WorldWideScience

Sample records for primary energy production

  1. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  2. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  3. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  4. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  5. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  6. Primary defect production by high energy displacement cascades in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Aaron P. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Xu, Donghua, E-mail: xudh@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Juslin, Niklas; Capps, Nathan A. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831 (United States)

    2013-06-15

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1–50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  7. Primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Parulekar, A.H.

    Photosynthetic production in the oceans in relation to light, nutrients and mixing processes is discussed. Primary productivity in the estuarine region is reported to be high in comparison to coastal and oceanic waters. Upwelling phenomenon...

  8. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  9. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  10. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  11. The most important structures utilizing primary and secondary hydroenergetic potential for electric energy production

    International Nuclear Information System (INIS)

    Zacharovsky, M.

    1997-01-01

    In this paper the construction, technological parameters and operation of Gabcikovo (primary hydro energy power) and Cierny Vah (secondary hydro energy power) are described. Construction of the hydroelectric power plant (HPP) Gabcikovo started in 1978 as a part of a system of hydro power projects Gabcikovo-Nagymaros. Basic technical data are: installed capacity 8 x 90 MW, production in an average aqueous year 2.650 GWh, number of hydroelectric generating sets (HGS) 8, turbine flow 8 x 413-636 m 3 /s, head 12.9-24 m.The Gabcikovo plant produced 9.163 GWh of electricity from the beginning of its operation till the end of 1966. The construction of the pumped storage plant (PSP) Cierny Vah started in 1976 and it was put into operation at the end of 1980. The main goal of the PSP Cierny Vah is to meet the control functions of an electrification system of the Slovak Republic, a substitute function in the cases of unexpected power outages and a planned electricity production from re-pumping. Technological parts are: six re-pumping vertical HGS in a three machine arrangement - a motor-generator, a turbine, a pump - are located in three double-blocks. Basic technical data: installed capacity 6 x 122.4 MW + 0.768 MW, yearly production 1,281 GWh, number of HGS 6, number of domestic hydroelectric generating sets 1, turbine flow 3 x 30 m / s, pump flow 6 x 22 m 3 /s, upper reservoir volume 3.7 mil. m 3 , max. head 434 m, peak time 5.71 hour, pumping time 7.78 hour, re-pumping cycle efficiency 74.36%. From putting the PSP into operation till the end of 1996, the HGS in operation 145,269 hours in total, including 53,332 hours in a turbine mode of operation, 70,293 hours in a pumping mode operation and 21,644 hours in a compensation mode operation. Whereas they supplied 5,346 GWh in the mains and the consumed 6,933 GWh of electricity for pumping. Hydroenergetic potential is a primary source of energy which is recyclable, i.e. unexhaustible and also ecologically the most tolerable

  12. The most important structures utilizing primary and secondary hydroenergetic potential for electric energy production

    Energy Technology Data Exchange (ETDEWEB)

    Zacharovsky, M [Slovenske elektrarne, a.s., Vodne elektrarne Trencin (Slovakia)

    1997-12-01

    In this paper the construction, technological parameters and operation of Gabcikovo (primary hydro energy power) and Cierny Vah (secondary hydro energy power) are described. Construction of the hydroelectric power plant (HPP) Gabcikovo started in 1978 as a part of a system of hydro power projects Gabcikovo-Nagymaros. Basic technical data are: installed capacity 8 x 90 MW, production in an average aqueous year 2.650 GWh, number of hydroelectric generating sets (HGS) 8, turbine flow 8 x 413-636 m{sup 3}/s, head 12.9-24 m.The Gabcikovo plant produced 9.163 GWh of electricity from the beginning of its operation till the end of 1966. The construction of the pumped storage plant (PSP) Cierny Vah started in 1976 and it was put into operation at the end of 1980. The main goal of the PSP Cierny Vah is to meet the control functions of an electrification system of the Slovak Republic, a substitute function in the cases of unexpected power outages and a planned electricity production from re-pumping. Technological parts are: six re-pumping vertical HGS in a three machine arrangement - a motor-generator, a turbine, a pump - are located in three double-blocks. Basic technical data: installed capacity 6 x 122.4 MW + 0.768 MW, yearly production 1,281 GWh, number of HGS 6, number of domestic hydroelectric generating sets 1, turbine flow 3 x 30 m{sup /}s, pump flow 6 x 22 m{sup 3}/s, upper reservoir volume 3.7 mil. m{sup 3}, max. head 434 m, peak time 5.71 hour, pumping time 7.78 hour, re-pumping cycle efficiency 74.36%. From putting the PSP into operation till the end of 1996, the HGS in operation 145,269 hours in total, including 53,332 hours in a turbine mode of operation, 70,293 hours in a pumping mode operation and 21,644 hours in a compensation mode operation. Whereas they supplied 5,346 GWh in the mains and the consumed 6,933 GWh of electricity for pumping. Hydroenergetic potential is a primary source of energy which is recyclable, i.e. unexhaustible and also ecologically the

  13. THE RELATIONSHIP BETWEEN PRIMARY ENERGY CONSUMPTION, PRODUCTION AND GROSS DOMESTIC INCOME (GDP IN TURKEY

    Directory of Open Access Journals (Sweden)

    ÖZGE KORKMAZ

    2013-06-01

    Full Text Available The ability to reach a sustainable economic growth of countries initially depends on the usage of energy resources efficiently. But an unequal  distribution of energy resources in the world increases the dependency on energy in countries which have insufficient energy resources such as Turkey. Therefore, it has a great importance to analyze the share of imported energy resources for economic growth. The correlation between energy consumption and changes in gross domestic product, increases the importance of energy policies while determining  the economical policies of countries. In this study, the causality relationship between energy consumption, energy generation  and GDP in Turkey are examined using annual data for the period 1960-2009. Johansen Cointegration Causality Test and Vector Error Correction Mechanism (VECM is used for this study. Empirical results for the period under discussion there is a relationship between the variables and error correction mechanism based on long-term Granger causality test. It showed that  bileteral causality  with the energy consumption to GDP.

  14. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production

    NARCIS (Netherlands)

    Anemaet, I.G.; Bekker, M.; Hellingwerf, K.J.

    2010-01-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into

  15. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production.

    Science.gov (United States)

    Anemaet, Ida G; Bekker, Martijn; Hellingwerf, Klaas J

    2010-11-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO₂ into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO₂ into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps--after acid hydrolysis--as a complex, animal-free serum for growth of mammalian cells in vitro.

  16. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Energy Technology Data Exchange (ETDEWEB)

    Anemaet, I.G.; Bekker, G.; Hellingwerf, K.J. [Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam (Netherlands)

    2010-11-15

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps-after acid hydrolysis-as a complex, animal-free serum for growth of mammalian cells in vitro.

  17. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Energy Technology Data Exchange (ETDEWEB)

    Anemaet, I G; Bekker, G; Hellingwerf, K J [Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam (Netherlands)

    2010-11-15

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps-after acid hydrolysis-as a complex, animal-free serum for growth of mammalian cells in vitro.

  18. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  19. Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.

    Science.gov (United States)

    D'Imperio, Seth; Lehr, Corinne R; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R

    2008-09-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H(2) and H(2)S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H(2)S and H(2) concentration gradients were observed in the outflow channel, and vertical H(2)S and O(2) gradients were evident within the microbial mat. H(2)S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H(2). Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O(2) requirements varied, as did energy source utilization: some isolates could grow only with H(2)S, some only with H(2), while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H(2)S and H(2) and that represented the dominant phylotype (70% of the PCR clones) showed that H(2)S and H(2) were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H(2)S was better than that with H(2). The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H(2)S can dominate over H(2

  20. Linking FRRF Derived Photophysiology with Carbon-based Primary Productivity: Insights from Concepts of Cellular Energy Allocation

    Science.gov (United States)

    Schuback, N.; Schallenberg, C.; Duckham, C.; Flecken, M.; Maldonado, M. T.; Tortell, P. D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in photosystem II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides important physiological insight into phytoplankton photosynthesis, and is critical for the application of FRRF as a primary productivity measurement tool. We present data from a series of experiments during which we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific. Our results show significant variability of the derived conversion factor (Ve:C/nPSII), with highest values observed under conditions of excess excitation pressure at the level of photosystem II, caused by high light and/or low iron. Our results will be discussed in the context of metabolic plasticity, which evolved in phytoplankton to simultaneously maximize growth and provide photoprotection under fluctuating light and limiting nutrient availabilities. Because the derived conversion factor is associated with conditions of excess light, it correlates with the expression of non-photochemical quenching (NPQ) in the pigment antenna, also derived from FRRF measurements. Our results demonstrate a significant correlation between NPQ and the conversion factor Ve:C/nPSII, and the potential of this relationship to improve FRRF-based estimates of phytoplankton carbon fixation rates is discussed.

  1. Environmental product declarations in accordance with EN 15804 and EN 16485 — How to account for primary energy of secondary resources?

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, Hermann, E-mail: hermann.achenbach@thuenen.de; Diederichs, Stefan K.; Wenker, Jan L.; Rüter, Sebastian

    2016-09-15

    As a core product category rule (PCR), EN 15804 defines rules for conducting the life cycle assessment (LCA) of building products in the context of environmental product declarations (EPDs). This European standard is complemented by EN 16485, which provides further guidance for specific aspects for the LCA of wood and wood-based construction products. For all life cycle stages under consideration, the renewable and non-renewable primary energy employed for energy generation or material use is accounted for. Furthermore, the inputs and outputs of secondary materials (SM), renewable secondary fuels (RSF) and non-renewable secondary fuels (NRSF) have to be reported. Especially in the end-of life stage as well as in the production stage, the standards do not exactly rule the accounting method of the primary energy contained in SM, RSF and NRSF. As both standards leave room for interpretation, we wrote this discussion article to introduce this issue to the LCA community and to present our developed accounting specifications. In general, we consider EN 15804 and EN 16485 as helpful tools for the LCA of building products. We hope that our ideas on certain aspects contribute to a better understanding of the standards, possibly leading to further improvement in the course of the standardization process.

  2. Environmental product declarations in accordance with EN 15804 and EN 16485 — How to account for primary energy of secondary resources?

    International Nuclear Information System (INIS)

    Achenbach, Hermann; Diederichs, Stefan K.; Wenker, Jan L.; Rüter, Sebastian

    2016-01-01

    As a core product category rule (PCR), EN 15804 defines rules for conducting the life cycle assessment (LCA) of building products in the context of environmental product declarations (EPDs). This European standard is complemented by EN 16485, which provides further guidance for specific aspects for the LCA of wood and wood-based construction products. For all life cycle stages under consideration, the renewable and non-renewable primary energy employed for energy generation or material use is accounted for. Furthermore, the inputs and outputs of secondary materials (SM), renewable secondary fuels (RSF) and non-renewable secondary fuels (NRSF) have to be reported. Especially in the end-of life stage as well as in the production stage, the standards do not exactly rule the accounting method of the primary energy contained in SM, RSF and NRSF. As both standards leave room for interpretation, we wrote this discussion article to introduce this issue to the LCA community and to present our developed accounting specifications. In general, we consider EN 15804 and EN 16485 as helpful tools for the LCA of building products. We hope that our ideas on certain aspects contribute to a better understanding of the standards, possibly leading to further improvement in the course of the standardization process.

  3. Primary Productivity (PP_Master)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included primary production for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came...

  4. Wavestar Energy Production Outlook

    DEFF Research Database (Denmark)

    Frigaard, Peter Bak; Andersen, Thomas Lykke; Kofoed, Jens Peter

    It is of paramount importance to decrease the Cost of Energy (CoE) from Wavestar wave energy con-verters (WECs) in order to make the WECs competitive to other sources of renewable energy. The CoE can be decreased by reducing the cost of the machines (CAPEX and OPEX) and by increasing the in......-come. The income can most obviously be enlarged by increasing the energy production. The focus of the present note is solely on expectations to the yearly energy production from future Wavestar WECs....

  5. Primary energy-transformations in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, A.L.

    1980-10-01

    In this paper I shall review the main outlines of current research on the molecular aspects of the primary energy-coupling mechanisms in cells, those carried out by energy-transducing membranes. They include the capture of solar energy by the chloroplast membranes of green plants, used to generate carbohydrates and molecular oxygen from carbon dioxide and water, and the counterpart of photosynthesis, the process of respiration in heterotrophic organisms, in which reduced organic products generated by photosynthesis are oxidized at the expense of dioxygen to form carbon dioxide and water. Although the cycling of dioxygen, carbon dioxide, and organic matter between the plant and animal worlds is well known, it is not generally appreciated that the magnitude of biological energy flux in these cycles is huge compared to the total energy flux in man-made devices. A major consequence is that the concentration of carbon dioxide in the atmosphere has been increasing at a significant rate, at a time when there is also a decrease, at least in some parts of the world, in the counterbalancing utilization of CO/sub 2/ by green plants, due to deforestation. The greenhouse effect of increased atmospheric CO/sub 2/ may not only change the earth's climate, but also may influence the rate of photosynthesis. It is also not generally appreciated that energy flow in the biosphere leads to production of enormous amounts of organic matter potentially useful in furnishing man's energy requirements.

  6. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  7. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools.

    Science.gov (United States)

    Dorizas, Paraskevi Vivian; Assimakopoulos, Margarita-Niki; Santamouris, Mattheos

    2015-05-01

    The perception of the indoor environmental quality (IEQ) through questionnaires in conjunction with in-field measurements related to the indoor air quality (IAQ), the thermal comfort and the lighting environment were studied in nine naturally ventilated schools of Athens, Greece. Cluster analysis was carried out in order to determine the ranges of indoor air pollutants, temperature (T), relative humidity (RH), and ventilation rates at which the students were satisfied with the indoor environment. It was found that increased levels of particulate matter did not have a negative effect on students' perception while students seemed to link the degradation of IAQ with temperature variations. Statistically significant correlations were further found between measurement results and students' perception of the IEQ. Students' sick building syndrome (SBS) symptoms and performance of schoolwork were also investigated as a function of the levels of indoor air pollutants and ventilation, and there were found significant positive correlations between particulate matter (PM) and certain health symptoms. Students' learning performance seemed to be affected by the ventilation rates and carbon dioxide (CO₂) concentrations while certain health effects positively correlated to the levels of PM and CO₂. The energy consumption of schools was rather low compared to other national findings, and both the electricity and oil consumption for heating positively correlated to the levels of indoor air pollutants.

  8. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  9. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  10. Productivity and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, H. [Rocky Mountain Inst., Snowmass, CO (United States)

    1995-12-31

    Energy efficient building and office design offers the possibility of significantly increased worker productivity. By improving lighting, heating and cooling, workers can be made more comfortable and productive. An increase of 1 percent in productivity can provide savings to a company that exceed its entire energy bill. Efficient design practices are cost effective just from their energy savings. The resulting productivity gains make them indispensable. This paper documents eight cases in which efficient lighting, heating, and cooling have measurably increased worker productivity, decreased absenteeism, and/or improved the quality of work performed. They also show that efficient lighting can measurably increase work quality by removing errors and manufacturing defects. The case studies presented include retrofit of existing buildings and the design of new facilities, and cover a variety of commercial and industrial settings. Each case study identifies the design changes that were most responsible for increased productivity. As the eight case studies illustrate, energy efficient design may be one of the least expensive ways for a business to improve the productivity of its workers and the quality of its product. (author). 15 refs.

  11. Energy production systems engineering

    CERN Document Server

    Blair, Thomas Howard

    2017-01-01

    Energy Production Systems Engineering presents IEEE, Electrical Apparatus Service Association (EASA), and International Electrotechnical Commission (IEC) standards of engineering systems and equipment in utility electric generation stations. Electrical engineers that practice in the energy industry must understand the specific characteristics of electrical and mechanical equipment commonly applied to energy production and conversion processes, including the mechanical and chemical processes involved, in order to design, operate and maintain electrical systems that support and enable these processes. To aid this understanding, Energy Production Systems Engineeringdescribes the equipment and systems found in various types of utility electric generation stations. This information is accompanied by examples and practice problems. It also addresses common issues of electrical safety that arise in electric generation stations.

  12. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass

    Directory of Open Access Journals (Sweden)

    Katherine E Wright

    2013-04-01

    Full Text Available We combined free energy calculations and metagenomic analyses of an elemental sulfur (S0 deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification or nitrite (anammox. The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-hour sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can

  13. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  14. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass.

    Science.gov (United States)

    Wright, Katherine E; Williamson, Charles; Grasby, Stephen E; Spear, John R; Templeton, Alexis S

    2013-01-01

    We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S(0)) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and [Formula: see text] oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S(0) was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and [Formula: see text] oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for [Formula: see text] oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic

  15. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  16. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  17. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  18. Risk of energy production

    International Nuclear Information System (INIS)

    Inhaber, Herbert.

    1978-03-01

    Every human activity involves risk of accident or disease. Generation of energy is no exception. Although such risk has been considered for conventional systems (coal, oil and nuclear), a similar analysis for the so-called alternative or non-conventional systems (solar, wind, ocean thermal and methanol) has been lacking. This paper presents an evaluation of the risk, both occupational and to the public, of non-conventional energy systems. They are considered both in absolute terms and in relation to conventional systems. The risk of most non-conventional systems, per unit of energy output, is comparable to, and in some cases much higher than, the risk from coal and oil. This conclusion holds whether we consider deaths or injuries. Nuclear power and natural gas had the lowest overall risk of the ten technologies considered. Ocean thermal energy ranked third. The surprising result is that the other seven technologies considered were found to be up to 100 times less safe. The total risk is calculated by considering six components: material acquisition and construction, emissions caused by material production, operation and maintenance, energy back-up, energy storage, and transportation. In this way the risk of widely different systems can be fairly assessed. This methodology of 'risk accounting' will not tell us which energy technology to use. However, it can be employed to inform society of the risk inherent in competing energy systems. (author)

  19. Mass extinctions: Ecological selectivity and primary production

    Science.gov (United States)

    Rhodes, Melissa Clark; Thayer, Charles W.

    1991-09-01

    If mass extinctions were caused by reduced primary productivity, then extinctions should be concentrated among animals with starvation-susceptible feeding modes, active lifestyles, and high-energy budgets. The stratigraphic ranges (by stage) of 424 genera of bivalves and 309 genera of articulate brachiopods suggest that there was an unusual reduction of primary productivity at the Cretaceous/Tertiary (K/T) boundary extinction. For bivalves at the K/T, there were (1) selective extinction of suspension feeders and other susceptible trophic categories relative to deposit feeders and other resistant categories, and (2) among suspension feed-ers, selective extinction of bivalves with active locomotion. During the Permian-Triassic (P/Tr) extinction and Jurassic background time, extinction rates among suspension feeders were greater for articulate brachiopods than for bivalves. But during the K/T event, extinction rates of articulates and suspension-feeding bivalves equalized, possibly because the low-energy budgets of articulates gave them an advantage when food was scarce.

  20. Human appropriation of net primary production in the United Kingdom, 1800-2000. Changes in society's impact on ecological energy flows during the agrarian-industrial transition

    International Nuclear Information System (INIS)

    Musel, Annabella

    2009-01-01

    This paper presents an empirical analysis of the United Kingdom's society's long-term intervention into the energy flows of domestic terrestrial ecosystems through the human appropriation of aboveground net primary production (aHANPP) covering the period 1800-2000. The depicted aHANPP trajectory and the historical development of its components are discussed in view of a continuously increasing population and the transition process from an agrarian to an industrial socioecological regime. During the 19th century, aHANPP shows a steady decline from its level of 71% in 1800. While even higher levels were reached during the mid 20th century, the trend during the last forty years of the period under investigation again shows a reduction of aHANPP, which lies at 68% in the year 2000. The high values of aHANPP in the United Kingdom are primarily attributable to the limited amount of forest in comparison to large agricultural areas. At the beginning of the studied period, the relative stabilisation or even decrease in aHANPP in comparison to population development was made possible through the area expansion of and productivity increases on cropland and permanent pastures. Later this was made possible through the outsourcing of biomass harvest, by satisfying local nutritional demands by means of overseas imports, and as from the mid 20th century through huge amounts of fossil fuel based inputs into agriculture (e.g. increased amounts of fertilizers and motorized traction) which allowed increases in biomass harvest to be decoupled from HANPP. (author)

  1. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  2. Sweden's primary production and supplies of food - Possible consequences of a lack of fossil energy; Sveriges primaerproduktion och foersoerjning av livsmedel - Moejliga konsekvenser vid en brist paa fossil energi

    Energy Technology Data Exchange (ETDEWEB)

    Baky, Andras; Widerberg, Anna; Landquist, Birgit; Norberg, Ida; Berlin, Johanna; Engstroem, Jonas; Svanaeng, Karin; Lorentzon, Katarina; Cronholm, Lars-Aake; Pettersson, Ola

    2013-07-01

    This report provides an insight into what may be the consequences for Sweden's food supply if the ability to import sufficient quantities of fossil energy decreases. The situation described is an imaginary situation that arose quickly and unexpectedly by political unrest or natural disaster. There has thus been no preparation for the situation. The length of the crisis is set to a period of 3-5 years. During that time, there is assumed no technological development or other structural change, that will change conditions compared to the current situation. If the crisis becomes more prolonged it will however gradually force major changes. Today's food supply in Sweden and much of the world depends on a constant supply of fossil energy. In the production of food is used, for example, large amounts of diesel, heating oil and mineral fertilizers. This applies to primary production of vegetables and animal breeding but also to a high degree of for user-industries , which ensures that the raw materials become finished food products for consumers. Between the different stages there are transport's in many directions that depend on fossil energy. Three different scenarios are termed low deprivation, lack of resources and high deprivation. They represent different failure scenarios where the availability of fossil energy is assumed to decrease. The three levels are tentatively set as a decrease of 25%, 50% and 75% compared with current levels. These percentages are set as initial discussion-levels from which calculations have been made of how the different stages of production will be affected.

