WorldWideScience

Sample records for primary gas flame

  1. Gas-Flame Brazing of Metals

    National Research Council Canada - National Science Library

    Asinovskaya, G

    1964-01-01

    .... Since a gas flame implies the presence of considerable heat, the term brazing will be used in this translation save where low heats are specifically indicated, or where both high and low heats...

  2. Relationship of Temperature and NO{sub x} Concentration during Primary Method on Reduction using in Flame of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Poskart, Monika; Szecowka, Lech [Technical Univ. of Czestochowa (Poland). Dept. of Industrial Furnaces and Environmental Protection

    2006-01-15

    Nitrogen oxides are some of the most harmful components polluting the atmosphere. Energetic criteria require establishing the complex technological parameters (capacity, temperature, pressure, composition of products, lost of heat and others) with the possibility of the highest energy efficiency. Ecological criteria lead to minimization of harmful substations emission. However, it is possible to limit the negative influence of hazardous components on natural environment. So-called 'primary methods', which relied on the modification of combustion process, are the most effective and cheapest methods of pollution limitation. This paper included the results of NO{sub x} reduction in combustion process with application of primary methods such as: flue gas recirculation, air and fuel staging.

  3. Flame Motion In Gas Turbine Burner From Averages Of Single-Pulse Flame Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Tylli, N.; Hubschmid, W.; Inauen, A.; Bombach, R.; Schenker, S.; Guethe, F. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland)

    2005-03-01

    Thermo acoustic instabilities of a gas turbine burner were investigated by flame front localization from measured OH laser-induced fluorescence single pulse signals. The average position of the flame was obtained from the superposition of the single pulse flame fronts at constant phase of the dominant acoustic oscillation. One observes that the flame position varies periodically with the phase angle of the dominant acoustic oscillation. (author)

  4. Natural gas jet flames. Topical report, January 1994-August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Atallah, S.; Saxena, S.K.

    1995-08-15

    Several incidents have been reported where high pressure natural gas transmission pipelines were ruptured and the escaping gas jet ignited. It was desired to estimate the length of the ensuing jet flame. Data on large scale jet fires were collected from accidents investigated by the National Transportation Safety Board, large-scale experiments on natural gas and LPG and from observations made during the Kuwaiti oil well fires. Analytical models which predict the size of jet flames were assembled and each model was evaluated against these data. A theoretical model developed by Kalghatgi at Shell, which most closely predicted the collected data, was selected and programmed for use on a PC. In addition, a simple empirical correlation similar to API`s flare correlation was developed by the authors for application to natural gas jet flames.

  5. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  6. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  7. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  8. An improved multiple flame photometric detector for gas chromatography.

    Science.gov (United States)

    Clark, Adrian G; Thurbide, Kevin B

    2015-11-20

    An improved multiple flame photometric detector (mFPD) is introduced, based upon interconnecting fluidic channels within a planar stainless steel (SS) plate. Relative to the previous quartz tube mFPD prototype, the SS mFPD provides a 50% reduction in background emission levels, an orthogonal analytical flame, and easier more sensitive operation. As a result, sulfur response in the SS mFPD spans 4 orders of magnitude, yields a minimum detectable limit near 9×10(-12)gS/s, and has a selectivity approaching 10(4) over carbon. The device also exhibits exceptionally large resistance to hydrocarbon response quenching. Additionally, the SS mFPD uniquely allows analyte emission monitoring in the multiple worker flames for the first time. The findings suggest that this mode can potentially further improve upon the analytical flame response of sulfur (both linear HSO, and quadratic S2) and also phosphorus. Of note, the latter is nearly 20-fold stronger in S/N in the collective worker flames response and provides 6 orders of linearity with a detection limit of about 2.0×10(-13)gP/s. Overall, the results indicate that this new SS design notably improves the analytical performance of the mFPD and can provide a versatile and beneficial monitoring tool for gas chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2012-10-01

    Full Text Available To reveal the inner mechanism of gas explosion dynamic behavior affected by gas equivalent concentration, a high speed Schlieren image system and flow field measurement technology was applied to record the gas explosion flame propagation and flame structure transition. The results show that a flame front structure transition occurs, followed by a flame accelerating propagation process. The laminar to turbulence transition was the essential cause of the flame structure changes. The laminar flame propagation behavior was influenced mainly by gas expansion and fore-compressive wave effect, while the turbulent flame speed mostly depended on turbulence intensity, which also played an important role in peak value of the explosive pressure and flame speed. On the condition that the laminar-turbulent transition was easier to form, the conclusion was drawn that, the lowest CH4 concentration for maximum overpressure can be obtained, which was the essential reason why the ideal explosive concentration differs under different test conditions.

  10. Flame Imaging of Gas-Turbine Relight

    DEFF Research Database (Denmark)

    Read, Robert; Rogerson, J.W.; Hochgreb, S.

    2010-01-01

    High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop...... velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when...... of the igniter may, in the first instance, be selected based on the combustor cold flow....

  11. Experimental study on flame propagation characteristics of Hydrogen premixed gas in gas pipeline

    Science.gov (United States)

    Ma, Danzhu; Li, Zhuang; Jia, Fengrui; Li, Zhou

    2018-06-01

    Hydrogen is the cleanest high-energy gas fuel, and also is the main industrial material. However, hydrogen is more explosive and more powerful than conventional gas fuels, which restricts its application. In particular, the expansion of premixed combustion under a strong constraint is more complicated, the reaction spreads faster. The flame propagation characteristics of premixed hydrogen/air were investigated by experiment. The mechanism of reaction acceleration is discussed, and then the speed of the flame propagation and the reaction pressure were tested and analysed.

  12. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics

    Science.gov (United States)

    Boxx, Isaac; Carter, Campbell D.; Stöhr, Michael; Meier, Wolfgang

    2013-05-01

    An image-processing routine was developed to autonomously identify and statistically characterize flame-kernel events, wherein OH (from a planar laser-induced fluorescence, PLIF, measurement) appears in the probe region away from the contiguous OH layer. This routine was applied to datasets from two gas turbine model combustors that consist of thousands of joint OH-velocity images from kHz framerate OH-PLIF and particle image velocimetry (PIV). Phase sorting of the kernel centroids with respect to the dominant fluid-dynamic structure of the combustors (a helical precessing vortex core, PVC) indicates through-plane transport of reacting fluid best explains their sudden appearance in the PLIF images. The concentration of flame-kernel events around the periphery of the mean location of the PVC indicates they are likely the result of wrinkling and/or breakup of the primary flame sheet associated with the passage of the PVC as it circumscribes the burner centerline. The prevailing through-plane velocity of the swirling flow-field transports these fragments into the imaging plane of the OH-PLIF system. The lack of flame-kernel events near the center of the PVC (in which there is lower strain and longer fluid-dynamic residence times) indicates that auto-ignition is not a likely explanation for these flame kernels in a majority of cases. The lack of flame-kernel centroid variation in one flame in which there is no PVC further supports this explanation.

  13. Experimental Study of Natural Gas Temperature Effects on the Flame Luminosity and No Emission

    Directory of Open Access Journals (Sweden)

    S. M. Javadi

    2012-06-01

    Full Text Available The flame radiation enhancement in gas-fired furnaces significantly improves the thermal efficiency without significantly affecting the NOx emissions. In this paper, the effects of inlet natural gas preheating on the flame luminosity, overall boiler efficiency, and NO emission in a 120 kW boiler have been investigated experimentally. Flame radiation is measured by use of laboratory pyranometer with photovoltaic sensor. A Testo350XL gas analyzer is also used for measuring the temperature and combustion species. The fuel is preheated from the room temperature to 350°C. The experimental measurements show that the preheating of natural gas up to about 240°C has no considerable effect on the flame luminosity. The results show that increasing the inlet gas temperature from 240°C, abruptly increases the flame luminosity. This luminosity increase enhances the boiler efficiency and also causes significant reduction in flame temperature and NO emission. The results show that increasing the inlet gas temperature from 240°C to 300°C increases the flame luminous radiation by 60% and boiler efficiency by 20%; while the maximum flame temperature and the boiler NO emission show a 10% and 8% decrease respectively.

  14. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  15. Design and construction of gas-fed burners for laboratory studies of flame structure

    Science.gov (United States)

    Dan Jimenez; Mark A. Finney; Jack Cohen

    2010-01-01

    The study of buoyant convection for diffusion flames in wildland fires is critical to understanding heating and cooling dynamics related to particle ignition. Studies based on solid biomass fuels are made difficult by short flame residence time associated with fine fuels. An alternative is to use artificial fuel gas rather than relying on pyrolysis of solid fuels to...

  16. The Use of an Air-Natural Gas Flame in Atomic Absorption.

    Science.gov (United States)

    Melucci, Robert C.

    1983-01-01

    Points out that excellent results are obtained using an air-natural gas flame in atomic absorption experiments rather than using an air-acetylene flame. Good results are obtained for alkali metals, copper, cadmium, and zinc but not for the alkaline earths since they form refractory oxides. (Author/JN)

  17. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  18. Premixed flame chemistry of a gasoline primary reference fuel surrogate

    KAUST Repository

    Selim, Hatem

    2017-03-10

    Investigating the combustion chemistry of gasoline surrogate fuels promises to improve detailed reaction mechanisms used for simulating their combustion. In this work, the combustion chemistry of one of the simplest, but most frequently used gasoline surrogates – primary reference fuel 84 (PRF 84, 84 vol% iso-octane and 16 vol% n-heptane), has been examined in a stoichiometric premixed laminar flame. Time-of-flight mass spectrometry coupled with a vacuum ultraviolet (VUV) synchrotron light source for species photoionization was used. Reactants, major end-products, stable intermediates, free radicals, and isomeric species were detected and quantified. Numerical simulations were conducted using a detailed chemical kinetic model with the most recently available high temperature sub-mechanisms for iso-octane and heptane, built on the top of an updated pentane isomers model and AramcoMech 2.0 (C0C4) base chemistry. A detailed interpretation of the major differences between the mechanistic pathways of both fuel components is given. A comparison between the experimental and numerical results is depicted and rate of production and sensitivity analyses are shown for the species with considerable disagreement between the experimental and numerical findings.

  19. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  20. Experimental study on a comparison of typical premixed combustible gas-air flame propagation in a horizontal rectangular closed duct.

    Science.gov (United States)

    Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua

    2017-04-05

    Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6

  1. Experimental determination of primary and intermediate ions in a flame front

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.B.; Fialkov, B.S.

    1988-10-01

    A procedure is described for determining the primary and intermediate ions in the front of a flame rarefied using mass spectrometry. By using the method proposed here, primary CHO(+) and CHO2(+) ions as well as a series of short-lived intermediate ions have been identified. The possibility of using this method for obtaining quantitative data on the characteristic lifetimes of ions and rate constants of ion-molecular reactions in flames is demonstrated. 16 references.

  2. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

    Science.gov (United States)

    Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang

    2012-03-01

    A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.

  3. Gas concentration and temperature in acoustically excited Delft turbulent jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Ana Maura A. Rocha; Joao A. Carvalho Jr.; Pedro T. Lacava [Sao Paulo State University, Guaratingueta (Brazil)

    2008-11-15

    This paper shows the experimental results for changes in the flame structure when acoustic fields are applied in natural gas Delft turbulent diffusion flames. The acoustic field (pulsating combustion) generates zones of intense mixture of reactants in the flame region, promoting a more complete combustion and, consequently, lower pollutant emissions, increase in convective heat transfer rates, and lower fuel consumption. The results show that the presence of the acoustic field changes drastically the flame structure, mainly in the burner natural frequencies. However, for higher acoustic amplitudes, or acoustic pressures, a hydrogen pilot flame is necessary in order to keep the main flame anchored. In the flame regions where the acoustic field is more intense, premixed flame characteristics were observed. Besides, the pulsating regime modifies the axial and radial combustion structure, which could be verified by the radial distribution of concentrations of O{sub 2}, CO, CO{sub 2}, and NOx, and by the temperature profile. The experiments also presented the reduction of flame length with the increase of acoustic amplitude. 30 refs., 15 figs., 3 tabs.

  4. Effect of the superposition of a dielectric barrier discharge onto a premixed gas burner flame

    Science.gov (United States)

    Zaima, Kazunori; Takada, Noriharu; Sasaki, Koichi

    2011-10-01

    We are investigating combustion control with the help of nonequilibrium plasma. In this work, we examined the effect of dielectric barrier discharge (DBD) on a premixed burner flame with CH4/O2/Ar gas mixture. The premixed burner flame was covered with a quartz tube. A copper electrode was attached on the outside of the quartz tube, and it was connected to a high-voltage power supply. DBD inside the quartz tube was obtained between the copper electrode and the grounded nozzle of the burner which was placed at the bottom of the quartz tube. We clearly observed that the flame length was shortened by superposing DBD onto the bottom part of the flame. The shortened flame length indicates the enhancement of the burning velocity. We measured the optical emission spectra from the bottom region of the flame. As a result, we observed clear line emissions from Ar, which were never observed from the flame without DBD. We evaluated the rotational temperatures of OH and CH radicals by spectral fitting. As a result, the rotational temperature of CH was not changed, and the rotational temperature of OH was decreased by the superposition of DBD. According to these results, it is considered that the enhancement of the burning velocity is not caused by gas heating. New reaction pathways are suggested.

  5. A Numerical Study on Effect of Gas-Phase Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames

    International Nuclear Information System (INIS)

    Sohn, Chae Hoon

    2007-01-01

    Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate

  6. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  7. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.

    2015-03-30

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  8. Flame chemistry of alkane-rich gasoline fuels and a surrogate using photoionization mass spectrometry: I. Primary reference fuel

    KAUST Repository

    Selim, H.; Lucassen, A.; Hansen, N.; Sarathy, Mani

    2015-01-01

    Improving the gasoline engines performance requires thorough understanding of their fundamental chemistry of combustion. Since the actual gasoline fuels are difficult to examine, due to the lack of knowledge about their exact composition as well as their numerous fuel components, the approach of using simpler gasoline fuels with limited number of components or using surrogate fuels has become more common. In this study, the combustion chemistry of laminar premixed flame of different gasoline fuels/surrogate has been examined. In this particular paper, the primary reference fuel, PRF84, has been examined at equivalence ratio of 1 and pressure of 20 Torr. The gas analysis was conducted using vacuum ultraviolet photoionization mass spectrometry.

  9. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  10. An Overview of Mode of Action and Analytical Methods for Evaluation of Gas Phase Activities of Flame Retardants

    Directory of Open Access Journals (Sweden)

    Khalifah A. Salmeia

    2015-03-01

    Full Text Available The latest techniques used to prove, describe and analyze the gas phase activity of a fire retardant used in polymeric materials are briefly reviewed. Classical techniques, such as thermogravimetric analysis or microscale combustion calorimetry, as well as complex and advanced analytical techniques, such as modified microscale combustion calorimeter (MCC, molecular beam mass spectroscopy and vacuum ultra violet (VUV photoionization spectroscopy coupled with time of flight MS (TOF-MS, are described in this review. The recent advances in analytical techniques help not only in determining the gas phase activity of the flame-retardants but also identify possible reactive species responsible for gas phase flame inhibition. The complete understanding of the decomposition pathways and the flame retardant activity of a flame retardant system is essential for the development of new eco-friendly-tailored flame retardant molecules with high flame retardant efficiency.

  11. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    Science.gov (United States)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  12. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, N.H.; Alwahabi, Z.T.; King, K.D. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chan, Q.N. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Nathan, G.J. [Fluid Mechanics, Energy and Combustion Group, University of Adelaide, Adelaide, SA 5005 (Australia); School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Roekaerts, D. [Department of Multi-Scale Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg, 1, NL-2628 CJ Delft (Netherlands)

    2009-07-15

    Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)

  13. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  14. Effects of N2 gas on preheated laminar LPG jet diffusion flame

    International Nuclear Information System (INIS)

    Mishra, D.P.; Kumar, P.

    2010-01-01

    This paper presents an experimental investigation of the inert gas effect on flame length, NO x and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO x emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N 2 for fuel-diluted stream. In contrast, SFLF remains almost constant when N 2 is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO x emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO x emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO x emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO x through Zeldovich mechanism.

  15. Effects of N{sub 2} gas on preheated laminar LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, D.P.; Kumar, P. [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-15

    This paper presents an experimental investigation of the inert gas effect on flame length, NO{sub x} and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO{sub x} emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N{sub 2} for fuel-diluted stream. In contrast, SFLF remains almost constant when N{sub 2} is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO{sub x} emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO{sub x} emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO{sub x} emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO{sub x} through Zeldovich mechanism. (author)

  16. Optical investigation of gas-phase KCl/KOH sulfation in post flame conditions

    DEFF Research Database (Denmark)

    Weng, Wubin; chen, Shuang; Wu, Hao

    2018-01-01

    A counter-flow reactor setup was designed to investigate the gas-phase sulfation and homogeneous nucleation of potassium salts. Gaseous KOH and KCl were introduced into the post-flame zone of a laminar flat flame. The hot flame products mixed in the counter-flow with cold N2, with or without....... Depending on the potassium speciation in the inlet and the presence of SO2, they consisted of K2SO4, KCl, or K2CO3, respectively. The experiments showed that KOH was sulphated more readily than KCl, resulting in larger quantities of aerosols. The sulfation process in the counter-flow setup was simulated...... using a chemical kinetic model including a detailed subset for the Cl/S/K chemistry. Similar to the experimental results, much more potassium sulfate was predicted when seeding KOH compared to seeding KCl. For both KOH and KCl, sulfation was predicted to occur primarily through the reactions among...

  17. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    International Nuclear Information System (INIS)

    Dhand, Vivek; Prasad, J. Sarada; Rao, M. Venkateswara; Bharadwaj, S.; Anjaneyulu, Y.; Jain, Pawan Kumar

    2013-01-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30–40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp 2 hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 °C. - Highlights: ►Flame synthesized carbon nano onions with 30–40 nm diameters. ►LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. ►Carbon nano onion production rate is 5 g/hr and with 70% purity.

  18. Precision closed bomb calorimeter for testing flame and gas producing initiators

    Science.gov (United States)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  19. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan

    2013-01-01

    The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously homogene......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...

  20. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  1. Experimental investigation of the natural gas confined flames using the OEC

    International Nuclear Information System (INIS)

    Bandeira Santos, Alex Alisson; Torres, Ednildo Andrade; Paula Pereira, Pedro Afonso de

    2011-01-01

    The concept of environmental efficiency in equipment is increasing with the unfolding of global warming. In terms of industrial equipment, it is the burners which have a major impact in this discussion because of industrial combustion. Demand for environmentally more efficient burners with a reduction in emissions is essential for the proper use of fossil fuels during the transition between this energy and alternative energy sources for the next fifty years or more. This study experimentally evaluates the technique of oxygen-enhanced combustion - OEC - and its interaction with soot formation and thermal radiation in natural gas confined flames. The literature shows that the OEC technique - an important technique for improving the thermal efficiency of combustion - causes under certain conditions an increase in soot formation. Soot, as an important participant in radiant heat transfer, can increase the thermal efficiency of burners, implementing heat transfer from the flame to the heating areas, thereby reducing fuel consumption, the temperature of the flame, and consequently a reduction in the emission of NO x . In the experiment was used low enriched with oxygen, which does not require significant existing equipment changes. This technology can play an important role in preparing particularly the oil and gas industry for the technological challenge of reducing global warming. -- Highlights: → We study OEC interaction with soot and radiation in natural gas confined flames. → Literature shows that the OEC technique causes an increase in soot formation. → Soot can increase efficiency of burners, reducing fuel consumption and NO x emission. → Experimental setup used low enriched with oxygen. → This technology helps the industry to face new challenges in reducing global warming.

  2. Processing of coke oven gas. Primary gas cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, H [Otto (C.) und Co. G.m.b.H., Bochum (Germany, F.R.)

    1976-11-01

    The primary cooler is an indispensable part of all byproduct processing plants. Its purpose is to cool the raw gas from the coke oven battery and to remove the accompanying water vapor. The greater part of the cooling capacity is utilized for the condensation of water vapor and only a small capacity is needed for the gas cooling. Impurities in the gas, like naphthalene, tar and solid particles, necessitate a special design in view of the inclination to dirt accumulation. Standard types of direct and indirect primary gas coolers are described, with a discussion of their advantages and disadvantages.

  3. [The reconstruction of two-dimensional distributions of gas concentration in the flat flame based on tunable laser absorption spectroscopy].

    Science.gov (United States)

    Jiang, Zhi-Shen; Wang, Fei; Xing, Da-Wei; Xu, Ting; Yan, Jian-Hua; Cen, Ke-Fa

    2012-11-01

    The experimental method by using the tunable diode laser absorption spectroscopy combined with the model and algo- rithm was studied to reconstruct the two-dimensional distribution of gas concentration The feasibility of the reconstruction program was verified by numerical simulation A diagnostic system consisting of 24 lasers was built for the measurement of H2O in the methane/air premixed flame. The two-dimensional distribution of H2O concentration in the flame was reconstructed, showing that the reconstruction results reflect the real two-dimensional distribution of H2O concentration in the flame. This diagnostic scheme provides a promising solution for combustion control.

  4. Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dhand, Vivek, E-mail: vivekdhand2012@gmail.com [Centre for Knowledge Management of Nanoscience and Technology, 12-5-32/8, Vijayapuri Colony, Tarnaka, Secunderabad-500 017, A.P (India); Prasad, J. Sarada; Rao, M. Venkateswara [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500 085 (India); Bharadwaj, S. [Department of Physics, CVR College of Engineering and Osmania University, Hyderabad 501510, A.P (India); Anjaneyulu, Y. [TLGVRC, Jackson State University, JSU Box 18739, Jackson, MS 39217-0939 (United States); Jain, Pawan Kumar [International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur PO, Hyderabad 500005, Andhra Pradesh (India)

    2013-03-01

    Densely agglomerated, high specific surface area carbon nano onions with diameter of 30-40 nm have been synthesized. Liquefied petroleum gas and air mixtures produced carbon nano onions in diffusion flames without catalyst. The optimized oxidant to fuel ratio which produces carbon nano onions has been found to be 0.1 slpm/slpm. The experiment yielded 70% pure carbon nano onions with a rate of 5 g/h. X-ray diffraction, high-resolution electron microscopy and Raman spectrum reveal the densely packed sp{sup 2} hybridized carbon with (002) semi-crystalline hexagonal graphite reflection. The carbon nano onions are thermally stable up to 600 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Flame synthesized carbon nano onions with 30-40 nm diameters. Black-Right-Pointing-Pointer LPG/air, diffusion type flame used in absence of catalyst to produce nano onions. Black-Right-Pointing-Pointer Carbon nano onion production rate is 5 g/hr and with 70% purity.

  5. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    Science.gov (United States)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  6. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    International Nuclear Information System (INIS)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  7. An investigation of the matrix sensitivity of refinery gas analysis using gas chromatography with flame ionisation detection.

    Science.gov (United States)

    Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C

    2015-02-27

    The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Reburning of a P.F. flame with a LCV-gas combined with SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Berge, N.; Kallner, P.; Oskarsson, J.; Rudling, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    Reburning of a pulverised coal flame with a low calorific value (LCV) gas produced from bio-fuels is an attractive method for simultaneously reducing the CO{sub 2} and NO{sub x} emission from coal-fired power and district heating production. To further improve the NO{sub x} reduction capacity a combination of reburning and ammonia addition is investigated in this project. To avoid fouling and corrosion problems in the boiler, which may be caused by the use of bio-fuels which in general include both alkalis and chlorine, the produced gas has to be cleaned before fired in the boiler. The method for gas cleaning investigated is adsorption of the harmful species on a filter cake of fly ash from the gasifier. Lab-scale experiments has proved alkali removal to be very efficient on filter-cakes at temperatures in the range 200-600 deg C. The results have been compared to results from a gas-filter on an FB-gasifier. A very good NO{sub x}-reduction has been found when utilising a mild reburning combined with ammonia addition downstream of the reburning gas injection. The best results were obtained in bench-scale equipment. In this case the stoichiometric ratio in the reburning zone (SR{sub reb}) was close to one and the NO{sub x}-emission was reduced from 800 to 40-50 ing NO/m{sup 3}{sub N}. The ammonia slip was neglectable at less than 2 ppm. The results from the different lab-studies where applied to a larger scale verification. This was done by co-firing a 2 MW pulverised coal flame with LCV-gas from the TPS pilot gasifier. The biomass used in these tests was bagasse. The results concerning NO{sub x}-emissions followed the same trend as in lab scale. The optimised P.C. flame was run in stable operation with CO < 100 ppm and NO about 200-300 ppm at 2-3 % O{sub 2} (210-320 mg NO/m{sup 3}{sub N}). With reburning of cleaned LCV-gas, the NO could be reduced to 120-130 mg NO/m{sup 3}{sub N} at a SR{sub reb} of around 0.8. With NH{sub 3} injection to the reburning zone the same

  9. Gas chromatography with simultaneous detection: Ultraviolet spectroscopy, flame ionization, and mass spectrometry.

    Science.gov (United States)

    Gras, Ronda; Luong, Jim; Haddad, Paul R; Shellie, Robert A

    2018-05-08

    An effective analytical strategy was developed and implemented to exploit the synergy derived from three different detector classes for gas chromatography, namely ultraviolet spectroscopy, flame ionization, and mass spectrometry for volatile compound analysis. This strategy was achieved by successfully hyphenating a user-selectable multi-wavelength diode array detector featuring a positive temperature coefficient thermistor as an isothermal heater to a gas chromatograph. By exploiting the non-destructive nature of the diode array detector, the effluent from the detector was split to two parallel detectors; namely a quadrupole mass spectrometer and a flame ionization detector. This multi-hyphenated configuration with the use of three detectors is a powerful approach not only for selective detection enhancement but also for improvement in structural elucidation of volatile compounds where fewer fragments can be obtained or for isomeric compound analysis. With the diode array detector capable of generating high resolution gas phase spectra, the information collected provides useful confirmatory information without a total dependence on the chromatographic separation process which is based on retention time. This information-rich approach to chromatography is achieved without incurring extra analytical time, resulting in improvements in compound identification accuracy, analytical productivity, and cost. Chromatographic performance obtained from model compounds was found to be acceptable with a relative standard deviation of the retention times of less than 0.01% RSD, and a repeatability at two levels of concentration of 100 and 1000 ppm (v/v) of less than 5% (n = 10). With this configuration, correlation of data between the three detectors was simplified by having near identical retention times for the analytes studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines Using a Hierarchical Validation Approach

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Noel [Univ. of Texas, Austin, TX (United States)

    2015-09-30

    This project was a combined computational and experimental effort to improve predictive capability for boundary layer flashback of premixed swirl flames relevant to gas-turbine power plants operating with high-hydrogen-content fuels. During the course of this project, significant progress in modeling was made on four major fronts: 1) use of direct numerical simulation of turbulent flames to understand the coupling between the flame and the turbulent boundary layer; 2) improved modeling capability for flame propagation in stratified pre-mixtures; 3) improved portability of computer codes using the OpenFOAM platform to facilitate transfer to industry and other researchers; and 4) application of LES to flashback in swirl combustors, and a detailed assessment of its capabilities and limitations for predictive purposes. A major component of the project was an experimental program that focused on developing a rich experimental database of boundary layer flashback in swirl flames. Both methane and high-hydrogen fuels, including effects of elevated pressure (1 to 5 atm), were explored. For this project, a new model swirl combustor was developed. Kilohertz-rate stereoscopic PIV and chemiluminescence imaging were used to investigate the flame propagation dynamics. In addition to the planar measurements, a technique capable of detecting the instantaneous, time-resolved 3D flame front topography was developed and applied successfully to investigate the flow-flame interaction. The UT measurements and legacy data were used in a hierarchical validation approach where flows with increasingly complex physics were used for validation. First component models were validated with DNS and literature data in simplified configurations, and this was followed by validation with the UT 1-atm flashback cases, and then the UT high-pressure flashback cases. The new models and portable code represent a major improvement over what was available before this project was initiated.

  11. Investigation of mass and energy coupling between soot particles and gas species in modelling ethylene counterflow diffusion flames

    NARCIS (Netherlands)

    Zimmer, L.; Pereira, F.M.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction

  12. 2-d LIF measurements of the thermo-acoustic phenomena in lean premixed flames of a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, R.; Hubschmid, W.; Inauen, A.; Kreutner, W.; Schenker, S.; Flohr, P.; Haffner, K.; Motz, C.; Paschereit, C.O.; Schuermans, B.; Zajadatz, M.

    2003-03-01

    Thermo-acoustic phenomena give rise to pressure oscillations in lean premixed flames of gas turbines at distinct frequencies characteristic of the burner design and its operation. They can lead to early materials ageing or even severe damages. Therefore, a detailed understanding of the underlying principles is fundamental for gas turbine design and improvement. In order to study the coupling between the heat release and the acoustics in the combustor as well as their feedback to the fuel/air premixing, upstream of the combustion chamber, phase-locked 2-D laser-induced fluorescence (LIF) measurements of the hydroxyl radical (OH) and acetone, respectively, have been performed. These experiments were carried out on a test rig equipped with a commercial 700 kW burner and a combustion chamber of UV transparent quartz, using a pulsed Nd:YAG/dye laser system and an intensified CCD camera for detection. Intensity variations in the integral OH LIF signal of up to {+-}10 % for one oscillation period are observed for peak sound pressure of 6 mbar and more. In addition, the phase-averaged position of the flame zone varies in axial direction, i.e. the main flow direction. The analysis shows that the observed flame motion is not only due to the acoustic motion of the gas itself, but is caused by a change of the flame velocity relative to the gas. (author)

  13. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    Science.gov (United States)

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness.

  14. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    Energy Technology Data Exchange (ETDEWEB)

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M. [German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany); Bonaldo, A. [Siemens Industrial Turbomachinery Ltd., Combustion Group, P. O. Box 1, Waterside South, Lincoln LN5 7FD (United Kingdom)

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  15. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    Science.gov (United States)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two

  16. PIV Measurement of Transient 3-D (Liquid and Gas Phases) Flow Structures Created by a Spreading Flame over 1-Propanol

    Science.gov (United States)

    Hassan, M. I.; Kuwana, K.; Saito, K.

    2001-01-01

    In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.

  17. Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits.

    Science.gov (United States)

    Zhao, Xiangsheng; Kong, Weijun; Wei, Jianhe; Yang, Meihua

    2014-11-01

    A simple, rapid and effective gas chromatography-flame photometric detection method was established for simultaneous multi-component determination of 31 organophosphorus pesticides (OPPs) residues in Alpinia oxyphylla, which is widely consumed as a traditional medicine and food in China. Sample preparation was completed in a single step without any clean-up procedure. All pesticides expressed good linear relationships between 0.004 and 1.0 μg/mL with correlation coefficients higher than 0.9973. The method gave satisfactory recoveries for most pesticides. The limits of detection varied from 1 to 10 ng/mL, and the limits of quantification (LOQs) were between 4 and 30 ng/mL. The proposed method was successfully applied to 55 commercial samples purchased from five different areas. Five pesticide residues were detected in four (7.27%) samples. The positive samples were confirmed by gas chromatography with tandem mass spectrometry (GC-MS/MS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Modeling of free and confined turbulent natural gas flames using an extension of CFX-F3D

    Energy Technology Data Exchange (ETDEWEB)

    Roekaerts, D [Shell Research and Technology Centre, Amsterdam (Netherlands); Hsu, A

    1998-12-31

    A general form of the fast chemistry / assumed shape probability density function model for turbulent gaseous diffusion flames has been implemented in a new combination of computer programs consisting of the commercial code CFX-F3D (formerly CFDS-FLOW3D) and the program FLAME, developed at Delft University of Technology. Also a mixedness-reactedness model with two independent variables (mixture fraction and reaction progress variable) has been implemented. The main strength of the new program is that it combines the advantages of a general purpose commercial CFD code (applicable to arbitrarily shaped domains, wide range of solvers) with the advantages of special purpose combustion subroutines (more detail in modeling of chemistry and of turbulence-chemistry interaction, flexibility). The new combination of programs has been validated by the application to the prediction of the properties of a labscale turbulent natural gas diffusion flame for which detailed measurements are available. The mixedness-reactedness model has been applied to the case of a confined natural gas diffusion flame at globally rich conditions. In contrast with fast chemistry models, the mixedness-reactedness model can be used to predict the amount of methane at the end of the reactor vessel (`methane slip`) as a function of operating conditions. (author)

  19. Modeling of free and confined turbulent natural gas flames using an extension of CFX-F3D

    Energy Technology Data Exchange (ETDEWEB)

    Roekaerts, D. [Shell Research and Technology Centre, Amsterdam (Netherlands); Hsu, A.

