Technology Data Exchange (ETDEWEB)

    Eperin, A.P.; Zakharzhevsky, Yu.O.; Arzhaev, A.I. [and others

    1997-04-01

    A two-year Finnish-Russian cooperation program has been initiated in 1995 to demonstrate the applicability of the leak-before-break concept (LBB) to the primary circuit piping of the Leningrad NPP. The program includes J-R curve testing of authentic pipe materials at full operating temperature, screening and computational LBB analyses complying with the USNRC Standard Review Plan 3.6.3, and exchange of LBB-related information with emphasis on NDE. Domestic computer codes are mainly used, and all tests and analyses are independently carried out by each party. The results are believed to apply generally to RBMK type plants of the first generation.

  13. PWR type reactor equipped with a primary circuit loop water level gauge

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro.

    1990-01-01

    The time of lowering a water level to less than the position of high temperature side pipeway nozzle has been rather delayed because of the swelling of mixed water level due to heat generation of the reactor core. Further, there has been a certain restriction for the installation, maintenance and adjustment of a water level gauge since it is at a position under high radiation exposure. Then, a differential pressure type water level gauge with temperature compensation is disposed at a portion below a water level gauge of a pressurizer and between the steam generator exit plenum and the lower end of the loop seal. Further, a similar water level system is disposed to all of the loops of the primary circulation circuits. In a case that the amount of water contained in a reactor container should decreased upon occurrence of loss of coolant accidents caused by small rupture and stoppage of primary circuit pumps, lowering of the water level preceding to the lowering of the water level in the reactor core is detected to ensure the amount of water. Since they are disposed to all of the loops and ensure the excess margin, reliability for the detection of the amount of contained water can be improved by averaging time for the data of the water level and averaging the entire systems, even when there are vibrations in the fluid or pressure in the primary circuit. (N.H.)

  14. Efficiency of the pre-heater against flow rate on primary the beta test loop

    International Nuclear Information System (INIS)

    Edy Sumarno; Kiswanta; Bambang Heru; Ainur R; Joko P

    2013-01-01

    Calculation of efficiency of the pre-heater has been carried out against the flow rate on primary the BETA Test Loop. BETA test loop (UUB) is a facilities of experiments to study the thermal hydraulic phenomenon, especially for thermal hydraulic post-LOCA (Lost of Coolant Accident). Sequences removal on the BETA Test Loop contained a pre-heater that serves as a getter heat from the primary side to the secondary side, determination of efficiency is to compare the incoming heat energy with the energy taken out by a secondary fluid. Characterization is intended to determine the performance of a pre-heater, then used as tool for analysis, and as a reference design experiments. Calculation of efficiency methods performed by operating the pre-heater with fluid flow rate variation on the primary side. Calculation of efficiency on the results obtained that the efficiency change with every change of flow rate, the flow rate is 71.26% on 163.50 ml/s and 60.65% on 850.90 ml/s. Efficiency value can be even greater if the pre-heater tank is wrapped with thermal insulation so there is no heat leakage. (author)

  15. Measurement of tritium activity in the aluminum pipe of JRR-2 heavy water primary cooling system using imaging plate

    International Nuclear Information System (INIS)

    Motoishi, Shoji; Kobayashi, Katsutoshi

    2000-12-01

    JRR-2 is the heavy water cooling type nuclear reactor, which has been operated for 36 years (1960-1976) and in the process of decommissioning at present. For this reason, evaluation of tritium quantity permeated into the pipe and apparatus of the primary coolant heavy water circulating system is important. In the Radioisotope Production Division, activity of tritium in aluminum pipe was measured with imaging plate (IP), liquid scintillation analyzer and high purity germanium detector (HPGe). After acrylic paints was applied for the region except for tritium contamination on the surface of aluminum pipe, only the oxidized contaminated part was dissolved by 1.5%(1.21M) HF for 3 minutes, and measured with IP. As a result, the tritium was found to permeate in the depth of 25 μm. Moreover, 90% of it was found to be distributed within 7 μm. (author)

  16. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  17. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  18. Defect occurrence, detection, location and characterization; essential variables of the LBB concept application to primary piping

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, S.; Koble, T.D.; Lemaitre, P. [and others

    1997-04-01

    Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weld material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.

  19. Study on the Break Accidents of the HTR-PM Primary Loop

    International Nuclear Information System (INIS)

    Lang Minggang; Sun Ximing; Zheng Yanhua

    2014-01-01

    In thermal hydraulics design and safety analysis of the HTR-PM, the THERMIX code was used to study the behavior of the helium in the primary system. Once the helium leaks from the primary loop through a break or a relief valve, it is hard to simulate the states of the leakage room with THERMIX. In this paper, the latest version of RELAP5/MOD4, was used to simulate the behavior of the helium released to the containment rooms. A RELAP5/MOD4 model of the HTR-PM, including the core, the primary system, the secondary loop and the containment, were developed and evaluated in this paper. Based on the model, this paper studied the accidents consequences of a large break in the pressure relief room and a small break in the instrument room of the HTR-PM reactor building. The simulating results illustrate that the temperature in the pressure relief room was no more than 200℃ after a un-isolating large break, and the temperature in the instrument room is less than 130 ℃ after a small un-isolating break. The analysis shows that the scram function and the ability to monitor the reactor temperature and pressure after accidents would not be affected by the break. (author)

  20. Mathematical modelling for magnetite (crude removal from primary heat transfer loop by ion-exchange resins

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-04-01

    Full Text Available The present research focuses to develop mathematical model for the removal of iron (magnetite by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that’s provide more effective design as compared to loading capacity from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.

  1. Identification of Standing Pressure Waves Sources in Primary Loops of NPP with WWER and PWR

    Directory of Open Access Journals (Sweden)

    K.N. Proskuriakov

    2016-05-01

    Full Text Available Results of measurement and calculation of Eigen frequencies of coolant pressure oscillations in primary loops of NPP are presented. The simple calculation model based on equivalence of electric circuit with elastic wave propagation in liquids and gases, which gives a sensible interpretation of standing pressure waves sources is developed. It is shown, that pressurizer manifest itself as managed Helmholtz resonator generating a number of SPW (with Eigen frequencies of steam volume, water volume and their combination with coolant volume of respiratory line.

  2. Experimental and theoretical investigations on the behaviour of cracks in primary coolant piping

    International Nuclear Information System (INIS)

    Steinbuch, R.; Bartholome, G.; Felski, N.; Kastner, W.

    1981-01-01

    During the investigations of the government-sponsored R+D programs (RS 104 and RS 320) experimental and theoretical work has been performed to describe the leak before break behaviour and the extent of instable crack growth. The test pipes are 300 mm ID pipes made of 20MnMoNi55. Three of them had been welded to a pressure reservoir to simulate the situation of a real system of piping and components as related to hydrodynamics. The instrumentation of the specimen was designed to describe - temperature and pressure during failure - effect of reservoir on depressurisation - motion of the pipe - leakage area as function of time - crack arrest length. At two experiments the pressure dropped to saturation but in others for a short period the pressure was remarkably lower. (orig./GL)

  3. The Canadian approach to protection against postulated primary heat transport piping failures

    International Nuclear Information System (INIS)

    Jarman, B.L.

    1985-10-01

    In Canada, the Atomic Energy Control Act and Regulations stipulate in broad terms the requirements to be met by licensees. In addition, AECB staff have prepared licensing guides to amplify those requirements. For nuclear reactors, these include providing suitable protection against the consequences of failure of any pipe in the reactor cooling system. The suggested means of limiting the damage caused by whipping pipes or steam jets is by separation of equipment, installing barriers, or restraining piping. If, however, the designer can demonstrate that restraints are impractical or detrimental to safety, AECB staff may consider alternate arguments based on a demonstration that piping is likely to crack and then leak for a long time prior to rupture. This alternative approach would not be considered for ruptures having a high probability of defeating containment, damaging essential safety systems, or of disrupting flow to the core to the extent that fuel cooling could not be maintained

  4. Air ingress behavior during a primary-pipe rupture accident of HTGR

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki

    1997-11-01

    The inherent properties of a HTGR facilitates the design with high degree of passive safe performances, compared to other type. However, it is still not clear if the present HTGR can maintain a passive safe function during a primary-pipe rupture accident, or what would be design criteria to guarantee the HTGR with the high degree of passive safe performances during the accident. To investigate safe characteristics, the study has been performed experimentally and analytically on the air ingress behavior during the accident. It was indicated that there are two stages in the accident of the HTGR having a reverse U-shaped channel. In the first stage, an air ingress process limits molecular diffusion and natural circulation of the gas mixture having a very slow velocity. In the second stage, the air ingress process limits the ordinary natural circulation of air throughout the reactor. A numerical calculation code has been developed to analyze thermal-hydraulic behavior during the first stage. This code provides a numerical method for analyzing a transport phenomena in a multi-component gas system by solving one-dimensional basic equations and using a flow network model. It was possible to predict or analyze the air ingress process regarding the density of the gas mixture, concentration of each gas species and duration of the first stage of the accident. It was indicated that the safe characteristics of the HTGR from the present experiment as follows. The safety cooling rate that the air ingress process terminates during the first stage exists in the HTGR having the reverse U-shaped channel. Moreover, the ordinary natural circulation of air can not produce in the second stage by injecting helium from the bottom of the pressure vessel corresponding the low-temperature side channel. Therefore, it was found that the idea of helium injection is one of useful methods for the prevention of air ingress and of graphite corrosion in the future HTGRs. (J.P.N.). 74 refs

  5. Sensitivity Study of the Peak Cladding Temperature for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R.

    2005-12-01

    The effect of the thermal hydraulic operation parameters, the stroke times of safety-related valves, the node number of test fuel for MARS modeling, and the axial power distribution on the peak cladding temperature (PCT) has been investigated for the loss of coolant accident of the 3-pin fuel test loop. The thermal hydraulic operation parameters investigated are the thermal power of the fuel test loop and the flow rate, temperature, and pressure of the main cooling water. The effect of the thermal power and the coolant temperature on the peak cladding temperature is dominant as compared with that of the coolant flow rate and pressure. The maximum PCT increases up to about 34.3K for the room 1 LOCA when the thermal power increase by 5% of the normal operation power and decreases up to about 38.9K for the room 1 LOCA when the coolant temperature decrease by 2% of the normal operation temperature. The effect of the stroke time of the loop isolation valves on the PCT is also dominant. However the effect of the stroke time of the safety injection valves and depressurization vent valves are negligible. Especially the maximum PCT increases up to 25.7K with the increase of the design stroke time of the cold leg loop isolation valve by 13% and decreases up to 25.1K with the decrease of the design stroke time by 13%. The maximum PCT increases by 3.3K as the number of nodes increases from 7 to 14 for the MARS model of test fuel. Three different axial power distributions are also investigated. The maximum PCT occurs for the room 1 LOCA in case the peak power is shifted to the downstream by 20cm

  6. Characterisation of girth pipe weld for primary heat transport system of pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Singh, P.K.; Vaze, K.K.; Kushwaha, H.S.

    2002-01-01

    The weld and heat affected zone (HAZ) associated with the girth weld are most vulnerable regions of the piping system. The different regions of the weld joint such as the weld metal, HAZ and base metal lead to heterogeneous mechanical and metallurgical properties of the joints. Due to their different metallurgical and mechanical properties, the amounts of damage produced in these regions are different when the component is subjected to service condition. Thus, it is imperative to know the characteristics of these regions of a pipe weld in order to identify the weakest zone for safe designing of high energy piping components. In view of this necessity the present study has been planned to carry out complete characterisation of the weld joint of SA 333 Gr.6 steel pipe, in terms of its metallurgical, mechanical and fracture properties. The mechanical and fracture mechanics properties of the base metal, weld deposit and HAZ have been compared and correlated with reference to their microstructures. Weld joints of SA 333 Gr.6 steel pipe have been prepared by using GTAW root pass and SMAW filling of V-grove as per recommended welding procedure specifications (WPS) conforming to ASME Sec IX commonly used to fabricate nuclear piping system components. The emphasis of the study is to characterise base, weld and HAZ of the pipe weld in terms of chemical, metallurgical, mechanical and fracture mechanics properties. The fracture toughness behaviour of the welds and HAZ has been characterised by J-integral parameters. The fatigue crack growth rate has been characterised by Paris Law. Stretched zone width (SZW) has been measured under SEM to evaluate initiation fracture toughness. The estimated initiation fracture toughness based on SZW and blunting line given by EGF recommendation have been compared. The fracture mechanics properties of base, weld and HAZ has been determined and compared. The fracture mechanics properties of the weld and HAZ have been correlated to their

  7. High cyclic fatigue of PWR primary piping generated by the pressure pulsations in coolant

    International Nuclear Information System (INIS)

    Zd'arek, J.; Pecinka, L.; Zeman, V.

    1999-01-01

    The protection of nuclear piping Class 1, 2 and 3 against fatigue failure is according to standard western practise and is based on - determining the cumulative usage factor (CUF) using equation (11) of ASME Code, Section III, Article NB 3653 for Class 1 piping; - Markl experiments and equation (10) of ASME Code, Section III, Article NC/ND 3653 for Class 2/3 piping. These evaluations cover only low cyclic loading and the possible influence of high cyclic loading as for example vibratory stresses generated by the main circulating pumps are not taken into account. This problem is fully covered in the Czech and Russian codes. The goal of this paper is 1. to clarify the basic principles; 2. to discuss in detail the methodology for the calculation of high frequency vibratory stresses; and 3. to demonstrate with a numerical example, the degree of influence of the CUF. (orig.)

  8. Experimental Study on the Natural Circulation Characteristics in the Primary Loop of the SMART Reactor by using the VISTA Facility

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Yi, Sung-Jae; Park, Choon-Kyung; Chung, Moon-Ki

    2007-01-01

    The SMART uses a two-phase natural circulation in the PRHRS loop to remove the heat from the steam generators to the PRHRS heat exchangers, while a single phase natural circulation occurs in the primary loop to transfer the decay heat from the core to the steam generator. Natural circulation operation with a power range of 20 ∼ 25% was considered for SMART and nowadays the possibility of increasing the power level during the natural circulation operation is being investigated. Previously Park et al. performed several experiments by using the VISTA facility on the thermal-hydraulic characteristics of the PRHRS for the SMART-P, which includes a single-phase natural circulation in the primary loop. From the analysis with the TASS-SMR code it was shown that the reference temperature for the primary steam generator inlet temperature should be increased in order to compensate for the decreased core flow. To investigate the possibility of an increase of the power and reference temperature, it is necessary to get experimental data to characterize the natural circulation phenomena in the primary loop of the SMART. In this paper, the characteristics of natural circulation in the primary loop are experimentally investigated during various operational conditions by using the VISTA facility

  9. US NRC research on the integrity of piping in nuclear reactor primary systems

    International Nuclear Information System (INIS)

    Serpan, C.Z. Jr.

    1983-01-01

    This paper has attempted to provide a ''snapshot'' of the activities underway in NRC on the subject of LWR piping integrity as of the summer and fall of 1983. The paper is necessarily vague on certain topics of policy because they are either under review or are under development and the outcome cannot be accurately forecast at this time. Particularly in the area of BWR pipe cracking, events are very rapid so that positions and actions described in this paper may well be obsolete by the time it is published. Nevertheless, the activities and positions are as accurate as possible at the time of writing. Certainly the longer-range aspects of the research program represent the current direction and intent of NRC; nevertheless, as results come in and actions occur in the licensing and regulation arena of operating reactors, the emphasis of the research programs will necessarily shift to accommodate them so as to remain as relevant as possible. Thus, this paper is useful to show the intentions of NRC in the area of research for LWR piping, and it is also useful to document the status of the regulations on piping for which the research is being performed. (orig.)

  10. Shippingport Station Decommissioning Project: Removal of piping and equipment and removal of primary system components

    International Nuclear Information System (INIS)

    1989-01-01

    This report is a technical synopsis of the removal of contaminated and non-contaminated piping and equipment from the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document dismantling activities in support of reactor decommissioning. 5 refs., 29 figs., 4 tabs

  11. Study on the production mechanism of Co-60 in the primary loop of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Xie Feng; Li Hong; Cao Jianzhu; Li Fu; Wei Liqiang

    2015-01-01

    Co-60 is an activated metallic erosion product, which is very important for waste management and decommissioning work of pressurized water reactor (PWR) power plants. Recent measurement on the samples from the primary loop of HTR-10 indicates the existence of Co-60. In current paper, the preliminary experimental results in HTR-10 will be introduced, and the production mechanism of Co-60 in the pebble bed high temperature gas-cooled reactors will be summarized and compared with that in PWRs and Germany High Temperature Nuclear Reactor (AVR). The further experiments with decomposing the post-irradiation graphite spheres of HTR-10 are put forward, which will promote the further study to testify the production sources of Co-60 and be of great significance in the waste minimization and the decommissioning work of HTR-10. (author)

  12. Assessment and management of ageing of major nuclear power plant components important to safety. Primary piping in PWRs

    International Nuclear Information System (INIS)

    2003-07-01

    guidance reports are directed at technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. This report addresses the primary piping in PWRs including main coolant piping, surge and spray lines, Class 1 piping in attached systems, and small diameter piping that cannot be isolated from the primary coolant system. Maintaining the structural integrity of this piping throughout NPP service life in spite of several ageing mechanisms is essential for plant safety

  13. Cutting of CO2 primary circuit pipes of G 2/G 3 using explosive charges

    International Nuclear Information System (INIS)

    Imbard, G.; Le Goaller, C.; Ravera, J.P.; Bonnier, Y.; Guilbert, J.P.; Puntous, R.

    1994-01-01

    The objective of this work is to cut large diameter contaminated pipes from the CO 2 cooling system of the gas-cooled reactors by means of explosive charges and to use the resulting shock wave to remove part of the contamination fixed inside the pipe. Two types of tests have been conducted using different explosives in different forms (the decontamination and the cutting tests) and are described. After testing the cutting modules and decontamination fuses, the effects of the detonations on the environment have been measured and were greater than expected. A metal containment device was therefore designed to absorb part of the energy dissipated by the shock wave and retain the debris from the explosions. A description of the tests conducted for this purpose is given. (O.L.). 7 figs., 3 tabs

  14. Compilation of references, data sources and analysis methods for LMFBR primary piping system components

    International Nuclear Information System (INIS)

    Reich, M.; Esztergar, E.P.; Ellison, E.G.; Erdogan, F.; Gray, T.G.F.; Wells, C.W.

    1977-03-01

    A survey and review program for application of fracture mechanics methods in elevated temperature design and safety analysis has been initiated in December of 1976. This is the first of a series of reports, the aim of which is to provide a critical review of the theories of fracture and the application of fracture mechanics methods to life prediction, reliability and safety analysis of piping components in nuclear plants undergoing sub-creep and elevated temperature service conditions

  15. Application of LBB to high energy piping systems in operating PWR

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  16. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Ueda, Masashi; Yamashita, Takuya; Narisawa, Masataka; Haga, Kouichi

    2011-01-01

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  17. A new photovoltaic solar-assisted loop heat pipe/heat-pump system%新型光伏-太阳能环形热管/热泵复合系统

    Institute of Scientific and Technical Information of China (English)

    张龙灿; 裴刚; 张涛; 季杰

    2014-01-01

    The photovoltaic solar assisted loop heat pipe system/heat-pump (PV-SALHP/HP) is the combination of solar assisted loop heat pipe system (SALHP) and solar assisted heat pipe (SAHP). A photovoltaic/thermal (PVT) evaporator and condenser could be shared by two circling modes, and so is the working medium. The loop heat pipe mode will be utilized when solar radiation is strong and the temperature of working medium in PVT evaporator is higher than that in condenser. Correspondingly, the heat pump mode will be started when solar radiation is weak or the temperature difference of working medium in PVT evaporator and condenser cannot satisfy the condition of loop heat pipe mode. The loop heat pipe mode is passive and the heat pump mode is active, which means that the loop heat pipe mode does not consume work and the heat pump mode does. Therefore, the transformable mode of system could heavily reduce power consumption, raise the utilization ratio of solar energy, and promote energy saving. A PV-SAHP/LHP test rig is built. The instantaneous and daily performance of the loop heat pipe mode and heat pump mode is studied.%光伏-太阳能环形热管/热泵复合系统将太阳能环形热管循环模式和太阳能热泵循环模式有机结合,两者采用相同的工质,共用一个PVT蒸发器和冷凝器。当太阳辐照强度较强,工质在PVT蒸发器中的温度高于冷凝器中的温度时,可以利用环形热管模式制热;当太阳辐照强度较弱或工质在PVT蒸发器中与冷凝器中的温差无法满足环形热管模式运行时,可以利用热泵模式制热。两种模式既能够独立运行,又可以互相切换,确保热能的稳定供应,同时能够明显降低系统耗电量。搭建了光伏-太阳能环形热管/热泵复合系统实验平台,对复合系统在环形热管模式和热泵模式独立运行时的瞬时性能和全天性能进行了实验研究。

  18. Vibration monitoring of the primary piping systems during the hot functional tests of the Mulheim-Karlich PWR

    International Nuclear Information System (INIS)

    Bauernfeind, V.; Bloem, T.; Pache, W.; Diederich, H.J.

