WorldWideScience

Sample records for primary fission detector

  1. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  2. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  3. Neutron threshold activation detectors (TAD) for the detection of fissions

    Science.gov (United States)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  4. Neutron threshold activation detectors (TAD) for the detection of fissions

    International Nuclear Information System (INIS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-01-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (∼3 vs. ∼0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  5. Neutron threshold activation detectors (TAD) for the detection of fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgozani@rapiscansystems.com [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States); Stevenson, John; King, Michael J. [Rapiscan Laboratories, Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons ({approx}3 vs. {approx}0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron 'flash') where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector

  6. Fission distribution measurements of Atucha's fuel pellets with solid state track detectors

    International Nuclear Information System (INIS)

    Ricabarra, M.D. Bovisio de; Waisman, Dina.

    1979-08-01

    Distribution of fissions in a UO 2 rod has been measured by means of solid state detectors. Mica muscovite and Makrofol-N detectors were used in the experiment. The merits of mica muscovite relative to the Makrofol-N for the detection of fission fragments have been verified. However both fission track detectors closely agree (0,5%) in the final fission distribution of the UO 2 rod. Sensitivity of the detectors shows to be linear in the range between 50.000and 360.000 fission tracks per square centimeter. Due to the high spatial resolution this method is better than any other technique. Determination were made in UO 2 pellets similar to the fuel element of the Atucha reactor. The average fission rate in the rod has been measured within 0,8% error, and provides an accurate determination for the distribution of fissions in the rod wich is needed for the determination of energy liberated per fission in the natural uranium rod.(author) [es

  7. Neutron detector for detecting rare events of spontaneous fission

    International Nuclear Information System (INIS)

    Ter-Akop'yan, G.M.; Popeko, A.G.; Sokol, E.A.; Chelnokov, L.P.; Smirnov, V.I.; Gorshkov, V.A.

    1981-01-01

    The neutron detector for registering rare events of spontaneous fission by detecting multiple neutron emission is described. The detector represents a block of plexiglas of 550 mm diameter and 700 mm height in the centre of which there is a through 160 mm diameter channel for the sample under investigation. The detector comprises 56 3 He filled counters (up to 7 atm pressure) with 1% CO 2 addition. The counters have a 500 mm length and a 32 mm diameter. The sampling of fission events is realized by an electron system which allows determining the number of detected neutrons, numbers of operated counters, signal amplitude and time for fission event detecting. A block diagram of a neutron detector electron system is presented and its operation principle is considered. For protection against cosmic radiation the detector is surronded by a system of plastic scintillators and placed behind the concrete shield of 6 m thickness. The results of measurements of background radiation are given. It has been found that the background radiation of single neutron constitutes about 150 counts per hour, the detecting efficiency of single neutron equals 0.483 +- 0.005, for a 10l detector sensitive volume. By means of the detector described the parameters of multiplicity distribution of prompt neutrons for 256 Fm spontaneous fission are measured. The average multiplicity equals 3.59+-0.06 the dispersion being 2.30+-0.65

  8. Critical angles for fission fragment registrations in some solid state track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, A D; Bahromi, I I; Beresina, N V [AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki; and others

    1980-03-01

    In studies of the registration efficiency of various solid state track detectors (polycarbonate, polyethyleneterephthalate, cellulose nitrate and muscovite) the detectors were irradiated with spontaneous fission fragments from /sup 252/Cf and with fission fragments from /sup 235/U separated according to mass and energy. Experimental details are given. Critical angles for the registration of fission fragments in the various detectors are given for specified energies and masses.

  9. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  10. Industrial development of neutron detectors, fission chambers, self powered detectors, ionization chambers

    International Nuclear Information System (INIS)

    Constans, H.; Coville, P.; Guerre, J.

    1975-01-01

    Reactor control requires the determination of neutron flux at all times. The needed characteristics lead to use of several types of detectors: boron lined counters, boron lined ionization chambers, fission ionization chambers and self powered detectors. The principle of the reaction involved the fabrication requirements, the different modes of utilization and the characteristics obtained are examined for each detector. The problem of electric connections in the active area has been solved by developing ''integrated cables'' [fr

  11. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  12. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  13. Application of pulse shape discrimination in Si detector for fission ...

    Indian Academy of Sciences (India)

    Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is ...

  14. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  15. Fission studies of gold induced by (1665 MeV) π- using a CR-39 detector

    International Nuclear Information System (INIS)

    Muhammad Ikram Shahzad; Yasin, Zafar; Sher, Gul

    2012-01-01

    The fission cross section and fission probability of 197 Au, induced by (1665 MeV) π'-, have been studied using CR-39 track detectors. A 4π-geometry was used to count track statistics. A beam of negative pions of 1665 MeV was produced at AGS of Brookhaven National Laboratory, USA, and allowed to fall normally on the stack. Two detectors from the stack were scanned for fission fragment tracks after etching in 6N NaOH at 70 ℃. The statistics of fission fragment tracks in both detectors were obtained. It was found that there was a marked asymmetry of registered tracks with respect to the forward and backward hemispheres. This asymmetry could be partly accounted for on the basis of momentum transfer to the struck nucleus. On the basis of counting statistics fission cross section was measured, and fission probability was determined by dividing the fission cross section with the reaction cross section. The fission cross-section and fission probability were compared with the computed values using the cascade-exciton model code CEM95. (authors)

  16. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  17. Alkaline glass as induced fission fragment detectors

    International Nuclear Information System (INIS)

    Amorim, A.M.M.

    1986-01-01

    The slide glass, registered trade marks INLAB, INVICT and PERFECTA were compared. For the three kinds of glasses the following studies were done: chemical composition; general dissolution rate for hydrofluoric acid solutions of concentrations between 1 and 10M, at 30 0 C and ultrasound shaking; relative efficiency for recording fission fragment tracks from 252 Cf. The INLAB glass was selected due to the better quality of its surface after chemical etching. The HF concentration 2.5M was determined for chemical etching of INLAB glass, and the optimum etching time was chosen between 8 and 10 minutes. The thermal attenuation of latent tracks in the environmental temperature was observed for intervals uo to 31 days between the detector exposure to the fission fragment source and etching of tracks. Several methods were used for determining the detector parameters, such as: critical angle, angle of the cone and efficiency of etching. The effects of gamma irradiation from 60 Co and reactor neutrons in material properties as track detector were studied. Attenuation of latent tracks and saturation of color centers were observed for doses over 100M Rad. Since this kind of material contains uranium as impurity, uniformely distributed, slide glass were calibrated to be applied as a monitor of thermal neutron flux in nuclear reactor. (Author) [pt

  18. Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments

    International Nuclear Information System (INIS)

    Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.

    2014-01-01

    In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions

  19. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  20. Analysis for In-situ Fission Rate Measurements using 4He Gas Scintillation Detectors

    International Nuclear Information System (INIS)

    Lewis, Jason M.; Raetz, Dominik; Jordan, Kelly A.; Murer, David

    2013-06-01

    Active neutron interrogation is a powerful NDA technique that relies on detecting and analyzing fission neutrons produced in a fuel sample by an interrogating high neutron flux. 4 He scintillation gas fast neutron detectors are investigated in this paper for use in a novel fission rate measurement technique The He-4 detectors have excellent gamma rejection, a fast response time, and give significant information on incident neutron energy allowing for energy cuts to be applied to the detected signal. These features are shown in this work to allow for the detection of prompt fission neutrons in-situ during active neutron interrogation of a 238 U sample. The energy spectrum from three different neutrons sources ( 252 Cf, AmBe, AmLi) is measured using the 4 He detection system and analyzed. An initial response matrix for the detector is determined using these measurements and the kinematic interaction properties of the elastic scattering with the 4 He. (authors)

  1. Effect of high gamma background on neutron sensitivity of fission detectors

    International Nuclear Information System (INIS)

    Balagi, V.; Prasad, K.R.; Kataria, S.K.

    2004-01-01

    Tests were performed on two parallel plate and two cylindrical fission detectors in pulse and dc mode. The effect of gamma background on neutron sensitivity was studied in thermal neutron flux from 30 nv to 60 nv over which gamma field intensity ranging from 230 kR/h to 3.7 MR/h was superposed. In the case of one of the parallel plate detectors the fall in neutron sensitivity was observed to be 3.7% at 1 MR/h and negligible below 1 MR/h. In the case of one of the cylindrical counters the fall in neutron sensitivity was negligible below 500 kR/h and 37% at 1 MR/h. The data was used to derive the design parameters for a wide range fission detector to be procured for PFBR instrumentation for operation at 600 degC and gamma background of 1 MR/h. (author)

  2. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  3. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  4. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  5. Detector for gaseous nuclear fission products

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Kubo, Katsumi.

    1979-01-01

    Purpose: To facilitate the fabrication of a precipitator type detector, as well as improve the reliability. Constitution: Gas to be measured flown in an anode is stored in a gas processing system. By applying a voltage between the anode and the cathode, if positively charged Rb or Cs which is the daughter products of gaseous fission products are present in the gas to be measured, the daughter products are successively deposited electrostatically to the cathode. The daughter products issue beta-rays and gamma-rays to ionize the argon gas at the anode, whereby ionizing current flows between both of the electrodes. Pulses are generated from the ionizing current, and presence or absence, as well as the amount of the gaseous fission products are determined by the value recorded for the number of the pulses to thereby detect failures in the nuclear fuel elements. After the completion of the detection, the inside of the anode is evacuated and the cathode is heated to evaporate and discharge the daughter products externally. This eliminates the effects of the former detection to the succeeding detection. (Moriyama, K.)

  6. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  7. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  8. Amplifier channel for a fission fragment semiconductor detector

    International Nuclear Information System (INIS)

    Tyurin, G.P.

    1981-01-01

    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  9. Study of ternary and quaternary spontaneous fission of 252Cf with the NESSI detector

    International Nuclear Information System (INIS)

    Tishchenko, V.G.; Jahnke, U.; Herbach, C.M.; Hilscher, D.

    2002-11-01

    Ternary and quaternary spontaneous decay of 252 Cf was studied with the NESSI detector, a combination of two 4π detectors for charged particles, neutrons and γ-rays. The applied method of particle identification by measuring the energies and relative time-of-flights of the decay products is shown to be very effective for the study of rare decay modes. The energy and angular distributions of the decay products, the associated neutron multiplicities, the total energy of the prompt γ-radiation as well as correlations between the various observables were measured for the first time in a single full-scale experiment. The characteristics of ternary fission known from previous investigations are confirmed in the frame of a methodically independent experiment. Preliminary estimates of the quaternary fission yield are presented. An attempt is made to determine the mechanism of quaternary fission. (orig.)

  10. On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy

    Science.gov (United States)

    Roberts, Jeremy A.

    2018-01-01

    Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.

  11. Fission-product yields for thermal-neutron fission of 243Cm determined from measurements with a high-resolution low-energy germanium gamma-ray detector

    International Nuclear Information System (INIS)

    Merriman, L.D.

    1984-04-01

    Cumulative fission-product yields have been determined for 13 gamma rays emitted during the decay of 12 fission products created by thermal-neutron fission of 243 Cm. A high-resolution low-energy germanium detector was used to measure the pulse-height spectra of gamma rays emitted from a 77-nanogram sample of 243 Cm after the sample had been irradiated by thermal neutrons. Analysis of the data resulted in the identification and matching of gamma-ray energies and half-lives to individual radioisotopes. From these results, 12 cumulative fission product yields were deduced for radionuclides with half-lives between 4.2 min and 84.2 min. 7 references

  12. Solid state nuclear track detectors in the measurement of alpha to fission branching ratios of heavy actinides

    International Nuclear Information System (INIS)

    Pandey, A.K.; Sharma, R.C.; Padalkar, S.K.; Kalsi, P.C.; Iyer, R.H.

    1992-01-01

    A sequential etching procedure for revelation of alpha and fission tracks in CR-39 was developed and optimized. Using this technique alpha and fission tracks can be differentiated unambiguously because of significant differences in their sizes and etching times. This registration and revelation procedure for alpha and fission tracks may be used for the studies of half lives, alpha to fission branching ratios and identification of radionuclides based on their decay schemes. It has the added advantage that both alpha decay and fission events can be studied using one detector and hence uncertainties related to efficiency, registration geometry, registration times, amount of radionuclides etc can be eliminated or minimized. The effects of neutron, gamma and alpha radiations on the alpha and fission fragment tracks registration and revelation properties of CR-39 detectors [CR-39, CR-39 (DOP)] were also studied. The IR spectra were also studied to find out the nature of chemical changes produced by these radiations on CR-39. (author). 32 refs., 7 figs., 4 tabs

  13. A twin Frisch-grid ionization chamber as a selective detector for the delayed gamma-spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L., E-mail: laurent.gaudefroy@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Roger, T., E-mail: roger@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Spitaels, C. [GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen (France); Aupiais, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Mottier, J. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS-IN2P3, F-91406 Orsay (France)

    2017-05-21

    We present a twin Frisch-grid ionization chamber. The detector is meant to provide high selective power for the study of delayed gamma-ray spectroscopy of fission fragments produced via {sup 252}Cf spontaneous fission. A mean energy resolution on the kinetic energy of fission fragments of 675 keV (FWHM) is achieved and allows us to resolve masses of fragments for fission events where neutron emission is not energetically possible. The mean mass resolution measured for these particular events amounts to 0.54 mass units (FWHM). For fission events with neutron emission a resolution of 4 mass units (FWHM) is reported. Information on fragment emission angle is measured with a resolution of 0.1 on the difference of the cosines determined for both halves of the detector. A charge resolution of 4.5 charge units (FWHM) is also demonstrated.

  14. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  15. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Czirr, J. Bart, E-mail: czirr@juno.com [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2012-11-01

    The response of a {sup 3}He neutron detector is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the {sup 3}He. If there is too much moderation, neutrons will not reach the {sup 3}He. In applications for portal or border monitors where {sup 3}He detectors are used to interdict illicit importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around {sup 3}He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of {sup 3}He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a point {sup 252}Cf source placed in the center of polyethylene spheres of varying radius. Detector efficiency as a function of box geometry and shielding is explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that incremental benefits are minimal if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the {sup 3}He tubes, however, is very important. For bare sources, about 4-5 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0.5-1 cm. Similar conclusions can be applied to polyethylene boxes employing two {sup 3}He tubes. Two-tube boxes with front moderators of non-uniform thickness may be useful for detecting neutrons over a wide energy range.

  16. A new fission-fragment detector to complement the CACTUS-SiRi setup at the Oslo Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Tornyi, T.G., E-mail: tornyitom@atomki.hu [Department of Physics, University of Oslo (Norway); Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Görgen, A.; Guttormsen, M.; Larsen, A.C.; Siem, S. [Department of Physics, University of Oslo (Norway); Krasznahorkay, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Csige, L. [Institute of Nuclear Research of the Hungarian Academy of Sciences (MTA Atomki), Debrecen (Hungary); Max-Planck-Institute for Quantum Optics, D-85748 Garching (Germany)

    2014-02-21

    An array of Parallel Plate Avalanche Counters (PPAC) for the detection of heavy ions has been developed. The new device, NIFF (Nuclear Instrument for Fission Fragments), consists of four individual detectors and covers 60% of 2π. It was designed to be used in conjunction with the SiRi array of ΔE−E silicon telescopes for light charged particles and fits into the CACTUS array of 28 large-volume NaI scintillation detectors at the Oslo Cyclotron Laboratory. The low-pressure gas-filled PPACs are sensitive for the detection of fission fragments, but are insensitive to scattered beam particles of light ions or light-ion ejectiles. The PPAC detectors of NIFF have good time resolution and can be used either to select or to veto fission events in in-beam experiments with light-ion beams and actinide targets. The powerful combination of SiRi, CACTUS, and NIFF provides new research opportunities for the study of nuclear structure and nuclear reactions in the actinide region. The new setup is particularly well suited to study the competition of fission and γ decay as a function of excitation energy.

  17. Cerenkov Detectors for Fission Product Monitoring in Reactor Coolant Water

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O

    1967-09-15

    The expected properties of Cerenkov detectors when used for fission product monitoring in water cooled reactors and test loops are discussed from the point of view of the knowledge of the sensitivity of these detectors to some beta emitting isotopes. The basic theory for calculation of the detector response is presented, taking the optical transmission in the sample container and the properties of the photomultiplier tube into account. Special attention is paid to the energy resolution of this type of Cerenkov detector. For the design of practical detectors the results from several investigations of various window and reflector materials are given, and the selection of photomultiplier tubes is briefly discussed. In the case of optical reflectors and photomultiplier tubes reference is made to two previous reports by the author. The influence of the size and geometry of the sample container on the energy resolution follows from a separate investigation, as well as the relative merits of sample containers with transparent inner walls. Provided that the energy resolution of the Cerenkov detector is sufficiently high, there are several reasons for using this detector type for failed-fuel-element detection. It seems possible to attain the desired energy resolution by careful detector design.

  18. Preliminary results of fission induced by (1068 MeV) pi in Cu, Sn, Au and Bi using CR-39 detectors

    CERN Document Server

    Khan, H A; Shahzad, M I; Manzoor, S; Farooq, M A; Sher, G; Khan, E U; Peterson, R J

    1999-01-01

    Fission probabilities in pion induced reactions exhibit characteristic variations with respect to pion energies and target fissility values. At incident energies well above the pion-nucleon resonances, the statistical model seems to give good description of the observed data. We have used negative pions of energy 1068 MeV, in order to study fission induced in four target materials with fissility values [(Z-1)2/A] ranging from 12 to 32. All targets were arranged in a single stack in such a way that each target coated on a CR-39 detector was sandwiched by another uncoated CR-39 detector plate. The stack was irradiated at the AGS of Brookhaven National Laboratory (USA). This set-up ensures solid angle coverage of almost 4 pi degrees, so that for each fission event one of the fission fragments is expected to be trapped by the forward detector and one by the detector covering backward hemisphere. The effect of pion momentum transfer to the struck nucleus was observed in the form of asymmetry between events counted...

  19. In-reactor testing of self-powered neutron detectors and miniature fission chambers

    International Nuclear Information System (INIS)

    Duchene, J.; LeMeur, R.; Verdant, R.

    1975-01-01

    The CEA has tested a variety of ''slow'' self-powered neutron detectors with rhodium, silver and vanadium emitters. Currently there are 120 vanadium detectors in the EL4 heavy water reactor. In addition, ''fast'' detectors with cobalt emitters have been tested at Saclay and 50 of these are in reactor. Other studies are concerned with 6 mm diameter miniature fission chambers. Two fast response chambers with argon-nitrogen filling gas became slow during irradiation, but operated to 600 deg C. An argon filled chamber of 4.7 mm diameter, for traversing in core system in pressurized water reactor, has shown satisfactory test results. (author)

  20. Detection of fission fragments using thick samples in contact with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1987-01-01

    Whenever use is made of thick samples in contact with solid state nuclear track detectors for determining fission yields, one of the fundamental problems is the evaluation of the effective number of target nuclei which contributes to the fraction of the number of fission events that will be recorded. The evaluation of the effective number of target nuclei which contributes to recorded events is based on the effective thickness of the sample. A method for evaluating effective thickness of thick samples for binary fission modes, is presented. A cross section equation which takes into account all the necessary corrections due to fragment attenuation effects by a thick target for calculation induced fission yields, was obtained. (Author) [pt

  1. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  2. Antineutrino detector for anti ν oscillation studies at fission weapon tests and at LAMPF

    International Nuclear Information System (INIS)

    Kruse, H.W.; Loncoski, R.; Mack, J.

    1980-01-01

    Two anti ν oscillation experiments are planned, incorporating large volume (4200 l) liquid scintillation detectors 1) at large distances (450 to 800 m) from fission weapon tests and 2) at 12 to 50 m from LAMPF beam dump where significant anti ν/sub e/ events are detected only if some oscillation operates, such as ν/sub μ/ → ν/sub e/. Design criteria, detector characteristics, and experimental considerations are given

  3. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  4. Using New Fission Data with the Multi-detector Analysis System for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jerald Donald

    1998-11-01

    New experiments using an array of high purity germanium detectors and fast liquid scintillation detectors has been performed to observe the radiation emitted from the induced fission of 235U with a beam of thermal neutrons. The experiment was performed at the Argonne National Laboratory Intense Pulsed Neutron Source. Preliminary observations of the data are presented. A nondestructive analysis system for the characterization of DOE spent nuclear fuel based on these new data is presented.

  5. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  6. NEET Micro-Pocket Fission Detector. Final Project report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rempe, Joy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Philip [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Villard, J. -F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to

  7. Using New Fission Data with the Multi-detector Analysis System for Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A. V. Ramayya; A.V. Daniel (Joint Institute for Nuclear Research); C. J. Beyer (Vanderbilt Univ.); E. L. Reber; G. M. Ter-Akopian; G.S. Popeko; J. D. Cole; J. H. Hamilton; J. K. Jewell (INEEL); M. W. Drigert; R. Aryaeinejad; Ts.Yu. Oganessian

    1998-11-01

    New experiments using an array of high purity germanium detectors and fast liquid scintillation detectors has been performed to observe the radiation emitted from the induced fission of 235U with a beam of thermal neutrons. The experiment was performed at the Argonne National Laboratory Intense Pulsed Neutron Source. Preliminary observations of the data are presented. A nondestructive analysis system for the characterization of DOE spent nuclear fuel based on these new data is presented.

  8. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    Science.gov (United States)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  9. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  10. Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Balagna, J.P.; Menlove, H.O.

    1976-01-01

    Two specialized neutron-sensitive detectors are described which are employed for rapid assays of fissionable elements by sensing for delayed neutrons emitted by samples after they have been irradiated in a nuclear reactor. The more sensitive of the two detectors, designed to assay for uranium in water samples, is 40% efficient; the other, designed for sediment sample assays, is 27% efficient. These detectors are also designed to operate under water as an inexpensive shielding against neutron leakage from the reactor and neutrons from cosmic rays. (Auth.)

  11. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  12. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  13. $\\bar{p}$-Induced Fission Studies with Plastic Track Detectors Using 4$\\pi$-Geometry

    CERN Multimedia

    2002-01-01

    % EMU20 \\\\ \\\\ The annihilation of a stopped antiproton on the surface of a target nucleus produces on the average five pions with a mean energy of 230~MeV. The high excitation of the nuclei with low angular momentum transfer can also be achieved by direct pion-nucleus interactions. The fission probabilities of highly excited nuclei can be explained on the basis of high energy limit of statistical theory. Previously the binary fission and higher multiplicity break-up of various nuclei caused by the absorption of pions has been studied by our group. The mechanism of nuclear excitation may still be the same when an antiproton annihilates in a nucleus and produces pions. It would be interesting to see whether the $\\bar{p}$ annihilation produces high enough excitation energies for nuclear phase-transition to take place. If so, then the fragmentation would overwhelm binary and ternary fission process. \\\\ \\\\The use of a highly sensitive plastic detector, CR-39, was made by our group in a number of studies involving ...

  14. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads mg -1 h -1 +- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads mg -1 h -1 . These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  15. Application of fission track detectors to californium-252 neutron dosimetry in tissue near the radiation source

    International Nuclear Information System (INIS)

    Oswald, R.A.; Lanzl, L.H.; Rozenfeld, M.

    1981-01-01

    Fission track detectors were applied to a unique problem in neutron dosimetry. Measurements of neutron doses were required at locations within a tumor of 1 cm diameter implanted on the back of a mouse and surrounded by a square array of four 252 Cf medical sources. Measurements made in a tissue-equivalent mouse phantom showed that the neutron dose rate to the center of the tumor was 2.18 rads micrograms-1 h-1 +/- 8.4%. The spatial variation of neutron dose to the tumor ranged from 1.88 to 2.55 rads micrograms-1 h-1. These measurements agree with calculated values of neutron dose to those locations in the phantom. Fission track detectors have been found to be a reliable tool for neutron dosimetry for geometries in which one wishes to know neutron dose values which may vary considerably over distances of 1 cm or less

  16. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: Sabine.Mayer@psi.ch; Boschung, M.; Fiechtner, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Fuerstner, M. [CERN, CH-1211 Geneva 23 (Switzerland); Wernli, C. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2008-02-15

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement.

  17. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    International Nuclear Information System (INIS)

    Mayer, S.; Boschung, M.; Fiechtner, A.; Fuerstner, M.; Wernli, C.

    2008-01-01

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement

  18. Monte-Carlo Generation of Time Evolving Fission Chains

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, Kenneth S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, Manoj K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, Neal J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-08-01

    About a decade ago, a computer code was written to model neutrons from their “birth” to their final “death” in thermal neutron detectors (3He tubes): SrcSim had enough physics to track the neutrons in multiplying systems, appropriately increasing and decreasing the neutron population as they interacted by absorption, fission and leakage. The theory behind the algorithms assumed that all neutrons produced in a fission chain were all produced simultaneously, and then diffused to the neutron detectors. For cases where the diffusion times are long compared to the fission chains, SrcSim is very successful. Indeed, it works extraordinarily well for thermal neutron detectors and bare objects, because it takes tens of microseconds for fission neutrons to slow down to thermal energies, where they can be detected. Microseconds are a very long time compared to the lengths of the fission chains. However, this inherent assumption in the theory prevents its use to cases where either the fission chains are long compared to the neutron diffusion times (water-cooled nuclear reactors, or heavily moderated object, where the theory starts failing), or the fission neutrons can be detected shortly after they were produced (fast neutron detectors). For these cases, a new code needs to be written, where the underlying assumption is not made. The purpose of this report is to develop an algorithm to generate the arrival times of neutrons in fast neutron detectors, starting from a neutron source such as a spontaneous fission source (252Cf) or a multiplying source (Pu). This code will be an extension of SrcSim to cases where correlations between neutrons in the detectors are on the same or shorter time scales as the fission chains themselves.

  19. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  20. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  1. Isotopic composition of primary xenon and the fission of Pu-244

    Energy Technology Data Exchange (ETDEWEB)

    Levskii, L K

    1983-05-01

    The hypothesis that the origin of xenon on earth is due to the fission of uranium and/or transuranium elements is examined. The isotopic composition of primary xenon on earth is calculated using a model (Levskii, 1980) of the isotopic composition of rare gases which is based on the hypothesis of the heterogeneity of the isotopic composition of the elements of the solar system. The isotopic composition of fission-produced xenon in the atmosphere and solid earth is determined to correspond to the abundance of xenon isotopes as a result of the spontaneous fission of Pu-244 (half-life of 8.2 x 10 to the 7th years). The amount of fission-produced xenon in the atmosphere is shown to amount to about 30 percent (Xe-136). Under certain conditions, the degree of the degassing of the solid earth for xenon is 25 percent, which corresponds to a ratio of Kr-84/Xe-130 45 for the earth as a whole.

  2. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  3. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  4. A fission ionization detector for neutron flux measurements at a spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S.A. (Los Alamos National Lab., Los Alamos, NM (United States)); Balestrini, S. (Los Alamos National Lab., Los Alamos, NM (United States)); Brown, A. (Los Alamos National Lab., Los Alamos, NM (United States)); Haight, R.C. (Los Alamos National Lab., Los Alamos, NM (United States)); Laymon, C.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lee, T.M. (Los Alamos National Lab., Los Alamos, NM (United States)); Lisowski, P.W. (Los Alamos National Lab., Los Alamos, NM (United States)); McCorkle, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Nelson, R.O. (Los Alamos National Lab., Los Alamos, NM (United States)); Parker, W. (Los Alamos National Lab., Los Alamos, NM (United States)); Hill, N.W. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1993-11-15

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  5. A fission ionization detector for neutron flux measurements at a spallation source

    International Nuclear Information System (INIS)

    Wender, S.A.; Balestrini, S.; Brown, A.; Haight, R.C.; Laymon, C.M.; Lee, T.M.; Lisowski, P.W.; McCorkle, W.; Nelson, R.O.; Parker, W.; Hill, N.W.

    1993-01-01

    The construction of a neutron flux monitor that can measure absolute neutron intensities in the neutron energy range from below 1 MeV to over 500 MeV is described. The detector consists of an ionization chamber with several thin deposits of fissionable material. The ionization chamber is thin enough that it does not significantly affect the neutron beam and may be left in the neutron flight path during experimental measurements to continuously monitor the beam flux. The use of this monitor at the continuous-energy spallation neutron source at the WNR target area at LAMPF is described. (orig.)

  6. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  7. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  8. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  9. Study of fission fragments produced by 14N + 235U reaction

    International Nuclear Information System (INIS)

    Yalcinkaya, M.; Erduran, M.N.; Ganioglu, E.; Akkus, B.; Bostan, M.; Gurdal, G.; Erturk, S.; Balabanski, D.; Minkova, A.; Danchev, M.

    2005-01-01

    This work was performed to understand the structure of neutron rich fission fragments around ∼ 130 region. A thin metallic 235 U target was bombarded by 14 N beam with 10 MeV/A from the Separated Sector Cyclotron at the National Accelerator Centre, Cape Town, South Africa. The main goal to detect and identify fission fragments and to obtain their mass distribution was achieved by using Solar Cell detectors in the AFRODITE (African Omnipurpose Detector for Innovative Techniques and Experiments) spectrometer. The X-rays emitted from fission fragments were detected by LEP detectors and γ rays emitted from excited states of the fission fragments were detected by CLOVER detectors in the spectrometer. (author)

  10. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    Moraes, O.M.G. de.

    1984-01-01

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252 Cf, gamma radiation doses of of 60 Co up to 150 MGy, and integrated neutrons fluxes up to 10 20 n/cm 2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.) [pt

  11. Study of electron-capture delayed fission in Am-232

    International Nuclear Information System (INIS)

    Kreek, S.A.; Hall, H.L.; Hoffman, D.C.; Strellis, D.; Gregorich, K.E.

    1996-01-01

    An automated x-ray-fission coincidence system was designed and constructed by LLNL and Lawrence Berkeley National Laboratory (LBNL) for use inside the Gammasphere high efficiency gamma-ray detector array at LBNL. The x-ray-fission coincidence apparatus detection station consists of two surface barrier detectors (for detection of fission fragments) and two high-purity Ge (HPGe) planar x-ray detectors (for measurement of x-rays and low-energy gamma rays). The detection station is placed inside Gammasphere at the 88-Inch Cyclotron at LBNL and used in conjunction with Gammasphere to measure the x-rays, low-energy gamma-rays and fission fragments resulting from the ECDF process. A series of collaborative experiment between LLNL, LBNL, and LANL utilizing various components of the x-ray-fission coincidence apparatus to measure x-rays and gamma-rays in the decay of a stationary 252 Cf source were performed to test the various components of the x-ray-fission coincidence apparatus. The test experiments have been completed and the data is currently being analyzed by LBNL. Preliminary test results indicate that the system performed better than expected (e.g., the x-ray detectors performed better than expected with no evidence of microphonic noise that would reduce the photon energy resolution)

  12. Fission neutron spectra measurements at LANSCE - Status and plans

    International Nuclear Information System (INIS)

    Haight, R. C.; Noda, S.; Nelson, R. O.; O'Donnell, J. M.; Devlin, M.; Chatillon, A.; Granier, T.; Taiebb, J.; Laurent, B.; Belier, G.; Becker, J. A.; Wu, C. Y.

    2010-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of 235 U, 238 U, 237 Np and 239 Pu. The range of outgoing energies measured so far is from 0.7 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date are summarized in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including measurements of fission neutrons below 0.7 MeV and improvements in the data above 8 MeV. (authors)

  13. Mass distribution of fission fragments using SSNTDs based image analysis system

    International Nuclear Information System (INIS)

    Kolekar, R.V.; Sharma, D.N.

    2006-01-01

    Lexan polycarbonate track detector was used to obtain mass distribution of fission fragments from 252 Cf planchette source, Normally, if the fission fragments are incident perpendicular to the lexan surface, the diameter of heavy fragment is greater than that of lighter fragment. In practical problems fission fragments are incident on the detector at all angles. So, in the present experiment, lexan detector was exposed to 252 Cf planchette source in 2π geometry. Fission fragments were incident on the detector with various angles. So the projected fission track length for fission fragment of same energy is different because of different angle of incidence. Image analysis software was used to measure the projected track length. But the problem is that for fission fragment having greater angle of incidence the entire track length is not focused on the surface. So reduced track length is measured. This problem is solved by taking two images, one at the surface and one at the tip of track and then overlapping both the images using image analysis software. The projected track length and the depth of the track were used to get the angle of incidence. Fission track lengths were measured for same angle of incidence. In all 500 track lengths were measured and plot for mass distribution for fission fragment was obtained.(author)

  14. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  15. Fission neutron spectra measurements at LANSCE - status and plans

    International Nuclear Information System (INIS)

    Haight, Robert C.; Noda, Shusaku; Nelson, Ronald O.; O' Donnell, John M.; Devlin, Matt; Chatillon, Audrey; Granier, Thierry; Taieb, Julien; Laurent, Benoit; Belier, Gilbert; Becker, John A.; Wu, Ching-Yen

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of 235 U, 238 U, 237 Np and 239 Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  16. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behaviour of simulant fission product species such as caesium iodide, caesium hydroxide and tellurium, in terms of their vapour deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high-density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO/sub 2/ clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapour phase, and specific data using this technique are reported

  17. Chemical aspects of fission product transport in the primary circuit of a light water reactor

    International Nuclear Information System (INIS)

    Bowsher, B.R.; Dickinson, S.; Nichols, A.L.; Ogden, J.S.; Potter, P.E.

    1985-01-01

    The transport and deposition of fission products in the primary circuit of a light water reactor are of fundamental importance in assessing the consequences of severe accidents. Recent experimental studies have concentrated upon the behavior of simulant fission product species such as cesium iodide, cesium hydroxide and tellurium, in terms of their vapor deposition characteristics onto metals representative of primary circuit materials. An induction furnace has been used to generate high density/structural materials aerosols for subsequent analysis, and similar equipment has been incorporated into a glove-box to study lightly-irradiated UO 2 clad in Zircaloy. Analytical techniques are being developed to assist in the identification of fission product chemical species released from the fuel at temperatures from 1000 to 2500 0 C. Matrix isolation-infrared spectroscopy has been used to identify species in the vapor phase, and specific data using this technique are reported

  18. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  19. Detection of fission fragments and alpha particles using the solid trace detector CR-39

    International Nuclear Information System (INIS)

    Santos, R.C.

    1988-01-01

    The technique of detecting charged particles using the solid track detector CR-39 is employed to establish some characteristics of fission fragments and alpha particles emitted from a Cf-252 source. Results are presented and discussed on the following aspects i) distribution of the track diameters; ii) variations on the track diameters to the chemical attack; iii) variations of the chemical attack velocity with respect to concentration and temperature. iv) activation energy of the developping process; v) induction time; vi) critical angle and efficiency on track developping. (A.C.A.S.) [pt

  20. A method for the measurement of fission rates in fast neutron fields using solid state track detectors

    International Nuclear Information System (INIS)

    Hansen, W.; Vogel, W.