    1997-12-31

    A general form of the fast chemistry / assumed shape probability density function model for turbulent gaseous diffusion flames has been implemented in a new combination of computer programs consisting of the commercial code CFX-F3D (formerly CFDS-FLOW3D) and the program FLAME, developed at Delft University of Technology. Also a mixedness-reactedness model with two independent variables (mixture fraction and reaction progress variable) has been implemented. The main strength of the new program is that it combines the advantages of a general purpose commercial CFD code (applicable to arbitrarily shaped domains, wide range of solvers) with the advantages of special purpose combustion subroutines (more detail in modeling of chemistry and of turbulence-chemistry interaction, flexibility). The new combination of programs has been validated by the application to the prediction of the properties of a labscale turbulent natural gas diffusion flame for which detailed measurements are available. The mixedness-reactedness model has been applied to the case of a confined natural gas diffusion flame at globally rich conditions. In contrast with fast chemistry models, the mixedness-reactedness model can be used to predict the amount of methane at the end of the reactor vessel (`methane slip`) as a function of operating conditions. (author)

  20. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    Science.gov (United States)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due

  1. The Role of Post Flame Oxidation on the UHC Emission for Combustion of Natural Gas and Hydrogen Containing fuels

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Schramm, Jesper

    2003-01-01

    In-cylinder post flame oxidation of unburned hydro-carbons from crevices in a lean burn spark ignition engine has been examined for natural gas and mixtures of natural gas and a hydrogen containing producer gas. For this purpose a model was developed to describe the mixing of cold unburned...... during in-cylinder post oxidation. The Arrhenius parameters were determined using the reaction mechanism, which gave the prediction of the results from the combustion reactor experiments. The investigation showed that addition of producer gas to natural gas promotes the in-cylinder post oxidation...... significantly. Furthermore it was found that the cyclic variation in the post oxidation is reduced by addition of producer gas to natural gas....

  2. The Determination of Pesticidal and Non-Pesticidal Organotin Compounds by in situ Ethylation and Capillary Gas Chromatography with Pulsed Flame Photometric Detection

    Science.gov (United States)

    The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...

  3. The Determination of Pesticidal and Non-Pesticidal Organotin Compounds in Water Matrices by in situ Ethylation and Gas Chromatography with Pulsed Flame Photometric Detection

    Science.gov (United States)

    The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...

  4. Domestic Preparedness Program: Evaluation of the Agilent Gas Chromatograph - Flame Photometric Detector/Mass Selective Detector (GC-FPD/MSD) System Against Chemical Warfare Agents Summary Report

    National Research Council Canada - National Science Library

    Longworth, Terri

    2003-01-01

    This report characterizes the chemical warfare agent (CWA) detection potential of the commercially available Agilent gas chromatograph-flame photometric detector/mass selective detector (GC-FPD/MSD...

  5. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  6. Simultaneous determination of organophosphorous insecticides in bean samples by gas chromatography - flame photometric detection

    Directory of Open Access Journals (Sweden)

    Keyller Bastos Borges

    2014-02-01

    Full Text Available The indiscriminate use of organophosphorous pesticides (OPPs in crops may leave residues in food and may cause poisoning in the applicators. A method was developed for the determination of five OPPs in bean samples by Gas Chromatography-Flame Photometric Detection (GC-FPD. Validation parameters comprised linearity between 0.24 and 8.56 μg g-1 (r = 0.9985 for diazinon; 0.23 and 8.14 μg g-1 (r = 0.9959 for methyl parathion; 0.28 and 10.25 μg g-1 (r = 0.9987 for methyl pirimiphos; 0.52 and 18.87 μg g-1 (r = 0.9955 for malathion; 0.86 and 13.67 μg g-1 (r = 0.9919 for ethion. The limits of quantification (equal to those of detection were the lowest rates of ranges mentioned above for each compound. The extraction method showed approximately 95% recovery, with CV% < 15%. Although twenty-eight bean samples obtained in the southern region of the state of Minas Gerais,Brazil, were analyzed, they failed to match any of the OPPs under analysis. The absence of OPPs in the samples could be due to the degradation that occurred between the use of OPPs and bean commercialization, levels below the detection /quantification limits and the non-use of OPPs in bean cultivation.

  7. Ethanol analysis by headspace gas chromatography with simultaneous flame-ionization and mass spectrometry detection.

    Science.gov (United States)

    Tiscione, Nicholas B; Alford, Ilene; Yeatman, Dustin Tate; Shan, Xiaoqin

    2011-09-01

    Ethanol is the most frequently identified compound in forensic toxicology. Although confirmation involving mass spectrometry is desirable, relatively few methods have been published to date. A novel technique utilizing a Dean's Switch to simultaneously quantitate and confirm ethyl alcohol by flame-ionization (FID) and mass spectrometric (MS) detection after headspace sampling and gas chromatographic separation is presented. Using 100 μL of sample, the limits of detection and quantitation were 0.005 and 0.010 g/dL, respectively. The zero-order linear range (r(2) > 0.990) was determined to span the concentrations of 0.010 to 1.000 g/dL. The coefficient of variation of replicate analyses was less than 3.1%. Quantitative accuracy was within ±8%, ±6%, ±3%, and ±1.5% at concentrations of 0.010, 0.025, 0.080, and 0.300 g/dL, respectively. In addition, 1,1-difluoroethane was validated for qualitative identification by this method. The validated FID-MS method provides a procedure for the quantitation of ethyl alcohol in blood by FID with simultaneous confirmation by MS and can also be utilized as an identification method for inhalants such as 1,1-difluoroethane.

  8. Organotin analysis by gas chromatography-pulsed flame-photometric detection (GC-PFPD)

    Energy Technology Data Exchange (ETDEWEB)

    Leermakers, M.; Nuyttens, J.; Baeyens, W. [Vrije Universiteit Brussel, Analytical and Environmental Chemistry (ANCH), Brussel (Belgium)

    2005-03-01

    Monobutyltin (MBuT), dibutyltin (DBuT), and tributyltin (TBuT) mixtures have been separated and quantified by gas chromatography with pulsed flame-photometric detection (GC-PFPD). The compounds were first derivatized with NaBEt{sub 4}, then extracted with hexane and injected into the GC in splitless mode. Optimum GC and detector conditions were established. For GC, various injector temperatures and oven temperature programs were tested. For the PFPD detector, gate settings (gate delay and gate width) and detector temperature were optimized. A very good linearity was obtained up to 100-150 ppb for all organotin compounds. The detection limits obtained were: MBuT (0.7 ppb), DBuT (0.8 ppb), and TBuT (0.6 ppb). RSD for repeatability and reproducibility were well below 20% when the instrument was in routine operation. A biological sample (CRM 477) was also analyzed for organotins. Extraction from the biological matrix was performed with TMAH. Besides the increased risk of contamination, the derivatization step seemed to be critical. pH and amount of derivatizing agent were tested. When using an internal standard (TPrT) between 90% and 110% of the certified amounts of organotin were recovered. (orig.)

  9. [Determination and prediction for vapor pressures of organophosphate flame retardants by gas chromatography].

    Science.gov (United States)

    Wang, Qingzhi; Zhao, Hongxia; Wang, Yan; Xie, Qing; Chen, Jingwen; Quan, Xie

    2017-09-08

    Organophosphate flame retardants (OPFRs) are ubiquitous in the environment. To better understand and predict their environmental transport and fate, well-defined physicochemical properties are required. Vapor pressures ( P ) of 14 OPFRs were estimated as a function of temperature ( T ) by gas chromatography (GC), while 1,1,1-trichioro-2,2-bis (4-chlorophenyl) ethane ( p,p '-DDT) was acted as a reference substance. Their log P GC values and internal energies of phase transfer (△ vap H ) ranged from -6.17 to -1.25 and 74.1 kJ/mol to 122 kJ/mol, respectively. Substitution pattern and molar volume ( V M ) were found to be capable of influencing log P GC values of the OPFRs. The halogenated alkyl-OPFRs had lower log P GC values than aryl-or alkyl-OPFRs. The bigger the molar volume was, the smaller the log P GC value was. In addition, a quantitative structure-property relationship (QSPR) model of log P GC versus different relative retention times (RRTs) was developed with a high cross-validated value ( Q 2 cum ) of 0.946, indicating a good predictive ability and stability. Therefore, the log P GC values of the OPFRs without standard substance can be predicted by using their RRTs on different GC columns.

  10. Determination of polycyclic aromatic hydrocarbons in palm oil mill effluent by soxhlet extraction and gas chromatography-flame ionization detector

    International Nuclear Information System (INIS)

    Nor Fairolzukry Ahmad Rasdy; Mohd Marsin Sanagi; Wan Aini Wan Ibrahim; Ahmedy Abu Naim

    2008-01-01

    A method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) from palm oil mill effluent based on gas chromatography-flame ionization detection. Extraction of spiked PAHs (napthalene, fluorene phenanthrene, fluoranthene and pyrene) in palm oil waste was carried out by Soxhlet extraction using hexane-dichloromethane (60:40 v/v) as the solvent. Excellent separations were achieved using temperature programmed GC on Ultra-1 fused-silica capillary column (30 m x 250 μm ID), carrier gas helium at a flow rate of 1 mL/ min. (author)

  11. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.

    Science.gov (United States)

    di Stasio, Stefano; Konstandopoulos, Athanasios G; Kostoglou, Margaritis

    2002-03-01

    The agglomeration kinetics of growing soot generated in a diffusion atmospheric flame are here studied in situ by light scattering technique to infer cluster morphology and size (fractal dimension D(f) and radius of gyration R(g)). SEM analysis is used as a standard reference to obtain primary particle size D(P) at different residence times. The number N(P) of primary particles per aggregate and the number concentration n(A) of clusters are evaluated on the basis of the measured angular patterns of the scattered light intensity. The major finding is that the kinetics of the coagulation process that yields to the formation of chain-like aggregates by soot primary particles (size 10 to 40 nm) can be described with a constant coagulation kernel beta(c,exp)=2.37x10(-9) cm3/s (coagulation constant tau(c) approximately = 0.28 ms). This result is in nice accord with the Smoluchowski coagulation equation in the free molecular regime, and, vice versa, it is in contrast with previous studies conducted by invasive (ex situ) techniques, which claimed the evidence in flames of coagulation rates much larger than the kinetic theory predictions. Thereafter, a number of numerical simulations is implemented to compare with the experimental results on primary particle growth rate and on the process of aggregate reshaping that is observed by light scattering at later residence times. The restructuring process is conjectured to occur, for not well understood reasons, as a direct consequence of the atomic rearrangement in the solid phase carbon due to the prolonged residence time within the flame. Thus, on one side, it is shown that the numerical simulations of primary size history compare well with the values of primary size from SEM experiment with a growth rate constant of primary diameter about 1 nm/s. On the other side, the evolution of aggregate morphology is found to be predictable by the numerical simulations when the onset of a first-order "thermal" restructuring mechanism is

  12. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone

    2017-01-01

    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO_x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO_x emissions compared to diesel under lean burning conditions.

  13. Determination of organophosphorus flame retardants in fish by pressurized liquid extraction using aqueous solutions and solid-phase microextraction coupled with gas chromatography-flame photometric detector.

    Science.gov (United States)

    Gao, Zhanqi; Deng, Yuehua; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng

    2014-10-31

    A novel method was developed for the determination of organophosphorus flame retardants (PFRs) in fish. The method consists of a combination of pressurized liquid extraction (PLE) using aqueous solutions and solid-phase microextraction (SPME), followed by gas chromatography-flame photometric detector (GC-FPD). The experimental parameters that influenced extraction efficiency were systematically evaluated. The optimal responses were observed by extracting 1g of fish meat with the solution of water:acetonitrile (90:10, v/v) at 150°C for 5min and acid-washed silica gel used as lipid sorbent. The obtained extract was then analyzed by SPME coupled with GC-FPD without any additional clean-up steps. Under the optimal conditions, the proposed procedure showed a wide linear range (0.90-5000ngg(-1)) obtained by analyzing the spiked fish samples with increasing concentrations of PFRs and correlation coefficient (R) ranged from 0.9900 to 0.9992. The detection limits (S/N=3) were in the range of 0.010-0.208ngg(-1) with standard deviations (RSDs) ranging from 2.0% to 9.0%. The intra-day and inter-day variations were less than 9.0% and 7.8%, respectively. The proposed method was successfully applied to the determination of PFRs in real fish samples with recoveries varying from 79.8% to 107.3%. The results demonstrate that the proposed method is highly effective for analyzing PFRs in fish samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Role of Post Flame Oxidation on the UHC Emission for Combustion of Natural Gas and Hydrogen Containing fuels

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Schramm, Jesper

    2003-01-01

    In-cylinder post flame oxidation of unburned hydro-carbons from crevices in a lean burn spark ignition engine has been examined for natural gas and mixtures of natural gas and a hydrogen containing producer gas. For this purpose a model was developed to describe the mixing of cold unburned...... reactants from crevices and hot burned bulk gas and to describe the oxidation of the unburned fuel. The post oxidation was described by a single step chemical reaction mechanism instead of detailed chemical kinetics in order to reduce the calculation time. However, the exploited Arrhenius expressions used...... to describe the chemical reactions were deduced from a detailed reaction mechanism. Different detailed reaction mechanisms were compared with results from combustion reactor experiments. Experiments and simulations were compared at different pressures and excesses of air similar to the conditions present...

  15. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    Science.gov (United States)

    Szedlmayer, Michael Thomas

    The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions

  16. On the hydrogen saturation of titanium alloys during heating billets for plastic working in gas-fired flame furnaces

    International Nuclear Information System (INIS)

    Kushakevich, S.A.; Romanova, L.A.; Bullo, P.M.

    1978-01-01

    Presented are the results of comparative investigations into titanium alloy hydridation during billet heating in gasflame and electric furnaces for forging and hot stamping. It is shown, that titanium alloys are slightly saturated with hydrogen at the temperature lower than that of polymorphic transformation. Hydrogen absorption is decelerated by a dense scale up to the moment of its loosening and peeling off. The application of protective vitreous enamels reduces the danger of impermissible hydridation. It is established, that the usage of gas-flame furnaces for billet heating is possible in the case of corresponding temperature and holding restrictions proper machining allowances and the use of protective coatings

  17. Modelling of a 400 kW natural gas diffusion flame using finite-rate chemistry schemes

    International Nuclear Information System (INIS)

    Mueller, Christian; Kremer, Hans; Brink, Anders; Kilpinen, Pia; Hupa, Mikko

    1999-01-01

    The Eddy-Dissipation Combustion Model combined with three different reaction mechanisms is applied to simulate a fuel-rich 400 kW natural gas diffusion flame. The chemical schemes include a global 2-step and a global 4-step approach as well as a reduced 4-step mechanism systematically derived from an elementary scheme. The species and temperature distributions resulting from the different schemes are studied in detail and compared to each other and to experiments. Furthermore the method of implementing finite-rate chemistry to the Eddy-Dissipation Combustion Model is discussed. (author)

  18. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA - Fossil Power Plants, Arnhem (Netherlands)

    1993-01-01

    The shapes and temperature of flames in power stations, fired with powder coal and gas, have been measured optically. Spectral information in the visible and near infrared is used. Coal flames are visualized in the blue part of the spectrum, natural gas flames are viewed in the light of CH-emission. Temperatures of flames are derived from the best fit of the Planck-curve to the thermal radiation spectrum of coal and char, or to that of soot in the case of gas flames. A measuring method for the velocity distribution inside a gas flame is presented, employing pulsed alkali salt injection. It has been tested on a 100 kW natural gas flame. 3 refs., 9 figs.

  19. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  20. Analysis of benzene, toluene, ethylbenzene and xylenes in soils by headspace and gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Jurandir Pereira Pinto

    2006-02-01

    Full Text Available The constituents of gasoline: benzene, toluene, ethylbenzene and xylenes (BTEX are frequently found in soils due to leaks in fuel storage tanks and they present chronic toxicity. In this work it was developed and validated a methodology of BTEX analysis in soil by gas chromatography/ flame ionization detector and static headspace. The recovery of BTEX in soil samples was evaluated using soils with different textures (sandy and loamy. The analysis method showed good resolution, in a low time of analysis (less than 30 minutes. Limits of quantification of 0.05 mg Kg¯¹ soil for benzene, toluene, ethylbenzene and xylenes are below the guiding values that range from 0.15 to 95 mg Kg¯¹ soil, established to determine soil quality. It was verified that the methodology enables the use of this method for BTEX analysis of soil samples for passive environmental identification of gas stations.

  1. NO{sub 2} gas sensing of flame-made Pt-loaded WO{sub 3} thick films

    Energy Technology Data Exchange (ETDEWEB)

    Samerjai, Thanittha [Nanoscience and Nanotechnology Program, Faculty of Graduate School, Chiang Mai University, Chiang Mai 50200 (Thailand); Tamaekong, Nittaya [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Liewhiran, Chaikarn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Phanichphant, Sukon, E-mail: sphanichphant@yahoo.com [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Unloaded WO{sub 3} and 0.25–1.0 wt% Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP) and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The BET surface area (SSA{sub BET}) of the nanoparticles was measured by nitrogen adsorption. The NO{sub 2} sensing properties of the sensors based on unloaded and Pt-loaded WO{sub 3} nanoparticles were investigated. The results showed that the gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. Especially, 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} than the others at low operating temperature of 150 °C. - Graphical abstract: The response of 0.25 wt% Pt-loaded WO3 sensor was 637 towards NO{sub 2} concentration of 10 ppm at 150 °C. - Highlights: • Unloaded and Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP). • Gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. • 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} at low operating temperature of 150 °C.

  2. The structure of horizontal hydrogen-steam diffusion flames

    International Nuclear Information System (INIS)

    Chan, C.K.; Guerrero, A.

    1997-01-01

    This paper summarizes a systematic study on the stability, peak temperature and flame length of various horizontal hydrogen-steam diffusion flames in air. Results from this study are discussed in terms of their impact on hydrogen management in a nuclear containment building after a nuclear reactor accident. They show that, for a certain range of emerging hydrogen-steam compositions, a stable diffusion flame can anchor itself at the break in the primary heat transport system. The length of this flame can be up to 100 times the break diameter. This implies that creation of a stable diffusion flame at the break is a possible outcome of the deliberate ignition mitigation scheme. The high temperature and heat flux from a diffusion flame can threaten nearby equipment. However, due to the presence of steam and turbulent mixing with surrounding air, the peak temperatures of these diffusion flames are much lower than the adiabatic constant pressure combustion temperature of a stoichiometric hydrogen-air mixture. These results suggest that the threat of a diffusion flame anchored at the break may be less severe than conservative analysis would indicate. Furthermore, such a flame can remove hydrogen at the source and minimize the possibility of a global gas explosion. (author)

  3. Nitrogen oxide formation as a function of the shape of the flame in an experimental gas burner. Stikstofoxidenvorming als functie van de vlamvorm bij experimentele gasbrander

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W

    1992-01-01

    One of the options to reduce the emission of NO[sub x] from gas-fired or coal-fired power plants is to develop new burners or to improve the control of existing burners. The purpose of this investigation is to develop a measuring method to control the combustion process in each burner of a gas-fired or coal-fired power plant concerning NO[sub x]-emission, a constant energy production and stability of the combustion. A passive spectroscopic measuring method was developed, in which use is made of the light, emitted by the flame. Based on the measured values the NO[sub x]-emissions and the shape of the flame were correlated. From the correlations it appears that flame shape and NO[sub x]-emissions correspond quite well

  4. Development of Criteria for Flashback Propensity in Jet Flames for High Hydrogen Content and Natural Gas Type Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kalantari, Alireza [Univ. of California, Irvine, CA (United States); Sullivan-Lewis, Elliot [Univ. of California, Irvine, CA (United States); McDonell, Vincent [Univ. of California, Irvine, CA (United States)

    2016-10-17

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. In fact, flashback is a key operability issue associated with low emission combustion of high hydrogen content fuels. Flashback can cause serious damage to the premixer hardware. Hence, design tools to predict flashback propensity are of interest. Such a design tool has been developed based on the data gathered by experimental study to predict boundary layer flashback using non-dimensional parameters. The flashback propensity of a premixed jet flame has been studied experimentally. Boundary layer flashback has been investigated under turbulent flow conditions at elevated pressures and temperatures (i.e. 3 atm to 8 atm and 300 K to 500 K). The data presented in this study are for hydrogen fuel at various Reynolds numbers, which are representative of practical gas turbine premixer conditions and are significantly higher than results currently available in the literature. Three burner heads constructed of different materials (stainless steel, copper, and zirconia ceramic) were used to evaluate the effect of tip temperature, a parameter found previously to be an important factor in triggering flashback. This study characterizes flashback systematically by developing a comprehensive non-dimensional model which takes into account all effective parameters in boundary layer flashback propensity. The model was optimized for new data and captures the behavior of the new results well. Further, comparison of the model with the single existing study of high pressure jet flame flashback also indicates good agreement. The model developed using the high pressure test rig is able to predict flashback tendencies for a commercial gas turbine engine and can thus serve as a

  5. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  6. Selectivity Enhancement by Using Double-Layer MOX-Based Gas Sensors Prepared by Flame Spray Pyrolysis (FSP

    Directory of Open Access Journals (Sweden)

    Julia Rebholz

    2016-09-01

    Full Text Available Here we present a novel concept for the selective recognition of different target gases with a multilayer semiconducting metal oxide (SMOX-based sensor device. Direct current (DC electrical resistance measurements were performed during exposure to CO and ethanol as single gases and mixtures of highly porous metal oxide double- and single-layer sensors obtained by flame spray pyrolysis. The results show that the calculated resistance ratios of the single- and double-layer sensors are a good indicator for the presence of specific gases in the atmosphere, and can constitute some building blocks for the development of chemical logic devices. Due to the inherent lack of selectivity of SMOX-based gas sensors, such devices could be especially relevant for domestic applications.

  7. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  8. Validation of QuEChERS based method for determination of fenitrothion residues in tomatoes by gas chromatography-flame photometric detector: Decline pattern and risk assessment.

    Science.gov (United States)

    Malhat, Farag; Boulangé, Julien; Abdelraheem, Ehab; Abd Allah, Osama; Abd El-Hamid, Rania; Abd El-Salam, Shokr

    2017-08-15

    A simple and rapid gas chromatography with flame photometric detector (GC-FPD) determination method was developed to detect residue levels and investigate the dissipation pattern and safe use of fenitrothion in tomatoes. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) using an ethyl acetate-based extraction, followed by a dispersive solid-phase extraction (d-SPE) with primary-secondary amine (PSA) and graphite carbon black (GCB) for clean up, was applied prior to GC-FPD analysis. The method showed satisfactory linearity, recovery and precision. The limits of detection (LOD) and quantification (LOQ) were 0.005 and 0.01mg/kg, respectively. The residue levels of fenitrothion were best described by first order kinetics with a half-life of 2.2days in tomatoes. The potential health risks posed by fenitrothion were not significant, based on supervised residue trial data. The current findings could provide guidance for safe and reasonable use of fenitrothion in tomatoes and prevent health problems to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [Determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection].

    Science.gov (United States)

    Luo, Xiao-Fei; Yang, Yuan; Sun, Cheng-Jun

    2012-01-01

    To develop a method for the simultaneous determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection. Organophosphorus pesticides in food were extracted ultrasonically with water. Then the extract was cleaned-up with SPE disk and eluted with ethyl acetate. Finally the eluent was condensed to 1mL under N2 at 55 degrees C. Gas chromatography was applied for quantitative detection of the organophosphorus pesticides in the sample. The linear range of the method for all the pesticides were in the range of 0.01-0.5 mg/kg with correlation coefficients of 0.992-1.000. The detection limits of the method were in the range of 0.0005-0.01 mg/kg. The recoveries for most pesticides were 60%-120% with relative standard deviations of less than 15%. The method is simple, sensitive, environmentally friendly and suitable for the determination of organophosphorous pesticides in food.

  10. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.

    2016-01-27

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  11. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  12. Simultaneous determination of methanol, acetaldehyde, acetone, and ethanol in human blood by gas chromatography with flame ionization detection.

    Science.gov (United States)

    Schlatter, J; Chiadmi, F; Gandon, V; Chariot, P

    2014-01-01

    Methanol, acetaldehyde, acetone, and ethanol, which are commonly used as biomarkers of several diseases, in acute intoxications, and forensic settings, can be detected and quantified in biological fluids. Gas chromatography (GC)-mass spectrometry techniques are complex, require highly trained personnel and expensive materials. Gas chromatographic determinations of ethanol, methanol, and acetone have been reported in one study with suboptimal accuracy. Our objective was to improve the assessment of these compounds in human blood using GC with flame ionization detection. An amount of 50 µl of blood was diluted with 300 µl of sterile water, 40 µl of 10% sodium tungstate, and 20 µl of 1% sulphuric acid. After centrifugation, 1 µl of the supernatant was injected into the gas chromatograph. We used a dimethylpolysiloxane capillary column of 30 m × 0.25 mm × 0.25 µm. We observed linear correlations from 7.5 to 240 mg/l for methanol, acetaldehyde, and acetone and from 75 to 2400 mg/l for ethanol. Precision at concentrations 15, 60, and 120 mg/l for methanol, acetaldehyde, and acetone and 150, 600, and 1200 mg/ml for ethanol were 0.8-6.9%. Ranges of accuracy were 94.7-98.9% for methanol, 91.2-97.4% for acetaldehyde, 96.1-98.7% for acetone, and 105.5-111.6% for ethanol. Limits of detection were 0.80 mg/l for methanol, 0.61 mg/l for acetaldehyde, 0.58 mg/l for acetone, and 0.53 mg/l for ethanol. This method is suitable for routine clinical and forensic practices.

  13. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  14. Speciation analysis of arsenic by selective hydride generation- cryotrapping-atomic fluorescence spectrometry with flame-in-gas- shield atomizer: Achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Currier, J. M.; Stýblo, M.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 20 (2014), s. 10422-10428 ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S; GA MŠk LH12040 Institutional support: RVO:68081715 Keywords : speciation analysis of arsenic * selective hydride generation * flame-in-gas-shield atomizer * cryotrapping-atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  15. N-decane-air end-gas auto-ignition induced by flame propagation in a constant volume chamber: Influence of compression history

    OpenAIRE

    Quintens , Hugo; Strozzi , Camille; Zitoun , Ratiba; Bellenoue , Marc

    2017-01-01

    International audience; The present study aims at characterizing the end-gas auto-ignition of n-decane – air mixtures induced by a flame propagation in a constant volume chamber. A numerical tool is developed, and the study is first focused on academic compressions, e.g. at constant rate of pressure rise. Thermodynamic conditions of transition from deflagration to auto-ignition are first determined, and the involved physical processes are highlighted. A square section combustion chamber is th...

  16. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna; Lee, Byeong Jun; Satija, Aman; Krishna, S.; Steinmetz, Scott; Al Khesho, Issam; Hazzaa, Omar; Lucht, Robert P.; Cha, Min; Roberts, William L.

    2017-01-01

    , determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma

  17. Sound generating flames of a gas turbine burner observed by laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hubschmid, W; Inauen, A.; Bombach, R.; Kreutner, W.; Schenker, S.; Zajadatz, M. [Alstom (Switzerland); Motz, C. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland); Paschereit, C.O. [Alstom (Switzerland)

    2002-03-01

    We performed 2-D OH LIF measurements to investigate the sound emission of a gas turbine combustor. The measured LIF signal was averaged over pulses at constant phase of the dominant acoustic oscillation. A periodic variation in intensity and position of the signal is observed and it is related to the measured sound intensity. (author)

  18. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-01

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  19. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites

    Directory of Open Access Journals (Sweden)

    Hongda Chen

    2018-01-01

    Full Text Available In order to improve the efficiency of intumescent flame retardants (IFRs, a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine (PETAT with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP in combination with ammonium polyphosphate (APP via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR, and 1H nuclear magnetic resonance (NMR spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG and thermogravimetry–Fourier transform infrared spectroscopy (TG-FTIR. The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI values before and after soaking, underwritten laboratory-94 (UL-94 vertical burning test, cone calorimetric test (CCT, scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS, and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR, total heat release (THR, and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  20. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites.

    Science.gov (United States)

    Chen, Hongda; Wang, Jihui; Ni, Aiqing; Ding, Anxin; Han, Xia; Sun, Ziheng

    2018-01-11

    In order to improve the efficiency of intumescent flame retardants (IFRs), a novel macromolecular charring agent named poly(ethanediamine-1,3,5-triazine-p-4-amino-2,2,6,6-tetramethylpiperidine) (PETAT) with gas phase and condense phase synergistic flame-retardant capability was synthesized and subsequently dispersed into polypropylene (PP) in combination with ammonium polyphosphate (APP) via a melt blending method. The chemical structure of PETAT was investigated by Fourier transform infrared spectroscopy (FTIR), and ¹H nuclear magnetic resonance (NMR) spectroscopy. Thermal properties of the PETAT and IFR systems were tested by thermogravimetric-derivative thermogravimetric analysis (TGA-DTG) and thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The mechanical properties, thermal stability, flame-retardant properties, water resistance, and structures of char residue in flame-retardant composites were characterized using tensile and flexural strength property tests, TGA, limiting oxygen index (LOI) values before and after soaking, underwritten laboratory-94 (UL-94) vertical burning test, cone calorimetric test (CCT), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDXS), and FTIR. The results indicated that PETAT was successfully synthesized, and when the ratio of APP to PETAT was 2:1 with 25 wt % loading, the novel IFR system could reduce the deterioration of tensile strength and enhance the flexural strength of composites. Meanwhile, the flame-retardant composite was able to pass the UL-94 V-0 rating with an LOI value of 30.3%, and the peak of heat release rate (PHRR), total heat release (THR), and material fire hazard values were considerably decreased compared with others. In addition, composites also exhibited excellent water resistance properties compared with traditional IFR composites. SEM-EDXS and FTIR analyses of the char residues, as well as TG-FTIR analyses of IFR were used to investigate the flame

  1. Experimental studies of flame stability limits of biogas flame

    International Nuclear Information System (INIS)

    Dai Wanneng; Qin Chaokui; Chen Zhiguang; Tong Chao; Liu Pengjun

    2012-01-01

    Highlights: ► Premixed biogas flame stability for RTBs was studied on different conditions. ► An unusual “float off” phenomenon was observed. ► Decrease of port diameter or gas temperature or methane content motivates lifting. ► Increase of methane content or gas temperature or port diameter motivates yellow tipping. ► Lifting curves become straight lines when semi-logarithmic graph paper is applied. - Abstract: Flame stability of premixed biogas flame for Reference Test Burner (RTB) was investigated. In this study, six kinds of test gases were used to simulate biogas in which CO 2 volume fraction varied from 30% to 45%. A series of experiments were conducted on two RTBs with different port diameters and at different outlet unburned mixture temperatures. It was found that the lifting and yellow tipping limits show similar trends regardless of the biogas components, port diameters and mixture temperatures. A “float off” phenomenon could be observed at low gas flow rate and low primary air ratio. Low mixture temperature, small ports and high CO 2 concentration in biogas can lead to the unstable condition of “float off”. The lifting limits are enhanced with an increase of port diameter or mixture temperature and with a decrease of CO 2 concentration. The yellow tipping limits are extended with an increase of CO 2 concentration and with a decrease of mixture temperature or port diameter. In addition, the lifting limit curve becomes a straight line when semi-logarithmic graph paper is applied. The intercept increases with a decrease of the CO 2 concentration in biogas and with an increase of port diameter or gas temperature.

  2. Structural and technological formation of surface nanostructured Ti-Ni-Mo layers by high-speed gas-flame spraying

    Directory of Open Access Journals (Sweden)

    Blednova Zhesfina

    2015-01-01

    Full Text Available The article covers a complex method of forming surface-modified layers using materials with shape memory effect (SME based on TiNiMo including pre-grinding and mechanical activation of the coating material, high-speed gas-flame spraying of Ni adhesive layer and subsequent TiNiMo spraying with molybdenum content up to 2%, thermal and thermomechanical processing in a single technological cycle. This allowed forming nanostructured surface layers with a high level of functional mechanical and performance properties. We defined control parameters of surface steel modification using material with shape memory effect based on TiNiMo, which monitor the structural material state, both at the stage of spraying, and during subsequent combined treatment, which allows affecting purposefully on the functional properties of the SME surface layer. Test results of samples before coating and after surface modification with TiNiMo in the seawater indicate that surface modification brings to a slower damage accumulation and to increase of steel J91171 endurance limit in seawater by 45%. Based on complex metallophysical research of surface layers we obtained new data about nano-sized composition “steel - Ni - TiNiMo”.

  3. Atmospheric Pressure Chemical Ionization Gas Chromatography Mass Spectrometry for the Analysis of Selected Emerging Brominated Flame Retardants in Foods

    Science.gov (United States)

    Lv, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia

    2017-03-01

    Emerging brominated flame retardants (eBFRs) other than polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and their derivatives in foods have been in focus in recent years due to their increasing production volumes, indefinite information on toxicities and the lack of data on occurrence in environments, foods as well as humans. In this study, gas chromatography was coupled to an atmospheric pressure chemical ionization-tandem mass spectrometry (APGC-MS/MS) for the analysis of six eBFRs in pork, chicken, egg, milk and fish. A short section of unpacked capillary column coupled to the end of the analytical column was applied to improve the chromatographic behaviors of high boiling point compounds. The method was comprehensively validated with method limit of quantification (mLOQ) lower than 8 pg/g wet weight (w.w.). Samples from Chinese Total Diet study were quantified following the validated APGC-MS/MS method. 2,3,4,5-pentabromo-6-ethylbenzene (PBEB), hexabromobenzene (HBB), pentabromotoluene (PBT) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were most frequently detected in samples. The highest concentration was found in fish with 351.9 pg/g w.w. of PBT. This is the first report on the presence of PBT in food samples with non-ignorable concentrations and detection rate.

  4. Atmospheric Pressure Chemical Ionization Gas Chromatography Mass Spectrometry for the Analysis of Selected Emerging Brominated Flame Retardants in Foods.