    1989-01-01

    During the hot functional tests of the Muelheim--Kaerlich first-of-a-kind plant, vibration measurements were made on the reactor pressure vessel and its' internals and on the primary piping system and main coolant pumps. This paper contains results of the measurements taken on the pipes and the pumps with an interpretation of these measurements based on an analytical model of the primary system. The main aim of the measurement program is to confirm that the components, which are of new design, are adequately dimensioned for the operational vibration loads during the service life of the reactor. In addition, the vibrational modes of the hot lines, the steam generators and the pumps with the adjacent cold lines were determined. These values were compared with the analytically calculated resonance frequencies and eigenforms. Good agreement was found. In the course of these comparisons, information on the modelling of the supporting structures and the efficiency of the damping elements during normal operation was obtained

  19. International Piping Integrity Research Group (IPIRG) Program. Final report

    International Nuclear Information System (INIS)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program

  20. International Piping Integrity Research Group (IPIRG) Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Schmidt, R.; Scott, P. [and others

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  1. Design of a pressurized water loop heated by electric resistances

    International Nuclear Information System (INIS)

    Ribeiro, S.V.G.

    1981-01-01

    A pressurized water loop design is presented. Its operating pressure is 420 psi and we seek to simulate qualitatively some thermo-hydraulic phenomena of PWR reactors. The primary circuit simulator consists basically of two elements: 1)the test section housing 16 electric resistences dissipating a total power of 100 Kw; 2)the loop built of SCH40S 304L steel piping, consisting of the pump, a heat exchanger and the pressurizer. (Author) [pt

  2. Countermeasure against thermal fatigue crack of primary loop recirculation pump in BWR

    International Nuclear Information System (INIS)

    Noda, Hiroshi; Narabayashi, Tadashi; Takahashi, Yuuji

    2008-01-01

    The reactor water was fed to the purge water of the mechanical seal on the original design of the primary loop recirculation pump. Because the mechanical seal had a short life due to the cruds in the reactor water, the clean purge water was adopted instead of the reactor water. After this modification, the shallow cracks were found on the surface of the pump shaft and casing cover due to the temperature fluctuation between the cold purge water and the hot pump discharge water. The fundamental mechanism and countermeasure were investigated by scale test, mock-up test and so on. The flow barrier with a heater was contrived through these tests. It has been introduced gradually in operating and constructing PLR pumps after its completion in 1995. The PLR pumps are overhauled around every 10 years in Japan. The first overhaul of the PLR pumps showed no cracks around the pump shaft and casing over after 10 years' operation. This paper presents both its development process and inspection results. (author)

  3. Experimental study on air ingress during a primary pipe rupture accident with a graphite reactor core simulator

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki; Hishida, Makoto; Baba, Shinichi

    1991-11-01

    When a primary coolant pipe of a High Temperature Gas Cooled Reactor (HTGR) ruptures, helium gas in the reactor core blows out into the container, and the primary cooling system reduces the pressure. After the pressures are balanced between the reactor and the container, air is expected to enter into the reactor core from the breach. It seems to be probable that the graphite structures is oxidized by air. Hence, it is necessary to investigate the air ingress process and the behavior of the generating gases by the oxidation reactions. The previous experimental study is performed on the molecular diffusion and natural convection of the two component gas mixtures using a test model simulating simply the reactor. Objective of the study was to investigate the air ingress process during the early stage of the primary pipe rupture accident. However, since the model did not have any kind of graphite components, the reaction between graphite and oxygen was not simulated. The present model includes the reactor core and the high temperature plenum simulators made of graphite. The major results obtained in the present study are summarized in the followings: (1) The air ingress process with graphite oxidation reaction is similar to that without the reaction qualitatively. (2) When the reactor core simulator is maintained at low temperatures (lower than 450degC), the initiation time of the natural circulation of air is almost equal to that of the natural circulation of nitrogen. On the other hand, when the temperature of the reactor core simulator is high (more than 500degC), the initiation time of the natural circulation of air is earlier than that of nitrogen. (3) When the temperature of the reactor core simulator is higher than 600degC, oxygen is almost dissipated by the graphite structures. When the temperature of the reactor core simulator is below 700degC, carbon dioxide mainly is generated by the oxidation reactions. (author)

  4. Welded joints engineering design of the primary circuit, surge line and main steam piping of the Angra 2 reactor

    International Nuclear Information System (INIS)

    Volta, Angelo Roberto; Couto, Jose Gonzalo Villaverde

    1995-01-01

    The erection of nuclear systems of a Nuclear Power Station is under international requests, that results in a detailed elaboration of documents for the performance of welds. NUCLEN as an engineering design company, responsible for the erection of Angra 2, developed a suitable software program for the elaboration of welding procedure qualifications, tests and examination sequence plans and heat treatment plans applied to primary circuit, surgeline and main steam piping. The paper shows the employed methodology for the elaboration of these documents, as well as the requested engineering design of welding technology and testability in order to assure the stipulated quality level, according to requirements of the specifications, codes and norms. (author). 6 refs

  5. Vibration monitoring of the primary piping system during the hot functional tests of the Muelheim-Kaerlich PWR

    International Nuclear Information System (INIS)

    Bauernfeind, V.; Bloem, T.; Pache, W.; Diederich, H.J.

    1992-01-01

    During the hot functional tests of the Muelheim-Kaerlich plant, which was the first plant of its type, vibration measurements were made on the reactor pressure vessel and its internal parts and on the primary piping system and the main coolant pumps. This paper contains the results of the measurements taken on the pipes and the pumps with an interpretation of these measurements based on an analytical model of the primary system. The main aim of the measurement programs is to confirm that the components, which are of new structural design, are adequately dimensioned for the operational vibration loads during the service life of the reactor. In addition, the vibrational modes of the hot lines, the steam generators and the pumps with the adjacent cold lines were determined. These values were compared with the analytically calculated resonance frequencies and eigenforms. A good correspondence was found. In the course of these comparisons, information about the modelling of the supporting structures and the efficiency of the damping elements during normal operation was obtained. The vibration of the main coolant pumps was also continuously monitored. The pump surveillance system for each pump includes two non-contacting displacement sensors for measuring the kinetic shaft orbit, as well as velocity sensors for recording the vibrational velocity of the pump motor housing. During the continuous monitoring, it was checked whether the signal amplitudes remained within the allowable limits. In addition the frequency content of the signals was determined periodically. In this way deviations could be detected immediately and be explained by means of subsequent correlation analysis. Thus amplitude changes resulting from resonance effects were identified. (orig.)

  6. Determination of Secondary Encasement Pipe Design Pressure

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  7. Medium-term experiences with in-situ gamma-spectrometry of the primary loop transport processes at Paks NPP

    International Nuclear Information System (INIS)

    Raics, P.; Sztaricskai, T.; Szabo, J.; Szegedi, S.

    2001-01-01

    Surface activity of 15 corrosion/erosion and fission products was determined by in-situ gamma-spectrometry for 2-2 locations on the hot and cold legs of each loop, respectively. Gamma-dosimetry in the assay points was performed. Activity profiles of ion exchange columns were analyzed. Combined measurements along the steam generators completed the characterization of the primary circuits. Most of this technique was regularly included into all maintenance periods. Data evaluation was performed for the surface contaminations as well as coolant activities and reactor operation features for years 1985-2001. Trends and tendencies were investigated in the time behavior of the specific activities. Asymmetry in the surface contamination at the primary loop points, cold-leg activity inversion, water chemistry effects, isotope selectivity were observed. Correlations in different parameters have been calculated and analyzed. (R.P.)

  8. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  9. Fatigue of LMFBR piping due to flow stratification

    International Nuclear Information System (INIS)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface

  10. Vibration analysis of primary inlet pipe line during steady state and transient conditions of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Ayazuddin, S.K.; Qureshi, A.A.; Hayat, T.

    1997-11-01

    The Primary Water Inlet Pipeline (PW-IPL) is of stainless steel conveying demineralized water from hold-up tank to the reactor pool of Pakistan Research Reactor-1 (PARR-1). The section of the pipeline from heat exchangers to the valve pit is hanger supported in the pump room and the rest of the section from valve pit to the reactor pool is embedded. The PW-IPL is subjected to steady state and transient vibrations. The reactor pumps, which drive the coolant through various circuits mainly contribute the steady state vibrations, while transient vibrations arise due to instant closure of the check valve (water hammer). The ASME Boiler and Pressure Vessel code provides data about the acceptable limits of stresses related to the primary static stress due to steady state vibrations. However, due to complexity in the pipe structure, stresses related to the transient vibrations are neglected in the code. In this report attempt has been made to analyzed both steady state and transient vibrations of PW-IPL of PARR-1. Since, both the steady state and transient vibrations affect the hanger-supported section of the PW-IPL, therefore, it was selected for vibration test measurements. In the analysis vibration data was compared with the allowable limits and estimations of maximum pressure build-up, eflection, natural frequency, tensile and shear load on hanger support, and the ratio of maximum combine stress to the allowable load were made. (author)

  11. FFTF report: FFTF piping installation and welding techniques

    International Nuclear Information System (INIS)

    Gilles, J.

    1975-01-01

    The main sodium piping with a diameter of 16'' or 28 '' is being installed at the FFTF construction site starting in December 1974. The supplier and authority demarcations are: Combustion Engineering supplies the reactor vessel, guard vessel and adjoining pipes and uses the machine welding equipment ''Dimetrics''; for the piping system of the primary and secondary loops the pipes manufactured by Rollmet at HUICO, Pasco, were delivered and prefabricated there, as far as compatible with the installation. ''Astroarc'' welding machines are used by Bechtel for the piping prefabrication in the weld laboratory as well as on site at the construction site. Technical welding problems occurring during the course of the installation at the construction site and several during this time are described. At present 6 weld seams in the reactor and 14 weld seams in the secondary loop are accepted. The requirement exists to carry out as many welds as possible automatically, in order to produce sodium pipe welds of high technical quality and which are reproducible. The welding equipment is described

  12. Review of ASME code criteria for control of primary loads on nuclear piping system branch connections and recommendations for additional development work

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Gwaltney, R.C.; Moore, S.E.

    1993-11-01

    This report collects and uses available data to reexamine the criteria for controlling primary loads in nuclear piping branch connections as expressed in Section III of the ASME Boiler and Pressure Vessel Code. In particular, the primary load stress indices given in NB-3650 and NB-3683 are reexamined. The report concludes that the present usage of the stress indices in the criteria equations should be continued. However, the complex treatment of combined branch and run moments is not supported by available information. Therefore, it is recommended that this combined loading evaluation procedure be replaced for primary loads by the separate leg evaluation procedure specified in NC/ND-3653.3(c) and NC/ND-3653.3(d). No recommendation is made for fatigue or secondary load evaluations for Class 1 piping. Further work should be done on the development of better criteria for treatment of combined branch and run moment effects

  13. Components of the primary circuit of LWRs

    International Nuclear Information System (INIS)

    1980-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  14. Implementation of the structural integrity analysis for PWR primary components and piping

    International Nuclear Information System (INIS)

    Pellissier-Tanon, A.

    1982-01-01

    The trends on the definition, the assessment and the application of fracture strength evaluation methodology, which have arisen through experience in the design, construction and operation of French 900-MW plants are reviewed. The main features of the methodology proposed in a draft of Appendix ZG of the RCC-M code of practice for the design verification of fracture strength of primary components are presented. The research programs are surveyed and discussed from four viewpoints, first implementation of the LEFM analysis, secondly implementation of the fatigue crack propagation analysis, thirdly analysis of vessel integrity during emergency core cooling, and fourthly methodology for tear fracture analysis. (author)

  15. Acoustic leak detection in piping systems, 4

    International Nuclear Information System (INIS)

    Kitajima, Akira; Naohara, Nobuyuki; Aihara, Akihiko

    1983-01-01

    To monitor a high-pressure piping of nuclear power plants, a possibility of acoustic leak detection method has been experimentally studied in practical field tests and laboratory tests. Characteristics of background noise in field test and the results of experiment are summarized as follows: (1) The level of background noise in primary loop (PWR) was almost constant under actual plant operation. But it is possible that it rises at the condition of the pressure in primary loop. (2) Based on many experience of laboratory tests and practical field tests. The leak monitoring system for practical field was designed and developed. To improve the reliability, a judgment of leak on this system is used three factors of noise level, duration time of phenomena and frequency spectrum of noise signal emitted from the leak point. (author)

  16. LMFBR flexible pipe joint development program. Annual technical progress report, government fiscal year 1977

    International Nuclear Information System (INIS)

    1978-01-01

    Currently, the ASME Boiler and Pressure Vessel Code does not allow the use of flexible pipe joints (bellows) in Section III, Class 1 reactor primary piping systems. Studies have shown that the primary piping loops of LMFBR's could be simplified by using these joints. This simplification translates directly into shorter primary piping runs and reduced costs for the primary piping system. Further cost savings result through reduced vault sizes and reduced containment building diameter. In addition, the use of flexible joints localizes the motions from thermally-induced piping growth into components which are specifically designed to accommodate this motion. This reduces the stress levels in the piping system and its components. It is thus economically and structurally important that flexible piping joints be available to the LMFBR designer. The overall objective of the Flexible Joint Program is to provide this availability. This will be accomplished through the development of ASME rules which allow the appropriate use of such joints in Section III, Class 1 piping systems and through the development and demonstration of construction methods which satisfy these rules. The rule development includes analytic and testing methodology formulations which will be supported by subscale bellows testing. The construction development and demonstration encompass the design, fabrication, and in-sodium testing of prototypical LMFBR plant-size flexible pipe joints which meet all ASME rule requirements. The satisfactory completion of these developmental goals will result in an approved flexible pipe joint design for the LMFBR. Progress is summarized in the following efforts undertaken during 1977 to accomplish these goals: (1) code case support, (2) engineering and design, (3) material development, (4) testing, and (5) manufacturing development

  17. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    Kozomara-Maic, S.

    1987-06-01

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr

  18. Feasibility analysis of the Primary Loop of Pool-Type Natural Circulating Nuclear Reactor Dedicated to Seawater Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woonho; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the feasibility of natural circulation was evaluated for the reference plant AHR400 (Advanced Heating Reactor 400MWth). AHR400 is a pool-type desalination-dedicated nuclear reactor. As a consequence, AHR400 has low operating pressure and temperature which provides large safety margin. Removal of the reactor coolant pump from the AHR400 will enforce integrity of the reactor vessel and passive safety feature. Therefore, the study also tried to find out optimized primary loop design to achieve total natural circulation of the coolant. Natural circulation capacity of the primary loop of the desalination dedicated nuclear reactor AHR400 was evaluated. It was concluded that to remove RCP from the AHR400 and operates the reactor only by natural circulation of the coolant is impossible. Decreased core power as half make removal of RCP possible with 15m central height difference between the core and IHXs. Furthermore, validation and modification of pressure loss coefficients by small-scaled natural circulation experiment at a pool-type reactor would provide more accurate results.

  19. Reactor loops at Chalk River

    International Nuclear Information System (INIS)

    Sochaski, R.O.

    1962-07-01

    This report describes broadly the nine in-reactor loops, and their components, located in and around the NRX and NRU reactors at Chalk River. First an introduction and general description is given of the loops and their function, supplemented with a table outlining some loop specifications and nine simplified flow sheets, one for each individual loop. The report then proceeds to classify each loop into two categories, the 'main loop circuit' and the 'auxiliary circuit', and descriptions are given of each circuit's components in turn. These components, in part, are comprised of the main loop pumps, the test section, loop heaters, loop coolers, delayed-neutron monitors, surge tank, Dowtherm coolers, loop piping. Here again photographs, drawings and tables are included to provide a clearer understanding of the descriptive literature and to include, in tables, some specifications of the more important components in each loop. (author)

  20. Primary Mesenteric Lipoma Causing Closed Loop Bowel Obstruction: A Case Report

    Directory of Open Access Journals (Sweden)

    Heong-Ieng Wong

    2005-03-01

    Full Text Available Primary mesenteric lipoma is rare, with fewer than 50 cases described in English-language literature, and those causing bowel obstructions are even more uncommon. The long stalk of the lipoma that caused secondary volvulus and rapid ischemic change in our patient is worth reporting because of its rarity and distinctive picture in emergency abdominal computed tomography.

  1. Development of criteria for early ascertainment of damage by monitoring of vibration in primary loops of pressurized water reactors

    International Nuclear Information System (INIS)

    Neumeyer, F.; Schramm, K.; Wehling, H.J.; Bauernfeind, V.; Sunder, R.

    1988-11-01

    Nuclear Safety Standards KTA 3201.4 and KTA 3204 prescribe for all light water reactors installed in the Federal Republic of Germany that their vibration behaviour must be measurable in service. For this reason, most PWR plants in the Federal Republic of Germany are equipped with vibration monitoring systems of the KWU-SUeS type or at least with SUeS subsystems. The said safety standards do not prescribe how vibration should be measured. Over the past 20 years, multifarious efforts have been made in the FR Germany to arrive at objective assessment criteria for use in vibration monitoring. Under the terms of reference of this project, conditions were created for the efficient use of the measurement procedures, and general criteria for the evaluation of the results of vibration monitoring of PWR primary loop components were defined under consideration of all experience to date. (orig.) With 20 refs., 6 tabs., 145 figs [de

  2. The application of viscous dampers as pipe restraints

    International Nuclear Information System (INIS)

    Keowen, R.S.; Hueffmann, G.; Mays, B.; Rencher, D.

    1993-01-01

    Dynamic loading of power generation piping systems may result in nonpermissable deflections and stresses. Fatigue failure translate to increased maintenance costs and possible lost revenue. Undesirable loading can occur due to external events such as earthquakes and internal events such as water and steam hammer, two-phase flow and cavitation. Sway braces and snubbers have been employed to reduce the negative effects of piping motion in emergency cases, however, repetitive loading due to internal events has caused premature wear and failure. Visco elastic dampers, however, have proven to be piping response due to slugging, steam hammer and other repetitive loads. Functional and modeling aspects of visco elastic dampers are discussed, experimental evidence of their effectiveness in a steam hammer application is presented and examples of primary coolant loop restraint applications are illustrated

  3. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  4. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  5. Structural analysis of the as-built IEA-R1 primary coolant piping system using a complete three dimensional model

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Martins, Lucas B.; Marcolin, Gabriel; Mattar Neto, Miguel

    2011-01-01

    IEA-R1 is an open pool type research reactor, moderated by light water and upgraded from 2 MW to 5 MW of operating power level. Heat generated in the reactor core is removed by a coolant system divided in two circuits, primary and secondary, composed by pumps, piping, heat exchangers, cooling tower, and some other auxiliary components. The 5 MW operating power level is now possible due to a modernization program started in 1996. As a part of the modernization program, ageing assessment studies recommend the replacement of one of the two heat exchangers in the circuit. To manage this replacement, modifications in the layout of the primary and secondary piping and supporting systems were performed, based on preliminary stress analysis study. Then, the aim of this work is to present the final stress analysis of the primary circuit. To reach this and taking the modifications of the primary into account, a 3D model of the whole circuit, in the as-built condition, was made. Stress results and discussions are shown. (author)

  6. Components of the LWR primary circuit. Pt. 2

    International Nuclear Information System (INIS)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 0 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  7. Stress-assisted, microbial-induced corrosion of stainless steel primary piping and other aging issues at the Omega West Reactor

    International Nuclear Information System (INIS)

    Andrade, A.

    1995-01-01

    After the discovery of cooling system leak of about 284 liters per twenty-four (24) hour period, an investigation determined that the 76.2-cm diameter, 33.5-m long stainless-steel (304) OWR delay line was losing water at the same nominal rate. An excavation effort revealed that a circumferential crack, approximately 0.0025 cm in width, extended around the bottom half of the delay line. In addition, other evidence of what appeared to be microcracking and pitting that originated at random nucleated sites around the pipe were also found. Results of destructive analysis and nondestructive testing allowed Los Alamos staff to conclude that the direct cause for the main crack and other pitting resulted from stress-assisted, microbial-induced corrosion of the stainless steel primary piping. The results also indicated that microbial action from bacteria that are normally present in earth can be extremely harmful to stainless- steel piping under certain conditions. Other potential problems that could have also eventually led to a permanent shutdown of the OWR were discussed. These problems, although never encountered nor associated with the current shutdown, were identified in aging studies and are associated with: (1) the water-cooled, bismuth gamma-ray shield and, (2) the aluminum thermal column head seal that prevents reactor vessel water from entering into the graphite-filled thermal column

  8. Evaluation of clamp effects on LMFBR piping systems

    International Nuclear Information System (INIS)

    Jones, G.L.