    1984-04-01

    Solid state track detectors (SSTDs) are increasingly used for the registration of radiation in different fields of nuclear physics. Because of their small sizes and masses and the absence of any electronics during exposure SSTDs do not cause distortions in the system to be investigated and are useful for measurements at such places being difficult of access. The elaboration of a method is described for fission rate measurements in fast neutron fields applying SSTDs and different fissionable isotopes which were electrodeposited on stainless steel backings. Experiences of the electrodeposition and results of quality checks are presented. The evaluation of the etched tracks is performed with spark counter technique. The dependence of the counting result on essential influence parameters is discussed. (author)

  1. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  2. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stevenson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsai, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating.

  3. Fission neutron output measurements at LANSCE

    International Nuclear Information System (INIS)

    Nelson, Ronald Owen; Haight, Robert C.; Devlin, Matthew J.; Fotiadis, Nikolaos; Laptev, Alexander; O'Donnell, John M.; Taddeucci, Terry N.; Tovesson, Fredrik; Ullmann, J.L.; Wender, Stephen A.; Bredeweg, T.A.; Jandel, M.; Vieira, D.J.; Wu, Ching-Yen; Becker, J.A.; Stoyer, M.A.; Henderson, R.; Sutton, M.; Belier, Gilbert; Chatillon, A.; Granier, Thierry; Laurent, Benoit; Taieb, Julien

    2010-01-01

    Accurate data for both physical properties and fission properties of materials are necessary to properly model dynamic fissioning systems. To address the need for accurate data on fission neutron energy spectra, especially at outgoing neutron energies below about 200 keV and at energies above 8 MeV, ongoing work at LANSCE involving collaborators from LANL, LLNL and CEA Bruyeres-le-Chatel is extending the energy range, efficiency and accuracy beyond previous measurements. Initial work in the outgoing neutron energy range from 1 to 7 MeV is consistent with current evaluations and provides a foundation for extended measurements. As part of these efforts, a new fission fragment detector that reduces backgrounds and improves timing has been designed fabricated and tested, and new neutron detectors are being assessed for optimal characteristics. Simulations of experimental designs are in progress to ensure that accuracy goals are met. Results of these measurements will be incorporated into evaluations and data libraries as they become available.

  4. A compact multi-plate fission chamber for the simultaneous measurement of 233U capture and fission cross-sections

    Directory of Open Access Journals (Sweden)

    Bacak M.

    2017-01-01

    Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.

  5. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  6. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  7. Mass dependence of positive pion-induced fission

    International Nuclear Information System (INIS)

    Khan, H.A.; Khan, N.A.; Peterson, R.J.

    1991-01-01

    Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined

  8. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  9. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  10. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  11. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  12. Multi-sensor radiation detector system

    International Nuclear Information System (INIS)

    Foster, R.G.; Cyboron, R.D.

    1975-01-01

    The invention is a multi-sensor radiation detection system including a self-powered detector and an ion or fission chamber, preferably joined as a unitary structure, for removable insertion into a nuclear reactor. The detector and chamber are connected electrically in parallel, requiring but two conductors extending out of the reactor to external electrical circuitry which includes a load impedance, a voltage source, and switch means. The switch means are employed to alternately connect the detector and chamber either with th load impedance or with the load impedance and the voltage source. In the former orientation, current through the load impedance indicates flux intensity at the self-powered detector and in the latter orientation, the current indicates flux intensity at the detector and fission chamber, though almost all of the current is contributed by the fission chamber. (auth)

  13. Neutron induced current pulses in fission chambers

    International Nuclear Information System (INIS)

    Taboas, A.L.; Buck, W.L.

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained

  14. Barium 139 as Fission Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report is based on a measurement performed at the Cavendish Laboratory (Cambridge) by E. Broda in December 1943 where a technique has been worked out for measuring the fission density in a uranium containing medium in relative units by determining the amount of a suitable fission product formed. Generally a given fission product will be formed in natural uranium by slow neutron fission of U235 or by fast neutron fission of either U235 or U238. It is intended to translate the relative units into absolute units by comparison of the Ba yield with the indication of UF6 fission chamber in the same medium. This has to be done separately for fast and slow neutron fission as the yields may be different. Another application of the technique developed is the measurement of thermal neutron density in an uraniferous medium without using a detector subject to variations of sensitivity according to the properties of the medium. (nowak)

  15. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    Science.gov (United States)

    Gatera, Angélique; Göök, Alf; Hambsch, Franz-Josef; Moens, André; Oberstedt, Andreas; Oberstedt, Stephan; Sibbens, Goedele; Vanleeuw, David; Vidali, Marzio

    2018-03-01

    Recent years have seen an increased interest in prompt fission γ-ray (PFG) measurements motivated by a high priority request of the OECD/NEA for high precision data, mainly for the nuclear fuel isotopes 235U and 239Pu. Our group has conducted a PFG measurement campaign using state-of-the-art lanthanum halide detectors for all the main actinides to a precision better than 3%. The experiments were performed in a coincidence setup between a fission trigger and γ-ray detectors. The time-of-flight technique was used to discriminate photons, traveling at the speed of light, and prompt fission neutrons. For a full rejection of all neutrons below 20 MeV, the PFG time window should not be wider than a few nanoseconds. This window includes most PFG, provided that no isomeric states were populated during the de-excitation process. When isomeric states are populated, PFGs can still be emitted up to 1 yus after the instant of fission or later. To study these γ-rays, the detector response to neutrons had to be determined and a correction had to be applied to the γ-ray spectra. The latest results for PFG characteristics from the reaction 239Pu(nth,f) will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  16. Calibration of a special neutron dosemeter based on solid-state track detectors and fission radiators in various neutron fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Krusche, M.; Schuricht, V.

    1980-01-01

    The calibration of a personnel neutron dosemeter in different neutron fields is described. The badge-like dosemeter contains 5 detectors: polycarbonate foil (10 μm, Makrofol KG), 232 Th, natural uranium, natural uranium with boron, and natural uranium with cadmium. Detector sensitivity and calibration factors have been calculated and measured in radiation fields of 252 Cf fission neutrons, WWR-S reactor neutrons with and without Cd and Fe shielding, 3-MeV (d,t) generator neutrons, and 238 PuBe neutrons. Measurement range and achievable accuracy are discussed from the point of view of applying the dosemeter in routine and emergency uses

  17. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  18. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  19. Sequential fission process observed in the reaction (16.7 MeV/u) 238U + nat.Au using mica as dielectric track detector

    International Nuclear Information System (INIS)

    Shahzad, Muhammad Ikram; Qureshi, Imtinan Elahi; Manzoor, Shahid; Khan, Hameed Ahmed

    1999-01-01

    The evidence of sequential fission has been found in the heavy-ion reaction (16.7 MeV/u) 238 U + nat. Au, using muscovite mica as Dielectric Track Detector (DTD) placed in a 2π-geometry configuration. The reaction products originating from the interactions of 238 U ions with the atoms of gold were registered in the detector in the form of tracks and identified for performing a detailed kinematical analysis. For this purpose the spherical polar coordinates of the correlated tracks of the multipronged events have been analyzed on an event-by-event basis. Automatic, semi-automatic and manual measuring methods have been employed to collect and manipulate the track data. The known characteristics of binary and ternary events observed in the reaction have been used for the calibration of the detectors. The computed masses, Q-values and relative velocities of the reaction products determined in this analysis are compared with theoretical predictions based on sequential fission process. Agreement within one standard deviation with respect to the experimental values has been found for the majority of analyzed events. Therefore, it is concluded that three particles in the exit channel of the reaction are produced in two successive steps. In the first step of the reaction, two intermediate nuclei are formed as a result of an inelastic collision between projectile and target atoms while in the second step the fission of one of the intermediate nuclei of the previous step takes place. Furthermore no proximity effects have been observed

  20. Fission fragment angular distributions in proton-induced fission of 209Bi (p,f) and 197Au (p,f)

    International Nuclear Information System (INIS)

    Soheily, S.; Noshad, H.; Lamehi-Rashti, M.

    2002-01-01

    The fission fragment angular distributions have been measured for proton-induced fission of 209 B i and 197 A u nuclei using surface barrier detectors at several energies between 25 MeV and 30 MeV. The experimental anisotropies are found to be in agreement with the predictions of the Standard Saddle-Point Statistical Model. The fission cross sections of 209 B i and 197 A u nuclei were also measured and compared with the previous works

  1. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  2. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  3. Thermal flow in detectors of CNA-II with spontaneous fissions source of 238U

    International Nuclear Information System (INIS)

    Mascitti, J. A

    2012-01-01

    The thermal flux in the position of ex-core and in-core CNA-II Nuclear Power Plant (CNA-II) detectors is estimated considering neutron from the 238 U spontaneous fissions as the source, for the reactor cold state (isothermal state with both coolant and moderator at a temperature of 60 o C, a pressure of 35 ata and 15.46 ppm of natural Boron), and 24% inserted control rods (slightly sub-critical). Results are obtained for two different situations: with and without photo-neutrons due to the (γ,n) reaction in D 2 O. It is concluded that the thermal flux is under the detection limit of the boron trifluoride 104-SR or 282-IB detectors (≅10 -1 cm-2.s -1 ). These detectors are located in opposite positions in the inner concrete shielding, having the lowest detection limit among all ex-core detectors. A significant difference is verified in neutron fluxes between both cases, which suggest that photo-neutrons in large heavy water reactors such as CNA-II should not be ignored. The total neutron flux attenuation factor between the inner and outer region of the reactor pressure vessel was estimated to be 7.0 x 10 -7 . It should be mentioned that none of the results here presented has been affected by any correction factor. Each value has a percentage relative error representing the statistical uncertainty due to the probabilistic Monte Carlo method used to obtain it (author)

  4. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  5. Primary Numbers Database for ATLAS Detector Description Parameters

    CERN Document Server

    Vaniachine, A; Malon, D; Nevski, P; Wenaus, T

    2003-01-01

    We present the design and the status of the database for detector description parameters in ATLAS experiment. The ATLAS Primary Numbers are the parameters defining the detector geometry and digitization in simulations, as well as certain reconstruction parameters. Since the detailed ATLAS detector description needs more than 10,000 such parameters, a preferred solution is to have a single verified source for all these data. The database stores the data dictionary for each parameter collection object, providing schema evolution support for object-based retrieval of parameters. The same Primary Numbers are served to many different clients accessing the database: the ATLAS software framework Athena, the Geant3 heritage framework Atlsim, the Geant4 developers framework FADS/Goofy, the generator of XML output for detector description, and several end-user clients for interactive data navigation, including web-based browsers and ROOT. The choice of the MySQL database product for the implementation provides addition...

  6. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  7. Neutron detector using sol-gel absorber

    Science.gov (United States)

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  8. Characteristics of diallyl phthalate resin as a fission track detector

    CERN Document Server

    Tsuruta, T

    1999-01-01

    Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.

  9. Spatial- and Time-Correlated Detection of Fission Fragments

    Directory of Open Access Journals (Sweden)

    Platkevic M.

    2012-02-01

    Full Text Available With the goal to measure angular correlations of fission fragments in rare fission decay (e.g. ternary and quaternary fission, a multi-detector coincidence system based on two and up to four position sensitive pixel detectors Timepix has been built. In addition to the high granularity, wide dynamic range and per pixel signal threshold, these devices are equipped with per pixel energy and time sensitivity providing more information (position, energy, time, enhances particle-type identification and selectivity of event-by-event detection. Operation of the device with the integrated USB 2.0 based readout interface FITPix and the control and data acquisition software tool Pixelman enables online visualization and flexible/adjustable operation for a different type of experiments. Spatially correlated fission fragments can be thus registered in coincidence. Similarly triggered measurements are performed using an integrated spectrometric module with analogue signal chain electronics. The current status of development together with demonstration of the technique with a 252Cf source is presented.

  10. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  11. Determination of the fission products yields, lanthanide and yttrium, in the fission of 238U with neutrons of fission spectra

    International Nuclear Information System (INIS)

    Nicoli, I.G.

    1981-06-01

    A radiochemical investigation is performed to measure the cumulative fission product yields of several lantanides and yttrium nuclides in the 238 U by fission neutron spectra. Natural and depleted uranium are irradiated under the same experimental conditions in order to find a way to subtract the contribution of the 235 U fission. 235 U percentage in the natural uranium was 3.5 times higher than in the depleted uranium. Uranium oxides samples are irradiated inside the core of the Argonaut Reactor, at the Instituto de Engenharia Nuclear, and the lantanides and yttrium are chemically separated. The fission products gamma activities were detected, counted and analysed in a system constituted by a high resolution Ge(Li) detector, 4096 multichannel analyser and a PDP-11 computer. Cumulative yields for fission products with half-lives between 1 to 33 hours are measured: 93 Y, 141 La, 142 La, 143 Ce and 149 Nd. The chain total yields are calculated. The cumulative fission yields measured for 93 Y, 141 La, 142 La, 143 Ce and 149 Nd are 4,49%, 4,54%, 4,95%, 4,16% and 1,37% respectively and they are in good agreement with the values found in the literature. (Author) [pt

  12. Fission product plateout and liftoff in the MHTGR primary system: A review

    International Nuclear Information System (INIS)

    Wichner, R.P.

    1991-04-01

    A review is presented of the technical basis for predicting radioactivity release resulting from depressurization of an MHTGR primary system. Consideration is restricted to so called dry events with no involvement of the steam system. The various types of deposition mechanisms effective for iodine, cesium, strontium, and silver are discussed in terms of their chemical characteristics and the nature of the materials in the primary system. Emphasis is given to iodine behavior, including means for estimating the quantity available for release, the types of plateout locations in the primary system, and the effect of dust on distribution and release. The behavior of fission products cesium, strontium, and silver in such accidents is presented qualitatively. A major part of the review deals with expected dust levels, types, and transport. Available information on the level and nature of dust in the HTGR primary system is reviewed. A summary is presented of dust deposition and liftoff mechanisms. It was concluded that recent approaches to dust liftoff modeling, based on turbulent burst concepts for removal from surfaces, probably offer advantages over the current shear ratio approach. This study concludes that iodine releases from dry depressurization events are likely to be extremely low, on the order of millicuries, due to a predictably low degree of chemical desorption, a low degree of dust liftoff, and a low involvement of iodine with dust. It was also concluded that deposition mechanisms controlling the distribution of fission product material in the primary system, and hence also controlling the degree of liftoff, depend strongly on the chemical nature of the individual elements. Therefore contrary to the current practice, both plateout and liftoff models should reflect those unique chemical and physical properties. 56 refs., 16 figs., 23 tabs

  13. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  14. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  15. Detection of fission products in carbon dioxide by instantaneous ion collection

    International Nuclear Information System (INIS)

    Le Meur, R.; Lorin, A.

    1968-01-01

    This report describes a fission product detector with instantaneous electric collection, capable of analyzing carbon dioxide up to a pressure of 60 bars and at a temperature of 200 C. In contrast to delayed collection detectors, this apparatus makes it possible to collect rubidium and cesium ions as soon as they are formed; this avoids losses due to recombination. The detector has been tested with a fission product source made up of a uranium oxide sample subjected to a neutron flux. The activity of the ions collected as a function of an electric field has been measured for different parameters: pressure, temperature, CO 2 gas flow rate, and the volume of the ion-formation chamber. The sensitivity of this apparatus is compared to that of other fission product detectors. For a low volume-flow rate, e.g. 100 cm 3 sec -1 , its sensitivity for krypton 88 is better than that of a delayed collection detector. An apparatus of this type could be used as a can rupture detector on a reactor with a large number of channels, with a low gas sampling rate per channel. The equipment will be included in the can rupture detector installations in the Fessenheim reactor. (authors) [fr

  16. Sequential fission process observed in the reaction (16.7 MeV/u) {sup 238}U + {sup nat.}Au using mica as dielectric track detector

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Muhammad Ikram; Qureshi, Imtinan Elahi; Manzoor, Shahid; Khan, Hameed Ahmed

    1999-01-04

    The evidence of sequential fission has been found in the heavy-ion reaction (16.7 MeV/u) {sup 238}U + {sup nat.}Au, using muscovite mica as Dielectric Track Detector (DTD) placed in a 2{pi}-geometry configuration. The reaction products originating from the interactions of {sup 238}U ions with the atoms of gold were registered in the detector in the form of tracks and identified for performing a detailed kinematical analysis. For this purpose the spherical polar coordinates of the correlated tracks of the multipronged events have been analyzed on an event-by-event basis. Automatic, semi-automatic and manual measuring methods have been employed to collect and manipulate the track data. The known characteristics of binary and ternary events observed in the reaction have been used for the calibration of the detectors. The computed masses, Q-values and relative velocities of the reaction products determined in this analysis are compared with theoretical predictions based on sequential fission process. Agreement within one standard deviation with respect to the experimental values has been found for the majority of analyzed events. Therefore, it is concluded that three particles in the exit channel of the reaction are produced in two successive steps. In the first step of the reaction, two intermediate nuclei are formed as a result of an inelastic collision between projectile and target atoms while in the second step the fission of one of the intermediate nuclei of the previous step takes place. Furthermore no proximity effects have been observed.

  17. Fission meter

    Science.gov (United States)

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  18. Fission product chemistry and aerosol behaviour in the primary circuit of a pressurised water reactor under severe accident conditions

    International Nuclear Information System (INIS)

    Bowsher, B.R.

    1985-09-01

    Three key accident sequences are considered covering a representative range of different environments of pressure, flow, temperature history and degree of zircaloy oxidation, and their principle thermal hydraulic and physical characteristics affecting chemistry behaviour are identified. Inventories, chemical forms and timing of fission product release are summarized together with the major sources of structural materials and their release characteristics. Chemistry of each main fission product species is reviewed from available experimental and/or theoretical data. Studies modelling primary circuit fission product behaviour are reviewed. Requirements for further study are assessed. (UK)

  19. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  20. Measurement of the energy spectrum of {sup 252}Cf fission fragments using nuclear track detectors and digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, G.; Golzarri, J. I. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Castano, V. M. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla 3001, Santiago de Queretaro, 76230 Queretaro (Mexico); Gaso, I. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Mena, M.; Segovia, N. [UNAM, Instituto de Geofisica, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-02-15

    The energy spectrum of {sup 252}Cf fission fragments was measured using nuclear track detectors and digital image analysis system. The detection material was fused silica glass. The detectors were chemically etched in an 8% HF solution. After experimenting with various etching time, it was found that the best resolution of the track diameter distribution was obtained after 30 minutes of etching. Both Gaussian and Lorentzian curves were fit to the track diameter distribution histograms and used to determine the basic parameters of the distribution of the light (N{sub L}) and heavy (N{sub H}) formed peaks and the minimum of the central valley (N{sub V}). Advantages of the method presented here include the fully-automated analysis process, the low cost of the nuclear track detectors and the simplicity of the nuclear track method. The distribution resolution obtained by this method is comparable with the resolution obtained by electronic analysis devices. The descriptive variables calculated were very close to those obtained by other methods based on the use of semiconductor detectors. (Author)

  1. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  2. Preliminary results utilizing high-energy fission product γ-rays to detect fissionable material in cargo

    Science.gov (United States)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Church, J. A.; Descalle, M. A.; Gosnell, T. B.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Pohl, B. A.; Pruet, J. A.; Petersen, D. C.; Walling, R. S.; Weirup, D. L.; Prussin, S. G.; McDowell, M.

    2005-12-01

    A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their β-delayed neutron emission or β-delayed high-energy γ radiation between beam pulses provide the detection signature. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified.

  3. Primary system fission product release and transport. A state-of-the-art report to the committee on the safety of nuclear installations

    International Nuclear Information System (INIS)

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art

  4. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    International Nuclear Information System (INIS)

    Wright, A.L.

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art

  5. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.L. [Oak Ridge National Lab., TN (United States)

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  6. Primary Cosmic Rays Composition: Simulations and Detector Design

    International Nuclear Information System (INIS)

    Supanitsky, D.; Etchegoyen, A.; Medina, C.; Medina-Tanco, G.; Gomez Berisso, M.

    2007-01-01

    The Pierre Auger Observatory is a hybrid detector system for the detection of very high energy cosmic rays. A most difficult and important problem in these studies is the determination of the primary cosmic ray composition for which muon content in air showers appears to be one of the best parameters to discriminate between different composition types.Although the Pierre Auger surface detectors, which consist of water Cherenkov tanks, are sensitive to muon content they are not able to measure the number of muons directly. In this work we study using simulations the information that can be gained by adding muon detectors to the Auger surface detectors. We consider muon counters with two alternative areas

  7. High temperature fission chambers. Fast breeder reactor research and development program

    International Nuclear Information System (INIS)

    Berlin, C.; Perrigueur, J.C.

    1984-04-01

    Development of a high temperature fission chamber and experimentations of measuring channels (detectors and electronic devices) in similar conditions as those of power plants: development of measuring channels (impulses and current) of the Super Phenix neutronic measures auxiliary system, development of a measuring channel with impulses for the surveillance system of the clad failures, based on integrated detectors, and development of a fission chamber for experimentations in similar conditions as in Superphenix [fr

  8. High-precision spectrometer for studies of ion-induced and spontaneous fission dynamics

    International Nuclear Information System (INIS)

    Batenkov, O.; Elmgren, K.; Majorov, M.; Blomgren, J.; Conde, H.; Hultqvist, S.; Olsson, N.; Rahm, J.; Ramstroem, E.; Smirnov, S.; Veshikov, A.

    1997-01-01

    A spectrometer has been designed and built to investigate the dynamics of spontaneous and ion-induced fission processes. It consists of 8 neutron detectors surrounding a low mass scattering chamber containing the fissionable targets and two fission fragment telescopes. The spectrometer measures neutron spectra, and energy and angular correlations of neutrons, as well as kinetic energy, mass, and relative angle of fission fragments. A 252 Cf fission reference source is used for calibration. (orig.)

  9. Investigation of short-living fission products from the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Klonk, H.

    1976-01-01

    In this paper, a method of separating and measuring fission products of Cf-252 is presented. The measurement was achieved by means of γ-spectrometry and thus provides a quantitative analysis with a good separation of the fission products with respect to both atomic number Z and mass number A. The separation of the fission products from the fission source was achieved by means of solid traps. An automatic changing apparatus made it possible to keep irradiation and measuring times short, so even very short-lived fission products could be registered. The quantitative evaluation of primary fission products was made possible by correction according to Bateman equations. With that, the yields of single nuclides and the dispersion of charge can be determined. (orig./WL) [de

  10. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    Science.gov (United States)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  11. Application of the self-powered detector concept in the design of a threshold gamma-ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1979-01-01

    The self-powered detector concept has been utilized to develop an energy threshold gamma-ray detector. Gamma-ray energy discrimination is achieved by using a thick annular lead shield around the outer wall (emitter) of the detector in conjunction with a self-shielding central electrode (collector). Measurements conducted in the graphite pit of the Argonne Thermal Source Reactor have confirmed its ability to detect high-energy prompt fission gamma rays while discriminating against a significant flux of low-energy gamma rays from the decay of fission products. Also, auto-power spectral densities obtained with the detector were used to estimate the kinetic parameter, β/l, of the reactor

  12. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    International Nuclear Information System (INIS)

    Kosev, Krasimir Milchev

    2007-01-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ( 226 Ra, 222 Rn, 210 Po, 218 Po, 214 Po) α-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a 238 U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  13. A high-resolution time-of-flight spectrometer for fission fragments and ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosev, Krasimir Milchev

    2007-07-01

    For the purpose of fission-fragment detection a double time-of-flight (TOF) spectrometer has been developed. The key component of the TOF spectrometer is a TOF detector consisting of multichannel-plate (MCP) detectors with a position-sensitive readout, a foil for secondary electron (SE) production and an electrostatic mirror. The fission fragments are detected by measuring the SEs impinging on the position-sensitive anode after emission from the foil, acceleration and deflection by the electrostatic mirror. The functionality of the different detector components is proven in detail. Optimised schemes for the high-voltage supplies of the MCP detectors have been implemented successfully. In order to process the multichannel-plate detector signals optimally, a new state-of-the-art constant-fraction discriminator based on the amplitude and rise time compensated technique with very low threshold capabilities and optimised walk properties has been developed and incorporated into the setup. In a setup consisting of two mirror MCP detectors, we could successfully observe the TOF spectrum of a mixed ({sup 226}Ra,{sup 222}Rn,{sup 210}Po,{sup 218}Po,{sup 214}Po) {alpha}-source. Testing photo-fission experiments were performed at the bremsstrahlung facility at the ELBE accelerator. The setup consisted of two mirror detectors (first arm) and a 80 mm diameter MCP detector (second arm) with a {sup 238}U target positioned in between. TOF measurements with two bremsstrahlung end-point energies of 12.9 and 16.0 MeV were carried out. A clear cut separation of the TOF peaks for the medium-mass and heavy fission fragments was observed. (orig.)

  14. Measurement of the neutron-induced fission cross-section of 240,242Pu

    International Nuclear Information System (INIS)

    Salvador-Castineira, P.; Hambsch, F.J.; Brys, T.; Oberstedt, S.; Vidali, M.; Pretel, C.

    2014-01-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are in high demand in the nuclear data community. In particular, highly accurate data are needed for the new Generation-IV nuclear applications. The aim is to obtain precise neutron-induced fission cross-sections for 240 Pu and 242 Pu. In this context accurate data on spontaneous fission half-lives have also been measured. To minimise the total uncertainty on the fission cross-sections the detector efficiency has been studied in detail. Both isotopes have been measured using a twin Frisch-grid ionisation chamber (TFGIC) due to its superiority compared to other detector systems in view of radiation hardness, 2 x 2π solid angle coverage and very good energy resolution. (authors)

  15. Determination of 233U, 235U, 238U and 239Pu fission yields induced by fission and 14.7 MeV neutrons

    International Nuclear Information System (INIS)

    Laurec, Jean; Adam, Albert; Bruyne, Thierry de.

    1981-12-01

    The 233 U, 235 U, 238 U, 239 Pu fission yields have been determined by a radiochemical method. A target and a fission chamber made of same fissible material are irradied together. The total fission number is measured from the fission chamber. The fission product activities are directly measured on the target using calibrated Ge-Li detectors. The fissible material masses are determined by alpha and mass spectrometries. The irradiations were made on the critical assemblies PROSPERO and CALIBAN and on the 14 MeV neutron generator of C.E. VALDUC. 3 to 5% fission yield errors are got for the most measured nuclides: 95 Zr, 97 Zr, 99 Mo, 103 Ru, 131 I, 132 Te, 140 Ba, 141 Ce, 143 Ce, 144 Ce, 147 Nd [fr

  16. Detection of fission signatures induced by a low-energy neutron source

    International Nuclear Information System (INIS)

    Ocherashvili, A.; Becka, A.; Mayorovb, V.; Roesgen, E.; Crochemoreb, J.-M.; Mosconi, M.; Pedersen, B.; Heger, C.

    2015-01-01

    We present a method for the detection of special nuclear materials (SNM) in shielded containers which is both sensitive and applicable under field conditions. The method uses an external pulsed neutron source to induce fission in SNM and subsequent detection of the fast prompt fission neutrons. The detectors surrounding the container under investigation are liquid scintillation detectors able to distinguish gamma rays from fast neutrons by means of the pulse shape discrimination method (PSD). One advantage of these detectors, besides the ability for PSD analysis, is that the analogue signal from a detection event is of very short duration (typically few tens of nanoseconds). This allows the use of very short coincidence gates for the detection of the prompt fission neutrons in multiple detectors while benefiting from a low accidental (background) coincidence rate yielding a low detection limit. Another principle advantage of this method derives from the fact that the external neutron source is pulsed. By proper time gating the interrogation can be conducted by epithermal and thermal source neutrons only. These source neutrons do not appear in the fast neutron signal following the PSD analysis thus providing a fundamental method for separating the interrogating source neutrons from the sample response in form of fast fission neutrons. The paper describes laboratory tests with a configuration of eight detectors in the Pulsed Neutron Interrogation Test Assembly (PUNITA). The sensitivity of the coincidence signal to fissile mass is investigated for different sample configurations and interrogation regimes.

  17. Fission-product energy release for times following thermal-neutron fission of 235U between 2 and 14000 seconds

    International Nuclear Information System (INIS)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of 235 U. Samples of mass 1 to 10 μg were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub γ/) vs E/sub γ/ and N(E/sub beta/) vs E/sub β/. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub γ/ and E/sub β/ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables

  18. Neutron detectors for nuclear reactor control

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1974-01-01

    In view of the importance of in-core measurements the distinction is made between detectors used outside and inside the core. In the former case proportional counters, fission chambers and boron chambers are reviewed in turn. The only in-core detectors considered are those giving a direct measurement, i.e. supplying an electric signal representative of the neutron fluence rate while in the measurement position at the point given. Two kinds of detectors are used for direct measurements: miniature fission chambers and collectors, known also as neutron-electron converters [fr

  19. Yields of fission products produced by thermal-neutron fission of 229Th

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1983-01-01

    Absolute yields have been determined for 47 gamma rays emitted in the decay of 37 fission products representing 25 mass chains created during thermal-neutron fission of 229 Th. Using a Ge(Li) detector, spectra were obtained of gamma rays emitted between 15 min and 0.4 yr after very short irradiations by thermal neutrons of a 15-μg sample of 229 Th. On the basis of measured gamma-ray yields and known nuclear data, yields for cumulative production of 37 fission products were deduced. The absolute overall normalization uncertainty is 235 U, we postulate a simple functional dependence sigma = sigma(Z/sub p/), and using this dependence obtain values of Z/sub p/(A) for 15 mass chains created during fission of 229 Th. Values of Z/sub p/(A) were estimated for other mass chains based upon results of a recent study of Z/sub p/(A). Charge distributions determined using the deduced mass distribution and the deduced sets of Z/sub p/(A) and sigma(Z/sub p/) are in very good agreement with recent measurements, exhibiting a pronounced even-odd effect in elemental yields. These results may be used to predict unmeasured yields for 229 Th fission

  20. Neutron-induced fission fragment angular distribution at CERN n TOF: The Th-232 case

    CERN Document Server

    Tarrio, Diego; Paradela, Carlos

    This thesis work was done in the frame of the study of the neutron-induced fission of actinides and subactinides at the CERN n TOF facility using a fast Parallel Plate Avalanche Counters (PPACs) setup. This experimental setup provide us with an intense neutron beam with a white spectrum from thermal to 1 GeV and with an outstanding high resolution provided by its flight path of 185 m. In our experiment, fission events were identified by detection of both fission fragments in time coincidence in the two PPAC detectors flanking the corresponding target. This technique allowed us to discriminate the fission events from the background produced by α disintegration of radioactive samples and by particles produced in spallation reactions. Because PPAC detectors are insensitive to the γ flash, it is possible to reach energies as high as 1 GeV. The stripped cathodes provide the spatial position of the hits in the detectors, so that the emission angle of the fission fragments can be measured. Inside the reaction cham...

  1. Fission rate measurements in fuel plate type assembly reactor cores

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs

  2. Angular momentum distribution of primary fission fragments by measurement of the relative yield of isomeric fission products

    International Nuclear Information System (INIS)

    Dornhoefer, H.

    1980-01-01

    The fission products 132 I and 136 I produced in the fission reactions 238 U(α,f) and 238 U(d,f) were spectroscoped using a gas transport system. Thereby was taken advantage of the fact that at the transport with pure helium without aerosols only iodine activities were collected in a membrane filter. The relative independent yields of the isomeric fission products of 132 I and 136 I were determined for different excitation energies. Thereby was taken advantage of the fact that the transport yield of the gas transport system for 136 I directly produced from the fission was greater than for iodine indirectly produced by β-decay. (orig./HSI) [de

  3. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  4. Fusion-fission of superheavy nuclei at low excitation energies

    International Nuclear Information System (INIS)

    Itkis, M.G.; Oganesyan, Yu.Ts.; Kozulin, E.M.

    2000-01-01

    The process of fusion-fission of superheavy nuclei with Z = 102 -122 formed in the reactions with 22 Ne, 26 Mg, 48 Ca, 58 Fe and 86 Kr ions at energies near and below the Coulomb barrier has been studied. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR) using a time-of-flight spectrometer of fission fragments CORSET and a neutron multi-detector DEMON. As a result of the experiments, mass and energy distributions of fission fragments, fission and quasi-fission cross sections, multiplicities of neutrons and gamma-rays and their dependence on the mechanism of formation and decay of compound superheavy systems have been studied

  5. Pion-induced fission of 209Bi and 119Sn: measurements, calculations, analyses and comparison

    International Nuclear Information System (INIS)

    Rana, M.A.; Sher, G.; Manzoor, S.; Shehzad, M.I.

    2011-01-01

    Cross-sections for the π - -induced fission of 209 Bi and 119 Sn have been measured using the most sensitive CR-39 solid-state nuclear track detector. In experiments, target–detector stacks were exposed to negative pions of energy 500, 672, 1068, and 1665 MeV at the Brookhaven National Laboratory, USA. An important aspect of the present paper is the comparison of pion-induced fission fragment spectra of above mentioned nuclei with the spontaneous fission fragment spectra of 252 Cf. This comparison is made in terms of fission fragment track lengths in the CR-39 detectors. Measurement results are compared with calculations of Monte Carlo and statistical weight functions methods using the computer code CEM95. Agreement between measurements and calculations is fairly good for 209 Bi target nuclei whereas it is indigent for the case of 119 Sn. The possibilities of the trustworthy calculations, using the computer code CEM95, comparable with measurements of pion-induced fission in intermediate and heavy nuclei are explored by employing various systematics available in the code. Energy dependence of pion-induced fission in 119 Sn and 209 Bi is analyzed employing a newly defined parameter geometric-size-normalized fission cross-section (χ f g ). It is found that the collective nuclear excitations, which may lead to fission, become more probable for both 209 Bi and 119 Sn nuclei with increasing energy of negative pions from 500 to 1665 MeV. (author)

  6. Review of some problems encountered with In-Core Fission chambers and Self-Powered Neutron Detectors in PWR's. Tests - Present use - Outlook on the near future

    International Nuclear Information System (INIS)

    Duchene, Jean; Verdant, Robert.

    1979-01-01

    The working conditions of in-core detectors are investigated as well as some reliability problems which depend on nuclear environment (such as decrease of sensibility, loss of insulation...). Then we review the long-term irradiation tests in experimental reactor that have been carried out by the CEA these last years, with fission chambers (FC) and Self-Powered Detectors (SPD). The travelling probe system with moveable FC used in the 900 MWe PWR is briefly described. Finally an outlook on future possibilities is given; for instance the use of fixed SPD and a moveable FC in the same thimble, allowing recalibration of the fixed detectors [fr

  7. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  8. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  9. Campbelling-type theory of fission chamber signals generated by neutron chains in a multiplying medium

    International Nuclear Information System (INIS)

    Pál, L.; Pázsit, I.