    Science.gov (United States)

    Lv, Surong; Niu, Yumin; Zhang, Jing; Shao, Bing; Du, Zhenxia

    2017-03-10

    Emerging brominated flame retardants (eBFRs) other than polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs) and their derivatives in foods have been in focus in recent years due to their increasing production volumes, indefinite information on toxicities and the lack of data on occurrence in environments, foods as well as humans. In this study, gas chromatography was coupled to an atmospheric pressure chemical ionization-tandem mass spectrometry (APGC-MS/MS) for the analysis of six eBFRs in pork, chicken, egg, milk and fish. A short section of unpacked capillary column coupled to the end of the analytical column was applied to improve the chromatographic behaviors of high boiling point compounds. The method was comprehensively validated with method limit of quantification (mLOQ) lower than 8 pg/g wet weight (w.w.). Samples from Chinese Total Diet study were quantified following the validated APGC-MS/MS method. 2,3,4,5-pentabromo-6-ethylbenzene (PBEB), hexabromobenzene (HBB), pentabromotoluene (PBT) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were most frequently detected in samples. The highest concentration was found in fish with 351.9 pg/g w.w. of PBT. This is the first report on the presence of PBT in food samples with non-ignorable concentrations and detection rate.

  5. Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Xie Zhiyong; Ebinghaus, Ralf; Lohmann, Rainer; Heemken, Olaf; Caba, Armando; Puettmann, Wilhelm

    2007-01-01

    A simple and effective method has been developed for analysis of the flame retardant tetrabromobisphenol A (TBBPA) in environmental samples by using modified soxhlet extraction in combination with silica gel clean-up, derivatization with silylation reagent and gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring mode (SIM). Satisfactory recoveries were achieved for the large volume sampling, soxhlet extraction and silica gel clean-up. The overall recovery is 79 ± 1%. The derivatization procedure is simple and fast, and produces stable TBBPA derivative. GC-MS with electronic impact (EI) ionization mode shows better detection power than using negative chemical ionization (NCI) mode. EI gives a method detection limit of 0.04 pg m -3 and enables to determine trace TBBPA in ambient air in remote area. The method was successfully applied to the determination of TBBPA in atmospheric samples collected over land and coastal regions. The concentrations of TBBPA ranged from below the method detection limit (0.04 pg m -3 ) to 0.85 pg m -3 . A declining trend with increasing latitude was present from the Wadden Sea to the Arctic. The atmospheric occurrence of TBBPA in the Arctic is significant and might imply that TBBPA has long-range transport potential

  6. Seasonal variation of gastroprotective terpenoids in Maytenus robusta (Celastraceae) quantified by gas chromatography-flame ionization detection (GC-FID).

    Science.gov (United States)

    Zermiani, Tailyn; Junior, Antonio A S; Ferreira, Renê A; Wagner, Theodoro M; Machado, Marina S; Cechinel-Filho, Valdir; Niero, Rivaldo

    2016-11-01

    The triterpenes friedelin (1), β-friedelinol (2) and 3,15-dioxo-21α-hydroxyfriedelane (3) in the aerial parts of Maytenus robusta, a Brazilian medicinal plant with antiulcer potential, were seasonally quantified by gas chromatography flame-ionization detection (GC-FID) using an external standard. The method was found to be linear, precise and sensitive. Compounds 1 and 2 were found in M. robusta leaves and branches, with highest concentrations in the leaves collected in autumn, i.e. 3.21 ± 0.16 and 12.60 ± 1.49 mg g-1 dry weight of 1 and 2, respectively. On the other hand, compound 3 was found only in the branches, with the highest concentrations in winter and autumn (0.21 ± 0.01 and 0.20 ± 0.02 mg g-1). The results allow to define the optimal season and plant parts for the collection of M. robusta as a phytotherapeutic drug.

  7. Determination of free amino compounds in betalainic fruits and vegetables by gas chromatography with flame ionization and mass spectrometric detection.

    Science.gov (United States)

    Kugler, Florian; Graneis, Stephan; Schreiter, Pat P-Y; Stintzing, Florian C; Carle, Reinhold

    2006-06-14

    Amino acids and amines are the precursors of betalains. Therefore, the profiles of free amino compounds in juices obtained from cactus pears [Opuntia ficus-indica (L.) Mill. cv. Bianca, cv. Gialla, and cv. Rossa], pitaya fruits [Selenicereus megalanthus (K. Schumann ex Vaupel) Moran, Hylocereus polyrhizus (Weber) Britton & Rose, and Hylocereus undatus (Haworth) Britton & Rose], and in extracts from differently colored Swiss chard [Beta vulgaris L. ssp. cicla (L.) Alef. cv. Bright Lights] petioles and red and yellow beets (B. vulgaris L. ssp. vulgaris var. conditiva Alef. cv. Burpee's Golden) were investigated for the first time. Amino compounds were derivatized with propyl chloroformate. While gas chromatography (GC) with mass spectrometry was used for peak assignment, GC flame ionization detection was applied for quantification of individual compounds. Whereas proline was the major free amino compound of cactus pear and pitaya fruit juices, glutamine dominated in Swiss chard stems and beets, respectively. Interestingly, extremely high concentrations of dopamine were detected in Swiss chard stems and beets. Furthermore, the cleavage of betaxanthins caused by derivatization in alkaline reaction solutions is demonstrated for the first time. Amino acids and amines thus released might increase the actual free amino compound contents of the respective sample. To evaluate the contribution of betaxanthin cleavage to total amino acid and amine concentration, isolated betaxanthins were derivatized according to the "EZ:faast" method prior to quantification of the respective amino compounds released. On a molar basis, betaxanthin contribution to overall amino compound contents was always below 6.4%.

  8. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part III: 2,5-Dimethylfuran.

    Science.gov (United States)

    Togbé, Casimir; Tran, Luc-Sy; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    This work is the third part of a study focusing on the combustion chemistry and flame structure of furan and selected alkylated derivatives, i.e. furan in Part I, 2-methylfuran (MF) in Part II, and 2,5-dimethylfuran (DMF) in the present work. Two premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of DMF were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) under two equivalence ratios (φ=1.0 and 1.7). Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. Kinetic modeling was performed using a reaction mechanism that was further developed in the present series, including Part I and Part II. A reasonable agreement between the present experimental results and the simulation is observed. The main reaction pathways of DMF consumption were derived from a reaction flow analysis. Also, a comparison of the key features for the three flames is presented, as well as a comparison between these flames of furanic compounds and those of other fuels. An a priori surprising ability of DMF to form soot precursors (e.g. 1,3-cyclopentadiene or benzene) compared to less substituted furans and to other fuels has been experimentally observed and is well explained in the model.

  9. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran

    Science.gov (United States)

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed. PMID:24518895

  10. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.

    Science.gov (United States)

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed.

  11. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part III: 2,5-Dimethylfuran

    Science.gov (United States)

    Togbé, Casimir; Tran, Luc-Sy; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    This work is the third part of a study focusing on the combustion chemistry and flame structure of furan and selected alkylated derivatives, i.e. furan in Part I, 2-methylfuran (MF) in Part II, and 2,5-dimethylfuran (DMF) in the present work. Two premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of DMF were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) under two equivalence ratios (φ=1.0 and 1.7). Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. Kinetic modeling was performed using a reaction mechanism that was further developed in the present series, including Part I and Part II. A reasonable agreement between the present experimental results and the simulation is observed. The main reaction pathways of DMF consumption were derived from a reaction flow analysis. Also, a comparison of the key features for the three flames is presented, as well as a comparison between these flames of furanic compounds and those of other fuels. An a priori surprising ability of DMF to form soot precursors (e.g. 1,3-cyclopentadiene or benzene) compared to less substituted furans and to other fuels has been experimentally observed and is well explained in the model. PMID:24518851

  12. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio; Mueller, Michael E.; Pitsch, Heinz

    2016-01-01

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  13. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio

    2016-02-13

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors\\' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  14. Fast reactor primary cover gas system proposals for CDFR

    International Nuclear Information System (INIS)

    Harrison, L.M.T.

    1987-01-01

    A primary sodium gas cover has been designed for CDFR, it comprises plant to maintain and control; cover gas pressure for all reactor operating at fault conditions, cover gas purity by both blowdown and by a special clean-up facility and the clean argon supply for the failed fuel detection system and the primary pump seal purge. The design philosophy is to devise a cover gas system that can be specified for any LMFBR where only features like vessel and pipework size need to be altered to suit different design and operating conditions. The choice of full power and shutdown operating pressures is derived and the method chosen to control these values is described. A part active/part passive system is proposed for this duty, a surge volume of 250 m 3 gives passive control between full power and hot shutdown. Pressure control operation criteria is presented for various reactor operating conditions. A design for a sodium aerosol filter, based on that used on PFR is presented, it is specifically designed so that it can be fitted with an etched disc type particulate filter and maintenance is minimised. Two methods that maintain cover gas purity are described. The first, used during normal reactor operation with a small impurities ingress, utilises the continuous blowdown associated with the inevitable clean argon purge through the various reactor component seals. The second method physically removes the impurities xenon and krypton from the cover gas by their adsorption, at cryogenic temperature, onto a bed of activated carbon. The equipment required for these two duties and their mode of operation is described with the aid of a system flow diagram. The primary pump seals requires a gas purge to suppress aerosol migration. A system where the argon used for this task is recirculated and partially purified is described. (author)

  15. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    Science.gov (United States)

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  16. High energy electrons from interaction with a structured gas-jetat FLAME

    Czech Academy of Sciences Publication Activity Database

    Grittani, G.; Anania, M.P.; Gatti, G.; Giulietti, D.; Kando, M.; Krůs, Miroslav; Labate, L.; Levato, Tadzio; Londrillo, P.; Rossi, F.; Gizzi, L.A.

    2014-01-01

    Roč. 740, Mar (2014), s. 257-265 ISSN 0168-9002 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0087 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087 Institutional support: RVO:68378271 Keywords : beam-plasma interactions * laser-plasma acceleration * ultra-intenselaser–matter interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.216, year: 2014

  17. Mensuration of the propagation speed of mixed flames of Methane-air and gas natural, Guajira - air using the method of the angle of the cone

    International Nuclear Information System (INIS)

    Benjumea Hernandez, Pedro Nel; Higuita Bedoya Carlos Mario; Cordoba Perez, Camilo Andres

    2004-01-01

    In this work, the burning velocity of premixed laminar flames of methane-air and Guajira natural gas-air mixtures was measured by the cone's angle method using a cylindrical Bunsen burner. In the development of the experiments, a fuel concentration in the fuel-air mixture ranging from 9% -11% was taken. The maximum value of the burning velocity was obtained for mixtures a little bit richer than the stoichiometric case. For methane, this flame velocity was 44.1 cm/s and for the Guajira natural gas was 43.1 cm/s. From the results, it was possible to see that the Guajira natural gas inert content led to a burning velocity value lesser than the methane's, in spite of the Guajira natural gas having a higher heavy hydrocarbon content. Methane burning velocity values following similar trends to those reported by the literature were obtained. The systematic error found in the results is mainly a consequence of inaccuracies in the method used to measure the fuel-gas mixture velocity at the burner exit

  18. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry

    KAUST Repository

    Dennis, Claresta N.

    2016-06-20

    Single-laser-shot temperature measurements at 5 kHz were performed in a gas turbine model combustor using femtosecond (fs) coherent anti-Stokes Raman scattering (CARS). The combustor was operated at two conditions; one exhibiting a low level of thermoacoustic instability and the other a high level of instability. Measurements were performed at 73 locations within each flame in order to resolve the spatial flame structure and compare to previously published studies. The measurement procedures, including the procedure for calibrating the laser system parameters, are discussed in detail. Despite the high turbulence levels in the combustor, signals were obtained on virtually every laser shot, and these signals were strong enough for spectral fitting analysis for determination of flames temperatures. The spatial resolution of the single-laser shot temperature measurements was approximately 600 µm, the precision was approximately ±2%, and the estimated accuracy was approximately ±3%. The dynamic range was sufficient for temperature measurements ranging from 300 K to 2200 K, although some detector saturation was observed for low temperature spectra. These results demonstrate the usefulness of fs-CARS for the investigation of highly turbulent combustion phenomena. In a companion paper, the time-resolved fs CARS data are analyzed to provide insight into the temporal dynamics of the gas turbine model combustor flow field.

  19. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry

    KAUST Repository

    Dennis, Claresta N.; Slabaugh, Carson D.; Boxx, Isaac G.; Meier, Wolfgang; Lucht, Robert P.

    2016-01-01

    Single-laser-shot temperature measurements at 5 kHz were performed in a gas turbine model combustor using femtosecond (fs) coherent anti-Stokes Raman scattering (CARS). The combustor was operated at two conditions; one exhibiting a low level of thermoacoustic instability and the other a high level of instability. Measurements were performed at 73 locations within each flame in order to resolve the spatial flame structure and compare to previously published studies. The measurement procedures, including the procedure for calibrating the laser system parameters, are discussed in detail. Despite the high turbulence levels in the combustor, signals were obtained on virtually every laser shot, and these signals were strong enough for spectral fitting analysis for determination of flames temperatures. The spatial resolution of the single-laser shot temperature measurements was approximately 600 µm, the precision was approximately ±2%, and the estimated accuracy was approximately ±3%. The dynamic range was sufficient for temperature measurements ranging from 300 K to 2200 K, although some detector saturation was observed for low temperature spectra. These results demonstrate the usefulness of fs-CARS for the investigation of highly turbulent combustion phenomena. In a companion paper, the time-resolved fs CARS data are analyzed to provide insight into the temporal dynamics of the gas turbine model combustor flow field.

  20. Investigation of Gas Heating by Nanosecond Repetitively Pulsed Glow Discharges Used for Actuation of a Laminar Methane-Air Flame

    KAUST Repository

    Lacoste, Deanna

    2017-05-24

    This paper reports on the quantification of the heating induced by nanosecond repetitively pulsed (NRP) glow discharges on a lean premixed methane-air flame. The flame, obtained at room temperature and atmospheric pressure, has an M-shape morphology. The equivalence ratio is 0.95 and the thermal power released by the flame is 113 W. The NRP glow discharges are produced by high voltage pulses of 10 ns duration, 7 kV amplitude, applied at a repetition frequency of 10 kHz. The average power of the plasma, determined from current and voltage measurements, is 1 W, i.e. about 0.9 % of the thermal power of the flame. Broadband vibrational coherent anti-Stokes Raman spectroscopy of nitrogen is used to determine the temperature of the flame with and without plasma enhancement. The temperature evolution in the flame area shows that the thermal impact of NRP glow discharges is in the uncertainty range of the technique, i.e., +/- 40 K.

  1. Residual solvent determination by head space gas chromatography with flame ionization detector in omeprazole API

    Directory of Open Access Journals (Sweden)

    Saurabh Pandey

    2011-06-01

    Full Text Available Residual solvents in pharmaceutical samples are monitored using gas chromatography with head space. Based on good manufacturing practices, measuring residual solvents is mandatory for the release testing of all active pharmaceutical ingredients (API. The analysis of residual organic solvents (methanol, acetone, cyclohexane, dichloromethane, toluene in Omeprazole, an active pharmaceutical ingredient was investigated. Omeprazole is a potent reversible inhibitor of the gastric proton pump H+/K+-ATPase. The Head space gas chromatography (HSGC method described in this investigation utilized a SPB TM-624, Supelco, 30 m long x 0.25 mm internal diameter, 1.4µm-thick column. Since Omeprazole is a thermally labile compound, the selection of the proper injector temperature is critical to the success of the analysis. The injector temperature was set at 170ºC to prevent degradation. The initial oven temperature was set at 40ºC for 12 min and programmed at a rate of 10ºC min-1 to a final temperature of 220ºC for 5 min. Nitrogen was used as a carrier gas. The sample solvent selected was N,N-dimethylacetamide. The method was validated to be specific, linear, precise, sensitive, rugged and showed excellent recovery.Solventes residuais em amostras farmacêuticas são monitoradas utilizando-se cromatografia a gás "headspace". Com base nas boas práticas de fabricação, a medida de solventes residuais é obrigatória para o teste de liberação de todos os ingredientes farmacêuticos (API. Efetuou-se a análise de solventes orgânicos residuais (metanol, acetona, cicloexano, diclorometano, tolueno em omeprazol, ingrediente farmacêutico ativo. O omeprazol é potente inibidor reversível da bomba de prótons H+/K+-ATPase. A cromatografia a gás "headspace" (HSGC descrita nessa pesquisa utilizou um SPB TM-624, Supelco, de 30 m de comprimento x 0,25 mm de diâmetro interno, e coluna de 1,4 µm de espessura. Considerando-se que o omeprazol é termicamente l

  2. Organophosphorus pesticide and ester analysis by using comprehensive two-dimensional gas chromatography with flame photometric detection.

    Science.gov (United States)

    Liu, Xiangping; Li, Dengkun; Li, Jiequan; Rose, Gavin; Marriott, Philip J

    2013-12-15

    Thirty-seven phosphorus (P)-containing compounds comprising organophosphorus pesticides and organophosphate esters were analyzed by using comprehensive two-dimensional gas chromatography with flame photometric detection in P mode (GC × GC-FPD(P)), with a non-polar/moderately polar column set. A suitable modulation temperature and period was chosen based on experimental observation. A number of co-eluting peak pairs on the (1)D column were well separated in 2D space. Excellent FPD(P) detection selectivity, responding to compounds containing the P atom, produces clear 2D GC × GC plots with little interference from complex hydrocarbon matrices. Limits of detection (LOD) were within the range of 0.0021-0.048 μmol L(-1), and linear calibration correlation coefficients (R(2)) for all 37 P-compounds were at least 0.998. The P-compounds were spiked in 2% diesel and good reproducibility for their response areas and retention times was obtained. Spiked recoveries were 88%-157% for 5 μg L(-1) and 80%-138% for 10 μg L(-1) spiked levels. Both (1)tR and (2)tR shifts were noted when the content of diesel was in excess of 5% in the matrix. Soil samples were analyzed by using the developed method; some P-compounds were positively detected. In general, this study shows that GC × GC-FPD(P) is an accurate, sensitive and simple method for P-compound analysis in complicated environmental samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Determination of 2-Octanone in Biological Samples Using Liquid–Liquid Microextractions Followed by Gas Chromatography–Flame Ionization Detectio

    Directory of Open Access Journals (Sweden)

    Abolghasem Jouyban, Maryam Abbaspour, Mir Ali Farajzadeh, Maryam Khoubnasabjafari

    2017-06-01

    Full Text Available Background: Analysis of chemicals in biological fluids is required in many areas of medical sciences. Rapid, highly efficient, and reliable dispersive and air assisted liquid–liquid microextraction methods followed by gas chromatography-flame ionization detection were developed for the extraction, preconcentration, and determination of 2-octanone in human plasma and urine samples. Methods: Proteins of plasma samples are precipitated by adding methanol and urine sample is diluted with water prior to performing the microextraction procedure. Fine organic solvent droplets are formed by repeated suction and injection of the mixture of sample solution and extraction solvent into a test tube with a glass syringe. After extraction, phase separation is performed by centrifuging and the enriched analyte in the sedimented organic phase is determined by the separation system. The main factors influencing the extraction efficiency including extraction solvent type and volume, salt addition, pH, and extraction times are investigated. Results: Under the optimized conditions, the proposed method showed good precision (relative standard deviation less than 7%. Limit of detection and lower limit of quantification for 2-octanone were obtained in the range of 0.1–0.5 µg mL−1. The linear ranges were 0.5-500 and 0.5-200 µg mL−1 in plasma and urine, respectively (r2 ≥ 0.9995. Enrichment factors were in the range of 13-37. Good recoveries (55–86% were obtained for the spiked samples. Conclusion: Preconcentration methods coupled with GC analysis were developed and could be used to monitor 2-octanone in biological samples.

  4. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    Science.gov (United States)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most

  5. Combined Determination of Poly-β-Hydroxyalkanoic and Cellular Fatty Acids in Starved Marine Bacteria and Sewage Sludge by Gas Chromatography with Flame Ionization or Mass Spectrometry Detection

    Science.gov (United States)

    Odham, Göran; Tunlid, Anders; Westerdahl, Gunilla; Mårdén, Per

    1986-01-01

    Extraction of lipids from bacterial cells or sewage sludge samples followed by simple and rapid extraction procedures and room temperature esterification with pentafluorobenzylbromide allowed combined determinations of poly-β-hydroxyalkanoate constituents and fatty acids. Capillary gas chromatography and flame ionization or mass spectrometric detection was used. Flame ionization permitted determination with a coefficient of variation ranging from 10 to 27% at the picomolar level, whereas quantitative chemical ionization mass spectrometry afforded sensitivities for poly-β-hydroxyalkanoate constituuents in the attomolar range. The latter technique suggests the possibility of measuring such components in bacterial assemblies with as few as 102 cells. With the described technique using flame ionization detection, it was possible to study the rapid formation of poly-β-hydroxyalkanoate during feeding of a starved marine bacterium isolate with a complex medium or glucose and correlate the findings to changes in cell volumes. Mass spectrometric detection of short β-hydroxy acids in activated sewage sludge revealed the presence of 3-hydroxybutyric, 3-hydroxyhexanoic, and 3-hydroxyoctanoic acids in the relative proportions of 56, 5 and 39%, respectively. No odd-chain β-hydroxy acids were found. PMID:16347181

  6. The relative effects of fuel concentration, residual-gas fraction, gas motion, spark energy and heat losses to the electrodes on flame-kernel development in a lean-burn spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Taylor, A.M.K.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering; Ishii, K. [Honda International Technical School, Saitama (Japan); Urata, Y. [Honda R and D Co., Ltd., Tochigi (Japan). Tochigi R and D Centre

    2004-04-01

    The potential of lean combustion for the reduction in exhaust emissions and fuel consumption in spark ignition engines has long been established. However, the operating range of lean-burn spark ignition engines is limited by the level of cyclic variability in the early-flame development stage that typically corresponds to the 0-5 per cent mass fraction burned duration. In the current study, the cyclic variations in early flame development were investigated in an optical stratified-charge spark ignition engine at conditions close to stoichiometry [air-to-fuel ratio (A/F) = 15] and to the lean limit of stable operation (A/F = 22). Flame images were acquired through either a pentroof window ('tumble plane' of view) or the piston crown ('swirl plane' of view) and these were processed to calculate the intra-cycle flame-kernel radius evolution. In order to quantify the relative effects of local fuel concentration, gas motion, spark-energy release and heat losses to the electrodes on the flame-kernel growth rate, a zero-dimensional flame-kernel growth model, in conjunction with a one-dimensional spark ignition model, was employed. Comparison of the calculated flame-radius evolutions with the experimental data suggested that a variation in A/F around the spark plug of {delta}(A/F) {approx} 4 or, in terms of equivalence ratio {phi}, a variation in {delta}{phi} {approx} 0.15 at most was large enough to account for 100 per cent of the observed cyclic variability in flame-kernel radius. A variation in the residual-gas fraction of about 20 per cent around the mean was found to account for up to 30 per cent of the variability in flame-kernel radius at the timing of 5 per cent mass fraction burned. The individual effect of 20 per cent variations in the 'mean' in-cylinder velocity at the spark plug at ignition timing was found to account for no more than 20 per cent of the measured cyclic variability in flame kernel radius. An individual effect of

  7. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part I: Furan.

    Science.gov (United States)

    Liu, Dong; Togbé, Casimir; Tran, Luc-Sy; Felsmann, Daniel; Oßwald, Patrick; Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has - to the best of our knowledge - not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the

  8. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part I: Furan

    Science.gov (United States)

    Liu, Dong; Togbé, Casimir; Tran, Luc-Sy; Felsmann, Daniel; Oßwald, Patrick; Nau, Patrick; Koppmann, Julia; Lackner, Alexander; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    Fuels of the furan family, i.e. furan itself, 2-methylfuran (MF), and 2,5-dimethylfuran (DMF) are being proposed as alternatives to hydrocarbon fuels and are potentially accessible from cellulosic biomass. While some experiments and modeling results are becoming available for each of these fuels, a comprehensive experimental and modeling analysis of the three fuels under the same conditions, simulated using the same chemical reaction model, has – to the best of our knowledge – not been attempted before. The present series of three papers, detailing the results obtained in flat flames for each of the three fuels separately, reports experimental data and explores their combustion chemistry using kinetic modeling. The first part of this series focuses on the chemistry of low-pressure furan flames. Two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of furan were studied at two equivalence ratios (φ=1.0 and 1.7) using an analytical combination of high-resolution electron-ionization molecular-beam mass spectrometry (EI-MBMS) in Bielefeld and gas chromatography (GC) in Nancy. The time-of-flight MBMS with its high mass resolution enables the detection of both stable and reactive species, while the gas chromatograph permits the separation of isomers. Mole fractions of reactants, products, and stable and radical intermediates were measured as a function of the distance to the burner. A single kinetic model was used to predict the flame structure of the three fuels: furan (in this paper), 2-methylfuran (in Part II), and 2,5-dimethylfuran (in Part III). A refined sub-mechanism for furan combustion, based on the work of Tian et al. [Combustion and Flame 158 (2011) 756-773] was developed which was then compared to the present experimental results. Overall, the agreement is encouraging. The main reaction pathways involved in furan combustion were delineated computing the rates of formation and consumption of all species. It is seen that the

  9. Organophosphorus pesticide and ester analysis by using comprehensive two-dimensional gas chromatography with flame photometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangping; Li, Dengkun; Li, Jiequan [Nanjing Centre for Disease Control and Prevention, Zizhulin Street, Gulou 210003, Nanjing (China); Rose, Gavin [Department of Environment and Primary Industries, Macleod Centre, Ernest Jones Drive, Macleod, Vic 3085 (Australia); Marriott, Philip J., E-mail: philip.marriott@monash.edu [Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton 3800 (Australia)

    2013-12-15

    Highlights: • GC × GC-FPD(P-mode) was applied to detection of 37 phosphorus (P)-containing compounds. • The method improves resolution of P-compounds that coelute in the first dimension. • P-compounds are analyzed with excellent sensitivity supported by cryogenic modulation. • The FPD(P-mode) selectivity allows analysis in high hydrocarbon (H/C) matrix. • Soil samples and spiked chemical weapon compounds in H/C matrix are readily screened. -- Abstract: Thirty-seven phosphorus (P)-containing compounds comprising organophosphorus pesticides and organophosphate esters were analyzed by using comprehensive two-dimensional gas chromatography with flame photometric detection in P mode (GC × GC-FPD(P)), with a non-polar/moderately polar column set. A suitable modulation temperature and period was chosen based on experimental observation. A number of co-eluting peak pairs on the {sup 1}D column were well separated in 2D space. Excellent FPD(P) detection selectivity, responding to compounds containing the P atom, produces clear 2D GC × GC plots with little interference from complex hydrocarbon matrices. Limits of detection (LOD) were within the range of 0.0021–0.048 μmol L{sup −1}, and linear calibration correlation coefficients (R{sup 2}) for all 37 P-compounds were at least 0.998. The P-compounds were spiked in 2% diesel and good reproducibility for their response areas and retention times was obtained. Spiked recoveries were 88%–157% for 5 μg L{sup −1} and 80%–138% for 10 μg L{sup −1} spiked levels. Both {sup 1}t{sub R} and {sup 2}t{sub R} shifts were noted when the content of diesel was in excess of 5% in the matrix. Soil samples were analyzed by using the developed method; some P-compounds were positively detected. In general, this study shows that GC × GC-FPD(P) is an accurate, sensitive and simple method for P-compound analysis in complicated environmental samples.

  10. Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    Science.gov (United States)

    Sfetsas, Themistoklis; Michailof, Chrysa; Lappas, Angelos; Li, Qiangyi; Kneale, Brian

    2011-05-27

    Pyrolysis oils have attracted a lot of interest, as they are liquid energy carriers and general sources of chemicals. In this work, gas chromatography with flame ionization detector (GC-FID) and two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) techniques were used to provide both qualitative and quantitative results of the analysis of three different pyrolysis oils. The chromatographic methods and parameters were optimized and solvent choice and separation restrictions are discussed. Pyrolysis oil samples were diluted in suitable organic solvent and were analyzed by GC×GC-TOFMS. An average of 300 compounds were detected and identified in all three samples using the ChromaToF (Leco) software. The deconvoluted spectra were compared with the NIST software library for correct matching. Group type classification was performed by use of the ChromaToF software. The quantification of 11 selected compounds was performed by means of a multiple-point external calibration curve. Afterwards, the pyrolysis oils were extracted with water, and the aqueous phase was analyzed both by GC-FID and, after proper change of solvent, by GC×GC-TOFMS. As previously, the selected compounds were quantified by both techniques, by means of multiple point external calibration curves. The parameters of the calibration curves were calculated by weighted linear regression analysis. The limit of detection, limit of quantitation and linearity range for each standard compound with each method are presented. The potency of GC×GC-TOFMS for an efficient mapping of the pyrolysis oil is undisputable, and the possibility of using it for quantification as well has been demonstrated. On the other hand, the GC-FID analysis provides reliable results that allow for a rapid screening of the pyrolysis oil. To the best of our knowledge, very few papers have been reported with quantification attempts on pyrolysis oil samples using GC×GC-TOFMS most of which make use of the

  11. Cell formation effects on the burning speeds and flame front area of synthetic gas at high pressures and temperatures

    International Nuclear Information System (INIS)

    Askari, Omid; Elia, Mimmo; Ferrari, Matthew; Metghalchi, Hameed

    2017-01-01

    Highlights: • Effect of cell formation on burning speed and flame surface area is investigated. • A new developed non-dimensional number called cellularity factor is introduced. • Cellular burning speed and mass burning rate are calculated using differential based multi-shell model. • Flame instability is studied using thermo-diffusive and hydrodynamics effects. • Power law correlations are developed for cellular burning speeds and mass burning rates. - Abstract: Cellular burning speeds and mass burning rates of premixed syngas/oxidizer/diluent (H_2/CO/O_2/He) have been determined at high pressures and temperatures over a wide range of equivalence ratios which are at engine-relevant conditions. Working on high pressure combustion helps to reduce the pollution and increase the energy efficiency in combustion devices. The experimental facilities consisted of two spherical and cylindrical chambers. The spherical chamber, which can withstand high pressures up to 400 atm, was used to collect pressure rise data due to combustion, to calculate cellular burning speed and mass burning rate. For flame structure and instability analysis the cylindrical chamber was used to take pictures of propagating flame using a high speed CMOS camera and a schlieren photography system. A new differential based multi-shell model based on pressure rise data was used to determine the cellular burning speed and mass burning rate. In this paper, cellular burning speed and mass burning rate of H_2/CO/O_2/He mixture have been measured for a wide range of equivalence ratios from 0.6 to 2, temperatures from 400 to 750 K and pressures from 2 to 50 atm for three hydrogen concentrations of 5, 10 and 25% in the syngas. The power law correlations for cellular burning speed and mass burning rate were developed as a function of equivalence ratio, temperature and pressure. In this study a new developed parameter, called cellularity factor, which indicates the cell formation effect on flame

  12. Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (Kopi Luwak).

    Science.gov (United States)

    Jumhawan, Udi; Putri, Sastia Prama; Yusianto; Bamba, Takeshi; Fukusaki, Eiichiro

    2015-11-01

    Development of authenticity screening for Asian palm civet coffee, the world-renowned priciest coffee, was previously reported using metabolite profiling through gas chromatography/mass spectrometry (GC/MS). However, a major drawback of this approach is the high cost of the instrument and maintenance. Therefore, an alternative method is needed for quality and authenticity evaluation of civet coffee. A rapid, reliable and cost-effective analysis employing a universal detector, GC coupled with flame ionization detector (FID), and metabolite fingerprinting has been established for discrimination analysis of 37 commercial and non-commercial coffee beans extracts. gas chromatography/flame ionization detector (GC/FID) provided higher sensitivity over a similar range of detected compounds than GC/MS. In combination with multivariate analysis, GC/FID could successfully reproduce quality prediction from GC/MS for differentiation of commercial civet coffee, regular coffee and coffee blend with 50 wt % civet coffee content without prior metabolite details. Our study demonstrated that GC/FID-based metabolite fingerprinting can be effectively actualized as an alternative method for coffee authenticity screening in industries. Copyright © 2015. Published by Elsevier B.V.

  13. Development and application of a computer model for large-scale flame acceleration experiments

    International Nuclear Information System (INIS)

    Marx, K.D.

    1987-07-01

    A new computational model for large-scale premixed flames is developed and applied to the simulation of flame acceleration experiments. The primary objective is to circumvent the necessity for resolving turbulent flame fronts; this is imperative because of the relatively coarse computational grids which must be used in engineering calculations. The essence of the model is to artificially thicken the flame by increasing the appropriate diffusivities and decreasing the combustion rate, but to do this in such a way that the burn velocity varies with pressure, temperature, and turbulence intensity according to prespecified phenomenological characteristics. The model is particularly aimed at implementation in computer codes which simulate compressible flows. To this end, it is applied to the two-dimensional simulation of hydrogen-air flame acceleration experiments in which the flame speeds and gas flow velocities attain or exceed the speed of sound in the gas. It is shown that many of the features of the flame trajectories and pressure histories in the experiments are simulated quite well by the model. Using the comparison of experimental and computational results as a guide, some insight is developed into the processes which occur in such experiments. 34 refs., 25 figs., 4 tabs

  14. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  15. Cross validation of gas chromatography-flame photometric detection and gas chromatography-mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine.