    1980-01-01

    Loop-type liquid metal breeder reactor plants utilize thin-wall piping to mitigate through-wall thermal gradients due to rapid thermal transients. These piping loops require a support system to carry the combined weight of the pipe, coolant and insulation and to provide attachments for seismic restraints. The support system examined here utilizes an insulated pipe clamp designed to minimize the stresses induced in the piping. To determine the effect of these clamps on the pipe wall a non-linear, two-dimensional, finite element model of the clamp, insulation and pipe wall was used to determine the clamp/pipe interface load distributions which were then applied to a three-dimensional, finite element model of the pipe. The two-dimensional interaction model was also utilized to estimate the combined clamp/pipe stiffness

  9. A computational procedure for the investigation of whipping effect on ITER High Energy Piping and its application to the ITER divertor primary heat transfer system

    Energy Technology Data Exchange (ETDEWEB)

    Spagnuolo, G.A., E-mail: Alessandro.Spagnuolo@kraftanlagen.com [Kraftanlagen Heidelberg Gmbh, Im Breitspiel 7, D-69126 Heidelberg (Germany); Dell’Orco, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Mazzei, M. [Kraftanlagen Heidelberg Gmbh, Im Breitspiel 7, D-69126 Heidelberg (Germany)

    2015-10-15

    Highlights: • High Energy Piping (HEP) are components containing water or steam with P ≥ 2.0 MPa and/or T ≥ 100 °C. • The whipping effect in HEP may cause dangerous domino effect with relative rupture propagation. • The rapture is envisaged or postulated according to the stress state of piping. • A FEM analysis is performed in order to study the dynamic of whipping effect. • Study of special support to avoid and/or mitigate the whipping effect. - Abstract: The Tokamak Cooling Water System of nuclear facility has the function to remove heat from plasma facing components maintaining coolant temperatures, pressures and flow rates as required and, depending on thermal-hydraulic requirements, its systems are defined as High Energy Piping (HEP) because they contain fluids, such as water or steam, at a pressure greater than or equal to 2.0 MPa and/or at a temperature greater than or equal to 100 °C, or even gas at pressure above the atmospheric one. The French standards contemplate the need to consider the whipping effect on HEP design. This effect happens when, after a double ended guillotine break, the reaction force could create a displacement of the piping which might affect adjacent components. A research campaign has been performed, in cooperation by ITER Organization and University of Palermo, to outline the procedure to check whether whipping effect might occur and assess its potential damage effects so to allow their mitigation. This procedure is based on the guidelines issued by U.S. Nuclear Regulatory Commission. The proposed procedure has been applied to the analysis of the whipping effect of divertor primary heat transfer system HEP, using a theoretical–computational approach based on the finite element method.

  10. Thermohydraulics in a high-temperature gas-cooled reactor primary loop during early phases of unrestricted core-heatup accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Colman, J.; Hsu, C.J.

    1983-01-01

    In High Temperature Gas Cooled Reactor (HTGR) siting considerations, the Unrestricted Core Heatup Accidents (UCHA) are considered as accidents of highest consequence, corresponding to core meltdown accidents in light water reactors. Initiation of such accidents can be, for instance, due to station blackout, resulting in scram and loss of all main loop forced circulation, with none of the core auxiliary cooling system loops being started. The result is a slow but continuing core heatup, extending over days. During the initial phases of such UCHA scenarios, the primary loop remains pressurized, with the system pressure slowly increasing until the relief valve setpoint is reached. The major objectives of the work described here were to determine times to depressurization as well as approximate loop component temperatures up to depressurization

  11. B Plant process piping replacement feasibility study

    International Nuclear Information System (INIS)

    Howden, G.F.

    1996-01-01

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace

  12. Development of an on-site measurement method for residual stress in primary system piping of nuclear power plants

    International Nuclear Information System (INIS)

    Maekawa, Akira; Takahashi, Shigeru; Fujiwara, Masaharu

    2014-01-01

    In residual stress measurement for large-scale pipes and vessels in high radiation areas and highly contaminated areas of nuclear plants, it is difficult to bring the radioactivated pipes and vessels out of the areas as they are. If they can brought out, it is very burdensome to handle them for the measurement. Development of an on-site measurement method of residual stress which can be quickly applied and has sufficient measurement accuracy is desirable. In this study, a new method combining an electric discharge skim-cut method with a microscopic strain measurement method using markers was proposed to realize the on-site residual stress measurement on pipes in high radiation areas and highly contaminated areas. In the electric discharge skim-cut method, a boat-type sample is skimmed out of a pipe outer/inner surface using electric discharge machining and released residual stress is measured. The on-site measurement of residual stress by the method can be done using a small, portable electric discharge machine. In the microscopic strain measurement method using markers, the residual stress is estimated by microscopic measurement of the distance between markers after the stress release. The combination of both methods can evaluate the residual stress with the same accuracy as conventional methods offer and it can achieve reduction of radiation exposure in the measurement because the work is done simply and rapidly. In this study, the applicability of the electric discharge skim-cut method was investigated because the applicability of the microscopic strain measurement method using markers was confirmed previously. The experimental examination clarified the applicable conditions for the residual stress measurement with the same accuracy as the conventional methods. Furthermore, the electric discharge machining conditions using pure water as the machining liquid was found to eliminate the amount of liquid radioactive waste completely. (author)

  13. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  14. Measurement data of cesium 137 yields in primary coolant of an in-pile water loop in fission products release experiment

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo

    1979-03-01

    Series of fuel rods (UO 2 pellets sheathed with stainless steel) having an artificial pinhole were irradiated in the in-pile test section of water loop JMTR OWL-1. Presented are the results of measurements of cesium 137 yields in primary coolant of OWL-1 from 1975 to 1978. (author)

  15. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  16. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  17. Leak detection in the primary reactor coolant piping of nuclear power plant by applying beam-microphone technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Shimanskiy, Sergey; Naoi, Yosuke; Kanazawa, Junichi

    2004-01-01

    A microphone leak detection method was applied to the inlet piping of the ATR-prototype reactor, Fugen. Statistical analysis results showed that the cross-correlation method provided the effective results for detection of a small leakage. However, such a technique has limited application due to significant distortion of the signals on the reactor site. As one of the alternative methods, the beam-microphone provides necessary spatial selectivity and its performance is less affected by signal distortion. A prototype of the beam-microphone was developed and then tested at the O-arai Engineering Center of the Japan Nuclear Cycle Development Institute (JNC). On-site testing of the beam-microphone was carried out in the inlet piping room of an RBMK reactor of the Leningrad Nuclear Power Plant (LNPP) in Russia. A leak sound imitator was used to simulate the leakage sound under the leakage flow condition of 1-3 gpm (0.23-0.7 m 3 /h). Analysis showed that signal distortion does not seriously affect the performance of this method, and that sound reflection may result in the appearance of ghost sound sources. The test results showed that the influences of sound reflection and background noise were smaller at the high frequencies where the leakage location could be estimated with an angular accuracy of 5deg which is the range of localization accuracy required for the leak detection system. (author)

  18. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  19. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  20. Device for measuring the flow rate of a fluid moving through a pipe

    International Nuclear Information System (INIS)

    Barge, Gilles; Bouchard, Patrick; Chaix, J.E.; Rigaud, J.L.; Vivaldi, Andre.

    1981-01-01

    A device is described for measuring the flow rate, in particular through large section pipes, such as those found in water type nuclear reactors, thermal power stations and gas loops. This device includes a plate drilled with holes crossed by a fluid and held in the pipe by deformable components on which are secured strain gauges forming the detecting element of an electronic device for processing the signal emitted by the gauges. This device can be employed, for instance, for measuring the flow rate of a coolant in the primary system of a nuclear reactor [fr

  1. Repair and preventive maintenance technology for BWR reactor internals and piping

    International Nuclear Information System (INIS)

    Ootsubo, Tooru; Itou, Takashi; Sakashita, Akihiro

    2009-01-01

    Stress corrosion cracking of welding portion has found in many domestic and foreign BWR reactor internals and Primary Loop Recirculation piping. Also, repair and preventive maintenance technologies for SCC has been developed and/or adopted to BWRs in recent years. This paper introduces the sample of these technologies, such as seal-welding for SCC on BWR reactor internals, preventive maintenance technology for PLR piping such as Corrosion Resistant Cladding, Internal Polishing and Induction Heating Stress Improvement. These technologies are introduced on 'E-Journal of Advanced Maintenance', which is an international journal on a exclusive website of Japan Society of Maintenology. (author)

  2. Study on air ingress during an early stage of a primary-pipe rupture accident of a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hishida, M.; Takeda, T.

    1991-01-01

    A primary-pipe rupture accident is one of the design-based accidents of the HTTR. As the first step of our final goal of predicting the multicomponent gas flow in a reactor during the early stages of the accident, the present paper aims at studying experimentally and analytically, the basic features of air ingress and gas transportation by transient molecular diffusion and the transient natural convection of a two-component gas mixture. The present paper comprises two main parts. The first part deals with analytical and experimental studies on N 2 ingress (corresponding to air ingress) and gas transportation by molecular diffusion and the one-dimensional natural convection of an He-N 2 two-component gas mixture in a reverse-U-shaped tube. Analytical and experimental results are discussed on the N 2 mole fraction change with time after the simulated pipe rupture and on the initation time of the natural circulation of pure N 2 . The second part deals with a preliminary simulation test of air ingress during the early stages of the accident. The test is performed with a very simple model of the reactor. The experimental results are discussed on the change in mole fraction of air with time and on the initiation time of the natural circulation of pure air. (orig.)

  3. Monitoring of pipe displacements in French LMFBR SUPERPHENIX

    International Nuclear Information System (INIS)

    Foucher, N.; Debaene, J.P.; Renault, Y.; Blin, B.

    1993-01-01

    In order to check that pipe supports work properly and that the locking of snubbers or the loss of supports do not put a pipe in unacceptable loading conditions, a monitoring of the behaviour of the main pipes of SUPERPHENIX is planned. This monitoring system consists in measuring the displacements at selected points of the pipe by means of measuring rods and checking that these displacements remain inside allowable domains. These allowable domains are defined so that, if the displacements of the pipe are inside all these domains, the plant operator is sure that the stresses verify the allowable limits and then no additional inspection is carried out. In the opposite case, the operator will inspect the pipe in detail in order to determine the consequences and repair if necessary before restarting. Selection of points for monitoring was done with the to minimize the number of measures to be carried out and to use as far as possible the measuring rods that were installed to check that pipe displacements were consistent with what has been obtained in design calculations. However, it appears necessary to ensure that any incident occurring at any point of the pipe can be detected and, if necessary, additional measuring rods may be installed. An incident is said detectable if it induces on at least one measuring rod a deviation with respect to expected displacement not lower than 5 mm. It has been chosen so that small normal changes in measured displacements are not mistaken as incidents. The incidents that are supposed likely to occur are: 1) loss of a support which induces mainly primary stresses, 2) locking of a snubber which induces mainly secondary stresses. Monitoring of pipe displacements is a simple and effective way of checking that no damaging perturbation has occurred on the pipe. Calculations carried out on the DHR loops of SUPERPHENIX show that allowable domains of acceptable size may be obtained using a relatively small number of measuring rods. The method

  4. Pipe clamp effects on thin-walled pipe design

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1980-01-01

    Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described

  5. Comparison of linear-elastic-plastic, and fully plastic failure models in the assessment of piping integrity

    International Nuclear Information System (INIS)

    Streit, R.D.

    1981-01-01

    The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)

  6. Pipe connector

    International Nuclear Information System (INIS)

    Sullivan, T.E.; Pardini, J.A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated

  7. Components of the LWR primary circuit. Pt. 2. Komponenten des Primaerkreises von Leichtwasserreaktoren. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400/sup 0/C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  8. Components of the LWR primary circuit. Pt. 2. Design, construction and calculation. Draft

    International Nuclear Information System (INIS)

    1995-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 deg C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  9. Loop kinematics

    International Nuclear Information System (INIS)

    Migdal, A.A.

    1982-01-01

    Basic operators acting in the loop space are introduced. The topology of this space and properties of the Stokes type loop functionals are discussed. The parametrically invariant loop calculus developed here is used in the loop dynamics

  10. Seismic analysis of the safety related piping and PCLS of the WWER-440 NPP

    International Nuclear Information System (INIS)

    Berkovski, A.M.; Kostarev, V.V.; Schukin, A.J.; Boiadjiev, Z.; Kostov, M.

    2001-01-01

    This paper presents the results of seismic analysis of Safety Related Piping Systems of the typical WWER-440 NPP. The methodology of this analysis is based on WANO Terms of Reference and ASME BPVC. The different possibilities for seismic upgrading of Primary Coolant Loop System (PCLS) were considered. The first one is increasing of hydraulic snubber units and the second way is installation of limited number of High Viscous Dampers (HVD). (author)

  11. ASN takes position in the in-service follow-up programs of primary and secondary loops of EdF's nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    This decision from the French authority of nuclear safety (ASN) aims at fixing the conditions to be respected by Electricite de France (EdF) during its in-service follow-up programs for the monitoring and preventive maintenance of the primary and secondary cooling loops of EdF's PWR reactors. The components and the particular points to be controlled are listed in appendixes. (J.S.)

  12. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  13. Authors's reply to 'Generation of surface degraded layer on austenitic stainless steel piping exposed to flowing sodium in a loop: inter comparison of long term exposure data', by S. Rajendran Pillai

    International Nuclear Information System (INIS)

    Ganesan, Vaidehi; Ganesan, V.; Borgstedt, H.U.

    2004-01-01

    This is an elaborate author's reply to a comment 'Generation of surface degraded layer on austenitic steel piping exposed to flowing sodium in a loop: inter comparison of long term exposure data' by S. Rajendran Pillai appearing in this proceedings. The basic misunderstanding as seen in the above comment about the mass loss due to sodium exposure, which is reflected throughout the above comment, has been explained in detail in this reply for better understanding of the phenomenon. It is precisely mentioned and understood that Thorley and Tyzack model deals with complete mass loss and not mere degradation. The total mass loss corresponds to mass loss due to wall thinning and that due to degraded layer formation. Though Thorley and Tyzack model is the most pioneering model in the field of sodium corrosion, the inadequacies of this model for materials without molybdenum such as SS 304 with very long exposure in sodium is clearly brought out in this paper. This model has been successfully applied to calculate life of clad tubes, which have relatively short stay in reactor core. Yoshida models are highlighted and compared with our experimental results. Yoshida models are not valid below certain durations owing to the empirical nature of such expressions. Thorley and Tyzack model can be used for SS 316 LN as this alloy contains molybdenum and nitrogen both of which imparts corrosion resistance in sodium. What is required is that one needs to establish the extent to which this model can be applied for materials exposed to high temperatures and very long durations. The details are discussed in this reply

  14. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  15. IPM Pipe

    Science.gov (United States)

    Submit A Report View Reports List [+] View Reports Map [+] CDM Alert System Sign Up For Alerts User Login Annual Epidemic Histories Annual Season Summaries Contact Us ipmPIPE User Login Web Administrator Login

  16. Pipe grabber

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.

    1981-05-15

    A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.

  17. Application of computer code ALMOD in transient analysis with reverse flow in the primary loop of nuclear power plant; Primjena programa ALMOD u analizi prijelaznih pojava sa reverzibilnim protokom u primarnom krugu nuklerne elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Bencik, V [Elektrotehnicki Institut ' Rade Koncar' , Zagreb (Yugoslavia); Feretic, D; Debrecin, N [Elektrotehnicki fakultet, Zagreb (Yugoslavia)

    1989-07-01

    A computer code ALMOD 3W3 to analyze the transients in which reverse flow in the primary loop of nuclear power plant may occur has been developed. The method to calculate the fluid dynamics in NRC system is presented. The locked rotor accident in one coolant loop is analyzed. (author)

  18. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  19. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  20. Components of the primary circuit of LWRs. Design, construction and calculation. Komponenten des Primaerkreises von Leichtwasserreaktoren. Auslegung, Konstruktion und Berechnung

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  1. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  2. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  3. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  4. Components of the primary circuit of LWRs. Design, construction and calculation. Draft. Komponenten des Primaerkreises von Leichtwasserreaktoren. Auslegung, Konstruktion und Berechnung. Entwurf

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673/sup 0/K (400/sup 0/C). The primary circuit as the pressure continement of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding off from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  5. Seismic testing and analysis of a prototypic nonlinear piping system

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.

    1982-11-01

    A series of seismic tests and analyses of a nonlinear Fast Flux Test Facility (FFTF) prototypic piping system are described, and measured responses are compared with analytical predictions. The test loop was representative of a typical LMFBR insulated small bore piping system and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps. Various piping support configurations were tested and analyzed to evaluate the effects of free play and other nonlinear stiffness characteristics on the piping system response

  6. The IPIRG-1 pipe system fracture tests: Experimental results

    International Nuclear Information System (INIS)

    Scott, P.; Olson, R.J.; Wilkowski, G.M.

    1994-01-01

    As part of the First International Piping Integrity Research Group (IPIRG-1) program, six dynamic pipe system experiments were conducted. The objective of these experiments was to generate experimental data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system subjected to combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The pipe system evaluated was an expansion loop with over 30 m (100 feet) of 16-inch nominal diameter Schedule 100 pipe. The experimental facility was equipped with special hardware to ensure that system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe system experiments. The uncracked-pipe experiment was conducted to evaluate the piping system damping and natural frequency characteristics. The cracked-pipe experiments were conducted to evaluate the fracture behavior, piping system response, and fracture stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided the tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Key results from the six pipe system experiments and material characterization efforts are presented. Detailed analyses will be published in a companion paper

  7. PRE design of a molten salt thorium reactor loop

    International Nuclear Information System (INIS)

    Caire, Jean-Pierre; Roure, Anthony

    2007-01-01

    This study is a contribution to the 2004 PCR-RSF program of the Centre National de la Recherche Scientifique (CNRS) devoted to research on high temperature thorium molten salt reactors. A major issue of high temperature molten salt reactors is the very large heat duty to be transferred from primary to secondary loop of the reactor with minimal thermal losses. A possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps was investigated. The loop was assumed to use two counter current flows of the same LiF, BeF 2 , ZrF 4 , UF 4 molten salt flowing through the reactor. The 3D model used the coupling of k-ε turbulent Navier-Stokes equations and thermal applications of the Heat Transfer module of COMSOL Multiphysics. For a reactor delivering 2700 MWth, the model required a set of 114 identical exchangers. Each one was optimized to limit the heat losses to 2882 W. The pipes made of a succession of graphite, ceramics, Hastelloy-N alloy and insulating Microtherm layers led to a thermal loss limited to 550 W per linear meter. In such conditions, the global thermal losses represent only 0.013% of the reactor thermal power for elements covered with an insulator only 3 cm thick. (author)

  8. Alkali Metal Heat Pipe Life Issues

    International Nuclear Information System (INIS)

    Reid, Robert S.

    2004-01-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  9. Probabilistic based design rules for intersystem LOCAS in ABWR piping

    International Nuclear Information System (INIS)

    Ware, A.G.; Wesley, D.A.

    1993-01-01

    A methodology has been developed for probability-based standards for low-pressure piping systems that are attached to the reactor coolant loops of advanced light water reactors (ALWRs) which could experience reactor coolant loop temperatures and pressures because of multiple isolation valve failures. This accident condition is called an intersystem loss-of-coolant accident (ISLOCA). The methodology was applied to various sizes of carbon and stainless steel piping designed to advanced boiling water reactor (ABWR) temperatures and pressures

  10. The early design stage for building renovation with a novel loop-heat-pipe based solar thermal facade (LHP-STF) heat pump water heating system: Techno-economic analysis in three European climates

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Shen, Jingchun; Adkins, Deborah; Yang, Tong; Tang, Llewellyn; Zhao, Xudong; He, Wei; Xu, Peng; Liu, Chenchen; Luo, Huizhong

    2015-01-01

    Highlights: • LHP-STF was evaluated from both technical and economic aspects for three EU climates. • The impact of LHP-STF on the overall building socio-energy performance was explored. • A dedicated business model was developed to study the economic feasibility of LHP-STF. • Three fundamental methods for financial measurement of LHP-STF were analysed. • Four investment options were considered in this business model. - Abstract: Most of the building renovation plans are usually decided in the early design stage. This delicate phase contains the greatest opportunity to achieve the high energy performance buildings after refurbishment. It is therefore important to provide the pertinent energy performance information for the designers or decision-makers from multidisciplinary and comparative points of view. This paper investigates the renovation concept of a novel loop-heat-pipe based solar thermal facade (LHP-STF) installed on a reference residential building by technical evaluation and economic analysis in three typical European climates, including North Europe (represented by Stockholm), West Europe (represented by London) and South Europe (represented by Madrid). The aim of this paper is firstly to explore the LHP-STF’s sensitivity with regards to the overall building socio-energy performance and secondly to study the LHP-STF’s economic feasibility by developing a dedicated business model. The reference building model was derived from the U.S. Department of Energy (DOE) commercial buildings research, in which the energy data for the building models were from the ASHRAE codes and other standard practices. The financial data were collected from the European statistic institute and the cost of system was based on the manufactured prototype. Several critical financial indexes were applied to evaluate the investment feasibility of the LHP-STF system in building renovation, such as Payback Period (PP), Net Present Value (NPV), and the modified internal

  11. Use of Main Loop Isolating Valves (GZZS) in WWER 440

    International Nuclear Information System (INIS)

    Stefanova, A.E.; Gencheva, R.V.; Groudev, P.P.