  3. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  4. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  5. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  6. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  7. Empirical and dynamic primary energy factors

    International Nuclear Information System (INIS)

    Wilby, Mark Richard; Rodríguez González, Ana Belén; Vinagre Díaz, Juan José

    2014-01-01

    Current legislation, standards, and scientific research in the field of energy efficiency often make use of PEFs (primary energy factors). The measures employed are usually fixed and based on theoretical calculations. However given the intrinsically variable nature of energy systems, these PEFs should rely on empirical data and evolve in time. Otherwise the obtained efficiencies may not be representative of the actual energy system. In addition, incorrect PEFs may cause a negative effect on the energy efficiency measures. For instance, imposing a high value on the PEF of electricity may discourage the use of renewable energy sources, which have an actual value close to 1. In order to provide a solution to this issue, we propose an application of the Energy Networks (ENs), described in a previous work, to calculate dynamic PEFs based on empirical data. An EN represents an entire energy system both numerically and graphically, from its primary energy sources to their final energy forms, and consuming sectors. Using ENs we can calculate the PEF of any energy form and depict it in a simple and meaningful graph that shows the details of the contribution of each primary energy and the efficiency of the associated process. The analysis of these PEFs leads to significant conclusions regarding the energy models adopted among countries, their evolution in time, the selection of viable ways to improve efficiency, and the detection of best practices that could contribute to the overall energy efficiency targets. - Highlights: • Primary Energy Factors (PEFs) are foundation of much energy legislation and research. • Traditionally, they have been treated as geotemporally invariant. • This work provides a systematic and transparent methodology for adding variability. • It also shows the variability between regions due to market, policy, and technology. • Finally it demonstrates the utility of extended PEFs as a tool in their own right

  8. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  9. Nuclear energy ranks first as primary energy source in Europe in 2012

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    According to the 2012 report of Eurostat, nuclear energy represents 30% of the production of primary energy in the member states of the E.U., renewable energies a little less than 20% and fossil energies a little more than 50%. In Europe the production of primary energy has been decreasing since 2001, from 940 million tonnes in 2001 to 794 million tonnes in 2012. In Europe the gross energy consumption has decreased in 24 member states to reach the level of 1995 year. In 2012 the E.U.'s dependence rate for energy was of 53% on average. Only Denmark was a net exporter of energy while the dependence rate for energy of the main E.U. energy consumers were: Germany (61%), Spain (73%), France (48%), United-Kingdom (42%) and Italy (81%). (A.C.)

  10. Method for the production of primary amines

    NARCIS (Netherlands)

    Baldenius, Kai-Uwe; Ditrich, Klaus; Breurer, Michael; Navickas, Vaidotas; Janssen, Dick; Crismaru, Ciprian; Bartsch, Sebastian

    2014-01-01

    The present invention relates to a novel enzymatically catalyzed method for the production of aliphatic primary amines, which method comprises the enzymatic oxidation of a primary aliphatic alcohol catalyzed by an alcohol dehydrogenase, amination of the resulting oxocompound catalyzed by a

  11. Deep primary production in coastal pelagic systems

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke; Richardson, Katherine; Markager, Stiig

    2014-01-01

    produced. The primary production (PP) occurring below the surface layer, i.e. in the pycnocline-bottom layer (PBL), is shown to contribute significantly to total PP. Oxygen concentrations in the PBL are shown to correlate significantly with the deep primary production (DPP) as well as with salinity...... that eutrophication effects may include changes in the structure of planktonic food webs and element cycling in the water column, both brought about through an altered vertical distribution of PP....

  12. Doctor Referral of Overweight People to a Low-Energy Treatment (DROPLET) in primary care using total diet replacement products: a protocol for a randomised controlled trial.

    Science.gov (United States)

    Jebb, Susan A; Astbury, Nerys M; Tearne, Sarah; Nickless, Alecia; Aveyard, Paul

    2017-08-04

    The global prevalence of obesity has risen significantly in recent decades. There is a pressing need to identify effective interventions to treat established obesity that can be delivered at scale. The aim of the Doctor Referral of Overweight People to a Low-Energy Treatment (DROPLET) study is to determine the clinical effectiveness, feasibility and acceptability of referral to a low-energy total diet replacement programme compared with usual weight management interventions in primary care. The DROPLET trial is a randomised controlled trial comparing a low-energy total diet replacement programme with usual weight management interventions delivered in primary care. Eligible patients will be recruited through primary care registers and randomised to receive a behavioural support programme delivered by their practice nurse or a referral to a commercial provider offering an initial 810 kcal/d low-energy total diet replacement programme for 8 weeks, followed by gradual food reintroduction, along with weekly behavioural support for 24 weeks. The primary outcome is weight change at 12 months. The secondary outcomes are weight change at 3 and 6 months, the proportion of participants achieving 5% and 10% weight loss at 12 months, and change in fat mass, haemoglobin A1c, low-density lipoprotein cholesterol and systolic and diastolic blood pressure at 12 months. Data will be analysed on the basis of intention to treat. Qualitative interviews on a subsample of patients and healthcare providers will assess their experiences of the weight loss programmes and identify factors affecting acceptability and adherence. This study has been reviewed and approved by the National Health ServiceHealth Research Authority (HRA)Research Ethics Committee (Ref: SC/15/0337). The trial findings will be disseminated to academic and health professionals through presentations at meetings and peer-reviewed journals and to the public through the media. If the intervention is effective, the results

  13. Geothermal Energy as source or energy production

    International Nuclear Information System (INIS)

    Lozano, E.

    1998-01-01

    This article shows the use and utilization of geothermal energy. This calorific energy can be used, through the wells perforation, in generation of electricity and many other tasks. In Colombia is possible the utilization of this energy in the electrical production due to the volcanic presence in the Western and Central mountain chains

  14. 2005 primary energy consumption in Germany

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    According to preliminar calculations by the Arbeitsgemeinschaft Energiebilanzen (Working Party on Energy Balances, AGEB), the consumption of an aggregate 486 million TCE of primary energy resources in Germany last year was 1.3% below the level of the year before. Energy consumption was influenced by both the high level of prices and the development of the economy. Hardly any influence was attributable to the level of temperatures, which was largely unchanged compared to the figure of the year before. Oil consumption in 2005 in Germany dropped by nearly 2% to 174.8 million TCE. On the whole, oil with its 36% share in the energy balance remained by far the most important energy resource in Germany. Natural gas consumption of 110.4 million TCE was at the level of the year before. Its share in the primary energy balance rose slightly to 22.7%. Hard coal, because of lower use in power plants and the decline in iron making, showed a 4.6% drop in consumption to 62.8 million TCE. In this way, hard coal contributed 13% to total energy consumption. Lignite consumption dropped by 3.2% to 54.4 million TCE as a result of lower deliveries to power plants. Its 11.2% share in the total consumption of primary energy continued to make lignite the most important domestic energy resource. More than 90% of the lignite produced is used for electricity generation. The contribution to primary energy consumption of nuclear power dropped by more than 2% to 60.7 million TCE. Hydroelectric plants and wind power plants increased their contribution by 3.6%. The contribution to primary energy consumption made by all renewable energy resources rose to 4.6%. AGEB evaluates statistics of all areas of the power economy on the basis of standard criteria in order to combine these data in a comprehensive picture. Since 1994, the energy balances for Germany have been compiled by DIW on behalf of AGEB. (orig.)

  15. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  16. Energy production in stars

    International Nuclear Information System (INIS)

    Bethe, Hans.

    1977-01-01

    Energy in stars is released partly by gravitation, partly by nuclear reactions. For ordinary stars like our sun, nuclear reactions predominate. However, at the end of the life of a star very large amounts of energy are released by gravitational collapse; this can amount to as much as 10 times the total energy released nuclear reactions. The rotational energy of pulsars is a small remnant of the energy of gravitation. The end stage of small stars is generally a white dwarf, of heavy stars a neutron star of possibly a black hole

  17. ENERGY STAR Certified Roof Products

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Roof Products that are effective as of July 1,...

  18. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    Science.gov (United States)

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential

  19. Primary Productivity of the Cengklik Dam Boyolali

    Directory of Open Access Journals (Sweden)

    WIRYANTO

    2002-01-01

    Full Text Available Primary productivity dynamic of the water ecosystem was conducted faster in the last decades. This study was intended to find out the primary productivity of Cengklik dam Boyolali, Central Java to explain the ecosystem dynamic and to lead the maintenance of dam. This study used quantitative methods in completely randomized group design (CRD, and the data was analized by Analysis of Variance (ANAVA. Samples were taken horizontally in four sampling point, respectively in the riparian zone, around of the floating net (“karamba”, in the center of dam water and around of the ex-paddy fields. There were taken vertically in three-depth point in each of the sampling point, respectively 0.5 meter, 1.5 meter, and 2.5 meter. The results showed that the gross primary productivity of the dam was 11.122.500-22.545.600 mgC/m3/days, and the primary productivity differences in each of the point sampling caused by light intensity, nutrient supply, and abundance of the chlorophyll organisms.

  20. Do Offshore Wind Farms Influence Marine Primary Production?

    Science.gov (United States)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  1. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  2. Access to primary energy sources - the basis of national energy security

    Science.gov (United States)

    Szlązak, Jan; Szlązak, Rafał A.

    2017-11-01

    National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

  3. The 2004 production of renewable energy in France

    International Nuclear Information System (INIS)

    2005-06-01

    This presentation offers a state of the art of the production of all types of renewable energies, taking into account the primary electric power connected or not the the network. The first chart concerns the primary production, the second the available electric and thermal productions. (A.L.B.)

  4. Determining Mean Annual Energy Production

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Folley, Matt

    2016-01-01

    This robust book presents all the information required for numerical modelling of a wave energy converter, together with a comparative review of the different available techniques. The calculation of the mean annual energy production (MAEP) is critical to the assessment of the levelized cost...... of energy for a wave energy converter or wave farm. Fundamentally, the MAEP is equal to the sum of the product of the power capture of a set of sea-states and their average annual occurrence. In general, it is necessary in the calculation of the MAEP to achieve a balance between computational demand...

  5. Primary productivity of the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.

    The average surface and column primary productivity, chl a and particulate organic carbon, estimated at 24 stations during Feb. 1979, were respectively 5.3 mg C/m3/d and 273 mg C/m2 /d; 0.03 mg/m3 and 3.64 mg/m2; and 132mg/m3 and 4.59 g/m2...

  6. ENERGY STAR Certified Products - Lighting

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains a simplified list of all currently certified ENERGY STAR Lighting models with basic model information collected across all product categories...

  7. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Science.gov (United States)

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...

  8. Going nuclear. Some implications of the introduction of nuclear energy as the basic primary energy supply of a developped society

    International Nuclear Information System (INIS)

    Haefele, W.; Sassin, W.

    1975-01-01

    On the basis of nuclear energy as primary energy source, the future development potentialities of secondary energies are considered; these energy forms are coal gaseification, process heat for industrial uses and district heating, and mainly hydrogen production which represents 60% of the future secondary energy demands. By using decision tree method, the eventuality of using nuclear energy as unique energy source is examined, and the successive options implied in this approach are analyzed [fr

  9. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  10. Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis

    International Nuclear Information System (INIS)

    Lenzen, M.

    1998-01-01

    Input-output modeling of primary energy and greenhouse gas embodiments in goods and services is a useful technique for designing greenhouse gas abatement policies. The present paper describes direct and indirect primary energy and greenhouse gas requirements for a given set of Australian final consumption. It considers sectoral disparities in energy prices, capital formation and international trade flows and it accounts for embodiments in the Gross National Expenditure as well as the Gross Domestic Product. Primary energy and greenhouse gas intensities in terms of MJ/$ and kg CO 2 -e/$ are reported, as well as national balance of primary energy consumption and greenhouse gas emissions. (author)

  11. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  12. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana; Llabré s, Moira; Lubiá n, Luis M.; Moreno-Ostos, Enrique; Estrada, Marta; Duarte, Carlos M.; Cerezo, Maria I.

    2015-01-01

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  13. Nuclear primary energy carriers. Pt. 2

    International Nuclear Information System (INIS)

    1978-04-01

    A very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawsontype diagrams are given. The reserves and cost of lithium and deuterium, gives estimates of the total available from DT fusion and comments on production technology, availability and handling of the fuels are outlined. A survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of inertial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented, which is followed by a discussion of the key problems of fusion power plants. The main reqirements on the superconducting magnet system for possible fusion reactors, particularly tokamak reactors, are discussed and compared with the present state of the superconducting magent technology. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed. Finally the aspects of safety and environment are treated. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste. (orig.) [de

  14. Primary energy implications of different design strategies for an apartment building

    International Nuclear Information System (INIS)

    Tettey, Uniben Yao Ayikoe; Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, we explored the effects of different design strategies on final and primary energy use for production and operation of a newly constructed apartment building. We analysed alternatives of the building “As built” as well as to energy efficiency levels of the Swedish building code and passive house criteria. Our approach is based on achieving improved versions of the building alternatives from combination of design strategies giving the lowest space heating and cooling demand and primary energy use, respectively. We found that the combination of design strategies resulting in the improved building alternatives varies depending on the approach. The improved building alternatives gave up to 19–34% reduction in operation primary energy use compared to the initial alternatives. The share of production primary energy use of the improved building alternatives was 39–54% of the total primary energy use for production, space heating, space cooling and ventilation over 50-year lifespan, compared to 31–42% for the initial alternatives. This study emphasises the importance of incorporating appropriate design strategies to reduce primary energy use for building operation and suggests that combining such strategies with careful choice of building frame materials could result in significant primary energy savings in the built environment. - Highlights: • Primary energy implications of different design strategies were analysed. • The improved building alternatives had 19–34% lower operation primary energy use. • The improved building alternatives had higher production primary energy use. • Still, the improved building alternatives had lower overall primary energy use. • Design strategies should be combined with careful building frame material choice.

  15. Energy conservation opportunities: audit vis-a-vis mine productivity

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, G.H.

    2009-07-01

    Mining operation, whether opencast or underground, with modern equipment is highly energy intensive, needing energy conservation and management to ensure efficiency, cost effectiveness, and overall productivity. Exhaustible primary energy resources such as coal, lignite, oil, and nuclear fuels are being mined out to meet our energy needs. An attempt has been made in this paper to highlight the energy conservation opportunities, energy audit, the relevant Energy Conservation Act 2001 and certain energy saving measures leading to higher productivity followed by a few case study examples. 3 refs.

  16. Energy production and social marginalisation in China

    Energy Technology Data Exchange (ETDEWEB)

    Philip Andrews-Speed; Xin Ma

    2008-05-15

    The exploitation and production of primary energy resources and the supply of this energy is critical for China's economic development. Despite the obvious economic benefit to the nation, this energy production has had significant negative socio-economic impacts on certain groups of people at local and national scales. This paper documents three cases of energy production in China and demonstrates that, in each case, marginalisation of social groups has either been created or has been enhanced. These cases are the Three Gorges Dam, the Yumen oilfield, and township and village coal mines. The causes of this marginalisation have their roots in the structures, processes and approaches taken in the making and implementation of national policy in China, and are compounded by poor regulation and monitoring, poor civil rights, and the tension between central and local governments. The government which came to power in 2003 recognised the extent and importance of these social challenges relating to energy production, and has started to take steps to address them.

  17. Primary production in the Bay of Bengal during August 1977

    Digital Repository Service at National Institute of Oceanography (India)

    Devassy, V.P.; Bhattathiri, P.M.A.; Radhakrishna, K.

    Primary production, chlorophyll @ia@@, phaeophytin, phytoplankton and particulate organic carbon (POC) were studied at 14 stations in the Bay of Bengal during August 1977. Column primary production, chlorophyll @ia@@, and phaeopigments varied from 0...

  18. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  19. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  20. Fusion Energy for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J. A.; Powell, J. R.; Steinberg, M.; Salzano, F.; Benenati, R.; Dang, V.; Fogelson, S.; Isaacs, H.; Kouts, H.; Kushner, M.; Lazareth, O.; Majeski, S.; Makowitz, H.; Sheehan, T. V.

    1978-09-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approximately 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approximately 50 to 70% are projected for fusion reactors using high temperature blankets.

  1. Biomass in Switzerland. Energy production

    International Nuclear Information System (INIS)

    Guggisberg, B.

    2006-01-01

    In the long term, biomass could be used for energy production in a three times more intensive way, compared to current figures. A major contribution would be delivered to Switzerland's energy supply. Numerous biomass conversion technologies do exist, for the production of heat, power or vehicle fuel. However, the implementation of such a large-scale utilisation of biomass requires a couple of strategic decisions in order to improve the framework conditions for biomass development and precisely target the supporting measures applicable to both research and pilot plants. In short, a clear and efficient strategy is necessary in what regards biomass, that will be used for the definition of a future catalogue of measures. (author)

  2. Trigeneration primary energy saving evaluation for energy planning and policy development

    International Nuclear Information System (INIS)

    Chicco, Gianfranco; Mancarella, Pierluigi

    2007-01-01

    Trigeneration or combined heat, cooling and power (CHCP) is becoming an increasingly important energy option, particularly on a small-scale basis (below 1 MW e ), with several alternatives nowadays available for the cooling power production and the coupling to cogeneration systems. This paper deals with the introduction of a suitable framework for assessing the energy saving performance of trigeneration alternatives, orientated towards energy planning studies and the development of regulatory policies. In particular, a new generalized performance indicator-the trigeneration primary energy saving (TPES)-is introduced and discussed, with the aim of effectively evaluating the primary energy savings from different CHCP alternatives. The potential of the TPES indicator is illustrated through specific analyses run over different combinations of trigeneration equipment, providing numerical examples based on time-domain simulations to illustrate the dependence of the energy saving characteristics on the CHCP system configurations and equipment, as well as on the loading levels. In addition, the key aspect of adequately establishing the reference efficiencies for the conventional separate production of electrical, thermal and cooling power is addressed in detail. This aspect affects both equipment selection and potential profitability of the considered solutions under the outlook of receiving financial incentives

  3. Inertial fusion and energy production

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1982-01-01

    Inertial-confinement fusion (ICF) is a technology for releasing nuclear energy from the fusion of light nuclei. For energy production, the most reactive hydrogen isotopes (deuterium (D) and tritium (T)) are commonly considered. The energy aplication requires the compression of a few milligrams of a DT mixture to great density, approximately 1000 times its liquid-state density, and to a high temperature, nearly 100 million 0 K. Under these conditions, efficient nuclear-fusion reactions occur, which can result in over 30% burn-up of the fusion fuel. The high density and temperature can be achieved by focusing very powerful laser or ion beams onto the target. The resultant ablation of the outer layers of the target compresses the fuel in the target, DT ignition occurs, and burn-up of the fuel results as the thermonuclear burn wave propagates outward. The DT-fuel burn-up occurs in about 199 picoseconds. On this short time scale, inertial forces are sufficiently strong to prevent target disassembly before fuel burn-up occurs. The energy released by the DT fusion is projected to be several hundred times greater than the energy delivered by the driver. The present statuds of ICF technology is described

  4. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  5. Particle production at collider energies

    International Nuclear Information System (INIS)

    Geich-Gimbel, C.

    1987-11-01

    Key features of the SPS panti p Collider and the detectors of the UA-experiments involved are dealt with in chapter 2, which includes and accord to the ramping mode of the Collider, which allowed to raise the c.m. energy to 900 GeV in the UA5/2 experiment. The following chapters concentrate on physics results. Starting with a discussion of cross sections and diffraction dissociation in chapter 3 we then continue with a presentation of basic features of particle production such as rapidity and multiplicity distributions in chapter 4. There one of the unexpected findings at Collider energies, the breakdown of the so-called KNO-scaling, and new regularities potentially governing multiplicity distributions, are discussed. The findings about correlations among the final state particles, which may tell about the underlying dynamics of multi-particle production and be relevant to models thereof, are described in due detail in chapter 5. Transverse spectra and their trends with energy are shown in chapter 6. Results on identified particles are collected in a separate chapter in order to stress that this piece of information was an important outcome of the UA5 experiment. (orig./HSI)

  6. Valuing ecosystem services. A shadow price for net primary production

    International Nuclear Information System (INIS)

    Richmond, Amy; Kaufmann, Robert K.; Myneni, Ranga B.

    2007-01-01

    We analyze the contribution of ecosystem services to GDP and use this contribution to calculate an empirical price for ecosystem services. Net primary production is used as a proxy for ecosystem services and, along with capital and labor, is used to estimate a Cobb Douglas production function from an international panel. A positive output elasticity for net primary production probably measures both marketed and nonmarketed contributions of ecosystems services. The production function is used to calculate the marginal product of net primary production, which is the shadow price for ecosystem services. The shadow price generally is greatest for developed nations, which have larger technical scalars and use less net primary production per unit output. The rate of technical substitution indicates that the quantity of capital needed to replace a unit of net primary production tends to increase with economic development, and this rate of replacement may ultimately constrain economic growth. (author)

  7. Environmental impact of energy production

    International Nuclear Information System (INIS)

    Lidgate, David

    1992-01-01

    Care of the environment is set to be one of the growth industries of the 1990s. Unfortunately, information as to the effect current life styles are having on the environment and, therefore, what remedial action is necessary, varies from the full to the non-existent and, worst of all, from the misleading to the incorrect. For various reasons, some aspects of technology have received greater attention from the media and environmental pressure groups than others. Energy production and conversion technologies, of course, are very much in this category. Indeed, the problem in these areas is not lack of information but a positive surfeit. (author)

  8. Primary production in the Kattegat - past and present

    DEFF Research Database (Denmark)

    Richardson, K.; Heilmann, Jens

    1995-01-01

    data collected during the period 1984-1993 are calculated using the method employed in the 1950s. It is concluded that primary production in the Kattegat has increased from less than 100 g C m(-2) y(- 1) to about 200 g C m(-2) y(-1) since the 1950s. This increase is not seen during the winter months...... to be responses to increases in primary production. However, for most areas, there are insufficient data to demonstrate whether or not increases in primary production have actually occurred. In this study, the evidence for increased primary production in the Kattegat is examined by comparing primary production...... measurements from the 1950s and measurements made in the period 1984-1993. The methods employed during the two periods differ considerably. These differences and how they may affect the validity of a comparison of the results from the studies carried out in two periods are addressed. The primary production...

  9. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Verfondern, K.

    2007-01-01

    In the long term, H 2 production technologies will be strongly focusing on CO 2 -neutral or CO 2 -free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H 2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO 2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the

  10. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  11. Calendar Year 2009 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Gregory K; Sanchez, Marla C.; Brown, Richard E.

    2010-11-15

    ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates from the use ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2009, annual forecasts for 2010 and 2011, and cumulative savings estimates for the period 1993 through 2009 and cumulative forecasts for the period 2010 through 2015. Through 2009 the program saved 9.5 Quads of primary energy and avoided the equivalent of 170 million metric tons carbon (MMTC). The forecast for the period 2009-2015 is 11.5 Quads or primary energy saved and 202 MMTC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 110 MMTC and 231 MMTC (1993 to 2009) and between 130 MMTC and 285 MMTC (2010 to 2015).