    Science.gov (United States)

    Prapamontol, Tippawan; Sutan, Kunrunya; Laoyang, Sompong; Hongsibsong, Surat; Lee, Grace; Yano, Yukiko; Hunter, Ronald Elton; Ryan, P Barry; Barr, Dana Boyd; Panuwet, Parinya

    2014-01-01

    We report two analytical methods for the measurement of dialkylphosphate (DAP) metabolites of organophosphate pesticides in human urine. These methods were independently developed/modified and implemented in two separate laboratories and cross validated. The aim was to develop simple, cost effective, and reliable methods that could use available resources and sample matrices in Thailand and the United States. While several methods already exist, we found that direct application of these methods required modification of sample preparation and chromatographic conditions to render accurate, reliable data. The problems encountered with existing methods were attributable to urinary matrix interferences, and differences in the pH of urine samples and reagents used during the extraction and derivatization processes. Thus, we provide information on key parameters that require attention during method modification and execution that affect the ruggedness of the methods. The methods presented here employ gas chromatography (GC) coupled with either flame photometric detection (FPD) or electron impact ionization-mass spectrometry (EI-MS) with isotopic dilution quantification. The limits of detection were reported from 0.10ng/mL urine to 2.5ng/mL urine (for GC-FPD), while the limits of quantification were reported from 0.25ng/mL urine to 2.5ng/mL urine (for GC-MS), for all six common DAP metabolites (i.e., dimethylphosphate, dimethylthiophosphate, dimethyldithiophosphate, diethylphosphate, diethylthiophosphate, and diethyldithiophosphate). Each method showed a relative recovery range of 94-119% (for GC-FPD) and 92-103% (for GC-MS), and relative standard deviations (RSD) of less than 20%. Cross-validation was performed on the same set of urine samples (n=46) collected from pregnant women residing in the agricultural areas of northern Thailand. The results from split sample analysis from both laboratories agreed well for each metabolite, suggesting that each method can produce

  16. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  17. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  18. Simultaneous Screening of Major Flame Retardants and Plasticizers in Polymer Materials Using Pyrolyzer/Thermal Desorption Gas Chromatography Mass Spectrometry (Py/TD–GC–MS

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yanagisawa

    2018-03-01

    Full Text Available This study was conducted with the aim of achieving the simultaneous screening of various additives in polymer materials by utilizing a solvent-free pyrolyzer/thermal desorption gas chromatography mass spectrometry (Py/TD-GC–MS method. As a first step to achieve this goal, simultaneous screening has been examined by selecting major substances representing plasticizers and flame retardants, such as short chain chlorinated paraffins (SCCPs, decabromodiphenyl ether (DecaBDE, hexabromocyclododecane (HBCDD, and di(2-ethylhexyl phthalate (DEHP. A quantitative MS analysis was performed to check for the peak areas and sensitivities. Since Py/TD-GC–MS is fraught with the risk of thermal degradation of the sample, temperatures during the analytical process were finely tuned for securing reliable results. The instrumental sensitivity was confirmed by the S/N ratio on each component. The detection limits of all components were less than 50 mg/kg, which are sufficiently lower than the regulatory criteria. With regard to reproducibility, a relative standard deviation (RSD of about 5% was confirmed by employing a spike recovery test on a polystyrene polymer solution containing mixed standard solution (ca. 1000 mg/kg. In conclusion, the results obtained in this study indicate that Py/TD-GC–MS is applicable for the screening of major flame retardants and plasticizers in real samples with sufficient reproducibility at regulatory levels.

  19. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  20. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  1. Experimental Study of Hydrogen Addition Effects on a Swirl-Stabilized Methane-Air Flame

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-11-01

    Full Text Available The effects of H2 addition on a premixed methane-air flame was studied experimentally with a swirl-stabilized gas turbine model combustor. Experiments with 0%, 25%, and 50% H2 molar fraction in the fuel mixture were conducted under atmospheric pressure. The primary objectives are to study the impacts of H2 addition on flame lean blowout (LBO limits, flame shapes and anchored locations, flow field characteristics, precessing vortex core (PVC instability, as well as the CO emission performance. The flame LBO limits were identified by gradually reducing the equivalence ratio until the condition where the flame physically disappeared. The time-averaged CH chemiluminescence was used to reveal the characteristics of flame stabilization, e.g., flame structure and stabilized locations. In addition, the inverse Abel transform was applied to the time-averaged CH results so that the distribution of CH signal on the symmetric plane of the flame was obtained. The particle image velocimetry (PIV was used to detect the characteristics of the flow field with a frequency of 2 kHz. The snapshot method of POD (proper orthogonal decomposition and fast Fourier transform (FFT were adopted to capture the most prominent coherent structures in the turbulent flow field. CO emission was monitored with an exhaust probe that was installed close to the combustor exit. The experimental results indicated that the H2 addition extended the flame LBO limits and the operation range of low CO emission. The influence of H2 addition on the flame shape, location, and flow field was observed. With the assistance of POD and FFT, the combustion suppression impacts on PVC was found.

  2. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  3. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  4. Primary methods in biomass gasification for gas conditioning and cleaning

    NARCIS (Netherlands)

    Vilela, C.F.M.

    2012-01-01

    The substitution of natural gas by a renewable equivalent is an interesting option to reduce the use of fossil fuels and the accompanying greenhouse gas emissions, as well as from the point of view of security of supply. Green gas is the renewable alternative. It comprises biogas (1st generation

  5. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  6. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  7. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  8. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  9. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    Science.gov (United States)

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  10. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  11. Image-based spectroscopic sensor for the automatic control gas burners in the glass-processing industry. Multichannel spectral detection of flame emissions and multivariate analysis methods allow for optical quality monitoring and control of industrial burners; Bildgebende optische Spektralsensorik zur automatischen Regelung von Gasbrennern fuer die Glas verarbeitende Industrie. Durch mehrkanalige spektrale Aufnahmen der Flammenemission und multivariate Auswertemethoden kann die Qualitaet der Gasversorgung bei industriellen Brennern optisch ueberwacht und geregelt werden

    Energy Technology Data Exchange (ETDEWEB)

    Knetsch, R.; Arnold, W. [Herbert Arnold GmbH und Co. KG, Weilburg (Germany); Erfurth, F.; Scheibe, A.; Nyuyki, B.; Schmidt, W.D. [GMBU e.V., Jena (Germany). Fachsektion Photonik und Sensorik

    2009-07-01

    The precise composition of the combustion gas mixture of burners is essential for the maximum achievable flame temperature as well as for the economic use of raw material. We present a mobile device for optical flame analysis and optimization of gas supply for industrial burners. The relative fuel-oxygen-ratio can be assessed by means of spectral emission in the visible and UV region by factoring in the distribution of gas emissions along the flame. Based on spectral imaging technology our sensor allows for calculation of a flame index stating the quality of fuel supply. A laboratory sample of the flame sensor has been tested with different burners using natural gas and propane. The flame index has been determined successful for several fuel-oxygen-ratios. Practical experiments showed that uncomplicated software-based adaptation of the device to several burner configurations is possible.

  12. Role of Fluid-Dynamics in Soot Formation and Microstructure in Acetylene-Air Laminar Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Praveen Pandey

    2015-03-01

    Full Text Available Residence time and thermo-chemical environment are important factors in the soot-formation process in flames. Studies have revealed that flow-dynamics plays a dominant role in soot formation process. For understanding the effect of flow dynamics on soot formation and physical structure of the soot formed in different combustion environments two types of laminar diffusion flames of Acetylene and air, a normal diffusion flame (NDF and an inverse diffusion flame (IDF have been investigated. The fuel and air supply in the reaction zone in two flame types were kept constant but the interchange of relative position of fuel and air altered the burner exit Reynolds and Froude numbers of gases, fuel/air velocity ratio and flame shape. Soot samples were collected using thermophoretic sampling on transmission electron microscope (TEM grids at different flame heights and were analyzed off-line in a Transmission Electron Microscope. Soot primary particle size, soot aggregate size and soot volume fraction were measured using an image analysis software. In NDF the maximum flame temperature was about 1525 K and 1230 K for IDF. The soot primary particles are distinctly smaller in size in IDF (between 19 – 26 nm compared to NDF (between 29–34 nm. Both NDF and IDF show chainlike branched structure of soot agglomerate with soot particles of a nearly spherical shape. The average number of soot primary particles per aggregate in NDF was in the range of 24 to 40 and in IDF it varied between 16 to 24. Soot volume fraction was between 0.6 to 1.5 ppm in NDF where as it was less than 0.2 ppm in IDF. The change in sooting characteristics of the two flame types is attributed to changed fuel/air velocity ratio, entrainment of gas molecules and thermophoresis on soot particles.

  13. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    Science.gov (United States)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  14. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  15. Determination of propineb and its metabolites propylenethiourea and propylenediamine in banana and soil using gas chromatography with flame photometric detection and LC-MS/MS analysis.

    Science.gov (United States)

    Song, Shiming; Wei, Jie; Chen, Zhaojie; Lei, Yuhao; Zhang, Yan; Deng, Cheng; Tan, Huihua; Li, Xuesheng

    2018-03-04

    A sensitive and specific method for the determination of propineb and its metabolites, propylenethiourea (PTU) and propylenediamine (PDA), using gas chromatography with flame photometric detection (GC-FPD) and LC-MS/MS was developed and validated. Propineb and its metabolite residue dynamics in supervised field trials under Good Agricultural Practice (GAP) conditions in banana and soil were studied. Recovery of propineb (as CS 2 ), PDA and PTU ranged from 75.3 to 115.4% with RSD (n = 5) of 1.3-11.1%. The limit of quantification (LOQ) of CS 2 , PDA and PTU ranged from 0.005 to 0.01 mg kg -1 , and the limit of detection (LOD) ranged from 0.0015 to 0.0033 mg kg -1 . Dissipation experiments showed that the half-life of propineb in banana and soil ranged from 4.4 to 13.3 days. PTU was found in banana with a half-life of 31.5-69.3 days, while levels of PDA were less than 0.01 mg kg -1 in banana and soil. It has been suggested that PTU is the major metabolite of propineb in banana. The method was demonstrated to be reliable and sensitive for the routine monitoring of propineb and its metabolites in banana and soil. It also serves as a reference for the detection and monitoring of dithiocarbamates (DTCs) residues and the evaluation of their metabolic pathway.

  16. Determination of organotin compounds by headspace solid-phase microextraction-gas chromatography-pulsed flame-photometric detection (HS-SPME-GC-PFPD)

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Manuel [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France); Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Lespes, Gaetane; Gautier, Martine Potin [Pontificia Universidad Catolica de Valparaiso, Laboratorio de Quimica Analitica y Ambiental, Instituto de Quimica, Valparaiso (Chile); Gregori, Ida de; Pinochet, Hugo [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique, LCABIE, UMR CNRS 5034, Pau (France)

    2005-12-01

    A method based on Headspace solid-phase microextraction (HS-SPME, with a 100 {mu}m PDMS-fiber) in combination with gas-chromatography and pulsed flame-photometric detection (GC-PFPD) has been investigated for simultaneous determination of eight organotin compounds. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), monophenyltin (MPhT), and the semi-volatile diphenyltin (DPhT), triphenyltin (TPhT), monooctyltin (MOcT), and dioctyltin (DOcT) were determined after derivatization with sodium tetraethylborate. The conditions used for the extraction and preconcentration step were optimised by experimental design methodology. Tripropyltin (TPrT) and diheptyltin (DHepT) were used as internal standards for quantification of volatile and semi-volatile organotin compounds, respectively. The analytical precision (RSD) for ten successive injections of a standard mixture containing all the organic tin compounds ranged between 2 and 11%. The limits of detection for all the organotin compounds were sub ng (Sn) L{sup -1} in water and close to ng (Sn) kg{sup -1} in sediments. The accuracy of the method was evaluated by analysis of two certified reference material (CRM) sediment samples. The HS-SPME-GC-PFPD was then applied to the analysis of three harbour sediment samples. The results showed that headspace SPME is an attractive tool for analysis of organotin compounds in solid environmental matrices. (orig.)

  17. [High throuput analysis of organophosphorus pesticide residues and their metabolites in animal original foods by dual gas chromatography-dual pulse flame photometric detection].

    Science.gov (United States)

    Yang, Lixin; Li, Heli; Miao, Hong; Zeng, Fangang; Li, Ruifeng; Chen, Huijing; Zhao, Yunfeng; Wu, Yongning

    2011-10-01

    A method was established for the quantitative determination of 54 organophosphorus pesticide residues and their metabolites in foods of animal origin by dual gas chromatography-dual pulse flame photometric detection. Homogenized samples were extracted with acetone and methylene chloride, and cleaned-up by gel permeation chromatography (GPC). The response of each analyte showed a good linearity with a correlation coefficient not less than 0. 99. The recovery experiments were performed by a blank sample spiked at low, medium and high fortification levels. The recoveries for beef, mutton, pork, chicken were in the range of 50. 5% -128. 1% with the relative standard deviations (n = 6) of 1. 1% -25. 5%, which demonstrated the good precision and accuracy of the present method. The limits of detection for the analytes were in the range of 0. 001 -0. 170 mg/kg, and the limits of quantification were in the range of 0. 002 -0. 455 mg/kg. Animal food samples collected from markets such as meat, liver and kidney were analyzed, and the residues of dichlorovos and disulfoton-sulfoxide were found in the some samples. The established method is sensitive and selective enough to detect organophosphorus pesticide residues in animal foods.

  18. Speciation analysis of organotin compounds in human urine by headspace solid-phase micro-extraction and gas chromatography with pulsed flame photometric detection.

    Science.gov (United States)

    Valenzuela, Aníbal; Lespes, Gaëtane; Quiroz, Waldo; Aguilar, Luis F; Bravo, Manuel A

    2014-07-01

    A new headspace solid-phase micro-extraction (HS-SPME) method followed by gas chromatography with pulsed flame photometric detection (GC-PFPD) analysis has been developed for the simultaneous determination of 11 organotin compounds, including methyl-, butyl-, phenyl- and octyltin derivates, in human urine. The methodology has been validated by the analysis of urine samples fortified with all analytes at different concentration levels, and recovery rates above 87% and relative precisions between 2% and 7% were obtained. Additionally, an experimental-design approach has been used to model the storage stability of organotin compounds in human urine, demonstrating that organotins are highly degraded in this medium, although their stability is satisfactory during the first 4 days of storage at 4 °C and pH=4. Finally, this methodology was applied to urine samples collected from harbor workers exposed to antifouling paints; methyl- and butyltins were detected, confirming human exposure in this type of work environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ethanol concentration in 56 refillable electronic cigarettes liquid formulations determined by headspace gas chromatography with flame ionization detector (HS-GC-FID).

    Science.gov (United States)

    Poklis, Justin L; Wolf, Carl E; Peace, Michelle R

    2017-10-01

    Personal battery-powered vaporizers or electronic cigarettes were developed as an alternative to traditional cigarettes. The modern electronic cigarettes were patented in 2004 by Hon Lik in China. In May 2016, the US Food and Drug Administration (FDA) imposed regulatory statutes on e-cigarettes and their liquid formulations (e-liquids); prior to that, they were unregulated. E-liquids are typically composed of propylene glycol and/or glycerin, flavouring component(s), and active ingredient(s), such as nicotine. Fifty-six commercially available e-liquids, purchased from various sources, contained a variety of flavours and active ingredients. A headspace gas chromatography with flame ionization detector (HS-GC-FID) method was used to analyze these e-liquids for volatiles content. Only one of the e-liquids listed ethanol as a component. The chromatographic separation of volatiles was performed on a Restek BAC-1 column. A linear calibration was generated for ethanol with limits of detection and quantification (LOD/LOQ) of 0.05 mg/mL. Ethanol concentrations in the 56 e-liquids ranged from none detected to 206 mg/mL. The ethanol determined in these products may have been used in flavourants or a solvent; the reason for inclusion cannot be fully ascertained. The implications of vaporizing ethanol as an e-liquid component are unknown. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Effects of Palladium Loading on the Response of Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-07-01

    Full Text Available ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in asingle step by flame spray pyrolysis (FSP using zinc naphthenate and palladium (IIacetylacetonate dissolved in toluene-acetonitrile (80:20 vol% as precursors. The effect ofPd loading on the ethanol gas sensing performance of the ZnO nanoparticles and thecrystalline sizes were investigated. The particle properties were analyzed by XRD, BET,AFM, SEM (EDS line scan mode, TEM, STEM, EDS, and CO-pulse chemisorptionmeasurements. A trend of an increase in specific surface area of samples and a decrease inthe dBET with increasing Pd concentrations was noted. ZnO nanoparticles were observed asparticles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes ofZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnOnanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pdnanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations.The sensing films were produced by mixing the particles into an organic paste composedof terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed ontoAl2O3 substrates interdigitated with Au electrodes. The film morphology was analyzed bySEM and EDS analyses. The gas sensing of ethanol (25-250 ppm was studied in dry air at400°C. The oxidation of ethanol on the sensing surface of the semiconductor wasconfirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivityand the fastest response time (within seconds.

  1. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.; Roberts, William L.

    2016-01-01

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method

  2. Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant

    OpenAIRE

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; Di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-01-01

    We report on a new optical implementation of primary gas thermometry based on laser absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) $\

  3. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    Science.gov (United States)

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  4. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Science.gov (United States)

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...

  5. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  6. Control of confined nonpremixed flames using a microjet

    International Nuclear Information System (INIS)

    Sinha, Ashok; Ganguly, Ranjan; Puri, Ishwar K.

    2005-01-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO x and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices

  7. Control of confined nonpremixed flames using a microjet

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.; Puri, I.K. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Ganguly, R. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics; Jadavpur Univ., Calcutta (India). Dept. of Power Engineering

    2005-06-01

    Industrial burners, such as those used in materials processing furnaces, require precise control over the flame length, width, overall shape and other physical flame attributes. The mechanism used to control the flame topology should be relatively simple, safe, and devoid of an emissions penalty. We have explored the feasibility of hydrodynamic control of confined nonpremixed flames by injecting air through a high-momentum microjet. An innovative strategy for the control of flame shape and luminosity is demonstrated based on a high-momentum coaxial microjet injected along the center of a confined nonpremixed flame burning in a coflowing oxidizer stream. The introduction of the microjet shortens a nonpremixed flame and reduces the amplitude of the buoyancy-induced flickering. For a microjet-assisted flame, the flame length is more sensitive to the fuel flowrate than for laminar or turbulent nonpremixed flames. This provides greater flexibility for the dynamic control of their flame lengths. Measurements of NO{sub x} and CO emissions show that the method is robust. Effective flame control without an emissions penalty is possible over a large range of microjet velocities that significantly alter the flame shape. Since the influence of the microjet is primarily of a hydrodynamic nature, inert microjet fluids like recirculated exhaust gas can also be used in practical devices. (Author)

  8. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  9. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  10. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA Fossil Generation, Arnhem (Netherlands)

    1994-01-01

    The study on the title subject is aimed at the determination of the form of the flame and the radiation temperature of the flames of the burners in electric power plants. The adjustment of the burners in a boiler is assessed on the basis of the total performance, in which the NO[sub x]- and CO-concentrations in the flue gases are normative. By comparing the burners mutually, deviating adjustments can be observed, applying optical monitoring techniques. Measurements have been carried out of the coal flames in the unit Gelderland13 of the Dutch energy production company EPON and of the gas flames at the Claus plant A and B of the Dutch energy company EPZ. The final aim of the title study is to draft guidelines, based on the measured flame data, by means of which for every individual burner the adjustment of the fuel supply, the relation with the air supply and the swirl of the combustion air can be optimized

  11. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  12. Flame spread along thermally thick horizontal rods

    Science.gov (United States)

    Higuera, F. J.

    2002-06-01

    An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.

  13. Development and validation of a multiresidue method for the simultaneous determination of organophosphorus insecticides and their toxic metabolites in sugarcane juice and refined sugar by gas chromatography with flame photometric detection.

    Science.gov (United States)

    Ramasubramanian, Thirumalaiandi; Paramasivam, Mariappan

    2016-06-01

    A multiresidue method has been developed and validated for the simultaneous determination of organophosphorus insecticides and their toxic metabolites in sugarcane juice and refined sugar by gas chromatography with flame photometric detection. Limits of quantification of the method varied between 0.007 and 0.01 μg/g. Ethyl acetate based extraction followed by dispersive solid-phase extraction cleanup with primary secondary amine yielded internationally acceptable recoveries of acephate, chlorpyrifos, dichlorvos, monocrotophos, malathion, malaoxon, phorate, phorate-sulfoxide, phorate-oxon, phorate-sulfone, and quinalphos from selected matrices. The recoveries of target analytes from cane juice were 75.55 ± 0.5-102.57 ± 4.2, 77.45 ± 4.7-103.33 ± 3.3, and 80.55 ± 6.6-105.82 ± 9.8% at 0.01, 0.02, and 0.1 μg/g levels of fortification, respectively. The recoveries from cane sugar were 73.24 ± 3.5-104.47 ± 1.9, 75.23 ± 1.5-116.10 ± 3.7, and 70.75 ± 5.7-110.15 ± 2.7%, respectively at 0.01, 0.02, and 0.1 μg/g levels of fortification. Matrix effect and measurement uncertainty were within the permissible limit (less than 20%) as prescribed for pesticide residue analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  15. Determination of valproic acid in human plasma using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection

    Science.gov (United States)

    Fazeli-Bakhtiyari, Rana; Panahi-Azar, Vahid; Sorouraddin, Mohammad Hossein; Jouyban, Abolghasem

    2015-01-01

    Objective(s): Dispersive liquid-liquid microextraction coupled with gas chromatography (GC)-flame ionization detector was developed for the determination of valproic acid (VPA) in human plasma. Materials and Methods: Using a syringe, a mixture of suitable extraction solvent (40 µl chloroform) and disperser (1 ml acetone) was quickly added to 10 ml of diluted plasma sample containing VPA (pH, 1.0; concentration of NaCl, 4% (w/v)), resulting in a cloudy solution. After centrifugation (6000 rpm for 6 min), an aliquot (1 µl) of the sedimented organic phase was removed using a 1-µl GC microsyringe and injected into the GC system for analysis. One variable at a time optimization method was used to study various parameters affecting the extraction efficiency of target analyte. Then, the developed method was fully validated for its accuracy, precision, recovery, stability, and robustness. Results: Under the optimum extraction conditions, good linearity range was obtained for the calibration graph, with correlation coefficient higher than 0.998. Limit of detection and lower limit of quantitation were 3.2 and 6 μg/ml, respectively. The relative standard deviations of intra and inter-day analysis of examined compound were less than 11.5%. The relative recoveries were found in the range of 97 to 107.5%. Finally, the validated method was successfully applied to the analysis of VPA in patient sample. Conclusion: The presented method has acceptable levels of precision, accuracy and relative recovery and could be used for therapeutic drug monitoring of VPA in human plasma. PMID:26730332

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in bottom sediment by gas chromatography with flame photometric detection

    Science.gov (United States)

    Jha, Virendra Kumar; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from bottom-sediment samples is described. The compound O-ethyl-O-methyl-S-proplyphosphorothioate is reported as an estimated concentration because of variable performance. In this method, the sediment samples are centrifuged to remove excess waster mixed with anhydrous sodium sulfate and Soxhlet extracted overnight with dichloromethane (93 percent) and methanol (7 percent). The extract is concentrated and then filtered through a 0.2-micrometer polytetrafluoroethylene membrane syringe filter. An aliquot of the sample extract is quantitatively injected onto two polystyrene-divinylbenzene gel-permeation chromatographic columns connected in series. The compounds are eluted with dichloromethane and a fraction is collected for analysis, with some coextracted interferences, including elemental sulfur, separated and discarded. The aliquot is concentrated and solvent exchanged to ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in sodium sulfate matrix samples ranged from 0.81 to 2 micrograms per kilogram. Method performance was validated by spiking all compounds into three different solid matrices (sodium sulfate, bed sediment from Clear Creek, and bed sediment from Evergreen Lake) at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of method compounds spiked in Clear Creek samples ranged from 43 to 110 percent, and those in Evergreen Lake samples ranged from 62 to 118 percent for all pesticides. Mean recoveries of method compounds spiked in reagent sodium sulfate samples ranged from 41 to 101 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had an average recovery of 35 percent, and, thus, sample concentration is reported as estimated ('E' remark code).

  17. Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection.

    Science.gov (United States)

    Yan, Zijun; He, Man; Chen, Beibei; Gui, Bo; Wang, Cheng; Hu, Bin

    2017-11-24

    Covalent triazine frameworks (CTFs), featuring with high surface area, good thermal, chemical and mechanical stability, are good adsorbents in sample pretreatment. Herein, magnetic CTFs/Ni composite was prepared by in situ reduction of nickel ions on CTFs matrix with a solvothermal method. The prepared CTFs/Ni composite exhibited good preparation reproducibility, high chemical stability, and high extraction efficiency for targeted phthalate esters (PAEs) due to π-π interaction and hydrophobic effect. The porous structure of CTFs/Ni composite benefited the fast transfer of target PAEs from aqueous solution to the adsorbents, and the integrated magnetism contributed to the rapid separation of adsorbents from sample and elution solution. Based on it, a novel method of magnetic solid phase extraction (MSPE) combined with gas chromatography-flame ionization detector (GC-FID) was developed for the analysis of PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexl phthalate (DEHP), and di-n-octyl phthalate (DNOP) in plastic packaging materials. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) for six PAEs were found to be in the range of 0.024-0.085mg/kg. The linear range was 0.32-16mg/kg for DMP, DEP, 0.08-80mg/kg for DBP, 0.16-32mg/kg for BBP, DEHP, and 0.32-32mg/kg for DNOP, respectively. The enrichment factors ranged from 59 to 88-fold (theoretical enrichment factor was 133-fold). The proposed method was successfully applied to the analysis of PAEs in various plastic packaging materials with recoveries in the range of 70.6-119% for the spiked samples. This method is characterized with short operation time, high sensitivity, low consumption of harmful organic solvents and can be extended to the analysis of other trace aromatic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Quantitative Analysis of Humectants in Tobacco Products Using Gas Chromatography (GC with Simultaneous Mass Spectrometry (MSD and Flame Ionization Detection (FID

    Directory of Open Access Journals (Sweden)

    Rainey CL

    2014-12-01

    Full Text Available This paper describes the modification of an existing gas chromatographic (GC method to incorporate simultaneous mass spectrometric (MSD and flame ionization detection (FID into the analysis of tobacco humectants. Glycerol, propylene glycol, and triethylene glycol were analyzed in tobacco labeled as roll-your-own (RYO, cigar, cigarette, moist snuff, and hookah tobacco. Tobacco was extracted in methanol containing 1,3-butanediol (internal standard, filtered, and separated on a 15 m megabore DB-Wax column. Post-column flow was distributed using a microfluidic splitter between the MSD and FID for simultaneous detection. The limits of detection for the FID detector were 0.5 μg/mL (propylene glycol and triethylene glycol and 0.25 μg/mL (glycerol with a linear range of 2-2000 μg/mL (propylene glycol and triethylene glycol and 1-4000 μg/mL (glycerol. The limits of detection for the MSD detector were 2 μg/mL (propylene glycol and triethylene glycol and 4 μg/mL (glycerol with a linear range of 20-2000 μg/mL (propylene glycol and triethylene glycol and 40-4000 μg/mL (glycerol. Significant improvement in the sensitivity of the MSD can be achieved by employing selective ion monitoring (SIM detection mode. Although a high degree of correlation was observed between the results from FID and MSD analyses, marginal chromatographic resolution between glycerol and triethylene glycol limits the applicability of FID to samples containing low levels of both of these humectants. Utilizing MSD greatly improves the reliability of quantitative results because compensation for inadequate chromatographic resolution can be accomplished with mass selectivity in detection.

  19. Investigation of the profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii using gas chromatography coupled with flame ionization detector.

    Science.gov (United States)

    Ifeanacho, Mercy O; Ikewuchi, Catherine C; Ikewuchi, Jude C

    2017-05-01

    The profile of phenolic compounds in the leaves and stems of Pandiaka heudelotii was investigated using gas chromatography coupled with flame ionization detector. The leaves and stems had high flavonoids and benzoic acid derivatives content, and moderate levels of lignans and hydroxycinnamates. Twenty-eight known flavonoids were detected, which consisted mainly of kaempferol (41.93% in leaves and 47.97% in stems), (+)-catechin (17.12% in leaves and 16.11% in stems), quercetin (13.83% in leaves and 9.39% in stems), luteolin (7.34% in leaves and 7.71% in stems), and artemetin (6.53% in leaves and 4.83% in stems). Of the six known hydroxycinnamates detected, chlorogenic acid (80.79% in leaves and 87.56% in stems) and caffeic acid (18.98% in leaves and 12.30% in stems) were the most abundant, while arctigenin (77.81% in leaves and 83.40% in stems) and retusin (13.82% in leaves and 10.59% in stems) were the most abundant of the nine known lignans detected. Twelve known benzoic acid derivatives were detected, consisting mainly of ellagic acid (65.44% in leaves and 72.89% in stems), p-hydroxybenzoic acid (25.10% in leaves and 18.95% in stems), and vanillic acid (8.80% in leaves and 7.30% in stems). The rich phytochemical profile of the leaves and stems is an indication of their ability to serve as sources of nutraceuticals.

  20. [Magnetic solid phase extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in juice samples].

    Science.gov (United States)

    Huang, Qian; He, Man; Chen, Beibei; Hu, Bin

    2014-10-01

    A novel method for the determination of organophosphorous pesticides (OPPs) in fresh juice samples was developed. Fe3O4 @ P (St-co-MAA) magnetic microparticles were synthesized and modified with styrene (St) and methacrylic acid (MAA) by coating St and MAA on magnetic particles and characterized by a series of techniques. The results indicated that Fe3 O4 magnetic nanoparticles (MNPs) have been successfully modified with St and MAA. Based on the prepared FeO4 @ P (St-co-MAA) magnetic microparticles, a novel method of magnetic solid phase extraction (MSPE)-gas chromatography (GC)-flame photometric detection (FPD) was developed for the determination of OPPs. The extraction/desorption conditions of MSPE were optimized, and the analytical performance was evaluated under the optimal conditions. The limits of detection (LODs, S/N = 3) for target OPPs were in the range of 0.013-0.305 μg/L with the RSDs (n = 7) ranging from 3.1% to 8.8%. The enrichment factors varied from 406 to 951. The linear ranges were over three orders of magnitudes (R2 > 0.99) and the reproducibilities were 7.4%-14.5% (n = 5). Finally, the proposed MSPE-GC-FPD method was successfully applied to the analysis of the five OPPs in fresh tomato and strawberry juice samples, with the recoveries of target OPPs in the range of 85.4%-118.9% for the spiked samples. The proposed MSPE-GC-FPD method is featured with low cost, fast separation and high enrichment factor.

  1. Rapid gas chromatography with flame photometric detection of multiple organophosphorus pesticides in Salvia miltiorrhizae after ultrasonication assisted one-step extraction.

    Science.gov (United States)

    Zhang, Shanshan; Liu, Xiaofei; Qin, Jia'an; Yang, Meihua; Zhao, Hongzheng; Wang, Yong; Guo, Weiying; Ma, Zhijie; Kong, Weijun

    2017-11-15

    A simple and rapid gas chromatography-flame photometric detection (GC-FPD) method was developed for the determination of 12 organophosphorus pesticides (OPPs) in Salvia miltiorrhizae by using ultrasonication assisted one-step extraction (USAE) without any clean-up steps. Some crucial parameters such as type of extraction solvent were optimized to improve the method performance for trace analysis. Any clean-up steps were negligent as no interferences were detected in the GC-FPD chromatograms for sensitive detection. Under the optimized conditions, limits of detection (LODs) and quantitation (LOQs) for all pesticides were in the range of 0.001-0.002mg/kg and 0.002-0.01mg/kg and 0.002-0.01mg/kg, respectively, which were all below the regulatory maximum residue limits suggested. RSDs for method precision (intra- and inter-day variations) were lower than 6.8% in approval with international regulations. Average recovery rates for all pesticides at three fortification levels (0.5, 1.0 and 5.0mg/kg) were in the range of 71.2-101.0% with relative standard deviations (RSDs) pesticide (dimethoate) out of the 12 targets was simultaneously detected in four samples at concentrations of 0.016-0.02mg/kg. Dichlorvos and omethoate were found in the same sample from Sichuan province at 0.004 and 0.027mg/kg, respectively. Malathion and monocrotophos were determined in the other two samples at 0.014 and 0.028mg/kg, respectively. All the positive samples were confirmed by LC-MS/MS. The simple, reliable and rapid USAE-GC-FPD method with many advantages over traditional techniques would be preferred for trace analysis of multiple pesticides in more complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. On-line purge-and-trap-gas chromatography with flame ionization detection as an alternative analytical method for dimethyl sulphide trace release from marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Careri, M.; Musci, M.; Bianchi, F.; Mucchino, C. [Parma Univ., Parma (Italy). Dipt. di Chimica Generale ed Inorganica, Chimica Analitica e Chimica Fisica; Azzoni, R.; Viaroli, P. [Parma Univ., Parma (Italy). Dipt. di Scienze Ambientali

    2001-10-01

    The release of dimethyl sulphide (DMS) by the seaweed Ulva spp at trace level was studied in aqueous solutions at different salinities, temperature and light intensities. For this purpose, the purge-and-trap technique combined with gas chromatography-flame ionization detection was used. The analytical method was evaluated in terms of linearity range, limit of detection, precision and accuracy by considering 10% (w/v) and 30% (w/v) synthetic seawater as aqueous matrices. Calculation of the recovery function evidenced a matrix influence. The method of standard addition was then used for an accurate determination of DMS in synthetic seawater reproduction the matrix effect. DMS fluxes were analysed in batch cultures of Ulva spp reproducing the conditions which usually occur in the Sacca di Goro lagoon (Northern Adriatic Sea, Italy). [Italian] Il rilascio di dimetilsolfuro (DMS) in tracce da parte della macroalga Ulva spp e' stato studiato in soluzioni acquose di differente salinita' mediante la tecnica purge-and-trap accoppiata on-line alla gascromatografia con rivelazione a ionizzazione di fiamma (GC-FID). Il metodo analitico e' stato validato in termini di linearita' di risposta, di limite di rivelabilita', precisione e accuratezza considerando come matrice acqua di mare sintetica a diversa salinita' (10%0 m/v e 30%0 m/v). Il calcolo della funzione di recupero ha consentito di verificare la presenza di errori sistematici dovuti all'effetto matrice. Il metodo sviluppato e' stato quindi applicato a matrici ambientali allo scopo di verificare il rilascio di DMS da parte di Ulva spp, operando in condizioni ambientali simili a quelle che si verificano nella Sacca di Goro (Ferrara, Italia).