    2002-01-01

    This paper discusses the usage of Main Loop Isolation Valves in case of Steam Generator Tube Rupture accident in WWER440/V230. A double-ended single pipe break in SG-6 was chosen as representative. In the paper are investigated two cases. In the first one the operator isolates the affected loop by Main Loop Isolation Valves closing and after primary depressurization re-opens them to cooldown the damaged Steam Generator. The second case treats the situation, where Main Loop Isolation Valves fail to close with the necessary operator actions for managing plant recovery. RELAP5/MOD3.2 computer code has been used to simulate the Steam Generator Tube Rupture accident in WWER440 NPP model. This model was developed and validated at Institute for Nuclear Research and Nuclear Energy - Bulgarian Academy of Sciences. The results of analyses presented in this report demonstrate that in the both cases (with or without Main Loop Isolation Valves usage) the operator could bring the plant to stable and safety conditions (Authors)

  12. Keeping primary care "in the loop": General practitioners want better communication with specialists and hospitals when caring for people diagnosed with cancer.

    Science.gov (United States)

    Lizama, Natalia; Johnson, Claire E; Ghosh, Manonita; Garg, Neeraj; Emery, Jonathan D; Saunders, Christobel

    2015-06-01

    To investigate general practitioners' (GP) perceptions about communication when providing cancer care. A self-report survey, which included an open response section, was mailed to a random sample of 1969 eligible Australian GPs. Content analysis of open response comments pertaining to communication was undertaken in order to ascertain GPs' views about communication issues in the provision of cancer care. Of the 648 GPs who completed the survey, 68 (10%) included open response comments about interprofessional communication. Participants who commented on communication were a median age of 50 years and worked 33 h/week; 28% were male and 59% practiced in the metropolitan area. Comments pertaining to communication were coded using five non-mutually exclusive categories: being kept in the loop; continuity of care; relationships with specialists; positive communication experiences; and strategies for improving communication.GPs repeatedly noted the importance of receiving detailed and timely communication from specialists and hospitals, particularly in relation to patients' treatment regimes and follow-up care. Several GPs remarked that they were left out of "the information loop" and that patients were "lost" or "dumped" after referral. While many GPs are currently involved in some aspects of cancer management, detailed and timely communication between specialists and GPs is imperative to support shared care and ensure optimal patient outcomes. This research highlights the need for established channels of communication between specialist and primary care medicine to support greater involvement by GPs in cancer care. © 2015 Wiley Publishing Asia Pty Ltd.

  13. Experimental observations of thermal mixing characteristics in T-junction piping

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Shiue, E-mail: chenms@mx.nthu.edu.tw; Hsieh, Huai-En; Ferng, Yuh-Ming; Pei, Bau-Shi

    2014-09-15

    Highlights: • The effects of flow velocity ratio on thermal mixing phenomenon are the major parameters. • The flow velocity ratio (V{sub b}/V{sub m}) is greater than 13.6, reverse flow occurs. • The flow velocity ratio is greater than 13.7, a “good” mixing quality is achieved. - Abstract: The T-junction piping is frequently used in many industrial applications, including the nuclear plants. For a pressurized water reactor (PWR), the emergency core cooling systems (ECCS) inject cold water into the primary loops if a loss-of-coolant accident (LOCA) happens. Inappropriate mixing of the two streams with significant temperature different at a junction may cause strong thermal stresses to the downstream structures in the reactor vessel. The downstream structures may be damaged. This study is an experimental investigation into the thermal mixing effect occurring at a T-junction. A small-scale test facility was established to observe the mixing effect of flows with different temperature. Thermal mixing effect with different flow rates in the main and branch pipes are investigated by measuring the temperature distribution along the main pipe. In test condition I, we found that lower main pipe flow rate leads to better mixing effect with constant branch pipe flow rate. And in conditions II and III, higher injection flow velocity would enhance the turbulence effect which results in better thermal mixing. The results will be useful for applications with mixing fluids with different temperature.

  14. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  15. Crack growth rate of PWR piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Doyen, J.J.; Lebey, J.

    1979-01-01

    The Aquitaine 1 program, carried out jointly by FRAMATOME and the CEA is intended to improve knowledge about cracking mechanisms in AISI 316 L austenitic stainless steel under conditions similar to those of the PWR environment (irradiation excluded). Experiments of fatigue crack growth are performed on piping elements, scale 1/4 of primary pipings, by means of internal hydraulic cyclic pressure. Interpretation of results requires a knowledge of the stress intensity factor Ksub(I) at the front of the crack. Results of a series of calculations of Ksub(I) obtained by different methods for defects of finite and infinite length (three dimensional calculations) are given in the paper. The following have been used: calculations by finite elements, calculations by weight function. Notches are machined on the test pipes, which are subjected to internal hydraulic pressure cycles, under cold conditions, to initiate a crack at the tip of the notch. They are then cycled at a frequency of 4 cycles/hour on on water demineralised loop at a temperature of 280 0 C, the pressure varying at each cycle between approximately 160 bars and 3 bars. After each test, a specimen containing the defect is taken from the pipe for micrographic analysis. For the first test the length of the longitudinal external defect is assumed infinite. The number of cycles carried out is 5880 cycles. Two defects are machined in the tube for the second test. The number of cycles carried out is N = 440. The tests are performed under hot conditions (T = 280 0 C). For the third test two defects are analysed under cold and hot conditions. The number of cycles carried out for the external defect is 7000 when hot and 90000 when cold. The number of cycles for the internal defect is 1650 when hot and 68000 when cold. In order to interpret the results, the data da/dN are plotted on a diagram versus ΔK. Comparisons are made between these results and the curves from laboratory tests

  16. Natural circulation studies in a LBE loop for a wide range of temperature

    International Nuclear Information System (INIS)

    Borgohain, A.; Srivastava, A.K.; Jana, S.S.; Maheshwari, N.K.; Kulkarni, R.D.; Vijayan, P.K.; Tewari, R.; Ram, A. Maruthi; Jha, S.K.

    2016-01-01

    Highlights: • A high temperature Lead Bismuth Eutectic loop named as Kilo Temperature Loop (KTL) has been made. • Natural circulation experimental studies were carried out and reported in the range of 200–780 °C. • The experiments at high temperature were carried in inert atmosphere to avoid oxidation of the loop material. • Theoretical studies are carried out to simulate the loop with natural circulation in primary as well as in the secondary side. • The predictions of the code LeBENC used to simulate the natural circulation in the loop are compared with the experimental results. - Abstract: Lead–Bismuth Eutectic (LBE) is increasingly getting more attention as a coolant for advanced reactor systems. It is also the primary coolant of the Compact High Temperature Reactor (CHTR) being designed at Bhabha Atomic Research Centre (BARC). A high temperature liquid metal loop named as Kilo Temperature Loop (KTL) has been installed at BARC for thermal hydraulics, instrument development and material related studies. Natural circulation experimental studies were carried out for the power range of 200–1200 W in the loop. The corresponding LBE flow rate is calculated to be in the range of 0.075–0.12 kg/s. Transient studies for start-up of natural circulation in the loop, loss of heat sink and step power change have also been carried out. The maximum temperature of the loop operated so far is 1100 °C. A computer code named LeBENC has been developed at BARC to simulate the natural circulation characteristics in closed loops. The salient features of the code include ability to handle non-uniform diameter components, axial thermal conduction in fluid and heat losses from the piping to the environment. The code has been modified to take into account of two natural circulation loops in series so that the natural cooling by argon gas in the secondary side of the loop can be simulated. This paper deals with the description of the loop and its operation. The various

  17. Evaluation of the influence of seismic restraint characteristics on breeder reactor piping systems

    International Nuclear Information System (INIS)

    Mello, R.M.; Pollono, L.P.

    1979-01-01

    For the Clinch River Breeder Reactor Plant (CRBRP) heat transport system piping within the reactor containment building, dynamic analyses of the piping loops have been performed to study the effect of restraint stiffness on the dynamic behavior of the piping. In addition, analysis and testing of typical CRBRP restraint system components have been performed for the purpose of quantifying and verifying the basic characteristics of the restraints used in the piping system dynamic analysis

  18. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  19. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  20. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  1. Studies on dissolution characteristics of simulated corrosion products on pressurized water reactor primary coolant loops. Pt.2: Cobalt simulated corrosion product

    International Nuclear Information System (INIS)

    Li Shan; Zhou Xianyu

    1997-01-01

    The studies on the dissolution characteristics of simulated corrosion product of cobalt on pressurized water reactor primary coolant loops in aqueous solution of citric acid, hydrogen peroxide and citric acid-hydrogen peroxide have been performed. The results show that the portion of the dissolved simulated corrosion product of cobalt in citric acid aqueous solution clearly increases with a rise in citric acid concentration and is ten times above the corresponding value of iron. The portion of the products that dissolve is the largest at pH 3.00 in the pH range of 2.33∼4.50 and at 70 degree C in the range of 60∼80 degree C. It is shown that the portion of the dissolved simulated corrosion product of cobalt in hydrogen peroxide aqueous solution is smaller than the corresponding value in citric acid, and that the portion of the dissolved simulated corrosion product of cobalt in aqueous solution of hydrogen peroxide-citric acid is larger than the corresponding value in single citric acid aqueous solution

  2. Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

    Directory of Open Access Journals (Sweden)

    Istvan Farkas

    2016-08-01

    Full Text Available The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively with experimental results.

  3. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  4. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  5. Power combiners/dividers for loop pickup and kicker arrays for FNAL stochastic cooling rings

    International Nuclear Information System (INIS)

    Johnson, J.K.; Nemetz, R.

    1985-05-01

    The anti-proton accumulator and debuncher at FNAL will use stochastic methods to ''cool'' the beam. Pairs of quarter-wavelength directional-coupler loops are used to detect and kick the beam. The loops are copper plates which are flush with the upper and lower wall of a rectangular beam pipe. The plates, when surrounded by a properly sized pocket, form a 100-ohm transmission-line directional coupler. As the beam passes, a signal which gives position and time information, is induced in the plates. But, because the signal levels are low (<.5 picowatts per pair), a power combiner (usually several primary combiners feeding a secondary combiner) is used to combine the outputs of many loops. Subsequently, the combined signal is amplified, filtered and then fed into a divider, (that is, a combiner operating in reverse). The divider distributes the signal into a different set of loops which modify (kick) the beam's position. Since the loop couplers are arranged linearly, in arrays of various lengths, combiners also provide a convenient method of reducing the number of vacuum feedthroughs and preamplifiers and their related costs in performance and dollars. In this note we describe various stripline combiner systems that add the outputs of 4, 8, 16 or 32 loops

  6. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique development......-w$ relationship is presented. Structural development involved definition of a new type of semi-flexiblecement based pipe, i.e. a cement based pipe characterized by the fact that the soil-pipe interaction related to pipe deformation is an importantcontribution to the in-situ load carrying capacity of the pipe...

  7. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  8. Experimental Investigation on Corrosion of Cast Iron Pipes

    Directory of Open Access Journals (Sweden)

    H. Mohebbi

    2011-01-01

    Full Text Available It is well known that corrosion is the predominant mechanism for the deterioration of cast iron pipes, leading to the reduction of pipe capacity and ultimate collapse of the pipes. In order to assess the remaining service life of corroded cast iron pipes, it is imperative to understand the mechanisms of corrosion over a long term and to develop models for pipe deterioration. Although many studies have been carried out to determine the corrosion behavior of cast iron, little research has been undertaken to understand how cast iron pipes behave over a longer time scale than hours, days, or weeks. The present paper intends to fill the gap regarding the long-term corrosion behaviour of cast iron pipes in the absence of historical data. In this paper, a comprehensive experimental program is presented in which the corrosion behaviour of three exservice pipes was thoroughly examined in three simulated service environments. It has been found in the paper that localised corrosion is the primary form of corrosion of cast iron water pipes. It has also been found that the microstructure of cast irons is a key factor that affects the corrosion behaviour of cast iron pipes. The paper concludes that long-term tests on corrosion behaviour of cast iron pipes can help develop models for corrosion-induced deterioration of the pipes for use in predicting the remaining service life of the pipes.

  9. Reconfiguration of the NRAD delay loop for proposed 1 MW operations

    International Nuclear Information System (INIS)

    Heidel, C.C.; Richards, W.J.; Pruett, D.P.

    1984-01-01

    Neutron radiography is provided by the NRAD reactor facility, which is located beneath the HFEF hot cell. The NRAD reactor is a TRIGA reactor and is operated at a steady-state power level of 250 kw solely for neutron radiography and the development of radiography techniques. When the NRAD facility was designed and constructed, an operating power level of 250 kw was considered to be adequate for obtaining radiographs of the type of specimens envisaged at that time. Since that time a second radiography station was installed and the thickness of the specimens being radiographed is greater than was initially envisaged. In order to decrease exposure times, the reactor power level is to be increased to 1 Mw. The present delay loop can not to be used at 1 Mw operation, because the passage way where the primary piping exits the reactor room must be maintained less than 1 MR/hr. To obtain the needed delay before the primary water exits the reactor room using the present internal delay loop system would require two more delay loops of the same size to be placed in series with the present delay loop. Because the NRAD reactor tank is small this is not possible; therefore, the delay must take place external to the reactor tank. The delay loop will have to be located in a shielded area to allow the decay of N 16 . The best location for the delay tank will be in the east radiography

  10. Decontamination before dismantling a fast breeder reactor primary cooling system

    International Nuclear Information System (INIS)

    Costes, J.R.; Antoine, P.; Gauchon, J.P.

    1997-01-01

    The large-scale decontamination of FBR sodium loops is a novel task, as only a limited number of laboratory-scale results are available to date. The principal objective of this work is to develop a suitable decontamination procedure for application to the primary loops of the RAPSODIE fast breeder reactor as part of decommissioning to Stage 2. After disconnecting the piping from the main vessel, the pipes were treated by circulating chemical solutions and the vessels by spraying. The dose rate in the areas to be dismantled was divided by ten. A decontamination factor of about 300 was obtained, and should allow austenitic steel parts to be melted in special furnaces for unrestricted release. (author)

  11. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  12. Pipe and hose decontamination apparatus

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1985-01-01

    A pipe and hose decontamination apparatus is disclosed using freshly filtered high pressure Freon solvent in an integrated closed loop to remove radioactive particles or other contaminants from items having a long cylindrical geometry such as hoses, pipes, cables and the like. The pipe and hose decontamination apparatus comprises a chamber capable of accomodating a long cylindrical work piece to be decontaminated. The chamber has a downward sloped bottom draining to a solvent holding tank. An entrance zone, a cleaning zone and an exit drying zone are defined within the chamber by removable partitions having slotted rubber gaskets in their centers. The entrance and exit drying zones contain a horizontally mounted cylindrical housing which supports in combination a plurality of slotted rubber gaskets and circular brushes to initiate mechanical decontamination. Solvent is delivered at high pressure to a spray ring located in the cleaning zone having a plurality of nozzles surrounding the work piece. The solvent drains into a solvent holding tank located below the nozzles and means are provided for circulating the solvent to and from a solvent cleaning, distilling and filter unit

  13. Potential drop sensors for sodium loops

    International Nuclear Information System (INIS)

    Selvaraj, R.

    1978-11-01

    Potential drop sensors to detect the presence or the absence of sodium in pipe lines are described. These are very handy during loop charging and dumping operations. Their suitability to detect level surges and to monitor continuous level of liquid metals in certain applications is discussed. (author)

  14. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  15. Solar heating pipe

    Energy Technology Data Exchange (ETDEWEB)

    Hinson-Rider, G.

    1977-10-04

    A fluid carrying pipe is described having an integral transparent portion formed into a longitudinally extending cylindrical lens that focuses solar heat rays to a focal axis within the volume of the pipe. The pipe on the side opposite the lens has a heat ray absorbent coating for absorbing heat from light rays that pass through the focal axis.

  16. Results of the General Atomic deposition loop program

    International Nuclear Information System (INIS)

    Hanson, D.L.

    1976-01-01

    The transport behavior of fission products in flowing helium streams has been studied to determine their deposition and re-entrainment characteristics. Such information is required for the design and safety analysis of high-temperature gas-cooled reactors (HTGRs). A small high-pressure, high-temperature loop was constructed for deposition studies at near-HTGR conditions. Five loop experiments were performed to determine the plateout distribution of iodine, strontium, and cesium. In general, the plateout activity showed an exponential decrease with distance from the source with enhanced plateout at flow disturber locations (contractions, bends, etc.) and especially in a chill section where the surface was cooled. Blowdown tests were performed on selected loop specimens to determine the amount of re-entrainment caused by abnormally high wall shear stresses. The liftoff fraction (fractional amount removed) was shown to vary approximately linearly with the shear ratio (defined as the ratio of the steady state wall shear stress under blowdown conditions to that under normal operating conditions). Blowdown results are also reported for pipe sections taken from the GAIL-IV in-pile loop. Attempts were made to correlate these plateout data with the PAD code (Plateout Activity Distribution) which was developed for prediction of plateout distribution in an HTGR primary circuit. Because of inadequate modeling of the effects of the chill section, the agreement was generally poor. Consequently, to test further the PAD code, a review of the available plateout literature was made. Plateout distributions in the Peach Bottom and Dragon HTGRs and the Battelle Memorial Institute out-of-pile loop were successfully modeled

  17. Structural integrity evaluation of FTL in-pool piping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-05-01

    HANARO fuel test loop will be equipped in HANARO to obtain the development betterment of advanced fuel and materials through the irradiation test. The object of this study is to evaluate the structural integrity of FTL in-pool piping by investigating a dynamic analysis of the loop containing a postulated rupture section. The method to perform the dynamic analysis and structural integrity evaluation caused by the pipe whip in water environment can be a reference for a similar structural integrity evaluation. (author). 7 refs., 39 tabs., 34 figs.

  18. Corrective actions to gas accumulation in safety injection system pipings of PWRs and gas void detection method

    International Nuclear Information System (INIS)

    Maki, Nobuo

    2000-01-01

    In the US, gas accumulation events of safety injection systems of PWRs during plant operation are continuously reported. As the events may result in loss of safety function, the USNRC is alerting licensees by Information Notices. The cause of the events is coolant leakage to interfacing systems with lower pressure, or gas dissolution of primary coolant by partial pressure drop. In this study, it was clarified by the evaluation of the cause of the events of US plants, gas accumulation in piping between an accumulator and Residual Heat Removal System should be quantitatively investigated regarding Japanese plants. Also, effectiveness of ultrasonic testing which is used for monthly gas accumulation surveillance in US plants was demonstrated using a model loop. In addition, the method was confirmed applicable by an experiment carried out at INSS to detect cavitation voids in piping systems. (author)

  19. Piping structural design for the ITER thermal shield manifold

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Chang Hyun, E-mail: chnoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chung, Wooho, E-mail: whchung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Nam, Kwanwoo; Kang, Kyoung-O. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Bae, Jing Do; Cha, Jong Kook [Korea Marine Equipment Research Institute, Busan 606-806 (Korea, Republic of); Kim, Kyoung-Kyu [Mecha T& S, Jinju-si 660-843 (Korea, Republic of); Hamlyn-Harris, Craig; Hicks, Robby; Her, Namil; Jun, Chang-Hoon [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • We finalized piping design of ITER thermal shield manifold for procurement. • Support span is determined by stress and deflection limitation. • SQP, which is design optimization method, is used for the pipe design. • Benchmark analysis is performed to verify the analysis software. • Pipe design is verified by structural analyses. - Abstract: The thermal shield (TS) provides the thermal barrier in the ITER tokamak to minimize heat load transferred by thermal radiation from the hot components to the superconducting magnets operating at 4.2 K. The TS is actively cooled by 80 K pressurized helium gas which flows from the cold valve box to the cooling tubes on the TS panels via manifold piping. This paper describes the manifold piping design and analysis for the ITER thermal shield. First, maximum allowable span for the manifold support is calculated based on the simple beam theory. In order to accommodate the thermal contraction in the manifold feeder, a contraction loop is designed and applied. Sequential Quadratic Programming (SQP) method is used to determine the optimized dimensions of the contraction loop to ensure adequate flexibility of manifold pipe. Global structural behavior of the manifold is investigated when the thermal movement of the redundant (un-cooled) pipe is large.

  20. Investigation and evaluation of the cause about the loss of split pin which was set to pipe support system of the primary cooling system of Monju

    International Nuclear Information System (INIS)

    Ichikawa, Shoichi; Kawanago, Sho; Nishio, Ryuichi; Wakimoto, Fumitsugu; Fujimura, Tomofumi; Kobayashi, Takanori; Sakamoto, Tsutomu

    2015-07-01

    The loss of the retaining split pins (four pieces) for clevis pin was confirmed at the inspection of the pipe supports in the Monju prototype fast-breeder reactor (hereinafter referred to Monju) in May, 2014. The split pins (two pieces) of ROD RESTRAINT and CONSTANT HANGER were fallen off. The split pins (two pieces) of MECHANICAL SNUBBER were broken at both ends of them. As a result of investigation, a dimple pattern was observed in a fracture surface of broken split pin. This observation result showed that fracture morphology is ductile fracture. A reproduction test, whether split pin was broken by loading the external force to the clevis pin, also gave the same fracture morphology. As the result of all cause investigation, the reason of the broken split pins is that the split pins were loaded shearing stress by the external force loaded to the clevis pin axial direction. The result of the cause investigation and a recurrence prevention measure of this trouble was reported. (author)

  1. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  2. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  3. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  4. Miniature Heat Pipes

    Science.gov (United States)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  5. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    Science.gov (United States)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  6. Pressure wave propagation in sodium loop

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1989-01-01

    A study was done on the pressure wave propagation within the pipes and mixture vessel of a termohydraulic loop for thermal shock with sodium. It was used the characteristic method to solve the one-dimensional continuity and momentum equations. The numerical model includes the pipes and the effects of valves and other accidents on pressure losses. The study was based on designer informations and engineering tables. It was evaluated the pressure wave sizes, parametrically as a function of the draining valve closure times. (author) [pt

  7. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  8. Riser pipe elevator

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W.; Jimenez, A.F.