    2015-01-01

    The signals of fission chambers are usually evaluated with the help of the co-called Campbelling techniques. These are based on the Campbell theorem, which states that if the primary incoming events, generating the detector pulses, are independent, then relationships exist between the moments of various orders of the signal in the current mode. This gives the possibility to determine the mean value of the intensity of the detection events, which is proportional to the static flux, from the higher moments of the detector current, which has certain advantages. However, the main application area of fission chambers is measurements in power reactors where, as is well known, the individual detection events are not independent, due to the branching character of the neutron chains (neutron multiplication). Therefore it is of interest to extend the Campbelling-type theory for the case of correlated neutron events. Such a theory could address two questions: partly, to investigate the bias when the traditional Campbell techniques are used for correlated incoming events; and partly, to see whether the correlation properties of the detection events, which carry information on the multiplying medium, could be extracted from the measurements. This paper is devoted to the investigation of these questions. The results show that there is a potential possibility to extract the same information from fission chamber signals in the current mode as with the Rossi- or Feynman-alpha methods, or from coincidence and multiplicity measurements, which so far have required detectors working in the pulse mode. It is also shown that application of the standard Campbelling techniques to neutron detection in multiplying systems does not lead to an error for estimating the stationary flux as long as the detector is calibrated in in situ measurements

  10. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I

    2004-04-05

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  11. Induced-Fission Imaging of Nuclear Material

    International Nuclear Information System (INIS)

    Hausladen, Paul; Blackston, Matthew A.; Mullens, James Allen; McConchie, Seth M.; Mihalczo, John T.; Bingham, Philip R.; Ericson, Milton Nance; Fabris, Lorenzo

    2010-01-01

    This paper presents initial results from development of the induced-fission imaging technique, which can be used for the purpose of measuring or verifying the distribution of fissionable material in an unopened container. The technique is based on stimulating fissions in nuclear material with 14 MeV neutrons from an associated-particle deuterium-tritium (D-T) generator and counting the subsequent induced fast fission neutrons with an array of fast organic scintillation detectors. For each source neutron incident on the container, the neutron creation time and initial trajectory are known from detection of the associated alpha particle of the d + t → α + n reaction. Many induced fissions will lie along (or near) the interrogating neutron path, allowing an image of the spatial distribution of prompt induced fissions, and thereby fissionable material, to be constructed. A variety of induced-fission imaging measurements have been performed at Oak Ridge National Laboratory with a portable, low-dose D-T generator, including single-view radiographic measurements and three-dimensional tomographic measurements. Results from these measurements will be presented along with the neutron transmission images that have been performed simultaneously. This new capability may have applications to a number of areas in which there may be a need to confirm the presence or configuration of nuclear materials, such as nuclear material control and accountability, quality assurance, treaty confirmation, or homeland security applications.

  12. Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Bagheri-Darbandi, M.

    1983-06-01

    Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)

  13. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  14. Enlarging the fission fragment tracks in glass detectors by etching in weak solutions of HF - a safe etchant

    International Nuclear Information System (INIS)

    Singh, V.P.; Sharma, A.P.

    1982-01-01

    The effect of etchant concentration and temperature on track revelation properties of soda glass detectors has been studied. Etch rate ratio, maximum observable diameter and the energy resolution of the fission fragment tracks of 252 Cf in glasses are increased when the samples are etched in 1.25 vol% HF as compared to higher concentrations of HF and other etching solutions. The critical angle of etching is found to decrease with decrease in etchant concentration. The activation energies for bulk etching and track etching have also been estimated. Better results were obtained by using lower etching temperatures. (author)

  15. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  16. Gamma ray transitions in de-excitation of 252Cf spontaneous fission fragments

    International Nuclear Information System (INIS)

    Khan, N.A.; Rashid, K.; Ahmad, M.; Qureshi, I.E.; Alam, G.D.; Ali, A.; Bhatti, N.; Horsch, F.

    1983-11-01

    Gamma rays in the range from 60 keV to 730 keV have been observed following the spontaneous fission of 252 Cf, with high resolution Ge(Li) detector, full width at half maximum (FWHM) of 700 eV at 122 keV, in coincidence with the two fission fragments observed with surface barrier detectors. A total number of 18, 636, 549 events were recorded over a run period of about 150 hours stretching over three weeks. The events were sorted to generate gamma ray spectra belonging to 2 amu intervals gamma of the fragment masses and 6 MeV intervals of the total kinetic energy released. Some of the prominent gamma lines belonging to various masses of the fission fragments have been identified. For some gamma lines, the intensities have been evaluated as a function of the total kinetic energy of the fission fragments. (authors)

  17. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    Science.gov (United States)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  18. High-Sensitivity Fast Neutron Detector KNK-2-8M

    Science.gov (United States)

    Koshelev, A. S.; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M.; Chuklyaev, S. V.; Pepyolyshev, Yu. N.

    2017-12-01

    The design of the fast neutron detector KNK-2-8M is outlined. The results of he detector study in the pulse counting mode with pulses from 238U nuclei fission in the radiator of the neutron-sensitive section and in the current mode with separation of functional section currents are presented. The possibilities of determination of the effective number of 238U nuclei in the radiator of the neutron-sensitive section are considered. The diagnostic capabilities of the detector in the counting mode are demonstrated, as exemplified by the analysis of reference data on characteristics of neutron fields in the BR-1 reactor hall. The diagnostic capabilities of the detector in the current mode are demonstrated, as exemplified by the results of measurements of 238U fission intensity in the power startup of the BR-K1 reactor in the fission pulse generation mode with delayed neutrons and the detector placed in the reactor cavity in conditions of large-scale variation of the reactor radiation fields.

  19. Comparison of Thermal Neutron Flux Measured by Uranium 235 Fission Chamber and Rhodium Self-Powered Neutron Detector in MTR

    International Nuclear Information System (INIS)

    Fourmentel, D.; Filliatre, P.; Barbot, L.; Villard, J.-F.; Lyoussi, A.; Geslot, B.; Malo, J.-Y.; Carcreff, H.; Reynard-Carette, C.

    2013-06-01

    Thermal neutron flux is one of the most important nuclear parameter to be measured on-line in Material Testing Reactors (MTRs). In particular two types of sensors with different physical operating principles are commonly used: self-powered neutron detectors (SPND) and fission chambers with uranium 235 coating. This work aims to compare on one hand the thermal neutron flux evaluation given by these two types of sensors and on the other hand to compare these evaluations with activation dosimeter measurements, which are considered as the reference for absolute neutron flux assessment. This study was conducted in an irradiation experiment, called CARMEN-1, performed during 2012 in OSIRIS reactor (CEA Saclay - France). The CARMEN-1 experiment aims to improve the neutron and photon flux and nuclear heating measurements in MTRs. In this paper we focus on the thermal neutron flux measurements performed in CARMEN-1 experiment. The use of fission chambers to measure the absolute thermal neutron flux in MTRs is not very usual. An innovative calibration method for fission chambers operated in Campbell mode has been developed at the CEA Cadarache (France) and tested for the first time in the CARMEN-1 experiment. The results of these measurements are discussed, with the objective to measure with the best accuracy the thermal neutron flux in the future Jules Horowitz Reactor. (authors)

  20. Passive detectors for neutron fluence measurement

    International Nuclear Information System (INIS)

    Holt, P.D.

    1985-01-01

    The use of neutron activation detectors (slow neutron detectors and threshold detectors) and fission track detectors for radiological protection purposes, principally in criticality dosimetry, dosimetry of pulsed accelerators and calibration of neutron fluxes is discussed. References are given to compilations of cross sections. For the determination of the activity induced, either beta ray or gamma ray counting may be used. For beta-ray counting, thin foils are usually necessary which result in low neutron sensitivity. When fission track detectors are used, it is necessary to know the efficiency of track registration. Alternatively, a detector-counter system may be calibrated by exposure to a known flux of monoenergetic neutrons. Usually, the sensitivity of activation detectors is low because small foils are used. For criticality dosimetry, calibration work and shielding studies on accelerators, low sensitivity is acceptable. However, there are some instances where, by the use of long integration times, or very large quantities of detector material with gamma ray detection, neutron fluences in operational areas have been measured. (author)

  1. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Accatino, M.R.; Alford, O.J.; Bernstein, A.; Descalle, M.; Gosnell, T.B.; Hall, J.M.; Loshak, A.; Manatt, D.R.; McDowell, M.R.; Moore, T.L.; Petersen, D.C.; Pohl, B.A.; Pruet, J.A.; Prussin, S.G.

    2004-01-01

    Full text: A concept for detecting the presence of special nuclear material ( 235 U or 239 Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  2. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  3. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  4. Continuous fission-product monitor system at Oyster Creek. Final report

    International Nuclear Information System (INIS)

    Collins, L.L.; Chulick, E.T.

    1980-10-01

    A continuous on-line fission product monitor has been installed at the Oyster Creek Nuclear Generating Station, Forked River, New Jersey. The on-line monitor is a minicomputer-controlled high-resolution gamma-ray spectrometer system. An intrinsic Ge detector scans a collimated sample line of coolant from one of the plant's recirculation loops. The minicomputer is a Nuclear Data 6620 system. Data were accumulated for the period from April 1979 through January 1980, the end of cycle 8 for the Oyster Creek plant. Accumulated spectra, an average of three a day, were stored on magnetic disk and subsequently analyzed for fisson products, Because of difficulties in measuring absolute detector efficiency, quantitative fission product concentrations in the coolant could not be determined. Data for iodine fission products are reported as a function of time. The data indicate the existence of fuel defects in the Oyster Creek core during cycle 8

  5. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  6. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  7. Simultaneous measurement of neutron-induced fission and capture cross sections for {sup 241}Am at neutron energies below fission threshold

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K., E-mail: hirose.kentaro@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nagayama, T. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Mito 310-0056 (Japan); Tamura, N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Goto, S. [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Andreyev, A.N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Vermeulen, M.J. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Gillespie, S.; Barton, C. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Kimura, A.; Harada, H. [Nuclear Science and Engineering Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Meigo, S. [J-PARC Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Chiba, S. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ohtsuki, T. [Research Reactor Institute, Kyoto University, Kumatori-cho S' ennangun,Osaka 590-0494 (Japan)

    2017-06-01

    Fission and capture reactions were simultaneously measured in the neutron-induced reactions of {sup 241}Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of E{sub n}=0.1–20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.

  8. The LANL/LLNL Program to Measure Prompt Fission Neutron Spectra at LANSCE

    Science.gov (United States)

    Haight, Robert; Wu, Ching Yen; Lee, Hye Young; Taddeucci, Terry; Mosby, Shea; O'Donnell, John; Fotiades, Nikolaos; Devlin, Mattew; Ullmann, John; Nelson, Ronald; Wender, Stephen; White, Morgan; Solomon, Clell; Neudecker, Denise; Talou, Patrick; Rising, Michael; Bucher, Brian; Buckner, Matthew; Henderson, Roger

    2015-10-01

    Accurate data on the spectrum of neutrons emitted in neutron-induced fission are needed for applications and for a better understanding of the fission process. At LANSCE we have made important progress in understanding systematic uncertainties and in obtaining data for 235U on the low-energy part of the prompt fission neutron spectra (PFNS), a particularly difficult region because down-scattered neutrons go in this direction. We use a double time-of-flight technique to determine energies of incoming and outgoing neutrons. With data acquisition via waveform digitizers, accidental coincidences between fission chamber and neutron detector are measured to high statistical accuracy and then subtracted from measured events. Monte Carlo simulations with high performance computers have proven to be essential in the design to minimize neutron scattering and in calculating detector response. Results from one of three approaches to analyzing the data will be presented. This work is funded by the US Department of Energy, National Nuclear Security Administration and Office of Nuclear Physics.

  9. Computation of fission product distribution in core and primary circuit of a high temperature reactor during normal operation

    International Nuclear Information System (INIS)

    Mattke, U.H.

    1991-08-01

    The fission product release during normal operation from the core of a high temperature reactor is well known to be very low. A HTR-Modul-reactor with a reduced power of 170 MW th is examined under the aspect whether the contamination with Cs-137 as most important nuclide will be so low that a helium turbine in the primary circuit is possible. The program SPTRAN is the tool for the computations and siumlations of fission product transport in HTRs. The program initially developed for computations of accident events has been enlarged for computing the fission product transport under the conditions of normal operation. The theoretical basis, the used programs and data basis are presented followed by the results of the computations. These results are explained and discussed; moreover the consequences and future possibilities of development are shown. (orig./HP) [de

  10. Detection of fission fragments by secondary emission; Detection des fragments de fission par emission secondaire

    Energy Technology Data Exchange (ETDEWEB)

    Audias, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    This fission fragment detecting apparatus is based on the principle that fragments traversing a thin foil will cause emission of secondary electrons. These electrons are then accelerated (10 kV) and directly detected by means of a plastic scintillator and associated photomultiplier. Some of the advantages of such a detector are, its rapidity, its discriminating power between alpha particles and fission fragments, its small energy loss in detecting the fragments and the relatively great amount of fissionable material which it can contain. This paper is subdivided as follows: a) theoretical considerations b) constructional details of apparatus and some experimental details and c) a study of the secondary emission effect itself. (author) [French] Le detecteur de fragments de fission que nous avons realise est base sur le principe de l'emission secondaire produite par les fragments de fission traversant une feuille mince: les electrons secondaires emis sont acceleres a des tensions telles (de l'ordre de 10 kV), qu'ils soient directement detectables par un scintillateur plastique associe a un photomultiplicateur. L'interet d'un tel detecteur reside: dans sa rapidite, sa tres bonne discrimination alpha, fission, la possibilite de detecter les fragments de fission avec une perte d'energie pouvant rester relativement faible, et la possibilite d'introduire des quantites de matiere fissile plus importantes que dans les autres types de detecteurs. Ce travail comporte: -) un apercu bibliographique de la theorie du phenomene, -) realisation et mise au point du detecteur avec etude experimentale de quelques parametres intervenant dans l'emission secondaire, -) etude de l'emission secondaire (sur la face d'emergence des fragments de fission) en fonction de l'energie du fragment et en fonction de l'epaisseur de matiere traversee avant emission secondaire, et -) une etude comparative de l'emission secondaire sur la face d'incidence et sur la face d'emergence des fragments de

  11. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  12. Design of In-vessel neutron monitor using micro fission chambers for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Kasai, Satoshi

    2001-10-01

    A neutron monitor using micro fission chambers to be installed inside the vacuum vessel has been designed for compact ITER (ITER-FEAT). We investigated the responses of the micro fission chambers to find the suitable position of micro fission chambers by a neutron Monte Carlo calculation using MCNP version 4b code. It was found that the averaged output of the micro fission chambers behind blankets at upper outboard and lower outboard is insensitive to the changes in the plasma position and the neutron source profile. A set of 235 U micro fission chamber and ''blank'' detector which is a fissile material free detector to identify noise issues such as from γ-rays are installed behind blankets. Employing both pulse counting mode and Campbelling mode in the electronics, the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution can be accomplished. The in-situ calibration has been simulated by MCNP calculation, where a point source of 14 MeV neutrons is moving on the plasma axis. It was found that the direct calibration is possible by using a neutron generator with an intensity of 10 11 n/s. The micro fission chamber system can meet the required 10% accuracy for a fusion power monitor. (author)

  13. Angular momenta of fission fragments in the {alpha}-accompanied fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Kliman, J.; Krupa, L.; Morhac, M. [Slovak Academy of Sciences, Department of Nuclear Physics, Bratislava (Slovakia); Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Hamilton, J.H.; Kormicki, J.; Ramayya, A.V.; Hwang, J.K.; Luo, Y.X.; Fong, D.; Gore, P. [Vanderbilt University, Department of Physics, Nashville, TN (United States); Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Rodin, A.M.; Fomichev, A.S.; Popeko, G.S. [Joint Institute for Nuclear Research, Flerov Laboratory for Nuclear Reactions, Dubna (Russian Federation); Daniel, A.V. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Rasmussen, J.O.; Macchiavelli, A.O.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R.; Cole, J.D.

    2005-06-01

    For the first time, average angular momenta of the ternary fission fragments {sup 100,102}Zr, {sup 106}Mo, {sup 144,146}Ba and {sup 138,140,142}Xe from the {alpha}-accompanied fission of {sup 252}Cf were obtained from relative intensities of prompt {gamma}-ray transitions with the use of the statistical model calculation. Average values of the angular momenta were compared with the corresponding values for the same fission fragments from the binary fission of {sup 252}Cf. Results indicate the presence of a decreasing trend in the average values of angular momenta induced in ternary fission fragments compared to the same binary fission fragments. On the average, the total angular momentum extracted for ternary fission fragments is {proportional_to}1.4{Dirac_h} lower than in binary fission. Consequently, results indicate that the mechanism of the ternary {alpha}-particles emission may directly effect an induction of angular momenta of fission fragments, and possible scenarios of such mechanisms are discussed. Further, the dependence of the angular momenta of {sup 106}Mo and {sup 140}Xe on the number of emitted neutrons from correlated pairs of primary fragments was obtained also showing a decreasing dependence of average angular momenta with increasing number of emitted neutrons. Consequences are briefly discussed. (orig.)

  14. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    Lima Medeiros, E. de.

    1978-01-01

    The disintegration constant of U 238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO 3 ) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.) [pt

  15. Multiplicity counting from fission chamber signals in the current mode

    Energy Technology Data Exchange (ETDEWEB)

    Pázsit, I. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Pál, L. [Centre for Energy Research, Hungarian Academy of Sciences, 114, POB 49, H-1525 Budapest (Hungary); Nagy, L. [Chalmers University of Technology, Department of Physics, Division of Subatomic and Plasma Physics, SE-412 96 Göteborg (Sweden); Budapest University of Technology and Economics, Institute of Nuclear Techniques, H-1111 Budapest (Hungary)

    2016-12-11

    In nuclear safeguards, estimation of sample parameters using neutron-based non-destructive assay methods is traditionally based on multiplicity counting with thermal neutron detectors in the pulse mode. These methods in general require multi-channel analysers and various dead time correction methods. This paper proposes and elaborates on an alternative method, which is based on fast neutron measurements with fission chambers in the current mode. A theory of “multiplicity counting” with fission chambers is developed by incorporating Böhnel's concept of superfission [1] into a master equation formalism, developed recently by the present authors for the statistical theory of fission chamber signals [2,3]. Explicit expressions are derived for the first three central auto- and cross moments (cumulants) of the signals of up to three detectors. These constitute the generalisation of the traditional Campbell relationships for the case when the incoming events represent a compound Poisson distribution. Because now the expressions contain the factorial moments of the compound source, they contain the same information as the singles, doubles and triples rates of traditional multiplicity counting. The results show that in addition to the detector efficiency, the detector pulse shape also enters the formulas; hence, the method requires a more involved calibration than the traditional method of multiplicity counting. However, the method has some advantages by not needing dead time corrections, as well as having a simpler and more efficient data processing procedure, in particular for cross-correlations between different detectors, than the traditional multiplicity counting methods.

  16. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  17. Yields of fission products produced by thermal-neutron fission of 249Cf

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 107 gamma rays emitted in the decay of 97 fission products representing 54 mass chains created during thermal-neutron fission of 249 Cf. These results include 14 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays emanating from a 0.4 μg sample of 249 Cf between 45 s and 0.4 yr after very short irradiations of the 249 Cf by thermal neutrons. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 89 and 156. The absolute overall normalization uncertainty is approx.8%. The measured A-chain cumulative yields make up 77% of the total light mass (A 249 Cf

  18. Development and simulation of a Ge/Si multi-detector spectrometer for fission products traces detection in the environment

    International Nuclear Information System (INIS)

    Cagniant, Antoine

    2015-01-01

    For the verification of the Comprehensive nuclear Test Ban Treaty (CTBT), the measurement of fission products trace levels in the environment is fundamental. Such measurement is a key indicator of a nuclear explosion. For constant amelioration of these measurements, the CEA/DAM-Ile de France has developed and installed a new dedicated surface spectrometer. Named GAMMA3, it is equipped with three germanium detectors, two silicon detectors (integrated in a dedicated gas cell, the PIPSBox) and includes an optimized shielding.This shielding reduces greatly the interference of environmental photons, muons and neutrons with the detectors. The residual radiological background measured inside the shielding is the community's lowest for a surface laboratory. This set of high energy resolution detectors allows the operator to optimize a measurement according to the sample geometry, activity or nature. More precisely, a radioactive noble gas can be measured by photon/electron coincidence, an active sample can be measured by photon/photon coincidence, and a low-active sample can be measured in a high-efficiency configuration. Combining optimized shielding and optimized measurement, Minimum Detectable Activities required for CTBT certification are obtained quickly. Specifically, MDA is reached in 5 hours for 140-Ba (24 mBq), in 6h30 hours for 131m/133m-Xe (5 mBq) and in 7h15 for 133-Xe (5 mBq), when CTBT requirement is in 6 days. (author) [fr

  19. The mass transfer mechanism of fissile material due to fission

    International Nuclear Information System (INIS)

    Shafrir, N.H.

    1975-01-01

    A thin 252 Cf source of a mean thickness of an approXimately mono-atomic layer was used as an experimental model for the study of the basic mechanism of the knock-on process taking place in fissile material. Because of the thinness of the source it can be assumed that mainly primary knock-ons are formed. The ejection rate of knock-ons created by direct collisions between fission fragments and source atoms was measured as follows: the ejected atoms were collected in high vacuum on a catcher foil and 252 Cf determined by alpha spectroscopy using a silicon surface barrier detector. The number of 252 Cf ejected from the source in unit time could thus be determined while considering the anisotropy of ejection, geometry and counting efficiency. Taking into account the chemical composition of the source, eta(theor.) = 252 Cf atoms/fission was obtained. This result can be considered in reasonable agreement with experiment confirming that under the experimental conditions described, practically no knock-on cascade is formed. (B.G.)

  20. High-sensitivity fast neutron detector KNK-2-7M

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Dovbysh, L. Ye.; Ovchinnikov, M. A.; Pikulina, G. N.; Drozdov, Yu. M. [Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics (Russian Federation); Chuklyaev, S. V. [Research Institute of Materials Technology (Russian Federation)

    2015-12-15

    The construction of the fast neutron detector KNK-2-7M is briefly described. The results of the study of the detector in the pulse-counting mode are given for the fissions of {sup 237}Np nuclei in the radiator of the neutron-sensitive section and in the current mode with the separation of sectional currents of functional sections. The possibilities of determining the effective number of {sup 237}Np nuclei in the radiator of the neutronsensitive section are considered. The diagnostic possibilities of the detector in the counting mode are shown by example of the analysis of the reference data from the neutron-field characteristics in the working hall of the BR-K1 reactor. The diagnostic possibilities of the detector in the current operating mode are shown by example of the results of measuring the {sup 237}Np-fission intensity in the BR-K1 reactor power start-ups implemented in the mode of fission-pulse generation on delayed neutrons at the detector arrangement inside the reactor core cavity under conditions of a wide variation of the reactor radiation field.

  1. Irradiation tests in BR2 of miniature fission chambers in pulse, Campbelling and current mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L. [SCK.CEN, Boeretang 200, B-2400 Mol (Belgium); Geslot, B.; Breaud, S.; Filliatre, P.; Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Legrand, A. [CEA/DEN/DRSN/SIREN/LASPI Saclay, F-91191 Gif sur Yvette Cedex (France); Barbot, L. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France)

    2011-07-01

    The FNDS system ('Fast Neutron Detection System') for the on-line in-pile detection of the fast neutron flux in the presence of a significant thermal neutron flux and a high gamma dose rate is being developed in the framework of the SCK.CEN-CEA Laboratoire Commun. The system has been patented in 2008. The system consists of a miniature Pu-242 fission chamber as main detector, complemented by a U-235 fission chamber or a rhodium Self-Powered Neutron Detector (SPND) for thermal neutron flux monitoring and a dedicated acquisition system that also takes care of the processing of the signals from both detectors to extract fast neutron flux data. This paper describes a FNDS qualification experiment in the SCK.CEN BR2 reactor, with experimental results on a large set of fission chambers in current and Campbelling mode. (authors)

  2. Irradiation tests in BR2 of miniature fission chambers in pulse, Campbelling and current mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Geslot, B.; Breaud, S.; Filliatre, P.; Jammes, C.; Legrand, A.; Barbot, L.

    2011-01-01

    The FNDS system ('Fast Neutron Detection System') for the on-line in-pile detection of the fast neutron flux in the presence of a significant thermal neutron flux and a high gamma dose rate is being developed in the framework of the SCK.CEN-CEA Laboratoire Commun. The system has been patented in 2008. The system consists of a miniature Pu-242 fission chamber as main detector, complemented by a U-235 fission chamber or a rhodium Self-Powered Neutron Detector (SPND) for thermal neutron flux monitoring and a dedicated acquisition system that also takes care of the processing of the signals from both detectors to extract fast neutron flux data. This paper describes a FNDS qualification experiment in the SCK.CEN BR2 reactor, with experimental results on a large set of fission chambers in current and Campbelling mode. (authors)

  3. Fission product yield measurements using monoenergetic photon beams

    Science.gov (United States)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  4. Fission product yield measurements using monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Krishichayan

    2017-01-01

    Full Text Available Measurements of fission products yields (FPYs are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  5. Fission/milligram of 235U in BIG-10 Tests A, C, E, and B

    International Nuclear Information System (INIS)

    Gilliam, D.M.; Grundl, J.A.; Hansen, G.E.

    1976-01-01

    The entire series of dosimetry foil tests at BIG-10 (including the preliminary Test A, five fission foil set irradiations--Tests C, five non-fission foil set irradiations--Tests E, and five track-etch detector irradiations--Tests B) were monitored continuously by the NBS double fission chamber PP5 in the central test cavity. The accuracy of the absolute fission counting data (fissions/milligram of 235 U) is estimated to be 1.4% for Tests A, C, and E and 1.5% for Test B. Deposit mass assay uncertainties remain the dominant error

  6. Measurements of Short-Lived Fission Isomers

    Science.gov (United States)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  7. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  8. Impact of gas pressure on fission chamber sensitivity in Campbelling mode

    International Nuclear Information System (INIS)

    Geslot, B.; Blaise, P.; Loiseau, P.; Filliatre, P.; Jammes, C.; Breaud, S.; Villard, J-F.; Blanc-de-Lanaute, N.

    2013-06-01

    The study presented in this paper is based on measurements conducted in the MINERVE zero power reactor operated at CEA Cadarache with a CEA-made U-235 miniature fission chamber (8 mm in diameter) and obtained in both pulse and Campbelling modes. Our objective was to investigate the impact of the filling gas mixture and pressure on each operating mode, using the capacity of the chamber to be refilled with gas. Three gas mixtures were tested (pure Ar, Ar+4%N 2 and Ar+10%CH 4 ) with pressure ranging from 1 to 9 bars. The Mean Fission Product Charge (MFPC), which is the mean charge deposited in the gas by fission products, was obtained from pulse mode signals for each detector setting. It is shown the MFPC is another key parameter to optimize the detector neutron sensitivity, after the fissile coating cross section. Campbelling mode signal was acquired with the Fast Neutron Detector System (FNDS) recently developed by CEA and SCK·CEN. Interesting results were obtained which improve our knowledge of the detector operation. Firstly, it was found that the measurements obtained in both modes are very consistent. The MFPC as a function of the gas pressure was found to be not monotonic. Instead, it features a maximum between 3 and 4 bars. This behavior is expected if the detector does not operate in saturation regime. Indeed, our standard voltage bias of 300 V appeared to be not high enough so that the saturation regime is established. Saturation curves measured in Campbelling mode were fitted using a detector modeling in order to extrapolate the saturation regime MFPC, which came to be independent from the gas. Secondly, obtained results show that the measuring range in Campbelling mode with this detector starts from fission rates as low as a few thousand counts per second. So the so called overlapping range, in which both pulse and Campbelling modes are usable, is about one decade with our spectroscopy modules and more than two decades with fast counting electronic

  9. Measurements of fast neutron-induced fission data of Np-237

    Energy Technology Data Exchange (ETDEWEB)

    Win, Than; Saito, Keiichiro; Baba, Mamoru; Iwasaki, Tomohiko; Ibaraki, Masanobu; Miura, Takako; Sanami, Toshiya; Nauchi, Yasushi; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1998-03-01

    We have performed the following measurements for {sup 237}Np using the 4.5 MV Dynamitron accelerator of Tohoku University as the pulsed neutron source: (1) Prompt fission neutron spectrum for 0.62 MeV incident neutrons, and (2) Neutron-Induced fission cross-section between 10 and 100 keV. The prompt fission neutron spectrum was measured using TOF method with a heavily shielded NE213 scintillation detector. The Maxwellian temperature T{sub m} derived is 1.28 MeV, which is lower than that of 1.38 MeV in JENDL-3.2. The fission cross sections were measured between 10 - 100 keV. The results are between JENDL-3.2 and ENDF/B-VI. (author)

  10. An absolute measurement of 252Cf prompt fission neutron spectrum at low energy range

    International Nuclear Information System (INIS)

    Lajtai, A.; Dyachenko, P.P.; Kutzaeva, L.S.; Kononov, V.N.; Androsenko, P.A.; Androsenko, A.A.

    1983-01-01

    Prompt neutron energy spectrum at low energies (25 keV 252 Cf spontaneous fission has been measured with a time-of-flight technique on a 30 cm flight-path. Ionization chamber and lithium-glass were used as fission fragment and neutron detectors, respectively. Lithium glasses of NE-912 (containing 6 Li) and of NE-913 (containing 7 Li) 45 mm in diameter and 9.5 mm in thickness have been employed alternatively, for the registration of fission neutrons and gammas. For the correct determination of the multiscattering effects - the main difficulty of the low energy neutron spectrum measurements - a special geometry for the neutron detector was used. Special attention was paid also to the determination of the absolute efficiency of the neutron detector. The real response function of the spectrometer was determined by a Monte-Carlo calculation. The scattering material content of the ionization chamber containing a 252 Cf source was minimized. As a result of this measurement a prompt fission neutron spectrum of Maxwell type with a T=1.42 MeV parameter was obtained at this low energy range. We did not find any neutron excess or irregularities over the Maxwellian. (author)

  11. In-beam test of Neutron detector array facility at IUAC

    International Nuclear Information System (INIS)

    Sugathan, P.; Jhingan, A.; Saneesh, S.

    2014-01-01

    A new experimental facility dedicated for the study of fission dynamics has been installed and commissioned recently at Inter University Accelerator Centre (IUAC), New Delhi. The facility, National Array of Neutron Detectors (NAND) is used for the systematic studies on fission dynamics around Coulomb barrier energies using heavy ion beams from the Tandem plus LINAC accelerator facilities. The detector array consists 100 neutron detectors mounted on a geodesic dome structure at a radial distance of 175 cm from the target and multi wire proportional counters (MWPC) for detection of fission fragments. Each neutron detector is made of 5'' x 5'' cylindrical cell filled with BC501A organic liquid scintillator and coupled to a 5'' photo multiplier tube. A 100 cm diameter spherical vacuum chamber has been installed at the center of the array to house the targets, fission fragment detectors and other ancillary charged particle detectors. The vacuum chamber is made of 4mm thick steel and has target ladder with linear and rotary movements. The detector array is installed on a dedicated beam line of LINAC accelerator facilities at beam hall II. The neutrons are discriminated from gamma rays using pulse shape discrimination (PSD) technique based on conventional analog electronics and the energies of neutrons are measured by the time of flight (TOF) method. For this purpose, custom made electronics modules have been built to process signal from each detector. This module contains the integrated electronics for n - γ discrimination, time of flight (TOF) and light output. The fission fragments are detected in low pressure MWPCs mounted inside the spherical vacuum chamber. The MWPC has been built based on the conventional design using three electrodes, having a central cathode foil electrode sandwiched between two position sensing anode wire/strip frames. In order to acquire data from detector array, the data acquisition system has been implemented using VME based hardware systems

  12. Fission product range effects on HEU fissile gas monitoring for UF6 gas

    International Nuclear Information System (INIS)

    Munro, J.K. Jr.; Valentine, T.E.; Perez, R.B.

    1997-01-01

    The amount of 235 U in UF 6 flowing in a pipe can be monitored by counting gamma rays emitted from fission fragments carried along by the flowing gas. Neutron sources are mounted in an annular sleeve that is filled with moderator material and surrounds the pipe. This provides a source of thermal neutrons to produce the fission fragments. Those fragments that remain in the gas stream following fission are carried past a gamma detector. A typical fragment will be quite unstable, giving up energy as it decays to a more stable isotope with a significant amount of this energy being emitted in the form of gamma rays. A given fragment can emit several gamma rays over its lifetime. The gamma ray emission activity level of a distribution of fission fragments decreases with time. The monitoring system software uses models of these processes to interpret the gamma radiation counting data measured by the gamma detectors

  13. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  14. He and Be ternary spontaneous fission of sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Hwang, J K; Ramayya, A V; Hamilton, J H

    2002-01-01

    Ternary and binary fission studies of sup 2 sup 5 sup 2 Cf have been carried out by using the Gammasphere detector array with light charged particle (LCD) detectors. The relative sup 4 He and sup 5 He ternary fission yields were determined. The kinetic energies of the sup 5 He and sup 4 He ternary particles were found to be approximately 11 and 16 MeV, respectively. The sup 5 He particles contribute 10-20 % to the total observed alpha ternary yield. The data indicate that in nuclei with octupole deformations the population for the negative parity bands might be enhanced in the alpha ternary fission. >From LCP-gamma double gated spectra, neutron multiplicity distributions for alpha ternary fission pairs were measured. The average neutron multiplicity decreases about 0.7 AMU in going from the binary to alpha ternary fission in the approximately same mass splittings (104-146). From the analysis of the gamma-gamma matrix gated on the sup 1 sup 0 Be particles, the two fragment pairs of sup 1 sup 3 sup 8 Xe - sup 1...

  15. Alpha and fission autoradiography of uranium rods

    International Nuclear Information System (INIS)

    Copic, M.; Ilicj, R.; Najzher, M.; Rant, J.