  12. Primary energy: present status and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Thielheim, K O

    1982-01-01

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO/sub 2/ greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  13. The logic of the primary energy prices evolution

    International Nuclear Information System (INIS)

    Giraud, P.N.

    1992-01-01

    This paper deals, very briefly, with the basis factors determining the prices levels of the primary energies and the logic of their evolution both in the short and in the long term. It first gives definitions: of the limits of mineral commodities prices fluctuations and of the long term equilibrium prices. Then, it tries to demonstrate three points: (1) Coal and nuclear electricity prices are driven in the long term only by their own production and environmental costs. Moreover, coal prices fluctuations are surrounded by factors which are basically independent from oil prices. (2) There is no such thing as one single equilibrium price for oil, but several ones, depending on political factors, and among them, on the degree of consensus between the 'Five' of the Gulf (Saudi Arabia, Iran, Irak, Koweit, The Emirates). (3) Natural gas prices are in an intermediate situation, but tend to get closer to the case of coal and nuclear prices. 4 figs

  14. Human appropriation of net primary production in the United Kingdom, 1800-2000. Changes in society's impact on ecological energy flows during the agrarian-industrial transition

    Energy Technology Data Exchange (ETDEWEB)

    Musel, Annabella [Institute of Social Ecology, Alpen-Adria University Klagenfurt - Graz - Wien, Schottenfeldgasse 29, 1070 Vienna (Austria)

    2009-12-15

    This paper presents an empirical analysis of the United Kingdom's society's long-term intervention into the energy flows of domestic terrestrial ecosystems through the human appropriation of aboveground net primary production (aHANPP) covering the period 1800-2000. The depicted aHANPP trajectory and the historical development of its components are discussed in view of a continuously increasing population and the transition process from an agrarian to an industrial socioecological regime. During the 19th century, aHANPP shows a steady decline from its level of 71% in 1800. While even higher levels were reached during the mid 20th century, the trend during the last forty years of the period under investigation again shows a reduction of aHANPP, which lies at 68% in the year 2000. The high values of aHANPP in the United Kingdom are primarily attributable to the limited amount of forest in comparison to large agricultural areas. At the beginning of the studied period, the relative stabilisation or even decrease in aHANPP in comparison to population development was made possible through the area expansion of and productivity increases on cropland and permanent pastures. Later this was made possible through the outsourcing of biomass harvest, by satisfying local nutritional demands by means of overseas imports, and as from the mid 20th century through huge amounts of fossil fuel based inputs into agriculture (e.g. increased amounts of fertilizers and motorized traction) which allowed increases in biomass harvest to be decoupled from HANPP. (author)

  15. Calendar Year 2008 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Homan, GregoryK; Sanchez, Marla; Brown, RichardE; Lai, Judy

    2010-08-24

    This paper presents current and projected savings for ENERGY STAR labeled products, and details the status of the model as implemented in the September 2009 spreadsheets. ENERGY STAR is a voluntary energy efficiency labeling program operated jointly by the Environmental Protection Agency (US EPA) and the U.S. Department of Energy (US DOE), designed to identify and promote energy-efficient products, buildings and practices. Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products, and currently labels more than thirty products, spanning office equipment, heating, cooling and ventilation equipment, commercial and residential lighting, home electronics, and major appliances. ENERGY STAR's central role in the development of regional, national and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with stakeholders. This report presents savings estimates for ENERGY STAR labeled products. We present estimates of energy, dollar, and carbon savings achieved by the program in the year 2008, annual forecasts for 2009 and 2010, and cumulative savings estimates for the period 1993 through 2008 and cumulative forecasts for the period 2009 through 2015. Through 2008 the program saved 8.8 Quads of primary energy and avoided the equivalent of 158 metric tones carbon (MtC). The forecast for the period 2009-2015 is 18.1 Quads or primary energy saved and 316 MtC emissions avoided. The sensitivity analysis bounds the best estimate of carbon avoided between 104 MtC and 213 MtC (1993 to 2008) and between 206 MtC and 444 MtC (2009 to 2015). In this report we address the following questions for ENERGY STAR labeled products: (1) How are ENERGY STAR impacts quantified; (2) What are the ENERGY STAR achievements; and (3) What are the limitations to our method?

  16. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  17. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  18. Plywood production wastes to energy

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.

    2017-11-01

    Wood and by-products of its processing are a renewable energy source with carbon neutral and may be used in solving energy problems. ZAO «Arkhangelsk plywood factory» installed and put into operation the boiler with capacity of 22 MW (saturated steam of 1.2 MPa) to reduce the cost of thermal energy, the impact of environmental factors on stability of the company’s development and for reduction of harmful emissions into the environment. Fuel for boiler is the mixture consists of chip plywood, birch bark, wood sanding dust (WSD) and sawdust of the plywood processing. The components of the fuel mixture significantly differ in thermotechnical characteristics and technological parameters but especially in size composition. Particle dimensions in the fuel mixture differ by more than a thousand times which makes it «unique» and very difficult to ensure the effective and non-explosive use. WSD and sawdust from line of cutting of plywood are small fraction material and relate to IV group of explosion. Criterion of explosive for them has great values (КfWSD=10.85 Кfsaw=9.66). Boiler’s furnace equipped with reciprocating grate where implemented a three-stage scheme of combustion. For a comprehensive survey of the effectiveness of installed equipment was analyzed the design features of the boiler, defined the components of thermal balance, studied nitrogen oxide emissions, carbon and particulate matter with the determination of soot emissions. Amount of solid particles depending on their shape and size was analyzed.

  19. Chemical phenomena in primary titanium production

    CSIR Research Space (South Africa)

    van Vuuren, DS

    2011-01-01

    Full Text Available TiO2 $ 490m p.a. $ 2500 p.a. Pigment Production ~20 kt TiO2 5100 kt TiO2 $ 37m p.a. $ 10000 m.p.a. Sponge Production Nil 125 kt p.a. Ti $ 1250 m.p.a. Ingot Production Nil 145 kt p.a. Ti $ 2600 m.p.a. Mill Products Nil ~90 kt p.a. Ti $ 4500 m... Museum Photo courtesy of the Kyushu National Museum http://web-japan.org/nipponia/nipponia38/en/travel/travel03.html V AL U E TiCl4 TiO2 Sponge Powder M2TiF6 Ingot INC R EAS ING COS T PRECURSOR REDUCTANT PRODUCT...

  20. Energy ratios in Finnish agricultural production

    Directory of Open Access Journals (Sweden)

    H. J. MIKKOLA

    2008-12-01

    Full Text Available The objective of this study was to assess energy ratios and net energy in plant production and energy ratios in animal production in Finland. Energy ratios and net energy were determined on the basis of plant- and animal-specific energy analyses. In plant production, energy ratios and net energy were assessed as a function of nitrogen fertilization, because indirect energy input in the form of agrochemicals was 54—73% from the total energy input and nitrogen was responsible for the major part of this. The highest energy ratio was 18.6 for reed canary grass. As a whole reed canary grass was superior to the other crops, which were barley, spring wheat, spring turnip rape, ley for silage, potato and sugar beet. Reed canary grass and sugar beet gained the highest net energy yields of 111–115 GJ ha-1. The optimum energy ratio was gained in general with less nitrogen fertilization intensity than farmers use. The energy ratios in pork production varied between 0.14–1.28 depending on what was included or excluded in the analysis and for milk production between 0.15–1.85. Ratios of 1.28 in pork production and 1.85 in milk production are unrealistic as they do not give any shelter to the animals, although they can be approached in very low-input production systems. If the ratio is calculated with feed energy content then the ratio is low, 0.14–0.22 for pork and 0.15 for milk. This shows that animals can convert 14–22 percent of the input energy to usable products. In pork production, the largest portion of the energy input was the ventilation of the building. In milk production milking and cooling consumes a lot of energy and for this reason the electricity consumption is high.;

  1. Primary production in the Sulu Sea

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    its remotely sensed values from OCTS (Ocean Colour Temperature Scanner) are found to be in ... Although the Sulu Sea is more productive than the adjacent South China Sea, the central area ... surrounding ocean by a chain of islands.

  2. Energy production from renewable energy sources

    International Nuclear Information System (INIS)

    2001-04-01

    This table summarizes the electricity and heat produced in France and in overseas departments from renewable energy sources for 1998 (revised), 1999 (temporary) and 2000 (estimated): hydraulic, wind, solar photovoltaic and thermal, geothermal, solid municipal wastes, wood and wood wastes, biogas, ethanol and ester bio-fuels. (J.S.)

  3. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  4. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  5. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  6. Primary Energy of the District city and Suburb

    Science.gov (United States)

    Pitonak, Anton; Lopusniak, Martin; Bagona, Miloslav

    2017-10-01

    In member states of the European Union, portion of buildings in the total consumption of energy represents 40 %, and their share in CO2 emissions represents 35 %. Taking into account the dependence of the European Union on import of energy, this represents a large quantity of energy and CO2 in spite of the fact that effective solutions for the reduction of energy demand of buildings exist. The European Union adopted three main commitments for fulfilment of criteria by year 2020 in the 20-20-20 Directive. Based on this Directive Slovakia declares support for renovating the building stock. The goal of the paper was to prove that renovation of the building stock is environmentally and energy preferably as construction of new buildings. In the paper, the settlement unit with the suburban one were compared. Both territories are dealt with in Kosice city, in Slovakia. The settlement units include apartment dwelling houses, amenities, parking areas and green. Suburban part contains family houses. The decisive factor for the final assessment of the buildings was global indicator. Global indicator of the energy performance is primary energy. The new building must meet minimum requirements for energy performance and it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses the effects of the use of different resources of heat considering the global indicator. Primary energy was calculated and based on comparable unit. The primary energy was accounted for on the built-up area, area corresponding to district city and suburb, number of inhabitants. The study shows that the lowest values of global indicator are achieved by using wood. The highest values of global indicator are achieved by using electricity or district heating as an energy source. The difference between the highest and lowest value is 87 %. Primary energy based on inhabitant is 98 % lower in settlement unit compared to the suburban one.

  7. Modelling size-fractionated primary production in the Atlantic Ocean from remote sensing

    Science.gov (United States)

    Brewin, Robert J. W.; Tilstone, Gavin H.; Jackson, Thomas; Cain, Terry; Miller, Peter I.; Lange, Priscila K.; Misra, Ankita; Airs, Ruth L.

    2017-11-01

    Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify biological carbon cycling in the Atlantic Ocean and measurements of total primary production have been routinely made on AMT cruises, as well as additional measurements of size-fractionated primary production on some cruises. Measurements of total primary production collected on the AMT have been used to evaluate remote-sensing techniques capable of producing basin-scale estimates of primary production. Though models exist to estimate size-fractionated primary production from satellite data, these have not been well validated in the Atlantic Ocean, and have been parameterised using measurements of phytoplankton pigments rather than direct measurements of phytoplankton size structure. Here, we re-tune a remote-sensing primary production model to estimate production in three size fractions of phytoplankton (10 μm) in the Atlantic Ocean, using measurements of size-fractionated chlorophyll and size-fractionated photosynthesis-irradiance experiments conducted on AMT 22 and 23 using sequential filtration-based methods. The performance of the remote-sensing technique was evaluated using: (i) independent estimates of size-fractionated primary production collected on a number of AMT cruises using 14C on-deck incubation experiments and (ii) Monte Carlo simulations. Considering uncertainty in the satellite inputs and model parameters, we estimate an average model error of between 0.27 and 0.63 for log10-transformed size-fractionated production, with lower errors for the small size class (10 μm), and errors generally higher in oligotrophic waters. Application to satellite data in 2007 suggests the contribution of cells 2 μm to total

  8. Utilization of solar and nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Fischer, M.

    1987-01-01

    Although the world-wide energy supply situation appears to have eased at present, non-fossil primary energy sources and hydrogen as a secondary energy carrier will have to take over a long-term and increasing portion of the energy supply system. The only non-fossil energy sources which are available in relevant quantities, are nuclear energy, solar energy and hydropower. The potential of H 2 for the extensive utilization of solar energy is of particular importance. Status, progress and development potential of the electrolytic H 2 production with photovoltaic generators, solar-thermal power plants and nuclear power plants are studied and discussed. The joint German-Saudi Arabian Research, Development and Demonstration Program HYSOLAR for the solar hydrogen production and utilization is summarized. (orig.)

  9. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  10. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  11. Energy balance of the lavender oil production

    Directory of Open Access Journals (Sweden)

    Osman GÖKDOĞAN

    2016-06-01

    Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.

  12. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  13. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    Science.gov (United States)

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Work Environment and Productivity among Primary School Teachers ...

    African Journals Online (AJOL)

    User

    International Multidisciplinary Journal, Ethiopia. Vol. 5 (5), Serial No. ... work environment of Nigeria primary school teachers to greater productivity ... changes on the structure and curriculum, recommend and prescribed teaching methods and ...

  15. UV radiation and primary production in the Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Krishnakumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    at 683 nm), scalar irradiance (photosynthetically active radiation (PAR), computed primary production (pp), diffuse attenuation coefficient, and UVB (308 and 320 nm) and UVA (340 and 380 nm) radiation and ocean temperature all measured as a function...

  16. Transverse energy production at RHIC

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2006-01-01

    The quest for understanding of the possible formation and existence of the quark-gluon plasma (Qp), the deconfined phase of quarks and gluons, has been a major area of research in high energy nuclear physics. High energy nuclear collisions at the Relativistic Heavy Ion Collider (RHIC) has opened a new domain for the exploration of strongly interacting matter at very high energy density and temperature

  17. Primary energy balance of biodiesel production from palm oil for the conditions of Brazil and Colombia; Balanco energetico preliminar da producao do biodiesel de oleo de palma para as condicoes do Brasil e da Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Roselis Ester da; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI/MG), MG (Brazil)], Emails: roseliscosta@yahoo.com.br, electo@unifei.edu.br; Yanez, Edgar [Centro de Investigacion en Palma de Aceite (CENIPALMA), Bogota (Colombia)], Email: edgar.yanez@cenipalma.org; Torres, Ednildo Andrade [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)], Email: ednildo@ufba.br

    2006-07-01

    The increasing related ambient concerns to the emissions of atmospheric pollutants for fuels, alternative sources of energy are having bigger attention, mainly those that contribute in the mitigation of these emissions. Being thus, the use of the biodiesel produced by the etherification of vegetal oils with methanol and ethanol, are seen as present interesting alternative. The energy analysis of the relation of the energy invested in the production of bio diesel can contribute as tool for a posterior formularization of pointers of the technician-economic and ambient viability in the comparison between the different oleaginous, as form to diagnosis one better type of culture for the production of biodiesel. The objectives of this work is to carry the energy analysis in the production of the palm oil biodiesel, for the conditions of Brazil and Colombia, as well as showing the differences between the results found for the two cases. The presented results are shown through comparative graphs for the two cases and with the final energy balance for each company. (author)

  18. Promoting greater Federal energy productivity [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  19. Energy production and reactor efficiency

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Doubts have been raised in relation to the economic and energetic efficiency of nuclear reactors. Some economists are questioning whether, when all the capital and material inputs to fission technology are considered, nuclear reactors yield sufficiently large amounts of energy to show a nett gain of energy. (author)

  20. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  1. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  2. Production and Utilization of Core-Textbooks in Primary School ...

    African Journals Online (AJOL)

    Production and Utilization of Core-Textbooks in Primary School System: Impact of Authors and Publishers. ... These stakeholders have specific roles to play and cannot operate in isolation. The study, therefore investigated the influence of authorship and publishers on core textbook production and utilisation in Oyo State ...

  3. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  4. Physical control of primary productivity on a seasonal scale in ...

    Indian Academy of Sciences (India)

    Keywords. Primary production; upwelling; winter cooling; Ekman-pumping, nutrient transport; Arabian Sea ... on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter.

  5. Primary productivity in nearshore waters of Thal, Maharashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varshney, P.K.; Nair, V.R.; Abidi, S.A.H.

    Primary productivity off Thal, Maharashtra, India was evaluated at 3 stations during Feb. 1980 to Jan. 1981. The area was quite turbid and the euphotic zone never exceeded 2.5 m. Column production ranged from 0.69 to 605.21 mg C.m/2.d/2 (av. 78.2 mg...

  6. GHG emissions from primary aluminum production in China: Regional disparity and policy implications

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Hang, Wen

    2016-01-01

    Highlights: • GHG emissions from primary aluminum production in China were accounted. • The impact of regional disparity of power generation was considered for this study. • GHG emissions factor of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013. • Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013. - Abstract: China is the world-leading primary aluminum production country, which contributed to over half of global production in 2014. Primary aluminum production is power-intensive, for which power generation has substantial impact on overall Greenhouse Gas (GHG) emissions. In this study, we explore the impact of regional disparity of China’s power generation system on GHG emissions for the sector of primary aluminum production. Our analysis reveals that the national GHG emissions factor (GEF) of China’s primary aluminum production was 16.5 t CO_2e/t Al ingot in 2013, with province-level GEFs ranging from 8.2 to 21.7 t CO_2e/t Al ingot. There is a high coincidence of provinces with high aluminum productions and high GEFs. Total GHG emissions from China’s primary aluminum production were 421 mt CO_2e in 2013, approximately accounting for 4% of China’s total GHG emissions. Under the 2020 scenario, GEF shows a 13.2% reduction compared to the 2013 level, but total GHG emissions will increase to 551 mt CO_2e. Based on our analysis, we recommend that the government should further promote energy efficiency improvement, facilitate aluminum industry redistribution with low-carbon consideration, promote secondary aluminum production, and improve aluminum industry data reporting and disclosure.

  7. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  8. Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator

    International Nuclear Information System (INIS)

    Wang, Ke; Wei, Yi-Ming

    2016-01-01

    Given that different energy inputs play different roles in production and that energy policy decision making requires an evaluation of productivity change in individual energy input to provide insight into the scope for improvement of the utilization of specific energy input, this study develops, based on the Luenberger productivity indicator and data envelopment analysis models, an aggregated specific energy productivity indicator combining the individual energy input productivity indicators that account for the contributions of each specific energy input toward energy productivity change. In addition, these indicators can be further decomposed into four factors: pure efficiency change, scale efficiency change, pure technology change, and scale of technology change. These decompositions enable a determination of which specific energy input is the driving force of energy productivity change and which of the four factors is the primary contributor of energy productivity change. An empirical analysis of China's energy productivity change over the period 1997–2012 indicates that (i) China's energy productivity growth may be overestimated if energy consumption structure is omitted; (ii) in regard to the contribution of specific energy input toward energy productivity growth, oil and electricity show positive contributions, but coal and natural gas show negative contributions; (iii) energy-specific productivity changes are mainly caused by technical changes rather than efficiency changes; and (iv) the Porter Hypothesis is partially supported in China that carbon emissions control regulations may lead to energy productivity growth. - Highlights: • An energy input specific Luenberger productivity indicator is proposed. • It enables to examine the contribution of specific energy input productivity change. • It can be decomposed for identifying pure and scale efficiency changes, as well as pure and scale technical changes. • China's energy productivity growth may

  9. Dynamic Modelling with "MLE-Energy Dynamic" for Primary School

    Science.gov (United States)

    Giliberti, Enrico; Corni, Federico

    During the recent years simulation and modelling are growing instances in science education. In primary school, however, the main use of software is the simulation, due to the lack of modelling software tools specially designed to fit/accomplish the needs of primary education. In particular primary school teachers need to use simulation in a framework that is both consistent and simple enough to be understandable by children [2]. One of the possible area to approach modelling is about the construction of the concept of energy, in particular for what concerns the relations among substance, potential, power [3]. Following the previous initial research results with this approach [2], and with the static version of the software MLE Energy [1], we suggest the design and the experimentation of a dynamic modelling software—MLE dynamic-capable to represent dynamically the relations occurring when two substance-like quantities exchange energy, modifying their potential. By means of this software the user can graphically choose the dependent and independent variables and leave the other parameters fixed. The software has been initially evaluated, during a course of science education with a group of primary school teachers-to-be, to test the ability of the software to improve teachers' way of thinking in terms of substance-like quantities and their effects (graphical representation of the extensive, intensive variables and their mutual relations); moreover, the software has been tested with a group of primary school teachers, asking their opinion about the software didactical relevance in the class work.

  10. Between research and energy production

    International Nuclear Information System (INIS)

    Kirbus, F.B.

    1977-01-01

    When on March 20th, 1974, the nuclear power plant in Atucha, 100 km to the north-west of Argentine's capital Buenos Aires, built by Siemens, was taken into operation, it seemed as if South America had resolutely stepped into the atomic age. In the meantime, Brazil makes preparations for fortified construction of nuclear power plants and its own nuclear industry, and Mexico is accelerating its investigations in order to replace its dwindlung hydroelectric reserves as soon as possible with nuclear energy. The effect of the oil crisis was that Latin American countries, too, take a different look at the peaceful uses of atomic energy. (orig.) [de

  11. Energy production and human health

    International Nuclear Information System (INIS)

    Benson, J.R.; Brown, C.D.; Dixon-Davis, D.K.; Grahn, D.; Ludy, R.T.

    1977-01-01

    Progress is reported on the following research projects: development and evaluation of socioeconomic and demographic factors; and quantitative aspects of the impacts of energy-related effluents on human health. Environmental effects of electric power generation by gas, oil, coal, nuclear energy, and water were studied at 15 sites. A system of general demographic models was developed for projecting number of deaths and population size by sex, age, and cause of death through time for any defined initial population and set of vital rates

  12. Energy efficiency and cleaner production

    International Nuclear Information System (INIS)

    Konstantinoff, M.; Grozeva, Iv.

    1999-01-01

    Energy is the fundamental driver of the economic growth in the todays society. It is an absolute prerequisite for the industrial development in the developed countries as well as for improving the quality of life and reducing the poverty in the developing world. It is expected that the energy demand in the developing countries will increase rapidly in the next decades, and will even exceed the level of consumption in the rich countries due to rising population and incomes. The burning of fossil fuel, however, inevitably leads to negative environmental impact, which no longer can be neglected

  13. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  14. Biochemical and photosynthetic aspects of energy production

    Energy Technology Data Exchange (ETDEWEB)

    San Pietro, A [ed.