    1987-09-08

    This patent describes a method for storing and retrieving a riser pipe, comprising the steps of: providing an upright annular magazine comprised of an inside annular wall and an outside annular wall, the magazine having an open top; storing the riser pipe in a substantially vertically oriented position within the annular magazine; and moving the riser pipe upwardly through the open top of the annular magazine at an angle to the vertical along at least a portion of the length of the riser pipe.

  9. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  10. Piping equipment; Materiel petrole

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This 'blue bible' of the perfect piping-man appeals to end-users of industrial facilities of the petroleum and chemical industries (purchase services, standardization, new works, maintenance) but also to pipe-makers and hollow-ware makers. It describes the characteristics of materials (carbon steels, stainless steels, alloyed steels, special alloys) and the dimensions of pipe elements: pipes, welding fittings, flanges, sealing products, forged steel fittings, forged steel valves, cast steel valves, ASTM standards, industrial valves. (J.S.)

  11. Estimative of core damage frequency in IPEN's IEA-R1 research reactor (PSA level 1) due to the initiating event of loss of coolant caused by large rupture in the pipe of the primary circuit

    International Nuclear Information System (INIS)

    Hirata, Daniel Massami

    2009-01-01

    This work applies the methodology of probabilistic safety assessment level 1 to the research reactor IEA-R1 IPEN-CNEN/SP. Two categories of identified initiating events of accidents in the reactor are studied: loss of flow and loss of primary coolant. Among the initiating events, blockage of flow channel and loss of cooling fluid by major pipe rupture in the primary circuit are chosen for a detailed analysis. The event tree technique is used to analyze the evolution of the accident, including the actuation or the fail of actuation of the safety systems and the reactor damages. Using the fault tree the reliability of the following reactor safety systems is evaluated: reactor shutdown system, isolation of the reactor pool, emergency core cooling system (ECCS) and the electric system. Estimative for the frequency of damage to the reactor core and the probability of failure of the analyzed systems are calculated. The estimated values for the frequencies of core damage are within the expected margins and are of the same order of magnitude as those found for similar reactors. The reliability of the reactor shutdown system, isolation of the reactor pool and ECCS are satisfactory for the conditions these systems are required. However, for the electric system it is suggested an upgrade to increase its reliability. (author)

  12. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  13. Experimental investigation of coarse particle conveying in pipes

    Directory of Open Access Journals (Sweden)

    Vlasak Pavel

    2015-01-01

    Full Text Available The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle – water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  14. Costs reduced by innovative plastic distribution pipe use

    International Nuclear Information System (INIS)

    Maxwell, F.W.

    1995-01-01

    As part of a strategic corporate cost-reduction initiative, Pacific Gas and Electric Company's Gas Distribution Group has achieved some quick but significant cash savings. System design, construction, and the purchasing function were areas that produced some fast paybacks while maintaining reliability and safety. The primary savings were made by optimizing pipe specifications to match system operating parameters. This allowed the use of smaller diameter pipes and/or thinner wall pipes which conserved the materials cost of the pipeline. Other realized savings in the form of coiled pipe, purchasing changes, and backfilling specifications are also described

  15. Transients in pipes

    International Nuclear Information System (INIS)

    Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.

    1981-01-01

    The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt

  16. These Pipes Are "Happening"

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    The author is blessed with having the water pipes for the school system in her office. In this article, the author describes how the breaking of the pipes had led to a very worthwhile art experience for her students. They practiced contour and shaded drawing techniques, reviewed patterns and color theory, and used their reasoning skills--all while…

  17. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  18. A layered model for inclined pipe flow of settling slurry

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan; Kesely, Mikoláš

    2018-01-01

    Roč. 333, June (2018), s. 317-326 ISSN 0032-5910 R&D Projects: GA ČR GA17-14271S Institutional support: RVO:67985874 Keywords : inclined pipe * settling slurry * pressure drop * flow stratification * laboratory loop Impact factor: 2.942, year: 2016

  19. Safety Technology Research Program in the field of pressurized water reactors. 1. Technical report on advancement project RS 36/2. Emergency cooling program service life experiments: reflooding experiments involving the primary loop systems

    International Nuclear Information System (INIS)

    Schweickert, H.; Kremin, H.; Mandl, R.; Riedle, V.; Ruthrof, K.; Sarkar, J.; Schmidt, H.

    The reflooding of the hot reactor core is to be examined for a pressurized water reactor (PWR), using a model of the entire primary loop system. The scale of the model is to be 1:340 in cross-section, with the heights represented full-scale. In addition to the goals of the project, a description of the test facility, including data collection and control equipment is presented. The instrumentation, the planned test program and the test procedure are briefly set forth

  20. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  1. Seismic test of high temperature piping for HTGR

    International Nuclear Information System (INIS)

    Kobatake, Kiyokazu; Midoriyama, Shigeru; Ooka, Yuzi; Suzuki, Michiaki; Katsuki, Taketsugu

    1983-01-01

    Since the high temperature pipings for the high temperature gas-cooled reactor contain helium gas at 1000 deg C and 40 kgf/cm 2 , the double-walled pipe type consisting of the external pipe serving as the pressure boundary and the internal pipe with heat insulating structure was adopted. Accordingly, their aseismatic design is one of the important subjects. Recently, for the purpose of grasping the vibration characteristics of these high temperature pipings and obtaining the data required for the aseismatic design, two specimens, that is, a double-walled pipe model and a heat-insulating structure, were made, and the vibration test was carried out on them, using a 30 ton vibration table of Kawasaki Heavy Industries Ltd. In the high temperature pipings of the primary cooling system for the multi-purpose, high temperature gas-cooled experimental reactor, the external pipes of 32 B bore as the pressure boundary and the internal pipes of 26 B bore with internal heat insulation consisting of double layers of fiber and laminated metal insulators as the temperature boundary were adopted. The testing method and the results are reported. As the spring constant of spacers is larger and clearance is smaller, the earthquake wave response of double-walled pipes is smaller, and it is more advantageous. The aseismatic property of the heat insulation structure is sufficient. (Kako, I.)

  2. Effect of pipe insulation losses on a loss-of-heat sink accident for an LMR

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Wood, P.M.

    1985-01-01

    The efficacy of pipe radiation losses as a heat sink during LOHS in a loop-type LMR plant is investigated. The Super System Code (SSC), which was modified to include pipe radiation losses, was used to simulate such an LOHS in an LMR plant. In order to enhance these losses, the pipes were assumed to be insulated by rock wool, a material whose thermal conductivity increases with increasing temperature. A transient was simulated for a total of eight days, during which the coolant temperatures peaked well below saturation conditions and then declined steadily. The coolant flow rate in the loop remained positive throughout the transient

  3. Pipe rupture test results; 6 in. pipe whip test under BWR LOCA conditions

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi; Yano, Toshikazu; Ueda, Shuzo; Isozaki, Toshikuni; Miyazaki, Noriyuki; Kato, Rokuro; Miyazono, Shohachiro

    1983-02-01

    A series of pipe rupture tests has been performed in JAERI to demonstrate the safety of the primary coolant circuits in the event of pipe rupture, in nuclear power plants. The present report summarizes the results of 6 in. pipe whip tests (RUN 5605, 5606), under BWR LOCA conditions (285 0 C, 6.8 MPa), which were performed in August, 1981. The test pipe is made of Type 304 stainless steel and its outer diameter is 6 in. and its thickness is 11.1 mm. The restraints are made of Type 304 stainless steel and its diameter is 16.0 mm. Two restraints were set on the restraint support with clearance of 100 mm. Overhang length was varied as the parameter in these tests and was 300 mm or 700 mm. The following results are obtained. (1) The deformations of a pipe and restraints are limited effectively by shorter overhang length of 300. However, they become larger when the overhang length is 700 mm, and the pipe deforms especially at the setting point of restraints. (2) Velocity at the free end of pipe becomes about 30 m/sec just after the break. However, velocity at the setting point of restraint becomes about only 4 m/sec just after the break. (3) It seems from the comparison between the 4 in. tests and 6 in. tests that the maximum restraint force of 6 in. tests is about two times as large as that of 4 in. tests. (author)

  4. Dynamic response of IPEN experimental water loop

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Bassel, W.S.

    1982-10-01

    A mathematical model has been developed to analyze the transient thermal response of the I.P.E.N. water loop during change of power operations. The model is capable of estimating the necessary test section power and heat exchanger mass flow rate for a given operating temperature. It can also determine the maximum heating or cooling rate to avoid thermal shocks in pipes and components. (Author) [pt

  5. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  6. Pipe line systems in nuclear power plant

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Tanno, Kazuo; Shibato, Eizo.

    1979-01-01

    Purpose: To prevent stress corrosion cracks, in particular, for branched pipeways by conducting water quality control in the branched pipeways as well as in the main pipeways, and reducing the thermal stress in the branched pipeways. Constitution: A water quality monitoring device is provided to a drain pipe and a failed element detection pipe to monitor the quality of stagnated water continuously or periodically. If the impurity concentration or oxygen concentration exceeds a specified value in the stagnated water, a drain valve or a check valve is opened by a signal from the water quality monitoring device to replace the stagnated water with recycling water in the main pipeway. The temperature for the branched loop pipeway and the main pipeway are collectively kept to a same temperature to thereby reduce the thermal stress in the branched pipeway. (Kawakami, Y.)

  7. Vulnerability Analysis of Urban Drainage Systems: Tree vs. Loop Networks

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-03-01

    Full Text Available Vulnerability analysis of urban drainage networks plays an important role in urban flood management. This study analyzes and compares the vulnerability of tree and loop systems under various rainfall events to structural failure represented by pipe blockage. Different pipe blockage scenarios, in which one of the pipes in an urban drainage network is assumed to be blocked individually, are constructed and their impacts on the network are simulated under different storm events. Furthermore, a vulnerability index is defined to measure the vulnerability of the drainage systems before and after the implementation of adaptation measures. The results obtained indicate that the tree systems have a relatively larger proportion of critical hydraulic pipes than the loop systems, thus the vulnerability of tree systems is substantially greater than that of the loop systems. Furthermore, the vulnerability index of tree systems is reduced after they are converted into a loop system with the implementation of adaptation measures. This paper provides an insight into the differences in the vulnerability of tree and loop systems, and provides more evidence for development of adaptation measures (e.g., tanks to reduce urban flooding.

  8. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  9. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  10. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  11. Heat pipe development

    Science.gov (United States)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  12. Simplified pipe gun

    International Nuclear Information System (INIS)

    Sorensen, H.; Nordskov, A.; Sass, B.; Visler, T.

    1987-01-01

    A simplified version of a deuterium pellet gun based on the pipe gun principle is described. The pipe gun is made from a continuous tube of stainless steel and gas is fed in from the muzzle end only. It is indicated that the pellet length is determined by the temperature gradient along the barrel right outside the freezing cell. Velocities of around 1000 m/s with a scatter of +- 2% are obtained with a propellant gas pressure of 40 bar

  13. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  14. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed; Alsolami, Fawaz; Chikalov, Igor; Algharbi, Salem; Aboudi, Faisal; Khudiri, Musab

    2016-01-01

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  15. Heat pipe dynamic behavior

    Science.gov (United States)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  16. Replaceable liquid nitrogen piping

    International Nuclear Information System (INIS)

    Yasujima, Yasuo; Sato, Kiyoshi; Sato, Masataka; Hongo, Toshio

    1982-01-01

    This liquid nitrogen piping with total length of about 50 m was made and installed to supply the liquid nitrogen for heat insulating shield to three superconducting magnets for deflection and large super-conducting magnet for detection in the π-meson beam line used for high energy physics experiment in the National Laboratory for High Energy Physics. The points considered in the design and manufacture stages are reported. In order to minimize the consumption of liquid nitrogen during transport, vacuum heat insulation method was adopted. The construction period and cost were reduced by the standardization of the components, the improvement of welding works and the elimination of ineffective works. For simplifying the maintenance, spare parts are always prepared. The construction and the procedure of assembling of the liquid nitrogen piping are described. The piping is of double-walled construction, and its low temperature part was made of SUS 316L. The super-insulation by aluminum vacuum evaporation and active carbon were attached on the external surface of the internal pipe. The final leak test and the heating degassing were performed. The tests on evacuation, transport capacity and heat entry are reported. By making the internal pipe into smaller size, the piping may be more efficient. (Kako, I.)

  17. LOCA simulation tests in the RD-12 loop with multiple heat channels

    International Nuclear Information System (INIS)

    Ardron, K.H.; McGee, G.R.; Hawley, E.H.

    1985-11-01

    A series of tests has been performed in the RD-12 loop to study the bahaviour of a CANDU-type, primary heat transport system (PHTS) during the blowdown and injection phases of a loss-of-coolant accident (LOCA). Specifically, the tests were used to investigate flow stagnation and refilling of the core following a LOCA. RD-12 is a pressurized water loop with the basic geometry of a CANDU reactor PHTS, but at approximately 1/125 volume scale. The loop consists of U-tube steam generators, pumps, headers, feeders, and heated channels arranged in the symmetrical figure-of-eight configuration of the CANDU PHTS. In the LOCA simulation tests, the loop contained four horizontal heated channels, each containing a seven-element assembly of indirectly heated, fuel-rod simulators. The channels were nominally identical, and were arranged in parallel pairs between the headers in each half-circuit. Tests were carried out using various restricting orifices to represent pipe breaks of different sizes. The break sizes were specifically chosen such that stagnation conditions in the heated channels would be likely to occur. In some tests, the primary pumps were programmed to run down over a 100-s period to simulate a LOCA with simultaneous loss of pump power. Test results showed that, for certain break sizes, periods of low flow occurred in the channels in one half of the loop, leading to flow stratification and sheath temperature excursions. This report reviews the results of two of the tests, and discusses possible mechanisms that may have led to the low channel flow conditions observed in some cases. Plans for future experiments in the larger scale RD-14 facility are outlined. 5 refs

  18. Inelastic analysis of SNR-300 piping

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, H [INTERATOM, Bergisch Gladbach (Germany); Di Luna, L J; Moy, G [Teledyne Engineering Services, Waltham, MA (United States)

    1983-05-01

    This paper investigates plasticity, creep, and elastic follow-up effects on a full size hot primary piping system of the German fast breeder reactor prototype, the SNR-300. A large model (327 elements, 419 nodes) of straight pipe, special elbow and hanger elements of the general purpose finite element program, MARC-CDC, is used to predict piping behavior for a heat-up, sodium loading-unloading-reloading cycle and other significant operating conditions. Included in this work are many time-dependent solution increments for a 5,000 hour creep period. Creep strains and relaxed stress results, after 5,000 hours, for the complete model are used with uniaxial and biaxial models and results to extrapolate conclusions for a 100,000 hour operating life. (author)

  19. Inelastic analysis of SNR-300 piping

    International Nuclear Information System (INIS)

    Huebel, H.; Di Luna, L.J.; Moy, G.

    1983-01-01

    This paper investigates plasticity, creep, and elastic follow-up effects on a full size hot primary piping system of the German fast breeder reactor prototype, the SNR-300. A large model (327 elements, 419 nodes) of straight pipe, special elbow and hanger elements of the general purpose finite element program, MARC-CDC, is used to predict piping behavior for a heat-up, sodium loading-unloading-reloading cycle and other significant operating conditions. Included in this work are many time-dependent solution increments for a 5,000 hour creep period. Creep strains and relaxed stress results, after 5,000 hours, for the complete model are used with uniaxial and biaxial models and results to extrapolate conclusions for a 100,000 hour operating life. (author)

  20. Development of solutions to benchmark piping problems

    Energy Technology Data Exchange (ETDEWEB)

    Reich, M; Chang, T Y; Prachuktam, S; Hartzman, M

    1977-12-01

    Benchmark problems and their solutions are presented. The problems consist in calculating the static and dynamic response of selected piping structures subjected to a variety of loading conditions. The structures range from simple pipe geometries to a representative full scale primary nuclear piping system, which includes the various components and their supports. These structures are assumed to behave in a linear elastic fashion only, i.e., they experience small deformations and small displacements with no existing gaps, and remain elastic through their entire response. The solutions were obtained by using the program EPIPE, which is a modification of the widely available program SAP IV. A brief outline of the theoretical background of this program and its verification is also included.

  1. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  2. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. Morbidity of temporary loop ileostomies

    NARCIS (Netherlands)

    Bakx, R.; Busch, O. R. C.; Bemelman, W. A.; Veldink, G. J.; Slors, J. F. M.; van Lanschot, J. J. B.

    2004-01-01

    Background/Aims: A temporary loop ileostomy is constructed to protect a distal colonic anastomosis. Closure is usually performed not earlier than 8 - 12 weeks after the primary operation. During this period, stoma-related complications can occur and enhance the adverse effect on quality of life. The

  4. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  5. 3-D analysis of reactor loop isolation valves

    International Nuclear Information System (INIS)

    Dietrich, D.E.

    1975-01-01

    A full three-dimensional analysis for the design and operational loading conditions was performed on a 29 inch loop isolation valve using the Westinghouse finite element computer code. The 3-D analysis was employed for the valve design in place of utilizing the standard ASME valve design criteria. The valve design employs the design by analysis concept allowed for nuclear class valve. The valve design was evaluated for a set of independent load including pipe reactions and internal pressure. The design pipe reaction loads were based upon maximum fiber pipe stresses at yield for the bending moments, pipe membrane stresses at half yield for the axial load, and pipe maximum shear stress at half yield for the torsional moment. The valve design pressure was the system loop design pressure. The operating and accident condition evaluation included pipe reactions, extended structure forces, system pressure, and system thermal transients. The valve was analyzed for the normal operating, upset, emergency, and faulted loading conditions. These operating and accident conditions used various specified combinations of the supplied generic system pressure, deadweight, thermal, seismic, and LOCA pipe load components. The generic pipe loads are the worst possible postulated loads for any system design. These generic pipe load components were supplied as maximums and minimums so a simplified nozzle analysis was performed to determine the worst case combination for each loading condition. The valve design was shown to meet the design, operating, and accident condition requirements of the ASME code. The design by analysis concept for nuclear class 1 valves gave a significant reduction in required minimum wall thickness, 3.75 inches vs. 5.4 inches. These translate into significant material savings

  6. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  7. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  8. Flow regimes and heat transfer modes identification in ANGRA 2 core, during small break in the primary loop with area of 100 cm2, simulated with RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2015-01-01

    Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm 2 -rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)

  9. Flow regimes and heat transfer modes identification in ANGRA 2 core, during small break in the primary loop with area of 100 cm{sup 2}, simulated with RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: gdgian@ipen.br, E-mail: borges.em@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm{sup 2}-rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)

  10. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm2 in the cold leg of primary loop using RELAP5 code

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Sabundjian, Gaiane

    2017-01-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  11. Identification of flow regimes and heat transfer modes in Angra-2 core during the simulation of the small break loss of coolant accident of 250 cm{sup 2} in the cold leg of primary loop using RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)

  12. Development of prototype reactor maintenance. (2) Application to piping support of sodium-cooled reactor prototype

    International Nuclear Information System (INIS)

    Arai, Masanobu; Kunogi, Kosuke; Aizawa, Kosuke; Chikazawa, Yoshitaka; Takaya, Shigeru; Kubo, Shigenobu; Kotake, Shoji; Ito, Takaya; Yamaguchi, Akira

    2017-01-01

    A maintenance program on piping support of prototype fast breeder reactor Monju are studied. Based on degradation mechanism, snubbers in Monju primary cooling system showed lifetime more than the plant lifetime of 30 years by experiments conservatively. For the first step during construction, visual inspection on accessible all supports could be available. In that visual inspection, mounting conditions and damages of all accessible supports could be monitored. One of major features of the Monju primary piping system is large thermal expansion due to large temperature difference between maintenance and operation conditions. Thanks to that large thermal expansion, integrity of piping supports could be monitored by measuring piping displacement. When technologies of piping displacement monitoring are matured in Monju, visual inspection on piping support could be shifted to piping displacement monitoring. At that stage, the visual inspection could be limited only on representative supports. (author)

  13. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  14. Fluid structure interaction in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Svingen, Bjoernar

    1996-12-31

    The Dr. ing. thesis relates to an analysis of fluid structure interaction in piping systems in the frequency domain. The governing equations are the water hammer equations for the liquid, and the beam-equations for the structure. The fluid and structural equations are coupled through axial stresses and fluid continuity relations controlled by the contraction factor (Poisson coupling), and continuity and force relations at the boundaries (junction coupling). A computer program has been developed using the finite element method as a discretization technique both for the fluid and for the structure. This is made for permitting analyses of large systems including branches and loops, as well as including hydraulic piping components, and experiments are executed. Excitations are made in a frequency range from zero Hz and up to at least one thousand Hz. Frequency dependent friction is modelled as stiffness proportional Rayleigh damping both for the fluid and for the structure. With respect to the water hammer equations, stiffness proportional damping is seen as an artificial (bulk) viscosity term. A physical interpretation of this term in relation to transient/oscillating hydraulic pipe-friction is given. 77 refs., 72 figs., 4 tabs.