    1977-01-01

    Macro and micro-distribution of uranium minerals in ore bodies are investigated by alpha autoradiography and by neutron induced fission autoradiography using LR 115 solid state track detector. Optimal conditions are determined experimentally for both methods and examples presented. For field applications the alpha autoradiography (author)

  16. The 4π neutron detector CARMEN

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, X., E-mail: Xavier.ledoux@ganil.fr [CEA/DAM/DIF, F-91297 Arpajon (France); GANIL, CEA/DRF-CNRS/IN2P3, Caen, F-14076 France (France); Laborie, J.-M.; Pras, P.; Lantuéjoul-Thfoin, I.; Varignon, C. [CEA/DAM/DIF, F-91297 Arpajon (France)

    2017-02-01

    CARMEN is a 4π neutron detector filled with a gadolinium-loaded liquid scintillator built to measure neutron multiplicity distributions. It is used to study fission and (n,xn) reactions. In addition to neutron multiplicity measurements, CARMEN can be used to measure neutron energy spectra with the time-of-flight technique, thanks to the time properties of the prompt signal. The detector, detection technique and efficiency determination are presented in detail. Two examples are also presented: the measurement of {sup 252}Cf spontaneous fission neutron multiplicity probability distribution and the measurement of the neutron energy spectrum emitted by an Am-Be radioactive source.

  17. Self-powered detectors with thulium emitter

    International Nuclear Information System (INIS)

    Haller, P.; Klar, E.

    1978-01-01

    In addition to fission chambers, prompt-indicating self-powered (SPN) detectors are used for measuring the neutron flux density in the core of power reactors. Although current SPN detectors with a cobalt emitter give satisfactora results, detectors with other emitter materials have been analyzed and tested. The author describes the properties and decay pattern of the nuclide thulium and presents the results of measurements made while testing thulium detectors. (orig.) [de

  18. Compact time-zero detector for heavy ions

    International Nuclear Information System (INIS)

    Weissenberger, E.; Kast, W.; Goennenwein, F.

    1979-01-01

    A time-zero detector for flight-time measurements with heavy ions is described. The ions traverse a thin foil and the secondary electrons splashed from the foil are detected in a channel plate multiplier. A timing signal is derived from the multiplier pulse. The novel features of the detector are its simplicity and compactness of design. The time resolution achieved for the full energy and mass span of fission fragments from the spontaneous fission of 252 Cf used as a heavy ion source is 115 ps (fwhm). (Auth.)

  19. Mapping of uranium and thorium in radioactive rocks using nuclear track solid detectors

    International Nuclear Information System (INIS)

    Bouch, C.M.

    1982-01-01

    α-Autoradiography and studies of induced fission in a research nuclear reactor (IEA-R1, IPEN, Sao Paulo) were done, employing Solid-State Nuclear Track detectors, in order to study the distribution of α-emitters, U and Th in rocks. Polished sections of rocks were prepared and photographed. Etching conditions were studied in order to adapt the detectors to the studies of microdistribution and macrodistribution of tracks. Polycarbonate foils (Bayer, Makrofol) were chosen as fission-fragments detectors and the technique of fission induced with reactor neutrons to obtain the distribution of U and Th were studied. Uranium and thorium standards evaporated on the surface of the detectors, as well as thorite and uraninite grains, were irradiated in order to measure the integrated flux of neutrons, the effective cross sections for fission with reactor neutrons for 232 Th(0,05b) and 238 U(0,30b) and to study the contribution of 238 U fission in thorium mapping. A technique for determination of uranium and thorium in minerals was studied and applied to Mica, for which were determined the contents of 4,2 ppb U e 58 ppb Th. (Author) [pt

  20. The study of prompt neutron spectra of 238U fission induced by fast neutron

    International Nuclear Information System (INIS)

    Li Anli; Bai Xixiang; Wang Yufeng; Wang Xiaozhong; Men Jiangchen; Huang Shengnian

    1990-01-01

    The measurements of prompt neutron time-of-flight spectra of U fission induced by 11 MeV neutrons were carried out at HI-13 Tandem Van de Graaff Accelerator Laboratory in 1989. The block diagram of the electronics is shown. A fission neutron TOF spectrum for the sixth section of the fission plates and the left detector at low bias is given. The data accumulation time is 60 h

  1. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  2. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  3. Nuclear isomerism in fission fragments produced by the spontaneous fission of {sup 252}Cf; Isomerisme nucleaire dans les fragments de fission produits dans la fission spontanee du {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gautherin, C

    1997-09-01

    This thesis is devoted to the study of the nuclear structure of neutron-rich nuclei, via the search of isomeric nuclear states. Neutron-rich nuclei were produced in the spontaneous fission of {sup 252}Cf. The experimental study of isomeric states in these nuclei was performed with the {gamma}-array EUROGAM II, coupled to an additional and original fission fragment detector composed by photovoltaic cells, SAPhIR. The photovoltaic cells are well adapted to detect low energy heavy ions and have good energy and time resolutions to obtain a good fission fragment detection. This experiment led to the discovery of new isomeric states in {sup 135}Xe, {sup 104}Mo, {sup 146,147,148}Ce and {sup 152,154,156}Nd, with lifetimes between 60 ns and 2 {mu}s. Level schemes of these nuclei have been completed. An interpretation of the isomeric states in the nuclei {sup 154,156}Nd and {sup 156,158}Sm was performed by Hartree-Fock-Bogolyubov calculations using the DIS Gogny force with two quasi-particles excitations. The confrontation with the experimental results led to an interpretation of these isomeric states as K-isomers. (author)

  4. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  5. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  6. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  7. Application of Campbell's MSV method in monitoring of reactor's fission power

    International Nuclear Information System (INIS)

    Stankovic, S.J.; Vukcevic, M.; Loncar, B.; Vasic, A.; Osmokrovic, P.

    2003-01-01

    This paper presents some possibilities of Campbell's MSV (Mean Square Value) method in monitoring the reactor's fission power. Investigation of gamma discrimination compared to neutron component of signal along with change of variance and mean value the detector output signal for a specified range of reactor's fission power (10mW-22W) was carried out. The uncompensated ionization chamber for mixed n- gamma fields was used as detector element. Experimental measurements were performed using digitized MSV method, and obtained results were compared to those obtained by classical measuring chain. The final conclusion is that the order of discrimination in MSV signal processing is about fifty times larger than for classical measuring method (author)

  8. Silicon vertex detector for superheavy elements identification

    Directory of Open Access Journals (Sweden)

    Bednarek A.

    2012-07-01

    Full Text Available Silicon vertex detector for superheavy elements (SHE identification has been proposed. It will be constructed using very thin silicon detectors about 5 μm thickness. Results of test of 7.3 μm four inch silicon strip detector (SSD with fission fragments and α particles emitted by 252Cf source are presented

  9. A new detector for the measurement of neutron flux in nuclear reactors

    International Nuclear Information System (INIS)

    Koch, L.; Labeyrie, J.; Tarassenko, S.

    1958-01-01

    The detector described is designed for the instantaneous measurement of thermal neutron fluxes, in the presence of high γ ray activity; this detector can withstand temperatures as high as 500 deg. C. It is based on the following principle: radioactive atoms resulting from heavy-nucleus fission are carried by a gas flow to a detector recording their β and γ disintegration. Thermal neutron fluxes as low as few neutrons per cm 2 per second can be measured. This detector may be used to control a nuclear reactor, to plot the thermal flux distribution with an excellent definition (1 mm 2 ) for fluxes higher than 10 8 n/cm 2 /s. The time response of the system to a sharp variation of flux is limited, in case of large fluxes, to the transit time of the gas flow between the fission product emitter and the detector; of the order of one tenth of a sec per meter of piping. The detector may also be applied for spectroscopy of fission products eider than 0,1 s. (author) [fr

  10. Report on Fission Time Projection Chamber M3FT-12IN0210052

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-08-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  11. A standard fission neutron irradiation facility

    International Nuclear Information System (INIS)

    Sahasrabudhe, S.G.; Chakraborty, P.P.; Iyer, M.R.; Kirthi, K.N.; Soman, S.D.

    1979-01-01

    A fission neutron irradiation facility (FISNIF) has been set up at the thermal column of the CIRUS reactor at BARC. The spectrum and the flux have been measured using threshold detectors. The paper describes the setting up of the facility, measurement and application. A concentric cylinder containing UO 2 powder sealed inside surrounds the irradiation point of a pneumatic sample transfer system located in the thermal column of the reactor. Samples are loaded in a standard aluminium capsule with cadmium lining and transported pneumatically. A sample transfer time of 1 s can be achieved in the facility. Typical applications of the facility for studying activation of iron and sodium in fission neutrons are also discussed. (Auth.)

  12. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  13. p- and n-induced U-fission tracks as possible error sources in the fission track dating of extraterrestric samples

    International Nuclear Information System (INIS)

    Thiel, K.

    1975-01-01

    Using the fission track dating method by means of uranium fission tracks in meteorites and moon samples (according to the successful Apollo and Luna missions), special problems arise, as the samples frequently have a very great age and were subjected to the inmediate effect of primary cosmic radiation. To determine the share of induced fission tracks, an extended 'cosmic ray' simulation experiment was carried out on the p-synchrocyclotron in CERN, Geneva; the performance and results of the test with the proton flux and U fission track measurements are dealt with in detail. (HK/LH) [de

  14. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  15. Fragment properties in the fission of 237Np with fast neutrons - an experimental investigation of fission dynamics

    International Nuclear Information System (INIS)

    Naqvi, A.A.

    1980-03-01

    Fission fragment properties such as mass distribution, kinetic energy distribution or number of prompt emitted neutrons as a function of fragment mass can be used to characterize the scission point configuration. The present experiment allows for the first time to investigate these quantities for neutron induced fission in the MeV range. In this way the influence of excitation energy of the saddle point deformation of the fissioning system ( 237 Np + n) can be studied. Neutrons with energies of 0.8 and 5.5 MeV were produced by the Karlsruhe pulsed 3MV Van de Graaff accelerator. Kinetic energies and velocities of correlated fragments were determined by solid state detectors using the time-of-flight technique. The experimentally determined distributions of fragment properties were compared to a recent model suggested by Wilkins et al. which assumes only relatively weak coupling between internal and collective degrees of freedom. At least qualitative agreement is found for most of the results. (orig.) [de

  16. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  17. Induced fission track distribution from highly radioactive particles in fallout materials

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Okada, Tatemichi

    1987-01-01

    Some highly radioactive fallout particles (GPs) from the 19th Chinese nuclear detonation were followed to the neutron irradiation in a reactor after sandwiched with mica detectors. The interesting star-like fission track patterns were revealed on the etched surface of the mica detectors. The simple chemical separation procedure for the GPs was applied for the separation of U and Pu as fissile elements and the both resultant fractions were examined with the similar high sensitive fission tracking detection. Subsequently, a representative track pattern from a black spherical particle was subjected to the determination of fissile nuclide content; comparing the total fission events evaluated on the basis of the numerical calculation of track densities with the total thermal neutron fluence. The results implied that the uranium is responsible for the main fissile nuclide remaining within a particle as unfissioned fractions and should be certainly enriched with respect to U-235 within such small fallout particles. This sophisticated method was also applied to determine the dead GPs, which have been highly radioactive particles just after the detonations, in the rain and snow-residual materials. Many induced star-like fission tracks verified certainly that there remains a lot of dead particles in the atmosheric environment till nowadays. (author)

  18. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  19. Natural uranium impurities in fission track detectors and associated geocronological parameters

    International Nuclear Information System (INIS)

    Ricabarra, G.H.; Bovisio de Ricabarra, M.D.; Waisman, Dina; Faradjie de Turjanski, Rosa

    1981-01-01

    A technique, based in counting neutron induced fission tracks, has been developed for the measurement of uranium impurities in mica. Uranium concentrations of 10 -10 and 10 -9 (U atom/mica atom) have been measured. As a part of the development of this technique, the mica geological age was also measured, by fossil and induced track detection. The agreement obtained by this method, T = (472+-52) x 10 6 years with that of (450+-15) x 10 6 years obtained by the Ar-K technique is satisfactory and is an indirect test of the fission track technique used. A careful analysis of the neutron field parameters and nuclear data used in the age determination was made. This analysis is useful for applications in geocronology. According to this analysis a value of lambdasub(f)=(7.1+-0.1) x 10 -17 years -1 is recommended for the spontaneous fission of U238. However, in order to compare the results, the quoted age, T=(472+-52) x 10 6 years, was obtained with the generally accepted value of lambdasub(f)=(6.85-0.20) x 10 -17 years -1 (Fleischer and Price 1964). (author) [es

  20. Nuclear structure via isomer tagging of fission fragments

    Science.gov (United States)

    Wu, C. Y.; Cline, D.; Simon, M. W.; Stoyer, M. A.

    1997-10-01

    The high efficiency for detecting high-fold γ rays by large Ge arrays makes it possible to study the detailed spectroscopy of many neutron-rich nuclei produced by fission. Major progress has been made using sealed spontaneous fission sources. Considerable improvement in selectivity is provided, with an open source, both by gating on isomers and by detection of both fission fragments in coincidence with the deexcitation γ rays (see the preceding contribution). The reconstructed kinematics allows a measure of fragment mass and the Doppler shift correction of γ rays. In a recent experiment, fission fragments were detected using half of the CHICO array and an annular PPAC in coincidence with deexcitation γ rays detected by the Rochester array of eight Compton-suppressed Ge detectors. The annular PPAC was located only 1.0" from a 3.7 μCi ^252Cf source for efficient isomer tagging. The correlation was studied between delayed, within a time window between 150 ns and 10 μs after a fission occurring, and prompt γ rays. Several prominent feeding patterns to isomers in the mass region around 100 and 130 are identified by such correlation study. Experimental details and results will be presented.

  1. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  2. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  3. Use of the photovoltaic cells as fission fragment sensors and study of a preamplifier adapted to the cells

    International Nuclear Information System (INIS)

    Jin Yimeng.

    1989-04-01

    In the detection of heavy ions and fission fragments, the photovoltaic cells can take the place of traditional silicon surface barrier detectors, if we need a great number of detectors as in the case of 4π multidetector, and do not expect excellent energy and time resolutions at the same time. Made for the purpose of converting the solar energy to the electrical energy, the photovoltaic cells have the similar structure as silicon surface barrier detectors, except for their much thinner pn junctions and, as a result much larger junction capacities, which is a major disadvantage for photovoltaic cells as fission fragment detectors. In order to get an acceptable energy resolution and a time resolution as good as possible, it is necessary to design a preamplifier specially adapted to cells, which plays a very important role in the utilization of photovoltaic cells as detectors. In the present work we analyze the electrical signal from a cell when hit by a fission fragment, and propose a new type cell oriented preamplifier of voltage, with which we can use a cell up to 10 cm 2 , and obtain a time resolution better than 16 ns [fr

  4. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  5. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  6. Prompt Gamma Radiation from Fragments in the Thermal Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.; Lindow, L.

    1970-06-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from 252 Cf-fission. Attention is drawn to some features which seem to be the same in 235 U and 252 Cf-fission

  7. Fission and the discovery of isotopes

    International Nuclear Information System (INIS)

    Thoennessen, M.

    2014-01-01

    The discovery of new isotopes requires new developments in accelerator and detector technology. The new RI Beam Factory at RIKEN and the future projects FAIR at GSI and FRIB at MSU promise to expand the nuclear horizon even further. In the talk a short history of the role that fission played in the discovery of isotopes will be presented and future perspectives will be discussed

  8. Investigation of the characteristics of 252Cf-detectors

    International Nuclear Information System (INIS)

    Karlsson, Erik

    2004-12-01

    In the first chapter the characteristic behaviors of two Cf detectors have been investigated by performing pilot measurements. The detector with the stronger source gives an unstable signal with a low signal/noise ratio. Therefore this detector has not been further investigated. The ionization chamber reacts on both fission products and alpha decay. An energy experiment showed that there were large difficulties to separate those decays. A plastic scintillator, which reacts on both photons and neutrons, was used for neutron detection. Energy spectrums were performed and the result showed that it is difficult to set an energy threshold to separate the neutrons and the photons. The discrimination will rather be achieved by time of flight methods which is discussed under the second chapter in this thesis; Experimental results. An other experiment was done in order to investigate whether it is possible to detect any delayed components from the spontaneous fission of Cf. The result showed that delayed components existed. Either they are delayed neutrons from exited fission products, or it is some delay related to the charge collection in the Cf detector. Correlation measurements showed that few events are coincident. Only 50% of the signals from the plastic scintillator are correlated with the Cf source

  9. Fission fragment spins and spectroscopy

    International Nuclear Information System (INIS)

    Durell, J.L.

    1988-01-01

    Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission

  10. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  11. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  12. Fission of 209 Bi by 60-270 MeV tagged photons: cross section measurement and analysis of photo fissility

    International Nuclear Information System (INIS)

    Terranova, M.L.; Tavares, O.A.P.

    1996-07-01

    Tagged photons produced by the ROKK-2 facility have been used to measure the photofission cross section of 209 Bi in the energy range 60-270 MeV. Photofission events were detected by using a nuclear fragment detector designed for fission experiments, based on multiwire spark counters. Fissility values have been deduced and compared with available data obtained in other laboratories by using monochromatic photons. These data, together with early measurements obtained near photofission threshold, have been analysed in the framework of a two-step model which considers the primary photo interaction occurring via the quasi-deuteron and/or photo mesonic processes, followed by a mechanism of evaporation-fission competition for the excited residual nucleus. The model was found to reproduce the main experimental features of 209 Bi photo fissility up to 300 MeV. (author). 52 refs., 7 figs., 2 tabs

  13. Development of an experimental device based on the digitalization of the signal and dedicated to the characterization of fission fragments and prompt neutrons; Developpement d'un dispositif experimental base sur la digitalisation des signaux et dedie a la caracterisation des fragments de fission et des neutrons prompts emis

    Energy Technology Data Exchange (ETDEWEB)

    Varapai, N

    2006-12-15

    The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from {sup 252}Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given.

  14. Measurements of fission cross-sections and of neutron production rates; Mesures de sections efficaces de fission et du nombre de neutrons prompts emis par fission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, P; Clair, C; Gaudin, M; Genin, R; Joly, R; Leroy, J L; Michaudon, A; Ouvry, J; Signarbieux, C; Vendryes, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin {sup 10}B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of {sup 235}U. We intend to measure the variation of the neutron induced fission cross section of {sup 235}U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of {sup 235}U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF{sub 3} proportional counters. c) Mean number {nu} of neutrons emitted in neutron induced fission. We measured the value of {nu} for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) {alpha} reaction by means of a 300 kV Cockcroft Walton generator. (author)Fren. [French] a) Mesures de sectionficaces de fission a basse energie. Nous avons mesure et analyse la variation de la section efficace de fission de divers isotopes fissiles pour des neutrons d'energie inferieure a 0,025 eV. Le monochromateur est constitue par un spectrometre a cristal auquel est associe un selecteur mecanique destine a eliminer les diffractions de Bragg d'ordre superieur au premier. Le materiau fissile est contenu dans une chambre a fission sous forme de depots realises par peinture; une chambre d'ionisation a depots minces de B{sub 10

  15. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  16. Micro fission chamber for the ITER neutron monitor

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nishitani, Takeo; Ochiai, Kentaro; Ebisawa, Katsuyuki

    2004-01-01

    This paper describes the design and the fabrication of a prototype micro-fission chamber and test results under ITER relevant conditions including wide neutron spectrum and intense gamma-rays, and the performance as a ITER power monitor is discussed. A micro-fission chamber with 12 mg UO 2 and a dummy chamber without uranium were designed and fabricated for the in-vessel neutron flux monitoring of ITER. The measurement ability was tested with the FNS facility for 14 MeV neutrons and the 60 Co gamma-ray irradiation facility at JAERI-Takasaki. Employing the Campbelling mode in the electronics, the ITER requirement for the temporal resolution was satisfied. The excellent linearity of the detector output versus the neutron flux was confirmed in the temperature range from 20degC to 250degC. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER. (author)

  17. Measurement of home-made LaCl3 : Ce scintillation detector sensitivity with different energy points in range of fission energy

    International Nuclear Information System (INIS)

    Hu Mengchun; Li Rurong; Si Fenni

    2010-01-01

    Gamma rays of different energy were obtained in the range of fission energy by Compton scattering in intense 60 Co gamma source and the standard isotopic gamma sources which are 0.67 MeV 137 Cs and l.25 MeV 60 Co sources of point form. Sensitivity of LaCl 3 : Ce scintillator was measured in these gamma ray energy by a fast response scintillation detector with the home-made LaCl 3 : Ce scintillator. Results were normalized by the sensitivity to 0.67 MeV gamma ray. Sensitivity of LaCl 3 : Ce to 1.25 MeV gamma ray is about l.28. For ø40 mm × 2 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.18 and the smallest is 0.96 with gamma ray from 0.39 to 0.78 MeV. And for ø40 mm × 10 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.06 and the smallest is 0.98. The experimental results can provide references for theoretical study of the LaCl 3 : Ce scintillator and data to obtain the compounded sensitivity of LaCl 3 : Ce scintillator in the range of fission energy. (authors)

  18. Prompt Gamma Radiation from Fragments in the Thermal Fission of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goteborg (Sweden); Lindow, L [AB Atomenergi, Nykoeping (Sweden)

    1970-06-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow neutron induced fission of {sup 235}U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way a decay curve was obtained from which the life-time of one of the gamma-emitting states could be estimated. The relative yield of the gamma-rays was determined as a function of mass for different gamma-ray energy portions and two specific time intervals after the fission events. Comparisons were made with data obtained from {sup 252} Cf-fission. Attention is drawn to some features which seem to be the same in {sup 235}U and {sup 252} Cf-fission.

  19. Design innovations in neutron and gamma detectors

    International Nuclear Information System (INIS)

    Prasad, K.R.

    2003-01-01

    Neutron and gamma radiation needs to be monitored in most nuclear installations since it is highly penetrating. On-line monitoring of these radiations is very important for the safe and controlled operation of nuclear reactors, accelerators etc. Several design innovations have been carried out on gas ionisation detectors such as boron-lined proportional counters and ion chambers, fission detectors, gamma ion chambers as well as self-powered detectors. The use of additional structures within boron-lined detectors has enhanced their neutron sensitivity without a corresponding increase in the unwanted gamma sensitivity. The neutron sensitivity of fission counters can be enhanced by designing them as transmission line devices. Ion chambers with two and six pairs of electrodes have been developed for monitoring pulsed x-ray background at accelerator areas. Ion chambers have been employed at gamma fields up to 80 kR/h by deriving the exposure levels on-line using microcontroller devices programmed on the basis of theoretical and empirical formulas. The use of gas electron multiplier foils is proposed for charge multiplication in ion chambers. Self-powered detectors with new emitter materials like Hi, Ni and Inconel have been developed. (author)

  20. Cross section of ternary fission of Al, Ti, Co and Zr nuclei induced by 0,8 - 1,8 Gev photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Sousa, E.V. de; Milomen, W.C.C.; Tavares, O.A.P.

    1988-01-01

    A research on ternary fission of Al, Ti, Co, and Zr nuclei induced by bremsstrahlung photons of 0,8, 1,0, 1,4, and 1,8 Gev end-point energies has been carried out using makrofol polycarbonate and CR-39 polymer as fission-track detectors. Results are discussed and compared with other ternary fission data. (M.W.O.) [pt

  1. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Wolff, Ronald [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Detwiler, Ryan [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Maurer, Richard [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Mitchell, Stephen [National Security Technologies, LLC, Las Vegas, NV (United States); Guss, Paul [Remote Sensing Lab. - Nellis, Las Vegas, NV (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX (United States); Sun, Liang [Proportional Technologies, Inc., Houston, TX (United States); Athanasiades, Athanasios [Proportional Technologies, Inc., Houston, TX (United States)

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  2. Double-energy double-velocity measurement system for fission fragments and its application

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    1987-10-01

    A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233 U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)

  3. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  4. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U.; Tachon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  5. Investigation of the response of improved self-powered neutron detectors

    International Nuclear Information System (INIS)

    Erk, S.

    1982-01-01

    The self-powered neutron detectors have been successfully employed for the most important parameters both for neutron flux and flux fluence determination. Their preference for such measurements due to their simplicity, convenience in use, rigidity, voluminal smallness and low price. However, self-powered neutron detectors depend on the type used, can only follow the neutron flux changes with a certain delay when they are compared to fission chambers which are thought to be the best detectors. In this thesis, a system has been proposed and considered carefully in order to speed up the response time, in another word, to correct the detector response to a level very near to fission chamber performance, a circuitry has been realized in the frame of principles so forth and applied to the experiments carried out in the TR-1 Reactor. Their positive results are presented. (author)

  6. Development of an experimental device based on the digitalization of the signal and dedicated to the characterization of fission fragments and prompt neutrons

    International Nuclear Information System (INIS)

    Varapai, N.

    2006-12-01

    The present work demonstrates the application of the digital technique for nuclear measurements. This new technique is based on the digitalization of the signals from the detectors and has several advantages. This technique allows us to extract the maximum amount of information contained in the signal shape. In the case of an ionization chamber this signal contains the necessary information on the particle kinetic energy, emission angle and mass. This method has been implemented for measurements of promptly emitted fission neutrons in coincidence with fission fragments from 252 Cf(sf). A double Frisch-grid ionization chamber is used as fission fragment detector. The promptly emitted neutrons are detected by a NE213 liquid scintillation detector. This work displays how delicate analysis of the digitalized signals permitted us to infer the mass and kinetic energy distributions of the fission fragments as well as the neutron energy spectrum and multiplicity. The outline of this thesis is as follows: Chapter 2 gives an overview of the experimental tools used in this work. Chapter 3 explains the analysis procedure of the digitalized anode signal from an ionization chamber. Chapter 4 gives a detailed explanation of the analysis procedure of the digitalized signal from a neutron detector. In Chapter 5 the analysis procedure of the fission fragment events in coincidence with neutrons is given

  7. Simultaneous investigation of fission fragments and neutrons in 252Cf(s,f)

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Knitter, H.H.

    1986-01-01

    The gridded twin ion chamber developed at CBNM is used to measure the kinetic energy-, mass- and angular distributions of the fission fragments of 252 Cf in an advantageous 4π-geometry. Together with a neutron time-of-flight detector this experimental arrangement permits to measure the correlation between neutron emission, fragment angle, mass and energy in the spontaneous fission of 252 Cf. With the present experimental set-up a mass resolution for fission fragments of 0.5 a.m.u., an angular resolution of Δcosθ = 0.05 and a timing resolution of 0.7 ns FWHM were observed. Preliminary evaluations of the raw experimental data are presented for the fission fragment mass distribution, the average total kinetic energy and their variance as function of mass, the angular distribution between fragments and neutrons, the number of neutrons emitted per fragment as function of fragment mass, the average neutron emission energies as function of mass, and the prompt fission neutron spectrum averaged over all fragments. (author)

  8. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.

    2018-03-01

    Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  9. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilson J.N.

    2018-01-01

    Full Text Available Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  10. Experimental Verification of the Fission Chamber Gamma Signal Suppression by the Campbelling Mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Weber, M.; Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C.; Normand, S.; Lescop, B.

    2011-01-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on 242 Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of 242 Pu fission chambers operating in current mode showed that in typical MTR conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a 242 Pu and a 235 U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the 235 U fission chamber and more than 80 for the 242 Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  11. Fission-neutrons source with fast neutron-emission timing

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G., E-mail: rusev@lanl.gov; Baramsai, B.; Bond, E.M.; Jandel, M.

    2016-05-01

    A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of {sup 252}Cf. The time is provided by registering the fission fragments in a layer of a thin scintillation film with a signal rise time of 1 ns. The scintillation light output is measured by two silicon photomultipliers with rise time of 0.5 ns. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements using it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  12. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  13. Study of scission shapes in spontaneous ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Singer, P.; Schwalm, D.; Thirolf, P.; Goennenwein, F.; Hesse, M.

    1995-06-01

    A new kinematic study on the ternary fission of 252 Cf has been conducted by registering prompt neutrons and fission γ rays coincidence with light charged particles (LCP) and fission fragments. The aim is to investigate changes in fragment deformation energy between the binary and ternary fission modes from measured prompt neutron angular distributions and multiplicities, and to explore the influence of light particle emission on the energy distribution, multiplicity and angular anisotropy of γ rays emitted during fragment de-excitation. The experiment was performed at the MPI Heidelberg using the Darmstadt-Heidelberg crystal ball spectrometer as γ-ray and neutron detector. Fragments were identified by a double-E measurement with an angular sensitive twin ionization chamber (IC). Light charged particles from fission were measured by ΔE-E telescopes composed of ΔE ICs and silicon PIN diodes. The telescopes enable to identify various LCPs which are emitted much more rarely than ternary α particles. The parameters of the experiment and the method of data analysis are described and first results presented. (orig.)

  14. Mathematical processing of experimental data on neutron yield from separate fission fragments

    International Nuclear Information System (INIS)

    Basova, B.G.; Rabinovich, A.D.; Ryazanov, D.K.

    1975-01-01

    The algorithm is described for processing the multi-dimensional experiments on measurements of prompt emission of neutrons from separate fission fragments. While processing the data the effect of a number of experimental corrections is correctly taken into account; random coincidence background, neutron spectrum, neutron detector efficiency, instrument angular resolution. On the basis of the described algorithm a program for BESM-4 computer is realized and the treatment of experimental data is performed according to the spontaneous fission of 252 Cf

  15. Controlled isotropic fission fragment sources on the base of nuclear-physical facilities

    International Nuclear Information System (INIS)

    Sevast'yanov, V.D.; Maslov, G.N.

    1995-01-01

    Isotropic fission fragment sources (IFFS) are developed on the base of a neutron generator and pulse fast reactor. IFFS permit to calibrate fission fragment detectors. The IFFS consist of radiators with 235 U. The radiators are placed in a thermal neutron field of the neutron generator or in the reactor core center. The fragment activity is controlled by indications of an α-particle counter or by indications of a monitor of energy release in the core. 14 refs.; 1 fig.; 1 tab

  16. Development of the fission fragment track registration technique for the determination of the uranium contamination

    International Nuclear Information System (INIS)

    Tanaka, E.M.

    1979-01-01

    The Fission Fragment Track Registration Technique is developed to measure the uranium concentration about microgram of uranium per litre of liquid samples. The drying method of drops on the detector (Makrofol KG) and a special sampling procedure to avoid the cumbersome high density of tracks formation at the edge of the deposition surface as a 'ring' is adopted. The samples are irradiated by neutrons produced by the IEA-R1 Reactor (thermal neutron flux about 10 12 neutrons/cm 2 .s) inducing the uranium fission. The tracks registered by the fission fragments in the detector are chemically enlarged and counted by an automatic couting system. By this method the uranium concentrations ranging from 0,9 to 7,6 microgram of uranium per litre, can be determined with precisions between 2,7% the greater and 23% to the lower concentration. The uranium concentration measurements in human hair and urine are made showing that this method is very useful to control and detect eventual uranium contamination [pt

  17. Fission of intermediate mass nuclei by bremsstrahlung photons in the energy range 0.8-1.8 GeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-01-01

    The fission of intermediate mass nuclei in the Al-Ta internal induced by bremsstrahlung photons of maximum energies between 0,8 to 1,8 GeV is studied. Thin targets of Nd and Sm and dense targets of Al,Ti,Co,Zr,Nb,Ag,In and Ta are utilized, and all the aspects related with the fission fragment absorption by the targets themselves are considered. The samples are exposed in th 2,5 GeV Electron Synchrotron at Bonn University. Muscovite mica, CR-39 and makrofol are used as fission fragments detectors. Fission cross sections and nuclear fissionabilities of the studied elements are estimated. (L.C.) [pt

  18. Approximate solution to the Kolmogorov equation for a fission chain-reacting system

    International Nuclear Information System (INIS)

    Ruby, L.; McSwine, T.L.

    1986-01-01

    An approximate solution has been obtained for the Kolmogorov equation describing a fission chain-reacting system. The method considers the population of neutrons, delayed-neutron precursors, and detector counts. The effect of the detector is separated from the statistics of the chain reaction by a weak coupling assumption that predicts that the detector responds to the average rather than to the instantaneous neutron population. An approximate solution to the remaining equation, involving the populations of neutrons and precursors, predicts a negative-binomial behaviour for the neutron probability distribution

  19. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  20. Fission track analysis of Pu in small specimens of biological material: Technical progress report, August 1, 1987--July 31, 1988

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1988-01-01

    The objective of this research is to develop a highly specific and ultrasensitive method capable of detecting 100 aCi/liter of 239 Pu in human urine. The method using neutron induced fission track analysis is to be made free of interference from uranium, the only naturally occurring element with an isotope which fissions with thermal neutrons. A simplified flow diagram for the method is shown in Figure 1. Briefly 239 Pu is coprecipitated quantitatively from urine with rhodozonic acid. The precipitate containing the 239 Pu is dissolved in HCl and is sequentially passed through two ion exchange columns and reduced in volume. The element is then deposited in a circular area on a thick polycarbonate detector and a thinner detector is placed over the circular deposit. The plastic detectors are then irradiated to a high thermal neutron fluence in a research reactor. The detectors are etched in a caustic solution for controlled times and temperatures in order to develop the fission tracks. Images of tracks are formed both on the thin and thick plastic detectors. Total tracks in the thinner detector are measured with a locally developed spark counter and in the thick plastic are measured by counting with a microscope. The results will be made quantitative by constructing a calibration curve for 239 Pu. 3 refs., 9 figs., 3 tabs

  1. Fission product retention during faults involving steam generator tube rupture

    International Nuclear Information System (INIS)

    Rodliffe, R.S.

    1983-08-01

    In some PWR fault conditions, such as stuck open safety relief valve in the secondary circuit or main steam line break, the release of fission products to the atmosphere may be increased by the leakage of primary coolant into the secondary circuit following steam generator tube rupture. The release may be reduced by retention either within the primary circuit or within the affected steam generator unit (SGU). The mechanisms leading to retention are reviewed and quantified where possible. The parameters on which any analysis will be most critically dependent are identified. Fission product iodine and caesium may be retained in the secondary side of a SGU either by partition to retained water or by droplet deposition on surfaces and subsequent evaporation to dryness. Two extreme simplifications are considered: SGU 'dry', i.e. the secondary side is steam filled, and SGU 'wet', i.e. the tube bundle is covered with water. Consideration is given to: the distribution of fission products between gaseous and aerosol forms; mechanisms for droplet formation, deposition and resuspension; fission product retention during droplet or film evaporation primary coolant mixing and droplet scrubbing in a wet SGU; and the performance of moisture separators and steam driers. (author)

  2. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  3. A new recoil filter for {gamma}-detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Heese, J; Lahmer, W; Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Janicki, M; Meczynski, W; Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    A considerable improvement of gamma spectra recorded in heavy ion induced fusion evaporation residues can be achieved when gamma rays are detected in coincidence with the recoiling evaporations residues. This coincidence suppresses gamma rays from fission processes, Coulombic excitation, and reactions with target contaminations, and therefore cleans gamma spectra and improves the peak to background ratio. A sturdy detector for evaporation residues has been designed as an additional detector for the OSIRIS spectrometer. The recoil filter consists of two rings of six and twelve detector elements. In each detector element, nuclei hitting a thin Mylar foil produce secondary electrons, which are electrostatically accelerated and focussed onto a thin plastic scintillator. Recoiling evaporation residues are discriminated from other reaction products and scattered beam by the pulse height of the scintillation signal and time of flight. The detector signal is fast enough to allow the detection of an evaporation residue even if the scattered beam hits the detector first. In-beam experiment were performed with the reactions {sup 40}Ar+{sup 124}Sn, {sup 40}Ar+{sup 152}Sm at 185 MeV beam energy, and {sup 36}Ar+{sup 154,156}Gd at 175 MeV. In the latter two cases, fission amount to 50-75% of the total fusion cross section. 10 refs., 4 figs.