  3. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Harvey, Karen; Ferrada, Juan J.

    2011-01-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  4. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  5. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  6. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

    International Nuclear Information System (INIS)

    Bongartz, K.

    1983-07-01

    A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

  7. Modelling the radiolysis of RSG-GAS primary cooling water

    Science.gov (United States)

    Butarbutar, S. L.; Kusumastuti, R.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    Water chemistry control for light water coolant reactor required a reliable understanding of radiolysis effect in mitigating corrosion and degradation of reactor structure material. It is known that oxidator products can promote the corrosion, cracking and hydrogen pickup both in the core and in the associated piping components of the reactor. The objective of this work is to provide the radiolysis model of RSG GAS cooling water and further more to predict the oxidator concentration which can lead to corrosion of reactor material. Direct observations or measurements of the chemistry in and around the high-flux core region of a nuclear reactor are difficult due to the extreme conditions of high temperature, pressure, and mixed radiation fields. For this reason, chemical models and computer simulations of the radiolysis of water under these conditions are an important route of investigation. FACSIMILE were used to calculate the concentration of O2 formed at relatively long-time by the pure water γ and neutron irradiation (pH=7) at temperature between 25 and 50 °C. This simulation method is based on a complex chemical reaction kinetic. In this present work, 300 MeV-proton were used to mimic γ-rays radiolysis and 2 MeV fast neutrons. Concentration of O2 were calculated at 10-6 - 106 s time scale.

  8. Characterization of flame radiosity in shrubland fires

    Science.gov (United States)

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro

    2011-01-01

    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  9. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2017-01-01

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  10. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  11. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    Science.gov (United States)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  12. Simultaneous multipoint measurements of density gradients and temperature in a flame. Progress report, July 1, 1982-January 31, 1983

    International Nuclear Information System (INIS)

    Chang, R.K.; Chu, B.T.; Long, M.B.

    1983-02-01

    An account is given of recent progress in the development of nonintrusive optical diagnostic techniques and the application of these techniques to turbulent combustion systems. The primary focus of the work over the past year has been in: (1) the use of a broadband rotational CARS technique for the measurement of temperature in flames, and (2) the use of spontaneous Raman scattering to simultaneously map out the fuel gas concentration in a turbulent diffusion flame at 2500 points in a plane intersecting the flow. A summary of new results in each of these areas is given

  13. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  14. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    International Nuclear Information System (INIS)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; Di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-01-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν 1 +2ν 2 0 +ν 3 transition in CO 2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ∼1.6x10 -4

  15. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    Science.gov (United States)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν20+ν3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ˜1.6×10-4.

  16. Determination and Scaling of Thermo Acoustic Characteristics of Premixed Flames

    Directory of Open Access Journals (Sweden)

    P. R. Alemela

    2010-06-01

    Full Text Available The paper investigates the determination and the scaling of thermo acoustical characteristics of lean premixed flames as used in gas turbine combustion systems. In the first part, alternative methods to characterize experimentally the flame dynamics are outlined and are compared on the example of a scaled model of an industrial gas turbine burner. Transfer matrix results from the most general direct method are contrasted with data obtained from the hybrid method, which is based on Rankine-Hugoniot relations and the experimental flame transfer function obtained from OH*-chemiluminescence measurements. Also the new network model based regression method is assessed, which is based on a n – τ – σ dynamic flame model. The results indicate very good consistency between the three techniques, providing a global check of the methods/tools used for analyzing the thermo acoustic mechanisms of flames. In the second part, scaling rules are developed that allow to calculate the dynamic flame characteristics at different operation points. Towards this a geometric flame length model is formulated. Together with the other operational data of the flame it provides the dynamic flame model parameters at these points. The comparison between the measured and modeled flame lengths as well as the n – τ – σ parameters shows an excellent agreement.

  17. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  18. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  19. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  20. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...... quantities may enhance particle formation under some conditions, but results were not conclusive....

  1. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    flame burner and a premixed burner with a precursor jet. The experimental setups and results are shown and discussed in detail. Alumina powder with specific surface area between 45 m2/g and 190 m2/g was obtained.Temperature and flow fields of the flame processes are analysed by numerical simulations...... energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...

  2. Development and Experimental Validation of Large Eddy Simulation Techniques for the Prediction of Combustion-Dynamic Process in Syngas Combustion: Characterization of Autoignition, Flashback, and Flame-Liftoff at Gas-Turbine Relevant Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ihme, Matthias [Univ. of Michigan, Ann Arbor, MI (United States); Driscoll, James [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-08-31

    The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controlling unstable flame regimes in HHC-combustion.

  3. Thermodynamic data for selected gas impurities in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.C.

    1976-12-01

    The literature of thermodynamic data for selected fission-product species is reviewed and supplemented in support of complex chemical equilibrium calculations applied to fission-product distributions in the primary coolant of high-temperature gas-cooled reactors. Thermodynamic functions and heats and free energies of formation are calculated and tabulated to 3000 0 K for CsI (s,l,g), Cs 2 I 2 (g), CH 3 I(g), COI 2 (g), and CsH(g). 79 references

  4. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  5. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  6. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  7. Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

    OpenAIRE

    Klingmann, Jens; Johansson, Bengt

    1998-01-01

    Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...

  8. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  9. Investigating Soot Morphology in Counterflow Flames at Elevated Pressures

    KAUST Repository

    Amin, Hafiz Muhammad Fahid

    2018-01-01

    Practical combustion devices such as gas turbines and diesel engines operate at high pressures to increase their efficiency. Pressure significantly increases the overall soot yield. Morphology of these ultra-fine particles determines their airborne lifetime and their interaction with the human respiratory system. Therefore, investigating soot morphology at high pressure is of practical relevance. In this work, a novel experimental setup has been designed and built to study the soot morphology at elevated pressures. The experimental setup consists of a pressure vessel, which can provide optical access from 10° to 165° for multi-angle light scattering, and a counterflow burner which produces laminar flames at elevated pressures. In the first part of the study, N2-diluted ethylene/air and ethane air counterflow flames are stabilized from 2 to 5 atm. Two-angle light scattering and extinction technique have been used to study the effects of pressure on soot parameters. Path averaged soot volume fraction is found to be very sensitive to pressure and increased significantly from 2 to 5 atm. Primary particle size and aggregate size also increased with pressure. Multi-angle light scattering is also performed and flames are investigated from 3 to 5 atm. Scattering to absorption ratio is calculated from multi-angle light scattering and extinction data. Scattering to absorption ratio increased with pressure whereas the number of primary particles in an aggregate decreased with increasing pressure. In the next part of the study, Thermophoretic Sampling of soot is performed, in counterflow flames from 3 to 10 atm, followed by transmission electron microscopy. Mean primary particle size increased with pressure and these trends are consistent withour light scattering measurements. Fractal properties of soot aggregates are found to be insensitive to pressure. 2D diffused light line of sight attenuation (LOSA) and Laser Induced Incandescence (LII) are used to measure local soot

  10. Two suicidal fatalities due to the ingestion of chlorfenvinphos formulations: simultaneous determination of the pesticide and the petroleum distillates in tissues by gas chromatography-flame-ionization detection and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Martínez, María A; Ballesteros, Salomé

    2012-01-01

    Chlorfenvinphos (CFVP) is an organophosporus insecticide designated as a threat agent by the National Institutes of Health (NIH). However, there are very few reported cases of poisonings in humans and none with postmortem toxicological analysis. We report the first two fatalities due to suicidal massive ingestion of a veterinary formulation containing CFVP and petroleum distillates. Case 1: A 24-year-old woman was found dead by her mother. According to the police records, the room was filled with an odor of solvents or pesticides and feces. There was an empty bottle of Supona(®) near the body and a suicide note on a Bible on a table. The only relevant postmortem finding was that the lungs appeared congested and edematous. Case 2: A 60-year-old man committed in his van by ingesting an unknown product. The vehicle was locked and had an odor that resembled an acid, sulfate, or solvent according to different witnesses. There was a suicide note as well as multiple containers containing automobile products nearby. The stomach of the victim was filled with abundant pale greenish fluid with a similar odor to that presented in the vehicle. The simultaneous toxicological screening and quantitation of CFVP and petroleum distillates [a mixture of trimethylbenzene isomers (TMBs)] was performed by means of gas chromatography with flame-ionization detection (GC-FID) and confirmation was performed using gas chromatography-mass spectrometry (GC-MS). Disposition of CFVP and TMBs in different tissues were, respectively, as follows: Case 1: heart blood, 8.6 and 3.7 mg/L; liver, 60.0 and 33.4 mg/kg; and stomach contents, 1132 mg/L (792.4 mg total) and 377.0 mg/L (263.9 mg total). Case 2: heart blood, 4.4 and 6.5 mg/L; urine, 1.4 and detected (distillates suitable for toxicological investigation in forensic and clinical cases. This is crucial to solving poisoning cases in which the poisoning source is uncertain.

  11. Turbulent premixed flames on fractal-grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)

    2013-12-15

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)

  12. Hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1982-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels

  13. The free electron gas primary thermometer using an ordinary bipolar junction transistor approaches ppm accuracy

    Science.gov (United States)

    Mimila-Arroyo, J.

    2017-06-01

    In this paper, it is demonstrated that the free electron gas primary thermometer based on a bipolar junction transistor is able to provide the temperature with an accuracy of a few parts per million. Its simple functioning principle exploits the behavior of the collector current when properly biased to extract the temperature. Using general purpose silicon transistors at the water triple point (273.16 K) and gallium melting point (302.9146), an accuracy of a few parts per million has been reached, constituting the simplest and the easiest to operate primary thermometer, that might be considered even for the redefinition of Kelvin.

  14. Lifted Turbulent Jet Flames

    Science.gov (United States)

    1993-04-14

    flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion

  15. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    Science.gov (United States)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well

  16. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  17. The effects of waste-gas recirculation on the formation and reduction of NO{sub x} in gas flames; Einfluss der Abgasrezirkulation auf Bildung und Reduzierung von NO{sub x} in Gasflammen

    Energy Technology Data Exchange (ETDEWEB)

    Al-Halbouni, A. [Magdeburg Univ. (Germany); Sontag, R. [Magdeburg Univ. (Germany); Giese, R. [Magdeburg Univ. (Germany)

    1996-10-01

    The mechanisms responsible for the production and reduction of environmentally and medically harmful oxides of nitrogen and carbon (NO and CO) can predominantly be influenced by means of primary provisions at the burner muzzle. This article therefore examines on the basis of measured and calculated data the extent to which forced waste-gas recirculation modifies the field variables prevailing in the combustion chamber in general, and NO{sub x} concentration in particular. It is demonstrated that the flow of recirculating gas plays a decisive role. (orig.) [Deutsch] Entstehungs- und Reduzierungsmechanismen der fuer Mensch und Umwelt schaedlichen Stickstoff- und Kohlenstoffmonoxide (NO und CO) lassen sich in erster Linie durch primaere Massnahmen am Brennerkopf beeinflussen. In diesem Sinne wird im vorliegenden Beitrag anhand von Mess- und Rechendaten untersucht, inwieweit die zwangserzeugte Abgasrezirkulation die im Feuerraum herrschenden Feldgroessen, insbesondere aber die NO{sub x}-Konzentration veraendert. Es wird gezeigt, dass dabei die rezirkulierende Abgasmenge eine entscheidende Rolle spielt. (orig.)

  18. Risk Analysis of Flare Flame-out Condition in a Gas Process Facility Analyse des risques des conditions d’extinction de torche au sein d’une installation de traitement de gaz

    Directory of Open Access Journals (Sweden)

    Zadakbar O.

    2011-02-01

    Full Text Available Flaring is a common method of disposal of flammable waste gases in the downstream industries. Flare flame out (flame lift-off or blow-outs often occurs causing toxic vapors to discharge. The toxic gases released may have hazardous effects on the surrounding environment. To study the effect of inhalation exposure of these toxic gases on human health, the four steps of the EPA (Environmental Protection Agency framework with the field data to quantify the cancer and non-cancer health risks are integrated in this paper. As a part of exposure assessment, gas dispersion modeling using AERMOD and UDM-PHAST is applied in two different conditions of normal flaring and flare flame out during a particular climate condition in Khangiran region. Recommendations to avoid flare flame out conditions are also presented here. Le torchage est un procédé courant d’élimination des gaz résiduaires inflammables dans les industries de traitement. L’extinction de la torche (par décollage ou soufflage de flamme provoque souvent une émission de vapeurs toxiques. Ces gaz toxiques libérés peuvent présenter des effets dangereux sur le milieu environnant. Pour étudier l’effet d’une exposition par inhalation de ces gaz toxiques sur la santé, cet article croise les quatre étapes de la démarche de l’EPA (Environmental Protection Agency, Agence de protection de l’environnement avec les données d’exploitation afin de quantifier le risque sanitaire cancérologique et non cancérologique. Dans le cadre de l’estimation d’exposition, une modélisation de dispersion des gaz utilisant AERMOD et UDM-PHAST est évaluée dans deux configurations différentes de torchage normal et d’extinction de torche à l’occasion de conditions climatiques particulières dans la région du Khangiran. L’article propose également des recommandations destinées à éviter les conditions d’une extinction de flamme de torche.

  19. An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions

    Science.gov (United States)

    Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.

    2002-11-01

    We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.

  20. Influence of Pilot Flame Parameters on the Stability of Turbulent Jet Flames

    KAUST Repository

    Guiberti, Thibault F.

    2016-11-08

    This paper presents a comprehensive study of the effects of pilot parameters on flame stability in a turbulent jet flame. The Sydney inhomogeneous piloted burner is employed as the experimental platform with two main fuels, namely, compressed natural gas and liquefied petroleum gas. Various concentrations of five gases are used in the pilot stream, hydrogen, acetylene, oxygen, nitrogen, and argon, to enable a sufficient range in exploring the following parameters: pilot heat release, temperature, burnt gas velocity, equivalence ratio, and H/C ratio. The experimental results are mainly presented in the form of blow-off limits and supported by simple calculations, which simulate various conditions of the pilot–mixture interface. It is found that increasing the pilot adiabatic flame temperature benefits the flame stability and has an even greater influence than the heat release, which is also known to enhance the blow-off limits. Conversely, increasing the pilot burnt gas velocity reduces the blow-off velocity, except for the limiting case when the jet is fully non-premixed. The H/C ratio has negligible effects, while resorting to lean pilots significantly increases the stability of globally rich partially premixed and premixed jets. Such findings are consistent with trends obtained from laminar flame calculations for rich fuel/air mixtures issuing against hot combustion products to simulate the pilot stream.

  1. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  2. An experimental study of the effect of a pilot flame on technically pre-mixed, self-excited combustion instabilities

    Science.gov (United States)

    O'Meara, Bridget C.

    Combustion instabilities are a problem facing the gas turbine industry in the operation of lean, pre-mixed combustors. Secondary flames known as "pilot flames" are a common passive control strategy for eliminating combustion instabilities in industrial gas turbines, but the underlying mechanisms responsible for the pilot flame's stabilizing effect are not well understood. This dissertation presents an experimental study of a pilot flame in a single-nozzle, swirl-stabilized, variable length atmospheric combustion test facility and the effect of the pilot on combustion instabilities. A variable length combustor tuned the acoustics of the system to excite instabilities over a range of operating conditions without a pilot flame. The inlet velocity was varied from 25 -- 50 m/s and the equivalence ratio was varied from 0.525 -- 0.65. This range of operating conditions was determined by the operating range of the combustion test facility. Stability at each operating condition and combustor length was characterized by measurements of pressure oscillations in the combustor. The effect of the pilot flame on the magnitude and frequency of combustor stability was then investigated. The mechanisms responsible for the pilot flame effect were studied using chemiluminescence flame images of both stable and unstable flames. Stable flame structure was investigated using stable flame images of CH* chemiluminescence emission. The effect of the pilot on stable flame metrics such as flame length, flame angle, and flame width was investigated. In addition, a new flame metric, flame base distance, was defined to characterize the effect of the pilot flame on stable flame anchoring of the flame base to the centerbody. The effect of the pilot flame on flame base anchoring was investigated because the improved stability with a pilot flame is usually attributed to improved flame anchoring through the recirculation of hot products from the pilot to the main flame base. Chemiluminescence images

  3. Method and apparatus for generating highly luminous flame

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, G.M.

    1992-05-12

    A combustion process and apparatus are provided for generating a variable high temperature, highly luminous flame with low NOx emission by burning gaseous and liquid materials with oxygen and air. More particularly, the invention provides a process in which there is initial control of fuel, oxygen, and air flows and the delivery of the oxidizers to a burner as two oxidizing gases having different oxygen concentrations (for example, pure oxygen and air, or oxygen and oxygen-enriched air). A first oxidizing gas containing a high oxygen concentration is injected as a stream into the central zone of a combustion tunnel or chamber, and part of the fuel (preferably the major part) is injected into the central pyrolysis zone to mix with the first oxidizing gas to create a highly luminous high-temperature flame core containing microparticles of carbon of the proper size for maximum luminosity and high temperature, and a relatively small amount of hydrocarbon radicals. In addition, part of the fuel (preferably the minor part) is injected in a plurality of streams about the flame core to mix with a second oxidizing gas (containing a lower oxygen concentration than the first oxidizing gas) and injecting the second oxidizing mixture about the flame core and the minor fuel flow to mix with the minor fuel flow. This creates a plurality of fuel-lean (oxygen-rich) flames which are directed toward the luminous flame core to form a final flame pattern having high temperature, high luminosity, and low NOx content. 6 figs.

  4. Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames

    Science.gov (United States)

    Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.

    2018-01-01

    Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.

  5. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.

    2015-08-17

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments with interpolative closure, and a grey gas and soot radiation model using the discrete transfer method. Interaction of the sooting flame with a prescribed decaying random velocity field was investigated, with a primary interest in the effects of velocity fluctuations on the flame structure and the associated soot formation process for a fuel-strip configuration and a composition with mature soot growth. The temporally evolving simulation revealed a multi-layered soot formation process within the flame, at a level of detail not properly described by previous studies based on simplified soot models utilizing acetylene or naphthalene precursors for initial soot inception. The overall effect of the flame topology on the soot formation was found to be consistent with previous experimental studies, while a unique behaviour of localised strong oxidation was also noted. The imposed velocity fluctuations led to an increase of the scalar dissipation rate in the sooting zone, causing a net suppression in the soot production rate. Considering the complex structure of the soot formation layer, the effects of the imposed fluctuations vary depending on the individual soot reactions. For the conditions under study, the soot oxidation reaction was identified as the most sensitive to the fluctuations and was mainly responsible for the local suppression of the net soot production. © 2015 Taylor & Francis

  6. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    Science.gov (United States)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  7. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  8. Flame-sintered ceramic exoelectron dosimeter samples

    International Nuclear Information System (INIS)

    Petel, M.; Holzapfel, G.

    1979-01-01

    New techniques for the preparation of integrating solid state dosimeters, particularly exoelectron dosimeters, have been initiated. The procedure consists in melting the powdered dosimeter materials in a hot, fast gas stream and depositing the ceramic layer. The gas stream is generated either through a chemical flame or by an electrical arc plasma. Results will be reported on the system Al 2 O 3 /stainless steel as a first step to a usable exoelectron dosimeter

  9. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  10. Characterization of high-pressure, underexpanded hydrogen-jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W.; Houf, W.G.; Williams, T.C. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Bourne, B.; Colton, J. [SRI International, 333 Ravenwood Ave., Menlo Park, CA 94025 (United States)

    2007-08-15

    Measurements were performed to characterize the dimensional and radiative properties of large-scale, vertical hydrogen-jet flames. This data is relevant to the safety scenario of a sudden leak in a high-pressure hydrogen containment vessel and will provide a technological basis for determining hazardous length scales associated with unintended hydrogen releases at storage and distribution centers. Jet flames originating from high-pressure sources up to 413 bar (6000 psi) were studied to verify the application of correlations and scaling laws based on lower-pressure subsonic and choked-flow jet flames. These higher pressures are expected to be typical of the pressure ranges in future hydrogen storage vessels. At these pressures the flows exiting the jet nozzle are categorized as underexpanded jets in which the flow is choked at the jet exit. Additionally, the gas behavior departs from that of an ideal-gas and alternate formulations for non-ideal gas must be introduced. Visible flame emission was recorded on video to evaluate flame length and structure. Radiometer measurements allowed determination of the radiant heat flux characteristics. The flame length results show that lower-pressure engineering correlations, based on the Froude number and a non-dimensional flame length, also apply to releases up to 413 bar (6000 psi). Similarly, radiative heat flux characteristics of these high-pressure jet flames obey scaling laws developed for low-pressure, smaller-scale flames and a wide variety of fuels. The results verify that such correlations can be used to a priori predict dimensional characteristics and radiative heat flux from a wide variety of hydrogen-jet flames resulting from accidental releases. (author)

  11. Influence of gas mixture and primary ionization on the performance of limit streamer mode tubes

    International Nuclear Information System (INIS)

    An Jigang; Anderson, K.J.; Merritt, F.S.; Oreglia, M.; Pilcher, J.E.; Possoz, A.; Schappert, W.; Chicago Univ., IL

    1988-01-01

    We report a study of the dependence of limited streamer mode operation on gas composition. Results are given for the plateau onset voltage, plateau length, charge versus voltage, charge spectra and pulse width for various fractions of (Ar, CO 2 , pentane) and (Ar, isobutane). In addition, a series of argon-free strong quenching gas mixtures has been studied which have very attractive characteristics. Chamber lifetime tests for these are also reported. As part of a study of the nature of the limited streamer mode mechanism, the response to X-rays and minimum ionizing particles are compared and differences noted. The character of the primary ionization is found to have a clear effect on the chamber response even in the streamer region. (orig.)

  12. Development of a primary diffusion source of organic vapors for gas analyzer calibration

    Science.gov (United States)

    Lecuna, M.; Demichelis, A.; Sassi, G.; Sassi, M. P.

    2018-03-01

    The generation of reference mixtures of volatile organic compounds (VOCs) at trace levels (10 ppt-10 ppb) is a challenge for both environmental and clinical measurements. The calibration of gas analyzers for trace VOC measurements requires a stable and accurate source of the compound of interest. The dynamic preparation of gas mixtures by diffusion is a suitable method for fulfilling these requirements. The estimation of the uncertainty of the molar fraction of the VOC in the mixture is a key step in the metrological characterization of a dynamic generator. The performance of a dynamic generator was monitored over a wide range of operating conditions. The generation system was simulated by a model developed with computational fluid dynamics and validated against experimental data. The vapor pressure of the VOC was found to be one of the main contributors to the uncertainty of the diffusion rate and its influence at 10-70 kPa was analyzed and discussed. The air buoyancy effect and perturbations due to the weighing duration were studied. The gas carrier flow rate and the amount of liquid in the vial were found to play a role in limiting the diffusion rate. The results of sensitivity analyses were reported through an uncertainty budget for the diffusion rate. The roles of each influence quantity were discussed. A set of criteria to minimize the uncertainty contribution to the primary diffusion source (25 µg min-1) were estimated: carrier gas flow rate higher than 37.7 sml min-1, a maximum VOC liquid mass decrease in the vial of 4.8 g, a minimum residual mass of 1 g and vial weighing times of 1-3 min. With this procedure a limit uncertainty of 0.5% in the diffusion rate can be obtained for VOC mixtures at trace levels (10 ppt-10 ppb), making the developed diffusion vials a primary diffusion source with potential to become a new reference material for trace VOC analysis.

  13. The influence of gas phase velocity fluctuations on primary atomization and droplet deformation

    Science.gov (United States)

    Kourmatzis, A.; Masri, A. R.

    2014-02-01

    The effects of grid-generated velocity fluctuations on the primary atomization and subsequent droplet deformation of a range of laminar liquid jets are examined using microscopic high-speed backlit imaging of the break-up zone and laser Doppler anemometry of the gas phase separately. This is done for fixed gas mean flow conditions in a miniature wind tunnel experiment utilizing a selection of fuels, turbulence-generating grids and two syringe sizes. The constant mean flow allows for an isolated study of velocity fluctuation effects on primary atomization in a close approximation to homogeneous decaying turbulence. The qualitative morphology of the primary break-up region is examined over a range of turbulence intensities, and spectral analysis is performed in order to ascertain the break-up frequency which, for a case of no grid, compares well with the existing literature. The addition of velocity fluctuations tends to randomize the break-up process. Slightly downstream of the break-up region, image processing is conducted in order to extract a number of metrics, which do not depend on droplet sphericity, and these include droplet aspect ratio and orientation, the latter quantity being somewhat unconventional in spray characterization. A turbulent Weber number which takes into account gas phase fluctuations is utilized to characterize the resulting droplet shapes, in addition to a mean Weber number . Above a a clear positive relationship exists between the mean aspect ratio of droplets and the turbulent Weber number where is varied by altering all relevant variables including the velocity root mean square, the initial droplet diameter, the surface tension and the density.

  14. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  15. Preliminary study of radionuclide corrosion products in primary cooling water at RSG-GAS

    International Nuclear Information System (INIS)

    Lestari, D.E.; Pudjojanto, M.S.; Subiharto; Budi, S.

    1998-01-01

    Analysis of radionuclides emitting gamma rays at the primary cooling water at RSG-GAS has been carried out. The water coolant samples was performed using a low level background gamma spectrometer unit, including of high resolution of gamma detector HP-Ge Tennelec and Multichannel Analyzer (MCA) ADCAM 100 ORTEC. The result indicated Na-24 and Mn-56 radionuclides that may be as corrosion product and should studied deeply in the future. The expected activity concentration radionuclide for Mn-56 is lower than those written in the Safety Analysis Report (SAR), while for Na-24 is in agreement

  16. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  17. Dissolved stable noble gas measurements from primary water of Paks NPP

    International Nuclear Information System (INIS)

    Palcsu, L.; Molnar, M.; Szanto, Zs.; Svingor, E.; Futo, I.; Pinter, T.

    2001-01-01

    A sampling and measuring method of noble gases from the primary water circuit of a VVER type NPP was developed to provide relevant information about the kilter of heating rods and detailed additional information about some working parameters. The helium concentrations and 3 He/ 4 He ratios was used to estimate the content of tritium and alpha emitting isotopes of the primary water. By argon content measurements the air penetration and the required hydrazine amount for the oxygen absorption could be estimated with high accuracy. Continuous monitoring of the concentration and isotope ratios of Xe and Kr in the dissolved gas is proved to be a good tool for high sensitivity detection of small leakage of fuel elements. In case of block-3 xenon surplus was detected. The results indicate possible leakage of fuel rods.(author)

  18. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  19. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  20. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry

    International Nuclear Information System (INIS)

    Sapozhnikova, Yelena; Lehotay, Steven J.

    2013-01-01

    Highlights: ► A method for analysis of POPs and novel flame retardants in catfish was developed. ► The method is based on a QuEChERS extraction, d-SPE clean-up and low pressure GC/MS–MS. ► The method validation demonstrated good recoveries and low detection limits. ► The method was successfully applied for analysis of catfish samples from the market. - Abstract: A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated using fast low pressure gas chromatography triple quadrupole tandem mass spectrometry (LP-GC/MS–MS). The method was based on a QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction with acetonitrile and dispersive solid-phase extraction (d-SPE) clean-up with zirconium-based sorbent prior to LP-GC/MS–MS analysis. The developed method was evaluated at 4 spiking levels and further validated by analysis of NIST Standard Reference Materials (SRMs) 1974B and 1947. Sample preparation for a batch of 10 homogenized samples took about 1 h/analyst, and LP-GC/MS–MS analysis provided fast separation of multiple analytes within 9 min achieving high throughput. With the use of isotopically labeled internal standards, recoveries of all but one analyte were between 70 and 120% with relative standard deviations less than 20% (n = 5). The measured values for both SRMs agreed with certified/reference values (72–119% accuracy) for the majority of analytes. The detection limits were 0.1–0.5 ng g −1 for PCBs, 0.5–10 ng g −1 for PBDEs, 0.5–5 ng g −1 for select pesticides and PAHs and 1–10 ng g −1 for flame retardants. The developed method was successfully applied for analysis of catfish samples from the market.

  1. Experimental investigation of aerodynamics, combustion, and emissions characteristics within the primary zone of a gas turbine combustor

    Science.gov (United States)

    Elkady, Ahmed M.

    2006-04-01

    The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.

  2. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-01-01

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6  s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  3. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  4. On the formation and early evolution of soot in turbulent nonpremixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-01-01

    A Direct Numerical Simulation (DNS) of soot formation in an n-heptane/air turbulent nonpremixed flame has been performed to investigate unsteady strain effects on soot growth and transport. For the first time in a DNS of turbulent combustion, Polycyclic Aromatic Hydrocarbons (PAH) are included via a validated, reduced chemical mechanism. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments is used [M.E. Mueller, G. Blanquart, H. Pitsch, Combust. Flame 156 (2009) 1143-1155], which allows for an accurate state-of-the-art description of soot number density, volume fraction, and morphology of the aggregates. In agreement with previous experimental studies in laminar flames, Damköhler number effects are found to be significant for PAH. Soot nucleation and growth from PAH are locally inhibited by high scalar dissipation rate, thus providing a possible explanation for the experimentally observed reduction of soot yields at increasing levels of mixing in turbulent sooting flames. Furthermore, our data indicate that soot growth models that rely on smaller hydrocarbon species such as acetylene as a proxy for large PAH molecules ignore or misrepresent the effects of turbulent mixing and hydrodynamic strain on soot formation due to differences in the species Damköhler number. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects between soot and the gas-phase. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow primarily by condensation of PAH on the particle surface. In contrast to previous DNS studies based on simplified soot and chemistry models, surface reactions are found to contribute barely to the growth of soot, for nucleation and condensation processes occurring in the fuel stream are responsible for the most of soot mass generation. Furthermore, the morphology of the soot aggregates is

  5. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  6. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  7. Flame kernel generation and propagation in turbulent partially premixed hydrocarbon jet

    KAUST Repository

    Mansour, Mohy S.

    2014-04-23

    Flame development, propagation, stability, combustion efficiency, pollution formation, and overall system efficiency are affected by the early stage of flame generation defined as flame kernel. Studying the effects of turbulence and chemistry on the flame kernel propagation is the main aim of this work for natural gas (NG) and liquid petroleum gas (LPG). In addition the minimum ignition laser energy (MILE) has been investigated for both fuels. Moreover, the flame stability maps for both fuels are also investigated and analyzed. The flame kernels are generated using Nd:YAG pulsed laser and propagated in a partially premixed turbulent jet. The flow field is measured using 2-D PIV technique. Five cases have been selected for each fuel covering different values of Reynolds number within a range of 6100-14400, at a mean equivalence ratio of 2 and a certain level of partial premixing. The MILE increases by increasing the equivalence ratio. Near stoichiometric the energy density is independent on the jet velocity while in rich conditions it increases by increasing the jet velocity. The stability curves show four distinct regions as lifted, attached, blowout, and a fourth region either an attached flame if ignition occurs near the nozzle or lifted if ignition occurs downstream. LPG flames are more stable than NG flames. This is consistent with the higher values of the laminar flame speed of LPG. The flame kernel propagation speed is affected by both turbulence and chemistry. However, at low turbulence level chemistry effects are more pronounced while at high turbulence level the turbulence becomes dominant. LPG flame kernels propagate faster than those for NG flame. In addition, flame kernel extinguished faster in LPG fuel as compared to NG fuel. The propagation speed is likely to be consistent with the local mean equivalence ratio and its corresponding laminar flame speed. Copyright © Taylor & Francis Group, LLC.

  8. Structural aspects of coaxial oxy-fuel flames

    Science.gov (United States)

    Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.

    Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.

  9. Lab-In-Syringe automation of stirring-assisted room-temperature headspace extraction coupled online to gas chromatography with flame ionization detection for determination of benzene, toluene, ethylbenzene, and xylenes in surface waters.