  15. Pipe whip: a summary of the damage observed in BNL pipe-on-pipe impact tests

    International Nuclear Information System (INIS)

    Baum, M.R.

    1987-01-01

    This paper describes examples of the damage resulting from the impact of a whipping pipe on a nearby pressurised pipe. The work is a by-product of a study of the motion of a whipping pipe. The tests were conducted with small-diameter pipes mounted in rigid supports and hence the results are not directly applicable to large-scale plant applications where flexible support mountings are employed. The results illustrate the influence of whipping pipe energy, impact position and support type on the damage sustained by the target pipe. (author)

  16. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  17. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  18. Qualification of PHT piping of Indian 500 MW PHWR for LBB, using R-6 method

    International Nuclear Information System (INIS)

    Rastogi, Rohit; Bhasin, V.; Kushwaha, H.S.

    1997-01-01

    This document discusses the qualification of straight pipe portion of the primary heat transport (PHT) piping of Indian 500 MWe pressurised heavy water reactor (PHWR) for leak before break (LBB). The evaluation is done using R-6 [1] method. The results presented here are: the safety margins which exist on straight pipe components of main PHT piping of 500 MWe, under leakage size crack (LSC) and design basis accident loads; the sensitivity of safety margins with respect to different analysis parameters and the qualification of PHT piping for LBB based on criterion given by NUREG-1061 [2] and TECDOC-774 [3]. (author)

  19. Pipe-to-pipe impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Bampton, M C.C.; Alzheimer, J M; Friley, J R; Simonen, F A

    1985-11-01

    Existing licensing criteria express what damage shall be assumed for various pipe sizes as a consequence of a postulated break in a high energy system. The criteria are contained in Section 3.6.2 of the Standard Review Plan, and the purpose of the program described with this paper is to evaluate the impact criteria by means of a combined experimental and analytical approach. A series of tests has been completed. Evaluation of the test showed a deficiency in the range of test parameters. These deficiencies are being remedied by a second series of tests and a more powerful impact machine. A parallel analysis capability has been developed. This capability has been used to predict the damage for the first test series. The quality of predictions has been improved by tests that establish post-crush and bending relationships. Two outputs are expected from this project: data that may, or may not, necessitate changes to the criteria after appropriate value impact evaluations and an analytic capability for rapidly evaluating the potential for pipe whip damage after a postulated break. These outputs are to be contained in a value-impact document and a program final report. (orig.).

  20. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  1. Pemakaian Crown Loop dan Band Loop di Rahang Bawah Anak Usia Enam Tahun (Laporan Kasus

    Directory of Open Access Journals (Sweden)

    Rivi Isabela

    2015-11-01

    Full Text Available The function of space maintainer is to preserve arch length following the premature loss of a primary teeth. Early loss of primary tooth may compromise the eruption of succedaneous teeth if there is a reduction in the arch length. The Band and Crown Loop are used to maintain the loss of primary molar. The report describe a 6 year old girl who has premature loss of second left mandibular primary molar and first right mandibular primary molar treated using crown and band loop space maintainer. The patient still has mastication function from other posterior primary teeth.

  2. Loop Transfer Matrix and Loop Quantum Mechanics

    International Nuclear Information System (INIS)

    Savvidy, George K.

    2000-01-01

    The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)

  3. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  4. Behavior of a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon

    2015-01-01

    A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....

  5. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  6. Study on quality control measures of static casting main pipe in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Jiang Zhenbiao; Li Guanying; Liu Zhicheng

    2013-01-01

    This study analyzes the main reasons which impact the quality of primary pipe static casting elbows in PWR-M310 nuclear power plant. The quality control measures are developed from the election and inspection of material, improving sand production and casting process, improving lean management of personnel. The static casting defects of primary pipe elbows for Fuqing Unit 1 and 2 were down to less than 50% of the former project. The quality of static casting for the primary pipe elbows was significantly improved. Moreover, the implementation saves human resources and financing to repair casting defects, and also helps to win the delivery schedule. The quality control measures are good reference for improving primary pipe casting process. This study provides valuable experience for further study of improving the quality of static casting for the primary pipe of PWR nuclear power plant. (authors)

  7. Venting of gas deflagrations through relief pipes

    OpenAIRE

    Ferrara, Gabriele

    2006-01-01

    Vent devices for gas and dust explosions are often ducted to safety locations by means of relief pipes for the discharge of hot combustion products or blast waves (NFPA 68, 2002). The presence of the duct is likely to increase the severity of the explosion with respect to simply vented vessels posing a problem for the proper design of this venting configuration. The phenomenology of the vented explosion is complicated as the interaction of combustion in the duct with primary combustion in...

  8. Identification of significant problems related to light water reactor piping systems

    International Nuclear Information System (INIS)

    1980-07-01

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems

  9. Fundamental and Harmonic Oscillations in Neighboring Coronal Loops

    Science.gov (United States)

    Li, Hongbo; Liu, Yu; Vai Tam, Kuan

    2017-06-01

    We present observations of multimode (fundamental and harmonic) oscillations in a loop system, which appear to be simultaneously excited by a GOES C-class flare. Analysis of the periodic oscillations reveals that (1) the primary loop with a period of P a ≈ 4 minutes and a secondary loop with two periods of P a ≈ 4 minutes and P b ≈ 2 minutes are detected simultaneously in closely spaced loop strands; (2) both oscillation components have their peak amplitudes near the loop apex, while in the second loop the low-frequency component P a dominates in a loop segment that is two times larger than the high-frequency component P b ; (3) the harmonic mode P b shows the largest deviation from a sinusoidal loop shape at the loop apex. We conclude that multiple harmonic modes with different displacement profiles can be excited simultaneously even in closely spaced strands, similar to the overtones of a violin string.

  10. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  11. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  12. Concepts of self-acting circulation loops for downward heat transfer (reverse thermosiphons)

    International Nuclear Information System (INIS)

    Dobriansky, Y.

    2011-01-01

    This paper reviews the scientific and technical knowledge related to general self-acting flow loops (thermosiphons and heat pipes) that transmit heat upwards and self-acting reverse flow loops that transmit heat downwards. This paper classifies the heat and mass transfer processes that take place in general flow loops and analyses the nomenclature applied in the literature. It also presents the principles of operation of sixteen reverse flow loops; four of the loops are powered by an external source of energy, while the remaining loops are self-acting. Of the self-acting loops, vapor was used for heat transfer in seven of them and liquid was used in the remaining ones. Based on the available research results, a list of the advantages and disadvantages of both types of loops is presented.

  13. Numerical simulation of a Charpy test and correlation of fracture toughness with fracture energy. Vessel steel and duplex stainless steel of the primary loop

    International Nuclear Information System (INIS)

    Breban, P; Eripret, C.

    1995-01-01

    The analysis methods used to evaluate the harmlessness of defects in the components of the primary coolant circuit of pressurized water reactor are based on the knowledge of the failure properties of concerned materials. The toughness is used to be measured through tests performed on normalized samples. But in some cases, especially for the vessel steel submitted to irradiation effects or for cast components in duplex stainless steel sensitive to thermal ageing, these measurements are not available on the material aged in operation. Therefore, fracture resistance has been evaluated through Charpy tests. Toughness is thus obtained on the basis of an empirical correlation. To improve these predictions, a modeling of the Charpy test in the framework of the local approach to fracture has been performed, for both materials. For the vessel steel, a complete evaluation of toughness has been achieved on the basis of a bidimensional viscoplastic modeling under large strain assumptions and a post-treatment with a Weibull model (cleavage fracture). The main hypothesis (partition between plain stress and plain strain areas in the bidimensional modeling) was corrected after a three dimensional calculations with the finite element program Code-Aster. The fracture analysis put into evidence that damage considerations like cavity nucleation and growth have to be introduced in the model in order to improve the description of physical phenomena. Two ways of progress have been suggested and are in course of being investigated, one in the framework of local approach to failure, the other with the help of micro-macro relationship. With regard to the duplex steel, the description of a Charpy (U) test allowed to clearly discriminate between crack initiation and propagation phases. A modeling through an equivalent homogenous material with a damage law based on a modified Gurson potential enables to describe quantitatively both phases of fracture. It clearly appears that a reliable

  14. Laboratory Deposition Apparatus to Study the Effects of Wax Deposition on Pipe Magnetic Field Leakage Signals

    Directory of Open Access Journals (Sweden)

    Karim Mohd Fauzi Abd

    2014-07-01

    Full Text Available Accurate technique for wax deposition detection and severity measurement on cold pipe wall is important for pipeline cleaning program. Usually these techniques are validated by conventional techniques on laboratory scale wax deposition flow loop. However conventional techniques inherent limitations and it is difficult to reproduce a predetermine wax deposit profile and hardness at designated location in flow loop. An alternative wax deposition system which integrates modified pour casting method and cold finger method is presented. This system is suitable to reproduce high volume of medium hard wax deposit in pipe with better control of wax deposit profile and hardness.

  15. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  16. An experience with in-service fabrication and inspection of austenitic stainless steel piping in high temperature sodium system

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Bhaduri, A.K.

    2015-04-01

    Highlights: • Procedure for changing 304L SS pipe to 316L SS in sodium loop has been established. • Hot leg made of 304L SS was isolated from existing cold leg made of 316LN SS. • Innovative welding was used in joining the new 316L SS pipe with existing 316LN SS. • The old components of 304L SS piping have been integrated with the new piping. - Abstract: A creep testing facility along with dynamic sodium loop was installed at Indira Gandhi Centre for Atomic Research, Kalpakkam, India to assess the creep behavior of fast reactor structural materials in flowing sodium. Type 304L austenitic stainless steel was used in the low cross section piping of hot-leg whereas 316LN austenitic stainless steel in the high cross section cold-leg of the sodium loop. The intended service life of the sodium loop was 10 years. The loop has performed successfully in the stipulated time period. To enhance its life time, it has been decided to replace the 304L piping with 316L piping in the hot-leg. There were more than 300 welding joints involved in the integration of cold-leg with the new 316L hot-leg. Continuous argon gas flow was maintained in the loop during welding to avoid contamination of sodium residue with air. Several innovative welding procedures have been adopted for joining the new hot-leg with the existing cold-leg in the presence of sodium residue adopting TIG welding technique. The joints were inspected for 100% X-ray radiography and qualified by performing tensile tests. The components used in the discarded hot-leg were retrieved, cleaned and integrated in the renovated loop. A method of cleaning component of sodium residue has been established. This paper highlights the in-service fabrication and inspection of the renovation.

  17. The Brownian loop soup

    OpenAIRE

    Lawler, Gregory F.; Werner, Wendelin

    2003-01-01

    We define a natural conformally invariant measure on unrooted Brownian loops in the plane and study some of its properties. We relate this measure to a measure on loops rooted at a boundary point of a domain and show how this relation gives a way to ``chronologically add Brownian loops'' to simple curves in the plane.

  18. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  19. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  20. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  1. Automation of secondary loop operation in Indus-2 LCW plant

    International Nuclear Information System (INIS)

    Srinivas, L.; Pandey, R.M.; Yadav, R.P.; Gupta, S.; Gandhi, M.L.; Thakurta, A.C.

    2013-01-01

    Indus-2 Low Conductivity Water (LCW) plant has two loops, primary loop and secondary loop. The primary loop mainly supplies LCW to magnets, power supplies and RF systems at constant flow rate. The secondary loop extracts heat from the primary loop through heat exchangers to maintain the supply water temperature of the primary loop around a set value. The supply water temperature of the primary loop is maintained by operating the pumps and cooling towers in the secondary loop. The desired water flow rate in the secondary loop is met by the manual operation of the required number of the pumps. The automatic operation of the pumps and the cooling towers is proposed to replace the existing inefficient manual operation. It improves the operational reliability and ensures the optimum utilization of the pumps and the cooling towers. An algorithm has been developed using LabView programming to achieve optimized operation of the pumps and the cooling towers by incorporating First-In-First-Out (FIFO) logic. It also takes care of safety interlocks, and generates alarms. The program exchanges input and output signals of the plant using existing SCADA system. In this paper, the development of algorithm, its design and testing are elaborated. In the end, the results obtained thereof are discussed. (author)

  2. Study on flow-induced vibration of large-diameter pipings in a sodium-cooled fast reactor. Influence of elbow curvature on velocity fluctuation field

    International Nuclear Information System (INIS)

    Ono, Ayako; Kimura, Nobuyuki; Kamide, Hideki; Tobita, Akira

    2010-02-01

    The main cooling system of Japan Sodium-cooled Fast Reactor (JSFR) consists of two loops to reduce the plant construction cost. In the design of JSFR, sodium coolant velocity is beyond 9m/s in the primary hot leg pipe with large-diameter (1.3m). The maximum Reynolds number in the piping reaches 4.2x10 7 . The hot leg pipe having a 90 degree elbow with curvature ratio of r/D=1.0, so-called 'short elbow', which enables a compact reactor vessel. In sodium cooled fast reactors, the system pressure is so low that thickness of pipings in the cooling system is thinner than that in LWRs. Under such a system condition in the cooling system, the flow-induced vibration (FIV) is concerned at the short elbow. The evaluation of the structural integrity of pipings in JSFR should be conducted based on a mechanistic approach of FIV at the elbow. It is significant to obtain the knowledge of the fluctuation intensity and spectra of velocity and pressure fluctuations in order to grasp the mechanism of the FIV. In this study, water experiments were conducted. Two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0, 1.5, were used to investigate the influence of curvature on velocity fluctuation at the elbow. The velocity fields in the elbows were measured using a high speed PIV method. Unsteady behavior of secondary flow at the elbow outlet and separation flow at the inner wall of elbow were observed in the two types of elbows. It was found that the growth of secondary flow correlated with the flow fluctuation near the inside wall of the elbow. (author)

  3. Waste pipe calculus

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1978-01-01

    A rapid method is presented for calculating transport in a network of one-dimensional flow paths or ''pipes''. The method defines a Green's function for each flow path and prescribes a method of combining these Green's functions to produce an overall Green's function for the flow path network. A unique feature of the method is the use of the Laplace transform of these Green's functions to carry out most of the calculations

  4. Pipe damping studies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) is conducting a research program to assist the United States Nuclear Regulatory Commission (USNRC) in determining best-estimate damping values for use in the dynamic analysis of nuclear power plant piping systems. This paper describes four tasks in the program that were undertaken in FY-86. In the first task, tests were conducted on a 5-in. INEL laboratory piping system and data were analyzed from a 6-in. laboratory system at the ANCO Engineers facility to investigate the parameters influencing damping in the seismic frequency range. Further tests were conducted on 3- and 5-in. INEL laboratory piping systems as the second task to determine damping values representative of vibrations in the 33 to 100 Hz range, typical of hydrodynamic transients. In the third task a statistical evaluation of the available damping data was conduted to determine probability distributions suitable for use in probabilistic risk assessments (PRAs), and the final task evaluated damping data at high strain levels

  5. Estimating steady state and transient characteristics of molten salt natural circulation loop using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kudariyawar, J.Y. [Homi Bhabha National Institue, Mumbai (India); Vaidya, A.M.; Maheshwari, K.K.; Srivastava, A.K. [Reactor Engineering Division, Bhabha Atomic Research Center, Mumbai (India); Satyamurthy, P. [ATDS, Bhabha Atomic Research Center, Mumbai (India)

    2015-03-15

    The steady state and transient characteristics of a molten salt natural circulation loop (NCL) are obtained by 3D CFD simulations. The working fluid is a mixture of NaNO{sub 3} and KNO{sub 3} in 60:40 ratio. Simulation is performed using PHOENICS CFD software. The computational domain is discretized by a body fitted grid generated using in-built mesh generator. The CFD model includes primary side. Primary side fluid is subjected to heat addition in heater section, heat loss to ambient (in piping connecting heater and cooler) and to secondary side (in cooler section). Reynolds Averaged Navier Stokes equations are solved along with the standard k-ε turbulence model. Validation of the model is done by comparing the computed steady state Reynolds number with that predicted by various correlations proposed previously. Transient simulations were carried out to study the flow initiations transients for different heater powers and different configurations. Similarly the ''power raising'' transient is computed and compared with in-house experimental data. It is found that, using detailed information obtained from 3D transient CFD simulations, it is possible to understand the physics of oscillatory flow patterns obtained in the loop under certain conditions.

  6. Assessment of value-impact associated with the elimination of postulated pipe ruptures from the design basis for nuclear power plants

    International Nuclear Information System (INIS)

    Holman, G.S.; Chou, C.K.

    1985-01-01

    The US Nuclear Regulatory Commission is proposing to amend the regulations that currently require that the design basis for nuclear power plants include the postulation of dynamic effects from loss of coolant accidents up to and including the double-ended rupture of the largest pipe in the reactor coolant system. Proposed modifications would allow analyses to serve as a sufficient basis for excluding dynamic effects, including but not necessarily limited to pipe whip and jet impingement, associated with specific pipe ruptures. Only dynamic effects would be impacted; current design requirements for containment sizing and discharge capacity of emergency core cooling systems would remain unchanged. This report presents a detailed analysis of value-impact associated with the proposed amendment for PWR reactor coolant loop piping and for BWR recirculation loop piping. The effect of extending application of the proposed rule change to other piping systems is also assessed in a less quantitative manner

  7. Rupture loop annex ion exchange RLAIX vault deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  8. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  9. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  10. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  11. Evaluation of piping heat transfer, piping flow regimes, and steam generator heat transfer for the Semiscale Mod-1 isothermal tests

    International Nuclear Information System (INIS)

    French, R.T.

    1975-08-01

    Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)

  12. Environmental Assisted Fatigue Evaluation of Direct Vessel Injection Piping Considering Thermal Stratification

    International Nuclear Information System (INIS)

    Kim, Taesoon; Lee, Dohwan

    2016-01-01

    As the environmentally assisted fatigue (EAF) due to the primary water conditions is to be a critical issue, the fatigue evaluation for the components and pipes exposed to light water reactor coolant conditions has become increasingly important. Therefore, many studies to evaluate the fatigue life of the components and pipes in LWR coolant environments on fatigue life of materials have been conducted. Among many components and pipes of nuclear power plants, the direct vessel injection piping is known to one of the most vulnerable pipe systems because of thermal stratification occurred in that systems. Thermal stratification occurs because the density of water changes significantly with temperature. In this study, fatigue analysis for DVI piping using finite element analysis has been conducted and those results showed that the results met design conditions related with the environmental fatigue evaluation of safety class 1 pipes in nuclear power plants. Structural and fatigue integrity for the DVI piping system that thermal stratification occurred during the plant operation has conducted. First of all, thermal distribution of the piping system is calculated by computational fluid dynamic analysis to analyze the structural integrity of that piping system. And the fatigue life evaluation considering environmental effects was carried out. Our results showed that the DVI piping system had enough structural integrity and fatigue life during the design lifetime of 60 years

  13. Probabilistic assessment of critically flawed LMFBR PHTS piping elbows

    International Nuclear Information System (INIS)

    Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

    1982-01-01

    One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results

  14. Fatigue check of nuclear safety class 1 reactor coolant pipe

    International Nuclear Information System (INIS)

    Wang Qing; Fang Yonggang; Chu Qibao; Xu Yu; Li Hailong

    2015-01-01

    Fatigue and thermal ratcheting analyses of nuclear safety Class 1 reactor coolant pipe in a nuclear power plant were independently carried out in this paper. The software used for calculation is ROCOCO, which is based on RCC-M code. The difference of nuclear safety Class 1 pipe fatigue evaluation between RCC-M code and ASME code was compared. The main aspects of comparison include the calculation scoping of fatigue design, the calculation method of primary plus secondary stress intensity, the elastic-plastic correction coefficient calculation, and the dynamic load combination method etc. By correcting inconsistent algorithm of ASME code within ROCOCO, the fatigue usage factor and thermal ratcheting design margin of 65 mm and 55 mm wall thickness of the pipe were obtained. The results show that the minimum wall thickness of the pipe must exceed 55 mm and the design value of the thermal ratcheting of 55 mm wall thickness reaches 95% of the allowable value. (authors)

  15. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  16. Pipe support program at Pickering

    International Nuclear Information System (INIS)

    Sahazizian, L.A.; Jazic, Z.

    1997-01-01

    This paper describes the pipe support program at Pickering. The program addresses the highest priority in operating nuclear generating stations, safety. We present the need: safety, the process: managed and strategic, and the result: assurance of critical piping integrity. In the past, surveillance programs periodically inspected some systems, equipment, and individual components. This comprehensive program is based on a managed process that assesses risk to identify critical piping systems and supports and to develop a strategy for surveillance and maintenance. The strategy addresses all critical piping supports. Successful implementation of the program has provided assurance of critical piping and support integrity and has contributed to decreasing probability of pipe failure, reducing risk to worker and public safety, improving configuration management, and reducing probability of production losses. (author)

  17. Acoustic analysis of a piping system

    International Nuclear Information System (INIS)

    Misra, A.S.; Vijay, D.K.