  4. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  5. Angular distribution in the neutron-induced fission of actinides

    Directory of Open Access Journals (Sweden)

    Leong L.S.

    2013-12-01

    Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.

  6. Studying fission neutrons with 2E-2v and 2E

    Directory of Open Access Journals (Sweden)

    Al-Adili Ali

    2018-01-01

    The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of 252Cf(sf and another one of thermal-neutron induced fission in 235U(n,f. Results from 252Cf(sf are reported here.

  7. The investigation of fast neutron Threshold Activation Detectors (TAD)

    International Nuclear Information System (INIS)

    Gozani, T; King, M J; Stevenson, J

    2012-01-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ''flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  8. The investigation of fast neutron Threshold Activation Detectors (TAD)

    Science.gov (United States)

    Gozani, T.; King, M. J.; Stevenson, J.

    2012-02-01

    The detection of fast neutrons is usually done by liquid hydrogenous organic scintillators, where the separation between the ever present gamma rays and neutrons is achieved by the pulse shape discrimination (PSD). In many practical situation the detection of fast neutrons has to be carried out while the intense source (be it neutrons, gamma rays or x-rays) that creates these neutrons, for example by the fission process, is present. This source, or ``flash'', usually blinds the neutron detectors and temporarily incapacitates them. By the time the detectors recover the prompt neutron signature does not exist. Thus to overcome the blinding background, one needs to search for processes whereby the desired signature, such as fission neutrons could in some way be measured long after the fission occurred and when the neutron detector is fully recovered from the overload. A new approach was proposed and demonstrated a good sensitivity for the detection of fast neutrons in adverse overload situations where normally it could not be done. A temporal separation of the fission event from the prompt neutrons detection is achieved via the activation process. The main idea, called Threshold Activation Detection (or detector)-TAD, is to find appropriate substances that can be selectively activated by the fission neutrons and not by the source radiation, and then measure the radioactively decaying activation products (typically beta and γ-rays) well after the source pulse has ended. The activation material should possess certain properties: a suitable half-life; an energy threshold below which the numerous source neutrons will not activate it (e.g. about 3 MeV); easily detectable activation products and has a usable cross section for the selected reaction. Ideally the substance would be part of the scintillator. There are several good candidates for TAD. The first one we have selected is based on fluorine. One of the major advantages of this element is the fact that it is a major

  9. Fabrication and utilization of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Lemos Junior, Orlando Ferreira

    1969-01-01

    This paper describes the assembly of the equipment for the fabrication of Ge-Li drifted detectors and the technique used in the preparation of a Planar detector of 7 cm 2 x 0,5 cm for the Laboratory of the Linear Accelerator at the University of Sao Paulo, as well as the utilization of a 22 cm 3 coaxial detector for the analysis of fission product gamma rays at the Instituto de Engenharia Nuclear, Rio de Janeiro, R J, Brazil. (author)

  10. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  11. Qβ measurements with a total absorption detector

    International Nuclear Information System (INIS)

    Shibata, Michihiro; Kawade, Kiyoshi; Shindou, Terumasa; Kojima, Yasuaki; Taniguchi, Akihiro; Kawase, Yoichi; Ichikawa, Shin-ichi

    2003-01-01

    For Q β determination, we have developed a newly total absorption detector that can detect almost all radiation from the radioactive nuclei. The detector is composed of large volume and low background twin BGO scintillation detectors. The estimated efficiency is more than two orders of magnitude larger than those of Ge or Si detectors. The Q β s of some fission products of 235 U were successfully measured using an on-line mass separator for the first time (KUR-ISOL). We have proposed the possibility of determination Q β up to about 10 MeV using the detector without the knowledge of the decay scheme. (author)

  12. A new type of active actinide target for studying fission and (n,xn) reactions

    International Nuclear Information System (INIS)

    Belier, G.; Aupiais, J.; Varignon, C.; Vayre, S.

    2011-01-01

    A new type of active target for the detection of fission of actinides has been developed, it is based on α spectrometry through liquid scintillation. The target uses the liquid-liquid extraction in order to mix the actinide with the liquid organic scintillator. The actinide to be detected is inside the detector itself which maximises the efficiency of the detector. The use of an organic scintillator allows the identification of the particles emitted. Indeed, the time delay for the transfer of the energy deposited in the solvent towards the scintillating molecules depends on the type of the energy deposits: instantaneous fluorescence is obtained for direct excitation while delayed fluorescence is obtained for energy deposits through ionization. By discriminating the different slow and quick components of the photomultiplier signal it is then possible to identify the particle: beta, alpha or fission products. This target has been tested with Cf 252 irradiated with 18 MeV neutrons, the experimental data show different peaks corresponding to alpha decay (97%), spontaneous fission (3%), beta decay and recoil protons due to neutron emissions. (A.C.)

  13. Experimental verification of the fission chamber gamma signal suppression by the Campbelling mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Weber, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C. [CEA, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Normand, S.; Lescop, B. [CEA, Centre de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2009-07-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on {sup 242}Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of {sup 242}Pu fission chambers operating in current mode showed that in typical MTR (Materials Test Reactors) conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a {sup 242}Pu and a {sup 235}U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the {sup 235}U fission chamber and more than 80 for the {sup 242}Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  14. The importance of the giant resonances in hadron and muon induced fission

    International Nuclear Information System (INIS)

    Hartfiel, J.

    1985-01-01

    In the first part of the thesis the fission probability of 238 U by means of the reaction 238 U(α,α'f) is studied at an incident energy of 480 MeV and a scattering angle of 3.4 0 . In the measured spectrum of the inelastically scattered α particles a strong resonance is found in the excitation energy range from 8 to 13 MeV. The center of mass of the resonance lies at 11 MeV. Its width extends to 4.5 MeV. In the second part of the thesis the muon induced fission of 235 U, 238 U, 237 Np, 242 Pu, and 244 Pu is studied. Thereby both fission fragments are detected in coincidence by two surface barrier detectors. By this it is possible for the first time to measure the mass and kinetic energy distribution of the fission fragments. (orig./HSI) [de

  15. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  16. Burn-Up Determination by High Resolution Gamma Spectrometry: Fission Product Migration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, R S; Blackadder, W H; Ronqvist, N

    1967-04-15

    The migration of solid fission products, in particular caesium and ruthenium, in high temperature oxide fuel can create a severe problem during the application of non-destructive burn-up methods employing gamma spectrometry, since caesium-137 is otherwise the most convenient long-lived burn-up monitor and ruthenium-106 can be used to distinguish between fissions in U-235 and Pu-239. As part of an experimental programme to develop burn-up methods, gamma scanning experiments have been performed on slices of irradiated UO{sub 2} pellets using a lithium-drifted germanium detector. The usefulness of the technique for migration studies has been demonstrated by comparing the fission product distribution curves across the specimen diameters with the microstructure of the specimens after polishing and etching.

  17. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  18. Fission and activation of uranium by fashion-plasma neutrons

    International Nuclear Information System (INIS)

    Lee, J.H.; Hochl, F.; McFarland, D.R.

    1978-01-01

    Disks of enriched and depleted uranium were irradiated by neutrons from the D-D fusions in a dense plasma-focus. A fission yield of 10 6 fissions-cm -3 in U 235 per pulse was determined with Ge(Li) gamme-ray spectrometry. Activation of U 238 caused increased beta activity after the plasma-neutron irradiation but alpha-particle spectrometry showed Pu 239 production was negligible. In addition, with a disk of lithium in the apparatus, 13.3 MeV neutrons from 7 Li(d,n) 8 Be was observed with a 80-m time-of-flight neutron detector. Dense plasma focuses are now operated not only in a single coaxial gun, but also in improved geometries, such as the hypocycloidal pinch and the staged plasma focus, from which a multiple plasma-focus array suitable for experimental verification of, and eventuel development into a fusion-fission hybrid reactor could be produced. (orig.) [de

  19. The LOFA analysis of fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Yu, Z.-C.; Xie, H.

    2014-01-01

    The fusion-fission hybrid energy reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc, with the fusion neutron source striking the subcritical blanket. The passive safety system, consisting of passive residual heat removal system, passive safety injection system and automatic depressurization system, was adopted into the fusion-fission hybrid energy reactor in this paper. Modeling and nodalization of primary loop, passive core cooling system and partial secondary loop of the fusion-fission hybrid energy reactor using RELAP5 were conducted and LOFA (Loss of Flow Accident) was analyzed. The results of key transient parameters indicated that the PRHRs could mitigate the accidental consequence of LOFA effectively. It is also concluded that it is feasible to apply the passive safety system concept to fusion-fission hybrid energy reactor. (author)

  20. Solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Medeiros, J.A.; Carvalho, M.L.C.P. de

    1992-12-01

    Solid state nuclear track detectors (SSNTD) are dielectric materials, crystalline or vitreous, which registers tracks of charged nuclear particles, like alpha particles or fission fragments. Chemical etching of the detectors origin tracks that are visible at the optical microscope: track etching rate is higher along the latent track, where damage due to the charged particle increase the chemical potential, and etching rate giving rise to holes, the etched tracks. Fundamental principles are presented as well as some ideas of main applications. (author)

  1. Upgrading DRACULA setup to be used for light products - fission fragments coincidence measurements

    International Nuclear Information System (INIS)

    Simion, V.; Petrovici, M.; Pop, A.; Berceanu, I.; Duma, M.; Moisa, D.; Pagano, A.; Geraci, E.

    1999-01-01

    At low bombarding energy (E/A 238 U give rise to a number of fission processes, all leading to very similar fission products. Therefore, in order to understand the fission processes in this energy domain it is of interest to determine the amount of fission occurring after a peripheral interaction relative to that originating from compound nucleus formation. Although the detection of a projectile residue (PLF) in coincidence with the fission fragments is a very promising probe for the macroscopic features of the mechanism of induced fission, at incident energies in the vicinity of the Coulomb barrier (E/A 2 cross section area uses the phoswich technique by coupling a thin fast NE102A plastic scintillator to a 10 cm long BaF 2 crystal of hexagonal section. The BaF 2 crystal detectors have been successfully used in modular multielement detector ARGOS in the context of GANCT and HOTCT researches at LNS. The light response of the phoswich configuration as a function of the plastic thickness and of the energy and charge of the incident ion has been studied at Tandem energies. Both arrays will be placed in separate vacuum chambers attached to the remaining large angular opening windows of the reaction chamber. By rotating the whole device the fission fragment detection arrays will cover a range of 96 angle in the horizontal plane. The main advantage of this setup is that it allows to perform continuous measurements in energy and angle of the reaction products. The geometry of the whole device has been tested by Monte Carlo calculations using the code ELPHIC. The coincidence condition is completely fulfilled for the first two positions of the setup and partially for the third one. Measurements are intended to be performed at the SMP Tandem from LNS-Catania using light beams ( 16 O, 19 F, 20 Ne, 32 S) at ∼ 6 MeV/A on high fissility parameter targets. (authors)

  2. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    International Nuclear Information System (INIS)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F.

    2009-01-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U 235 (typically Pu 242 , Np 237 , U 238 , Th 232 ). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  3. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  4. Preparation of the in-house neutron detectors and the software needed to process experimental data

    International Nuclear Information System (INIS)

    Haddad, Kh.; Haj-Hassan, H.; Helal, W.

    2007-04-01

    In - house neutron activation detectors were prepared in this work using pure commercial gold. The neutron self-shielding factors in the foils for both thermal and epithermal neutrons have been determined experimentally. The work shows good results repeatability and good agreement with certified activation monitors. the software KHW for neutron flux measurements using local and standards gold foils was designed and performed locally. it deals as well with irradiated uranium spectrums to calculate some important fission product ratios for neutron flux measurement. Some experiments were performed to investigate the possibility of using uranium, produced in the pilot plant, as fission neutron detector. The results shows the possibility of using fission product ratios to determine the cooling time of the samples. It shows also the possibility of using fission and activation product ratios as an indicators of neutron fluences ratios.(author)

  5. Contribution to the design, fulfillment, and data analysis of fission fragment yields of the SOFIA experiment at GSI

    International Nuclear Information System (INIS)

    Pellereau, Eric

    2013-01-01

    The isotopic fission yields of U 238 following the SOFIA experiment, conducted at the GSI facility (Darmstadt), are presented here. This experiment takes advantage of the inverse kinematics technique at relativistic energies. Benefits are several: fission fragments are highly focused (high geometrical efficiency) and are also completely stripped, which greatly simplifies their nuclear charge measurement. The first detector of the SOFIA setup is an active target in which fission occurs via electromagnetic excitation, followed by an ionization chamber to measure the nuclear charge and the horizontal angle of both fission fragments. The masses are deduced by the bending radius measurement of the fragments, deflected by a strong magnet (ALADIN), thanks to two position detectors (MWPC), and also by a highly resolved time-of-flight measurement (40 ps FWHM) so that heavy neighboring isotopes can be separated. The data analysis shows that the main goals are achieved since the isotopic separation is reached over the whole range of the fission fragments. A strong even-odd effect is seen in the charge spectrum, which also exhibits a mean heavy charge close to Z = 54. Surprisingly, the neutron even-odd effect of the light region is seen to be very close to the one in thermal neutron induced fission. The peak-to-valley ratio of the mass spectrum confirms that the mean excitation energy at fission is close to the expected one (14 MeV). The GEF code is used for comparison and always gives results very close to ours. (author) [fr

  6. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  7. Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Tarrío, D., E-mail: dtarriov@gmail.com [Universidade de Santiago de Compostela (Spain); Leong, L.S.; Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 -Université Paris-Sud - IPN, Orsay (France); Duran, I.; Paradela, C. [Universidade de Santiago de Compostela (Spain); Tassan-Got, L.; Le Naour, C.; Bacri, C.O.; Petitbon, V.; Mottier, J. [Centre National de la Recherche Scientifique/IN2P3 -Université Paris-Sud - IPN, Orsay (France); Caamaño, M. [Universidade de Santiago de Compostela (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); and others

    2014-04-11

    A fission reaction chamber based on Parallel Plate Avalanche Counters (PPACs) was built for measuring angular distributions of fragments emitted in neutron-induced fission of actinides at the neutron beam available at the Neutron Time-Of-Flight (n{sub T}OF) facility at CERN. The detectors and the samples were tilted 45° with respect to the neutron beam direction to cover all the possible values of the emission angle of the fission fragments. The main features of this setup are discussed and results on the fission fragment angular distribution are provided for the {sup 232}Th(n,f) reaction around the fission threshold. The results are compared with the available data in the literature, demonstrating the good capabilities of this setup.

  8. Study on the formation of fission isomer via 232Th + α reaction

    International Nuclear Information System (INIS)

    Vianna, D.M.

    1982-01-01

    The formation of fission isomer through 232 Th+α reaction is studied using the distance-recoil method, employing policarbonate MAKROFOL detector. The total isomeric half-life measured has the value T 1/2 = 0.23 ± 0.03 ns and an ratio of formation of isomeric fission relative to prompt fission(σ i /σ p =0.75x10 -5 ). According to the energy of incident particle (Eα = 28 MeV), the cross-sections presented in the literature and the low value found for the total isomeric half-life, we attribute these half-life value to the 234 U isomer (even-even nucleus). The results were compared with those existent in the literature (La69, E170, Re70, Wo70, Po70, Br71) for this isomer. (author) [pt

  9. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  10. Simulation of Fission Product Liftoff Behavior During Depressurization Transients

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl; Lee, Sung Nam

    2016-01-01

    As one of crucial technologies for the NHDD project, the development of the GAMMA-FP code is on-going. The GAMMA-FP code is targeted for fission product transport analysis under accident conditions. A well-known experiment named COMEDIE considered two important phenomena, i.e., fission product plateout and liftoff, for fission product transport within the primary circuit of a prismatic high temperature gas cooled reactor. The accumulated fission products on the structural material via the plateout can be liftoff during a blowdown phase after a pipe break accident. Since the fission product liftoff can increase a radioactivity risk, it is important to predict the amount of fission product liftoff during depressurization accidents. In this work, a model for fission product liftoff is implemented into the GAMMA-FP code and the GAMMA-FP code with the implemented model is validated using the COMEDIE blowdown test data. The results of GAMMA-FP show that the GAMMA-FP code can reliably simulate a pressure transient during blowdown phase after a pipe break accident. In addition, a reasonable amount of fission product liftoff was predicted by the GAMMA-FP code. The maximum difference between the measured and predicted liftoff fraction was less than a factor of 10. More in-depth study is required to increase the accuracy of prediction for a fission product liftoff

  11. Observed mass distribution of spontaneous fission fragments from samples of lime - an SSNTD study

    CERN Document Server

    Paul, D; Ghose, D; Sastri, R C

    1999-01-01

    SSNTD is one of the most commonly used detectors in the studies involving nuclear phenomena. The ease of registration of the presence of alpha particles and fission fragments has made it particularly suitable in studies where stable long exposures are needed to extract reliable information. Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Lime samples from Silchar in Assam of Eastern India have shown the presence of spontaneous fission fragments besides alphas. In the present study we look at the ratio of the average mass distribution of these fission fragments, that gives us an indication of the presence of the traces of transuranic elements.

  12. Prompt neutron energy spectrum for the spontaneous fission of Cf-252

    International Nuclear Information System (INIS)

    Blinov, M.V.; Boykov, G.S.; Vitenko, V.A.

    1985-06-01

    The prompt neutron spectrum for the spontaneous fission of Cf-252 has been measured in 0.01-10 MeV region by the time-of-flight technique using a fast ionization chamber with U-235 layers as the neutron detector. Numerical data for the spectrum are presented, with an error file. (author)

  13. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    International Nuclear Information System (INIS)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S.

    2003-01-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- ε turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential

  14. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Geslot, B.; Berhouet, F.; Oriol, L.; Breaud, S.; Jammes, C.; Filliatre, P.; Villard, J. F. [CEA, DEN, Dosimetry Command Control and Instrumentation Laboratory, F-13109 Saint-Paul-lez-Durance (France)

    2009-07-01

    The Dosimetry Command control and Instrumentation Laboratory (LDCI) at CEA/Cadarache is specialized in the development, design and manufacturing of miniature fission chambers (from 8 mm down to 1.5 mm in diameter). The LDCI fission chambers workshop specificity is its capacity to manufacture and distribute special fission chambers with fissile deposits other than U{sup 235} (typically Pu{sup 242}, Np{sup 237}, U{sup 238}, Th{sup 232}). We are also able to define the characteristics of the detector for any in-core measurement requirements: sensor geometry, fissile deposit material and mass, filling gas composition and pressure, operating mode (pulse, current or Campbelling) with associated cable and electronics. The fission chamber design relies on numerical simulation and modeling tools developed by the LDCI. One of our present activities in fission chamber applications is to develop a fast neutron flux instrumentation using Campbelling mode dedicated to measurements in material testing reactors. (authors)

  15. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  16. Future research program on prompt γ-ray emission in nuclear fission

    Science.gov (United States)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  17. Study of fission barriers in neutron-rich nuclei using the (p,2p) reaction. Status of SAMURAI-experiment NP1306 SAMURAI14

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Sebastian [TU Munich (Germany); Collaboration: NP1306-SAMURAI14-Collaboration

    2015-07-01

    Violent stellar processes are currently assumed to be a major origin of the elements beyond iron and their abundances. The conditions during stellar explosions lead to the so called r-process in which the rapid capture of neutrons and subsequent β decays form heavier elements. This extension of the nuclei stops at the point when the repulsive Coulomb energy induces fission. Its recycling is one key aspect to describe the macroscopic structure of the r-process and the well known elemental abundance pattern. The RIBF at RIKEN is able to provide such neutron rich heavy element beams and a first test with the primary beam {sup 238}U was performed to understand the response of the SAMURAI spectrometer and detectors for heavy beams. The final goal is the definition of the fission barrier height with a resolution of 1 MeV (in σ) using the missing mass method using (p,2p) reactions in inverse kinematics.

  18. Interaction of noble-metal fission products with pyrolytic silicon carbide

    International Nuclear Information System (INIS)

    Lauf, R.J.; Braski, D.N.

    1982-01-01

    Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain layers of pyrolytic carbon and silicon carbide, which act as a miniature pressure vessel and form the primary fission product barrier. Of the many fission products formed during irradiation, the noble metals are of particular interest because they interact significantly with the SiC layer and their concentrations are somewhat higher in the low-enriched uranium fuels currently under consideration. To study fission product-SiC interactions, particles of UO 2 or UC 2 are doped with fission product elements before coating and are then held in a thermal gradient up to several thousand hours. Examination of the SiC coatings by TEM-AEM after annealing shows that silver behaves differently from the palladium group

  19. An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection

    Science.gov (United States)

    Waguespack, Randy Paul

    2011-12-01

    Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.

  20. Measurement of {sup 238}Np fission cross-section by neutrons near thermal point (preliminary results)

    Energy Technology Data Exchange (ETDEWEB)

    Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others

    1995-10-01

    Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.

  1. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  2. Measurement of mass distribution of U-235 fission products in the intermediate neutron region

    International Nuclear Information System (INIS)

    Nakagomi, Yoshihiro; Kobayashi, Shohei; Yamamoto, Shuji; Kanno, Ikuo; Wakabayashi, Hiroaki.

    1982-01-01

    The mass distribution and the momentum distribution of U-235 fission products in the intermediate neutron region were measured by using a combination system of the Yayoi intermediate neutron column and an electron linear accelerator. The double energy measurement method was applied. A fission chamber, which consists of an enriched uranium target and two Si surface barrier detectors, was used for the measurement of the neutrons with energy above 1.3 eV. The linear accelerator was operated at the repetition rate of 100 Hz and the pulse width of 10 ns. The data obtained by the two-dimensional pulse height analysis were analyzed by the Schmitt's method. The preliminary results of the mass distribution and the momentum distribution of fission fragments were obtained. (Kato, T.)

  3. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-01-01

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  4. Setup for fission and evaporation cross-section measurements in reactions induced by secondary beams

    International Nuclear Information System (INIS)

    Hassan, A.A.; Luk'yanov, S.M.; Kalpakchieva, R.; Skobelev, N.K.; Penionzhkevich, Yu.Eh.; Dlouhy, Z.; Radnev, S.; Poroshin, N.V.

    2002-01-01

    A setup for studying reactions induced by secondary radioactive beams has been constructed. It allows simultaneous measurement of α-particle and fission fragment energy spectra. By measuring the α-particles, identification of evaporation residues is achieved. A set of three targets can be used so as to ensure sufficient statistics. Two silicon detectors, located at 90 degrees to the secondary beam direction, face each target, thus covering 30% of the solid angle. This experimental setup is to be used to obtain excitation functions of fusion-fission reactions and of reactions leading to evaporation residue production

  5. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  6. Prompt neutron spectrum of the spontaneous fission of californium-252

    International Nuclear Information System (INIS)

    Zamyatnin, Yu.S.; Kroshkin, N.I.; Korostylev, V.A.; Nefedov, V.N.; Ryazanov, D.K.; Starostov, B.I.; Semenov, A.F.

    1976-01-01

    The californium-252 spontaneous fission neutron spectrum was measured in the energy range of 0.01 to 10 MeV by the time-of-flight technique using various neutron detectors. The measurements of 252 Cf neutron spectrum at energies of 0.01 to 5 MeV were performed as a function of fission fragment kinetic energy. The mean neutron spectrum energy in the range of 0.7 to 10 MeV was found from the results of measurements. The irregularity in the 252 Cf neutron spectrum in the neutron energy range of less than 0.7 MeV compared to theoretical values is discussed. The mechanism of 252 Cf neutron emission is also discussed on the basis of neutron yield angle measurements. 12 references

  7. Modifications in track registration response of PADC detector by energetic protons

    CERN Document Server

    Dwivedi, K K; Fink, D; Mishra, R; Tripathy, S P; Kulshreshtha, A; Khathing, D T

    1999-01-01

    It has been well established that different ionising radiations modify the track registration properties of dielectric solids. In an effort to study the response of Polyallyl diglycol carbonate (PADC Homalite) detector towards fission fragment, PADC detectors were exposed to 10 sup 4 Gy dose of 62 MeV protons and then one set of samples were exposed to fission fragments from a sup 2 sup 5 sup 2 Cf source. Two of these detectors were containing a thin layer of Buckminsterfullerene (C sub 6 sub 0). The study of the etched tracks by Leitz Optical Microscope reveals that the track diameters are enhanced by more than 70% in the proton irradiated zone as compared to that in the unirradiated zone. Scanning Electron Microscopy was performed after etching the sample in 6 N NaOH at 55 deg. C for different etching times, to study the details of the surface modifications due to proton irradiation of PADC detectors with and without C sub 6 sub 0 layer. Our observations revealed that the diameters and density of proton tra...

  8. Fission of Al, Ti, Co, Zr, Nb, Ag, In, Nd, Sm, and Ta nuclei induced by 0.8-1.8 GeV photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Martins, J.B.; Tavares, O.A.P.

    1989-01-01

    Samples of Al, Ti, Co, Zr, Nb, Ag, In, Nd, Sm, and Ta elements in contact with solid state nuclear track detectors were exposed to 0.8-1.8 GeV bremsstrahlung beams at the 2.5-GeV Electron Synchrotron of the Bonn University. The detectors were processed to produce visible fission tracks for track analysis with optical microscopes. Absolute mean cross section per photon and fissility were evaluated. Results are discussed and compared with other photofission data as well as with estimates from the current fission models. A broad minimum found for nuclear fissility of 10 -4 -10 -3 covering the range 15 approx Z 2 /A approx 25 seems to confirm the predictions from the models. For Al and Ti nuclei the probability of fission amounts to approx 10 -1 . (author) [pt

  9. Estimation of ex-core detector responses by adjoint Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    Ex-core detector responses can be efficiently calculated by combining an adjoint Monte Carlo calculation with the converged source distribution of a forward Monte Carlo calculation. As the fission source distribution from a Monte Carlo calculation is given only as a collection of discrete space positions, the coupling requires a point flux estimator for each collision in the adjoint calculation. To avoid the infinite variance problems of the point flux estimator, a next-event finite-variance point flux estimator has been applied, witch is an energy dependent form for heterogeneous media of a finite-variance estimator known from the literature. To test the effects of this combined adjoint-forward calculation a simple geometry of a homogeneous core with a reflector was adopted with a small detector in the reflector. To demonstrate the potential of the method the continuous-energy adjoint Monte Carlo technique with anisotropic scattering was implemented with energy dependent absorption and fission cross sections and constant scattering cross section. A gain in efficiency over a completely forward calculation of the detector response was obtained, which is strongly dependent on the specific system and especially the size and position of the ex-core detector and the energy range considered. Further improvements are possible. The method works without problems for small detectors, even for a point detector and a small or even zero energy range. (authors)

  10. Yields of some fragments on 235U, 238U and 239Pu fission due to the neutrons of the SBR-1 reactors

    International Nuclear Information System (INIS)

    Yurova, L.N.; Bushuev, A.V.; Ozerkov, V.N.; Chachin, V.V.; Zvonarev, A.V.; Liforov, Yu.G.; Koleganov, Yu.V.; Miller, V.V.; Gorbatyuk, O.V.

    1979-01-01

    Determined are the values of the yields of fission fragments in spectrum close to that of the neutron fission using the data on yields at fission by thermal neutrons. The relation between the activities of fragments in samples irradiated in the BR-1 center and in the thermal colomn of the same reactor was measured with the help of the Ge(Li). The relative rate of fissions in uranium and plutonium samples in the center or in thermal colomn were measured by track detectors. The comparison of the yields obtained and the data of other authors is being made

  11. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  12. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  13. Future research program on prompt γ-ray emission in nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S.; Hambsch, F.J. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Billnert, R. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Lebois, M.; Wilson, J.N. [Institut de Physique Nucleaire Orsay, Orsay (France); Oberstedt, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Ossolution Consulting, Oerebro (Sweden)

    2015-12-15

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions {sup 235}U(n{sub th}, f), {sup 239}Pu(n{sub th},f) and {sup 252}Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of {sup 235}U and {sup 239}Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on {sup 235}U and {sup 241}Pu as well as for the spontaneous fission of {sup 252}Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on {sup 238}U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on {sup 235,238}U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies. (orig.)

  14. Determination in soils of soluble uranium fraction in acid medium by fission tracks registration techniques

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-01-01

    The fission tracks registration technique was used to determine the concentration of uranium in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. The method was applied to a few samples of soils from Pocos de Caldas, Minas Gerais in Brazil. The concentrations of uranium in the samples and residues were also determined by other methods to compare the results obtained; only one sample showed deviation among the results obtained by the fission tracks method. (author)

  15. Fission of intermediate mass nuclei by photons of stopping radiation in the maximum energy range 0,8 - 1,8 MeV

    International Nuclear Information System (INIS)

    Lima, D.A. de.

    1983-07-01

    The fission of intermediate mass nuclei in Al - Ta interval, induced by stopping radiation phtons of maximum energies between 0,8 and 1.8 GeV is studied. Nd and Sm thin targets and Al, Ti, Co, Zr, Nb, Ag, In and Ta thick targets were used, considering all peculiarities inherent to absorption of fission fragments in the target. The samples were exposed into the 2.5 GeV Electron Synchrotron in Bonn Univerity. The fission fragment tracks were registered in foil type detectors using mica muscovite for Sm and Nd, CR-39 for Al and Ti and makrofol for Co, Zr; Nb, Ag, In, Nd and Ta. The track length and track depth angle distributions were measured for determining fission efficiencies. The fission cross sections and nuclear fissionable of the studied elements were evaluated. (M.C.K.) [pt

  16. Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-04-15

    Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments

  17. Energies and Yields of Prompt Gamma Rays from Fragments in Slow-Neutron Induced Fission of 235U

    International Nuclear Information System (INIS)

    Albinsson, H.

    1971-04-01

    Measurements were made on the gamma radiation emitted from fission fragments in slow-neutron induced fission of 235 U. The fragments were detected with solid state detectors of the surface barrier type and the gamma radiation with a Nal(Tl) scintillator. Mass selection was used so that the gamma radiation could be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. In this way it was possible to select various collimator settings and let gamma radiation of different half-lives be enhanced. Gamma-ray energy spectra from these time components were then recorded as function of mass. The spectrum shape differed greatly depending on the half-life of the radiation and the fragment from which it was emitted. The results of the present measurements were discussed in the light of existing fission models, and comparisons were made with prompt gamma-ray and neutron data from other fission experiments

  18. Probability of ternary fission of 93Nb andnat Ag nuclei induced by 0.8-1.8 GeV photons

    International Nuclear Information System (INIS)

    Lima, D.A. de; Milomen, W.C.C.; Tavares, O.A.P.

    1989-01-01

    The yields of ternary fission of 93 Nb and nat Ag nuclei induced by bremsstrahlung photons of 0.8, 1.0, 1.4 and 1.8 GeV end-point energies have been measured by using the 2 Π-forward geometry with thick target metal foils in contact with makrofol polycarbonate sheets as fission-track detectors. Absolute mean cross sections per photon in the range 0.8-1.8 GeV have been obtained as 0.3 ± 0.3 μb and 0.5 ± μb, respectively, for 93 Nb and nat Ag nuclei. These correspond to a probability of ternary fission of approx. 10 -5 for both nuclei. Results are discussed and compared with previous ternary fission data obtained for nuclei of A [pt

  19. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  20. Cryogenic method for measuring nuclides and fission gases

    Science.gov (United States)

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  1. Experimental verification of the gas pumping theory within fission ionisation chambers

    International Nuclear Information System (INIS)

    Bartlett, A.C.

    1975-01-01

    Experimental verification of a theory for gas loss from in-core ionization chambers is reported. A value of the gas pressure within an irradiated miniature fission chamber was derived indirectly by use of published data on Townsend first coefficient/field across the detector as a function of field/pressure. In practice the voltage corresponding to 10% current multiplication is measured. From the current saturation characteristics measured on the detector during irradiation, the change in gas pressure as a function of fluence was derived and compared to theoretically predicted values. Within the limited accuracy obtainable substantial agreement between measurement and theory is obtained. (O.T.)

  2. Comments on the stochastic characteristics of fission chamber signals

    International Nuclear Information System (INIS)

    Pál, L.; Pázsit, I.; Elter, Zs.

    2014-01-01

    This paper reports on theoretical investigations of the stochastic properties of the signal series of ionisation chambers, in particular fission chambers. First, a simple and transparent derivation is given of the higher order moments of the random detector signal for incoming pulses with a non-homogeneous Poisson distribution and random pulse heights and arbitrary shape. Exact relationships are derived for the higher order moments of the detector signal, which constitute a generalisation of the so-called higher order Campbelling techniques. The probability distribution of the number of time points when the signal exceeds a certain level is also derived. Then, a few simple pulse shapes and amplitude distributions are selected as idealised models of the detector signals. Assuming that the incoming particles form a homogeneous Poisson process, explicit expressions are given for the higher order moments of the signal and the number of level crossings in a given time interval for the selected pulse shapes

  3. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  4. Scintillation neutron detector with dynamic threshold

    International Nuclear Information System (INIS)

    Kornilov, N.; Massey, T.; Grimes, S.

    2014-01-01

    Scintillation neutron detectors with hydrogen are a common tool for neutron spectroscopy. They provide good time resolution, neutron-gamma discrimination and high efficiency of neutron counting. The real open problems connected with application of these detectors are in the energy range >10 MeV. There are no standard neutron spectra known with high accuracy for this energy range. Therefore, traditional methods for experimental investigation of the efficiency function fail for these neutrons. The Monte Carlo simulation cannot provide reasonable accuracy due to unknown characteristics of the reactions for charged particle production (p, α and so on, light output, reaction cross-sections). The application of fission chamber with fissile material as a neutron detector did not help to solve the problem. We may avoid many problems if we use the traditional neutron detector with non-traditional data analysis. In this report we give main relations, and demonstrate the method for Cf-source. Experimental detector efficiency is compared with MC simulation. (authors)

  5. Thorium content of a mineral ore from Morro do Ferro by fission track technique

    International Nuclear Information System (INIS)

    Oliveira, C.A.N. de.