    Science.gov (United States)

    Horstkotte, Burkhard; Lopez de Los Mozos Atochero, Natalia; Solich, Petr

    2018-06-22

    Online coupling of Lab-In-Syringe automated headspace extraction to gas chromatography has been studied. The developed methodology was successfully applied to surface water analysis using benzene, toluene, ethylbenzene, and xylenes as model analytes. The extraction system consisted of an automatic syringe pump with a 5 mL syringe into which all solutions and air for headspace formation were aspirated. The syringe piston featured a longitudinal channel, which allowed connecting the syringe void directly to a gas chromatograph with flame ionization detector via a transfer capillary. Gas injection was achieved via opening a computer-controlled pinch valve and compressing the headspace, upon which separation was initialized. Extractions were performed at room temperature; yet sensitivity comparable to previous work was obtained by high headspace to sample ratio V HS /V Sample of 1.6:1 and injection of about 77% of the headspace. Assistance by in-syringe magnetic stirring yielded an about threefold increase in extraction efficiency. Interferences were compensated by using chlorobenzene as an internal standard. Syringe cleaning and extraction lasting over 10 min was carried out in parallel to the chromatographic run enabling a time of analysis of <19 min. Excellent peak area repeatabilities with RSD of <4% when omitting and <2% RSD when using internal standard corrections on 100 μg L -1 level were achieved. An average recovery of 97.7% and limit of detection of 1-2 μg L -1 were obtained in analyses of surface water. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Analysis Of Primary Coolant Suction Side Pressure In The Delay Chamber Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto

    2000-01-01

    Delay chamber is a tank to delay flow that located in the primary cooling suction side of RSG-GAS. A void occurred when operation reactor caused by too high the delta P at inlet suction pump. The condition may be avoided by using one line mode of the cooling flow. The analysis show that void volume in the delay chamber is occurred because the coolant negative pressure lowers the saturation pressure should be avoided though decreasing the delta P until about 0.1 bar at about 45 exp 0 C. Solution suggested are to use bypass flow from the spent fuel to the delay chamber. Coolant temperature can be also decreased by decreasing the power level of the reactor as well as improving the heat exchanger and cooling tower performances

  11. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  12. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis

    Science.gov (United States)

    Lewan, Michael; Kotarba, M.J.

    2014-01-01

    Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.

  13. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  14. Investigating the effects of critical phenomena in premixed methane-oxygen flames at cryogenic conditions

    Science.gov (United States)

    Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan

    2017-11-01

    Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.

  15. THE DETERMINATION OF NON-PESTICIDAL AND PESTICIDAL ORGANOTIN COMPOUNDS IN WATER BY GAS CHROMATOGRAPHY WITH [PULSED] FLAME PHOTOMETRIC DETECTION (GS/PFPD): THE EFFECTS OF "MASS" DISCRIMINATION

    Science.gov (United States)

    Capillary gas chromatography with GC/PFPD was used in the development of analytical methodology for determining both non-pesticidal and pesticidal organotin compounds in drinking water and other aqueous matrices. The method involves aqueous ethylation of organotin analytes with ...

  16. Humidified micro gas turbines for domestic users: An economic and primary energy savings analysis

    International Nuclear Information System (INIS)

    Montero Carrero, Marina; De Paepe, Ward; Bram, Svend; Musin, Frédéric; Parente, Alessandro; Contino, Francesco

    2016-01-01

    Micro Gas Turbines (mGTs) offer valuable advantages for small-scale Combined Heat and Power (CHP) production compared to reciprocating Internal Combustion Engines (ICEs): lower maintenance costs per kWh_e, cleaner exhaust, lower vibration levels and concentration of the residual heat in a single source (the exhaust gases). Nevertheless, mGTs have lower electrical efficiencies, fact that has prevented them from penetrating in the CHP market. Hot liquid water injection—by means of a saturation tower within the micro Humid Air Turbine (mHAT) cycle—allows both improving the flexibility of heat production and the electrical efficiency of mGTs; two qualities that if enhanced would increase the economic feasibility of the technology. Although the advantages of mHAT technology have been proven from a thermodynamic point of view, its economic performance has not yet been fully investigated. This paper presents a comparison of the economic profitability and the primary energy savings of an mGT, an ICE and an mHAT unit operating in real network conditions. Our aim is to investigate whether the increase in flexibility and electrical efficiency, achieved when transforming an mGT into an mHAT, allows this technology to economically outperform ICEs. Results show that the three units are viable in scenarios with high electricity and low natural gas prices. For the cases in which investment is feasible, the revenues with mHAT are the highest: thanks to their flexibility in heat generation, mHAT units are able to run all year long. On the other hand, the greatest primary energy savings are achieved with ICE units—which have the highest overall efficiencies—while mHAT savings are substantially lower. - Highlights: • We analyse the economics and primary energy savings of an ICE, an mGT and an mHAT. • We consider hourly heat and electricity demand profiles and 25 price scenarios. • Our analysis is carried out for two domestic users with distinctive demand profiles. • If

  17. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures.

    Science.gov (United States)

    Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P

    2018-04-01

    Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of

  18. Homogeneous liquid-liquid extraction (HoLLE) via flotation combined with gas chromatography-flame ionization detection as a very simple, rapid and sensitive method for the determination of fenitrothion in water samples.

    Science.gov (United States)

    Mashayekhi, Hossein Ali

    2013-01-01

    Homogeneous liquid-liquid extraction via flotation assistance (HoLLE-FA) and gas chromatography-flame ionization detection (GC-FID) was presented for the extraction and determination of fenitrothion in water samples. In this work, a rapid, simple and efficient HoLLE-FA method was developed based on applying low-density organic solvents without employing centrifugation. A special extraction cell was designed to facilitate the collection of low-density solvent extraction in the determination of fenitrothion in water samples. The water sample solution was added into an extraction cell that contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Under the optimum conditions, the method performance was studied in terms of the linear dynamic range (LDR from 1.0 up to 100 μg L⁻¹), linearity (r² > 0.998), and precision (repeatability extraction and determination of fenitrothion in three different water samples.

  19. The analysis of semi-volatile and non-volatile petroleum hydrocarbons in a soil/sediment matrix by capillary column gas chromatography/flame ionization detection (GC/FID)

    International Nuclear Information System (INIS)

    George, J.E. III; Thoma, J.J.; Hastings, M.

    1990-01-01

    A comprehensive analysis for semi-volatile and non-volatile fractions of petroleum hydrocarbons can be achieved by a solvent extraction/concentration techniques that will effectively extract these high molecular weight fractions from a soil matrix. The prepared extract is then injected directly into a gas chromatograph equipped with a capillary column and flame ionization detector. This technique applies to the following types of commercially available petroleum hydrocarbons: Diesel Nos. 2,4,5, and 6, fuel oils and several grades of lubrication oil. The identification of a particular petroleum hydrocarbon is determined visually by comparison of the samples with known hydrocarbon standards. Accurate quantitation of the chromatograms is possible by using peak area summation and the presence of an internal standard. The practical quantitation limit for the method is 10 mg/Kg for most fuel types. This paper presents a method for determining the concentration of these fuel types in soil. Data will be presented only on 10W40 lubrication oil in terms of method validation, calibration, percent recovery, and method detection limits. A discussion of the quatitation techniques used will also be included

  20. Applicability of Gas Chromatography (GC) Coupled to Triple-Quadrupole (QqQ) Tandem Mass Spectrometry (MS/MS) for Polybrominated Diphenyl Ether (PBDE) and Emerging Brominated Flame Retardant (BFR) Determinations in Functional Foods Enriched in Omega-3.

    Science.gov (United States)

    García-Bermejo, Ángel; Mohr, Susana; Herrero, Laura; González, María-José; Gómara, Belén

    2016-09-28

    This paper reports on the optimization, characterization, and applicability of gas chromatography coupled to triple-quadrupole tandem mass spectrometry (GC-QqQ(MS/MS)) for the determination of 14 polybrominated diphenylethers (PBDEs) and 2 emerging brominated flame retardants, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenylethane (DBDPE), in functional food samples. The method showed satisfactory precision and linearity with instrumental limits of detection (iLODs) ranging from 0.12 to 7.1 pg, for tri- to octa-BDEs and BTBPE, and equal to 51 and 20 pg for BDE-209 and DBDPE, respectively. The highest ΣBFR concentrations were found in fish oil supplements (924 pg/g fresh weight, fw), followed by biscuits (90 pg/g fw), vegetable oil supplements (46 pg/g fw), chicken eggs (45 pg/g fw), cow's milk (7.7 pg/g fw), and soy products (1.6 pg/g fw). BDE-47, BDE-99, and DBDPE were the most abundant compounds. Foodstuffs enriched with omega-3 presented concentrations similar to or even lower than those of conventional foods commercialized in Spain since 2000.

  1. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  2. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat

    2010-03-17

    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  3. Gas chromatography-flame ionization determination of benzaldehyde in non-steroidal anti-inflammatory drug injectable formulations using new ultrasound-assisted dispersive liquid-liquid micro extraction

    International Nuclear Information System (INIS)

    Mashayekhi, H.A.; Pourshamsian, K.

    2012-01-01

    Summary: In this study, simple and efficient ultrasound-assisted dispersive liquid-liquid micro extraction combined with gas chromatography (GC) was developed for the preconcentration and determination of benzaldehyde in injectable formulations of the non-steroidal anti-inflammatory drugs, diclofenac, Vitamin B-complex and Voltaren injection solutions. Fourteen microliters of toluene was injected slowly into 10 mL home-designed centrifuge glass vial containing an aqueous sample without salt addition that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 macro L of separated toluene was injected into a gas chromatographic system equipped with a flame ionization detector (GC-FID) for analysis. Several factors influencing the extraction efficiency as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation time were investigated and optimized. Using optimum extraction conditions a detection limit of 0.3 macro g L/sup -1/ and a good linearity in a calibration range of 2.0-1000 macro g L/sup -1/ were achieved for analyte. This proposed method was successfully applied to the analysis of benzaldehyde in three injection formulations and relative standard deviation (RSD) of analysis (n=3), before spiking with standard benzaldehyde were 3.3, 2.0 and 1.3% for Na-diclofenac, vitamin B-complex and voltaren, respectively and after spiking of standard benzaldehyde (0.3 mg L/sup -1/), the RSD were 6.5, 3.6 and 2.8% for Na-diclofenac, vitamin B-complex and voltaren, respectively. (author)

  4. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  5. Analysis of industrial flame characteristics and constancy study using image processing technique

    Directory of Open Access Journals (Sweden)

    Bibhuti Bhusan Samantaray

    2015-12-01

    Full Text Available The study of characterizing and featuring different kinds of flames has become more important than ever in order to increase combustion efficiency and decrease particulate emissions, especially since the study of industrial flames requires more attention. In the present work, different kinds of combustion flames have been characterized by means of digital image processing (DIP in a 500 kW PF pilot swirl burner. A natural gas flame and a set of pulverized fuel flames of coal and biomass have been comparatively analyzed under co-firing conditions. Through DIP, statistical and spectral features of the flame have been extracted and graphically represented as two-dimensional distributions covering the root flame area. Their study and comparison leads to different conclusions about the flame behavior and the effect of co-firing coal and biomass in pulverized fuel flames. Higher oscillation levels in co-firing flames versus coal flames and variations in radiation regimen were noticed when different biomasses are blended with coal and brought under attention.

  6. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  7. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  8. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam

    2010-01-04

    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  9. Direct Flame Impingement

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  10. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.M.A.; Schuur, B.; Haan, de A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  11. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis or primary amines in water

    NARCIS (Netherlands)

    Krzyzaniak, A.; Weggemans, W.; Schuur, Boelo; de Haan, A.B.

    2011-01-01

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct

  12. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik

    concentric low-NOx configuration. The measurements focus on a single 30 MWth flame and include: Quantification of the gas temperature, the gas phase composition: O2, CO, CO2, H2O, and light hydrocarbons by intrusive probe measurements. It also includes both seeded and unseeded 2D laser doppler anemometry...... of a full-scale burner and provide a comprehensive data set that quantifies key parameters: Gas phase temperature, composition, and flow field required in order to evaluate the performance of CFD simulations of complex combustion systems...

  13. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...... hardware by direct deposition of catalysts on process equipment • Modifications of the substrate surfaces to obtain good adhesion during flame-coating • Formation of membrane layers by gas-phase deposition of nano-particles • Catalyst deposition in micro-reactors for rapid catalyst screening...

  14. the use of castor oil as a flame retardant in polyurethane foam

    African Journals Online (AJOL)

    Dr Abdusalam

    Flame retardant help to suppress the combustion process depending on the polymer and the fire safety test. (Desch, 1973) . Flame retarding agent either cooled, the burning material below its ignition point or exclude air by forming a blanket of inert gas. It also interferes with one or several stages of the combustion process.

  15. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  16. Spatial distributions of H, CN, and C2 in a diamond growing oxyacetylene flame

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Meulen, ter J.J.

    1998-01-01

    Two-dimensional laser-induced fluorescence (2D-LIF) measurements are applied to the chemical vapor deposition (CVD) of diamond by an oxyacetylene flame to visualize the distributions of atomic hydrogen, C2, and CN in the gas phase during diamond growth. Experiments are carried out in laminar flames

  17. A simplified hydrodynamic model of hydrogen flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.; Ratzel, A.

    1983-01-01

    A hydrodynamic model for hydrogen flame propagation in reactor geometries is presented. This model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are introduced as a correction to the burn velocity (which reflects a modification of planar flame surface to a distorted surface) using experimentally measured pressure-rise time data for hydrogen/air deflagrations in cylindrical vessels. This semianalytical model of flame propagation reduces to a set of ordinary differential equations which describes the temporal variations of vessel pressure, burned volume and gas entropy. The thermodynamic state of the burned gas immediately following the flame is determined using an isobaric Hugoniot relationship. At other locations the burned gas thermodynamic states are determined using a Lagrangian particle tracking method. Results of a computer code using the method are presented

  18. Solution gas flaring and venting at Alberta primary crude bitumen operations

    Energy Technology Data Exchange (ETDEWEB)

    Ruff, C. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2005-11-01

    The Alberta Energy and Utilities Board is mandated by the Government of Alberta to ensure fair, responsible development and delivery of energy resources and utilities services in Alberta while maintaining the best public interest. One of the agencies' priorities is the reduction of solution gas flaring and venting. The performance of solution gas flaring and venting in Alberta and best practices respecting solution gas conservation are discussed. Data was presented on solution gas production, solution gas conserved, and solution gas conservation efficiency. The paper described best practices solutions such as increased gas to oil (GOR) test frequency; predetermination of economic gas conservation; collaboration with county gas utilities; and utilization of portable and scalable gas compression. The paper also presents a discussion of the Clean Air Strategic Alliance (CASA), a non-profit multistakeholder that recommended enhancements to Guide 60. Requirements discussed include the requirement to conserve solution gas at certain sites exceeding established flare and vent volumes, gas conservation prebuild requirements, and enhanced economic evaluation process. 5 figs.

  19. Investigation of flame structure in plasma-assisted turbulent premixed methane-air flame

    Science.gov (United States)

    Hualei, ZHANG; Liming, HE; Jinlu, YU; Wentao, QI; Gaocheng, CHEN

    2018-02-01

    The mechanism of plasma-assisted combustion at increasing discharge voltage is investigated in detail at two distinctive system schemes (pretreatment of reactants and direct in situ discharge). OH-planar laser-induced fluorescence (PLIF) technique is used to diagnose the turbulent structure methane-air flame, and the experimental apparatus consists of dump burner, plasma-generating system, gas supply system and OH-PLIF system. Results have shown that the effect of pretreatment of reactants on flame can be categorized into three regimes: regime I for voltage lower than 6.6 kV; regime II for voltage between 6.6 and 11.1 kV; and regime III for voltage between 11.1 and 12.5 kV. In regime I, aerodynamic effect and slower oxidation of higher hydrocarbons generated around the inner electrode tip plays a dominate role, while in regime III, the temperature rising effect will probably superimpose on the chemical effect and amplify it. For wire-cylinder dielectric barrier discharge reactor with spatially uneven electric field, the amount of radicals and hydrocarbons are decreased monotonically in radial direction which affects the flame shape. With regard to in situ plasma discharge in flames, the discharge pattern changes from streamer type to glow type. Compared with the case of reactants pretreatment, the flame propagates further in the upstream direction. In the discharge region, the OH intensity is highest for in situ plasma assisted combustion, indicating that the plasma energy is coupled into flame reaction zone.

  20. Experimental study of biogas combustion using a gas turbine configuration

    Energy Technology Data Exchange (ETDEWEB)

    Lafay, Y.; Taupin, B.; Martins, G.; Cabot, G.; Renou, B.; Boukhalfa, A. [CNRS UMR 6614, Universite et INSA de ROUEN, Site universitaire du Madrillet, Saint Etienne du Rouvray (France)

    2007-08-15

    The aim of the present work is to compare stability combustion domains, flame structures and dynamics between CH{sub 4}/air flames and a biogas/air flames (issued from waste methanisation) in a lean gas turbine premixed combustion conditions. Velocity profiles are obtained by Laser Doppler Anemometry measurements. CH* chemiluminescence measurements and temporal acquisition of chamber pressure are performed in order to describe flame structure and instabilities. Changes in flame structure and dynamics when fuel composition is varying are found to strongly depend on laminar flame speed. No clear correlation between the unstable flame and the reaction zone penetration in the corner recirculation can be found. (orig.)

  1. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons

    KAUST Repository

    Selvaraj, Prabhu

    2015-11-05

    An updated reduced gas-phase kinetic mechanism was developed and integrated with aerosol models to predict soot formation characteristics in ethylene nonpremixed and premixed flames. A primary objective is to investigate the sensitivity of the soot formation to various chemical pathways for large polycyclic aromatic hydrocarbons (PAH). The gas-phase chemical mechanism adopted the KAUST-Aramco PAH Mech 1.0, which utilized the AramcoMech 1.3 for gas-phase reactions validated for up to C2 fuels. In addition, PAH species up to coronene (C24H12 or A7) were included to describe the detailed formation pathways of soot precursors. In this study, the detailed chemical mechanism was reduced from 397 to 99 species using directed relation graph with expert knowledge (DRG-X) and sensitivity analysis. The method of moments with interpolative closure (MOMIC) was employed for the soot aerosol model. Counterflow nonpremixed flames at low strain rate sooting conditions were considered, for which the sensitivity of soot formation characteristics to different nucleation pathways were investigated. Premixed flame experiment data at different equivalence ratios were also used for validation. The findings show that higher PAH concentrations result in a higher soot nucleation rate, and that the total soot volume and average size of the particles are predicted in good agreement with experimental results. Subsequently, the effects of different pathways, with respect to pyrene- or coronene-based nucleation models, on the net soot formation rate were analyzed. It was found that the nucleation processes (i.e., soot inception) are sensitive to the choice of PAH precursors, and consideration of higher PAH species beyond pyrene is critical for accurate prediction of the overall soot formation.

  2. Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Siažik Ján

    2017-01-01

    Full Text Available Hydrates of the natural gas in the lithosphere are a very important potential source of energy that will be probably used in the coming decades. It seems as promising accumulation of the standard gas to form hydrates synthetically, stored, and disengage him when is peak demand. Storage of natural gas or biomethane in hydrates is advantageous not only in terms of storage capacity, but also from the aspect of safety storage hydrates. The gas stored in such form may occurs at relatively high temperatures and low pressures in comparison to other Technologies of gas- storage. In one cubic meter of hydrate can be stored up to 150 m3 of natural gas, depending on the conditions of thermobaric hydrate generation. This article discusses the design of the facility for the continuous generation of hydrates of natural gas measurement methodology and optimal conditions for their generation.

  3. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study.

    Science.gov (United States)

    Laakso, Päivi H

    2014-01-01

    This collaborative study with nine participating laboratories was conducted to determine the total plant sterol and/or plant stanol contents in phytosterol fortified foods with a gas chromatographic method. Four practice and 12 test samples representing mainly commercially available foodstuffs were analyzed as known replicates. Twelve samples were enriched with phytosterols, whereas four samples contained only natural contents of phytosterols. The analytical procedure consisted of two alternative approaches: hot saponification method, and acid hydrolysis treatment prior to hot saponification. As a result, sterol/stanol compositions and contents in the samples were measured. The amounts of total plant sterols and total plant stanols varying from 0.005 to 8.04 g/100 g product were statistically evaluated after outliers were eliminated. The repeatability RSD (RSDr) varied from 1.34 to 17.13%. The reproducibility RSD (RSDR) ranged from 3.03 to 17.70%, with HorRat values ranging from 0.8 to 2.1. When only phytosterol enriched food test samples are considered, the RSDr ranged from 1.48 to 6.13%, the RSD, ranged from 3.03 to 7.74%, and HorRat values ranged from 0.8 to 2.1. Based on the results of this collaborative study, the study coordinator concludes the method is fit for its purpose.

  4. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  5. An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon

    Science.gov (United States)

    Tran, L.S.; Glaude, P.A.; Battin-Leclerc, F.

    2013-01-01

    The structures of three laminar premixed stoichiometric flames at low pressure (6.7 kPa): a pure methane flame, a pure ethanol flame and a methane flame doped by 30% of ethanol, have been investigated and compared. The results consist of concentration profiles of methane, ethanol, O2, Ar, CO, CO2, H2O, H2, C2H6, C2H4, C2H2, C3H8, C3H6, p-C3H4, a-C3H4, CH2O, CH3HCO, measured as a function of the height above the burner by probe sampling followed by on-line gas chromatography analyses. Flame temperature profiles have been also obtained using a PtRh (6%)-PtRh (30%) type B thermocouple. The similarities and differences between the three flames were analyzed. The results show that, in these three flames, the concentration of the C2 intermediates is much larger than that of the C3 species. In general, mole fraction of all intermediate species in the pure ethanol flame is the largest, followed by the doped flame, and finally the pure methane flame. PMID:24092946

  6. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  7. Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Rabe

    2017-04-01

    Full Text Available Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respective concentration. Thermogravimetric analysis was used in combination with infrared spectroscopy of the evolved gas to determine the pyrolysis behavior, residue formation and the release of phosphorus species. Forced flaming tests in the cone calorimeter provided insight into burning behavior and macroscopic residue effects. The results were put into relation to the phosphorus content to reveal correlations between phosphorus concentration in the gas phase and flame inhibition performance, as well as phosphorus concentration in the residue and condensed phase activity. Total heat evolved (fire load and peak heat release rate were calculated based on changes in the effective heat of combustion and residue, and then compared with the measured values to address the modes of action of the flame retardants quantitatively. The quantification of flame inhibition, charring, and the protective layer effect measure the non-linear flame retardancy effects as functions of the phosphorus concentration. Overall, this screening approach using easily preparable polymer systems provides great insight into the effect of phosphorus in different flame retarded polymers, with regard to polymer structure, phosphorus concentration, and phosphorus species.

  8. A study of transient flow turbulence generation during flame/wall interactions in explosions

    Science.gov (United States)

    Hargrave, G. K.; Jarvis, S.; Williams, T. C.

    2002-07-01

    Experimental data are presented for the turbulent velocity field generated during flame/solid wall interactions in explosions. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. In congested process plant, any flame propagating through an accidental release of flammable mixture will encounter obstructions in the form of walls, pipe-work or storage vessels. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake/recirculation, whereby the flame can be wrapped in on itself, increasing the surface area available for combustion. Particle image velocimetry (PIV) was used to characterize the turbulent flow field in the wake of the obstacles placed in the path of propagating flames. This allowed the quantification of the interaction of the propagating flame and the generated turbulent flow field. Due to the accelerating nature of the explosion flow field, the wake flows develop `transient' turbulent fields and PIV provided data to define the spatial and temporal variation of the velocity field ahead of the propagating flame, providing an understanding of the direct interaction between flow and flame.

  9. Experimental and scale up study of the flame spread over the PMMA sheets

    Directory of Open Access Journals (Sweden)

    Mamourian Mojtaba

    2009-01-01

    Full Text Available To explore the flame spread mechanisms over the solid fuel sheets, downward flame spread over vertical polymethylmethacrylate sheets with thicknesses from 1.75 to 5.75 mm have been examined in the quiescent environment. The dependence of the flame spread rate on the thickness of sheets is obtained by one-dimensional heat transfer model. An equation for the flame spread rate based on the thermal properties and the thickness of the sheet by scale up method is derived from this model. During combustion, temperature within the gas and solid phases is measured by a fine thermocouple. The pyrolysis temperature, the length of the pyrolysis zone, the length of the preheating zone, and the flame temperature are determined from the experimental data. Mathematical analysis has yielded realistic results. This model provides a useful formula to predict the rate of flame spread over any thin solid fuel.

  10. One-step extraction and quantitation of toxic alcohols and ethylene glycol in plasma by capillary gas chromatography (GC) with flame ionization detection (FID).

    Science.gov (United States)

    Orton, Dennis J; Boyd, Jessica M; Affleck, Darlene; Duce, Donna; Walsh, Warren; Seiden-Long, Isolde

    2016-01-01

    Clinical analysis of volatile alcohols (i.e. methanol, ethanol, isopropanol, and metabolite acetone) and ethylene glycol (EG) generally employs separate gas chromatography (GC) methods for analysis. Here, a method for combined analysis of volatile alcohols and EG is described. Volatile alcohols and EG were extracted with 2:1 (v:v) acetonitrile containing internal standards (IS) 1,2 butanediol (for EG) and n-propanol (for alcohols). Samples were analyzed on an Agilent 6890 GC FID. The method was evaluated for precision, accuracy, reproducibility, linearity, selectivity and limit of quantitation (LOQ), followed by correlation to existing GC methods using patient samples, Bio-Rad QC, and in-house prepared QC material. Inter-day precision was from 6.5-11.3% CV, and linearity was verified from down to 0.6mmol/L up to 150mmol/L for each analyte. The method showed good recovery (~100%) and the LOQ was calculated to be between 0.25 and 0.44mmol/L. Patient correlation against current GC methods showed good agreement (slopes from 1.03-1.12, and y-intercepts from 0 to 0.85mmol/L; R(2)>0.98; N=35). Carryover was negligible for volatile alcohols in the measuring range, and of the potential interferences tested, only toluene and 1,3 propanediol interfered. The method was able to resolve 2,3 butanediol, diethylene glycol, and propylene glycol in addition to the peaks quantified. Here we describe a simple procedure for simultaneous analysis of EG and volatile alcohols that comes at low cost and with a simple liquid-liquid extraction requiring no derivitization to obtain adequate sensitivity for clinical specimens. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  11. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  12. Device for extracting steam or gas from the primary coolant line leading from a reactor pressure vessel to a straight through boiler or from the top primary boiler chamber of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schatz, K.

    1982-01-01

    In such a nuclear reactor, a steam or gas cushion can form when the primary system is refilled, which can cause blocking of the natural circulation or filling of the system in the area of the hot primary coolant pipe or in the top primary boiler chamber. In order to remove such a steam or gas cushion, a ventilation pipe starting from the bend of the primary coolant line is connected to the feed pipe for introducing water into the primary system. The feed pipe is designed on the principle of the vacuum pump in the area of the opening of the ventilation pipe. There is a sub-pressure in the ventilation pipe, which makes it possible to extract the steam or gas. After mixing in the area of the opening, the steam condenses or is distributed with the gas in the primary coolant. (orig.) [de

  13. A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber

    Science.gov (United States)

    Jarvis, S.; Hargrave, G. K.

    2006-01-01

    Experimental data obtained using a new multiple-camera digital particle image velocimetry (PIV) technique are presented for the interaction between a propagating flame and the turbulent recirculating velocity field generated during flame-solid obstacle interaction. The interaction between the gas movement and the obstacle creates turbulence by vortex shedding and local wake recirculations. The presence of turbulence in a flammable gas mixture can wrinkle a flame front, increasing the flame surface area and enhancing the burning rate. To investigate propagating flame/turbulence interaction, a novel multiple-camera digital PIV technique was used to provide high spatial and temporal characterization of the phenomenon for the turbulent flow field in the wake of three sequential obstacles. The technique allowed the quantification of the local flame speed and local flow velocity. Due to the accelerating nature of the explosion flow field, the wake flows develop 'transient' turbulent fields. Multiple-camera PIV provides data to define the spatial and temporal variation of both the velocity field ahead of the propagating flame and the flame front to aid the understanding of flame-vortex interaction. Experimentally obtained values for flame displacement speed and flame stretch are presented for increasing vortex complexity.

  14. Onset of Darrieus-Landau Instability in Expanding Flames

    Science.gov (United States)

    Mohan, Shikhar; Matalon, Moshe

    2017-11-01

    The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.

  15. FLAME MONITORING IN POWER STATION BOILERS USING IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    K. Sujatha

    2012-05-01

    Full Text Available Combustion quality in power station boilers plays an important role in minimizing the flue gas emissions. In the present work various intelligent schemes to infer the flue gas emissions by monitoring the flame colour at the furnace of the boiler are proposed here. Flame image monitoring involves capturing the flame video over a period of time with the measurement of various parameters like Carbon dioxide (CO2, excess oxygen (O2, Nitrogen dioxide (NOx, Sulphur dioxide (SOx and Carbon monoxide (CO emissions plus the flame temperature at the core of the fire ball, air/fuel ratio and the combustion quality. Higher the quality of combustion less will be the flue gases at the exhaust. The flame video was captured using an infrared camera. The flame video is then split up into the frames for further analysis. The video splitter is used for progressive extraction of the flame images from the video. The images of the flame are then pre-processed to reduce noise. The conventional classification and clustering techniques include the Euclidean distance classifier (L2 norm classifier. The intelligent classifier includes the Radial Basis Function Network (RBF, Back Propagation Algorithm (BPA and parallel architecture with RBF and BPA (PRBFBPA. The results of the validation are supported with the above mentioned performance measures whose values are in the optimal range. The values of the temperatures, combustion quality, SOx, NOx, CO, CO2 concentrations, air and fuel supplied corresponding to the images were obtained thereby indicating the necessary control action taken to increase or decrease the air supply so as to ensure complete combustion. In this work, by continuously monitoring the flame images, combustion quality was inferred (complete/partial/incomplete combustion and the air/fuel ratio can be automatically varied. Moreover in the existing set-up, measurements like NOx, CO and CO2 are inferred from the samples that are collected periodically or by

  16. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-01-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  17. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  18. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    Science.gov (United States)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  19. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    Science.gov (United States)

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  20. Polyethylene flame retarded with expandable graphite and a novel intumescent additive

    CSIR Research Space (South Africa)

    Focke, WW

    2014-07-01

    Full Text Available A novel intumescent additive was synthesized by neutralizing 3,5-diaminobenzoic acid hydrochloride salt with ammonium dihydrogen phosphate. This compound, which melts at 257 C, decomposes concurrently to release carbon dioxide gas. The flame...

  1. On the theory of turbulent flame velocity

    OpenAIRE

    Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady

    2012-01-01

    The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...

  2. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    International Nuclear Information System (INIS)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R.; Mazaheri, K.

    2013-01-01

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  3. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R. [University of Kashan, Kashan (Iran, Islamic Republic of); Mazaheri, K. [University of Tarbiat Moddares, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  4. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  5. Non-polar lipids characterization of Quinoa (Chenopodium quinoa) seed by comprehensive two-dimensional gas chromatography with flame ionization/mass spectrometry detection and non-aqueous reversed-phase liquid chromatography with atmospheric pressure chemical ionization mass spectrometry detection.

    Science.gov (United States)

    Fanali, Chiara; Beccaria, Marco; Salivo, Simona; Tranchida, Peter; Tripodo, Giusy; Farnetti, Sara; Dugo, Laura; Dugo, Paola; Mondello, Luigi

    2015-07-08

    A chemical characterization of major lipid components, namely, triacylglycerols, fatty acids and the unsaponifiable fraction, in a Quinoa seed lipids sample is reported. To tackle such a task, non-aqueous reversed-phase high-performance liquid chromatography with mass spectrometry detection was employed. The latter was interfaced with atmospheric pressure chemical ionization for the analysis of triacylglycerols. The main triacylglycerols (>10%) were represented by OLP, OOL and OLL (P = palmitoyl, O = oleoyl, L = linoleoyl); the latter was present in the oil sample at the highest percentage (18.1%). Furthermore, fatty acid methyl esters were evaluated by gas chromatography with flame ionization detection. 89% of the total fatty acids was represented by unsaturated fatty acid methyl esters with the greatest percentage represented by linoleic and oleic acids accounting for approximately 48 and 28%, respectively. An extensive characterization of the unsaponifiable fraction of Quinoa seed lipids was performed for the first time, by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection. Overall, 66 compounds of the unsaponifiable fraction were tentatively identified, many constituents of which (particularly sterols) were confirmed by using gas chromatography with high-resolution time-of-flight mass spectrometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Experimental study of the stabilization process of a non-premixed flame via the destabilization analysis of the blue ring flame

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, Guillaume; Escudie, Dany [Centre de Thermique de Lyon (CETHIL) UMR 5008 CNRS-INSA-UCBL, INSA de Lyon, 20 av. A. Einstein, 69621 Villeurbanne cedex (France)

    2007-04-15

    The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)

  7. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  8. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    and matches the spatial locations of low axial velocity fluctuations. At downstream, the flame is seen to conform to the passage of large scale structure. At Uc = 10 and 15 m/s, part of the primary reaction zone is rolled up towards upstream burner nozzle, anchoring the flame to the nozzle tip. This indicates that the stabilization of these flames in the presence of the coflow is controlled by the mutual interactions between the central jet and the coflow through the recirculation zone from one side, and the degree of the inhomogeneity of the central jet mixture from the other side.