    1996-01-01

    Acoustic pulsations in the Darlington Nuclear Generating Station, a 881 MW CANDU, primary heat transport piping system caused fuel bundle failures under short term operations. The problem was successfully analyzed using the steady-state acoustic analysis capability of the ABAQUS program. This paper describes in general, modelling of low amplitude acoustic pulsations in a liquid filled piping system using ABAQUS. The paper gives techniques for estimating the acoustic medium properties--bulk modulus, fluid density and acoustic damping--and modelling fluid-structure interactions at orifices and elbows. The formulations and techniques developed are benchmarked against the experiments given in 3 cited references. The benchmark analysis shows that the ABAQUS results are in excellent agreement with the experiments

  18. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  19. Dynamic experiments on cracked pipes

    International Nuclear Information System (INIS)

    Petit, M.; Brunet, G.; Buland, P.

    1991-01-01

    In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system

  20. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  1. Renormalization of loop functions for all loops

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.; Sato, M.

    1981-01-01

    It is shown that the vacuum expectation values W(C 1 ,xxx, C/sub n/) of products of the traces of the path-ordered phase factors P exp[igcontour-integral/sub C/iA/sub μ/(x)dx/sup μ/] are multiplicatively renormalizable in all orders of perturbation theory. Here A/sub μ/(x) are the vector gauge field matrices in the non-Abelian gauge theory with gauge group U(N) or SU(N), and C/sub i/ are loops (closed paths). When the loops are smooth (i.e., differentiable) and simple (i.e., non-self-intersecting), it has been shown that the generally divergent loop functions W become finite functions W when expressed in terms of the renormalized coupling constant and multiplied by the factors e/sup -K/L(C/sub i/), where K is linearly divergent and L(C/sub i/) is the length of C/sub i/. It is proved here that the loop functions remain multiplicatively renormalizable even if the curves have any finite number of cusps (points of nondifferentiability) or cross points (points of self-intersection). If C/sub γ/ is a loop which is smooth and simple except for a single cusp of angle γ, then W/sub R/(C/sub γ/) = Z(γ)W(C/sub γ/) is finite for a suitable renormalization factor Z(γ) which depends on γ but on no other characteristic of C/sub γ/. This statement is made precise by introducing a regularization, or via a loop-integrand subtraction scheme specified by a normalization condition W/sub R/(C-bar/sub γ/) = 1 for an arbitrary but fixed loop C-bar/sub γ/. Next, if C/sub β/ is a loop which is smooth and simple except for a cross point of angles β, then W(C/sub β/) must be renormalized together with the loop functions of associated sets S/sup i//sub β/ = ]C/sup i/ 1 ,xxx, C/sup i//sub p/i] (i = 2,xxx,I) of loops C/sup i//sub q/ which coincide with certain parts of C/sub β/equivalentC 1 1 . Then W/sub R/(S/sup i//sub β/) = Z/sup i/j(β)W(S/sup j//sub β/) is finite for a suitable matrix Z/sup i/j

  2. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  3. Plastics pipe couplings

    International Nuclear Information System (INIS)

    Glover, J.B.

    1980-07-01

    A method is described of making a pipe coupling of the type comprising a plastics socket and a resilient annular sealing member secured in the mouth thereof, in which the material of at least one component of the coupling is subjected to irradiation with high energy radiation whereby the material is caused to undergo cross-linking. As examples, the coupling may comprise a polyethylene or plasticised PVC socket the material of which is subjected to irradiation, and the sealing member may be moulded from a thermoplastic elastomer which is subjected to irradiation. (U.K.)

  4. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  5. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  6. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  7. A simple blowdown code for SUPER-SARA loop conditions

    International Nuclear Information System (INIS)

    Fritz, G.

    1981-01-01

    The Super Sara test programme (SSTP) is aimed to study in pile the fuel and cluster behaviour under two types of accident conditions: - the ''Large break loss of coolant'' condition (LB-Loca), - the ''Severe fuel damage'' (SFD) in a boildown caused by a small break. BIVOL was developed for the LB-Loca situation. This code is made for a loop where essentially two volumes define the thermohydraulics during the blowdown. In the SUPERSARA loop these two volumes are represented by the hot leg and cold leg pipings together with the respective upper and lower plenum of the test section

  8. Thermal-hydraulic analysis of the improved TOPAZ-II power system using a heat pipe radiator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Tian, Wenxi; Qiu, Suizheng; Su, G.H.

    2016-10-15

    Highlights: • The system thermal-hydraulic model of the improved space thermionic reactor is developed. • The temperature reactivity feedback effects of the moderator, UO2 fuel, electrodes and reflector are considered. • The alkali metal heat pipe radiator is modeled with the two dimensional heat pipe model. • The steady state and the start-up procedure of the system are analyzed. - Abstract: A system analysis code coupled with the heat pipe model is developed to analyze the thermal-hydraulic characteristics of the improved TOPAZ-II reactor power system with a heat pipe radiator. The core thermal-hydraulic model, neutron physics model, and the coolant loop component models (including pump, volume accumulator, pipes and plenums) are established. The designed heat pipe radiator, which replaces the original pumped loop radiator, is also modeled, including two-dimensional heat pipe analysis model, fin model and coolant transport duct model. The system analysis code and the heat pipe model is coupled in the transport duct model. Steady state condition and start-up procedure of the improved TOPAZ-II system are calculated. The results show that the designed radiator can satisfy the waste heat rejection requirement of the improved power system. Meanwhile, the code can be used to obtained the thermal characteristics of the system transients such as the start-up process.

  9. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  10. Random walk loop soup

    OpenAIRE

    Lawler, Gregory F.; Ferreras, José A. Trujillo

    2004-01-01

    The Brownian loop soup introduced in Lawler and Werner (2004) is a Poissonian realization from a sigma-finite measure on unrooted loops. This measure satisfies both conformal invariance and a restriction property. In this paper, we define a random walk loop soup and show that it converges to the Brownian loop soup. In fact, we give a strong approximation result making use of the strong approximation result of Koml\\'os, Major, and Tusn\\'ady. To make the paper self-contained, we include a proof...

  11. Impact analyses after pipe rupture

    International Nuclear Information System (INIS)

    Chun, R.C.; Chuang, T.Y.

    1983-01-01

    Two of the French pipe whip experiments are reproduced with the computer code WIPS. The WIPS results are in good agreement with the experimental data and the French computer code TEDEL. This justifies the use of its pipe element in conjunction with its U-bar element in a simplified method of impact analyses

  12. Mechanical Behaviour of Lined Pipe

    NARCIS (Netherlands)

    Hilberink, A.

    2011-01-01

    Installing lined pipe by means of the reeling installation method seems to be an attractive combination, because it provides the opportunity of eliminating the demanding welds from the critical time offshore and instead preparing them onshore. However, reeling of lined pipe is not yet proven

  13. Pulsed TIG welding of pipes

    International Nuclear Information System (INIS)

    Killing, U.

    1989-01-01

    The present study investigates into the effects of impulse welding parameters on weld geometry in the joint welding of thin-walled sheets and pipes (d=2.5 mm), and it uses random samples of thick-walled sheets and pipes (d=10 mm), in fixed positions. (orig./MM) [de

  14. Direct measurements of acoustic damping and sound amplification in corrugated pipes with flow

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; Vijlbrief, O.; Lunde, K.

    2015-01-01

    The flow-induced pulsations in corrugated pipes result from a feedback loop between an acoustic resonator and the noise amplification at each shear layer in the axisymmetric cavities forming the corrugations. The quality factor of the resonator is determined by the reflection coefficients at the

  15. Investigation of straitified and countercurrent flows in horizontal piping during a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bourteele, J.P.

    1980-06-01

    The ECTHOR program consists in a loop having as objective to study the flow regimes in horizontal pipings (stratification, countercurrent flows) in conditions representative of small break transients within commercial PWR. The ECTHOR tests are in process. Experimental results are already available and are presented in this paper: scaling problem, U tube experiments, hot leg experiments, high pressure tests

  16. On loop extensions and cohomology of loops

    OpenAIRE

    Benítez, Rolando Jiménez; Meléndez, Quitzeh Morales

    2015-01-01

    In this paper are defined cohomology-like groups that classify loop extensions satisfying a given identity in three variables for association identities, and in two variables for the case of commutativity. It is considered a large amount of identities. This groups generalize those defined in works of Nishigori [2] and of Jhonson and Leedham-Green [4]. It is computed the number of metacyclic extensions for trivial action of the quotient on the kernel in one particular case for left Bol loops a...

  17. Neutron transport in irradiation loops (IRENE loop)

    International Nuclear Information System (INIS)

    Sarsam, Maher.

    1980-09-01

    This thesis is composed of two parts with different aspects. Part one is a technical description of the loop and its main ancillary facilities as well as of the safety and operational regulations. The measurement methods on the model of the ISIS reactor and on the loop in the OSIRIS reactor are described. Part two deals with the possibility of calculating the powers dissipated by each rod of the fuel cluster, using appropriate computer codes, not only in the reflector but also in the core and to suggest a method of calculation [fr

  18. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    Science.gov (United States)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  20. Functional capability of piping systems

    International Nuclear Information System (INIS)

    Terao, D.; Rodabaugh, E.C.

    1992-11-01

    General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants

  1. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  2. SOLA-LOOP analysis of a back pressure check valve

    International Nuclear Information System (INIS)

    Travis, J.R.

    1984-01-01

    The SOLA-LOOP computer code for transient, nonequilibrium, two-phase flows in networks has been coupled with a simple valve model to analyze a feedwater pipe breakage with a back-pressure check valve. Three tests from the Superheated Steam Reactor Safety Program Project (PHDR) at Kahl, West Germany, are analyzed, and the calculated transient back-pressure check valve behavior and fluid dynamics effects are found to be in excellent agreement with the experimentally measured data

  3. Radiation level assessment of the Dresden-1 decontamination pilot loop

    International Nuclear Information System (INIS)

    1978-05-01

    The radionuclide concentrations of the Dresden-1 decontamination pilot loop were determined by gamma spectroscopy. The General Electric Ge(Li)pipe gamma scanning system was utilized to take measurements at eight locations both before and after the pilot demonstration of decontamination process. Dose rate measrurements were taken with a portable gamma monitor at 30 additional locations. The percentage of Co-60 removed was calculated and the results were interpreted

  4. Stresses in a curved pipe subject to an in-plane bending moment

    International Nuclear Information System (INIS)

    Hofmann, E.; Heeschen, U.

    1979-01-01

    The design of the KWU-primary component supports is mainly defined by the loads of the postulated pipe breaks. To estimate the maximum loading of a component support it is necessary to know the maximum in-plane bending moment (opening and closing) that can be transmitted by a pipe bend. Another reason for such information is that the displacements and distortions of the components cause higher stresses in elbows than in straight pipes. With a detailed knowledge of the deformation characteristic of a pipe bend an integrity analysis could be done without an expensive plastic system analysis. With this purpose in mind experiments were performed with straight pipes and pipe bends of different dimensions subject to in-plane bending moments. The experimental results give the ratio between the maximum transmittable moment of a pipe bend to that of a straight pipe or, the distortion of the end cross-sections and the flattening of the elbow cross-section. An attempt is made to derive simple expressions for estimating the behaviour at pipe elbows. Parallel to the experiments calculations were done for the straight pipe and elbow with a finite difference code with plastic capabilities. The results of the experiment and calculation are compared with the formulas of the ASME-Code section III subjection NB. (orig.)

  5. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  6. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  7. Technical report on the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1993-05-01

    Japan Atomic Energy Research Institute (JAERI) conducts Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan (STA) under the auspices of the special account law for electric power development promotion. The purpose of these tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the light water reactor power plants. The tests with large experimental facilities had ended already in 1990. Presently piping reliability analysis by the probabilistic fracture mechanics method is being done. Until now annual reports concerning the proving tests were produced and submitted to STA, whereas this report summarizes the test results done during these 16 years. Objectives of the piping reliability proving tests are to prove that the primary piping of the light water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location even if it ruptured suddenly. To attain these objectives (i) pipe fatigue tests, (ii) unstable pipe fracture tests, (iii) pipe rupture tests and also the analyses by computer codes were done. After carrying out these tests, it is verified that the piping is reliable throughout the service period. The authors of this report are T. Isozaki, K. Shibata, S. Ueda, R. Kurihara, K. Onizawa and A. Kohsaka. The parts they wrote are shown in contents. (author)

  8. Specialist meeting on leak before break in reactor piping and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bartholome, G.; Bazant, E.; Wellein, R. [Siemens KWU, Stuttgart (Germany)] [and others

    1997-04-01

    A series of research projects sponsored by the Federal Minister for Education, Science, Research and Technology, Bonn are summarized and compared to utility, manufacturer, and vendor tests. The purpose of the evaluation was to experimentally verify Leak-before-Break behavior, confirm the postulation of fracture preclusion for piping (straight pipe, bends and branches), and quantify the safety margin against massive failure. The results are applicable to safety assessment of ferritic and austenitic piping in primary and secondary nuclear power plant circuits. Moreover, because of the wide range of the test parameters, they are also important for the design and assessment of piping in other technical plant. The test results provide justification for ruling out catastrophic fractures, even on pipes of dimensions corresponding to those of a main coolant pipe of a pressurized water reactor plant on the basis of a mechanical deterministic safety analysis in correspondence with the Basis Safety Concept (Principle of Fracture Exclusion).

  9. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    International Nuclear Information System (INIS)

    Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results

  10. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.

  11. Protection Performance Simulation of Coal Tar-Coated Pipes Buried in a Domestic Nuclear Power Plant Using Cathodic Protection and FEM Method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Y.; Lim, B. T.; Kim, K. S.; Kim, J. W.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Kim, Y. S.; Kim, K. T. [Andong National University, Andong (Korea, Republic of)

    2017-06-15

    Coal tar-coated pipes buried in a domestic nuclear power plant have operated under the cathodic protection. This work conducted the simulation of the coating performance of these pipes using a FEM method. The pipes, being ductile cast iron have been suffered under considerably high cathodic protection condition beyond the appropriate condition. However, cathodic potential measured at the site revealed non-protected status. Converting from 3D CAD data of the power plant to appropriate type for a FEM simulation was conducted and cathodic potential under the applied voltage and current was calculated using primary and secondary current distribution and physical conditions. FEM simulation for coal tar-coated pipe without defects revealed over-protection condition if the pipes were well-coated. However, the simulation for coal tar-coated pipes with many defects predict that the coated pipes may be severely degraded. Therefore, for high risk pipes, direct examination and repair or renewal of pipes are strongly recommended.

  12. Water loop for training

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1983-02-01

    The procedures used to operate the water loop of the Institute of Nuclear Enginering (IEN) in Brazil are presented. The aim is to help future operators of the training water loop in the operation technique and in a better comprehension of the phenomena occured during the execution of an experience. (E.G.) [pt

  13. Study on the fabrication of the Stress Corrosion Crack by vapor pressure in the Alloy 600 Pipe

    International Nuclear Information System (INIS)

    Kim, Jae Seong; An, Ju Seon; Hwang, Woong Ki; Lee, Bo Young

    2010-01-01

    The stress corrosion crack is one of the life-limiting mechanisms in nuclear power plant conditions. During the operation of a power plant stress corrosion cracks can initiate and grow in dissimilar metal weld pipe joints of primary loop components. In particular, stress corrosion cracking usually occurs when the following three factors exist at the same time; susceptible material, corrosive environment, and tensile stress (including residual stress). Thus, residual stress becomes very critical for stress-corrosion cracking when it is difficult to improve the material corrosivity of the components and their environment under operating conditions. Since the research conducted by Coriou et al., it is well known that Ni-based alloy is susceptible to stress corrosion cracking(SCC) in deaerated pure water at high temperature and the SCC is difficult to be reproduced in laboratory. The aim of this study was to fulfill the need by developing an artificial SCC manufacturing method, which would produce realistic SCC in the Alloy 600 pipe

  14. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  15. Waste pipe calculus extensions

    International Nuclear Information System (INIS)

    O'Connell, W.J.

    1979-01-01

    The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems

  16. Subsea pipe dream

    Energy Technology Data Exchange (ETDEWEB)

    Balcombe, Mark

    1988-09-22

    The Gulf of Mexico is famous today mainly for the ferocity of its hurricanes. But for anyone in the oil industry, it is also known for the vast array of oil pipelines that criss-cross its stormy waters, and for the large number of pipeline-laying barges which install them. Soon many of these vessels could be steaming to British waters - not to escape the weather, but to cash in on a bonanza of pipe-laying activity which could soon take place offshore northern Europe. The construction of new pipelines off the UK, Norway and Netherlands will, however, present a new range of challenges for pipeline designers and builders. First and foremost is the Piper Alpha platform disaster, which could saddle the UK offshore industry with a Pound 500 million-plus bill for the installation of emergency shutdown valves (ESVs) on existing lines.

  17. Updated pipe break analysis for Advanced Neutron Source Reactor conceptual design

    International Nuclear Information System (INIS)

    Wendel, M.W.; Chen, N.C.J.; Yoder, G.L.

    1994-01-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at the Oak Ridge National Laboratory that will supply the highest continuous neutron flux levels of any reactor in the world. It uses plate-type fuel with high-mass-flux and highly subcooled heavy water as the primary coolant. The Conceptual Safety Analysis for the ANSR was completed in June 1992. The thermal-hydraulic pipe-break safety analysis (performed with a specialized version of RELAP5/MOD3) focused primarily on double-ended guillotine breaks of the primary piping and some core-damage mitigation options for such an event. Smaller, instantaneous pipe breaks in the cold- and hot-leg piping were also analyzed to a limited extent. Since the initial analysis for the conceptual design was completed, several important changes to the RELAP5 input model have been made reflecting improvements in the fuel grading and changes in the elevation of the primary coolant pumps. Also, a new philosophy for pipe-break safety analysis (similar to that adopted for the New Production Reactor) accentuates instantaneous, limited flow area pipe-break accidents in addition to finite-opening-time, double-ended guillotine breaks of the major coolant piping. This paper discloses the results of the most recent instantaneous pipe-break calculations

  18. Consequences of pipe ruptures in metal fueled, liquid metal cooled reactors

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1990-01-01

    The capability to simulate pipe ruptures has recently been added to the SASSYS-1 LMR systems analysis code. Using this capability, the consequences of severe pipe ruptures in both loop-type and pool-type reactors using metal fuel were investigated. With metal fuel, if the control rods scram then either type of reactor can easily survive a complete double-ended break of a single pipe; although, as might be expected, the consequences are less severe for a pool-type reactor. A pool-type reactor can even survive a protected simultaneous breaking of all of its inlet pipes without boiling of the coolant or melting of the fuel or cladding. 2 refs., 16 figs., 1 tab

  19. Role of theoretical dynamics in vibration diagnostics of pipe systems

    International Nuclear Information System (INIS)

    Rejent, B.

    1992-01-01

    The importance of vibration diagnostics of pipe systems and the relevance of theoretical dynamics are shown using examples. The problems are discussed of vibration diagnostics of the primary circuit of a nuclear power plant with viscous seismic dampers installed. (M.D.) 7 figs., 5 refs

  20. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  1. TSTA Piping and Flame Arrestor Operating Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C.; Willms, R. Scott

    2014-10-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility operated from 1984 to 2001, running a prototype fusion fuel processing loop with ~100 grams of tritium as well as small experiments. There have been several operating experience reports written on this facility’s operation and maintenance experience. This paper describes analysis of two additional components from TSTA, small diameter gas piping that handled small amounts of tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The operating experiences and the component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  2. Research notes : drainage facility asset management : more than an inventory of pipes.

    Science.gov (United States)

    2007-04-01

    The primary objectives for the research project were twofold: 1) To develop and implement an Oregon-specific system for inventorying and evaluating the condition of pipes, culverts, and stormwater facilities based on the FHWA Culvert Management Syste...

  3. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Wang, Minglu; Gu, Hanyang; Ye, Cheng

    2015-01-01

    Highlights: • A passively cooling SFP heat pipe with an 8.2 m high evaporator was tested. • Heat removed by the heat pipe is in the range of 3.1–16.8 kW. • The heat transfer coefficient of the evaporator is 214–414 W/m 2 /K. • The heat pipe performance is sensitive to the hot water temperature. - Abstract: A loop-type heat pipe system uses natural flow with no electrically driven components. Therefore, such a system was proposed to passively cool spent fuel pools during accidents to improve nuclear power station safety especially for station blackouts such as those in Fukushima. The heat pipe used for a spent fuel pool is large due to the spent fuel pool size. An experimental heat pipe test loop was developed to estimate its heat removal capacity from the spent fuel pool during an accident. The 7.6 m high evaporator is heated by hot water flowing vertically down in an assistant tube with a 207-mm inner diameter. R134a was used as the potential heat pipe working fluid. The liquid R134a level was 3.6 m. The tests were performed for water velocities from 0.7 to 2.1 × 10 −2 m/s with water temperatures from 50 to 90 °C and air velocities from 0.5 m/s to 2.5 m/s. The results indicate significant heat is removed by the heat pipe under conditions that may occur in the spent fuel pool

  4. Leachate storage transport tanker loadout piping

    International Nuclear Information System (INIS)

    Whitlock, R.W.