    1980-01-01

    Photosynthesis is the only method of solar energy conversion presently practiced on a large scale, supplying all food energy as well as fiber and wood. This book is an attempt to describe and evaluate biological processes that may serve in the future to provide alternative energy resources. Areas covered include marine biomass production, algal-bacterial systems, agricultural residues, energy farming and biological nitrogen fixation with an emphasis on the legumes.

  15. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) by Country and Product portion of the HANPP Collection contains tabular data on carbon-equivalents of...

  16. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  17. Toxicological aspects of energy production

    International Nuclear Information System (INIS)

    Sanders, C.L.

    1986-01-01

    Part I reviews the principles of toxicology, describes the biological fate of chemicals in the body, discusses basic pathobiology, and reviews short-term toxicity tests. Part II describes the toxicology and pathology of pollutants in several important organ systems. The greatest emphasis is placed on the respiratory tract because of its high probability as a route of exposure to pollutants from energy technologies and its high sensitivity to pollutant related tissue damage. Part III describes the toxicological aspects of specific chemical classes associated with fossil fuels; these include polycyclic hydrocarbons, gases and metals. Part IV describes the biomedical effects associated with each energy technology, including coal and oil, fossil fuel and biomass conversions, solar and geothermal and radiological health aspects associated with uranium mining, nuclear fission and fusion, and with nonionising radiations and electromagnetic fields

  18. The 2010 spring drought reduced primary productivity in southwestern China

    International Nuclear Information System (INIS)

    Zhang Li; Li Jing; Xiao Jingfeng; Wang Kun; Lei Liping; Guo Huadong

    2012-01-01

    Many parts of the world experience frequent and severe droughts. Summer drought can significantly reduce primary productivity and carbon sequestration capacity. The impacts of spring droughts, however, have received much less attention. A severe and sustained spring drought occurred in southwestern China in 2010. Here we examine the influence of this spring drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation greenness and productivity. We first assess the spatial extent, duration and severity of the drought using precipitation data and the Palmer drought severity index. We then examine the impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010. Our results show that the spring drought substantially reduced the enhanced vegetation index (EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and GPP also substantially declined in the summer and did not fully recover from the drought stress until August. The drought reduced regional annual GPP and net primary productivity (NPP) in 2010 by 65 and 46 Tg C yr −1 , respectively. Both annual GPP and NPP in 2010 were the lowest over the period 2000–2010. The negative effects of the drought on annual primary productivity were partly offset by the remarkably high productivity in August and September caused by the exceptionally wet conditions in late summer and early fall and the farming practices adopted to mitigate drought effects. Our results show that, like summer droughts, spring droughts can also have significant impacts on vegetation productivity and terrestrial carbon cycling. (letter)

  19. Benthic primary production and mineralization in a High Arctic Fjord

    DEFF Research Database (Denmark)

    Attard, Karl M.; Hancke, Kasper; Sejr, Mikael K.

    2016-01-01

    Coastal and shelf systems likely exert major influence on Arctic Ocean functioning, yet key ecosystem processes remain poorly quantified. We employed the aquatic eddy covariance (AEC) oxygen (O2) flux method to estimate benthic primary production and mineralization in a High Arctic Greenland fjord....... Seabed gross primary production (GPP) within the 40 m deep photic zone was highest at 10 m (29 mmol O2 m−2 d−1) and decreased to 5 mmol O2 m−2 d−1 at 40 m, while nighttime community respiration (CR) ranged from 11 to 25 mmol O2m−2 d−1. CR decreased to ~2.5 mmol O2m−2 d−1 at 80 m and remained constant...... with further depth. Fauna activity accounted for ~50% of the CR at depths ≤60 m but was primary production...

  20. Life Cycle Primary Energy and Carbon Analysis of Recovering Softwood Framing Lumber and Hardwood Flooring for Reuse

    Science.gov (United States)

    Richard D. Bergman; Hongmei Gu; Thomas R. Napier; James Salazar; Robert H. Falk

    2012-01-01

    Recovering wood for reuse in a new house affects energy and greenhouse gas emissions. This paper finds the energy and emissions for recovering softwood framing lumber and hardwood flooring from an old house for installation in a new house. Recovering wood displaces primary production of new wood products and avoids the end-of-life (EOL) burdens for the old house. We...

  1. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  2. Automatic control algorithm effects on energy production

    Science.gov (United States)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  3. Clinical productivity of primary care nurse practitioners in ambulatory settings.

    Science.gov (United States)

    Xue, Ying; Tuttle, Jane

    Nurse practitioners are increasingly being integrated into primary care delivery to help meet the growing demand for primary care. It is therefore important to understand nurse practitioners' productivity in primary care practice. We examined nurse practitioners' clinical productivity in regard to number of patients seen per week, whether they had a patient panel, and patient panel size. We further investigated practice characteristics associated with their clinical productivity. We conducted cross-sectional analysis of the 2012 National Sample Survey of Nurse Practitioners. The sample included full-time primary care nurse practitioners in ambulatory settings. Multivariable survey regression analyses were performed to examine the relationship between practice characteristics and nurse practitioners' clinical productivity. Primary care nurse practitioners in ambulatory settings saw an average of 80 patients per week (95% confidence interval [CI]: 79-82), and 64% of them had their own patient panel. The average patient panel size was 567 (95% CI: 522-612). Nurse practitioners who had their own patient panel spent a similar percent of time on patient care and documentation as those who did not. However, those with a patient panel were more likely to provide a range of clinical services to most patients. Nurse practitioners' clinical productivity was associated with several modifiable practice characteristics such as practice autonomy and billing and payment policies. The estimated number of patients seen in a typical week by nurse practitioners is comparable to that by primary care physicians reported in the literature. However, they had a significantly smaller patient panel. Nurse practitioners' clinical productivity can be further improved. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J.L.

    2007-01-01

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  5. Particle production at AGS energies

    International Nuclear Information System (INIS)

    Steadman, S.G.; Rothschild, P.J.; Sung, T.W.; Zachary, D.

    1995-01-01

    The authors discuss particle production from 14.6 A·GeV/c Si and 11.6 A·GeV/c Au projectiles on Al and Au targets. The second-level trigger utilized by E859 allows high precision measurements of K - , bar p, Λ and bar Λ. The bar Λ yield is larger than expected, and a surprisingly large fraction of the bar p's are observed to arise from the decay of bar Λ

  6. Productivity benefits of industrial energy efficiency measures

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  7. Sectoral Energy, and Labour, Productivity Convergence

    International Nuclear Information System (INIS)

    Mulder, P.; De Groot, H.L.F.

    2007-01-01

    This paper empirically investigates the development of cross-country differences in energy- and labour productivity. The analysis is performed at a detailed sectoral level for 14 OECD countries, covering the period 1970-1997. A ρ-convergence analysis reveals that the development over time of the cross-country variation in productivity performance differs across sectors as well as across different levels of aggregation. Both patterns of convergence as well as divergence are found. Cross-country variation of productivity levels is typically larger for energy than for labour. A β-convergence analysis provides support for the hypothesis that in most sectors lagging countries tend to catch up with technological leaders, in particular in terms of energy productivity. Moreover, the results show that convergence is conditional, meaning that productivity levels converge to country-specific steady states. Energy prices and wages are shown to positively affect energy- and labour-productivity growth, respectively. We also find evidence for the importance of economies of scale, whereas the investment share, openness and specialization play only a modest role in explaining cross-country variation in energy- and labour-productivity growth

  8. Visions on energy production technologies for Finland up to 2030

    International Nuclear Information System (INIS)

    Kara, Mikko

    2003-01-01

    The energy sector will face major challenges in the coming decades. Global demand for primary energy is continuously increasing, as are its related environmental effects. On the other hand, the limited resources of especially oil and gas will lead to increasing price instability. Deregulation of energy markets is a challenge for the infrastructure. This deregulation is leading to restructuring of the energy market. States and owners of energy companies and energy policy decision-makers will find it difficult to play this double role. At European level and in Finland the biggest challenge is the attainment of the Kyoto target and then further reduction of greenhouse gas emissions. Renewables, nuclear power and growing imports of natural gas from Russia will play a crucial role in Finland. This presentation focuses on the development of the energy production technologies that are most important for Finland's energy supply and energy technology exports. In order to analyse the possible role of various emerging and evolving technologies in the future energy system of Finland, three scenarios has been created for a comprehensive energy system model. The model is based on a bottom-up, technology oriented representation of the energy system, including both the supply and end-use sector. Mathematically, the model is a quasi-dynamic linear optimisation model that stimulates the behaviour of energy-economic decision-making by minimising the total present value of all costs and other expenditures in the energy system during the entire time horizon under consideration. (BA)

  9. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... polymerization method for industrial production of polymers. Several DArP protocols have been employed for the synthesis of PPDTBT leading to polymers with high structural regularity and photovoltaic performances comparable with the same materials synthesized via Stille cross-coupling polymerization...

  10. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  11. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  12. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  13. Inclusive production at LHC energies

    International Nuclear Information System (INIS)

    Merino, C.; Pajares, C.; Shabelski, Yu.M.

    2011-01-01

    We consider the first LHC data for pp collisions in the framework of Regge theory. The integral cross sections and inclusive densities of secondaries are determined by the Pomeron exchange, and we present the corresponding predictions for them. The first measurements of inclusive densities in the midrapidity region are in agreement with these predictions. The contribution of the baryon-number transfer due to String Junction diffusion in the rapidity space is at the origin of the differences in the inclusive spectra of particle and antiparticle in the central region, and this effect could be significant at LHC energies. We discuss the first data of ALICE and LHCb collaborations on the baryon/antibaryon asymmetry at LHC. (orig.)

  14. Anthropogenic climate change has altered primary productivity in Lake Superior.

    Science.gov (United States)

    O'Beirne, M D; Werne, J P; Hecky, R E; Johnson, T C; Katsev, S; Reavie, E D

    2017-06-09

    Anthropogenic climate change has the potential to alter many facets of Earth's freshwater resources, especially lacustrine ecosystems. The effects of anthropogenic changes in Lake Superior, which is Earth's largest freshwater lake by area, are not well documented (spatially or temporally) and predicted future states in response to climate change vary. Here we show that Lake Superior experienced a slow, steady increase in production throughout the Holocene using (paleo)productivity proxies in lacustrine sediments to reconstruct past changes in primary production. Furthermore, data from the last century indicate a rapid increase in primary production, which we attribute to increasing surface water temperatures and longer seasonal stratification related to longer ice-free periods in Lake Superior due to anthropogenic climate warming. These observations demonstrate that anthropogenic effects have become a prominent influence on one of Earth's largest, most pristine lacustrine ecosystems.

  15. Seasonality of primary and secondary production in an Arctic river

    Science.gov (United States)

    Kendrick, M.; Huryn, A.; Deegan, L.

    2011-12-01

    Rivers and streams that freeze solid for 8-9 months each year provide excellent examples of the extreme seasonality of arctic habitats. The communities of organisms inhabiting these rivers must complete growth and development during summer, resulting in a rapid ramp-up and down of production over the short ice-free period. The effects of recent shifts in the timing of the spring thaw and autumn freeze-up on the duration and pattern of the period of active production are poorly understood. We are currently investigating: 1) the response of the biotic community of the Kuparuk River (Arctic Alaska) to shifts in the seasonality of the ice-free period, and 2) the community response to increases in phosphorous (P) supply anticipated as the volume of the permafrost active-layer increases in response to climate warming. Here algal production supports a 2-tier web of consumers. We tracked primary and secondary production from the spring thaw through mid-August in a reference reach and one receiving low-level P fertilization. Gross primary production/community respiration (GPP/R) ratios for both reaches were increasing through mid-July, with higher GPP/R in response to the P addition. Understanding the degree of synchrony between primary and secondary production in this Arctic river system will enhance further understanding of how shifts in seasonality affect trophic dynamics.

  16. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  17. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  18. ENERGY USE IN CITRUS PRODUCTION OF MAZANDARAN ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The aim of this study was to evaluate energy use in citrus production in the Mazandaran Province in Iran. Data used in this study were obtained from 155 farmers using a face-to-face interview method. The total energy .... control mainly were mechanised and a few of them ... fertilisers was manual; while manure application.

  19. All energy production involves danger

    International Nuclear Information System (INIS)

    Pleym, H.

    1976-01-01

    s pointed out that while the protective ozone layer in the upper atmosphere is threatened by supersonic air traffic and releases of freon, there is an increase in the concentration of ozone in the biosphere. The biological effect of ozone in forming free radicals is similar to the biological effect of ionising rad radiation, and the normal atmospheric concentration of ozone produces 3600 times the number of free radicals per person per year as does a background radiation of 100 mrem per year. It is also pointed out that the limits for sulphur oxides and nitrogen oxides in the atmosphere are 100 and 5 times the background levels respectively, while the limit for radioactive release is 1/100 th of the background level. The transmission of solar energy from space stations by microwave is also thought to be dubious due to possible biological effects of such radiation. In conclusion a balanced view on the biological and environmental hazards of power generation from all sources, and not only nuclear, is called for. (JIW)

  20. Warming Increases the Proportion of Primary Production Emitted as Methane from Freshwater Mesocosms

    OpenAIRE

    2010-01-01

    Abstract Methane and carbon dioxide are the dominant gaseous end products of the remineralisation of organic carbon and also the two largest contributors to the anthropogenic greenhouse effect. We investigated whether warming altered the balance of methane efflux relative to primary production and ecosystem respiration in a freshwater mesocosm experiment. Whole ecosystem CH4 efflux was strongly related to temperature with an apparent activation energy of 0.85eV. Furthermore, CH4 ef...

  1. Decadal Changes in Global Ocean Annual Primary Production

    Science.gov (United States)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  2. Using Sankey diagrams to map energy flow from primary fuel to end use

    International Nuclear Information System (INIS)

    Subramanyam, Veena; Paramshivan, Deepak; Kumar, Amit; Mondal, Md. Alam Hossain

    2015-01-01

    Highlights: • Energy flows from both supply and demand sides shown through Sankey diagrams. • Energy flows from reserves to energy end uses for primary and secondary fuels shown. • Five main energy demand sectors in Alberta are analyzed. • In residential/commercial sectors, highest energy consumption is in space heating. • In the industrial sector, highest energy use is in the mining subsector. - Abstract: The energy sector is the largest contributor to gross domestic product (GDP), income, employment, and government revenue in both developing and developed nations. But the energy sector has a significant environmental footprint due to greenhouse gas (GHG) emissions. Efficient production, conversion, and use of energy resources are key factors for reducing the environmental footprint. Hence it is necessary to understand energy flows from both the supply and the demand sides. Most energy analyses focus on improving energy efficiency broadly without considering the aggregate energy flow. We developed Sankey diagrams that map energy flow for both the demand and supply sides for the province of Alberta, Canada. The diagrams will help policy/decision makers, researchers, and others to understand energy flow from reserves through to final energy end uses for primary and secondary fuels in the five main energy demand sectors in Alberta: residential, commercial, industrial, agricultural, and transportation. The Sankey diagrams created for this study show total energy consumption, useful energy, and energy intensities of various end-use devices. The Long-range Energy Alternatives Planning System (LEAP) model is used in this study. The model showed that Alberta’s total input energy in the five demand sectors was 189 PJ, 186 PJ, 828.5PJ, 398 PJ, and 50.83 PJ, respectively. On the supply side, the total energy input and output were found to be 644.84 PJ and 239 PJ, respectively. These results, along with the associated energy flows were depicted pictorially using

  3. Nitrogenous nutrients and primary production in a tropical oceanic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; Devassy, V.P.

    Measurements of the concentrations of nitrogenous nutrients and primary production were made at 10 stations along 8 degrees N and 10 degrees N in the tropical oceanic Lakshadweep waters Inorganic nitrogen (NO3, NO2 and NH4) accounted for less than...

  4. Anoxic and oxic phototrophic primary production during the Precambrian

    DEFF Research Database (Denmark)

    Ebey-Honeycutt, Christina Marie; Bjerrum, Christian J.; Canfield, Donald Eugene

    2009-01-01

    of the mixed layer often lies above the base of the photic zone . Thus, an ecosystem model for the Precambrian should reflect the net primary production (NPP) of oxygenic phototrophs in the mixed layer and anoxygenic phototrophs below (NPPox and NPPred, respectively). Satelite data and a vertically generalized...

  5. Carbon Capture Methods and Relative Competitiveness of Primary Energies

    International Nuclear Information System (INIS)

    Amigues, Jean-Pierre; Lafforgue, Gilles; Moreaux, Michel

    2016-01-01

    We characterise the optimal exploitation paths of two primary energies (coal and solar) that supply the energy needs of two sectors. Sector 1 can reduce its carbon emissions at a reasonable cost thanks to a CCS device. Sector 2 has access only to air capture technology, but at a significantly higher cost. We assume that the atmospheric carbon stock cannot exceed a given ceiling. We show that the optimal approach consists in, first, fully capturing sector-1 emissions before the ceiling is reached and, second, deploying air capture to partially abate sector-2 emissions. The optimal carbon tax should increase in the pre-ceiling phase then decline in stages to zero

  6. Calendar Year 2007 Program Benefits for ENERGY STAR Labeled Products

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla Christine; Homan, Gregory; Brown, Richard

    2008-10-31

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2007, the program saved 7.1 Quads of primary energy and avoided 128 MtC equivalent. The forecast shows that the program is expected to save 21.2 Quads of primary energy and avoid 375 MtC equivalent over the period 2008-2015. The sensitivity analysis bounds the best estimate of carbon avoided between 84 MtC and 172 MtC (1993 to 2007) and between 243 MtC and 519 MtC (2008 to 2015).

  7. Waste incineration with production of clean and reliable energy

    Energy Technology Data Exchange (ETDEWEB)

    Pavlas, Martin; Tous, Michal; Klimek, Petr; Bebar, Ladislav [Brno University of Technology, Department of Process and Environmental Engineering (UPEI VUT Brno), Brno (Czech Republic)

    2011-08-15

    Discussion about utilization of waste for energy production (waste-to-energy, WTE) has moved on to next development phase. Waste fired power plants are discussed and investigated. These facilities focus on electricity production whereas heat supply is diminished and operations are not limited by insufficient heat demand. Present results of simulation prove that increase of net electrical efficiency above 20% for units processing 100 kt/year (the most common ones) is problematic and tightly bound with increased investments. Very low useful heat production in Rankine-cycle based cogeneration system with standard steam parameters leads to ineffective utilization of energy. This is documented in this article with the help of newly developed methodology based on primary energy savings evaluation. This approach is confronted with common method for energy recovery efficiency evaluation required by EU legislation (Energy Efficiency - R1 Criteria). New term highly-efficient WTE is proposed and condition under which is the incinerator classified as highly efficient are specified and analyzed. Once sole electricity production is compelled by limited local heat demand, application of non-conventional arrangements is highly beneficial to secure effective energy utilization. In the paper a system where municipal solid waste incinerator is integrated with combined gas-steam cycle is evaluated in the same manner. (orig.)

  8. Reducing the uncertainty of the primary damage production in Fe

    International Nuclear Information System (INIS)

    Bjorkas, C.; Nordlund, K.

    2007-01-01

    Full text of publication follows: One of the key questions for understanding neutron irradiation damage buildup in fission and fusion reactor steels is knowing the primary damage state produced by neutron-induced atomic recoils in Fe. Supporting this is our recent study revealing that the initial damage in Fe 0.9 Cr 0.1 is essentially the same as in pure Fe [1]. In spite of decades of study, the question of what the amount and distribution of defects in Fe is, has remained highly unclear. Different computer simulations modules have given a good qualitative understanding of the cascade development [1,2]. However, quantitative differences of more than a factor of three have remained in the predicted clustered defect production numbers [2]. The disagreements between the potentials pose problems for finding a reliable predictive model for the behavior of Fe under irradiation. In this study we analyze the initial damage as predicted by three recent interatomic potentials for Fe. These are well suited for a comparison because they have very different physical motivations and functional forms, but are comparable in overall quality and in particular reproduce the energetics of interstitials in different configurations well. The potentials are those by Ackland and Mendelev et al. (AMS) [3], the 'magnetic' potential by Dudarev and Derlet (DD) [4] and the Tersoff-like analytical potential by Mueller, Erhart and Albe (MEA) [5]. The DD and MEA potentials were modified by us to describe high-energy repulsive interactions well. All potentials were then used in recoil collision cascade simulations carried out and analyzed in exactly the same manner for all potentials. Analysis of the resulting damage showed a much smaller uncertainty regarding the damage production than that of previous potentials. The total defect production numbers essentially agree within the statistical uncertainty for the three potentials. Some differences remains regarding the defect clustered fractions, but

  9. Self-energy production applied to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Carlo, Fabricio Ramos del; Balestieri, Jose Antonio Perrella [Sao Paulo State University Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)], E-mail: perrella@feg.unesp.br; Holanda, Marcelo Rodrigues de [Sao Paulo Univ. (EEL/USP), Lorena, SP (Brazil). Engineering School], E-mail: marcelo@debas.eel.usp.br

    2010-07-01

    The decentralization of energy production in order to obtain better environmental conditions, reducing greenhouse gas emissions and the cost reduction of electricity and thermal energy consumed in residential buildings has been proposed in the literature. This paper proposes to demonstrate what are the chances of having a microcogeneration system toward the residential application. In this study, we contemplate the technologies involved and their possible inputs that are arranged in a superstructure to be studied. As a first step we obtain the cost of the products generated by the configuration that consists basically of two sources of power generation, and through optimization calculations intended to obtain the best configuration, taking into consideration the selection between four fuels, two equipment generators (Fuel Cell and Internal Combustion Engine)and three levels of energy production for each one. An economic analysis is also presented to evaluate the opportunity of selling the energy generated considering the fluctuations of the residential building consumption needs. (author)

  10. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  11. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  12. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.

    Science.gov (United States)

    Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2013-01-01

    The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.

  13. Environmental consequences of energy production: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  14. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  15. The Utilization of Solar Energy by Way of Hydrogen Production

    International Nuclear Information System (INIS)

    Broda, E.

    1977-01-01

    It is suggested to produce hydrogen gas by photolytic splitting of water, and to feed it into a hydrogen economy. One approach to obtain good yields in photolysis consist in the application of asymmetric membranes that release the different, reactive, primary products of the photochemical reaction on opposite sides of the membranes so that a back reaction is prevented. Through this solar-chemical option a very large part of the energy needs of mankind could be covered in the long run. (author)

  16. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.