  9. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A J; Nihtinen, J J [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1998-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  10. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D. [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A.J.; Nihtinen, J.J. [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1997-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  11. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  12. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  13. Molecular characterization of primary humic-like substances in fine smoke particles by thermochemolysis-gas chromatography-mass spectrometry

    Science.gov (United States)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2018-05-01

    In this study, the molecular structures of primary humic-like substances (HULIS) in fine smoke particles emitted from the combustion of biomass materials (including rice straw, corn straw, and pine branches) and coal, and atmospheric HULIS were determined by off-line tetramethylammonium hydroxide thermochemolysis coupled with gas chromatography and mass spectrometry (TMAH-GC/MS). A total of 89 pyrolysates were identified by the thermochemolysis of primary and atmospheric HULIS. The main groups were polysaccharide derivatives, N-containing compounds, lignin derivatives, aromatic acid methyl ester, aliphatic acid methyl ester, and diterpenoid derivatives. Both the type and distribution of pyrolysates among primary HULIS were comparable to those in atmospheric HULIS. This indicates that primary HULIS from combustion processes are important contributors to atmospheric HULIS. Some distinct differences were also observed. The aromatic compounds, including lignin derivatives and aromatic acid methyl ester, were the major pyrolysates (53.0%-84.9%) in all HULIS fractions, suggesting that primary HULIS significantly contributed aromatic structures to atmospheric HULIS. In addition, primary HULIS from biomass burning (BB) contained a relatively high abundance of lignin and polysaccharide derivatives, which is consistent with the large amounts of lignin and cellulose structures contained in biomass materials. Aliphatic acid methyl ester and benzyl methyl ether were prominent pyrolysates in atmospheric HULIS. Moreover, some molecular markers of specific sources were obtained from the thermochemolysis of primary and atmospheric HULIS. For example, polysaccharide derivatives, pyridine and pyrrole derivatives, and lignin derivatives can be used as tracers of fresh HULIS emitted from BB. Diterpenoid derivatives are important markers of HULIS from pine wood combustion sources. Finally, the differences in pyrolysate types and the distributions between primary and atmospheric HULIS

  14. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  15. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    D.Y. Kiran; D.P. Mishra [Indian Institute of Technology Kanpur, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2007-07-15

    In the present study, experiments were carried out to measure the lift-off height, H{sub L}; flame length, L{sub f} and blow-off velocity for a simple LPG (liquefied petroleum gas) jet diffusion flames. It is observed that lift-off height is proportional to the fuel exit velocity, U{sub f}. A semi-empirical correlation between lift-off height and global strain rate, U{sub f}/D{sub f} is proposed. Two regimes identified either as buoyancy or momentum dominated were characterized by Froude number, Fr. For momentum dominated jet diffusion flames, L{sub f}/D{sub f} remains almost constant and therefore is independent of the Froude number. The NOx emissions, expressed in terms of emission index, EINOx is found to decrease with U{sub f}. This decreasing trend is consistent with the concept that increasing jet velocity reduces the residence time as reported in the literature. The present data is also compared with the available data of propane gas and found to be in good agreement well particularly in trend wise. Besides these data, EINOx scaling law is also reported in the present study. 20 refs., 8 figs.

  16. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  17. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    International Nuclear Information System (INIS)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il

    2009-01-01

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame

  18. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il [Chungang University, Seoul (Korea, Republic of)

    2009-04-15

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

  19. Experimental and numerical study on premixed hydrogen/air flame propagation in a horizontal rectangular closed duct

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Huahua; Wang, Qingsong; He, Xuechao; Sun, Jinhua; Yao, Liyin [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China)

    2010-02-15

    Hydrogen is a promising energy in the future, and it is desirable to characterize the combustion behavior of its blends with air. The premixed hydrogen/air flame microstructure and propagation in a horizontal rectangular closed duct were recorded using high-speed video and Schlieren device. Numerical simulation was also performed on Fluent CFD code to compare with the experimental result. A tulip flame is formed during the flame propagating, and then the tulip flame formation mechanism was proposed based on the analysis. The induced reverse flow and vortex motion were observed both in experiment and simulation. The interactions among the flame, reverse flow and vortices in the burned gas change the flame shape and ultimately it develops into a tulip flame. During the formation of the tulip flame, the tulip cusp slows down and stops moving after its slightly forward moving, and then, it starts to move backward and keeps on a longer time, after that, it moves forward again. The structure of the tulip flame is becoming less stable with its length decreasing in flame propagation direction. The flame thickness increases gradually which is due to turbulence combustion. (author)

  20. Gas-Flame Brazing of Metals

    National Research Council Canada - National Science Library

    Asinovskaya, G

    1964-01-01

    ...), with subsequent crystallization of the latter, is called brazing or soldering; according to the Webster definition, brazing properly applies only to high- temperature soldering, soldering both to high and low-temperature work...

  1. FIELD TEST OF THE FLAME QUALITY INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion

  2. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    Science.gov (United States)

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  3. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  4. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    Science.gov (United States)

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The effect of CO{sub 2} dissolved in a diesel fuel on the jet flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jin; Huang Zhen; Qiao Xinqi; Hou Yuchun [Shanghai Jiao Tong University, Shanghai (China). Research Institute of Internal Combustion Engine

    2008-03-15

    This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO{sub 2}. Using diesel fuel containing dissolved CO{sub 2} gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO{sub 2} mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO{sub 2} concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO{sub 2} gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO{sub 2} gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO{sub 2} gas dilution effect; with the increase of CO{sub 2} gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature. 27 refs., 13 figs.

  6. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  7. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  8. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric [Texas A & M Univ., College Station, TX (United States); Krejci, Michael [Texas A & M Univ., College Station, TX (United States); Mathieu, Olivier [Texas A & M Univ., College Station, TX (United States); Vissotski, Andrew [Texas A & M Univ., College Station, TX (United States); Ravi, Sankat [Texas A & M Univ., College Station, TX (United States); Plichta, Drew [Texas A & M Univ., College Station, TX (United States); Sikes, Travis [Texas A & M Univ., College Station, TX (United States); Levacque, Anthony [Texas A & M Univ., College Station, TX (United States); Camou, Alejandro [Texas A & M Univ., College Station, TX (United States); Aul, Christopher [Texas A & M Univ., College Station, TX (United States)

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  9. Development of low-smoke, flame-retarding cables

    International Nuclear Information System (INIS)

    Kato, H.; Kanemitsuya, K.; Furukawa, K.; Mio, K.

    1983-01-01

    A great deal of attention has been given to the potential fire hazard of combustion gases from organic materials. Although cable industries have developed flame-retarding organic materials for the insulation and jacketing of wires and cables, there was insufficient prevention of toxic gas formation during combustion. To cope with these problems associated with conventional PVC cables, the authors have directed to develop low-smoke, flame-retarding plasticized PVC formulations retaining the original mechanical, electrical and aging properties. A series of basic investigations on smoke suppression followed by an evaluation on practical cables could indicate some effective means to end these problems. This paper describes the results and discussion on smoke suppressing study of plasticized PVC as well as behavior and characteristics of the low-smoke, flame-retarding PVC wires and cables using these materials. (author)

  10. Porosity effects in flame length of the porous burners

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-10-01

    Full Text Available Furnaces are the devices for providing heat to the industrial systems like boilers, gas turbines and etc. The main challenge of furnaces is emission of huge air pollutants. However, porous burners produce less contaminant compared to others. The quality of the combustion process in the porous burners depends on the length of flame in the porous medium. In this paper, the computational fluid dynamic (CFD is used to investigate the porosity effects on the flame length of the combustion process in porous burner. The simulation results demonstrate that increasing the porosity increases the flame length and the combustion zone extends forward. So, combustion quality increases and production of carbon monoxide decrease. It is possible to conclude that temperature distribution in low porosity burner is lower and more uniform than high porosity one. Therefore, by increasing the porosity of the burner, the production of nitrogen oxides increases. So, using an intermediate porosity in the burner appears to be reasonable.

  11. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  12. Effect of energetic electrons on combustion of premixed burner flame

    Science.gov (United States)

    Sasaki, Koichi

    2011-10-01

    In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.

  13. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  14. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average flame radius. Assuming... flame length ratio obtained directly from the experiments, without any assumption. As explained earlier (Eq. 2.8) the length ratio, (LR=dl(G0)/dl0) is...spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to

  15. Propagation of a premixed flame in a divided-chamber combustor

    Science.gov (United States)

    Cattolica, R. J.; Barr, P. K.; Mansour, N. N.

    1989-01-01

    Experimental observations on the propagation of lean premixed ethylene-air flames in a divided-chamber combustion vessel have been compared with the results of numerical simulations based on a flame sheet-vortex dynamics model in axisymmetric coordinates. Flame speeds were found to increase from 10-24 cm/s as the equivalence ratio was varied from 0.5-0.65 in the experiments. Using the associated increase in gas velocity with equivalence ratio, the estimated Reynolds number in the experiment was changed from 1870 to 8090. Good agreement between experimental and theoretical results was obtained for the prechamber flame propagation rates and for the spatial and temporal development of the flame in the main combustion chamber at the lowest Reynolds number.

  16. FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale

    International Nuclear Information System (INIS)

    Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

    1989-04-01

    This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H 2 ), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H 2 with obstacles and no transverse venting. 67 refs., 62 figs

  17. Effects of stepwise gas combustion on NOx generation

    International Nuclear Information System (INIS)

    Woperane Seredi, A.; Szepesi, E.

    1999-01-01

    To decrease NO x emission from gas boilers, the combustion process of gas has been modified from continuous combustion to step-wise combustion. In this process the combustion temperature, the temperature peaks in the flame, the residence time of combustion products in the high-temperature zone and the oxygen partial pressure are changed advantageously. Experiments were performed using multistage burners, and the NO x emission was recorded. It was found that the air factor of the primary combustion space has a determining effect on the NO x reduction. (R.P.)

  18. Neurotoxicity of brominated flame retardants

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  19. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  20. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-01-01

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  1. Simplified hydrodynamic model of hydrogen-flame propagation in reactor vessels

    International Nuclear Information System (INIS)

    Baer, M.R.; Ratzel, A.C.

    1983-01-01

    The model is consistent with the theory of slow combustion in which the gasdynamic field equations are treated in the limit of small Mach numbers. To the lowest order, pressure is spatially uniform. The flame is treated as a density and entropy discontinuity which propagates at prescribed burning velocities, corresponding to laminar or turbulent flames. Radiation cooling of the burned combustion gases and possible preheating of the unburned gases during propagation of the flame is included using a molecular gas-band thermal radiation model. Application of this model has been developed for 1-D variable-area flame propagation. Multidimensional effects induced by hydrodynamics and buoyancy are corrected for. This model of flame propagation reduces to differential equations which describes the temporal variations of vessel pressure, burned volume and gas entropy. The thermodynamic state of the burned gas immediately following the flame is determined using an isobaric Hugoniot relation. At other locations the burned-gas thermodynamic states are determined using a Lagrangian particle tracking method. Results of a computer code using the method are presented. 11 figures

  2. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  3. An Investigation on Flame Shape and Size for a High-Pressure Turbulent Non-Premixed Swirl Combustion

    Directory of Open Access Journals (Sweden)

    Zhongya Xi

    2018-04-01

    Full Text Available Flame shape and size for a high-pressure turbulent non-premixed swirl combustion were experimentally investigated over a wide range of varying parameters including fuel mass flow rate, combustor pressure, primary-air mass flow rate, and nozzle exit velocity. A CFD simulation was conducted to predict the flame profile. Meanwhile, a theoretical calculation was also performed to estimate flame length. It was observed that flame length increased linearly with increasing fuel mass flow rate but decreased with the increment of combustor pressure in the power function. The flame diminished at a larger primary-air mass flow rate but remained unaffected by the increasing nozzle exit velocity. Considering the global effect of all parameters at a particular pressure, the flame length generally decreased as the primary-air to fuel ratio increased. This was attributed to the reduced air entrainment required to dilute the fuel to stoichiometric proportions. The CFD simulation offered a good prediction of the variation trends of flame length, although some deviations from experimental values were observed. The theoretical calculation estimated the trends of flame length variation particularly well. Nevertheless the difference between the theoretical and experimental results was found to be due to the swirl influence. Hence, a swirl factor was proposed to be added to the original equation for swirl flames.

  4. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.

    Science.gov (United States)

    Vincent, Jessica; Adura, Carolina; Gao, Pu; Luz, Antonio; Lama, Lodoe; Asano, Yasutomi; Okamoto, Rei; Imaeda, Toshihiro; Aida, Jumpei; Rothamel, Katherine; Gogakos, Tasos; Steinberg, Joshua; Reasoner, Seth; Aso, Kazuyoshi; Tuschl, Thomas; Patel, Dinshaw J; Glickman, J Fraser; Ascano, Manuel

    2017-09-29

    Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.Upon DNA binding cyclic GMP-AMP synthase (cGAS) produces a cyclic dinucleotide, which leads to the upregulation of inflammatory genes. Here the authors develop small molecule cGAS inhibitors, functionally characterize them and present the inhibitor and DNA bound cGAS crystal structures, which will facilitate drug development.

  5. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai (University of Southern California, Los Angeles, CA); Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation

  6. Assessment of heat loss for RSG-GAS primary cooling system

    International Nuclear Information System (INIS)

    Dibyo, S.

    1998-01-01

    Heat Loss is part term of energy balance equation of system, therefore heat loss very important thing in the thermal dynamic analysis. Heat energy loosed from the surface pipe to the air in the room was calculated. Heat energy pass through by conduction, convection and radiation. The convection process are caused by moving of air density, i.e up flow of the hot air return to be down flow. The heat transfer phenomenon could be determined by empirical correlation of Heilman. The primary cooling system is consisted to the 3 zone : 1). Zone of (safety valves-heat exchanger), 2). Zone of heat exchanger surfaces, 3). Zone of heat exchanger-reactor pool. By using input data of air temperature are about 25 o C, temperature of primary coolant about 45 o C, The heat Loss along the pipes to the air are 23.9 k watt or 0.1%

  7. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  8. Experimental investigation of laminar LPG-H{sub 2} jet diffusion flame with preheated reactants

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Mishra; P. Kumar [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-10-15

    This paper presents an experimental investigation of the effect of H{sub 2} addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG-H{sub 2} composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H{sub 2} addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H{sub 2} is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H{sub 2} addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism. 31 refs., 4 figs., 2 tabs.

  9. Effects of optical diagnostic techniques on the accuracy of laminar flame speeds measured from Bunsen flames: OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF

    Science.gov (United States)

    Wu, Yi; Modica, Vincent; Yu, Xilong; Li, Fei; Grisch, Frédéric

    2018-01-01

    The effects of optical diagnostic techniques on the accuracy of laminar flame speed measured from Bunsen flames were investigated. Laminar flame speed measurements were conducted for different fuel/air mixtures including CH4/air, acetone/air and kerosene (Jet A-1)/air in applying different optical diagnostic techniques, i.e. OH* chemiluminescence, OH-PLIF and acetone/kerosene-PLIF. It is found that the OH* chemiluminescence imaging technique cannot directly derive the location of the outer edge of the fresh gases and it is necessary to correct the position of the OH* peak to guarantee the accuracy of the measurements. OH-PLIF and acetone/kerosene-PLIF respectively are able to measure the disappearance of the fresh gas contour and the appearance of the reaction zone. It shows that the aromatic-PLIF technique gives similar laminar flame speed values when compared with those obtained from corrected OH* chemiluminescence images. However, discrepancies were observed between the OH-PLIF and the aromatic-PLIF techniques, in that OH-PLIF slightly underestimates laminar flame speeds by up to 5%. The difference between the flame contours obtained from different optical techniques are further analysed and illustrated with 1D flame structure simulation using detailed kinetic mechanisms.

  10. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  11. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  12. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    Science.gov (United States)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  13. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    Science.gov (United States)

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  15. Gastro-protective strategies in primary care in Italy: the "Gas.Pro." survey.

    Science.gov (United States)

    Bianco, Maria A; Rotondano, Gianluca; Buri, Luigi; Tessari, Francesco; Cipolletta, Livio

    2010-05-01

    Risk of gastrointestinal injury is relevant among users of anti-inflammatory or cardio-protective drugs. Adequate gastro-protection is warranted in high-risk patients. To assess the perceptions and practices of Italian primary care physicians regarding gastro-protective strategies. Nationwide cross-sectional observational study. A 14-question survey questionnaire was administered to 112 primary care physicians throughout Italy. Data collection covered consecutive outpatient candidates for the prescription of a potentially GI harmful medication, observed in the physicians' office over a 3-week period. Cohort included 3943 cases (2489 naïve and 1463 chronic NSAID/ASA users). Mean age and prevalence of cardiovascular comorbidity were significantly higher in the latter subgroup. Non-selective NSAIDs and low-dose aspirin were the most commonly prescribed drugs. Combined NSAIDS/ASA plus steroids/anticoagulant/antiplatelets were recorded in 161 cases. Helicobacter pylori status was known in only 38% of naïve and 33.2% of chronic users, being negative in 85.3% and 89.5%, respectively. When positive, H. pylori was eradicated by almost all physicians (97.9%), but in case of unknown H. pylori status, the presence of infection was investigated in only 8.6% and 14.9% of patients in the two subgroups. Gastro-protection was endorsed in 80.7% of patients, mostly PPIs (91%). In patients aged over 70, pantoprazole and lansoprazole were the preferred gastro-protective agents. There is a significant over-use of gastro-protection in the primary care setting in Italy and the role H. pylori is largely overlooked. Educational efforts should be directed to a more targeted gastro-protection only for at-risk patients as well as improved adherence to recommendations for testing and treating H. pylori infection. Copyright 2009 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  16. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Alnoman, Saeed

    2015-12-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted flames were analyzed. With the coflow air at relatively low initial temperatures below 940 K, an external ignition source was required to stabilize the flame. These lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization. At high initial temperatures over 940 K, the autoignited flames were stabilized without requiring an external ignition source. These autoignited lifted flames exhibited either tribrachial edge structures or mild combustion behaviors depending on the level of fuel dilution. Two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then to lifted mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. © 2015 Elsevier Ltd. All rights reserved.

  17. Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh

    International Nuclear Information System (INIS)

    Kudriakov, S.; Studer, E.; Bin, C.

    2011-01-01

    Recent studies of J.H. Song et al., and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size. Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment, in particular, the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter). In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically. (authors)

  18. Measurements and Modeling of SiCl(4) Combustion in a Low-Pressure H2/O2 Flame

    National Research Council Canada - National Science Library

    Moore, T; Brady, B; Martin, L. R

    2006-01-01

    .... A gas-phase chemical kinetics mechanism for the combustion of SiCl in an H2/O2/Ar flame was proposed, and experimental results were compared with predictions for a premixed, one-dimensional laminar...

  19. An experimental study on premixed CNG/H2/CO2 mixture flames

    Science.gov (United States)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  20. An experimental study on premixed CNG/H2/CO2 mixture flames

    Directory of Open Access Journals (Sweden)

    Yilmaz Ilker

    2018-03-01

    Full Text Available In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW. All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  1. Research on flame retardation of wool fibers

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.)

  2. Real Time Flame Monitoring of Gasifier and Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  3. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  4. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  5. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  6. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  7. Beyond SHARP-- Primary Formaldehyde from Oil and Gas Exploration and Production in the Gulf of Mexico Region

    Science.gov (United States)

    Olaguer, E. P.

    2010-12-01

    Formaldehyde has been named by the EPA as a hazardous air pollutant that may be carcinogenic and also cause irritation to the eyes, nose, throat and lung. Moreover, it is a powerful radical and ozone precursor. The 2009 Study of Houston Atmospheric Radical Precursors (SHARP) was conceived by the Houston Advanced Research Center (HARC) on behalf of the Texas Environmental Research Consortium (TERC) to examine the relative importance of primary and secondary formaldehyde (HCHO) and nitrous acid (HONO) in ozone formation. SHARP confirmed that primary combustion sources of HCHO, such as flares end engines, may be underestimated (by an order of magnitude or more) in official emission inventories used for the purpose of air quality modeling in highly industrialized areas such as Houston. This presentation provides recently generated modeling and observational evidence that the same may be true in both rural and urban areas with oil and gas exploration and production (E&P) activities, such as the Upper Green River Basin of Wyoming and the Barnett Shale of Texas. Oil and gas E&P is increasing in the Gulf of Mexico region, particularly in the Barnett, Haynesville, Eagle Ford, Cana-Woodford, and Fayetteville shale basins. In the Barnett Shale, E&P activities are moving into urban neighborhoods, and may affect the ability to bring the Dallas-Ft. Worth region into attainment of the federal ozone standard. Data concerning formaldehyde emissions from drill rig and pipeline compressor engines, flares, and glycol or amine reboilers, should be obtained in order to more accurately model air quality in the Gulf of Mexico region.

  8. Combustion instabilities in sudden expansion oxy-fuel flames

    Energy Technology Data Exchange (ETDEWEB)

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  9. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  10. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-01-01

    temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  11. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  12. Computational Analysis of Spray Jet Flames

    Science.gov (United States)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the

  13. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant and...

  14. TURBULENT OXYGEN FLAMES IN TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damkoehler numbers (Da 16 ) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when Da 16 16 >1, turbulence enhances heat transfer and drives the propagation of a flame that is narrower than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not appear to support the possibility of a transition to detonation in the oxygen flame, but do not preclude it either.

  15. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, Theodorus H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change

  16. On flame kernel formation and propagation in premixed gases

    Energy Technology Data Exchange (ETDEWEB)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  17. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  18. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  19. Flow characterization and dilution effects of N2 and CO2 on premixed CH4/air flames in a swirl-stabilized combustor

    International Nuclear Information System (INIS)

    Han Yue; Cai Guo-Biao; Wang Hai-Xing; Bruno Renou; Abdelkrim Boukhalfa

    2014-01-01

    Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH 4 /air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhaust-gas recirculation technology. Two main diluting species, N 2 and CO 2 , are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for N 2 -diluted flames by changing excess air and dilution rate. CO 2 -diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N 2 and CO 2 dilution affect the lean blowout (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NO x emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NO x emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise

  20. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen; Hernandez Perez, Francisco; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  1. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  2. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu

    2017-01-05

    The flame-vortex interaction enables the study of basic phenomena that control the coupling between combustion and turbulence. Employing a gas phase reaction mechanism considering polycyclic aromatic hydrocarbons (PAH), a two dimensional counterflow ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a prescribed decaying random velocity field is being investigated. Counterflow nonpremixed flames at low strain rate sooting conditions are considered. Effects of vortices are studied on the flame structures and its sensitivity on the soot formation characteristics. As the vortex rolls up the flame, integrated soot volume fraction is found to be larger for the air-side vortex. A detailed analysis on the flame structure and its influence on the formation of soot were carried out. The results indicate that the larger PAH species contributes to the soot formation in the airside perturbation regimes, whereas the soot formation is dominated by the soot transport in fuel-side perturbation.

  3. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt

    2011-01-01

    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  4. Visualization of the heat release zone of highly turbulent premixed jet flames

    Science.gov (United States)

    Lv, Liang; Tan, Jianguo; Zhu, Jiajian

    2017-10-01

    Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.

  5. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.

    2016-12-01

    sizes plateau. Particle size in the annulus is more sensitive to pressure. Next, the development of an alternative particle size measuring technique is studied. Time Resolved Laser Induced Incandescence (TiRe-LII) is a commonly used technique to measure soot concentrations and particle size at atmospheric pressure. However, Laser Induced Incandescence (LII) models suffer from an incomplete understanding of the effects of elevated pressures on the absorption, annealing, and cooling of soot. The present study focuses on what affect the laser temporal pulse shape and duration may have on particle sizing. TiRe-LII in flames at 1 and 15 bar is carried out, using laser pulses with tophat or Gaussian temporal profiles of varying duration. Mono-disperse equivalent primary particle diameters are calculated using the KAUST LII model. Little difference in particle sizing is found for different laser pulses. However, this data will be useful for validating the KAUST LII model when absorption and poly-dispersion are accounted for. In an effort to move one step closer to logistical fuel studies, the sooting tendencies of a number of liquid fuels are studied at pressures up to 10. Of parallel relevance, a sooting index for surrogate development is evaluated for elevated pressure applications. The Yield Sooting Index (YSI) methodology is applied to 11 normal, cyclic, and branched alkanes. When referencing to two n-alkane fuels, the YSI of n-alkanes determined at atmospheric pressures accurately reflects the relative sooting tendencies of these fuels at elevated pressures. The relative sooting tendencies of cyclo- and methyl-alkanes have a lower pressure sensitivity than n-alkanes.

  6. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  7. Evaluation Of Radioactivity Concentration In The Primary Cooling Water System Of The RSG-GAS During Operation With 30% Silicide Fuels

    International Nuclear Information System (INIS)

    Hartoyo, Unggul; Udiyani, P.M.; Setiawanto, Anto

    2001-01-01

    The evaluating radioactivity concentration in the primary cooling water of the RSG-GAS during operation with 30% silicide fuels has been performed. The method of the research is sampling of primary cooling water during operation of the reactor and calculation of its radioactivity concentration. Based on the data obtained from calculation, the identified nuclides in the water are, Mn-56, Sb-124, Sb-122 and Na-24, under the limit of safety value

  8. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  9. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.

    Science.gov (United States)

    Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique

    2013-04-18

    To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.

  10. The VLT FLAMES Tarantula Survey

    NARCIS (Netherlands)

    Evans, C.; Taylor, W.; Sana, H.; Hénault-Brunet, V.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.; Bonanos, A.; Bressert, E.; Brott, I.; Campbell, M.; Cantiello, M.; Carraro, G.; Clark, S.; Costa, E.; Crowther, P.; de Koter, A.; de Mink, S.; Doran, E.; Dufton, P.; Dunstall, P.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I.; Izzard, R.; Köhler, K.; Langer, N.; Lennon, D.; Maíz Apellániz, J.; Markova, N.; Najarro, P.; Puls, J.; Ramirez, O.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Smartt, S.; Stroud, V.; van Loon, J.; Vink, J.S.; Walborn, N.

    2011-01-01

    We introduce the VLT FLAMES Tarantula Survey, an ESO Large Programme from which we have obtained optical spectroscopy of over 800 massive stars in the spectacular 30 Doradus region of the Large Magellanic Cloud. A key feature is the use of multi-epoch observations to provide strong constraints on

  11. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  12. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    International Nuclear Information System (INIS)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D.; DeYoung, Paul A.; Blum, Arlene; Stapleton, Heather M.; Peaslee, Graham F.

    2015-01-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography–Mass Spectrometry (GC–MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC–MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams

  13. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D. [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States); DeYoung, Paul A. [Department of Physics, Hope College, 27 Graves Place, Holland, MI 49423 (United States); Blum, Arlene [Green Science Policy Institute, Box 5455, Berkeley, CA 94705 (United States); Stapleton, Heather M. [Nicholas School of the Environment, Duke University, LSRC Box 90328, Durham, NC 27708 (United States); Peaslee, Graham F., E-mail: peaslee@hope.edu [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States)

    2015-09-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography–Mass Spectrometry (GC–MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC–MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.

  14. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    Energy Technology Data Exchange (ETDEWEB)

    Tang, B.H.Y.; Chan, C.K. [Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  15. Autoignition characteristics of laminar lifted jet flames of pre-vaporized iso-octane in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Sang Kyu; Chung, Suk-Ho

    2015-01-01

    The stabilization characteristics of laminar non-premixed jet flames of pre-vaporized iso-octane, one of the primary reference fuels for octane rating, have been studied experimentally in heated coflow air. Non-autoignited and autoignited lifted

  16. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  17. Mechanical weed control on small-size dry bean and its response to cross-flaming

    Energy Technology Data Exchange (ETDEWEB)

    Martelloni, L.; Frasconi, C.; Fontanelli, M.; Raffaelli, M.; Peruzzi, A.

    2016-11-01

    Dry bean (Phaseolus vulgaris L.) can be a profitable crop for farmers; however controlling weeds effectively without a decrease in yield remains a problem. An example where mechanical weed control is difficult to conduct is dry bean ‘Toscanello’, which is a small sized high-income niche product growing low to the ground. Concerning intra-row weed control, also flame weeding could be an opportunity but the dry bean heat tolerance needs to be studied. The aims of this research were to study the weed control efficacy of a spring-tine harrow and an inter-row cultivator in this bean variety, and to test the tolerance of dry bean cultivated under weed-free conditions to cross-flaming applied with different liquefied petroleum gas (LPG) doses. Flame weeding was applied at BBCH 13 and BBCH 14 bean growth stages by pairs of burners producing direct double flame acting into the intra-row space, with bean plants placed in the middle. The results suggest that the spring-tine harrow used two times at BBCH 13 and 14, respectively, lead to a yield similar to that of the weedy control. The inter-row cultivator could be an opportunity for small-sized dry bean crops producers, enabling them to obtain a similar yield compared to the hand-weeded control. Concerning the bean tolerance to cross-flaming the results showed that bean flamed at BBCH 13 stage had little tolerance to cross-flaming. Bean flamed at BBCH 14 stage was tolerant until an LPG dose of 39 kg/ha, giving yield responses similar to those observed in the non-flamed control. (Author)

  18. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  19. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  20. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    Science.gov (United States)

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  1. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    OpenAIRE

    Ghazaleh Esmaeelzade; Mohammad Reza Khani; Rouzbeh Riazi; Mohammad Hossein Sabour

    2017-01-01

    The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of ...

  2. Determination of halogens by flame emission of metal halogenides

    International Nuclear Information System (INIS)

    Henrion, G.; Marquardt, D.; Stoecker, B.

    1979-01-01

    The A-B systems InF, InCl, InBr, and InI have been excited by laminar H 2 -N 2 flames in order to dermine individual halogens or their mixtures qualitatively or quantitatively. In optimizing the fuel gas composition two different behavior patterns have been found for band intensities, which are correlated with binding energies of InX (X = halogen). The low temperature of the flame leads to complicated matrix effects which first of all result from effects on excitation and from competitive reactions. In general, cations cause a decreased intensity. Therefore, salts have to be converted into hydrohalide acids by ion exchange. Qualitative determinations of individual halogens are possible at a 500 to 50,000fold excess of the others, whereas quantitative determinations can be performed at a 100 to 5,000fold excess in 10 -4 molar solutions with errors of 2 to 10 per cent. (author)

  3. Origin and monitoring of pollutants in fossil-fuel flames

    International Nuclear Information System (INIS)

    Chigier, N.A.

    1976-01-01

    A review is given of the origin of pollutants in fossil-fuel flames. Burning of fossil fuels is the major cause of air pollution and significant reductions in levels of environmental pollution can be achieved by more effective control of combustion systems. The chemical kinetics of formation of unburned hydrocarbons, oxides of nitrogen, carbon monoxide and particulate matter are described, as well as the reactions which can lead to oxidation and destruction of these pollutants within the flame. The important influence of mixing and aerodynamics is discussed, together with methods of mathematical modelling and prediction methods. Practical problems arising in gas turbine engines, spark ignition engines and diesel engines are investigated in order to minimize the emission of pollutants while preserving fuel economy. (author)

  4. Numerical modeling of turbulent combustion and flame spread

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenghua

    1999-01-01

    Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall

  5. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent

    Science.gov (United States)

    Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan

    2018-04-01

    Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.

  6. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  7. The evolution of the flame surface in turbulent premixed jet flames at high Reynolds number

    Science.gov (United States)

    Luca, Stefano; Attili, Antonio; Bisetti, Fabrizio

    2017-11-01

    A set of direct numerical simulations of turbulent premixed flames in a spatially developing turbulent slot burner at four Reynolds number is presented. This configuration is of interest since it displays turbulent production by mean shear as in real combustion devices. The gas phase hydrodynamics are modeled with the reactive, unsteady Navier-Stokes equations in the low Mach number limit, with finite-rate chemistry consisting of 16 species and 73 reactions. For the highest jet Reynolds number of 22 ×103, 22 Billion grid points are employed. The jet consists of a lean methane/air mixture at 4 atm and preheated to 800 K. The analysis of stretch statistics shows that the mean total stretch is close to zero. Mean stretch decreases moving downstream from positive to negative values, suggesting a formation of surface area in the near field and destruction at the tip of the flame; the mean contribution of the tangential strain term is positive, while the mean contribution of the propagative term is always negative. Positive values of stretch are due to the tangential strain rate term, while large negative values are associated with the propagative term. Increasing Reynolds number is found to decrease the correlation between stretch and the single contributions.