    1994-01-01

    This report shows the modifications to the W-025 Trench No. 31 leachate loadout discharge piping, and also the steps involved in installing the discharge piping, including dimensions and welding information. The installation of the discharge pipe should be done in accordance to current pipe installation standards. Trench No. 31 is a radioactive mixed waste land disposal facility

  5. Determination of the pipe stemming load

    International Nuclear Information System (INIS)

    Cowin, S.C.

    1979-01-01

    A mechanical model for the emplacement pipe system is developed. The model is then employed to determine the force applied to the surface collar of the emplacement pipe, the pipe-stemming load, and the stress along the emplacement pipe as a function of stemming height. These results are presented as integrals and a method for their numerical integration is given

  6. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    Energy Technology Data Exchange (ETDEWEB)

    Nickols, A N [Codes Coordinator, Atomics International, P. O. Box 309, Canoga Park, California 91304 (United States)

    1975-03-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units.

  7. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    International Nuclear Information System (INIS)

    Nickols, A.N.

    1975-01-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units

  8. Large lithium loop experience

    International Nuclear Information System (INIS)

    Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.

    1981-10-01

    An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430 0 C and flow to 0.038 m 3 /s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed

  9. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  10. Pipe restraints for nuclear power plants

    International Nuclear Information System (INIS)

    Keever, R.E.; Broman, R.; Shevekov, S.

    1976-01-01

    A pipe restraint for nuclear power plants in which a support member is anchored on supporting surface is described. Formed in the support member is a semicylindrical wall. Seated on the semicylindrical wall is a ring-shaped pipe restrainer that has an inner cylindrical wall. The inner cylindrical wall of the pipe restrainer encircles the pressurized pipe. In a modification of the pipe restraint, an arched-shaped pipe restrainer is disposed to overlie a pressurized pipe. The ends of the arch-shaped pipe restrainer are fixed to support members, which are anchored in concrete or to a supporting surface. A strap depends from the arch-shaped pipe restrainer. The pressurized pipe is supported by the depending strap

  11. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  12. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  13. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  14. Calculation of forces on reactor containment fan cooler piping

    International Nuclear Information System (INIS)

    Miller, J.S.; Ramsden, K.

    2004-01-01

    The purpose of this paper is to present the results of the Reactor Containment Fan Cooler (RCFC) system piping load calculations. These calculations are based on piping loads calculated using the EPRI methodology and RELAP5 to simulate the hydraulic behavior of the system. The RELAP5 generated loads were compared to loads calculated using the EPRI GL-96-06 methodology. This evaluation was based on a pressurized water reactor's RCFC coils thermal hydraulic behavior during a Loss of Offsite Power (LOOP) and a loss of coolant accident (LOCA). The RCFC consist of two banks of service water and chill water coils. There are 5 SX and 5 chill water coils per bank. Therefore, there are 4 RCFC units in the containment with 2 banks of coils per RCFC. Two Service water pumps provide coolant for the 4 RCFC units (8 banks total, 2 banks per RCFC unit and 2 RCFC units per pump). Following a LOOP/LOCA condition, the RCFC fans would coast down and upon being re-energized, would shift to low-speed operation. The fan coast down is anticipated to occur very rapidly due to the closure of the exhaust damper as a result of LOCA pressurization effects. The service water flow would also coast down and be restarted in approximately 43 seconds after the initiation of the event. The service water would drain from the RCFC coils during the pump shutdown and once the pumps restart, water is quickly forced into the RCFC coils causing hydraulic loading on the piping. Because of this scenario and the potential for over stressing the piping, an evaluation was performed by the utility using RELAP5 to assess the piping loads. Subsequent to the hydraulic loads being analyzed using RELAP5, EPRI through GL-96-06 provided another methodology to assess loads on the RCFC piping system. This paper presents the results of using the EPRI methodology and RELAP5 to perform thermal hydraulic load calculations. It is shown that both EPRI methodology and RELAP5 calculations can be used to generate hydraulic loads

  15. Diffusion of Wilson loops

    International Nuclear Information System (INIS)

    Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.

    2005-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory

  16. Blind loop syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001146.htm Blind loop syndrome To use the sharing features on ... Clinical Professor of Medicine, The George Washington University School of Medicine, Washington, DC. Also reviewed by David ...

  17. Mashup the OODA Loop

    National Research Council Canada - National Science Library

    Heier, Jeffrey E

    2008-01-01

    ...) processes via the Observe, Orient, Decide, and Act (OODA) Loop concept. As defined by Wikipedia, a mashup is a Website or application that combines the content from more than one source into an integrated presentation...

  18. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  19. Effects of swirl in turbulent pipe flows : computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Frode

    2011-07-01

    The primary objective of this doctoral thesis was to investigate the effect of swirl in steady turbulent pipe flows. The work has been carried out by a numerical approach, with direct numerical simulations as the method of choice. A key target to pursue was the effects of the swirl on the wall friction in turbulent pipe flows. The motivation came from studies of rotating pipe flows in which drag reduction was achieved. Drag reduction was reported to be due to the swirl favourably influencing the coherent turbulent structures in the near-wall region. Based on this, it was decided to investigate if similar behaviour could be obtained by inducing a swirl in a pipe with a stationary wall. To do a thorough investigation of the general three-dimensional swirl flow and particularly of the swirl effects; chosen variations of mean and turbulent flow parameters were explored together with complementary flow visualizations. Two different approaches in order to induce the swirl in the turbulent pipe flow, have been carried out. However, the present thesis might be regarded to be comprised of three parts. The first part consists of the first approach to induce the swirl. Here a prescribed circumferential force was implemented in a serial open source Navier-Stokes solver. In the second approach, the swirl was intended induced by implementing structures at the wall. Simulations of flows through a pipe with one or more helical fin(s) at the pipe wall was decided to be performed. In order to pursue this approach, it was found necessary to do a parallelization of the existing serial numerical code. The key element of this parallelization has been included as a part of the present work. Additionally, the helical fin(s) were implemented into the code by use of an immersed boundary method. A validation of this work is also documented in the thesis. The work done by parallelizing the code and implementing an immersed boundary method constitutes the second part of the present thesis. The

  20. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  1. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  2. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  3. Dechanneling by dislocation loops

    International Nuclear Information System (INIS)

    Chalant, Gerard.

    1976-09-01

    Ion implantation always induces the creation of dislocation loops. When the damage profile is determined by a backscattering technique, the dechanneling by these loops is implicitely at the origin of these measurements. The dechanneling of alpha particles by dislocation loops produced by the coalescence of quenched-in vacancies in aluminium is studied. The dechanneling and the concentration of loops were determined simultaneously. The dechanneling width around dislocation was found equal to lambda=6A, both for perfect and imperfect loops having a mean diameter d=250A. In the latter case, a dechanneling probability chi=0.34 was determined for the stacking fault, in good agreement with previous determination in gold. A general formula is proposed which takes into account the variation of lambda with the curvature (or the diameter d) of the loops. Finally, by a series of isothermal anneals, the self-diffusion energy ΔH of aluminium was measured. The value obtained ΔH=1.32+-0.10eV is in good agreement with the values obtained by other methods [fr

  4. Fatigue crack growth in austenitic stainless steel piping

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-04-01

    The study presented in this paper is being carried out with a view to substantiating the calculations of the fatigue crack growth in pipes made of 316 L stainless steel. The results obtained may be applied to P.W.R. primary piping. It is divided into two parts. First, fatigue tests (cyclic pressure) are carried out under hot and cold conditions with straight pipes machined with notches of various dimensions. The crack propagation and the fatigue crack growth rate are measured here. Second, calculations are made in order to interpret experimental results. From elastic calculations the stress intensity factor is assessed to predict the crack growth rate. The results obtained until now and presented in this paper relate to longitudinal notches

  5. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  6. Numerical investigation on pulsating heat pipes with nitrogen or hydrogen

    Science.gov (United States)

    Y Han, D.; Sun, X.; Gan, Z. H.; Y Luo, R.; Pfotenhauer, J. M.; Jiao, B.

    2017-12-01

    With flexible structure and excellent performance, pulsating heat pipes (PHP) are regarded as a great solution to distribute cooling power for cryocoolers. The experiments on PHPs with cryogenic fluids have been carried out, indicating their efficient performances in cryogenics. There are large differences in physical properties between the fluids at room and cryogenic temperature, resulting in their different heat transfer and oscillation characteristics. Up to now, the numerical investigations on cryogenic fluids have rarely been carried out. In this paper, the model of the closed-loop PHP with multiple liquid slugs and vapor plugs is performed with nitrogen and hydrogen as working fluids, respectively. The effects of heating wall temperature on the performance of close-looped PHPs are investigated and compared with that of water PHP.

  7. Development of integrated insulation joint for cooling pipe in tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Abe, Tetsuya; Kawamura, Masashi; Yamazaki, Seiichiro.

    1994-08-01

    In a tokamak fusion reactor, an electrically insulated part is needed for an in-vessel piping system in order to break an electric circuit loop. When a closed loop is formed in the piping system, large induced electromagnetic forces during a plasma disruption (rapid plasma current quench) could give damages on the piping system. Ceramic brazing joint is a conventional method for the electric circuit break, but an application to the fusion reactor is not feasible due to its brittleness. Here, a stainless steel/ceramics/stainless steel functionally gradient material (FGM) has been proposed and developed as an integrated insulation joint of the piping system. Both sides of the joint can be welded to the main pipes, and expected to be reliable even in the fusion reactor environment. When the FGM joint is manufactured by way of a sintering process, a residual thermal stress is the key issue. Through detailed computations of the residual thermal stress and several trial productions, tubular elements of FGM joints have been successfully manufactured. (author)

  8. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  9. Piping inspection activities at the EPRI NDE Center

    International Nuclear Information System (INIS)

    Ammirato, F.V.

    1988-01-01

    Intergranular stress corrosion cracking (IGSCC) in the primary system of boiling water reactors (BWRs) has been a major reliability issue in recent years. BWR pipe cracking was first reported in 1974 with a low percentage of only small-diameter lines affected. However, with increased plant operating time, the number of reported cracking incidents has risen significantly and in 1982 and 1983 included the large-diameter recirculation lines. With the advent of cracking in large-diameter piping, innovative repair remedies were developed, such as weld overlay for repair (WOR). Although these remedies are effective in extending the service life of piping, they also present challenging NDE problems. The EPRI program for improving piping examination has aimed at systematically resolving the difficulties by optimizing techniques and procedures as well as by developing field-qualified automated examination equipment. The EPRI NDE Center's role has been the evaluation and transfer of the technology necessary to address the current piping examination problems of the nuclear utility industry. These activities normally include the following: technology assessment and improvement; validation through demonstrations and field trials; technology transfer reports, workshops, training, and qualification testing; and acquisition of relevant samples. The activities of the NDE Center are discussed

  10. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  11. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

    International Nuclear Information System (INIS)

    Clement, Jason; Wang Xia

    2013-01-01

    A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. - Highlights: ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.

  12. Pipe line construction for reactor containment buildings

    International Nuclear Information System (INIS)

    Aoki, Masataka; Yoshinaga, Toshiaki

    1978-01-01

    Purpose: To prevent the missile phenomenon caused by broken fragments due to pipe whip phenomenon in a portion of pipe lines connected to a reactor containment from prevailing to other portions. Constitution: Various pipe lines connected to the pressure vessel are disposed at the outside of the containments and they are surrounded with a plurality of protection partition walls respectively independent from each other. This can eliminate the effect of missile phenomena upon pipe rupture from prevailing to the pipe lines and instruments. Furthermore this can afford sufficient spaces for the pipe lines, as well as for earthquake-proof supports. (Horiuchi, T.)

  13. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  14. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)

  15. Pipe crawler with extendable legs

    International Nuclear Information System (INIS)

    Zollinger, W.T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs

  16. Pipe crawler with extendable legs

    Science.gov (United States)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  17. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  18. Design and Integrity Evaluation of High-temperature Piping Systems in the STELLA-2 Sodium Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok-Kwon; Lee, Hyeong-Yeon; Eoh, JaeHyuk; Kim, Jong-Bum; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ju, Yong-Sun [KOASIS Inc., Daejeon (Korea, Republic of)

    2016-09-15

    In this study, elevated temperature design and integrity evaluation have been conducted using two different piping design codes for the high-temperature piping systems of sodium integral effect test loop for safety simulation and assessment(STELLA-2) being developed by KAERI(Korea Atomic Energy Research Institute). The design code of ASME B31.1 for power piping and French nuclear grade piping design guideline, RCC-MRx RD-3600 were applied, and conservatism of those codes was quantified based on the piping integrity evaluation results. The piping system of Model DHRS, Model IHTS and PSLS are to be installed in STELLA-2. The integrity evaluation results for the three piping systems according to the two design codes showed that integrity of the piping system was confirmed. As a code comparison result, ASME B31.1 was shown to be more conservative for sustained loads while RD-3600 was more conservative for thermal loads compared to B31.1.

  19. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    International Nuclear Information System (INIS)

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  20. Conformal boundary loop models

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Saleur, Hubert

    2008-01-01

    We study a model of densely packed self-avoiding loops on the annulus, related to the Temperley-Lieb algebra with an extra idempotent boundary generator. Four different weights are given to the loops, depending on their homotopy class and whether they touch the outer rim of the annulus. When the weight of a contractible bulk loop x≡q+q -1 element of (-2,2], this model is conformally invariant for any real weight of the remaining three parameters. We classify the conformal boundary conditions and give exact expressions for the corresponding boundary scaling dimensions. The amplitudes with which the sectors with any prescribed number and types of non-contractible loops appear in the full partition function Z are computed rigorously. Based on this, we write a number of identities involving Z which hold true for any finite size. When the weight of a contractible boundary loop y takes certain discrete values, y r ≡([r+1] q )/([r] q ) with r integer, other identities involving the standard characters K r,s of the Virasoro algebra are established. The connection with Dirichlet and Neumann boundary conditions in the O(n) model is discussed in detail, and new scaling dimensions are derived. When q is a root of unity and y=y r , exact connections with the A m type RSOS model are made. These involve precise relations between the spectra of the loop and RSOS model transfer matrices, valid in finite size. Finally, the results where y=y r are related to the theory of Temperley-Lieb cabling

  1. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  2. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  3. TSTA piping and flame arrestor operating experience data

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C., E-mail: Lee.Cadwallader@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Willms, R. Scott [ITER International Organization, Cadarache (France)

    2015-10-15

    Highlights: • Experiences from the Tritium Systems Test Assembly were examined. • Failure rates of copper piping and a flame arrestor were calculated. • The calculated failure rates compared well to similar data from the literature. • Tritium component failure rate data support fusion safety assessment. - Abstract: The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium handling technology and experiment research at the Los Alamos National Laboratory. The facility was operated with tritium for its research and development program from 1984 to 2001, running a prototype fusion fuel processing loop with ∼100 g of tritium as well as small experiments. There have been several operating experience reports written on this facility's operation and maintenance experience. This paper describes reliability analysis of two additional components from TSTA, small diameter copper gas piping that handled tritium in a nitrogen carrier gas, and the flame arrestor used in this piping system. The component failure rates for these components are discussed in this paper. Comparison data from other applications are also presented.

  4. Program to justify life extension of older nuclear piping systems

    International Nuclear Information System (INIS)

    Burr, T.K.; Dwight, J.E. Jr.; Morton, D.K.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has a history of more than 40 years devoted to the operation of nuclear reactors designed for research and experiments. The Advanced Test Reactor (ATR) is one such operating reactor whose mission requires continued operation for an additional 25 years or more. Since the ATR is approaching its design life of twenty years, life extension evaluations have been initiated. Of particular importance are the associated high temperature, high pressure loop piping system supporting in--reactor experiments. Failure of this piping could challenge core safety margins. Since regulatory rules for nuclear power plant life extension are only in the formulation stage, the current technical guidance on this subject provided by the Department of Energy (DOE) or the commercial nuclear industry is incomplete. In the interim, order to assure continued safe operation of this piping beyond its initial design life, a program has been developed to provide the necessary technical justification for life extension. This paper describes a program that establishes Section 11 of the ASME Boiler and Pressure Vessel Code as the governing criteria document, retains B31.1 as the Code of record for Section 11 activities, specifies additional inservice inspection requirements more strict than Section 11, and relies heavily on flaw detection and fracture mechanics evaluations. 18 refs., 2 figs

  5. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  6. Enhanced seismic criteria for piping

    International Nuclear Information System (INIS)

    Touboul, F. . E-mail francoise.touboul@cea.fr; Blay, N.; Sollogoub, P.; Chapuliot, S.

    2006-01-01

    In situ or laboratory experiments have shown that piping systems exhibit satisfactory seismic behavior. Seismic motion is not severe enough to significantly damage piping systems unless large differential motions of anchorage are imposed. Nevertheless, present design criteria for piping are very severe and require a large number of supports, which creates overly rigid piping systems. CEA, in collaboration with EDF, FRAMATOME and IRSN, has launched a large R and D program on enhanced design methods which will be less severe, but still conservative, and compatible with defect justification during operation. This paper presents the background of the R and D work on this matter, and CEA proposed equations. Our approach is based on the difference between the real behavior (or the best estimated computed one) with the one supposed by codified methods. Codified criteria are applied on an elastically calculated behavior that can be significantly different from the real one: the effect of plasticity may be very meaningful, even with low incursion in the plastic domain. Moreover, and particularly in piping systems, the elastic follow-up effect affects stress distribution for both seismic and thermal loads. For seismic load, we have proposed to modify the elastic moment limitation, based on the interpretation of experimental results on piping systems. The methods have been validated on more industrial cases, and some of the consequences of the changes have been studied: modification of the drawings and of the number of supports, global displacements, forces in the supports, stability of potential defects, etc. The basic aim of the studies undertaken is to make a decision on the stress classification problem, one that is not limited to seismic induced stresses, and to propose simplified methods for its solution

  7. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  8. Energy absorbers as pipe supports

    International Nuclear Information System (INIS)

    Khlafallah, M.Z.; Lee, H.M.

    1985-01-01

    With the exception of springs, pipe supports currently in use are designed with the intent of maintaining their rigidity under load. Energy dissipation mechanisms in these pipe supports result in system damping on the order presented by Code Case N-411 of ASME Section III code. Examples of these energy dissipation mechanisms are fluids and gaps in snubbers, gaps in frame supports, and friction in springs and frame supports. If energy absorbing supports designed in accordance with Code Case N-420 are used, higher additional damping will result

  9. Research and design of hanger and support series of nuclear safety class process piping

    International Nuclear Information System (INIS)

    Mao Chengzhang; Shi Jiemin

    1995-12-01

    Hangers and supports of nuclear safety class piping are an important part of primary system piping in a nuclear power plant. They will directly affect the reliability of operation, the period at construction and the investment for a nuclear power plant. It is an absolutely necessary job for Pakistan Chashma Nuclear Power Plant Project to research and design a series of piping supports in accordance with ASME-III NF. It is also an important designing for developing nuclear power plant later in China. After working over two years, a series of piping supports of nuclear safety class which have 57 types and more than 2460 specifications have been designed. This series is perfect, and can satisfy the requirements of piping final designing for nuclear power plant. This series of hangers and supports is mainly used in the process piping of nuclear safety class 1,2,3. They can also be used in other piping of nuclear safety class and piping with aseismic requirement of non-nuclear safety class

  10. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  11. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    Science.gov (United States)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  12. Research program plan: piping. Volume 3

    International Nuclear Information System (INIS)

    Vagins, M.; Strosnider, J.

    1985-07-01

    Regulatory issues related to piping can be divided into the three areas of pipe cracking, postulated design basis pipe breaks, and design of piping for seismic and other dynamic loads. The first two of these issues are in the domain of the Materials Engineering Branch (MEBR), while the last of the three issues is the responsibility of the Mechanical/Structural Engineering Branch. This volume of the MEBR Research Plan defines the critical aspects of the pipe cracking and postulated design basis pipe break issues and identifies those research efforts and results necessary for their resolution. In general, the objectives of the MERB Piping Research Program are to provide experimentally validated analytic techniques and appropriate material properties characterization methods and data to support regulatory activities related to evaluating and ensuring piping integrity

  13. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  14. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  15. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  16. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  17. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  18. Laboratory exercises on oscillation modes of pipes

    Science.gov (United States)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  19. Analysis of Municipal Pipe Network Franchise Institution

    Science.gov (United States)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  20. Apparatus for measuring total flow in pipes

    International Nuclear Information System (INIS)

    Matthews, H.

    1986-01-01

    To obtain a sample representative of the total flow in a pipe over a given period a Pitot tube is located in the pipe and connected to a collector outside the pipe. The collector is pressurised to a pressure substantially equal to the static head of the flow in the pipe via a line. Liquid is discharged from a collector to a container which is vented to atmosphere. (author)