    Science.gov (United States)

    Chowdhury, Raja; Viamajala, Sridhar; Gerlach, Robin

    2012-03-01

    The life cycle impacts were assessed for an integrated microalgal biodiesel production system that facilitates energy- and nutrient- recovery through anaerobic digestion, and utilizes glycerol generated within the facility for additional heterotrophic biodiesel production. Results show that when external fossil energy inputs are lowered through process integration, the energy demand, global warming potential (GWP), and process water demand decrease significantly and become less sensitive to algal lipid content. When substitution allocation is used to assign additional credit for avoidance of fossil energy use (through utilization of recycled nutrients and biogas), GWP and water demand can, in fact, increase with increase in lipid content. Relative to stand-alone algal biofuel facilities, energy demand can be lowered by 3-14 GJ per ton of biodiesel through process integration. GWP of biodiesel from the integrated system can be lowered by up to 71% compared to petroleum fuel. Evaporative water loss was the primary water demand driver. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Modeling primary energy substitution in the Asia Pacific

    International Nuclear Information System (INIS)

    Aguilera, Roberto F.; Ripple, Ronald D.

    2013-01-01

    Highlights: • We model the market shares (i.e. energy mix) of gases, liquids and solids in the Asia Pacific. • The model matches the historical energy mix and projects three scenarios of the future mix to 2030. • We then model the past and future hydrogen to carbon ratio (a proxy for environmental quality). • Importance of natural gas in the region could increase significantly, depending on policy and tech progress. - Abstract: A Global Energy Market model (GEM) is used to analyze the market shares (i.e. the primary energy mix) of gases, liquids and solids in the Asia Pacific. The model is successful in matching the historical energy mix from 1850 to 2009. The model also provides a good match of the hydrogen to carbon ratio, which is a proxy for environmental quality. Given these validations, the GEM is then used to present scenarios of the Asia Pacific energy mix and hydrogen to carbon ratio until the year 2030. Three energy mix scenarios are presented – reference case; alternative case 1; alternative case 2. The reference case assumes limited divergence from current policies and technologies. It indicates that Asia Pacific energy needs will be met by approximately 46% solids, 34% liquids, and 20% gases by 2030. Alternative cases 1 and 2 represent policies and technologies that either encourage or discourage the use of gases. The good matches observed for historical data suggest the GEM can be used cautiously for evaluating outcomes and opportunities in the region. Although the model can be used for projecting far into the future, it is currently calibrated to what we consider a reasonable time horizon – until the year 2030. Given appropriate energy policies and sufficient technological advancement, the importance of natural gas in the region could increase significantly

  18. Fission product behaviour in the primary circuit of an HTR

    International Nuclear Information System (INIS)

    Decken, C.B. von der; Iniotakis, N.

    1981-01-01

    The knowledge of fission product behaviour in the primary circuit of a High Temperature Reactor (HTR) is an essential requirement for the estimations of the availability of the reactor plant in normal operation, of the hazards to personnel during inspection and repair and of the potential danger to the environment from severe accidents. On the basis of the theoretical and experimental results obtained at the ''Institute for Reactor Components'' of the KFA Juelich /1/,/2/ the transport- and deposition behaviour of the fission- and activation products in the primary circuit of the PNP-500 reference plant has been investigated thoroughly. Special work had been done to quantify the uncertainties of the investigations and to calculate or estimate the dose rate level at different components of the primary cooling circuit. The contamination and the dose rate level in the inspection gap in the reactor pressure vessel is discussed in detail. For these investigations in particular the surface structure and the composition of the material, the chemical state of the fission products in the cooling gas, the composition of the cooling gas and the influence of dust on the transport- and deposition behaviour of the fission products have been taken into account. The investigations have been limited to the nuclides Ag-110m; Cs-134 and Cs-137

  19. Towards 250 m mapping of terrestrial primary productivity over Canada

    Science.gov (United States)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  20. Primary production in the Delta: Then and now

    Science.gov (United States)

    Cloern, James E.; Robinson, April; Richey, Amy; Grenier, Letitia; Grossinger, Robin; Boyer, Katharyn E.; Burau, Jon; Canuel, Elizabeth A.; DeGeorge, John F.; Drexler, Judith Z.; Enright, Chris; Howe, Emily R.; Kneib, Ronald; Mueller-Solger, Anke; Naiman, Robert J.; Pinckney, James L.; Safran, Samuel M.; Schoellhamer, David H.; Simenstad, Charles A.

    2016-01-01

    To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850). Here we describe an approach for using these metrics of land use change to: (1) produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2) convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3) use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  1. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  2. Primary Production in the Delta: Then and Now

    Directory of Open Access Journals (Sweden)

    James E. Cloern

    2016-10-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss3art1To evaluate the role of restoration in the recovery of the Delta ecosystem, we need to have clear targets and performance measures that directly assess ecosystem function. Primary production is a crucial ecosystem process, which directly limits the quality and quantity of food available for secondary consumers such as invertebrates and fish. The Delta has a low rate of primary production, but it is unclear whether this was always the case. Recent analyses from the Historical Ecology Team and Delta Landscapes Project provide quantitative comparisons of the areal extent of 14 habitat types in the modern Delta versus the historical Delta (pre-1850. Here we describe an approach for using these metrics of land use change to: (1 produce the first quantitative estimates of how Delta primary production and the relative contributions from five different producer groups have been altered by large-scale drainage and conversion to agriculture; (2 convert these production estimates into a common currency so the contributions of each producer group reflect their food quality and efficiency of transfer to consumers; and (3 use simple models to discover how tidal exchange between marshes and open water influences primary production and its consumption. Application of this approach could inform Delta management in two ways. First, it would provide a quantitative estimate of how large-scale conversion to agriculture has altered the Delta's capacity to produce food for native biota. Second, it would provide restoration practitioners with a new approach—based on ecosystem function—to evaluate the success of restoration projects and gauge the trajectory of ecological recovery in the Delta region.

  3. Determination of Energy Use Efficiency of Sesame Production

    OpenAIRE

    BARAN, Mehmet Firat

    2018-01-01

    In this research it was aimed to determine an energy use efficiency of sesame production in Şanlıurfa province, during the production season of 2015. In order to determine the energy use efficiency of sesame production, trials and measurement were performed in sesame farm in the Bozova district of Şanlıurfa province. As energy inputs, human labour energy, machinery energy, chemical fertilizers energy, irrigation water energy, chemicals energy, diesel fuel energy and seed energy as were calcul...

  4. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  5. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  6. Biomass production for direct generation of energy

    International Nuclear Information System (INIS)

    1992-01-01

    In continuing its activities for the formation of public opinion the Deutsche Farming Association) held a colloquium in 1991 on the issue of biomass production and combustion. Its aim was to gather all current knowledge on this issue and, for the first time, to make a comprehensive appraisal of it. The following aspects were dealt with: Abatement of atmospheric pollution, ecologically oriented production, nature conservation, organisation of decentralized power plant operating corporations, state of the art in combustion technology, operational calculations and, not least, agrarin-political framework conditions. The meeting yielded important statements on remarkable innovations in the area of ecological biomass production and for its utilization as an energy source together with the conventional energy sources of oil, gas, coal and nuclear energy. (orig.) [de

  7. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif; Sathre, Roger

    2012-01-01

    Highlights: ► The effect of thermal mass on life cycle primary energy balance of concrete and wood building is analyzed. ► A concrete building has slightly lower space heating demand than a wood alternative. ► Still, a wood building has a lower life cycle primary energy use than a concrete alternative. ► The influence of thermal mass on space heating energy use for buildings in Nordic climate is small. -- Abstract: In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  8. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  9. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Feuerstein, H.; Thorley, A.W.

    1987-08-01

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  10. Variations of Terrestrial Net Primary Productivity in East Asia

    Directory of Open Access Journals (Sweden)

    Fangmin Zhang

    2012-01-01

    Full Text Available Due to the heterogeneity and complexity of terrestrial ecosystems of East Asia, a better understanding of relationships between climate change and net primary productivity (NPP distribution is important to predict future carbon dynamics. The objective of this study is to analyze the temporal-spatial patterns of NPP in East Asia (10°S - 55°N, 60 - 155°E from 1982 to 2006 using the process-based Boreal Ecosystem Productivity Simulator (BEPS model. Prior to the regional simulation, the annual simulated NPP was validated using field observed NPP demonstrating the ability of BEPS to simulate NPP in different ecosystems of East Asia.

  11. Electrorheology for energy production and conservation

    Science.gov (United States)

    Huang, Ke

    Recently, based on the physics of viscosity, we developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. The method is universal and applicable to all complex fluids with suspended particles of nano-meter, submicrometer, or micrometer size. Completely different from the traditional viscosity reduction method, raising the temperature, this technology is energy-efficient, as it only requires small amount of energy to aggregate the suspended particles. In this thesis, we will first discuss this new technology in detail, both in theory and practice. Then, we will report applications of our technology to energy science research. Presently, 80% of all energy sources are liquid fuels. The viscosity of liquid fuels plays an important role in energy production and energy conservation. With an electric field, we can reduce the viscosity of asphalt-based crude oil. This is important and useful for heavy crude oil and off-shore crude oil production and transportation. Especially, since there is no practical way to raise the temperature of crude oil inside the deepwater pipelines, our technology may play a key role in future off-shore crude oil production. Electrorehology can also be used to reduce the viscosity of refinery fuels, such as diesel fuel and gasoline. When we apply this technology to fuel injection, the fuel droplets in the fuel atomization become smaller, leading to faster combustion in the engine chambers. As the fuel efficiency of internal combustion engines depends on the combustion speed and timing, the fast combustion produces much higher fuel efficiency. Therefore, adding our technology on existing engines improves the engine efficiency significantly. A theoretical model for the engine combustion, which explains how fast combustion improves the engine efficiency, is also presented in the thesis. As energy is the key to our national

  12. Energy condensed packaged systems. Composition, production, properties

    Directory of Open Access Journals (Sweden)

    Igor L. Kovalenko

    2015-03-01

    Full Text Available In this paper it is presented the substantiation of choice of fuel phase composition and optimal technology of emulsion production on the basis of binary solution of ammonium and calcium nitrates, which provide the obtaining of energy condensed packaged systems with specified properties. The thermal decomposition of energy condensed systems on the basis of ammonium nitrate is investigated. It is shown that the fuel phase of emulsion systems should be based on esters of polyunsaturated acids or on combinations thereof with petroleum products. And ceresin or petroleum wax can be used as the structuring additive. The influence of the technology of energy condensed systems production on the physicochemical and detonation parameters of emulsion explosives is considered. It is shown the possibility of obtaining of emulsion systems with dispersion of 1.3...1.8 microns and viscosity higher than 103 Pa∙s in the apparatus of original design. The sensitizing effect of chlorinated paraffin CP-470 on the thermolysis of energy condensed emulsion system is shown. The composition and production technology of energy condensed packaged emulsion systems of mark Ukrainit-P for underground mining in mines not dangerous on gas and dust are developed.

  13. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  14. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  15. Long term energy-related environmental issues of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, S. [University of Chile, Santiago (Chile). Dept. of Mechanical Engineering; Maldonado, P.; Barrios, A.; Jaques, I. [University of Chile, Santiago (Chile). Energy Research Program

    2002-02-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO{sub 2}/ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO{sub 2}/t of refined copper content (56% lower than in 1994). CO{sub 2} emissions have been estimated considering both fuel and electricity process requirements. (author)

  16. Long term energy-related environmental issues of copper production

    International Nuclear Information System (INIS)

    Alvarado, S.; Maldonado, P.; Barrios, A.; Jaques, I.

    2002-01-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO 2 /ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO 2 /t of refined copper content (56% lower than in 1994). CO 2 emissions have been estimated considering both fuel and electricity process requirements. (author)

  17. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  18. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China's future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people. (author)

  19. Estimation of external costs of energy production in Finland

    International Nuclear Information System (INIS)

    Estlander, A.; Otterstroem, T.

    1994-01-01

    The goal of the project is to develop a method for estimation of external costs of energy production in Finland. The purpose of the method is to take into account all the most important impacts on health, materials and the environment. The study will assess environmental effects of emissions from Finnish energy production on people and the environment locally (population centres), nationally (Finland) and globally. The different energy production forms to be included in the study are heat and electric energy generated with coal, natural gas, fuel oil and peat (not industry's energy production). Local and national environmental impact assessment is carried out within the Finnish borders. The economic influence of emissions (in particular greenhouse gases) originating outside Finland but with global impact will also be assessed, as far as Finland is concerned. When studying the amounts of emissions the whole fuel chain is taken into account: production, processing or transport, storage in the different stages of the chain of use, and end use. The main components under review are SO 2 , NO x , CO 2 , H x C y , CO, particulates and a couple of heavy metals. In addition. the study considers ozone (O 3 ), which is formed in the atmosphere. The primary monetary valuation method used is the indirect monetarization. which is based on dose-response functions and the use of both market prices and willingness-to-pay assessments. The method to be developed during the project for monetary valuation of effects caused by emissions on health, materials and the environment can be utilized in further monetarization studies. The results of the work can used to assess the profitability of energy production plants and energy companies from the economic point of view

  20. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required...

  1. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  2. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  3. Corrosion products in the primary circuits of PWRs

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of PWR primary circuits are recalled, particularly the chemical specifications of the medium and the various materials used (austenitic steel, nickel alloys, cobalt-based alloys and zirconium alloys). The behaviour of these materials as regards general corrosion in nominal and transient conditions is then outlined briefly, special emphasis being laid on the effect of the determining parameters on the quantity of corrosion products formed. The release of the latter into the primary coolant is caused by two main processes: solubilization and erosion. Particular attention was given therefore to the laws governing the solubility of the oxides involved, especially as a function of temperature and pH. Erosion, or release in the form of solid particles, is relatively severe during transient events. As these corrosion products are then carried through all circuits, they cause deposits to form in favourable places on the walls as a result either of precipitation of soluble species or of sedimentation followed by consolidation of suspended particles. The presence of corrosion products in the primary circuits creates a particular impact since they become radioactive as they pass through the core and especially when they remain in it in the form of deposits; as a result, the products are capable of contaminating the entire system. Finally, although long-term reliability is obviously an essential condition for materials developed, attention must also be given to problems associated with a build-up of corrosion products in the cooling circuits and efforts made to minimize them. To that end, a number of precautions are recommended, and various remedies can be applied: selecting materials which are not readily activated, keeping structures clean, purifying fluids properly, restricting solubilization and precipitation, and perhaps, periodic decontamination. (author)

  4. Water for energy and fuel production

    CERN Document Server

    Shah, Yatish T

    2014-01-01

    Water, in all its forms, may be the key to an environmentally friendly energy economy. Water is free, there is plenty of it, plus it carries what is generally believed to be the best long-term source of green energy-hydrogen. Water for Energy and Fuel Production explores the many roles of water in the energy and fuel industry. The text not only discusses water's use as a direct source of energy and fuel-such as hydrogen from water dissociation, methane from water-based clathrate molecules, hydroelectric dams, and hydrokinetic energy from tidal waves, off-shore undercurrents, and inland waterways-but also: Describes water's benign application in the production of oil, gas, coal, uranium, biomass, and other raw fuels, and as an energy carrier in the form of hot water and steam Examines water's role as a reactant, reaction medium, and catalyst-as well as steam's role as a reactant-for the conversion of raw fuels to synthetic fuels Explains how supercritical water can be used to convert fossil- and bio-based feed...

  5. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    OpenAIRE

    Chinhao Chong; Weidou Ni; Linwei Ma; Pei Liu; Zheng Li

    2015-01-01

    Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate t...

  6. France [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Consumption of primary energy in France amounted to 278 Mtoe in 2005, with an average increase of 1.3%/a between 1990 and 2005. The breakdown of primary energy is 42% nuclear energy, 33% oil, 15% natural gas, 6% renewables and 4% coal. France is comparatively poor in domestic energy resources. French coal production, which was still around 40 million t/a at the end of the 1970s, was terminated in 2004. Also, domestic natural gas contributes not more than 2% of France's primary energy production. With the general objectives being to control energy demand, diversify sources of energy, increase research into energy, and provide methods of transporting and storing energy, the French energy policy has given priority to the development of a national energy supply with a strong focus on nuclear energy and renewable energies. These energies are seen to provide a reliable long term supply without GHG emissions and to ensure stable electricity prices. The first nuclear power plants built in France were gas cooled reactors and the country also participated in the OECD Dragon project. Today France is the world's second largest producer of nuclear energy (after the USA) with an electricity share of 78%. France operates 58 nuclear power stations with a total capacity of 63.2 GW. One Gen- III reactor (EPR) is currently under construction. Since nuclear energy is not always fully used, interest is growing in using excess nuclear electricity, apart from export, for hydrogen production to regulate the electricity production.

  7. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  8. Solar energy; Product information. Zonne-energie; Produktinformatie

    Energy Technology Data Exchange (ETDEWEB)

    Kruisheer, N

    1992-03-20

    In five brief articles product information is given on solar energy applications with special attention to the Netherlands. After an introduction on solar energy availability in the Netherlands the developments in solar boiler techniques are dealt with. Solar water heaters have advantages for the environment, and government subsidies stimulate different uses of such water heaters. Also the developments of solar cells show good prospects, not only for developing countries, but also for the industrialized countries. In brief the developments in solar energy storage and the connection of solar equipment to the grid are discussed. Finally attention is paid to the applications of passive solar energy in the housing construction, the use of transparent thermal insulation and the developments of translucent materials. 18 figs., 18 ills.

  9. Energy conservation in the primary aluminum and chlor-alkali industries

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  10. Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Worrell, Ernst

    2013-01-01

    Additional efforts will be needed by European countries to improve the energy efficiency, as with current trends the 20% objective will be missed. Small and medium-sized enterprises (SMEs) manufacturing sector is a promising field, as SMEs are less energy-efficient than larger enterprises. Several studies investigated the barriers to the diffusion of technologies and practices for industrial energy efficiency, but little attention has been paid to understand the factors affecting the perception of such barriers by SMEs. In this multiple case-study, we have investigated 20 Primary Metal manufacturing SMEs in Northern Italy. Economic and information barriers are perceived as the major issues. Interestingly, firm's size, innovativeness of the market in which enterprises operate, as well as product and process innovation are factors affecting barriers to energy efficiency. Differences have been observed within SMEs, especially for information and competence-related barriers. In particular, a more innovative external context in which enterprises operate and a greater production process complexity seem to reduce barriers. Moreover, more product innovative enterprises seem to have a lower perception of behavioral and technology-related barriers. The results of this exploratory investigation provide useful suggestions for policy design and further research on industrial energy efficiency. - highlights: • Economic and Information emerge as the most relevant barriers to energy efficiency. • Market, product and process innovation seem relevant factors affecting barriers. • Firm's size is a factor affecting barriers' perception

  11. Biotechnology for energy production. Biotechnologie zur Energieerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, J.; Hall, D.O.; Chartier, P.

    1985-01-01

    Starting from the mechanisms of photosynthesis in plants and the environmental parameters influencing growth generally the book deals with the various possibilities for improving productivity in growing biomass. In particular, the modern methods of biotechnology are considered. The investigation submitted was carried through with a view to future energy farms in Europe.

  12. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  13. Regionally and seasonally differentiated primary production in the North Atlantic

    Science.gov (United States)

    Sathyendranath, Shubha; Longhurst, Alan; Caverhill, Carla M.; Platt, Trevor

    1995-10-01

    A bio-geochemical classification of the N. Atlantic Basin is presented according to which the basin is first divided into four primary algal domains: Polar, West-Wind, Trades and Coastal. These are in turn sub-divided into smaller provinces. The classification is based on differences in the physical environment which are likely to influence regional algal dynamics. The seasonally-differentiated parameters of the photosynthesis-light curve ( P-I curve) and parameters that define the vertical structure in chlorophyll profile are then established for each province, based on an analysis of an archive of over 6000 chlorophyll profiles, and over 1800 P-I curves. These are then combined with satellite-derived chlorophyll data for the N. Atlantic, and information on cloud cover, to compute primary production at the annual scale. using a model that computes spectral transmission of light underwater, and spectral, photosynthetic response of phytoplankton to available light. The results are compared with earlier, satellite-derived, estimates of basin-scale primary production.

  14. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  15. The primary exposure standard of ENEA for medium energy X-ray: characteristics and measurements procedures

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.

    1983-01-01

    A description is given of a medium energy X-ray free-air chamber used, as primary exposure standard, at the Laboratorio di Metrologia delle Radiazioni Ionizzanti of the Enea in Italy. The main features of an X-ray facility for the production of radiation between 40 KeV and 400 KeV are also described. The measurements procedures are then analyzed with respect to the realization of the exposure unit in the relevant energy range. Finally the results of some international comparisons are reported

  16. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  17. Innovative energy production in fusion reactors

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Momota, H.; Motojima, O.

    1994-01-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author)

  18. Innovative energy production in fusion reactors

    Science.gov (United States)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are: (1) traveling wave direct energy conversion of 14.7 MeV protons; (2) cusp type direct energy conversion of charged particles; (3) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas; and (4) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising.

  19. Innovative energy production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M.; Sudo, S.; Tomita, Y.; Yamaguchi, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-10-01

    Concepts of innovative energy production in neutron-lean fusion reactors without having the conventional turbine-type generator are proposed for improving the plant efficiency. These concepts are (a) traveling wave direct energy conversion of 14.7 MeV protons, (b) cusp type direct energy conversion of charged particles, (c) efficient use of radiation with semiconductor and supplying clean fuel in a form of hydrogen gas, and (d) direct energy conversion from deposited heat to electric power with semiconductor utilizing Nernst effect. The candidates of reactors such as a toroidal system and an open system are also studied for application of the new concepts. The study shows the above concepts for a commercial reactor are promising. (author).

  20. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  1. Power production and energy consumption in Norway

    International Nuclear Information System (INIS)

    2001-03-01

    The main electrical resource of Norway comes from its rivers: 99% of the electric power is produced by hydroelectric power plants. Other sources, like wind and natural gas, are envisaged for the enhancement of Norway's energy production capacity. In this document, the part devoted to power production presents the different electricity production sources and their impact on the Norwegian economy. The energy consumption is detailed in the third part with an historical review of its evolution and a description of the main sectors involved in this consumption. The forth part describes the main actors of the energy sector with their industrial structure, the research institutes and universities performing R and D in this domain, and the energy trades with surrounding countries. The fifth part stresses on the research projects, on the government promoting actions through the Norwegian Research Council, and gives some examples of todays research projects. The sixth part deals with international cooperation in the R and D domain with a particular attention given to the relations between Norway, France and Europe. (J.S.)