  8. Impact of Vitiation on a Swirl-Stabilized and Premixed Methane Flame

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-10-01

    Full Text Available Vitiation refers to the condition where the oxygen concentration in the air is reduced due to the mix of dilution gas. The vitiation effects on a premixed methane flame were investigated on a swirl-stabilized gas turbine model combustor under atmospheric pressure. The main purpose is to analyze the combustion stability and CO emission performance in vitiated air and compare the results with the flame without vitiation. The N2, CO2, and H2O (steam were used as the dilution gas. Measurements were conducted in a combustor inlet temperature of 384 K and 484 K. The equivalence ratio was varied from stoichiometric conditions to the LBO (Lean Blowout limits where the flame was physically blown out from the combustor. The chemical kinetics calculation was performed with Chemkin software to analyze the vitiation effects on the flame reaction zone. Based on the calculation results, the changes in the temperature gradient, CO concentration, and active radicals across the flame reaction zone were identified. The time-averaged CH chemiluminescence images were recorded and the results indicated the features of the flame shape and location. The CH signal intensity provided the information about the heat-release zone in the combustor. The combustion LBO limits were measured and the vitiation of CO2 and H2O were found to have a stronger impact to elevate the LBO limits than N2. Near the LBO limits, the instability of the flame reaction was revealed by the high-speed chemiluminescence imaging and the results were analyzed by FFT (Fast Fourier Transfer. CO emission was measured with a water-cooled probe which is located at the exit of the combustor. The combustion vitiation has been found to have the compression effect on the operation range for low CO emission. However, this compression effect could be compensated by improving the combustor inlet temperature.

  9. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    International Nuclear Information System (INIS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-01-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO 2 , H 2 O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame. - Highlights: • A Monte Carlo–based nongray radiation solver is developed to study effects of radiation. • Radiation alters the lift-off height, and the distribution of temperature andspecies for the target flame. • Radiation alters the heat transfer mechanism of medium

  10. A state of the art report on flame acceleration and transition to detonation in hydrogen/air/diluent mixtures

    International Nuclear Information System (INIS)

    Chan, C.K.; Tennankore, K.N.

    1991-12-01

    Accidental ignition in pockets of flammable hydrogen/air/diluent mixtures will lead to a deflagration wave (slow flame). Particular conditions can accelerate this flame and cause a transition from deflagration to a detonation wave (rapid flame), with its associated spatially non-uniform and very high pressures. In this report, the differences between deflagration and detonation are outlined, and the various flame acceleration mechanisms, along with the related research results, are reviewed. The current understanding of transition to detonation as a two-step process, a local explosion followed by an amplification of the resulting blast wave into a detonation wave, is described in detail. Occurrence of a local explosion in hot spots generated by the focussing of shock waves existing ahead of a fast flame, or in high-reactivity centres generated by turbulence-induced rapid mixing of flame and unburnt gas, and the resulting local quenching of the flame, are described and relevant publications are cited. The current models for flame acceleration are listed and their limitations are identified. Also, the available qualitative criteria for assessing the likelihood of transition to detonation under given conditions are briefly discussed. The feasibility of developing a quantitative methodology for assessing this likelihood is discussed, and further more work required to complete this development is outlined. The development of a quantitative methodology is recommended

  11. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.; Altay, H.M.; Ghoniem, A.F.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange

  12. Extinction of corrugated hydrogen/air flames

    International Nuclear Information System (INIS)

    Mizomoto, M.; Asaka, Y.; Ikai, S.; Law, C.K.

    1982-01-01

    Recent studies on flammability limits reveal the importance of flow nonuniformity, flame curvature, and molecular and thermal diffusivities in determining the extinguishability and the associated limits of premixed fuel/air flames. In particular, it is found that conditions which favor extinction of a lean flame may cause intensification of a rich flame. In the present study the authors have experimentally determined the extinction characteristics and limits of highly curved hydrogen/air flames as represented by the opening of bunsen flame tips. Results show that the tip opens at a constant fuel equivalence ratio of phi = 1.15, regardless of the velocity and uniformity of the upstream flow. This critical mixture concentration, while being rich, is still on the lean side of that corresponding to the maximum burning velocity (phi = 1.8), implying that for highly diffusive systems, the relevant reference concentration is that for maximum burning velocity instead of stoichiometry

  13. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  14. An experimental and numerical study of diffusion flames in cross-flow and quiescent environment at smoke point condition

    Science.gov (United States)

    Goh, Sien Fong

    An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR

  15. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

    KAUST Repository

    Kruse, Stephan

    2018-04-11

    Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

  16. Evaluation of partially premixed turbulent flame stability from mixture fraction statistics in a slot burner

    KAUST Repository

    Kruse, Stephan; Mansour, Mohy S.; Elbaz, Ayman M.; Varea, Emilien; Grü nefeld, Gerd; Beeckmann, Joachim; Pitsch, Heinz

    2018-01-01

    Partially premixed combustion is characterized by mixture fraction inhomogeneity upstream of the reaction zone and occurs in many applied combustion systems. The temporal and spatial fluctuations of the mixture fraction have tremendous impact on the combustion characteristics, emission formation, and flame stability. In this study, turbulent partially premixed flames are experimentally studied in a slot burner configuration. The local temperature and gas composition is determined by means of one-dimensional, simultaneous detection of Rayleigh and Raman scattering. The statistics of the mixture fraction are utilized to characterize the impact of the Reynolds number, the global equivalence ratio, the progress of mixing within the flame, as well as the mixing length on the mixing field. Furthermore, these effects are evaluated by means of a regime diagram for partially premixed flames. In this study, it is shown that the increase of the mixing length results in a significantly more stable flame. The impact of the Reynolds number on flame stability is found to be minor.

  17. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  18. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  19. Transient change in the shape of premixed burner flame with the superposition of pulsed dielectric barrier discharge

    OpenAIRE

    Zaima, Kazunori; Sasaki, Koichi

    2016-01-01

    We investigated the transient phenomena in a premixed burner flame with the superposition of a pulsed dielectric barrier discharge (DBD). The length of the flame was shortened by the superposition of DBD, indicating the activation of combustion chemical reactions with the help of the plasma. In addition, we observed the modulation of the top position of the unburned gas region and the formations of local minimums in the axial distribution of the optical emission intensity of OH. These experim...

  20. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Directory of Open Access Journals (Sweden)

    Ghazaleh Esmaeelzade

    2017-03-01

    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  1. Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number

    KAUST Repository

    Yoon, Sung Hwan

    2017-10-12

    According to previous theory, pulsating propagation in a premixed flame only appears when the reduced Lewis number, β(Le-1), is larger than a critical value (Sivashinsky criterion: 4(1 +3) ≈ 11), where β represents the Zel\\'dovich number (for general premixed flames, β ≈ 10), which requires Lewis number Le > 2.1. However, few experimental observation have been reported because the critical reduced Lewis number for the onset of pulsating instability is beyond what can be reached in experiments. Furthermore, the coupling with the unavoidable hydrodynamic instability limits the observation of pure pulsating instabilities in flames. Here, we describe a novel method to observe the pulsating instability. We utilize a thermoacoustic field caused by interaction between heat release and acoustic pressure fluctuations of the downward-propagating premixed flames in a tube to enhance conductive heat loss at the tube wall and radiative heat loss at the open end of the tube due to extended flame residence time by diminished flame surface area, i.e., flat flame. The thermoacoustic field allowed pure observation of the pulsating motion since the primary acoustic force suppressed the intrinsic hydrodynamic instability resulting from thermal expansion. By employing this method, we have provided new experimental observations of the pulsating instability for premixed flames. The Lewis number (i.e., Le ≈ 1.86) was less than the critical value suggested previously.

  2. Ultra-high-pressure liquid chromatography tandem mass spectrometry method for the determination of 9 organophosphate flame retardants in water samples

    NARCIS (Netherlands)

    Lorenzo, M.; Campo, J.; Picó, Y.

    2016-01-01

    Few methods are available for comprehensive organophosphate flame retardants (PFRs) detection in water and wastewater. Gas chromatography has been employed previously, but this approach is less selective, not amenable for use with deuterated standards and can suffer unfavorable fragmentation.

  3. The modelling of direct chemical kinetic effects in turbulent flames

    Energy Technology Data Exchange (ETDEWEB)

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  4. Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow

    Science.gov (United States)

    Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike

    2008-11-01

    The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.

  5. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  6. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst wa......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society.......A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst...... was found to be a mixture of nanocrystalline, mostly unalloyed Pt and an amorphous phase mostly of Ru and to a lesser extent of Pt oxides on top of the crystalline phase. The flame-produced Pt1Ru1 demonstrated similar onset potential but similar to 60% higher activity compared to commercially available Pt1...

  7. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  8. Dynamics of flow–soot interaction in wrinkled non-premixed ethylene–air flames

    KAUST Repository

    Arias, Paul G.; Lecoustre, Vivien R.; Roy, Somesh; Luo, Zhaoyu; Haworth, Daniel C.; Lu, Tianfeng; Trouvé , Arnaud; Im, Hong G.

    2015-01-01

    A two-dimensional simulation of a non-premixed ethylene–air flame was conducted by employing a detailed gas-phase reaction mechanism considering polycyclic aromatic hydrocarbons, an aerosol-dynamics-based soot model using a method of moments

  9. Mechanism of the flame ionization detector. II. Isotope effects and heteroatom effects

    DEFF Research Database (Denmark)

    Holm, Torkil

    1997-01-01

    reactions in the hydrogen flame of compounds added to the hydrogen gas in low concentrations were followed. Alcohols, ethers, ketones, and esters all produced methane and carbon monoxide, while amines produced methane and hydrogen cyanide, halogen compounds methane and hydrogen halide, etc. The FID response...

  10. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans

    2000-01-01

    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  11. Numerical modeling of turbulent jet diffusion flames in the atmospheric surface layer

    NARCIS (Netherlands)

    Hernández, J.; Crespo, A.; Duijm, N.J.

    1995-01-01

    The evolution of turbulent jet diffusion flames of natural gas in air is predicted using a finite-volume procedure for solving the flow equations. The model is three dimensional, elliptic and based on the conserved-scalar approach and the laminar flamelet concept. A laminar flamelet prescription for

  12. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    Science.gov (United States)

    AbstractThe effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  13. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  14. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien

    2014-06-16

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  15. Correspondence Between Uncoupled Flame Macrostructures and Thermoacoustic Instability in Premixed Swirl-Stabilized Combustion

    KAUST Repository

    Taamallah, Soufien; LaBry, Zachary A.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we conduct an experimental investigation of a confined premixed swirl-stabilized dump combustor similar to those found in modern gas turbines. We operate the combustor with premixed methane-air in the lean range of equivalence ratio ϕ ∈ [0.5–0.75]. First, we observe different dynamic modes in the lean operating range, as the equivalence ratio is raised, confirming observations made previously in a similar combustor geometry but with a different fuel [1]. Next we examine the correspondence between dynamic mode transitions and changes in the mean flame configuration or macrostructure. We show that each dynamic mode is associated with a specific flame macrostructure. By modifying the combustor length without changing the underlying flow, the resonant frequencies of the geometry are altered allowing for decoupling the heat release fluctuations and the acoustic field, in a certain range of equivalence ratio. Mean flame configurations in the modified (short) combustor and for the same range of equivalence ratio are examined. It is found that not only the same sequence of flame configurations is observed in both combustors (long and short) but also that the set of equivalence ratio where transitions in the flame configuration occur is closely related to the onset of thermo-acoustic instabilities. For both combustor lengths, the flame structure changes at similar equivalence ratio whether thermo-acoustic coupling is allowed or not, suggesting that the flame configuration holds the key to understanding the onset of self-excited thermo-acoustic instability in this range. Finally, we focus on the flame configuration transition that was correlated with the onset of the first dynamically unstable mode ϕ ∈ [0.61–0.64]. Our analysis of this transition in the short, uncoupled combustor shows that it is associated with an intermittent appearance of a flame in the outer recirculation zone (ORZ). The spectral analysis of this “ORZ flame flickering”

  16. Experimental quantification of transient stretch effects from vortices interacting with premixed flames

    Science.gov (United States)

    Danby, Sean James

    The understanding of complex premixed combustion reactions is paramount to the development of new concepts and devices used to increase the overall usefulness and capabilities of current technology. The complex interactions which occur within any modern practical combustion device were studied by isolating a single turbulent scale of the turbulence-chemistry interaction. Methane-air flame equivalence ratios (φ = 0.64, 0.90, and 1.13) were chosen to observe the mild affects of thermo-diffusive stability on the methane-air flame. Nitrogen was used as a diluent to retard the flame speeds of the φ = 0.90, and 1.13 mixtures so that the undisturbed outwardly propagating spherical flame kernel propagation rates, drf/dt, were approximately equal. Five primary propane equivalence ratios were utilized for investigation: φ = 0.69, 0.87, 1.08, 1.32, and 1.49. The choice of equivalence ratio was strategically made so that the φ = 0.69/1.49 and φ = 0.87/1.32 mixtures have the same undiluted flame propagation rate, drf/dt. Therefore, in the undiluted case, there are three flame speeds (in laboratory coordinates, not to be confused with burning velocity) represented by these mixtures. Three vortices were selected to be used in this investigation. The vortex rotational velocities were measured to be 77 cm/s, 266 cm/s and 398 cm/s for the "weak", "medium" and "strong" vortices, respectively. Ignition of the flame occurred in two ways: (1) spark-ignition or (2) laser ignition using an Nd:YAG laser at its second harmonic (lambda = 532 nm) in order to quantify the effect of electrode interference. Accompanying high-speed chemiluminescence imaging measurements, instantaneous pressure measurements were obtained to give a more detailed understanding of the effect of vortex strength on the overall flame speed and heat release rate over an extended time scale and to explore the use of a simple measurement to describe turbulent mixing. Further local flame-vortex interface analysis was

  17. Investigation of Methane Oxy-Fuel Combustion in a Swirl-Stabilised Gas Turbine Model Combustor

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-05-01

    Full Text Available CO2 has a strong impact on both operability and emission behaviours in gas turbine combustors. In the present study, an atmospheric, preheated, swirl-stabilised optical gas turbine model combustor rig was employed. The primary objectives were to analyse the influence of CO2 on the fundamental characteristics of combustion, lean blowout (LBO limits, CO emission and flame structures. CO2 dilution effects were examined with three preheating temperatures (396.15, 431.15, and 466.15 K. The fundamental combustion characteristics were studied utilising chemical kinetic simulations. To study the influence of CO2 on the operational range of the combustor, equivalence ratio (Ф was varied from stoichiometric conditions to the LBO limits. CO emissions were measured at the exit of the combustor using a water-cooled probe over the entire operational range. The flame structures and locations were characterised by performing CH chemiluminescence imaging. The inverse Abel transformation was used to analyse the CH distribution on the axisymmetric plane of the combustor. Chemical kinetic modelling indicated that the CO2 resulted in a lower reaction rate compared with the CH4/air flame. Fundamental combustion properties such as laminar flame speed, ignition delay time and blowout residence time were found to be affected by CO2. The experimental results revealed that CO2 dilution resulted in a narrower operational range for the equivalence ratio. It was also found that CO2 had a strong inhibiting effect on CO burnout, which led to a higher concentration of CO in the combustion exhaust. CH chemiluminescence showed that the CO2 dilution did not have a significant impact on the flame structure.

  18. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  19. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  20. An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames

    International Nuclear Information System (INIS)

    Abdul-Sater, Hassan; Krishnamoorthy, Gautham

    2013-01-01

    Twenty four, laboratory scale, laminar to transitional, diffusion oxy-methane flames were simulated employing different radiation modeling options and their predictions compared against experimental measurements of: temperature, flame length and radiant fraction. The models employed were: gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model, non-adiabatic extension of the equilibrium based mixture fraction model and investigations into the effects of: the thermal boundary conditions, soot and turbulence radiation interactions (TRI). Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. Flame lengths determined through the axial profiles of OH confirmed with the experimental trends by increasing with increase in fuel-inlet Reynolds numbers and decreasing with the increase in O 2 composition in oxidizer. The temperature and flame length predictions were not sensitive to the radiative property model employed. There were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The inclusion of soot model and TRI model did not affect our predictions as a result of low soot volume fractions and the radiation emission enhancement to the temperature fluctuations being localized to the flame sheet. -- Highlights: • Twenty four, lab scale, laminar to transitional, diffusion, oxy-methane flames were simulated. • Equilibrium model adequately predicted the temperature and flame lengths. • The experimental trends in radiant fractions were replicated. • Gray and non-gray model differences in radiant fractions were amplified at low Re. • Inclusion of soot and TRI models did not affect our predictions

  1. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  2. Deformation Study of Lean Methane-Air Premixed Spherically Expanding Flames under a Negative Direct Current Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-09-01

    Full Text Available This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to the positive ions on the flame surface was also established to perform a relevant simulation. Results show that the spherical flame will acquire an elliptical shape with a marked flame stretch in the horizontal direction and a slight inhibition in the vertical direction under a negative DC electric field. Meanwhile, a non-uniform ionic distribution on the flame surface was also detected by the Langmuir probe. The simulation results from the numerical model show good agreement with experimental data. According to the velocity field analysis in simulation, it was found the particular motion of positive ions and neutral molecules on the flame surface should be responsible for the special flame deformation. When a negative DC electric field was applied, the majority of positive ions and colliding neutral molecules will form an ionic flow along the flame surface by a superposition of the electric field force and the aerodynamic drag. The ionic flow was not uniform and mainly formed on the upper and lower sides, so it will lead to a non-uniform ionic distribution along the flame surface. What’s more, this ionic flow will also induce two vortexes both inside and outside of the flame surface due to viscosity effects. The external vortexes could produce an entraining effect on the premixed gas and take away the heat from the flame surface by forced convection, and then suppress the flame propagation in the vertical direction, while, the inner vortexes would scroll the burned zones and induce an inward flow at the horizontal center, which could be the reason for the

  3. Analysis of an effective solution to excessive heat supply in a city primary heating network using gas-fired boilers for peak-load compensation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai-Chao; Jiao, Wen-Ling; Zou, Ping-Hua; Liu, Jing-Cheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, mail box 2645, 202 Haihe Road, Nangang District, Harbin 150090 (China)

    2010-11-15

    Through investigation of the Dengfeng heating network in the city of Daqing, China, for the 2007-2008 heating season, we found serious problems of excessive heat supply in the primary heating network. Therefore, we propose the application of gas-fired boilers in underperforming heating substations as peak-load heat sources to effectively adapt to the regulation demands of seasonal heat-load fluctuations and reduce the excessive heat supply. First, we calculated the excessive heat supply rates (EHSRs) of five substations using detailed investigative data. We then discussed the feasibility of the proposed scheme providing energy savings from both energetic and exergetic points of view. The results showed that the average EHSR of the five substations between January and March was 20.57% of the gross heat production but consequently reduced to 6.24% with the installation of the gas-fired boilers. Therefore, the combined heating scheme with coal as the basic heat-source and gas-fired boilers as peak-load heat sources is energy-efficient to some extent, although requires the use of natural gas. Meanwhile, the exergy decreased by 10.97%, which indicates that the combined heating scheme effectively reduces the primary energy consumption and pollutant emission of the heating systems. (author)

  4. Improvement of flame resistance of non-flame retardant cables by applying fire protection measures

    International Nuclear Information System (INIS)

    Takemura, Yujiro; Segoshi, Yoshinori; Jinno, Susumu; Mii, Kazuki

    2017-01-01

    The new regulatory requirements, which were put in force after the Fukushima Daiichi accident, impose the use of flame retardant cables on the plant components having safety functions for the purpose of fire protection. However, some Japanese nuclear power plants built in the early days use non-flame retardant cables that do not pass the demonstration test to check for the flame resistance. To cope with the new regulatory requirements, a fire protection measure for non-flame retardant cables was introduced to assure flame resistance of non-flame retardant cables equivalent to or higher than that of flame retardant cables. To illustrate the fire protection measure, both non-flame retardant cables and its cable tray are covered with fire protection sheet fabricated from incombustible material to form an assembly. Considering the demonstration test results, it can be concluded that flame resistance performance of non-flame retardant cables equivalent to or higher than that of flame retardant cables can be assured by forming the assembly even if an external fire outside the assembly and internal cable fire inside the assembly are assumed. This paper introduces the design of the assembly consisting of a bundle of cables and a cable tray and summarizes the results of demonstration tests. (author)

  5. Validation of ammonia diffusive and active samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures

    Science.gov (United States)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Stoll, Jean-Marc; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.

    2017-04-01

    Intensive animal farming, the increased use of fertilizers, and certain industrial processes are believed to be responsible for the observed increases in the amount fraction of ammonia (NH3) found in Europe. NH3 contributes to eutrophication and acidification of land and freshwater, potentially leading to a loss of biodiversity and undesirable changes to the ecosystem. It also contributes to the formation of secondary particulate matter (PM) formation, which is associated with poor air quality and adverse health outcomes. Measurements of ambient ammonia are principally carried out with low-cost diffusive samplers or by active sampling with denuders, with each method delivering time-integrated values over the monitoring period. However, such techniques have not yet been extensively validated. The goal of this work was to provide improvements in the metrological traceability through the determination of NH3 diffusive sampling rates. Five different designs of commercial diffusive samplers (FSM Radiello radial sampler, Gradko diffusion tube, Gradko DIFRAM-400, Passam ammonia sampler, and CEH ALPHA sampler) were employed, together with a pumped denuder sampler (CEH DELTA denuder) for comparison. All devices were simultaneously exposed for either 28 days or 14 days (dependent on sampler type) in a controlled atmosphere test facility (CATFAC) containing traceable amount fractions of humidified ammonia using new stable ammonia Primary Standard Gas Mixtures developed by gravimetry at NPL, under a wide range of conditions that are relevant to ambient monitoring. Online continuous monitoring of the ammonia test atmospheres was carried out by extractive sampling, employing a calibrated cavity ring-down spectrometer, which had been modified to account for cross interference by water vapour. Each manufacturer extracted the captured ammonia on the exposed samplers in the form of ammonium (NH4+) using their own accredited traceable wet chemical techniques, and then reported data

  6. Numerical analysis of flow fields generated by accelerating flames

    Energy Technology Data Exchange (ETDEWEB)

    Kurylo, J.

    1977-12-01

    Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.

  7. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  8. Smoldering and Flame Resistant Textiles via Conformal Barrier Formation.

    Science.gov (United States)

    Zammarano, Mauro; Cazzetta, Valeria; Nazaré, Shonali; Shields, J Randy; Kim, Yeon Seok; Hoffman, Kathleen M; Maffezzoli, Alfonso; Davis, Rick

    2016-12-07

    A durable and flexible silicone-based backcoating (halogen free) is applied to the backside of an otherwise smoldering-prone and flammable fabric. When exposed to fire, cyclic siloxanes (produced by thermal decomposition of the backcoating) diffuse through the fabric in the gas phase. The following oxidation of the cyclic siloxanes forms a highly conformal and thermally stable coating that fully embeds all individual fibers and shields them from heat and oxidation. As a result, the combustion of the fabric is prevented. This is a novel fire retardant mechanism that discloses a powerful approach towards textiles and multifunctional flexible materials with combined smoldering/flaming ignition resistance and fire-barrier properties.

  9. PENETRATION OF A SHOCK WAVE IN A FLAME FRONT

    Directory of Open Access Journals (Sweden)

    Dan PANTAZOPOL

    2009-09-01

    Full Text Available The present paper deals with the interactions between a fully supersonic flame front, situated in a supersonic two-dimensional flow of an ideal homogeneous combustible gas mixture, and an incident shock wawe, which is penetrating in the space of the hot burnt gases. A possible configuration, which was named ,,simple penetration” is examined. For the anlysis of the interference phenomena, shock polar and shock-combustion polar are used. At the same time, the paper shows the possibility to produce similar but more complicated configurations, which may contain expansion fans and reflected shock waves.

  10. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert

    2016-01-05

    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  11. Simulations of flame generated particles

    KAUST Repository

    Patterson, Robert

    2016-01-01

    The nonlinear structure of the equations describing the evolution of a population of coagulating particles in a flame make the use of stochastic particle methods attractive for numerical purposes. I will present an analysis of the stochastic fluctuations inherent in these numerical methods leading to an efficient sampling technique for steady-state problems. I will also give some examples where stochastic particle methods have been used to explore the effect of uncertain parameters in soot formation models. In conclusion I will try to indicate some of the issues in optimising these methods for the study of uncertain model parameters.

  12. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  13. Chemical processes in the HNF flame

    NARCIS (Netherlands)

    Ermolin, N.E.; Zarko, V.E.; Keizers, H.L.J.

    2006-01-01

    Results of modeling the HNF flame structure are presented. From an analysis of literature data on the thermal decomposition and combustion of HNF, it is concluded that the dissociative vaporization of HNF proceeds via the route HNFliq → (N2H4)g + (HC(NO 2)3)g. The flame structure is modeled using a

  14. Lean premixed flames for low NO{sub x} combustors

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.; Tseng, L.; Bryjak, J. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-10-01

    Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.

  15. Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Xu, Fuchao; García-Bermejo, Ángel; Malarvannan, Govindan; Gómara, Belén; Neels, Hugo; Covaci, Adrian

    2015-07-03

    A multi-residue analytical method was developed for the determination of a range of flame retardants (FRs), including polybrominated diphenyl ethers (PBDEs), emerging halogenated FRs (EFRs) and organophosphate FRs (PFRs), in food matrices. An ultrasonication and vacuum assisted extraction (UVAE), followed by a multi-stage clean-up procedure, enabled the removal of up to 1g of lipid from 2.5 g of freeze-dried food samples and significantly reduce matrix effects. UVAE achieves a waste factor (WF) of about 10%, while the WFs of classical QuEChERS methods range usually between 50 and 90%. The low WF of UVAE leads to a dramatic improvement in the sensitivity along with saving up to 90% of spiking (internal) standards. Moreover, a two-stage clean-up on Florisil and aminopropyl silica was introduced after UVAE, for an efficient removal of pigments and residual lipids, which led to cleaner extracts than normally achieved by dispersive solid phase extraction (d-SPE). In this way, the extracts could be concentrated to low volumes, e.g. analysis of PFRs was performed on GC-EI-MS, while PBDEs and EFRs were measured by GC-ECNI-MS. Validation tests were performed with three food matrices (lean beef, whole chicken egg and salmon filet), obtaining acceptable recoveries (66-135%) with good repeatability (RSD 1-24%, mean 7%). Method LOQs ranged between 0.008 and 0.04 ng/g dw for PBDEs, between 0.08 and 0.20 ng/g dw for EFRs, and between 1.4 and 3.6 ng/g dw for PFRs. The method was further applied to eight types of food samples (including meat, eggs, fish, and seafood) with lipid contents ranging from 0.1 to 22%. Various FRs were detected above MLOQ levels, demonstrating the wide-range applicability of our method. To the best of our knowledge, this is the first method reported for simultaneous analysis of brominated and organophosphate FRs in food matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    Science.gov (United States)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  17. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  18. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop

    2013-12-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  19. Study on air ingress during an early stage of a primary-pipe rupture accident of a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hishida, M.; Takeda, T.

    1991-01-01

    A primary-pipe rupture accident is one of the design-based accidents of the HTTR. As the first step of our final goal of predicting the multicomponent gas flow in a reactor during the early stages of the accident, the present paper aims at studying experimentally and analytically, the basic features of air ingress and gas transportation by transient molecular diffusion and the transient natural convection of a two-component gas mixture. The present paper comprises two main parts. The first part deals with analytical and experimental studies on N 2 ingress (corresponding to air ingress) and gas transportation by molecular diffusion and the one-dimensional natural convection of an He-N 2 two-component gas mixture in a reverse-U-shaped tube. Analytical and experimental results are discussed on the N 2 mole fraction change with time after the simulated pipe rupture and on the initation time of the natural circulation of pure N 2 . The second part deals with a preliminary simulation test of air ingress during the early stages of the accident. The test is performed with a very simple model of the reactor. The experimental results are discussed on the change in mole fraction of air with time and on the initiation time of the natural circulation of pure air. (orig.)

  20. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    Science.gov (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  1. Numerical modeling for flame dynamics and combustion processes in a two-sectional porous burner with a detailed chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Jun; Kim, Yong Mo [Hanyang University, Seoul (Korea, Republic of)

    2014-11-15

    A two-dimensional model with the detailed chemistry and variable transport properties has been applied to numerically investigate the combustion processes and flame dynamics in the bilayer porous burner. To account for the velocity transition and diffusion influenced by solid matrix, porosity terms are included in the governing equations. Heat transfer coefficient is calculated by Nusselt number to reflect the effect of gas velocity, pore diameter, and material properties. The detailed chemistry is based on GRI 2.11. Numerical results indicate that the present approach is capable of the essential features of the premixed combustion in the porous media in terms of the precise flame structure, pollutant formation, and stabilization characteristics. In this bilayer porous burner, the heat transferred from the downstream flame zone is conducted to the upstream flame region through the solid matrix. This heat transfer process through the solid matrix substantially influences the flame structure and stabilization characteristics in the porous media. The predicted results are compared with experimental data in terms of temperature for gaseous mixture and solid matrix, CO and NO emission level. Based on numerical results, a precise comparison has been made for the freely propagating premixed flames and the premixed flames with a porous media for various inlet velocities.

  2. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  3. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines

    Science.gov (United States)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable

  4. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  5. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  6. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  7. Numerical study for flame deflector design of a space launch vehicle

    Science.gov (United States)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  8. An experimental and numerical study of nitrogen oxide formation mechanisms in ammonia-hydrogen-air flames

    Science.gov (United States)

    Kumar, Praveen

    The demand for sustainable alternative fuels is ever-increasing in the power generation, transportation, and energy sectors due to the inherent non-sustainable characteristics and political constraints of current energy resources. A number of alternative fuels derived from cellulosic biomass, algae, or waste are being considered, along with the conversion of electricity to non-carbon fuels such as hydrogen or ammonia (NH3). The latter is receiving attention recently because it is a non-carbon fuel that is readily produced in large quantities, stored and transported with current infrastructure, and is often a byproduct of biomass or waste conversion processes. However, pure or anhydrous ammonia combustion is severely challenging due to its high auto-ignition temperature (650 °C), low reactivity, and tendency to promote NOx formation. As such, the present study focuses on two major aspects of the ammonia combustion. The first is an applied investigation of the potential to achieve pure NH3 combustion with low levels of emissions in flames of practical interest. In this study, a swirl-stabilized flame typically used in fuel-oil home-heating systems is optimized for NH3 combustion, and measurements of NO and NH3 are collected for a wide range of operating conditions. The second major focus of this work is on fundamental investigation of NO x formation mechanisms in flames with high levels of NH3 in H2. For laminar premixed and diffusion jet flames, experimental measurements of flame speeds, exhaust-gas sampling, and in-situ NO measurements (NO PLIF) are compared with numerically predicted flames using complex chemical kinetics within CHEMKIN and reacting CFD codes i.e., UNICORN. From the preliminary testing of the NOx formation mechanisms, (1) Tian (2) Konnov and (3) GRI-Mech3.0 in laminar premixed H2/NH 3 flames, the Tian and Konnov mechanisms are found to capture the reduction in measured flame speeds with increasing NH3 in the fuel mixture, both qualitatively and

  9. Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications

    Directory of Open Access Journals (Sweden)

    Sophie Wendels

    2017-07-01

    Full Text Available Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010 in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis–Arbuzov, Friedels–Crafts and Grignard reactions. In general, most flame retardant derivatives discussed in this review have been prepared via a one- to two-step synthetic strategy with relatively high yields greater than 80%. Specific examples of P-C containing flame retardants synthesized via suitable synthetic strategy and their applications on various polymer systems are described in detail. Aliphatic phosphorus compounds being liquids or low melting solids are generally applied in polymers via coatings (cellulose or are incorporated in the bulk of the polymers (epoxy, polyurethanes during their polymerization as reactive or non-reactive additives. Substituents on the P atoms and the chemistry of the polymer matrix greatly influence the flame retardant behavior of these compounds (condensed phase vs. the gas phase. Recently, aromatic DOPO based phosphinate flame retardants have been developed with relatively higher thermal stabilities (>250 °C. Such compounds have potential as flame retardants for high temperature processable

  10. Nonorthogonality analysis of a thermoacoustic system with a premixed V-shaped flame

    International Nuclear Information System (INIS)

    Ji, Chenzhen; Zhao, Dan; Li, Xinyan; Li, Shihuai; Li, Junwei

    2014-01-01

    Highlights: • Nonorthogonality analysis of a choked thermoacoustic system is conducted. • A thermoacoustic model of a premixed V-shaped flame is developed. • Nonorthogonality is identified to arise from the boundary condition and the flame. • The contribution from the flame is shown to play a dominant role. • Eigenmodes nonorthogonality leads to transient growth of acoustic disturbances. - Abstract: Thermoacoustic instability occurs in many combustion systems, such as aero-engine afterburners, rocket motors, ramjets and gas turbines. It most often arises due to the coupling between unsteady heat release and acoustic waves. In this work, nonorthogonality analysis of a choked combustor with a gutter confined is conducted. Such configuration is used as a simplified model of the afterburner of an aero-engine. A thermoacoustic model is developed first to study the nonnormal interaction between acoustic disturbances and a premixed V-shaped flame anchored to the tip of the gutter. Eigenmode nonorthogonality analysis is then conducted. The thermoacoustic system is shown to be nonnormal and characterized by nonorthogonal eigenmodes. The nonorthogonality is identified to arise from both the complex boundary condition and the monopole-like flame. However, the contribution from the Robin-type boundary is approximately 1.5% of that from the flame. Thus the flame is identified to play a dominant role. One practical conclusions is that acoustic disturbances undergo transient growth in a combustion system with nonorthogonal eigenmodes. Such finite-time growth, which cannot be predicted by using classical linear theory might trigger high-amplitude self-sustained oscillations