    1980-10-01

    The feasibility to determine thorium concentrations by fission track technique in samples of mineral ore has been demonstrated. The literature registers only the application of the fission track technique to mineral ore in the case where the fissionable element is uranium. The technique was applied to determine the thorium concentration of an ore sample from Morro do Ferro, taking advantage of the high thorium to uranium ratio in that mineral. The sample analysed presented a thorium concentration of 2467 +- 400 mg Th/Kg ore. The so called wet method was adopted by using the Bayer made Makrofol KG 10μm thick, as the detector foil, immersed in the thorium solution. The technique is also useful to determine thorium concentrations in environmental samples because of the following aspects: high sensitivity; fast chemical separation of interfering elements; low cost; and operational simplicity. (Author) [pt

  6. A neural network for locating the primary vertex in a pixel detector

    International Nuclear Information System (INIS)

    Kantowski, R.; Marzban, C.

    1995-01-01

    Using simulated collider data for p+p→2Jets interactions in a two-barrel pixel detector, a neural network is trained to construct the coordinate of the primary vertex to a high degree of accuracy. Three other estimates of this coordinate are also considered and compared to that of the neural network. It is shown that the network can match the best of the traditional estimates. ((orig.))

  7. Characterization of wastes from fission 99 Mo production

    International Nuclear Information System (INIS)

    Endo, L.S.; Dellamano, J.C.

    1992-07-01

    This work is a preliminary study on waste-streams generated in a fission 99 Mo production plant, their characterization and quantification. The study is based on a plant whose 99 Mo production process is the alkaline dissolution of U-target. The target is made of 1 g of enriched 235 U, therefore most of radionuclides present in the waste-streams are fission products. All the radionuclides inventories were estimated based on ORIGEN-2 Code. The characterization was done as a primary stage for the establishment of waste management plan, which should be subject for further study. (author)

  8. Spent-fuel characterization with small CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, R. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: Reinhard.Berndt@jrc.it; Mortreau, P. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Va) (Italy)

    2006-08-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections.

  9. Spent-fuel characterization with small CZT detectors

    International Nuclear Information System (INIS)

    Berndt, R.; Mortreau, P.

    2006-01-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections

  10. Device for glass detector tracks processing

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Mikheev, V.P.; Pis'mennyj, G.V.; Pribytov, V.I.; Rozov, B.S.

    1974-01-01

    The authors describe a semi-automatic installation for measuring angular distribution of tracks from nuclear fission fragments. The measurements were performed on glass detectors represented by a cylinder surface section with central angle 110-120 deg, height 20 mm and radius 45 mm. The tracks were in the form of lunes, 10/25 mm deep. Treatment of one detector lasted 10-15 min. The installation affords the possibility of finding the angular distribution of tracks by counting them in zones, whose sizes may vary from 1 to 90 deg. Data output was performed on a digitizer [ru

  11. Reaction Rate Benchmark Experiments with Miniature Fission Chambers at the Slovenian TRIGA Mark II Reactor

    Science.gov (United States)

    Štancar, Žiga; Kaiba, Tanja; Snoj, Luka; Barbot, Loïc; Destouches, Christophe; Fourmentel, Damien; Villard, Jean-François AD(; )

    2018-01-01

    A series of fission rate profile measurements with miniature fission chambers, developed by the Commisariat á l'énergie atomique et auxénergies alternatives, were performed at the Jožef Stefan Institute's TRIGA research reactor. Two types of fission chambers with different fissionable coating (235U and 238U) were used to perform axial fission rate profile measurements at various radial positions and several control rod configurations. The experimental campaign was supported by an extensive set of computations, based on a validated Monte Carlo computational model of the TRIGA reactor. The computing effort included neutron transport calculations to support the planning and design of the experiments as well as calculations to aid the evaluation of experimental and computational uncertainties and major biases. The evaluation of uncertainties was performed by employing various types of sensitivity analyses such as experimental parameter perturbation and core reaction rate gradient calculations. It has been found that the experimental uncertainty of the measurements is sufficiently low, i.e. the total relative fission rate uncertainty being approximately 5 %, in order for the experiments to serve as benchmark experiments for validation of fission rate profiles. The effect of the neutron flux redistribution due to the control rod movement was studied by performing measurements and calculations of fission rates and fission chamber responses in different axial and radial positions at different control rod configurations. It was confirmed that the control rod movement affects the position of the maximum in the axial fission rate distribution, as well as the height of the local maxima. The optimal detector position, in which the redistributions would have minimum effect on its signal, was determined.

  12. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  13. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  14. Measurement of fission product release during LWR fuel failure

    International Nuclear Information System (INIS)

    Osetek, D.J.; King, J.J.

    1979-01-01

    The PBF is a specialized test reactor consisting of an annular core and a central test space 21 cm in diameter and 91 cm high. A test loop circulates coolant through the central experimental section at typical power reactor conditions. Light-water-reactor-type fuel rods are exposed to power bursts simulating reactivity insertion transients, and to power-cooling-mismatch conditions during which the rods are allowed to operate in film boiling. Fission product concentrations in the test loop coolant are continuously monitored during these transients by a Ge(Li) detector based gamma spectrometer. Automatic batch processing of pulse height spectra results in a list of radionuclide concentrations present in the loop coolant as a function of time during the test. Fission product behavior is then correlated to test parameters and posttest examination of the fuel rods. Data are presented from Test PCM-1

  15. A new look at statistics in fission-track dating

    International Nuclear Information System (INIS)

    Green, P.F.

    1981-01-01

    Poissonian errors, as routinely applied in fission-track dating, represent a limiting case, which may not always be attainable in practice. Other experimental factors may introduce additional non-Poissonian errors, which must be taken into account. In the population method, sampling of non-homogeneous uranium distributions introduces experimental error. In the external detector method (EDM), many factors exist to introduce such error. Simply quoting total numbers of spontaneous and induced fission tracks obtained by the EDM may disguise the possible influence of experimental variation. The present work concentrates on the EDM, and describes a test which has recently been proposed to detect the presence of experimental error in EDM analyses. The question of an alternative analysis for cases where such error is present is also considered. A method of presenting EDM data is suggested, which allows assessment of the importance of experimental errors. (author)

  16. Gamma-ray Output Spectra from 239 Pu Fission

    International Nuclear Information System (INIS)

    Ullmann, John

    2015-01-01

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239 Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution

  17. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  18. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  19. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  20. Yield of Prompt Gamma Radiation in Slow-Neutron Induced Fission of 235U as a Function of the Total Fragment Kinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Albinsson, H [Chalmers Univ. of Technology, Goeteborg (SE)

    1971-07-01

    Fission gamma radiation yields as functions of the total fragment kinetic energy were obtained for 235U thermal-neutron induced fission. The fragments were detected with silicon surface-barrier detectors and the gamma radiation with a Nal(Tl) scintillator. In some of the measurements mass selection was used so that the gamma radiation could also be measured as a function of fragment mass. Time discrimination between the fission gammas and the prompt neutrons released in the fission process was employed to reduce the background. The gamma radiation emitted during different time intervals after the fission event was studied with the help of a collimator, the position of which was changed along the path of the fission fragments. Fission-neutron and gamma-ray data of previous experiments were used for comparisons of the yields, and estimates were made of the variation of the prompt gamma-ray energy with the total fragment kinetic energy

  1. Method of plastic track detector electrochemical etching

    International Nuclear Information System (INIS)

    D'yakov, A.A.

    1984-01-01

    The review of studies dealing with the development of the method for the electro-chemical etching (ECE) of the plastic track detectors on the base of polyethy-leneterephthalate (PET) and polycarbonate (PC) is given. Physical essence of the method, basic parameters of the processes, applied equipment and methods of measurement automation are considered. The advantages of the method over the traditional chemical etching are pointed out. Recommendations on the detector operation modes when detecting fission fragments, α-particles and fast neutrons are given. The ECE method is based on the condition that during chemical etching the high-voltage sound frequency alternating electric field is applied to the detector. In this case the detector serves as an isolating layer betWeen two vessels with etching solution in which high-voltage electrode are submerged. At a fixed electric field potential higher (over than the threshold value) at the end of the etching track cone atree-like discharge spot arises. It is shown that when PET is used for fast neutron detection it is advisable to apply for ECE the PEW solution (15g KOH+40 g C 2 H 2 OH + 45g H 2 O) the field potential should constitute 30 kVxcm -1 at the freqUency of 9 kHz. In the case of fission fragment detection Using ECE and PC the following ECE conditions are recommended: 30% KOH etcher, field potential of 10 kVxcm -1 , 2-4 kHz frequency. It is concluded that the ECE method permits considerably eXtend the sphere of plastic track detector application for detecting ionizing particles,

  2. Fission yield covariance generation and uncertainty propagation through fission pulse decay heat calculation

    International Nuclear Information System (INIS)

    Fiorito, L.; Diez, C.J.; Cabellos, O.; Stankovskiy, A.; Van den Eynde, G.; Labeau, P.E.

    2014-01-01

    Highlights: • Fission yield data and uncertainty comparison between major nuclear data libraries. • Fission yield covariance generation through Bayesian technique. • Study of the effect of fission yield correlations on decay heat calculations. • Covariance information contribute to reduce fission pulse decay heat uncertainty. - Abstract: Fission product yields are fundamental parameters in burnup/activation calculations and the impact of their uncertainties was widely studied in the past. Evaluations of these uncertainties were released, still without covariance data. Therefore, the nuclear community expressed the need of full fission yield covariance matrices to be able to produce inventory calculation results that take into account the complete uncertainty data. State-of-the-art fission yield data and methodologies for fission yield covariance generation were researched in this work. Covariance matrices were generated and compared to the original data stored in the library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235 U. Calculations were carried out using different libraries and codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the libraries. The uncertainty quantification was performed first with Monte Carlo sampling and then compared with linear perturbation. Indeed, correlations between fission yields strongly affect the uncertainty of decay heat. Eventually, a sensitivity analysis of fission product yields to fission pulse decay heat was performed in order to provide a full set of the most sensitive nuclides for such a calculation

  3. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  4. Studies of the Fission Integrals of U-{sup 235} and Pu-{sup 239} with Cadmium and Filters

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E

    1965-04-15

    The resonance fissions in U{sup 235} and Pu{sup 239} have been studied using cadmium and boron filters. Fission chambers were used as detectors and the experiments were performed in beam geometry. The neutron energy distribution in the beams transmitted through the different filters was determined with a fast chopper. From the cadmium filter, measurements the fission resonance integrals were determined. The values obtained were 278{+-}9 b for U{sup 235} and 301{+-}10 b for Pu{sup 239}; 0.5 eV < E < 1 MeV. Complementary Pu{sup 239} measurements were made in which the fission events were detected from the fission product activity in irradiated foils. Contrary to what has been reported elsewhere the value of the Pu{sup 239} resonance integral, found in this way, agreed well with that obtained from the fission chamber measurement. The experiments with the boron filters yielded results which, for the thin filter, agreed well with those calculated from the cross section data given in the Karlsruhe compilation. The discrepancy was larger for the thick filter but the values did not disagree outside the common limits of error.

  5. Neutron flux measurement by mobile detectors

    International Nuclear Information System (INIS)

    Verchain, M.

    1987-01-01

    Various incore instrumentation systems and their technological evolution are first reviewed. Then, for 1300 MWe PWR nuclear power plant, temperature and neutron flux measurement are described. Mobile fission chambers, with their large measuring range and accurate location allow a good knowledge of the core. Other incore measures are possible because of flux detector thimble tubes inserted in the reactor core [fr

  6. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  7. Study on the etching conditions of polycarbonate detectors for particle analysis of safeguards environmental samples

    International Nuclear Information System (INIS)

    Iguchi, K.; Esaka, K.T.; Lee, C.G.; Inagawa, J.; Esaka, F.; Onodera, T.; Fukuyama, H.; Suzuki, D.; Sakurai, S.; Watanabe, K.; Usuda, S.

    2005-01-01

    The fission track technique was applied to the particle analysis for safeguards environmental samples to obtain information about the isotope ratio of nuclear materials in individual particles. To detect the particles containing nuclear material with high detection efficiency and less particle loss, the influence of uranium enrichments on etching conditions of a fission track detector made of polycarbonate was investigated. It was shown that the increase in uranium enrichment shortened the suitable etching time both for particle detection and for less particle loss. From the results obtained, it was suggested that the screening of the uranium particles according to the enrichment is possible by controlling the etching time of the detector

  8. Retention of fission products in air filters

    International Nuclear Information System (INIS)

    Sobnack, R.

    1986-01-01

    The plume from the Chernobyl nuclear reactor reached London in the morning of 1st May. Less than two weeks later, the Physics Department, University of Surrey, reported a measurable level of radioactivity in air filters. On 15th May air filters from within the air conditioning plant of the Radioisotope Department at the London Hospital were removed for radiation checks. Crude tests with a geiger counter gave readings of 5-10 times higher than background levels. Gamma-ray spectroscopy of the departmental air filters (AF1) using a 127 mm NaI detector revealed a pattern characteristic of emissions of fission products from a nuclear reactor. Another air filter (AF2), from the home of a member of staff, was much less active. Because of the complexity of the gamma-ray spectrum and the relatively high level of emission from the departmental air filter, a thorough investigation was carried out using a high purity germanium detector. (author)

  9. Technology for Fissionable Materials Detection by Use of 100 MeV Variable Linac

    CERN Document Server

    Karasyov, Sergey P; Dovbnja, Anatoliy N; Eran, L; Kiryukhin, Nikolay M; Melnik, Yu M; Ran'iuk, Yu; Shlyakhov, Il'ya N; Trubnikov, Sergiy V

    2005-01-01

    A new concept for a two-step facility to increase the accuracy/reliability of detecting heavily shielded fissionable materials (FM) in marine containers is presented. The facility will detect FM in two steps. An existing dual-view; dual-energy X-ray scanner, which is based on 7 MeV electron accelerator, will select the suspicious places inside container. The linac with variable energy (up to 100 MeV) will be used for the second step. The technology will detect fissionable nuclei by gamma induced fission reactions and delayed neutron registration. A little-known Ukrainian experimental data obtained in Chernobil' clean-up program will be presented to ground proposed concept. The theoretical calculations of neutron fluxes scale these results to marine container size. Modified GEANT code for electron/gamma penetration and authors' own software for neutron yield/penetration are used for these calculations. Available facilities (X-ray scanners; linac; detectors), which will be used for concept proof, are described....

  10. Fission Surface Power Technology Development Update

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  11. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  12. Determination of the uranium concentration in soil solutions by the fission track registration technique

    International Nuclear Information System (INIS)

    Fernandes, G.P.

    1980-02-01

    The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt

  13. Development and characterization of a neutron detector based on a lithium glass–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Nattress, J.; Kukharev, V.; Foster, A.; Meddeb, A. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Ounaies, Z. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I., E-mail: ijovanovic@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-06-11

    We report on the fabrication and characterization of a neutron scintillation detector based on a Li-glass–polymer composite that utilizes a combination of pulse height and pulse shape discrimination (PSD) to achieve high gamma rejection. In contrast to fast neutron detection in a PSD medium, we combine two scintillating materials that do not possess inherent neutron/gamma PSD properties to achieve effective PSD/pulse height discrimination in a composite material. Unlike recoil-based fast neutron detection, neutron/gamma discrimination can be robust even at low neutron energies due to the high Q-value neutron capture on {sup 6}Li. A cylindrical detector with a 5.05 cm diameter and 5.08 cm height was fabricated from scintillating 1 mm diameter Li-glass rods and scintillating polyvinyltoluene. The intrinsic efficiency for incident fission neutrons from {sup 252}Cf and gamma rejection of the detector were measured to be 0.33% and less than 10{sup −8}, respectively. These results demonstrate the high selectivity of the detector for neutrons and provide motivation for prototyping larger detectors optimized for specific applications, such as detection and event-by-event spectrometry of neutrons produced by fission.

  14. The etching property of the surface of CR-39 and the track core radius of fission fragment

    CERN Document Server

    Mineyama, D; Yamauchi, T; Oda, K; El-Rahman, A

    2002-01-01

    The etch pits of fission fragments in CR-39 detector have been observed carefully using an atomic force microscope (AFM) after extremely short chemical etching in stirred 6N KOH solution kept at 70degC. It was found that there existed a thin layer where the bulk etch rate is relativity from large the etch-pit growth curve for the etching duration between 10 and 1800 seconds. The track core radius of fission fragment was evaluated to be about 6 nm from the extrapolation of the growth curve in a thinner region. (author)

  15. Multiplicity and correlated energy of gamma rays emitted in the spontaneous fission of Californium-252

    International Nuclear Information System (INIS)

    Brunson, G.S. Jr.

    1982-06-01

    An array of eight high-speed plastic scintillation detectors has been used to infer a mathematical model for the emission multipliciy of prompt gammas in the spontaneous fission of 252 Cf. Exceptional time resolution and coincidence capability permitted the separation of gammas from fast neutrons over a flight path of approximately 10 cm. About 20 different distribution models were tested. The average energy of the prompt gammas is inversely related to the number emitted; however, this inverse relationship is not strong and the total gamma energy does increase with increasing gamma number. An extension of the experiment incorporated a lithium-drifted germanium gamma spectrometer that resolved nearly 100 discrete gammas associated with fission. Of these gammas, some were preferentially associated with fission in which few gammas were emitted. Certain others were more frequent when many gammas were emitted. Results are presented

  16. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  17. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  18. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    International Nuclear Information System (INIS)

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M.

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator (∼5 x 10 7 n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output (±9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about ±13%. The NE-451 (ZnS) scintillators and 4 He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of ±14% for the scintillators and ±15% for the 4 He counters

  19. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  20. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  1. Evaluation and compilation of fission product yields 1993

    International Nuclear Information System (INIS)

    England, T.R.; Rider, B.F.

    1995-01-01

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993

  2. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  3. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  4. Measurement of Plutonium-240 Angular Momentum Dependent Fission Probabilities Using the Alpha-Alpha' Reaction

    Science.gov (United States)

    Koglin, Johnathon

    Accurate nuclear reaction data from a few keV to tens of MeV and across the table of nuclides is essential to a number of applications of nuclear physics, including national security, nuclear forensics, nuclear astrophysics, and nuclear energy. Precise determination of (n, f) and neutron capture cross sections for reactions in high- ux environments are particularly important for a proper understanding of nuclear reactor performance and stellar nucleosynthesis. In these extreme environments reactions on short-lived and otherwise difficult-to-produce isotopes play a significant role in system evolution and provide insights into the types of nuclear processes taking place; a detailed understanding of these processes is necessary to properly determine cross sections far from stability. Indirect methods are often attempted to measure cross sections on isotopes that are difficult to separate in a laboratory setting. Using the surrogate approach, the same compound nucleus from the reaction of interest is created through a "surrogate" reaction on a different isotope and the resulting decay is measured. This result is combined with appropriate reaction theory for compound nucleus population, from which the desired cross sections can be inferred. This method has shown promise, but the theoretical framework often lacks necessary experimental data to constrain models. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(alpha, alpha'f) reaction - a surrogate for the 239Pu(n, f) - and fission of 35.9(2)MeV at eleven scattering angles from 40° to 140° in 10° intervals and at nuclear excitation energies up to 16MeV. Within experimental uncertainty, the maximum fission probability was observed at the neutron separation energy for each alpha scattering angle. Fission probabilities were separated into five 500 keV bins from 5:5MeV to

  5. Calibration on Pegase of a selective D.R.G. installation for short life and long life fission gas

    International Nuclear Information System (INIS)

    Vasnier, F.

    1968-01-01

    Pegase irradiation loops are equipped with a detection installation which measures the global activity of short-life and long-life fission gases which are released in CO 2 , but the reduced size of circuits in the loop results in an accumulation of long life fission gases, and therefore in problems in the interpretation of measured signals. Thus, the authors propose an additional detection installation which allows long-life fission gases to be separately measured. The principle is to ensure a partial decay of the sampled gas by imposing an additional transit time in order to get rid of short-life fission gases which have a radioactive period of some tenths of a second. A second detector is then used to measure the residual activity of long-life fission gases. The author describes the installation (the normal circuit and the modified circuit), reports the performed tests and the calibration, presents and discusses the obtained results and the installation sensitivity (for short-life and long-life fission gases), and reports their application to the relationship between DRG (sheath failure detection) signals obtained on Pegase and on EDF and EL4 reactors

  6. Assessment of the high temperature fission chamber technology for the French fast reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l' Energie Atomique, CEA (France)

    2011-07-01

    High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

  7. Actinide Capture and Fission Cross Section Measurements Within the Mini-Inca Project

    International Nuclear Information System (INIS)

    Letourneau, A.

    2006-01-01

    Full text of publication follows: The Mini-INCA project is devoted to precise description of the transmutation chain of Actinides within high thermal neutron fluxes. It uses the High Flux Reactor of ILL (Laue Langevin Institute) as an intense thermal neutron source to measure capture and fission cross sections. Two irradiation channels are dedicated for those measurements offering a diversity of fluxes ranging from pure thermal neutrons to 15% epithermal neutrons with intensities as high as 1*10 15 n/cm 2 /s. Standard nuclear techniques for measurements, such as α and γ-spectroscopy of irradiated samples, have been extended in order to stand all constraints due to the irradiation in high fluxes. In particular new types of fission micro-chambers have been developed to follow online the evolution of one actinide and to measure its fission cross section in reference to 235 U(n,F) standard reaction. This type of neutron detector will be used within the MEGAPIE target to on-line characterise the neutron flux and to study the potentiality of such target in terms of incineration. (author)

  8. Fission of Weakly Prolate 119Sn and Weakly Oblate 209Bi Nuclei Induced by 500 and 672 MeV Negative Pions

    International Nuclear Information System (INIS)

    Rana, Mukhtar Ahmed; Sher, Gul; Manzoor, Shahid; Shahzad, M. I.

    2011-01-01

    Fission cross-sections of 119 Sn and 209 Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209 Bi target nuclei whereas it is poor for 119 Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119 Sn and 209 Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z 2 /A is observed for the above-mentioned reactions and a critical limit of Z 2 /A is identified with the value of 30 which divides the curve of σ f versus Z 2 /A into two regimes, one with weak dependence and the other with strong dependence. (nuclear physics)

  9. Fission of Weakly Prolate 119Sn and Weakly Oblate 209Bi Nuclei Induced by 500 and 672 MeV Negative Pions

    Science.gov (United States)

    Mukhtar, Ahmed Rana; Gul, Sher; Shahid, Manzoor; I. Shahzad, M.

    2011-09-01

    Fission cross-sections of 119Sn and 209Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of σf versus Z2/A into two regimes, one with weak dependence and the other with strong dependence.

  10. Improving differential die-away analysis via the use of neutron poisons in detectors

    International Nuclear Information System (INIS)

    Jordan, Kelly A.; Vujic, Jasmina; Phillips, Emmanuel; Gozani, Tsahi

    2007-01-01

    Differential Die-Away Analysis (DDAA) is an active interrogation technique to detect special nuclear material (SNM). In DDAA, a pulsed neutron generator produces pulses of neutrons that are directed into a cargo to be interrogated. As each pulse passes through the cargo, the neutrons are thermalized and absorbed. If SNM is present, the thermalized neutrons from the source will cause fissions that produce a new source of neutrons. The number of thermal neutrons decay exponentially with the diffusion decay time of the inspected medium, on the order of hundreds of μs. An external neutron detector which is designed to detect only epithermal neutrons, will measure only a single decaying exponential when there is no SNM present, and two exponentials when SNM is present. This paper shows that in many cases, a gain in detection sensitivity can be realized by introducing a thermal neutron poison (such as boron) into the detector. This poison will reduce the efficiency of the detector, but decrease its decay time. A decreased decay time will cause the separation between the detector and fission signal exponentials to occur at an earlier time. There is a balance between efficiency and time constant for a detector. The boron concentration to achieve the maximum sensitivity, and its magnitude, will be different for different detector designs

  11. Prompt fission neutron spectra of n + 235U above the (n, nf) fission threshold

    International Nuclear Information System (INIS)

    Shu Nengchuan; Chen Yongjing; Liu Tingjin; Jia Min

    2015-01-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235 U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n, xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n, xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n, nf) or (n, 2nf) reactions influences the PFNS shape, and the neutron spectra of the (n, xnf) fission-channel are soft compared with the neutron spectra of the (n, f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. (authors)

  12. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  13. Miniature fission chambers calibration in pulse mode: interlaboratory comparison at the. SCK·CEN BR1 and CEA CALIBAN reactors

    International Nuclear Information System (INIS)

    Lamirand, V.; Geslot, B.; Gregoire, G.; Garnier, D.; Breaud, S.; Mellier, F.; Di-Salvo, J.; Destouches, C.; Blaise, P.; Wagemans, J.; Borms, L.; Malambu, E.; Casoli, P.; Jacquet, X.; Rousseau, G.; Sauvecane, P.

    2013-06-01

    Miniature fission chambers are suited tools for instrumenting experimental reactors, allowing online and in-core neutron measurements of quantities such as fission rates or reactor power. A new set of such detectors was produced by CEA to be used during the next experimental program at the EOLE facility starting in 2013. Some of these detectors will be employed in pulse mode for absolute measurements, thus requiring calibration. The calibration factor is expressed in mass units and thus called 'effective mass'. A calibration campaign was conducted in December 2012 at the SCK.CEN BR1 facility within the framework of the scientific cooperation VEP (VENUS-EOLE-PROTEUS) between SCK.CEN, CEA and PSI. Two actions were conducted in order to improve the calibration method. First a new characterisation of the thermal flux cavity and the MARK3 neutron flux conversion device performed by SCK.CEN allowed using calculated effective cross sections for determining detectors effective masses. Dosimetry irradiations were performed in situ in order to determine the neutron flux level and provide link to the metrological standard. Secondly two fission chambers were also calibrated at the CEA CALIBAN reactor (fast neutron spectrum), using the same method so that the results can be compared with the results obtained at the SCK.CEN. In this paper the calibration method and recent improvements on uncertainty reduction are presented. The results and uncertainties obtained in the two reactors CALIBAN and BR1 are compared and discussed. (authors)

  14. Cumulative fission yield of Ce-148 produced by thermal-neutron fission of U-235

    International Nuclear Information System (INIS)

    Hasan, A.A.

    1984-12-01

    Cumulative fission yield of 148 cesium isotopes and some other fission products produced by thermal-neutron fission of 235 uranium is determined by Germanium/Lithium spectroscopic methods. The measuremets were done at Tsing-Hua open pool reactor using 3 to 4 mg of 93.15% enriched 235 uranium samples. Gamma rays are assigned to the responsible fission products by matching gamma rays energies and half lives. Fission rate is calculated by fission track method. Cumulative fission yields of 148 cesium, 90 krypton, 130 iodine, 144 lanthanum, 89 krypton, 136 xenon, 137 xenon and 140 cesium are calculated. This values are compared with previously predicted values and showed good agreement. 21 Ref

  15. The STAR Vertex Position Detector

    Energy Technology Data Exchange (ETDEWEB)

    Llope, W.J., E-mail: llope@rice.edu [Rice University, Houston, TX 77005 (United States); Zhou, J.; Nussbaum, T. [Rice University, Houston, TX 77005 (United States); Hoffmann, G.W. [University of Texas, Austin, TX 78712 (United States); Asselta, K. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brandenburg, J.D.; Butterworth, J. [Rice University, Houston, TX 77005 (United States); Camarda, T.; Christie, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Crawford, H.J. [University of California, Berkeley, CA 94720 (United States); Dong, X. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Engelage, J. [University of California, Berkeley, CA 94720 (United States); Eppley, G.; Geurts, F. [Rice University, Houston, TX 77005 (United States); Hammond, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Judd, E. [University of California, Berkeley, CA 94720 (United States); McDonald, D.L. [Rice University, Houston, TX 77005 (United States); Perkins, C. [University of California, Berkeley, CA 94720 (United States); Ruan, L.; Scheblein, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-09-21

    The 2×3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2×19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event “start time” needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ∼100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ∼1 cm.

  16. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  17. Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section

  18. Large area two dimensional position sensitive detectors

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Lynen, U.; Stelzer, H.; Gobbi, A.; Bock, R.

    1979-02-01

    After an introduction, a position-sensitive ionization chamber, a parallel-plate detector, and a multiwire position-sensitive chamber are described. Then the data acquisition and analysis methods are considered. Furthermore, the experimental methods for a multi-parameter experiment are described. Finally, the measurement of gamma-ray and neutron multiplicities and sequential fission is considered, and the results are presented. (HSI) [de

  19. Fission meter and neutron detection using poisson distribution comparison

    Science.gov (United States)

    Rowland, Mark S; Snyderman, Neal J

    2014-11-18

    A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

  20. Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Colonna, N.; Terlizzi, R.; Abbondanno, U.; Marrone, S.; Belloni, F.; Fujii, K.; Moreau, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Sesura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Vincente, M. C.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Calvino, F.; Capote, R.; Carrapico, C.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Cortes, G.; Poch, A.; Pretel, C.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Eleftheriadis, C.; Furman, W.; Goverdovski, A.; Gramegna, F.; Mastinu, P.; Praena, J.; Haas, B.; Haight, R.; Igashira, M.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Lozano, M.; Marganiec, J.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Plompen, A.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlastou, R.; Voss, F.

    2010-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233 U, interesting for Th/U based nuclear fuel cycles, 241, 243 Am and 245 Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235 U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)

  1. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  2. Comparison Of 252Cf Time Correlated Induced Fisssion With AmLi Induced Fission On Fresh MTR Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jay Prakash [Los Alamos National Laboratory

    2017-03-30

    The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded and collimated ion chamber. The 3He detectors are used for active and passive neutron coincidence counting while the ion chamber is used for gross gamma counting. Active coincidence measurement data is used to measure residual fissile mass, whereas the passive coincidence measurement data along with passive gamma measurement can provide information about burnup, cooling time, and initial enrichment. In the past, most of the active interrogation systems along with the AEFC used an AmLi neutron interrogation source. Owing to the difficulty in obtaining an AmLi source, a 252Cf spontaneous fission (SF) source was used during a 2014 field trail in Uzbekistan as an alternative. In this study, experiments were performed to calibrate the AEFC instrument and compare use of the 252Cf spontaneous fission source and the AmLi (α,n) neutron emission source. The 252Cf source spontaneously emits bursts of time-correlated prompt fission neutrons that thermalize in the water and induce fission in the fuel assembly. The induced fission (IF) neutrons are also time correlated resulting in more correlated neutron detections inside the 3He detector, which helps reduce the statistical errors in doubles when using the 252Cf interrogation source instead of

  3. Determination of the uranium concentration in water samples by the technique of fission track recording

    International Nuclear Information System (INIS)

    Geraldo, L.P.

    1979-01-01

    The technique of fission track register was developed for the determination of micrograms of uranium. The Makrofol KG, a synthetic plastic made by Bayer, was used as the detector and the wet method was utilized. The detector calibration curve allows the determination of the uranium concentration in a sample within an interval from 8.0 to 0.4μgU/L, the total error ranging from 3.3% to 29.0% respectively. The method was used in the determination of the uranium content in various water samples, obtained from various sources like rivers, sea etc. in the state of Sao Paulo, Brazil. Results were compared with those obtained by other authors using different methods. The average concentration found in sea waters (3.27 +- 9.12μgU/l) by this method is compatible with the international average accepted value of 3.3μgU/l, irrespective of site and depth. The determination of the uranium content by fission track counting has proved to be very convenient. (Author) [pt

  4. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  5. Measurement of the 234U(n, f ) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

    Science.gov (United States)

    Stamatopoulos, A.; Kanellakopoulos, A.; Kalamara, A.; Diakaki, M.; Tsinganis, A.; Kokkoris, M.; Michalopoulou, V.; Axiotis, M.; Lagoyiannis, A.; Vlastou, R.

    2018-01-01

    The 234U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the 7Li ( p, n) and the 2H( d, n) reactions, respectively, relative to the 235U( n, f ) and 238U( n, f ) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research "Demokritos", using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via α-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions ( e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented.

  6. Searching for universal behaviour in superheated droplet detector ...

    Indian Academy of Sciences (India)

    induced events and γ-induced events for R114 detector has been described. ... allel plates of which one is made of a very light material which acts as a ... tron through the elastic head-on collision and that energy is considered in .... neutrons from 252Cf fission neutron source occurs at about 700 keV [18], the maximum.

  7. {sup 3}He Replacement for Nuclear Safeguards Applications- an integrated test program to compare alternative neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H. O.; Henzlova, D.; Evans, L. G.; Swinhoe, M. T.; Marlow, J. B. [Los Alamos National Laboratory, Safeguards Science and Technology Group, Los Alamos, (United States)

    2011-12-15

    During the past several years, the demand for {sup 3}He gas has far exceeded the gas supply. This shortage of {sup 3}He gas is projected to continue into the foreseeable future. There is a need for alternative neutron detectors that do not require {sup 3}He gas. For more than four decades, neutron detection has played a fundamental role in the safeguarding and control of nuclear materials at production facilities, fabrication plants and storage sites worldwide. Neutron measurements for safeguards applications have requirements that are unique to the quantitative assay of special nuclear materials. These neutron systems measure the neutron multiplicity distributions from each spontaneous fission and/or induced fission event. The neutron time correlation counting requires that two or more neutrons from a single fission event be detected. The doubles and triples neutron counting rate depends on the detector efficiency to the 2nd and 3rd power, respectively, so low efficiency systems will not work for the coincidence measurements, and any detector instabilities are greatly amplified. In the current test program, we will measure the alternative detector properties including efficiency, die-away time, multiplicity precision, gamma sensitivity, dead-time, and we will also consider the detector properties that would allow commercial production to safeguards scale assay systems. This last step needs to be accomplished before the proposed technologies can reduce the demand on {sup 3}He gas in the safeguards world. This paper will present the methodology that includes MCNPX simulations for comparing divergent detector types such as {sup 10}B lined proportional counters with {sup 3}He gas based systems where the performance metrics focus on safeguards applications.

  8. Coulex fission of 234U, 235U, 237Np, and 238Np studied within the SOFIA experimental program

    International Nuclear Information System (INIS)

    Martin, Julie-Fiona

    2014-01-01

    SOFIA (Studies On FIssion with Aladin) is an experimental project which aims at systematically measuring the fission fragments' isotopic yields as well as their total kinetic energy, for a wide variety of fissioning nuclei. The PhD work presented in this dissertation takes part in the SOFIA project, and covers the fission of nuclei in the region of the actinides: 234 U, 235 U, 237 Np and 238 Np. The experiment is led at the heavy-ion accelerator GSI in Darmstadt, Germany. This facility provides intense relativistic primary beam of 238 U. A fragmentation reaction of the primary beam permits to create a secondary beam of radioactive ions, some of which the fission is studied. The ions of the secondary beam are sorted and identified through the FR-S (Fragment Separator), a high resolution recoil spectrometer which is tuned to select the ions of interest.The selected - fissile - ions then fly further to Cave-C, an experimental area where the fission experiment itself takes place. At the entrance of the cave, the secondary beam is excited by Coulomb interaction when flying through an target; the de-excitation process involves low-energy fission. Both fission fragments fly forward in the laboratory frame, due to the relativistic boost inferred from the fissioning nucleus.A complete recoil spectrometer has been designed and built by the SOFIA collaboration in the path of the fission fragments, around the existing ALADIN magnet. The identification of the fragments is performed by means of energy loss, time of flight and deviation in the magnet measurements. Both fission fragments are fully (in mass and charge) and simultaneously identified.This document reports on the analysis performed for (1) the identification of the fissioning system, (2) the identification of both fission fragments, on an event-by-event basis, and (3) the extraction of fission observables: yields, TKE, total prompt neutron multiplicity. These results, concerning the actinides, are discussed, and

  9. Study on mitigation of in-vessel release of fission products in severe accidents of PWR

    International Nuclear Information System (INIS)

    Huang, G.F.; Tong, L.L.; Li, J.X.; Cao, X.W.