  2. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  3. Target production for inertial fusion energy

    International Nuclear Information System (INIS)

    Woodworth, J.G.; Meier, W.

    1995-03-01

    Inertial fusion energy (IFE) power plants will require the ignition and burn of 5-10 fusion fuel targets every second. The technology to economically mass produce high-quality, precision targets at this rate is beyond the current state of the art. Techniques that are scalable to high production rates, however, have been identified for all the necessary process steps, and many have been tested in laboratory experiments or are similar to current commercial manufacturing processes. In this paper, we describe a baseline target factory conceptual design and estimate its capital and operating costs. The result is a total production cost of ∼16 cents per target. At this level, target production represents about 6% of the estimated cost of electricity from a 1-GW e IFE power plant. Cost scaling relationships are presented and used to show the variation in target cost with production rate and plant power level

  4. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  5. Patterns of primary production in the Red Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Qurban, M.A.; Wafar, M.; Jyothibabu, R.; Manikandan, K.P.

    for bio- phic stations occupied in e Indian Ocean (source - et al., 1995), remotely-sensed (CZCS) chlorophyll data were used to make deductions on rates of primary production at basin-scale. The conclusion consistently arrived at from all earlier studies... acquired along the axis of the basin in the 2013 cruise, Wafar et al. (2016a) identified alternating zonal currents at six locations – 18–18.5°N, 19–20.5°N, 22°N, 24°N, 24.5°N and 26°N - and concluded that they represent three successive anticyclonic cells...

  6. Geothermal energy production with supercritical fluids

    Science.gov (United States)

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  7. Production of Energy Efficient Preform Structures (PEEPS)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  8. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  9. Nuclear energy products except the electric power

    International Nuclear Information System (INIS)

    2004-01-01

    Technically the fission reactors, on service or under construction, can produce other products than the electric power. Meanwhile, these applications are known since the beginning of the reactors exploitation, they never have been developed industrially. This report examines the necessary technical characteristics for using the nuclear systems on non electric power applications with an economical efficiency. What are the markets for these products? What are the strategical challenges to favor the development of non electric power applications of the nuclear energy? (A.L.B.)

  10. Software sensor for primary metabolite production case of alcoholic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roux, G.; Dahhou, B.; Queinnec, I. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Goma, G. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1995-12-31

    This paper investigate the application of an observer for state and parameter estimation to batch, continuous and fed batch fermentations for alcohol production taken as model for a primary metabolite production. This observer is provided to palliate the lack of suitable sensors for on-line biomass and ethanol concentrations measurements and to estimate the time varying specific growth rate. Estimates are obtained from an interlaced structure filter based on a `modified extended Kalman filter` by using on-line measurements of carbon dioxide outflow rate and substrate concentration. The filter algorithm was tested during batch, continuous and fed batch fermentation processes. The filter behaviour observed in the experiments gives good results with an agreement theory/practice. (authors) 18 refs.

  11. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  12. Specific features of energy and spatial distribution of primary knocked-out atoms in monocrystals

    International Nuclear Information System (INIS)

    Taratin, A.M.; Vorob'ev, S.A.

    1978-01-01

    By simulation trajectories of 0.2 MeV protons in 1 μm thick Al monocrystal, the energy and spatial distributions of primary atoms knocked out by the protons (PKA) have been studied. Different orientations of the incident beam axis relative to the densely packed direction in the case of ''quasichanneling'' and ''chaotic'' scattering of particles by the crystal have been researched. The depth dependence of the number of generated PKA, their distribution in the plane transverse to the preferred direction, and the energy spectrum of PKA have been obtained. It is shown that the PKA volume density is higher than that obtained using evaluations not accounting for the crystalline structure, and the energy spectrum contains more low energy PKAs. A concept of the cross section of the PKA production on an atomic chain is introduced for ipterpretation of the data obtained

  13. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  14. Water use alternatives for Navajo energy production

    International Nuclear Information System (INIS)

    Abbey, D.

    1979-01-01

    The Navajo have substantial resources of coal and uranium, and water use is certain to accompany development of these resources. A variety of supplies, however, are available--water in storage in Navajo Reservoir, water in existing uses which may be transferred, and groundwater. Furthermore, the quantity of water use varies over a wide range depending on the use of water conservation technologies such as dry coolers and wastewater treatment units. Joint management of energy and water resources requires a basic understanding of the water supply and demand alternatives available to the energy industry. Thus, the uses of water for key energy activities--coal and uranium mining, coal transportation (slurry pipelines), and coal conversion (electricity and synthetic gas production) are reviewed. For those activities for which water conservation is feasible, the technologies and estimate costs ($/af saved) are described. The range of water requirements are then compared to energy and water resource estimates. Finally, alternative (not necessarily exclusive) criteria for energy and water resource management are discussed: a) promote energy activities with the lowest minimum water requirements; b) require industry to use low-quality water resources and the most effective water conservation technology; and c) maximize the economic return on Navajo water resources

  15. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  16. Production, consumption and research on solar energy

    DEFF Research Database (Denmark)

    Sanz-Casado, Elias; Lascurain-Sánchez, Maria Luisa; Serrano-Lopez, Antonio Eleazar

    2014-01-01

    An analysis of scientific publications on solar energy was conducted to determine whether public interest in the subject is mirrored by more intense research in the area. To this end, the research published by Spain and Germany, the two EU countries with the highest installed photovoltaic capacity......, was analyzed based on Web of Science data. The results show that: solar output has risen substantially; solar research has a greater impact (measured in terms of citations) than publications on other renewables such as wind power; scientific production on solar energy is high in Germany and Spain, which...... intense. The main conclusion is the divergence in Germany and Spain between solar energy demand/output growth, being exponential, and the growth of research papers on the subject, which is linear...

  17. Efficiency in energy production and consumption

    Science.gov (United States)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  18. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    Directory of Open Access Journals (Sweden)

    Chinhao Chong

    2015-04-01

    Full Text Available Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate that Malaysia’s energy use depends heavily on fossil fuels, including oil, gas and coal. In the past 30 years, Malaysia has successfully diversified its energy structure by introducing more natural gas and coal into its power generation. To sustainably feed the rapidly growing energy demand in end-use sectors with the challenge of global climate change, Malaysia must pay more attention to the development of renewable energy, green technology and energy conservation in the future.

  19. The Feasibility of Onsite Electrolysis as Primary and Clean Production Source of Fuel Hydrogen in Brazil

    International Nuclear Information System (INIS)

    COSTA, Andre R

    2006-01-01

    In accordance with the International Monetary Fund Brazil is currently the world's 12. largest and Latin America's largest economy, with a nominal GPD in the amount of US dollars 732,078 millions. Despite the fact that energy production is still heavily based on hydrocarbons, such as oil, natural gas and coal, the country is often indicated as one of the worldwide leaders in implementing renewable energy sources, primarily due to the spread utilization of bio-ethanol in transportation and the electricity production from hydropower. The purpose of this study is to assess the feasibility of onsite electrolysis as primary and clean source of fuel hydrogen in Brazil, indicating the main advantages of this production method. A perspective of the most significant challenges and actions to be taken regarding the accomplishment of a clean Brazilian hydrogen economy will be presented herein. (author)

  20. Low Energy Nuclear Reaction Products at Surfaces

    Science.gov (United States)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  1. Economic competitiveness of electricity production means inside smart grids: application to nuclear energy and variable renewable energies

    International Nuclear Information System (INIS)

    Keppler, J.H.; Baritaud, M.; Berthelemy, M.

    2017-01-01

    For a long time the comparison of the production costs of electricity from various primary sources were made on the basis of levelised costs of electricity (LCOE). LCOE is in fact the cost of the technology used for the production. In recent years solar and wind energies have seen their LCOE drop sharply (-60 % for solar power in 5 years) while nuclear energy's LCOE is now stabilized. In order to assess the cost of renewable energies, LCOE are not sufficient because variable energies like solar or wind power require other means of production to compensate their variability. Another point is that renewable energies are decentralized and as a consequence require investments to develop the power distribution system. This analysis presents a new methodology to compare the costs of electricity production means. This methodology takes into account LCOE and a system cost that represents the cost of the effects of the technology on the rest of the electricity production system. (A.C.)

  2. Energy production from marine biomass (Ulva lactuca)

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L; Daugbjerg Jensen, P; Svane Bech, K [Danish Technological Institute (DTI), Taastrup (Denmark); and others

    2011-11-15

    In this project, methods for producing liquid, gaseous and solid biofuel from the marine macroalgae Ulva lactuca has been studied. To get an understanding of the growth conditions of Ulva lactuca, laboratory scale growth experiments describing N, P, and CO{sub 2} uptake and possible N{sub 2}O and CH{sub 4} production are carried out. The macroalgae have been converted to bioethanol and methane (biogas) in laboratory processes. Further the potential of using the algae as a solid combustible biofuel is studied. Harvest and conditioning procedures are described together with the potential of integrating macroalgae production at a power plant. The overall conclusions are: 1. Annual yield of Ulva lactuca is 4-5 times land-based energy crops. 2. Potential for increased growth rate when bubbling with flue gas is up to 20%. 3. Ethanol/butanol can be produced from pretreated Ulva of C6 and - for butanol - also C5 sugars. Fermentation inhibitors can possibly be removed by mechanical pressing. The ethanol production is 0,14 gram pr gram dry Ulva lactuca. The butanol production is lower. 4. Methane yields of Ulva are at a level between cow manure and energy crops. 5. Fast pyrolysis produces algae oil which contains 78 % of the energy content of the biomass. 6. Catalytic supercritical water gasification of Ulva lactuca is feasible and a methane rich gas can be obtained. 7. Thermal conversion of Ulva is possible with special equipment as low temperature gasification and grate firing. 8. Co-firing of Ulva with coal in power plants is limited due to high ash content. 9. Production of Ulva only for energy purposes at power plants is too costly. 10. N{sub 2}O emission has been observed in lab scale, but not in pilot scale production. 11. Analyses of ash from Ulva lactuca indicates it as a source for high value fertilizers. 12. Co-digestion of Ulva lactuca together with cattle manure did not alter the overall fertilization value of the digested cattle manure alone. (LN)

  3. Energy yield for the production of ethanol from corn

    International Nuclear Information System (INIS)

    Chavanne, X.; Frangi, J.P.

    2008-01-01

    This article establishes the primary energy balance for making ethanol out of corn in the USA, calculated from the farm to the fuel station, following a methodology described in Chavanne and Frangi (C. R. Geoscience 339 (2007) 519-535). Raw data (direct energy and material consumption as well as their heat value and external costs) come from published papers related to this topic, technical textbooks, as well as reports from the US Departments of Agriculture and Energy. For the 2001 harvest, over the area producing more than 90% of ethanol and for the 2005 network of working refineries, 100 J of ethanol and recovery of by-products (the energy saved by the replacement of animal feed by these by-products is around 12% of the ethanol heat value) needed 86 ± 3 J of energy spending, of which more than 50 J is natural gas and 62 J is used in refineries. A third of the area of Nebraska corn must be irrigated with water pumped from underground, at an added cost of 26 ± 3 J. In 1996, the extra drying required, because of heavy rains, added 6 J. By comparison, 100 J of gasoline cost less than 25 J to be produced out of crude oil. Complementary studies of resource availability are not performed here. The largest possible reduction in energy costs can be achieved at the refinery stage, by fermenting by-products, gas residues, (from 62 J to around 12 J). The article gives also an expression for the expenditure to enable comparison between different energy systems, including everything from biomass to transport. For the ethanol case, the average cost is 130 J for 100 J of corn grain heat. (authors)

  4. ENERGY USE IN APPLE PRODUCTION IN THE ESFAHAN ...

    African Journals Online (AJOL)

    journal

    Apple production needs to improve the efficiency of energy consumption and to employ renewable energy. ... derived from Neyman method (Ozkan et al.,. 2004). .... management might reduce the indirect energy .... Handbook of Energy.

  5. Primary and heterotrophic productivity relate to multikingdom diversity in a hypersaline mat

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Hans C.; Brislawn, Colin J.; Dana, Karl; Flores-Wentz, Tobias; Cory, Alexandra B.; Fansler, Sarah J.; Fredrickson, James K.; Moran, James J.

    2017-10-01

    Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: 1) How does species diversity relate to the rates of primary and heterotrophic productivity? 2) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline Lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope incorporation that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose and acetate, respectively. Bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, energy constraints imposed by changing irradiance over a diel cycle.

  6. Wave Energy Converter Annual Energy Production Uncertainty Using Simulations

    Directory of Open Access Journals (Sweden)

    Clayton E. Hiles

    2016-09-01

    Full Text Available Critical to evaluating the economic viability of a wave energy project is: (1 a robust estimate of the electricity production throughout the project lifetime and (2 an understanding of the uncertainty associated with said estimate. Standardization efforts have established mean annual energy production (MAEP as the metric for quantification of wave energy converter (WEC electricity production and the performance matrix approach as the appropriate method for calculation. General acceptance of a method for calculating the MAEP uncertainty has not yet been achieved. Several authors have proposed methods based on the standard engineering approach to error propagation, however, a lack of available WEC deployment data has restricted testing of these methods. In this work the magnitude and sensitivity of MAEP uncertainty is investigated. The analysis is driven by data from simulated deployments of 2 WECs of different operating principle at 4 different locations. A Monte Carlo simulation approach is proposed for calculating the variability of MAEP estimates and is used to explore the sensitivity of the calculation. The uncertainty of MAEP ranged from 2%–20% of the mean value. Of the contributing uncertainties studied, the variability in the wave climate was found responsible for most of the uncertainty in MAEP. Uncertainty in MAEP differs considerably between WEC types and between deployment locations and is sensitive to the length of the input data-sets. This implies that if a certain maximum level of uncertainty in MAEP is targeted, the minimum required lengths of the input data-sets will be different for every WEC-location combination.

  7. 78 FR 17648 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2013-03-22

    ... Conservation Program for Consumer Products: Representative Average Unit Costs of Energy'', dated April 26, 2012... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  8. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.

    1993-01-01

    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  9. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today’s electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by ‘dumping steam’, or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  10. Nuclear-Renewable Energy Systems Secondary Product Market Analysis Study

    International Nuclear Information System (INIS)

    Deason, Wesley Ray

    2015-01-01

    In order to properly create a program surrounding the development of any technological concept it is necessary to fully understand the market in which it is being developed. In the case of Integrated Nuclear-Renewable Hybrid Energy Systems (HES), there are two economic markets in which it must be able to participate in: the electricity market and the secondary product market associated with the specific system. The purpose of the present report is to characterize the secondary product market in the U.S. and to provide recommendations for further developing the HES program. While HESs have been discussed in depth in many other reports, it is helpful to discuss them briefly in the present work [REF]. The concept of the HES can be deduced to a system, featuring a combination of a nuclear power plant, a renewable energy source, and an industrial manufacturing plant . The system is designed in a fashion that allows it either to produce electricity or to manufacture a secondary product as needed. The primary benefit of this concept lies in its ability to maximize economic performance of the integrated system and to manufacture products in a carbon-free manner. A secondary benefit is the enhanced supply-side flexibility gained by allowing the HES to economically provide grid services. A key tenant to nuclear power plant economics in today's electricity market is their ability to operate at a very high capacity factor. Unfortunately, in regions with a high penetration of renewable energy, the carbon free energy produced by nuclear power may not be needed at all times. This forces the nuclear power plant to find a user for its excess capacity. This may include paying the electric grid to find a user, releasing energy to the environment by -dumping steam', or reducing power. If the plant is unable to economically or safely do any of these actions, the plant is at risk of being shutdown. In order to allow for nuclear power plants to continue to contribute carbon free

  11. The availability of biomass for energy production

    International Nuclear Information System (INIS)

    Zeevalkink, J.A.; Borsboom, N.W.J.; Sikkema, R.

    1997-12-01

    The Dutch energy policy aims at 75 PJ energy production from biomass in the Netherlands by the year 2020. This requires the development of a biomass market for biomass fuels so that suppliers as well as users can sell and buy biomass, respectively. The study concentrates on the contribution that information about biomass supply and demand can make to the realization of such a market for biomass fuels and stimulating its functioning. During the study, an inventory was made of public information on biomass quantities that are expected to become available for energy production in the short term. It was proposed to set up a database that contains information about the supply and suppliers of forest wood (specifically thinnings), (clean) waste wood from wood-processing industries, used timber and green wood waste from public parks. On the basis of rough estimates it can be concluded that these biomass flows account for an approximate annual quantity of 900,000 tonnes of dry biomass, or an annual 16,000 W energy production. This quantity would cover 66% of the goal set for the year 2000 and 20% of the goal set for 2020. Various database models were described and discussed during a workshop which was organized for potentially interested parties so as to find out their interest in and potential support for such an information system. Though the results of the survey conducted earlier suggested otherwise, it turned out that there was only minor interest in an information system, i.e. there was an interest in a survey of the companies involved in biomass supply and demand. In addition, most parties preferred bilateral confidential contacts to contract biomass. The opinion of many parties was that Novem's major tasks were to characterize biomass quality, and to give support to the discussions about the legal framework for using (waste) wood for energy production. It was concluded that at this moment a database must not be set up; in the future, however, there could be a

  12. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  13. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  14. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  15. Monitoring residue in animals and primary products of animal origin

    Directory of Open Access Journals (Sweden)

    Janković Saša

    2008-01-01

    Full Text Available The objective of control and systematic monitoring of residue is to secure, by the examination of a corresponding number of samples, the efficient monitoring of the residue level in tissues and organs of animals, as well as in primary products of animal origin. This creates possibilities for the timely taking of measures toward the securing of food hygiene of animal origin and the protection of public health. Residue can be a consequence of the inadequate use of medicines in veterinary medicine and pesticides in agriculture and veterinary medicine, as well as the polluting of the environment with toxic elements, dioxins, polychlorinated biphenyls, and others. Residue is being monitored in Serbia since 1972, and in 2004, national monitoring was brought to the level of EU countries through significant investments by the Ministry of Agriculture, Forestry and Water Management. This is also evident in the EU directives which permit exports of all kinds of meat and primary products of animal origin, covered by the Residue Monitoring Program. The program of systematic examinations of residue has been coordinated with the requirements of the European Union, both according to the type of examined substance, as well as according to the number of samples and the applied analytical techniques. In addition to the development of methods and the including of new harmful substances into the monitoring programme, it is also necessary to coordinate the national regulations that define the maximum permitted quantities of certain medicines and contaminants with the EU regulations, in order to protect the health of consumers as efficiently as possible, and for the country to take equal part in international trade.

  16. Satellite Driven Estimation of Primary Productivity of Agroecosystems in India

    Science.gov (United States)

    Patel, N. R.; Dadhwal, V. K.; Agrawal, S.; Saha, S. K.

    2011-08-01

    Earth observation driven ecosystem modeling have played a major role in estimation of carbon budget components such as gross primary productivity (GPP) and net primary production (NPP) over terrestrial ecosystems, including agriculture. The present study therefore evaluate satellite-driven vegetation photosynthesis (VPM) model for GPP estimation over agro-ecosystems in India by using time series of the Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION, cloud cover observation from MODIS, coarse-grid C3/C4 crop fraction and decadal grided databases of maximum and minimum temperatures. Parameterization of VPM parameters e.g. maximum light use efficiency (ɛ*) and Tscalar was done based on eddy-covariance measurements and literature survey. Incorporation of C3/C4 crop fraction is a modification to commonly used constant maximum LUE. Modeling results from VPM captured very well the geographical pattern of GPP and NPP over cropland in India. Well managed agro-ecosystems in Trans-Gangetic and upper Indo-Gangetic plains had the highest magnitude of GPP with peak GPP during kharif occurs in sugarcane-wheat system (western UP) and it occurs in rice-wheat system (Punjab) during Rabi season. Overall, croplands in these plains had more annual GPP (> 1000 g C m-2) and NPP (> 600 g C m-2) due to input-intensive cultivation. Desertic tracts of western Rajasthan showed the least GPP and NPP values. Country-level contribution of croplands to national GPP and NPP amounts to1.34 Pg C year-1 and 0.859 Pg C year-1, respectively. Modeled estimates of cropland NPP agrees well with ground-based estimates for north-western India (R2 = 0.63 and RMSE = 108 g C m-2). Future research will focus on evaluating the VPM model with medium resolution sensors such as AWiFS and MODIS for rice-wheat system and validating with eddy-covariance measurements.

  17. Renewable energies for the production of bricks

    International Nuclear Information System (INIS)

    Moedinger, F.

    2006-01-01

    The research for alternatives to the classical, mainly fossil, sources of energy sources within a high energy consumption sector as brick making can certainly be very rewarding. Within this framework the production of biogas by anaerobic digestion of locally available biomasses and the integration of such a facility in a brick yard where all fermentation wastes, both liquid and solid, can be used can be considered a strategic and profitable business goal: reduction of the dependence on fossil fuels. From an environmental point of view the substitution of fossil fuels with fuels from renewable sources is certainly desire able. Into account might also be taken the possible profitable trade of emission certificates of different type

  18. Drell-Yan production at collider energies

    International Nuclear Information System (INIS)

    Neerven, W.L. Van

    1995-01-01

    We present some results of the Drell-Yan cross sections dσ/dm and σ tot which includes the O (α s 2 ) contribution to the coefficient function. In particular we study the total cross section σ tot for vector boson production and dσ/dm for low invariant masses m of the lepton pairs at large hadron collider energies. This study includes a detailed discussion of the dependence of the cross sections on the chosen scheme (bar MS versus DIS) and the factorization scale

  19. Risoe energy report 4: The future energy system - distributed production and use

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO{sub 2} reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether

  20. Risoe energy report 4: The future energy system - distributed production and use

    International Nuclear Information System (INIS)

    Larsen, Hans; Soenderberg Petersen, L.