    2010-01-01

    Research highlights: → In-vessel release of fission products in severe accidents for 600 MW PWR is analyzed. → Mitigation effect of primary feed-and-bleed on in-vessel release is investigated. → Mitigation effect of secondary feed-and-bleed on in-vessel release is studied. → Mitigation effect of ex-vessel cooling on in-vessel release is evaluated. - Abstract: During the severe accidents in a nuclear power plant, large amounts of fission products release with accident progression, including in-vessel and ex-vessel release. Mitigation of fission products release is demanded for alleviating radiological consequence in severe accidents. Mitigation countermeasures to in-vessel release are studied for Chinese 600 MW pressurized water reactor (PWR), including feed-and-bleed in primary circuit, feed-and-bleed in secondary circuit and ex-vessel cooling. SBO, LOFW, SBLOCA and LBLOCA are selected as typical severe accident sequences. Based on the evaluation of in-vessel release with different startup time of countermeasure, and the coupling relationship between thermohydraulics and in-vessel release of fission products, some results are achieved. Feed-and-bleed in primary circuit is an effective countermeasure to mitigate in-vessel release of fission products, and earlier startup time of countermeasure is more feasible. Feed-and-bleed in secondary circuit is also an effective countermeasure to mitigate in-vessel release for most severe accident sequences that can cease core melt progression, e.g. SBO, LOFW and SBLOCA. Ex-vessel cooling has no mitigation effect on in-vessel release owing to inevitable core melt and relocation.

  10. Simulation of COMEDIE Fission Product Plateout Experiment Using GAMMA-FP

    International Nuclear Information System (INIS)

    Tak, Nam-il; Yoon, Churl

    2014-01-01

    FThis phenomenon is particularly important under a VHTR design with vented low pressure confinement (VLPC), because the vent allows the prompt release of fission products accumulated within the primary circuit to environment during an initial blow-down phase after pipe break accidents. In order to analyze the fission product plateout, an numerical model was developed by Yoo et al. and incorporated into the GAMMA-FP code in the past. The GAMMA-FP model was validated against two experiment data, i.e., VAMPYR-1 and OGL, during the development phase. One of the well-known experiments for fission product plateout is the COMEDIE experiment. In this work, the COMEDIE experiment has been simulated using the GAMMA-FP code to investigate the reliability and applicability of the plateout model of GAMMA-FP. The COMEDIE experiment for fission product plateout was simulated using the GAMMA-FP code in this work. A good agreement was achieved between the measured and predicted plateout activities. The existing solution scheme was modified to allow larger time step size for fission product analysis in order to speed-up the computational time. Nevertheless, the modification of the existing numerical model of GAMMA-FP is necessary when a simulation capability of a long duration of plateout period (e.g., 60 years) is targeted

  11. Study of the prompt gamma ray signal from fissions in special nuclear materials induced using an associated particle neutron generator

    International Nuclear Information System (INIS)

    Koltick, D. S.; Kane, S. Z.

    2009-01-01

    More than 42 million cargo containers entered the United States in 2005. To search for a few kilograms of special nuclear material (SNM) within this vast stream of cargo, an inspection system based on neutron-induced fission followed by the coincident detection of multiple prompt fission gamma rays is investigated using MCNP-Polimi code. The system utilizes two deuterium-tritium (DT) associated particle neutron generators, each capable of 10 9 neutrons/s at 14.1 MeV, with sub-nanosecond timing resolution ZnO:Ga alpha detectors internal to the generator. Because prompt fission signals are approximately 100 times stronger than the delayed signals, the neutron flux is greatly reduced compared to 10 11-12 neutrons/s required for systems based on delayed signals such as the 'nuclear car wash' [4]. In addition the system utilizes 30 cm deep liquid krypton (LKr) noble gas detectors having 94% detection efficiency for 1 MeV gamma rays, high solid angle coverage (∼ 50% of the total solid angle), and sub-nanosecond timing resolution (∼ 600 ps). An algorithm for distinguishing U-235 from U-238 is presented. (authors)

  12. Research activities in fission chamber modeling in support of the nuclear energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, C.; Filliatre, P.; Geslot, B.; Oriol, L.; Berhouet, F.; Villard, J. F. [Commissariat a l' Energie Atomique, DEN/SPEX/LDCI, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-07-01

    Fission chambers are widely used in the nuclear industry. As an example, they play a major role in the control of any fission reactor and are thus regarded as a key component for ensuring their safety. They are also employed in the material testing reactors for monitoring irradiations. We have recently started a research program, the objective of which is to improve the performance of those neutron detectors in terms of lifetime, calibration and online diagnosis. In this paper, we present several studies carried out in order to model the signal delivered by a fission chamber. First, the simulation of the deposit evolution allowed us to select the most appropriate fissile material for a given spectrum and fluence. Second, we studied the impact of the bias voltage and filling gas characteristics on the charge collection time. Finally, the simulation of a pulse signal prior to amplification showed how it is important to have a satisfactory knowledge of the energy for creating ion pairs to accurately assess the signal in current or Campbelling mode. (authors)

  13. Research activities in fission chamber modeling in support of the nuclear energy industry

    International Nuclear Information System (INIS)

    Jammes, C.; Filliatre, P.; Geslot, B.; Oriol, L.; Berhouet, F.; Villard, J. F.; Vermeeren, L.

    2009-01-01

    Fission chambers are widely used in the nuclear industry. As an example, they play a major role in the control of any fission reactor and are thus regarded as a key component for ensuring their safety. They are also employed in the material testing reactors for monitoring irradiations. We have recently started a research program, the objective of which is to improve the performance of those neutron detectors in terms of lifetime, calibration and online diagnosis. In this paper, we present several studies carried out in order to model the signal delivered by a fission chamber. First, the simulation of the deposit evolution allowed us to select the most appropriate fissile material for a given spectrum and fluence. Second, we studied the impact of the bias voltage and filling gas characteristics on the charge collection time. Finally, the simulation of a pulse signal prior to amplification showed how it is important to have a satisfactory knowledge of the energy for creating ion pairs to accurately assess the signal in current or Campbelling mode. (authors)

  14. Monitoring the fast neutrons in a high flux: The case for 242Pu fission chambers

    International Nuclear Information System (INIS)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B.; Vermeeren, L.

    2009-01-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10 15 n/cm 2 /s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, 242 Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  15. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  16. New flux detectors for CANDU 6 reactors

    International Nuclear Information System (INIS)

    Cuttler, J.M.; Medak, N.

    1992-06-01

    CANDU reactors utilize large numbers of in-core self-powered detectors for control and protection. In the original design, the detectors (coaxial cables) were wound on carrier tubes and immersed in the heavy water moderator. Failures occurred due to corrosion and other factors, and replacement was very costly because the assemblies were not designed with maintenance in mind. A new design was conceived based on straight detectors, of larger diameter, in a sealed package of individual 'well' tubes. This protected the detectors from hostile environments and enabled individual failed sensors to be replaced by inserting spares in vacant neighbouring tubes. The new design was made retrofittable to older CANDU reactors. Provision was made for on-line scanning of the core with a miniature fission chamber. The modified detectors were tested in a lengthy development program and found to exhibit superior performance to that of the original detectors. Most of the CANDU reactors have now adopted the new design. In the case of the Gentilly-2 and Point Lepreau reactors, advantage was taken of the opportunity to redesign the detector layout (using better codes and the increased flexibility in positioning detectors) to achieve better coverage of abnormal events, leading to higher trip setpoints and wider operating margins

  17. Dead time of different neutron detectors associated with a pulsed electronics with current collection

    International Nuclear Information System (INIS)

    Bacconnet, Eugene; Duchene, Jean; Duquesne, Henry; Schmitt, Andre

    1968-01-01

    After having outlined that the development of fast neutron reactor physics, notably kinetics, requires highly efficient neutron detectors and pulse measurement chains able to cope with high counting rates, the authors report the measurement of dead time of various neutron detectors which are used in the experimental study of fast neutron reactors. They present the SAITB 1 electronic measurement set, its components, its general characteristics, the protected connection between the detector and the electronics. They present and report the experiment: generalities about detector location and measurements, studied detectors (fission chambers, boron counters), and report the exploitation of the obtained results (principle, data, high-threshold counting gain) [fr

  18. An annular ionization detector for quasi-elastic and transfer reaction studies

    CERN Document Server

    Dinesh, B V; Nayak, B K; Biswas, D C; Saxena, A; Pant, L M; Sahu, P K; Choudhury, R K

    2000-01-01

    An annular ionization chamber detector has been developed to study quasi-elastic and transfer reactions in heavy-ion collisions at near-barrier and sub-barrier energies. The important feature of the detector is that it has a near 2 pi coverage in the azimuthal angle phi for the particles entering in the detector at a given theta direction. This feature makes the detector very useful for measurement of the differential cross-sections at backward angles with respect to the beam direction, involving low cross-section reaction channels. The split anode configuration of the detector makes it capable of both particle identification and energy measurement for heavy ions and fission fragments. The detector has been tested using heavy-ion beams from the 14 MV-pelletron accelerator at Mumbai. Results on quasi-elastic excitation function measurements and barrier distribution studies in many heavy-ion reactions using this detector setup are discussed.

  19. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  20. Evaluation of various planar gaseous detectors with CsI photocathodes for the detection of primary scintillation light from noble gases

    CERN Document Server

    Periale, L; Carlson, P J; Francke, T; Iacobaeus, C; Pavlopoulos, P; Pietropaolo, F; Sokolova, T

    2003-01-01

    Noble gases and liquids are excellent scintillators and this opens a unique opportunity to directly detect the primary scintillation light produced in these media by photons or particles. This signal can be used for several purposes, for example as a start signal for TPCs or for particles identification. Usually photomultipliers (PMs) are used for the detection of the scintillation light. In our previous work we have demonstrated that costly PMs could be replaced by gaseous detectors with CsI photocathodes . Such detectors have the same quantum efficiency as the best PMs but at the same time are cheap, simple and have high position and time resolutions. The aim of this work is to evaluate various planar type gaseous detectors with CsI photocahodes in order to choose the best one for the detection of the primary scintillation light from noble gases and liquids.

  1. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  2. Release of fission products from contaminated sodium fires

    International Nuclear Information System (INIS)

    Jordan, S.

    1976-01-01

    Leaks in the primary coolant system of a LMFBR and also serious incidents with tank rupture may entail the escape of fission products into the containment of the reactor. For incident analysis it is important to know the retention capability of sodium for the different fission products. The release of cesium and strontium from pools contaminated with 100 to 1000 ppM was investigated by experiments. The cesium content of airborne aerosols depends on oxygen concentration: at 21 percent oxygen concentration the Cs content of sodium-oxide aerosols is 3 times and at 0.5 percent 15 times as high as the initial Cs concentration in the pool. Strontium content of aerosols over burning contaminated sodium pools is 10 3 times smaller than the strontium pool concentration

  3. Determination of fission products and actinides by inductively coupled plasma-mass spectrometry using isotope dilution analysis. A study of random and systematic errors

    International Nuclear Information System (INIS)

    Ignacio Garcia Alonso, Jose

    1995-01-01

    The theory of the propagation of errors (random and systematic) for isotope dilution analysis (IDA) has been applied to the analysis of fission products and actinide elements by inductively coupled plasma-mass spectrometry (ICP-MS). Systematic errors in ID-ICP-MS arising from mass-discrimination (mass bias), detector non-linearity and isobaric interferences in the measured isotopes have to be corrected for in order to achieve accurate results. The mass bias factor and the detector dead-time can be determined by using natural elements with well-defined isotope abundances. A combined method for the simultaneous determination of both factors is proposed. On the other hand, isobaric interferences for some fission products and actinides cannot be eliminated using mathematical corrections (due to the unknown isotope abundances in the sample) and a chemical separation is necessary. The theory for random error propagation in IDA has been applied to the determination of non-natural elements by ICP-MS taking into account all possible sources of uncertainty with pulse counting detection. For the analysis of fission products, the selection of the right spike isotope composition and spike to sample ratio can be performed by applying conventional random propagation theory. However, it has been observed that, in the experimental determination of the isotope abundances of the fission product elements to be determined, the correction for mass-discrimination and the correction for detector dead-time losses contribute to the total random uncertainty. For the instrument used in the experimental part of this study, it was found that the random uncertainty on the measured isotope ratios followed Poisson statistics for low counting rates whereas, for high counting rates, source instability was the main source of error

  4. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  5. Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, Matthew S., E-mail: matthew.s.mcarthur@gmail.com; Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu; Czirr, J. Bart, E-mail: czirr@juno.com

    2016-08-11

    Using the combination of a neutron-sensitive {sup 6}Li glass scintillator detector with a neutron-insensitive {sup 7}Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on {sup 6}Li. We used this detector with a {sup 252}Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.

  6. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  7. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  8. CR-39 as induced track detector in reactor: irradiation effect

    International Nuclear Information System (INIS)

    Zylberberg, H.

    1989-07-01

    A systematic study about reactor's neutrons radiation effect and gamma radiation effect on the properties of CR-39 that are significant for its use as induced fission track detector is showed. The following studies deserved attention: kinetics of the fission track chemical development; efficiency to register and to develop fission track; losses of developable tracks; variation in the number of developable tracks and variation in the visible and ultraviolet radiation spectrum. The dissertation is organized in seven specific chapters: solid state nuclear tracks (SSNT); CR-39 as SSNT; objectives and problems presentation; preparation and characterization of CR-39 as SSNT; gamma irradiation effect on the properties of CR-39 as SSNT; reactor neutron irradiation effect on the properties of CR-39 as SSNT and, results discussions and conclusions. The main work contributions are the use of CR-39 in the determination of fissionable nuclide as thorium and uranium in solid and liquid samples; gamma radiation damage on CR-39 as well as the reactor's neutron damage on CR-39. (B.C.A.) 62 refs, 53 figs, 21 tabs

  9. Study on the technical feasibility of Fission-Track dating at two irradiation positions of the RA-6 research reactor

    International Nuclear Information System (INIS)

    Dorval, Eric

    2005-01-01

    The method of Fission-Track dating is based upon the detection of the damage caused by fission fragments from the Uranium contained in geological samples.In order to determine the age of a sample, both the amount of spontaneous fissions occurred and the Uranium concentration must be known.The latter requires the irradiation of the samples inside a reactor with a well-thermalized flux, so that fissions are induced over 235 U targets only. Therefore, the Uranium concentration may be determined.The main inconvenient presented by the irradiation sites at the RA-6 MTR-type reactor is that neutron flux is not completely thermal there, which means that fissions due to epithermal and fast neutrons will not be negligible.In the same way, tracks due to fissions of 238 U and 232 Th will be detected. In order to know the corrections that must be applied to those measurements performed in this reactor, it is necessary to characterize fast flux.Because of it, this laboratory's gamma spectrometry equipment had to be calibrated. After that, several activation detectors were irradiated and results were analyzed. Finally, it was determined that it is feasible to Fission-Track date at the I6 position. However, limitations associated to this method were analyzed for the values of flux measured in the different sites

  10. Past and future application of solid-state detectors in manned spaceflight

    International Nuclear Information System (INIS)

    Reitz, G.

    2006-01-01

    The radiation exposure in space missions can be reduced by careful mission planning and appropriate measures, such as provision of a radiation shelter, but it cannot be eliminated. The reason for that is the high penetration capability of the radiation components owing to their high energies. Radiation is therefore an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long-term orbital and interplanetary missions. The radiation environment is a complex mixture of charged particles of solar and galactic origin and of the radiation belts, as well as of secondary particles produced in interactions of the galactic cosmic particles with the nuclei of atmosphere of the earth. The complexity even increases by placing a spacecraft into this environment owing to the interaction of the radiation components with the shielding material. Therefore it is a challenge to provide for appropriate measurements in this radiation field, coping with the limited resources on experiment power and mass. Solid-state dosemeters were already chosen for measurements in the first manned flights. Thermoluminescence dosemeters (TLDs) and plastic nuclear track detectors (PNTD) especially found a preferred application because they are light-weighted, need no power supply and they are tissue-equivalent. Most of the data available until 1996 were gathered by using these passive detectors; this especially holds for heavy ion particle spectra. The systems, supplemented by converter foils or fission detectors and bubble detectors, provide information on dose, particle flux-, energy- and linear energy transfer spectra of the ionising radiation and neutron fluxes and doses. From 1989, silicon detectors were used for dose and flux measurements and later on for particle spectrometry. Silicon detectors were demonstrated as a powerful tool for the description of space radiation environment. Optical simulated luminescence (OSL) detectors have now been introduced as a

  11. Special Nuclear Material Detection with a Water Cherenkov based Detector

    International Nuclear Information System (INIS)

    Sweany, M.; Bernstein, A.; Bowden, N.; Dazeley, S.; Svoboda, R.

    2008-01-01

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons

  12. Correlation of errors in the Monte Carlo fission source and the fission matrix fundamental-mode eigenvector

    International Nuclear Information System (INIS)

    Dufek, Jan; Holst, Gustaf

    2016-01-01

    Highlights: • Errors in the fission matrix eigenvector and fission source are correlated. • The error correlations depend on coarseness of the spatial mesh. • The error correlations are negligible when the mesh is very fine. - Abstract: Previous studies raised a question about the level of a possible correlation of errors in the cumulative Monte Carlo fission source and the fundamental-mode eigenvector of the fission matrix. A number of new methods tally the fission matrix during the actual Monte Carlo criticality calculation, and use its fundamental-mode eigenvector for various tasks. The methods assume the fission matrix eigenvector is a better representation of the fission source distribution than the actual Monte Carlo fission source, although the fission matrix and its eigenvectors do contain statistical and other errors. A recent study showed that the eigenvector could be used for an unbiased estimation of errors in the cumulative fission source if the errors in the eigenvector and the cumulative fission source were not correlated. Here we present new numerical study results that answer the question about the level of the possible error correlation. The results may be of importance to all methods that use the fission matrix. New numerical tests show that the error correlation is present at a level which strongly depends on properties of the spatial mesh used for tallying the fission matrix. The error correlation is relatively strong when the mesh is coarse, while the correlation weakens as the mesh gets finer. We suggest that the coarseness of the mesh is measured in terms of the value of the largest element in the tallied fission matrix as that way accounts for the mesh as well as system properties. In our test simulations, we observe only negligible error correlations when the value of the largest element in the fission matrix is about 0.1. Relatively strong error correlations appear when the value of the largest element in the fission matrix raises

  13. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  14. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  15. Radiation detectors for the control of PWR nuclear boilers

    International Nuclear Information System (INIS)

    Duchene, J.

    1977-01-01

    The neutronic control in French PWR is effected by: 2 channels of measurement of intermediate power using γ'-compensated boron-coated ionization chambers 4 channels of measurement of high power with 'long' boron chambers also used in axial off-set measurement. A movable in-core measuring system is used for the fuel management and the power distribution monitoring. The instrumentation of start-up and intermediate power is conventional; the chambers of the axial off-set measurement and the in-core system are special for this type of power plant, they are discussed in details. The essential properties of the various types of detector, their major advantages or drawbacks, their comparative adaptation to the functions to be performed in the plant are summarized in a table. The 'long chambers' (on use in Fessenheim I and II, and soon in Bugey II) are boron coated current ionization chambers, without γ compensation, intended for power measurement. In-core measurements first involved activation methods - movable wires giving flux profiles, -or activable nuts (the Aeroball System at Trino Vercellese, Chooz...). In on-line neutron detectors, used at fixed positions, the electric signal is generated from: ionization the gas filling fission ionization chambers and γ ionization chambers; direct collection of the charged particles emitted from the convertor element in self-powered neutron detectors (rhodium, silver or vanadium) or self-powered γ detectors (cobalt); or thermoelectric effect in neutron and γ thermometers. The in-core measurement unit developped by Framatome is a movable miniaturized fission chamber system (at Tihange), every French exported power plant being now equipped with it [fr

  16. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  17. Monitoring the fast neutrons in a high flux: The case for {sup 242}Pu fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Filliatre, P.; Jammes, C.; Oriol, L.; Geslot, B. [Commissariat a l' Energie Atomique, DEN/SPEX/LDCI, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Vermeeren, L. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2009-07-01

    Fission chambers are widely used for on-line monitoring of neutron fluxes in irradiation reactors. A selective measurement of a component of interest of the neutron flux is possible in principle thanks to a careful choice of the deposit material. However, measuring the fast component is challenging when the flux is high (up to 10{sup 15} n/cm{sup 2}/s) with a significant thermal component. The main problem is that the isotopic content of a material selected for its good response to fast neutrons evolves with irradiation, so that the material is more and more sensitive to thermal neutrons. Within the framework of the FNDS (Fast Neutron Detector System) project, we design tools that simulate the evolution of the isotopic composition and fission rate for several deposits under any given flux. In the case of a high flux with a significant thermal component, {sup 242}Pu is shown after a comprehensive study of all possibilities to be the best choice for measuring the fast component, as long as its purity is sufficient. If an estimate of the thermal flux is independently available, one can correct the signal for that component. This suggests a system of two detectors, one of which being used for such a correction. It is of very high interest when the detectors must be operated up to a high neutron fluence. (authors)

  18. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    International Nuclear Information System (INIS)

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown

  19. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  20. Fission product behaviour in the Peach Bottom and Fort St. Vrain HTGRs

    International Nuclear Information System (INIS)

    Hanson, D.L.; Baldwin, N.L.; Strong, D.E.

    1981-01-01

    Actual operating data from the Peach Bottom (PB) and Fort St. Vrain (FSV) High-Temperature Gas-Cooled Reactors (HTGRs) have been compared with code predictions to assess the validity of the methods used to predict the behaviour of fission products in the primary coolant circuit. For both reactors the measured circuit activities were significantly below design values, and the observations generally verify the codes used for large HTGR design. The PB primary circuit after seven years of operation was exceptionally clean. A fuel element purge system virtually eliminated the release of fission gases into the primary coolant circuit. Extensive examinations at end-of-life revealed that only Cs and trace amounts of Sr had plated out in the circuit. Their plateout distributions were in excellent agreement with PAD code predictions. Most of the deposited activity was associated with carbonaceous surface films which resulted from occasional small inleakages of lubricating oil. Primary circuit activities in FSV during the first cycle were also very low. Noble gas activity was about 1% of the design limit; and the circulating iodines were at least one order of magnitude below the limit, although the measurement uncertainties are significant. The plateout per pass of the iodine isotopes increased with decreasing half-life (the value for I-131 is about 1% per pass) as predicted with the PADLOC code. Gamma scanning of two helium circulators indicated very low plateout activities. Iodine-131 was the principal fission product observed, along with small amounts of Cs-134, Cs-137, and Ba/La-140. (author)

  1. A new detector for the measurement of neutron flux in nuclear reactors; Nouvelle methode de mesure des flux de neutrons dans les reacteurs atomiques

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L; Labeyrie, J; Tarassenko, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The detector described is designed for the instantaneous measurement of thermal neutron fluxes, in the presence of high {gamma} ray activity; this detector can withstand temperatures as high as 500 deg. C. It is based on the following principle: radioactive atoms resulting from heavy-nucleus fission are carried by a gas flow to a detector recording their {beta} and {gamma} disintegration. Thermal neutron fluxes as low as few neutrons per cm{sup 2} per second can be measured. This detector may be used to control a nuclear reactor, to plot the thermal flux distribution with an excellent definition (1 mm{sup 2}) for fluxes higher than 10{sup 8} n/cm{sup 2}/s. The time response of the system to a sharp variation of flux is limited, in case of large fluxes, to the transit time of the gas flow between the fission product emitter and the detector; of the order of one tenth of a sec per meter of piping. The detector may also be applied for spectroscopy of fission products eider than 0,1 s. (author)Fren. [French] On decrit un appareil permettant la mesure instantanee des flux de neutrons thermiques accompagnes de flux intenses de rayons {gamma} et situes dans des enceintes pouvant etre portees a des temperatures superieures a 500 deg. C. On utilise la radioactivite des atomes resultant de la fission des noyaux lourds; ces atomes sont entraines par un courant gazeux vers un detecteur de radioactivite qui enregistre leurs desintegrations {beta} et {gamma}. On peut mesurer des flux partir de quelques neutrons thermiques par cm{sup 2} et par seconde. L'appareil permet de suivre la puissance d'un reacteur atomique, de tracer des cartes de densite de neutrons avec une tres bonne definition (1 mm{sup 2}) dans le cas de flux superieurs a 10{sup 8} cm{sup 2}/s. Le temps de reponse du systeme a une variation du flux de neutrons est limite, poes flux importants, par le temps de transit du gaz entre l'emetteur de produits de fission et le detecteur: soit quelques dizaines de

  2. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  3. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  4. Neutron activation analysis of uranium by means of electrochemical etching of tracks in lawsan detectors

    International Nuclear Information System (INIS)

    Kim Son Chun; Chuburkov, Yu.T.; Zvara, I.I.

    1982-01-01

    The method of neutron activation analysis of uranium in natural and artificial materials using track lavsan detectors of fission fragments has been developed. The method of electrochemical etching (etching reagent NaOH) of fragment tracks in lavsan is improved. Using statistical method of experiment planning the equation, describing the dependence of diometer value of fission fragment tracks on parameters of etching process, is obtained. The analysis sensitivity is 10 - 7 g/g - 10 - 8 g/g

  5. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  6. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  7. Diamond as a solid state micro-fission chamber for thermal neutron detection at the VR-1 research reactor

    International Nuclear Information System (INIS)

    Pomorski, Michal; Mer-Calfati, Christine; Foulon, Francois; Sklenka, Lubomir; Rataj, Jan; Bily, Tomas

    2015-01-01

    Diamond exhibits a combination of properties which makes it attractive for neutron detection in hostile conditions. In the particular case of detection in a nuclear reactor, it is resilient to radiation, exhibits a natural low sensitivity to gamma rays, and its small size (as compared with that of gas ionisation chambers) enables fluency monitoring with a high position resolution. We report here on the use of synthetic CVD diamond as a solid state micro-fission chamber with U-235 converting material for in-core thermal neutron monitoring. Two types of thin diamond detectors were developed for this application. The first type of detector is fabricated using thin diamond membrane obtained by etching low-cost commercially available single crystal CVD intrinsic diamond, so called 'optical grade' material. Starting from a few hundred of micrometre thick samples, the sample is sliced with a laser and then plasma etched down to a few tenths of micrometre. Here we report the result obtained with a 17 μm thick device. The detection surface of this detector is equal to 1 mm 2 . Detectors with surfaces up to 1 cm 2 can be fabricated with this technique. The second type of detector is fabricated by growing successively two thin films of diamond, by the microwave enhanced chemical vapour deposition technique, on HPHT single crystal diamond. A first, a film of boron doped (p+) single crystal diamond, a few microns thick, is deposited. Then a second film of intrinsic diamond with a thickness of a few tens of microns is deposited. This results in a P doped, Intrinsic, Metal structure (PIM) structure in which the intrinsic volume id the active part of the detector. Here we report the results obtained with a 20 μm thick intrinsic whose detection surface is equal to 0.5 mm 2 , with the possibility to enlarge the surface of the detector up to 1 cm 2 . These two types of detector were tested at the VR-1 research reactor at the Czech Technical University in Prague. The

  8. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang

    2014-09-15

    Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.

  9. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  10. In situ calibration of TFTR neutron detectors

    International Nuclear Information System (INIS)

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.M.

    1990-01-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled 252 Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two 235 U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of ±13%

  11. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  12. Detector response theory and its applications

    International Nuclear Information System (INIS)

    Keijzer, J.

    1992-11-01

    Some methods to describe the dynamics of fission reactors are investigated. First the reactivity of a reactor is regarded. The values of an exact calculation of the reactivity are compared with values obtained by first-order perturbation theory. Then a description of the point reactor kinetic theory and the detector response theory is given. A comparison of the two methods is made, using models of some well defined perturbations. Two of the perturbations are such that a physical movement of some absorber is regarded. A new way of modelling these moving objects is proposed. The result of the point reactor kinetic theory and the detecor response theory did not differ too much for perturbations which were far from the detector position. Locally however point reactor kinetic theory was not, in contrast with detector response theory, able to produce reliable results. The results of these calculations are to be compared with experiments, which will be performed later. (orig.)

  13. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    International Nuclear Information System (INIS)

    Jammes, Christian; Filliatre, Philippe; Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan

    2015-01-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  14. Feasibility study of Self Powered Neutron Detectors in Fast Reactors for detecting local change in neutron flux distribution

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, Christian; Filliatre, Philippe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Verma, Vasudha; Hellesen, Carl; Jacobsson Svard, Staffan [Division of Applied Nuclear Physics, Uppsala University, SE-75120 Uppsala, (Sweden)

    2015-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor system. Diverse possibilities of detector systems installation have to be investigated with respect to practicality and feasibility according to the detection parameters. In this paper, we demonstrate the feasibility of using self powered neutron detectors as in-core detectors in fast reactors for detecting local change in neutron flux distribution. We show that the gamma contribution from fission products decay in the fuel and activation of structural materials is very small compared to the fission gammas. Thus, it is possible for the in-core SPND signal to follow changes in local neutron flux as they are proportional to each other. This implies that the signal from an in-core SPND can provide dynamic information on the neutron flux perturbations occurring inside the reactor core. (authors)

  15. A Preliminary Study on Time Projection Chamber Simulation for Fission Cross Section Measurements with Geant4

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Youngouk; Kim, Jae Cheon

    2014-01-01

    We present the details of the TPC simulation with Geant4 and show the results. TPC can provide more information than a fission chamber in that it is possible to distinguish different particle types. Simulations are conducted for uranium and plutonium targets with 20MeV neutrons. The simulation results are compared with the reference and show reasonable results. This is the first phase of study for realizing a TPC in the NFS at RAON, and we have more work to do, such as applying an electric field, signal processing in the simulation, and manufacturing of a TPC. The standard in fission cross section measurement is a fission chamber. It is basically just two parallel plates separated by a few centimeters of gas. A power supply connected to the plates sets up a moderate electric field. The target is deposited onto one of the plates. When fission occurs, the fragments ionize the gas, and the electric field causes the produced electrons to drift to the opposite plate, which records the total energy deposited in the chamber. A Time Projection Chamber (TPC) is a gas ionization detector similar to a fission chamber. However, it can measure the charged particle trajectories in the active volume in three dimensions by adding several readouts on the pad plane (fission chamber has only one readout one a pad plane). The specific ionization for each particle track enables the TPC to distinguish different particle types. A TPC will be used for fission cross section measurements in the Neutron Science Facility (NSF) at RAON. As a preliminary study, we present details of TPC simulation with Geant4 and discuss the results

  16. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Golda, K.S., E-mail: goldaks@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Jhingan, A.; Sugathan, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Singh, Hardev [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Behera, B.R. [Department of Physics, Panjab University, Chandigarh 160014 (India); Mandal, S. [Department of Physics and Astrophysics, Delhi University, New Delhi 110007 (India); Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Govil, I.M. [Department of Physics, Panjab University, Chandigarh 160014 (India); Datta, S.K.; Chatterjee, M.B. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5–8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper. -- Highlights: •We report the design, fabrication and installation of a 26 element modular neutron detection system (NAND). •The array has been designed for the fusion–fission studies at near and above the barrier energies. •The relevant characteristics of the array are studied exhaustively and reported. •The efficiency of the detectors are measured and compared with the monte carlo simulations. •The second phase of the array will be augmented with 80 more neutron detectors which will enable the system to measure the neutron multiplicity distribution.

  17. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    International Nuclear Information System (INIS)

    Golda, K.S.; Jhingan, A.; Sugathan, P.; Singh, Hardev; Singh, R.P.; Behera, B.R.; Mandal, S.; Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R.K.; Govil, I.M.; Datta, S.K.; Chatterjee, M.B.

    2014-01-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5–8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper. -- Highlights: •We report the design, fabrication and installation of a 26 element modular neutron detection system (NAND). •The array has been designed for the fusion–fission studies at near and above the barrier energies. •The relevant characteristics of the array are studied exhaustively and reported. •The efficiency of the detectors are measured and compared with the monte carlo simulations. •The second phase of the array will be augmented with 80 more neutron detectors which will enable the system to measure the neutron multiplicity distribution

  18. Fission fragment distributions within dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)

    2017-04-15

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)

  19. A Polyethylene Moderator Design for Auxiliary Ex-core Neutron Detector

    International Nuclear Information System (INIS)

    Lee, Hwan Soo; Shin, Ho Cheol; Bae, Seong Man

    2012-01-01

    The moderator of detector assembly in ENFMS (Excore Neutron Flux Monitoring System) plays a key role for slowing down from fast neutron to thermal neutron at outside of reactor vessel. Since neutron monitoring detector such as BF3, fission chamber detectors mostly responds to thermal neutron, moderator should be included to neutron detector assembly to detect more efficiently. Generally, resin has been used for moderator of detector in ENFMS of OPR1000 and APR1400, because resin has stable thermal resistance, availability and high neutron moderation characteristics due to the light atomic materials. In case of an auxiliary ex-core neutron detector, the polyethylene is suggested that polyethylene has a better moderator rather than resin, then, the amounts of moderator are reduced. This is important thing for auxiliary ex-core detector equipment at reactor, because the auxiliary equipment should affect minimally to another system. In this study, polyethylene moderator is designed for auxiliary ex-core neutron detector. To find out the optimal thickness of polyethylene moderator, preliminary simulation and experiments are performed. And sensitivity simulation for detector moderator at actual reactor is performed by DORT code

  20. Optimization of the recoil-shadow projection method for the investigation of short-lived fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Helmecke, M.; Thirolf, P.G.; Habs, D.; Gartzke, E.; Kolhinen, V.; Lang, C.; Szerypo, J.; Trepl, L. [Fakultaet f. Physik, LMU Muenchen (Germany); Maier-Leibnitz Laboratory, Garching (Germany)

    2009-07-01

    Spectroscopic studies of super- and hyperdeformed actinide nuclei offer the possibility to gain insight into the multiple-humped fission barrier landscape. With the identification of deep third minima in {sup 234}U and {sup 236}U the systematics of fission isomers in light actinides was revisited, especially searching for isomers in light uranium isotopes with half-lives in the pico-second range. Using the recoil-shadow projection method and solid state nuclear track detectors, an experimental search for their observation has been started. This well-established detection technique nowadays benefits from an efficient analysis technology based on a PC-controlled auto-focus microscope and a CCD camera together with pattern recognition software. The flatness and the definition of the shadow edge of the target is the critical point of this method: Due to the energy loss of the beam the target carrier foil (1{mu}m Ni) may develop thermal distortions in the {mu}m range, leading to misinterpretations of isomeric fission fragments. Therefore the flatness of the target foil is continuously monitored via a capacitance measurement. First results applying this method to the search of a fission isomer in {sup 234}U via the {sup 232}Th({alpha},2n) reaction are presented.

  1. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  2. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  3. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  4. Performance Enhancement of Multi-Cyclic Detector for Cognitive Radios with an OFDM Primary System

    Science.gov (United States)

    Kim, Minseok; Po, Kimtho; Takada, Jun-Ichi

    Spectrum sensing, a key technical challenge in cognitive radios (CR) technology, is a technique that enables the spectrum of licensed systems to be accessed without causing undue interference. It is well known that cyclostationarity detectors have great advantages over energy detectors in terms of the robustness to noise uncertainty that significantly degrades the performance as well as the capability to distinguish the signal of interest from the other interferences and noise. The generalized likelihood ratio test (GLRT) is a recognized sensing technique that utilizes the inherent cyclostationarity of the signal and has been intensively studied. However, no comprehensive evaluation on its performance enhancement has been published to date. Moreover high computational complexity is still a significant problem for its realization. This paper proposes a maximum ratio combining multi-cyclic detector which uses multiple cyclic frequencies for performance enhancement with reduced computational complexity. An orthogonal frequency-division multiplexing (OFDM) signal based on the ISDB-T (integrated services digital broadcasting terrestrial), a Japanese digital television broadcasting standard, was used in the evaluation assuming this as a primary system in WRAN (wireless regional area network) applications like IEEE 802.22.

  5. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  6. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    Science.gov (United States)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  7. Reexamination of fission fragment angular distributions and the fission process: Formalism

    International Nuclear Information System (INIS)

    Bond, P.D.

    1985-01-01

    The theory of fission fragment angular distributions is examined and the universally used expression is found to be valid only under restrictive assumptions. A more general angular distribution formula is derived and applied to recent data of high spin systems. At the same time it is shown that the strong anisotropies observed from such systems can be understood without changing the essential basis of standard fission theory. The effects of reaction mechanisms other than complete fusion on fission fragment angular distributions are discussed and possible angular distribution signatures of noncompound nucleus formation are mentioned

  8. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  9. Sensitivity of various thermoluminescent, radiophotoluminescent and photographic detectors to neutrons emitted by a 252Cf source

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Medioni, Roger; Chapuis, A.; Portal, Guy.

    1975-07-01

    The specific sensitivity of various thermoluminescent, radiophotoluminescent and photographic detectors to the neutron spectrum of a 252 Cf source was measured and the effect of the size and composition of the containers in which they might be put was investigated. PB33 radiophotoluminescent glasses, radiothermoluminescent alumina and calcium sulfate were less sensitive to fission neutrons whereas photographic emulsions were more sensitive. The former should be used for γ detection in mixed fields of photons and fission neutrons [fr

  10. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    International Nuclear Information System (INIS)

    Das, Mala; Seth, S.; Saha, S.; Bhattacharya, S.; Bhattacharjee, P.

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252 Cf fission neutron source and 137 Cs gamma source, respectively, separately. Analysis of pulse height of signals at the neutron and gamma-ray sensitive temperature provides significant information on the identification of neutron and gamma-ray induced events.

  11. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  12. Device for characterization of fissile materials comprising at least a neutron detector embedded inside a scintillator for gamma radiation detection

    International Nuclear Information System (INIS)

    Bernard, P.; Dherbey, J.R.; Bosser, R.; Berne, R.

    1989-01-01

    Fissile materials, for instance in radioactive wastes, are characterized by measurement of prompt and delayed neutrons and gamma radiation from induced fission by a neutron source. Gamma radiation is detected with a scintillation detector associated to a photomultiplier, the scintillation material is at the same time a moderator for thermalization of fast neutrons emitted by the neutron source and also of neutrons from spontaneous fission, (α, n) reactions and neutrons from induced fission in the fissile material. Preferentially the moderator is made of Altustipe (Plexiglas with anthracene as additive) [fr

  13. The programme 'fission product deposition' at the IRB of Juelich nuclear research centre

    International Nuclear Information System (INIS)

    Gottaut, H.; Iniotakis, N.; Malinowski, J.; Muenchow, K.H.; Sackmann, B.

    1976-01-01

    The transport and deposition behaviour of the non-gaseous fission and activation products in the primary circuit of HTR-type reactors determines the possibility of inspection and maintenance of single components of the primary circuit as well as the safety of the reactor in normal operation and during accidents. For the investigation of these problems, the programme 'fission product deposition' was started at Juelich nuclear research centre in 1969 in cooperation with a number of industrial firms. The programme covers in-pile and out-of-pile experiments, in which the HTR conditions are simulated as realistically as possible, as well as various laboratory experiments and extensive theoretical studies. It is the objective of this work to establish a realistic physical model and computer programme with which the transport and deposition of nuclides in the primary circuit of HTR reactors can be calculated in advance. A report is given on the experimental and theoretical studies carried out at the IRB of Juelich nuclear research centre. (orig./AK) [de

  14. Gamma Radiation from Fission Fragments Experimental Apparatus-Mass Spectrum Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-08-15

    The gamma-radiation from fission fragments was studied as a function of the fragment mass. The mass was determined from the fragment energies using solid state detectors. The mass resolution which can be achieved by this method is treated in detail. The average initial fragment mass and the initial mass resolution is calculated as a function of the measured (apparent) mass yield for three different thicknesses of the fissile material deposit. This treatment gives a clear indication of those factors most important for good mass resolution work. A detailed description of the experimental apparatus is given in the appendices.

  15. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  16. Radiation emitter-detector package

    International Nuclear Information System (INIS)

    O'Brien, J.T.; Limm, A.C.; Nyul, P.; Tassia, V.S. Jr.

    1978-01-01

    Mounted on the metallic base of a radiation emitter-detector is a mounting block is a first projection, and a second projection. A radiation detector is on the first projection and a semiconductor electroluminescent device, i.e., a radiation emitter, is on the second projection such that the plane of the recombination region of the electroluminescent device is perpendicular to the radiation incident surface of the radiation detector. The electroluminescent device has a primary emission and a secondary emission in a direction different from the primary emission. A radiation emitter-detector package as described is ideally suited to those applications wherein the secondary radiation of the electroluminescent device is fed into a feedback circuit regulating the biasing current of the electroluminescent device

  17. Neutron detection at jet using artificial diamond detectors

    International Nuclear Information System (INIS)

    Pillon, M.; Angelone, M.; Lattanzi, D.; Marinelli, M.; Milani, E.; Tucciarone, A.; Verona-Rinati, G.; Popovichev, S.; Montereali, R.M.; Vincenti, M.A.; Murari, A.

    2007-01-01

    Artificial diamond neutron detectors recently proved to be promising devices to measure the neutron production on large experimental fusion machines. Diamond detectors are very promising detectors to be used in fusion environment due to their radiation hardness, low sensitivity to gamma rays, fast response and high energy resolution. High quality 'electronic grade' diamond films are produced through microwave chemical vapour deposition (CVD) technique. Two CVD diamond detectors have been installed and operated at joint European torus (JET), Culham Science Centre, UK. One of these detectors was a polycrystalline CVD diamond film; about 12 mm 2 area and 30 μm thickness while the second was a monocrystalline film of about 5 mm 2 area and 20 μm thick. Both diamonds were covered with 2 μm of lithium fluoride (LiF) 95% enriched in 6 Li. The LiF layer works as a neutron-to-charged particle converter so these detectors can measure thermalized neutrons. Their output signals were compared to JET total neutron yield monitors (KN1 diagnostic) realized with a set of uranium fission chambers. Despite their small active volumes the diamond detectors were able to measure total neutron yields with good reliability and stability during the recent JET experimental campaign of 2006

  18. Primary intestinal lymphangiectasia: Multiple detector computed tomography findings after direct lymphangiography.

    Science.gov (United States)

    Sun, Xiaoli; Shen, Wenbin; Chen, Xiaobai; Wen, Tingguo; Duan, Yongli; Wang, Rengui

    2017-10-01

    To analyse the findings of multiple detector computed tomography (MDCT) after direct lymphangiography in primary intestinal lymphangiectasia (PIL). Fifty-five patients with PIL were retrospectively reviewed. All patients underwent MDCT after direct lymphangiography. The pathologies of 16 patients were confirmed by surgery and the remaining 39 patients were confirmed by gastroendoscopy and/or capsule endoscopy. After direct lymphangiography, MDCT found intra- and extraintestinal as well as lymphatic vessel abnormalities. Among the intra- and extraintestinal disorders, 49 patients had varying degrees of intestinal dilatation, 46 had small bowel wall thickening, 9 had pleural and pericardial effusions, 21 had ascites, 41 had mesenteric oedema, 20 had mesenteric nodules and 9 had abdominal lymphatic cysts. Features of lymphatic vessel abnormalities included intestinal trunk reflux (43.6%, n = 24), lumbar trunk reflux (89.1%, n = 49), pleural and pulmonary lymph reflux (14.5%, n = 8), pericardial and mediastinal lymph reflux (16.4%, n = 9), mediastinal and pulmonary lymph reflux (18.2%, n = 10), and thoracic duct outlet obstruction (90.9%, n = 50). Multiple detector computed tomography after direct lymphangiography provides a safe and accurate examination method and is an excellent tool for the diagnosis of PIL. © 2017 The Royal Australian and New Zealand College of Radiologists.

  19. Measurement of the {sup 234}U(n, f) cross-section with quasi-monoenergetic beams in the keV and MeV range using a Micromegas detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Stamatopoulos, A.; Kanellakopoulos, A.; Kalamara, A.; Kokkoris, M.; Michalopoulou, V.; Vlastou, R. [National Technical University of Athens, Department of Physics, Athens (Greece); Diakaki, M. [National Technical University of Athens, Department of Physics, Athens (Greece); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organisation for Nuclear Research (CERN), Geneva (Switzerland); Axiotis, M.; Lagoyiannis, A. [Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, N.C.S.R. Demokritos, Athens (Greece)

    2018-01-15

    The {sup 234}U neutron-induced fission cross-section has been measured at incident neutron energies of 452, 550, 651 keV and 7.5, 8.7, 10 MeV using the {sup 7}Li (p, n) and the {sup 2}H(d, n) reactions, respectively, relative to the {sup 235}U(n, f) and {sup 238}U(n, f) reference reactions. The measurement was performed at the neutron beam facility of the National Center for Scientific Research ''Demokritos'', using a set-up based on Micromegas detectors. The active mass of the actinide samples and the corresponding impurities were determined via α-spectroscopy using a surface barrier silicon detector. The neutron spectra intercepted by the actinide samples have been thoroughly studied by coupling the NeuSDesc and MCNP5 codes, taking into account the energy and angular straggling of the primary ion beams in the neutron source targets in addition to contributions from competing reactions (e.g. deuteron break-up) and neutron scattering in the surrounding materials. Auxiliary Monte Carlo simulations were performed making combined use of the FLUKA and GEF codes, focusing particularly on the determination of the fission fragment detection efficiency. The developed methodology and the final results are presented. (orig.)

  20. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  1. Analysis of fission gas release-to-birth ratio data from the AGR irradiations

    International Nuclear Information System (INIS)

    Einerson, Jeffrey J.; Pham, Binh T.; Scates, Dawn M.; Maki, John T.; Petti, David A.

    2016-01-01

    A series of advanced gas reactor (AGR) irradiation tests is being conducted in the advanced test reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) fuel used in the High temperature gas-cooled reactor (HTGR). Each AGR test consists of multiple independent capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples (TC) embedded in the graphite enabling temperature control. For AGR-1, the first US irradiation of modern TRISO fuel completed in 2009, there were no particle failures detected. For AGR-2, a few exposed kernels existed in the fuel compacts based upon quality control data. For the AGR-3/4 experiment, particle failures in all capsules were expected because of the use of designed-to-fail (DTF) fuel particles whose kernels are identical to the driver fuel kernels and whose coatings are designed to fail under irradiation. The release-rate-to-birth-rate ratio (R/B) for each of krypton and xenon isotopes is calculated from release rates measured by the germanium detectors used in the AGR fission product monitoring (FPM) system installed downstream from each irradiated capsule. Birth rates are calculated based on the fission power in the experiment and fission product generation models. Thus, this R/B is a measure of the ability of fuel particle coating layers and compact matrix to retain fission gas atoms preventing their release into the sweep gas flow. The major factors that govern gaseous diffusion and release processes are found to be fuel material diffusion coefficient, temperature, and isotopic decay constant. To compare the release behavior among the AGR capsules and historic experiments, the R/B per failed particle is used. HTGR designers use this parameter in their fission product behavior models. For the U.S. TRISO fuel, a regression analysis is performed to establish functional relationships

  2. Analysis of Fission Gas Release-to-Birth Ratio Data from the AGR Irradiations

    International Nuclear Information System (INIS)

    Einerson, Jeffrey J.; Pham, Binh T.; Scates, Dawn M.; Maki, John T.; Petti, David A.

    2014-01-01

    A series of Advanced Gas Reactor (AGR) irradiation tests is being conducted in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) fuel used in the High Temperature Gas-cooled Reactor (HTGR). Each AGR test consists of multiple independent capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples (TC) embedded in the graphite enabling temperature control. For AGR-1, the first US irradiation of modern TRISO fuel completed in 2009, there were no particle failures detected. For AGR-2, a few exposed kernels existed in the fuel compacts based upon quality control data. For the AGR-3/4 experiment, particle failures in all capsules were expected because of the use of designed-to-fail (DTF) fuel particles whose kernels are identical to the driver fuel kernels and whose coatings are designed to fail under irradiation. The release-rate-to-birth-rate ratio (R/B) for each of krypton and xenon isotopes is calculated from release rates measured by the germanium detectors used in the AGR Fission Product Monitoring (FPM) System installed downstream from each irradiated capsule. Birth rates are calculated based on the fission power in the experiment and fission product generation models. Thus, this R/B is a measure of the ability of fuel particle coating layers and compact matrix to retain fission gas atoms preventing their release into the sweep gas flow. The major factors that govern gaseous diffusion and release processes are found to be fuel material diffusion coefficient, temperature, and isotopic decay constant. To compare the release behavior among the AGR capsules and historic experiments, the R/B per failed particle is used. HTGR designers use this parameter in their fission product behavior models. For the U.S. TRISO fuel, a regression analysis is performed to establish functional relationships

  3. Analysis of fission gas release-to-birth ratio data from the AGR irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Einerson, Jeffrey J., E-mail: jeffrey.einerson@inl.gov; Pham, Binh T.; Scates, Dawn M.; Maki, John T.; Petti, David A.

    2016-09-15

    A series of advanced gas reactor (AGR) irradiation tests is being conducted in the advanced test reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) fuel used in the High temperature gas-cooled reactor (HTGR). Each AGR test consists of multiple independent capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples (TC) embedded in the graphite enabling temperature control. For AGR-1, the first US irradiation of modern TRISO fuel completed in 2009, there were no particle failures detected. For AGR-2, a few exposed kernels existed in the fuel compacts based upon quality control data. For the AGR-3/4 experiment, particle failures in all capsules were expected because of the use of designed-to-fail (DTF) fuel particles whose kernels are identical to the driver fuel kernels and whose coatings are designed to fail under irradiation. The release-rate-to-birth-rate ratio (R/B) for each of krypton and xenon isotopes is calculated from release rates measured by the germanium detectors used in the AGR fission product monitoring (FPM) system installed downstream from each irradiated capsule. Birth rates are calculated based on the fission power in the experiment and fission product generation models. Thus, this R/B is a measure of the ability of fuel particle coating layers and compact matrix to retain fission gas atoms preventing their release into the sweep gas flow. The major factors that govern gaseous diffusion and release processes are found to be fuel material diffusion coefficient, temperature, and isotopic decay constant. To compare the release behavior among the AGR capsules and historic experiments, the R/B per failed particle is used. HTGR designers use this parameter in their fission product behavior models. For the U.S. TRISO fuel, a regression analysis is performed to establish functional relationships

  4. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Bredeweg, Todd; Fowler, Malcolm; Vieira, David; Wilhelmy, Jerry; Tonchev, Anton; Stoyer, Mark; Bhike, Megha; Finch, Sean; Krishichayan, Fnu; Tornow, Werner

    2017-09-01

    The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi- monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combi- nation of fission counting using specially designed dual-fission chambers and -ray counting. Each dual-fission chamber is a back-to-back ioniza- tion chamber encasing an activation target in the center with thin de- posits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activa- tion target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6 and 14.8 MeV. New data in the second chance fission region of 5.5 - 9 MeV are included. Work performed for the U.S. Department of Energy by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  5. Nondestructive analysis of the RA fuel burnup, Calculation of the gamma activity ratio of fission products in the fuel - program QU0C1

    International Nuclear Information System (INIS)

    Bulovic, V.F.

    1973-01-01

    The γ radiation of RA reactor fuel element was measured under precisely defined measuring conditions. The spectrum was analysed by spectrometer with semiconductor Ge(Li) detector. The gamma counting rate in the fuel spectrum is defined as a function of fission product activity, gamma energy and yield, fuel thickness and additional absorbers, dimensions of the gamma collimator. Activity ratio of two fission products is defined as a function of counting rate peaks and part of the mentioned quantities. Four options for calculating the activities for fission products are discussed. Three of them are covered by the QU0C1 code written in FORTRAN for the CDC 3600 computer. The code is included in this report [sr

  6. Study of electrochemical corrosion parameters in the detection of fission fragments in solid state trace detectors (SSTD)

    International Nuclear Information System (INIS)

    Silva Oliveira, S. da; Rogers, J.D.

    1980-01-01

    The basic properties of the electrochemical corrosion method, for the Makrofol E plastic, irradiated with fission fragments from a 252 Cf source were studied and discussed in this paper. (A.C.A.S.) [pt

  7. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  8. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  9. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  10. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  11. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  12. Dynamic of fission and quasi-fission revealed by pre-scission neutron evaporation

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-06-01

    The dependence of pre-scission neutron multiplicities (ν-pre) on the mass-split and total kinetic energy (TKE) in fusion-fission and quasi-fission has been measured for a wide range of projectile-target combinations. the data indicate that the fusion-fission time scale is shorter for asymmetric splits than for symmetric splits, whilst there is no dependence on TKE. For quasi-fission reactions induced using 64 Ni projectiles, ν-pre falls rapidly with increasing TKE, indicating that these neutrons are emitted near to or after scission. A new interpretation of both neutron multiplicities and mean energies (the neutron clock-thermometer) allows the extraction of time scales with much less uncertainty than previously, and also gives information about the deformation from which the neutrons are emitted. 15 refs., 13 figs

  13. Applications of noble gas radiation detectors to counter-terrorism

    International Nuclear Information System (INIS)

    Vanier, Peter E.; Forman, Leon

    2002-01-01

    Radiation detectors are essential tools in the detection, analysis and disposition of potential terrorist devices containing hazardous radioactive and/or fissionable materials. For applications where stand-off distance and source shielding are limiting factors, large detectors have advantages over small ones. The ability to distinguish between Special Nuclear Materials and false-positive signals from natural or man-made benign sources is also important. Ionization chambers containing compressed noble gases, notably xenon and helium-3, can be scaled up to very large sizes, improving the solid angle for acceptance of radiation from a distant source. Gamma spectrometers using Xe have a factor of three better energy resolution than NaI scintillators, allowing better discrimination between radioisotopes. Xenon detectors can be constructed so as to have extremely low leakage currents, enabling them to operate for long periods of time on batteries or solar cells. They are not sensitive to fluctuations in ambient temperature, and are therefore suitable for deployment in outdoor locations. Position-sensitive 3He chambers have been built as large as 3000 cm2, and with spatial resolution of less than 1 mm. Combined with coded apertures made of cadmium, they can be used to create images of thermal neutron sources. The natural background of spallation neutrons from cosmic rays generates a very low count rate, so this instrument could be quite effective at identifying a man-made source, such as a spontaneous fission source (Pu) in contact with a moderator (high explosive)

  14. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  15. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  16. The EUROBALL neutron wall - design and performance tests of neutron detectors

    CERN Document Server

    Skeppstedt, Ö; Lindström, L; Wadsworth, R; Hibbert, I; Kelsall, N; Jenkins, D; Grawe, H; aGórska, M; Moszynski, M; Sujkowski, Z; Wolski, D; Kapusta, M; Hellström, M; Kalogeropoulos, S; Oner, D; Johnson, A; Cederkäll, J; Klamra, W; Nyberg, J; Weiszflog, M; Kay, J; Griffiths, R; Garces-Narro, J; Pearson, C; Eberth, J

    1999-01-01

    The mechanical design of the EUROBALL neutron wall and neutron detectors, and their performance measured with a sup 2 sup 4 sup 6 sup , sup 2 sup 4 sup 8 Cm fission source are described. The array consists of 15 pseudohexaconical detector units subdivided into three, 149 mm high, hermetically separated segments and a smaller central pentagonal unit subdivided into five segments. The detectors are filled with Bicron BC501A liquid scintillator. Each section of the hexaconical detectors is viewed by a 130 mm diameter Philips XP4512PA photomultiplier while the sections of pentagonal detectors are viewed by Philips XP4312B PMTs. The tests of n-gamma discrimination performed by zero-crossing and time-of-flight methods show a full separation of gamma- and neutron events down to 50 keV recoil electron energy. These tests demonstrate the excellent timing properties of the detectors and an average time resolution of 1.56 ns. The factors determining the efficiency of neutron detectors are discussed. The total efficiency...

  17. Joint estimation of the fast and thermal components of a high neutron flux with a two on-line detector system

    International Nuclear Information System (INIS)

    Filliatre, P.; Oriol, L.; Jammes, C.; Vermeeren, L.

    2009-01-01

    A fission chamber with a 242 Pu deposit is the best suited detector for on-line measurements of the fast component of a high neutron flux (∼10 14 ncm -2 s -1 or more) with a significant thermal component. To get the fast flux, it is, however, necessary to subtract the contribution of the thermal neutrons, which increases with fluence because of the evolution of the isotopic content of the deposit. This paper presents an algorithm that permits, thanks to measurements provided by a 242 Pu fission chamber and a detector for thermal neutrons, to estimate the thermal and the fast flux at any time. An implementation allows to test it with simulated data.

  18. Measurement of the U-234(n,f) cross section with PPAC detectors at the nTOF facility

    International Nuclear Information System (INIS)

    Dobarro, C.P.

    2005-06-01

    The aim of this work was twofold: to measure the 234 U neutron-induced fission cross section in an extended energy range with an unprecedented resolution, and, in the process, to validate the experimental method we used at the new n-TOF-CERN facility. The experiment was designed in order to take advantage of the unique characteristics of the n-TOF facility: the long flight path offers a high energy resolution and the high-intensity, instantaneous neutron flux greatly reduces the background from the sample activities, making it possible to measure highly radioactive samples. The fission detection setup is based on an innovative technique that benefits from the use of very thin targets and detectors. Up to nine targets of high purity fission samples are sandwiched by Parallel Plate Avalanche Counters (PPAC). When a fission event happens, the two complementary fission fragments are detected by the PPACs adjacent to the fissioning target in a narrow time coincidence. Because several targets are simultaneously placed in-beam, relative measurements with respect to reference nuclei can be obtained. In this work, an original data-reduction method has been developed to deal with the particular characteristics of both the n-TOF data acquisition system, which is based on very accurate Flash-ADC digitizers, and the fission detection setup. The data reduction includes the coincidence windows and the signal amplitude requirements that we obtained from preliminary data analysis. The applied coincidence method is very powerful for dealing with the background rejection such as contamination by α activity, which is quite high for 234 U, and the signals produced by highly energetic reactions in the detectors. The data-reduction method also implements the fission event reconstruction using the position information obtained from the stripped cathodes and the delay line readout, which makes it possible to determine the fission fragment angular distributions, and the time-of-flight to

  19. Annealing effects on the charged particles registration characteristic of the CR-39 traces solid detector

    International Nuclear Information System (INIS)

    Correa, M.M.

    1989-10-01

    CR-39 trace solid detectors samples, previously exposed to alpha particles and fission fragments from a Cf-252 source, were submitted to a annealing treatment to study his effects on the characteristics of charged particle traces registration. (L.C.J.A.)

  20. Germanium-gated γ–γ fast timing of excited states in fission fragments using the EXILL and FATIMA spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Régis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Simpson, G.S., E-mail: Gary.Simpson@uws.ac.uk [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); School of Engineering, University of the West of Scotland, Paisley PA1 2BE, Scotland (United Kingdom); Blanc, A. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); France, G. de [Grand Accélérateur National d' Ions Lourds, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Jentschel, M.; Köster, U.; Mutti, P. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Paziy, V. [Grupo de Física Nuclear, FAMN, Universidad Complutense, CEI Moncloa, 28040 Madrid (Spain); Saed-Samii, N. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Soldner, T. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Ur, C.A. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Urban, W. [Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9 (France); Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warsaw (Poland); Bruce, A.M. [School of Computing, Engineering and Mathematics, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Drouet, F. [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); and others

    2014-11-01

    A high-granularity mixed spectrometer consisting of high-resolution Ge and very fast LaBr{sub 3}(Ce)-scintillator detectors has been installed around a fission target at the cold-neutron guide PF1B of the high-flux reactor of the Institut Laue–Langevin. Lifetimes of excited states in the range of 10 ps to 10 ns can be measured in around 100 exotic neutron-rich fission fragments using Ge-gated LaBr{sub 3}(Ce)–LaBr{sub 3}(Ce) or Ge–Ge–LaBr{sub 3}(Ce)–LaBr{sub 3}(Ce) coincidences. We report on various characteristics of the EXILL and FATIMA spectrometer for the energy range of 40 keV up to 6.8 MeV and present results of ps-lifetime test measurements in a fission fragment. The results are discussed with respect to possible systematic errors induced by background contributions.

  1. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  2. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  3. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  4. Neutronic analysis of the Three Mile Island Unit 2 ex-core detector response

    International Nuclear Information System (INIS)

    Malloy, D.J.; Chang, Y.I.

    1981-10-01

    A neutronic analysis has been made with respect to the ex-core neutron detector response during the TMI-2 incident. A series of transport theory calculations quantified the impact upon the detector count rate of various core and downcomer conditions. In particular, various combinations of coolant void content and spatial distributions were investigated to yield the resulting transmission of the photoneutron source to the detector. The impact of a hypothetical distributed source within the downcomer region was also examined in order to simulate the potential effect of the release of neutron producing fission products into the coolant. These results are then offered as potential explanations for the anomalous behavior of the detector during the period of approx. 20 minutes through approx. 3 hours following the reactor scram

  5. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  6. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  7. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1981-06-01

    This is the seventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission); neutron reaction cross sections of fission products; data related to the radioactive decay of fission products; delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The sixth issue of this series has been published in June 1980 as INDC(NDS)-113/G+P. The present issue includes contributions which were received by NDS between 1 August 1980 and 25 May 1981

  8. Non-conservation of parity in fission of 234U, 236U and 240Pu nuclei

    International Nuclear Information System (INIS)

    Danilyan, G.V.; Vodennikov, B.D.; Dronyaev, V.P.; Novitskij, V.V.; Pavlov, V.S.; Borovlev, S.P.

    1980-01-01

    Targets, which contained approximately 100 μg.cm -2 fissionable material placed on both sides of an aluminium backing and were 0.1-0.15 mm wide, were arranged in a vacuum chamber along the axis of the neutron beam. Silicon surface-barrier detectors were arranged on each side of the target to detect fission fragments emitted by the target either in the direction of neutron polarization or away from it, depending on the direction of neutron-beam polarization at the moment of fragment detection. The direction of polarization could be reversed once per second; however, it was reversed not regularly but stochastically. An electronic circuit separated out pulses from light and heavy fragments and channelled them into scaling circuits corresponding to the two opposing directions of polarization. After each measurement cycle a computer connected on line with the experiment calculated the asymmetry in the number of light and heavy fragments counted by a given detector when the direction of neutron beam polarization was reversed. The measurement cycle lasted approximately 17 min, during which time the direction of polarization was reversed on average approximately 600 times. Measurements on a polarized beam alternated with measurements on a depolarized beam. Control measurements excluded the possibility of instruments affecting the results

  9. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  10. A Geant4 simulation package for the TASISpec experimental detector setup

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, L.G., E-mail: lgsarmientop@unal.edu.co [Universidad Nacional de Colombia, Bogota D.C. 111321 (Colombia); Lund University, S-22100 Lund (Sweden); Andersson, L.-L. [University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Rudolph, D. [Lund University, S-22100 Lund (Sweden)

    2012-03-01

    The experimental detector setup TASISpec (TA SCA in Small Image mode Spectroscopy) comprises composite Ge- and highly segmented Si-detectors. The setup is constructed to provide multi-coincidence spectroscopic data between {gamma}-rays, X-rays, conversion electrons, fission fragments, and {alpha}-particles for heavy and superheavy elements (Z{>=}100). The full array has been virtually constructed using the Geant4 simulation toolkit. The simulations will not only be used to explore the possibilities of the detector setup itself. More important, however, they will also shed light on the nuclear structure of the heaviest elements. This can be done by comparing the simulated detector response of complex decay modes with the experimental data. Such an iterative or 'self-consistent' way to understand experimental observables will provide more reliability when disentangling the data and deducing experimental decay schemes.

  11. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  12. Development of Optical Fiber Detector for Measurement of Fast Neutron

    International Nuclear Information System (INIS)

    YAGI, Takahiro; KAWAGUCHI, Shinichi; MISAWA, Tsuyoshi; PYEON, Cheol Ho; UNESAKI, Hironobu; SHIROYA, Seiji; OKAJIMA, Shigeaki; TANI, Kazuhiro

    2008-01-01

    Measurement of fast neutron flux is important for investigation of characteristic of fast reactors. In order to insert a neutron detector in a narrow space such as a gap of between fuel plates and measure the fast neutrons in real time, a neutron detector with an optical fiber has been developed. This detector consists of an optical fiber whose tip is covered with mixture of neutron converter material and scintillator such as ZnS(Ag). The detector for fast neutrons uses ThO 2 as converter material because 232 Th makes fission reaction with fast neutrons. The place where 232 Th can be used is limited by regulations because 232 Th is nuclear fuel material. The purpose of this research is to develop a new optical fiber detector to measure fast neutrons without 232 Th and to investigate the characteristic of the detector. These detectors were used to measure a D-T neutron generator and fast neutron flux distribution at Fast Critical Assembly. The results showed that the fast neutron flux distribution of the new optical fiber detector with ZnS(Ag) was the same as it of the activation method, and the detector are effective for measurement of fast neutrons. (authors)

  13. Fission product monitoring of TRISO coated fuel for the advanced gas reactor-1 experiment

    International Nuclear Information System (INIS)

    Scates, Dawn M.; Hartwell, John K.; Walter, John B.; Drigert, Mark W.; Harp, Jason M.

    2010-01-01

    The US Department of Energy has embarked on a series of tests of TRISO coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burnup of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B's) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  14. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-05-01

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  16. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.

    1977-01-01

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  17. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1976-05-01

    The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat

  18. Diamond as a solid state micro-fission chamber for thermal neutron detection at the VR-1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Michal; Mer-Calfati, Christine [CEA-LIST, Diamond Sensors Laboratory, 91191, Gif-sur-Yvette (France); Foulon, Francois [CEA, National Institute for Nuclear Science and Technology, 91191, Gif-sur-Yvette (France); Sklenka, Lubomir; Rataj, Jan; Bily, Tomas [Department of Nuclear Reactors,Faculty of Nuclear Science and Physical Engineering, Czech Technical University, V. Holesovickach 2, 180 00 PRAHA 8 (Czech Republic)

    2015-07-01

    Diamond exhibits a combination of properties which makes it attractive for neutron detection in hostile conditions. In the particular case of detection in a nuclear reactor, it is resilient to radiation, exhibits a natural low sensitivity to gamma rays, and its small size (as compared with that of gas ionisation chambers) enables fluency monitoring with a high position resolution. We report here on the use of synthetic CVD diamond as a solid state micro-fission chamber with U-235 converting material for in-core thermal neutron monitoring. Two types of thin diamond detectors were developed for this application. The first type of detector is fabricated using thin diamond membrane obtained by etching low-cost commercially available single crystal CVD intrinsic diamond, so called 'optical grade' material. Starting from a few hundred of micrometre thick samples, the sample is sliced with a laser and then plasma etched down to a few tenths of micrometre. Here we report the result obtained with a 17 μm thick device. The detection surface of this detector is equal to 1 mm{sup 2}. Detectors with surfaces up to 1 cm{sup 2} can be fabricated with this technique. The second type of detector is fabricated by growing successively two thin films of diamond, by the microwave enhanced chemical vapour deposition technique, on HPHT single crystal diamond. A first, a film of boron doped (p+) single crystal diamond, a few microns thick, is deposited. Then a second film of intrinsic diamond with a thickness of a few tens of microns is deposited. This results in a P doped, Intrinsic, Metal structure (PIM) structure in which the intrinsic volume id the active part of the detector. Here we report the results obtained with a 20 μm thick intrinsic whose detection surface is equal to 0.5 mm{sup 2}, with the possibility to enlarge the surface of the detector up to 1 cm{sup 2}. These two types of detector were tested at the VR-1 research reactor at the Czech Technical University in

  19. Selective data analysis for diamond detectors in neutron fields

    Directory of Open Access Journals (Sweden)

    Weiss Christina

    2017-01-01

    Full Text Available Detectors based on synthetic chemical vapor deposition diamond gain importance in various neutron applications. The superior thermal robustness and the excellent radiation hardness of diamond as well as its excellent electronic properties make this material uniquely suited for rough environments, such as nuclear fission and fusion reactors. The intrinsic electronic properties of single-crystal diamond sensors allow distinguishing various interactions in the detector. This can be used to successfully suppress background of γ-rays and charged particles in different neutron experiments, such as neutron flux measurements in thermal nuclear reactors or cross-section measurements in fast neutron fields. A novel technique of distinguishing background reactions in neutron experiments with diamond detectors will be presented. A proof of principle will be given on the basis of experimental results in thermal and fast neutron fields.

  20. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.