    2005-10-01

    The world is facing major challenges in providing energy services to meet the future needs of the developed world and the growing needs of developing countries. These challenges are exacerbated by the need to provide energy services with due respect to economic growth, sustainability and security of supply. Today, the world's energy system is based mainly on oil, gas and coal, which together supply around 80% of our primary energy. Only around 0.5% of primary energy comes from renewable sources such as wind, solar and geothermal. Despite the rapid development of new energy technologies, the world will continue to depend on fossil fuels for several decades to come - and global primary energy demand is forecasted to grow by 60% between 2002 and 2030. The expected post Kyoto targets call for significant CO 2 reductions, increasing the demand to decouple the energy and transport systems from fossil fuels. There is a strong need for closer links between electricity, heat and other energy carriers, including links to the transport sector. On a national scale Denmark has three main characteristics. Firstly, it has a diverse and distributed energy system based on the power grid, the district heating grid and the natural gas grid. Secondly, renewable energy, especially wind power, plays an increasingly important role in the Danish energy system. Thirdly, Denmark's geographical location allows it to act as a buffer between the energy systems of the European continent and the Nordic countries. Energy systems can be made more robust by decentralising both power generation and control. Distributed generation (DG) is characterised by a variety of energy production technologies integrated into the electricity supply system, and the ability of different segments of the grid to operate autonomously. The use of a more distributed power generation system would be an important element in the protection of the consumers against power interruptions and blackouts, whether caused by

  1. Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen—nitrogen mixtures

    International Nuclear Information System (INIS)

    Sima Wen-Xia; Peng Qing-Jun; Yang Qing; Yuan Tao; Shi Jian

    2013-01-01

    Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures. (physics of gases, plasmas, and electric discharges)

  2. Evaluation of high-energy lithium thionyl chloride primary cells

    Science.gov (United States)

    Frank, H. A.

    1980-02-01

    An advanced commercial primary lithium cell (LiSoCl2) was evaluated in order to establish baseline data for improved lithium batteries for aerospace applications. The cell tested had nominal capacity of 6 Ah. Maximum energy density at low rates (less than C/30, where C is the cell capacity in amp-hrs and 30 corresponds to a 30 hr discharge time) was found to be near 300 Wh/kg. An equation which predicts the operating voltage of these cells as a function of current and state of charge is presented. Heat generation rates of these cells were determined as a function of current in a calorimeter. It was found that heat rates could be theoretically predicted with some degree of accuracy at currents less than 1 amp or the C/6 rate. No explosions were observed in the cells during the condition of overdischarge or reversal nor during high rate discharge. It was found, however, that the cells can vent when overdischarge currents are greater than C/30 and when discharge rates are greater than 1.5C.

  3. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Axente, Damian

    2006-01-01

    Full text: The potentials of three hydrogen production processes under development for the industrial production of hydrogen using nuclear energy, namely the advanced electrolysis the steam reforming, the sulfur-iodine water splitting cycle, are compared and evaluated in this paper. Water electrolysis and steam reforming of methane are proven and used extensively today for the production of hydrogen. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H 2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800-900 deg. C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via a heat exchanger type reactor. The sulfur-iodine cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO 2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second solution and the electrolysis is the most expensive of the options for industrial H 2 production. The nuclear plant could power electrolysis operations right away; steam reforming with nuclear power is a little bit further off into the future, the first operation with nuclear facility is expected to have place in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale

  4. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marla; Homan, Gregory; Lai, Judy; Brown, Richard

    2009-09-24

    This report provides a top-level summary of national savings achieved by the Energy Star voluntary product labeling program. To best quantify and analyze savings for all products, we developed a bottom-up product-based model. Each Energy Star product type is characterized by product-specific inputs that result in a product savings estimate. Our results show that through 2007, U.S. EPA Energy Star labeled products saved 5.5 Quads of primary energy and avoided 100 MtC of emissions. Although Energy Star-labeled products encompass over forty product types, only five of those product types accounted for 65percent of all Energy Star carbon reductions achieved to date, including (listed in order of savings magnitude)monitors, printers, residential light fixtures, televisions, and furnaces. The forecast shows that U.S. EPA?s program is expected to save 12.2 Quads of primary energy and avoid 215 MtC of emissions over the period of 2008?2015.

  5. New energy storage systems for photovoltaic supplied consumer products

    International Nuclear Information System (INIS)

    Burges, K.; Blok, K.

    1993-12-01

    In a previous study attention was paid to the possibility of reducing battery wastes in the Netherlands by means of integration of photovoltaic (PV) cells in small, electric consumer products. The result of that study was that only two environment-friendly applications could be used: capacitors in calculators or watches. However, new types of energy storage systems have been developed and commercialized, so that the above-mentioned study is updated. First, the technical, economic and environmental parameters of several energy storage systems are compared. Next, a number of products, in which PV-cells can be integrated, has been selected and the economic and environmental effects are calculated and analyzed. The energy storage systems discussed are primary alkaline batteries, NiCd batteries, Ni-Metal-Hydride (NiMH) batteries, Li-Solid-State (LiSS) batteries, and capacitors. It is estimated that by means of the proposed integration of PV-cells in specific consumer products the amount of battery wastes can be reduced by 50%. 33 tabs., 1 appendix, 50 refs

  6. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  7. Energy scenarios for hydrogen production in Mexico

    International Nuclear Information System (INIS)

    Ortega V, E.; Francois L, J. L.

    2009-10-01

    The hydrogen is a clean and very efficient fuel, its combustion does not produce gases of greenhouse effect, ozone precursors and residual acids. Also the hydrogen produced by friendly energy sources with the environment like nuclear energy could help to solve the global problems that it confronts the energy at present time. Presently work fuel cycles of hydrogen production technologies in Mexico are judged, by means of a structured methodology in the concept of sustainable development in its social, economic and environmental dimensions. The methodology is divided in three scenarios: base, Outlook 2030 and capture of CO 2 . The first scenario makes reference to cycles analysis in a current context for Mexico, the second taking in account the demand projections reported by the IAEA in its report Outlook and the third scenario, capture of CO 2 , the technologies are analyzed supposing a reduction in capture costs of 75%. Each scenario also has four cases (base, social, environmental and economic) by means of which the cycles are analyzed in the dimensions of sustainable development. For scenarios base and capture, results show that combination nuclear energy- reformed of gas it is the best alternative for cases base and economic. For social case, the evaluated better technology is the hydraulics, and for environmental case, the best option is represented by the regenerative thermochemistry cycles. The scenario Outlook 2030 show a favorable tendency of growth of renewable sources, being the aeolian energy the best technology evaluated in the cases base and environmental, the hydraulics technology in the social case and in the economic case the reformed of natural gas that uses nuclear heat. (Author)

  8. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  9. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  10. 76 FR 13168 - Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy

    Science.gov (United States)

    2011-03-10

    ... average unit costs of residential energy in a Federal Register notice entitled, ``Energy Conservation... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Conservation Program for Consumer Products: Representative Average Unit Costs of Energy AGENCY: Office of Energy Efficiency...

  11. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  12. Introduction to energy balance of biomass production

    International Nuclear Information System (INIS)

    Manzanares, P.

    1997-01-01

    During last years, energy crops have been envisaged as an interesting alternative to biomass residues utilization as renewable energy source. In this work, main parameters used in calculating the energy balance of an energy crop are analyzed. The approach consists of determining energy equivalents for the different inputs and outputs of the process, thus obtaining energy ratios of the system, useful to determine if the energy balance is positive, that is, if the system generates energy. Energy costs for inputs and assessment approaches for energy crop yields (output) are provided. Finally, as a way of illustration, energy balances of some representative energy crops are shown. (Author) 15 refs

  13. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  14. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  15. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  16. Energy demand and greenhouse gas emissions during the production of a passenger car in China

    International Nuclear Information System (INIS)

    Yan Xiaoyu

    2009-01-01

    Rapidly-rising oil demand and associated greenhouse gas (GHG) emissions from road vehicles in China, passenger cars in particular, have attracted worldwide attention. As most studies to date were focused on the vehicle operation stage, the present study attempts to evaluate the energy demand and GHG emissions during the vehicle production process, which usually consists of two major stages-material production and vehicle assembly. Energy demand and GHG emissions in the material production stage are estimated using the following data: the mass of the vehicle, the distribution of material used by mass, and energy demand and GHG emissions associated with the production of each material. Energy demand in the vehicle assembly stage is estimated as a linear function of the vehicle mass, while the associated GHG emission is estimated according to the primary energy sources. It is concluded that the primary energy demand, petroleum demand and GHG emissions during the production of a medium-sized passenger car in China are 69,108 MJ, 14,545 MJ and 6575 kg carbon dioxide equivalent (CO 2 -eq). Primary energy demand, petroleum demand and GHG emissions in China's passenger car fleets in 2005 would be increased by 22%, 5% and 30%, respectively, if the vehicle production stage were included.

  17. 2002 energy statistics

    International Nuclear Information System (INIS)

    2003-01-01

    This report has 12 chapters. The first chapter includes world energy reserves, the second chapter is about world primary energy production and consumption condition. Other chapters include; world energy prices, energy reserves in Turkey, Turkey primary energy production and consumption condition, Turkey energy balance tables, Turkey primary energy reserves production, consumption, imports and exports conditions, sectoral energy consumptions, Turkey secondary electricity plants, Turkey energy investments, Turkey energy prices.This report gives world and Turkey statistics on energy

  18. Energy use and gross margin analysis for sesame production in ...

    African Journals Online (AJOL)

    As the negative impacts of energy by-products affect the climate, the knowledge and efficient use of energy in crop production will minimise environmental problems and promote sustainable agriculture as an economic production system in Nigeria and else where. The aim of the study was to evaluate energy use and gross ...

  19. Energy indicators for electricity production : comparing technologies and the nature of the indicators Energy Payback Ratio (EPR), Net Energy Ratio (NER) and Cumulative Energy Demand (CED). [Oestfoldforskning AS

    Energy Technology Data Exchange (ETDEWEB)

    Raadal, Hanne Lerche [Ostfold research, Fredrikstad (Norway); Modahl, Ingunn Saur [Ostfold research, Fredrikstad (Norway); Bakken, Tor Haakon [SINTEF Energy, Trondheim (Norway)

    2012-11-01

    Energy Demand (CED) were chosen to be reviewed and to benchmark technologies for production of electricity. In this report, generic definitions of the different energy indicators are used, making them applicable to different energy products (fuels, heat and electricity). The discussion and conclusions are also made as general as possible when the indicators are compared. In the benchmarking exercise the energy product under study is electricity.Conclusions - Comparing technologies. Hydropower clearly achieves the best energy performance according to the indicators EPR, NER and CED. Wind power achieves the second best performance while thermal power generation technologies based on biomass and fossil fuels give the lowest energy performance. There are large variations between the analysed technologies regarding the amount of primary energy needed to produce 1 kWh of electricity.The sources of primary energy used for producing electricity vary between the technologies. Electricity from hydropower, in particular, has a very high share of renewable energy as the primary source, while also wind power and bio-energy have high shares of renewables. The main energy sources required for producing electricity from coal and natural gas are fossil based.The study shows that second life cycle hydropower plants (which means upgrading and extension of old, existing plants) can have extremely high energy efficiency, measured by EPR. (Such plants are not shown in the figures in the summary, but are part of the results). For hydropower, the losses in waterways, turbines, generators and transformers are crucial for the ranking of cases when considering the whole life cycle (NER and CED). In general, this study gives no indication whether 'large' hydropower installations are more energy efficient than smaller installations, or whether reservoir hydropower plants are more energy efficient than run-of-river plants. Conclusions - Comparing indicators: The main reason for the

  20. Comparison of the primary energy consumption and the CO2-emission of an urban vehicle with conventional and alternative drives

    International Nuclear Information System (INIS)

    Birnbreier, H.

    1992-01-01

    Based on a model car with its basic data corresponding to those of a series-produced small passenger car, conventional and alternative drives were compared. Cars shared the following features: same basic weight without tank, one energy storage system for the same driving range, same acceleration capacity from 0 to 50 km/h. Petrol and diesel were the conventional fuels; methanol, natural gas (pressurized, liquid), hydrogen (pressurized, liquid, hydride) and electric energy (NaS battery) were the alternative fuels. Both primary energy and CO 2 balancings take the different raw materials into account for the production of useful energies. (orig.) [de

  1. Energy productivity growth in the Dutch Greenhouse Industry

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Ondersteijn, C.J.M.

    2006-01-01

    Profitability of Dutch greenhouse firms is largely dependent on energy costs, and policy makers focus on reducing the use of energy by these firms. This article uses Russell measures of TE to develop indicators of energy productivity growth. Results show that energy productivity grew by 2.8%

  2. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  3. The impact of predicted demand on energy production

    Science.gov (United States)

    El kafazi, I.; Bannari, R.; Aboutafail, My. O.

    2018-05-01

    Energy is crucial for human life, a secure and accessible supply of power is essential for the sustainability of societies. Economic development and demographic progression increase energy demand, prompting countries to conduct research and studies on energy demand and production. Although, increasing in energy demand in the future requires a correct determination of the amount of energy supplied. Our article studies the impact of demand on energy production to find the relationship between the two latter and managing properly the production between the different energy sources. Historical data of demand and energy production since 2000 are used. The data are processed by the regression model to study the impact of demand on production. The obtained results indicate that demand has a positive and significant impact on production (high impact). Production is also increasing but at a slower pace. In this work, Morocco is considered as a case study.

  4. Solar Energy - An Option for Future Energy Production

    Science.gov (United States)

    Glaser, Peter E.

    1972-01-01

    Discusses the exponential growth of energy consumption and future consequences. Possible methods of converting solar energy to power such as direct energy conversion, focusing collectors, selective rediation absorbers, ocean thermal gradient, and space solar power are considered. (DF)

  5. Large historical growth in global terrestrial gross primary production

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a feedback for climate change, but there is still strong disagreement on the extent to which biogeochemical processes may suppress this GPP growth at the ecosystem to continental scales. The consequent uncertainty in modeling of future carbon storage by the terrestrial biosphere constitutes one of the largest unknowns in global climate projections for the next century. Here we provide a global, measurement-based estimate of historical GPP growth using long-term atmospheric carbonyl sulfide (COS) records derived from ice core, firn, and ambient air samples. We interpret these records using a model that relates changes in the COS concentration to changes in its sources and sinks, the largest of which is proportional to GPP. The COS history was most consistent with simulations that assume a large historical GPP growth. Carbon-climate models that assume little to no GPP growth predicted trajectories of COS concentration over the anthropogenic era that differ from those observed. Continued COS monitoring may be useful for detecting ongoing changes in GPP while extending the ice core record to glacial cycles could provide further opportunities to evaluate earth system models.

  6. Spatial scaling of net primary productivity using subpixel landcover information

    Science.gov (United States)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  7. Investigating smoke's influence on primary production throughout the Amazon

    Science.gov (United States)

    Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.

    2007-12-01

    Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).

  8. Renewable energy for productive uses in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  9. Design considerations of fission and corrosion product in primary system of MONJU

    International Nuclear Information System (INIS)

    Yanagisawa, T.; Akagane, K.; Yamamoto, K.; Kawashima, K.

    1976-01-01

    General influence of fission and corrosion products in primary system on MONJU plant design is reviewed. Various research and development works are now in progress to decrease the generation rate, to remove the products more effectively and to develop the methods of evaluation the behaviour of radioactive products. The inventory and distribution of fission and corrosion products in the primary circuit of MONJU are given. The radiation levels on the primary components are estimated to be several roentgens per hour. (author)

  10. Modelling energy consumption in a manufacturing plant using productivity KPIs

    Energy Technology Data Exchange (ETDEWEB)

    Gallachoir, Brian O.; Cahill, Caiman (Sustainable Energy Research Group, Dept. of Civil and Environmental Engineering, Univ. College Cork (Ireland))

    2009-07-01

    Energy efficiency initiatives in industrial plants are often focused on getting energy-consuming utilities and devices to operate more efficiently, or on conserving energy. While such device-oriented energy efficiency measures can achieve considerable savings, greater energy efficiency improvement may be achieved by improving the overall productivity and quality of manufacturing processes. The paper highlights the observed relationship between productivity and energy efficiency using aggregated data on unit consumption and production index data for Irish industry. Past studies have developed simple top-down models of final energy consumption in manufacturing plants using energy consumption and production output figures, but these models do not help identify opportunities for energy savings that could achieved through increased productivity. This paper proposes an improved and innovative method of modelling plant final energy demand that introduces standard productivity Key Performance Indicators (KPIs) into the model. The model demonstrates the relationship between energy consumption and productivity, and uses standard productivity metrics to identify the areas of manufacturing activity that offer the most potential for improved energy efficiency. The model provides a means of comparing the effect of device-oriented energy efficiency measures with the potential for improved energy efficiency through increased productivity.

  11. 78 FR 9631 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Residential...

    Science.gov (United States)

    2013-02-11

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Residential Boilers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J...

  12. Hybrid reactors: Nuclear breeding or energy production?

    International Nuclear Information System (INIS)

    Piera, Mireia; Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M.

    2010-01-01

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid.

  13. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  14. Aspects of energy reduction by autogenous copper production in the copper smelting plant Bor

    International Nuclear Information System (INIS)

    Najdenov, Ivan; Raić, Karlo T.; Kokeza, Gordana

    2012-01-01

    This work presents a comparative analysis of the energy consumption during copper production by the “standard” procedure (roasting in a fluo–solid reactor and smelting in a reverberatory furnace) in the Smelting Plant in Bor with modern autogenous procedures. All forms of expended energy were reduced to primary energy or to the same energy form, i.e., to the energy equivalent of the process (EEP), the raw material and the process materials. In addition, the energy equivalent of the process and waste products (water vapour, thermal energy and similar) were balanced. To complete the consumption of all energy generating products in copper production, they were reduced to conditional fuel (coal equivalent = 29.3 MJ/kg). Additionally, this study suggests replacement of the existing technology by an appropriate autogenous procedure and considers the prospects for further development of mining and metallurgy in Bor. Estimates of development perspectives for copper production should be comprehensive, based on complete and relevant data, as well as on real considerations of future development in world production. -- Highlights: ► “Standard” autogenous copper production in the Smelting Plant, Bor, Serbia. ► Comparation of energy consumption in “standard” with other autogenous procedures. ► All forms of energy are reduced to energy equivalent and conditional fuel. ► Replacement of existing technology with the appropriate autogenous procedure. ► Perspectives of further development of mining and metallurgy in Bor.

  15. China [National and regional programmes on the production of hydrogen using nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Due to its large population and its strong economic growth in recent years, China's demand for energy is rising rapidly. Since 2003, China ranks second after the USA in the consumption of primary energy and also in the consumption of oil. China is the third largest energy producer in the world, after the USA and the Russian Federation. In 2007, China's total energy consumption was 1970 Mtoe, up from 872 Mtoe in 1990. In the period 2000-2007, the average growth rate of energy consumption was 8.9% per year. Coal makes up the bulk of China's primary energy consumption (66% in 2007) and will remain the dominant energy source in the next decades. Other energies consumed are oil (18%) and hydropower (12%). Natural gas production currently accounts for only 3%, with most reserves located far away from the demand sites. China is the largest producer and consumer of coal in the world, which has made the country one of the world's largest emitter of GHGs. The present energy policy calls for greater energy conservation measures and a move away from coal toward cleaner energy sources including oil, natural gas, renewable energy, nuclear power and hydroelectric resources. A new energy law calls for 10% of its energy to come from renewable energy sources by 2020. China has abundant cellulosic biomass resources, with an estimated 220-380 Mtoe available for bioenergy production (e.g. ethanol, synthetic liquid fuels) each year.

  16. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition. As...

  17. ENERGY USE ANALYSIS FOR RICE PRODUCTION IN NASARAWA STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Hussaini Yusuf Ibrahim

    2012-12-01

    Full Text Available The study was conducted to analyze energy use for in rice production in Nasarawa state Nigeria using a sample of 120 randomly selected rice farmers. Energy productivity, energy efficiency and specific energy were computed and simple descriptive statistics was used for data analysis. The energy use pattern shows that, rice production consumed an average total energy of 12906.8 MJha-1, with herbicide energy input contributing the largest share (53.55 %. Human labour had the least share (0.74 % of the total energy input used. The energy productivity, Specific energy and energy efficiency were 0.3 MJ-1, 3.6 MJ-1 and 4.1 respectively. A total of 10925.0 MJ of energy was used in the form of indirect energy and 1981.8MJ was in the direct form of energy. Non-renewable energy forms contributed the largest share (80.63 % of the total energy input used for rice production in the study area. Rice production in the study area was observed to be mainly dependent on non-renewable and indirect energy input especially herbicide. Thus, the study recommends the introduction of integrated weed management system in order to reduce cost and dependence on a non-renewable input for weed control.

  18. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Boresjoe Bronge, Laine [SwedPower AB, Stockholm (Sweden)

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given.

  19. Satellite remote sensing for estimating leaf area index, FPAR and primary production. A literature review

    International Nuclear Information System (INIS)

    Boresjoe Bronge, Laine

    2004-03-01

    Land vegetation is a critical component of several biogeochemical cycles that have become the focus of concerted international research effort. Most ecosystem productivity models, carbon budget models, and global models of climate, hydrology and biogeochemistry require vegetation parameters to calculate land surface photosynthesis, evapotranspiration and net primary production. Therefore, accurate estimates of vegetation parameters are increasingly important in the carbon cycle, the energy balance and in environmental impact assessment studies. The possibility of quantitatively estimating vegetation parameters of importance in this context using satellite data has been explored by numerous papers dealing with the subject. This report gives a summary of the present status and applicability of satellite remote sensing for estimating vegetation productivity by using vegetation index for calculating leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR). Some possible approaches for use of satellite data for estimating LAI, FPAR and net primary production (NPP) on a local scale are suggested. Recommendations for continued work in the Forsmark and Oskarshamn investigation areas, where vegetation data and NDVI-images based on satellite data have been produced, are also given

  20. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  1. Estimating Next Primary Productivity using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, B. J.

    The net primary productivity (C) or annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of the rate of gross photosynthesis (Ag) and autotrophic respiration (R) per unit ground area. Although available observations show that R is a large and variable fraction of Ag, viz., 0.3 to 0.7, it is generally recognized that much uncertainties exist in this fraction due to difficulties associated with the needed measurements. Additional uncertainties arise when these measurements are extrapolated to regional or global land surface using empirical equations, for example, using regression equations relating C to mean annual precipitation and air temperature. Here, a process- based approach has been taken to calculate Ag and R using satellite and ancillary data. Ag has been expressed as a product of radiation use efficiency, magnitude of intercepted photosynthetically active radiation (PAR), and normalized by stresses due to soil water shortage and air temperature away from the optimum range. A biophysical model has been used to determine the radiation use efficiency from the maximum rate of carbon assimilation by a leaf, foliage temperature, and the fraction of diffuse PAR incident on a canopy. All meteorological data (PAR, air temperature, precipitation, etc.) needed for the calculation are derived from satellite observations, while a land use, land cover data (based on satellite and ground measurements) have been used to assess the maximum rate of carbon assimilation by a leaf of varied cover type based on field measurements. R has been calculated as the sum of maintenance and growth components. The maintenance respiration of foliage and live fine roots at a standard temperature of different land cover has been determined from their nitrogen content using field and satellite measurements, while that of living fraction of woody stem (viz., sapwood) from the seasonal maximum leaf area index as determined from satellite

  2. Benthic Light Availability Improves Predictions of Riverine Primary Production

    Science.gov (United States)

    Kirk, L.; Cohen, M. J.

    2017-12-01

    Light is a fundamental control on photosynthesis, and often the only control strongly correlated with gross primary production (GPP) in streams and rivers; yet it has received far less attention than nutrients. Because benthic light is difficult to measure in situ, surrogates such as open sky irradiance are often used. Several studies have now refined methods to quantify canopy and water column attenuation of open sky light in order to estimate the amount of light that actually reaches the benthos. Given the additional effort that measuring benthic light requires, we should ask if benthic light always improves our predictions of GPP compared to just open sky irradiance. We use long-term, high-resolution dissolved oxygen, turbidity, dissolved organic matter (fDOM), and irradiance data from streams and rivers in north-central Florida, US across gradients of size and color to build statistical models of benthic light that predict GPP. Preliminary results on a large, clear river show only modest model improvements over open sky irradiance, even in heavily canopied reaches with pulses of tannic water. However, in another spring-fed river with greater connectivity to adjacent wetlands - and hence larger, more frequent pulses of tannic water - the model improved dramatically with the inclusion of fDOM (model R2 improved from 0.28 to 0.68). River shade modeling efforts also suggest that knowing benthic light will greatly enhance our ability to predict GPP in narrower, forested streams flowing in particular directions. Our objective is to outline conditions where an assessment of benthic light conditions would be necessary for riverine metabolism studies or management strategies.

  3. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  4. Altered primary production during mass-extinction events

    NARCIS (Netherlands)

    van de Schootbrugge, B.; Gollner, S.

    2013-01-01

    The Big Five mass-extinction events are characterized by dramatic changes in primary producers. Initial disturbance to primary producers is usually followed by a succession of pioneers that represent qualitative and quantitative changes in standing crops of land plants and/or phytoplankton. On land,

  5. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  6. Energy production and use in Dutch agriculture

    NARCIS (Netherlands)

    Dekkers, W.A.; Lange, J.M.; Wit, de C.T.

    1974-01-01

    Energy relationschips in the agriculture of one of the most densely populated areas of the world, the Nether lands, are described. The Netherlands appear selfsupporting in food energy. However, if one takes account of energy consumption in horticulture, the direct and indirect fossil energy cost

  7. Primary productivity and the prospects for biofuels in the United Kingdom

    Science.gov (United States)

    Lawson, G. J.; Callaghan, T. V.

    1983-09-01

    Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha-1yr-1). Annual above ground production is predicted to be 165 Mt (6.9 t ha-1yr-1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.

  8. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  9. Assessment of environmental external effects in the production of energy

    DEFF Research Database (Denmark)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E.

    1995-01-01

    A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project the environm......A project in Denmark has been carried out with the purpose to assess the environmental damages and the external costs in the production of energy. The energy production technologies that will be reported in this paper are wind power and a conventional coal fired plant. In the project...... the environmental damages for the energy production technologies are compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized....

  10. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    International Nuclear Information System (INIS)

    Iwata, Tadao; Iwase, Akihiro

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T 1/2 , is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T 1/2 , if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T 1/2 . This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  11. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Tadao; Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T{sub 1/2}, is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T{sub 1/2}, if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T{sub 1/2}. This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  12. Contribution of green energy sources to electrical power production of Turkey: A review

    International Nuclear Information System (INIS)

    Balat, Havva

    2008-01-01

    Green power products may be seen as a means of fostering renewable energy sources (RES) because they create and channel consumer demand for environmentally sound power generation. Turkey also has a large potential for renewable energy exploitation in a number of areas. Clean, domestic and renewable energy is commonly accepted as the key for future life, not only for Turkey but also for the world. The renewable energy contribution in the total primary energy production is insignificant. The alternative and renewable energy systems have been neglected so far in Turkey but must be included in the new energy programs. In this context, Renewable Energy Law was enacted in 2005 in order to encourage renewable-based generation in competitive market conditions. Supporting mechanisms such as feed-in tariffs and purchase obligation are defined in the law, in conformity with the EU legislation and practice. These mechanisms are envisaged to facilitate the development of power plants based on RES. (author)

  13. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Science.gov (United States)

    2012-06-29

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Battery Chargers and External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... Energy Efficiency and Renewable Energy, Building Technologies Program, EE-2J, 1000 Independence Avenue SW...

  14. Barriers to retail marketing of renewable energy products in an energy-rich province

    International Nuclear Information System (INIS)

    Haner, S.A.

    1999-01-01

    Personal experiences in attempting to market photovoltaics and other renewable energy products in Alberta, a province rich in energy sources, are recounted as part of an exploration of ways to help industry to develop strategies that will advance the acceptance of renewable energy products, particularly in areas of the world that are not concerned about energy supply. Social acceptability, emphasis on a healthy and convenient lifestyle associated with renewable energy products, practical, user-friendly products, and competitive prices, are some of the key elements in successfully marketing renewable energy products

  15. Potential consequences of climate change for primary production and fish production in large marine ecosystems.

    Science.gov (United States)

    Blanchard, Julia L; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J Icarus; Holt, Jason; Dulvy, Nicholas K; Barange, Manuel

    2012-11-05

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.

  16. On risk assessment of energy production

    International Nuclear Information System (INIS)

    Kunii, Katsuhiko

    2005-07-01

    Today we cannot ignore the risk of health and/or environment by energy production such as power generation since the risk has been made large enough. In this report an information survey has been done in order to know the outline and points of risk assessment. Based on the information of reports and literature about risk assessment, have been surveyed mainly the external cost assessment of power generation (in which quantification of health and/or environment risk has been done), in addition, risks of disasters, accidents, investments, finance etc. and impacts of those risks on social activities. The remarks obtained by the survey are as follows: 1) Some of external cost assessment of power generation show different results even if the assessment conditions of technology, site, etc. are mostly the same. It is necessary to remark on the information such as basic data, model, background, application limit of assessment considering the reliability. 2) Especially it is considered that the reliability of risk assessment is not enough at present because of the lack of basic data. (author)

  17. Process and device for thermal energy production

    International Nuclear Information System (INIS)

    Mangus, J.D.

    1977-01-01

    The main aim of the invention is to create a heating cycle arrangement, for the energy production facilities as from liquid metal cooled nuclear reactors, that will stand up to the temperature changes of the heated steam at least as from the high pressure turbine. This arrangement includes a first system in which flows a liquid metal coolant between a heat source, a steam generator and a utilisation system on which flows a vaporisable fluid from this generator, passing through a first turbine, a heater, at least a second turbine and a condenser. The steam heated in the heater is heated by the liquid metal coolant. A preheater is located in the heated steam system upstream of the heater. This preheater is connected so as to heat the steam to a preset, practically constant value, before this steam to be heated enters the heater heated by the liquid metal. This arrangement reduces the thermal transitions in the superheater and the heater during load changes. In a preferential design mode, the steam from the steam generator is sent to a moisture extraction drum and the heater is exposed to the steam in this drum [fr

  18. Role of fluctuations in the primary energy estimation of cosmic rays

    International Nuclear Information System (INIS)

    Kempa, J.; Malecki, R.

    2008-01-01

    Energy spectrum and chemical composition of primary cosmic ray for energies higher than 1 PeV are obtained mainly from research on the intensity and properties of extensive air showers (EAS). Similar additional information is obtained from research on properties of gamma ray families. A common characteristic of these researches is the fact that we are working in the range of high fluctuation parameters serving us to obtain primary energy spectrum. In this research different probability distributions have been used as well as their convolutions with the power spectrum. The role of the influence of different parameters on measurements of the primary energy spectrum

  19. Preparation of a primary target for the production of fission products in a nuclear reactor

    International Nuclear Information System (INIS)

    Arino, H.; Cosolito, F.J.; George, K.D.; Thornton, A.K.

    1976-01-01

    A primary target for the production of fission products in a nuclear reactor, such as uranium or plutonium fission products, is comprised of an enclosed, cylindrical vessel, preferably comprised of stainless steel, having a thin, continuous, uniform layer of fissionable material, integrally bonded to its inner walls and a port permitting access to the interior of the vessel. A process is also provided for depositing uranium material on to the inner walls of the vessel. Upon irradiation of the target with neutrons from a nuclear reactor, radioactive fission products, such as molybdenum-99, are formed, and thereafter separated from the target by the introduction of an acidic solution through the port to dissolve the irradiated inner layer. The irradiation and dissolution are thus effected in the same vessel without the necessity of transferring the fissionable material and fission products to a separate chemical reactor. Subsequently, the desired isotopes are extracted and purified. Molybdenum-99 decays to technetium-99m which is a valuable medical diagnostic radioisotope. 3 claims, 1 drawing figure

  20. Dossier: renewable energies for heat production; Dossier: energies renouvelables pour la production de chaleur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-09-01

    This dossier makes a state-of-the-art of today's applications of renewable energy sources in the residential, collective and tertiary sectors for the space heating and the hot water production. In France, three energy sources profit by a particularly favorable evolution: the solar thermal, the wood fuel and the geothermal energies. In these sectors, the offer of reliable and technically achieved appliances has been considerably widen thanks to the impulse of some French and German manufacturers. Part 1 - solar thermal: individual solar water heaters (monobloc, thermosyphon with separate tank, forced circulation systems, auxiliary heating systems); combined solar systems (direct heating floor, system with storage); collective solar systems for hot water production (receivers, efficiency, heat storage and transfer, auxiliary heating, decentralized systems); heating of open-air swimming pools; some attempts in air-conditioning; the warranty of results. Part 2 - wood fuels: domestic space heating (log boilers, installation rules, hydro-accumulation, automatic boilers); collective and tertiary wood-fueled heating plants (design of boiler plants, fuel supply, combustion chamber, smoke purification systems, ash removal, regulation system), fuels for automatic collective plants, design and installation rules. Part 3 - geothermal energy: different types (water-source and ground-source heat pumps, financial incentive). (J.S.)

  1. Search for ultra high energy primary photons at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Colalillo Roberta

    2016-01-01

    Full Text Available The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  2. Energetic and exergetic aspects of cotton stalk production in establishing energy policies

    International Nuclear Information System (INIS)

    Hepbasli, Arif; Utlu, Zafer; Akdeniz, R. Cengiz

    2007-01-01

    Exergy analysis is important for energy resource utilization, because exergy, which is a way to a sustainable future, is a part of the energy analysis. Exergy analysis starts to play a role in several countries in developing energy policy. This paper deals with the exergetic assessment of the cotton stalk (CS) production. In this regard, Turkey, which is one of the eight countries producing 85% of the world's cotton, is given as an application country first. Energy and exergy relations used in the analysis are then presented. Finally, the Turkish CS production in 2003 is evaluated using energy and exergy analyses method, while the results obtained are discussed. The values for the net energy and exergy gained are obtained to be about 49,146 and 59,395 MJ/ha, respectively. Turkey's total energy and exergy are estimated to be 75.45 and 81.87 PJ. It may be concluded that this amount of energy is equal to 7.77% and 2.38% of Turkey's primary energy production and consumption in the same year, respectively. The overall mean energy and exergy efficiencies of the cotton production in the year studied are found to be 33.06% and 33.12%, respectively. It is also expected that the results of this study will be helpful in developing highly applicable and productive planning for energy policies

  3. Environmental assessment of energy production from waste and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tonini, D.

    2013-02-15

    To evaluate the environmental and energy performance of bioenergy and waste-to-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was done by integrating the results of energy system analysis into life cycle assessment scenarios. - Identification of the criticalities of bioenergy systems, particularly in relation to land use changes. - Identification of potentials and criticalities associated with innovative waste refinery technologies. This was done by assessing a specific pilot-plant operated in Copenhagen, Denmark. The waste refining treatment was compared with a number of different state-of-the-art technologies such as incineration, mechanical-biological treatment and landfilling in bioreactor. The results highlighted that production of liquid and solid biofuels from energy crops should be limited when inducing indirect land use changes (iLUC). Solid biofuels for use in combined heat and power plants may perform better than liquid biofuels due to higher energy conversion efficiencies. The iLUC impacts stood out as the most important contributor to the induced GHG emissions within bioenergy systems. Although quantification of these impacts is associated with high uncertainty, an increasing number of studies are documenting the significance of the iLUC impacts in the bioenergy life cycle. With respect to municipal solid waste, state of the art incineration, MBT and waste refining (with associated energy and material recovery processes) may all provide important and comparable GHG emission savings. The waste

  4. Humidified micro gas turbines for domestic users: An economic and primary energy savings analysis

    International Nuclear Information System (INIS)

    Montero Carrero, Marina; De Paepe, Ward; Bram, Svend; Musin, Frédéric; Parente, Alessandro; Contino, Francesco

    2016-01-01

    Micro Gas Turbines (mGTs) offer valuable advantages for small-scale Combined Heat and Power (CHP) production compared to reciprocating Internal Combustion Engines (ICEs): lower maintenance costs per kWh_e, cleaner exhaust, lower vibration levels and concentration of the residual heat in a single source (the exhaust gases). Nevertheless, mGTs have lower electrical efficiencies, fact that has prevented them from penetrating in the CHP market. Hot liquid water injection—by means of a saturation tower within the micro Humid Air Turbine (mHAT) cycle—allows both improving the flexibility of heat production and the electrical efficiency of mGTs; two qualities that if enhanced would increase the economic feasibility of the technology. Although the advantages of mHAT technology have been proven from a thermodynamic point of view, its economic performance has not yet been fully investigated. This paper presents a comparison of the economic profitability and the primary energy savings of an mGT, an ICE and an mHAT unit operating in real network conditions. Our aim is to investigate whether the increase in flexibility and electrical efficiency, achieved when transforming an mGT into an mHAT, allows this technology to economically outperform ICEs. Results show that the three units are viable in scenarios with high electricity and low natural gas prices. For the cases in which investment is feasible, the revenues with mHAT are the highest: thanks to their flexibility in heat generation, mHAT units are able to run all year long. On the other hand, the greatest primary energy savings are achieved with ICE units—which have the highest overall efficiencies—while mHAT savings are substantially lower. - Highlights: • We analyse the economics and primary energy savings of an ICE, an mGT and an mHAT. • We consider hourly heat and electricity demand profiles and 25 price scenarios. • Our analysis is carried out for two domestic users with distinctive demand profiles. • If

  5. Energy. From natural sources to production challenges

    International Nuclear Information System (INIS)

    2002-09-01

    Human beings have always needed energy to feed themselves and move about. Energy can be found in various forms. Today's technologies are capable of tapping all possible resources (e.g. fossil fuels, water, wind, sun) to produce large quantities of energy. Now, at the start of the 21. century, energy remains essential for mankind. It represents a major political, economic, scientific and environmental challenge. Of the many properties found in material objects, energy is not only one of the most important but also one of the most abstract, since it is not actually tangible. (authors)

  6. Primary production in the Bay of Bengal during southwest monsoon of 1978

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.; Devassy, V.P.; Radhakrishna, K.

    Measurements of primary production, chlorophyll a and particulate organic carbon were made at 33, 43 and 44 stations respectively during August-September of 1978. The average surface production, chlorophyll a and particulate organic carbon values...

  7. Primary Productivity, NASA Aqua MODIS and GOES Imager, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  8. Primary Productivity, SeaWiFS and Pathfinder, 0.1 degrees, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from SeaWiFS Chl a, Pathfinder SST, and SeaWiFS PAR data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  9. Primary Productivity, NASA Aqua MODIS, 4.4 km, Global, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from NASA Aqua MODIS Chl a SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific evaluation by professional...

  10. Nitrous oxide emissions of energy production

    International Nuclear Information System (INIS)

    Kinnunen, L.

    1998-01-01

    The share of energy production of the world-wide total N 2 O emissions is about 10 %. In 1991 the N 2 O emissions estimated to be up to 30 %. The previous estimates based on incorrect measurements. The measurement methods have been improved during the past few years. The present measurements have shown that the share of the combustion of fossil fuels is about 2.0 % and the share biomass combustion about 5.0 % of the total. The uncertainty of the values can be few percentage units. According to the present measurements the share of natural emissions and the fertilizers of the total N 2 O emissions is up to 60 %. The formation of nitrous oxide has been studied widely in various countries in the world. In Finland nitrous oxide has been studied in the national LIEKKI research programme. As a result of the research carried out in the programme it has been possible to reduce the formation of N 2 O by using appropriate catalysts and combustion technologies. Nitrous oxide is formed e.g. in fluidized-bed combustion of nitrogen containing fuels. The combustion temperature of other combustion methods is so high that the gas disintegrates in the furnace. By the new methods the nitrous oxide emissions of the fluidized-bed combustion has been possible to reduce from 100-200 ppm to the level less than 50 ppm of the flue gas volume. The Japanese research has shown that the nitrous oxide emissions of bubbling beds vary in between 58 - 103 ppm, but when combusting paper the emissions are 6 - 29 ppm. The corresponding value of circulating fluidized beds is 40 - 153 ppm

  11. From Policy to Compliance: Federal Energy Efficient Product Procurement

    Energy Technology Data Exchange (ETDEWEB)

    DeMates, Laurèn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Scodel, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-09-06

    Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resources available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater

  12. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    Science.gov (United States)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  13. Market distortions and aggregate productivity: Evidence from Chinese energy enterprises

    International Nuclear Information System (INIS)

    Dai, Xiaoyong; Cheng, Liwei

    2016-01-01

    Market distortions can generate resource misallocations across heterogeneous firms and reduce aggregate productivity. This paper measures market distortions and aggregate productivity growth in China's energy sector. We use the wedge between output elasticities and factor shares in revenues to recover a measure of firm-level market distortions. Using data on a large sample of Chinese energy enterprises from 1999 to 2007, our estimations provide strong evidence of the existence of both factor and product market distortions within and across China's various energy industries. The productivity aggregation and decomposition results demonstrate that the estimated aggregate productivity growth (APG) is, on average, 2.595% points per year, of which technological change, resource reallocation, and firm entries and exits account for 1.981, 0.068, and 0.546% points, respectively. The weak contributions of resource reallocation and firm turnover to APG are also found in energy sub-industries, except in the coal industry. Our research suggests that China's energy sector has major potential for productivity gains from resource reallocation through the reduction of market distortions. - Highlights: •We estimate market distortions and productivity growth of China's energy sector. •We use a large sample of Chinese energy enterprises. •There are evidences of the existence of factor and product market distortions. •Aggregate productivity growth is largely driven by firm-level technological change. •China's energy sector can realize productivity gains from resource reallocations.

  14. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  15. Energy harvesting: small scale energy production from ambient sources

    Science.gov (United States)

    Yeatman, Eric M.

    2009-03-01

    Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.

  16. Greener energy systems energy production technologies with minimum environmental impact

    CERN Document Server

    Jeffs, Eric

    2012-01-01

    Recent years have seen acceleration in the development of cleaner energy systems. In Europe and North America, many old coal-fired power plants will be shut down in the next few years and will likely be replaced by combined cycle plants with higher-efficiency gas turbines that can start up and load quickly. With the revival of nuclear energy, designers are creating smaller nuclear reactors of a simpler integrated design that could expand the application of clean, emission-free energy to industry. And a number of manufacturers now offer hybrid cars with an electric motor and a gasoline engine t

  17. Environmental conditions and primary production in a Sahelian ...

    African Journals Online (AJOL)

    Environmental descriptors (nutrient, water transparency, temperature ... Nutrient concentrations were low, with high variability (from 0 to 30 µg.l-1 for DIN and from 0 to 18 µg.l-1 for. PO4). The primary ... and permanent interventions of sea water.

  18. Energy use pattern in rice production: A case study from Mazandaran province, Iran

    International Nuclear Information System (INIS)

    AghaAlikhani, M.; Kazemi-Poshtmasari, H.; Habibzadeh, F.

    2013-01-01

    Highlights: ► We compare the energy use efficiency in rice production for traditional and mechanized system. ► Since farmers growing native, high yield and hybrid rice cultivars we have focused on mean data. ► Chemical fertilizer has the highest share in total energy inputs were followed by diesel fuel. ► Rice production in traditional system has lower output but higher EUE than mechanized system. - Abstract: Rice (Oryza sativa L.) is grown under both traditional system (TS) and mechanized system (MS) in Iran. In this study the energy consumption for rice is analyzed in Mazandaran, Northern province of Iran. The indicators are: net energy, energy use efficiency, specific energy, energy productivity, direct energy, indirect energy, renewable energy, non-renewable and total energy input. The cultivars of rice commonly grown in Iran are listed in three groups: native, high yield cultivars and hybrid cultivar. Primary data were obtained through field survey and personal interviews using questionnaires from 48 agricultural services center in Mazandaran province. Secondary data and energy equivalents were obtained from available literature using collected data of the production period of 2007–2008. Analysis of date showed that averagely diesel fuel had the highest share within the total energy inputs, followed by chemical fertilizer in rice production in both TS and MS. Energy use efficiency was calculated as 1.72 in TS and 1.63 in MS. Total energy consumption in rice production were 71,092.26 MJ/ha (TS) and 79,460.33 MJ/ha (MS). In general, there were not significant changes regarding the human labor and chemicals in tow systems

  19. Effect of the fast pyrolysis temperature on the primary and secondary products of lignin

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; Kersten, Sascha R.A.; McDonald, Armando G.; Westerhof, Roel Johannes Maria

    2013-01-01

    This paper presents results on the primary pyrolysis products of organosolv lignin at temperatures between 360 and 700 °C. To study the primary products, a vacuum screen heater (heating rate of 8000 °C/s, deep vacuum of 0.7 mbar, and very fast cooling at the wall temperature of −100 °C) was used.

  20. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Science.gov (United States)

    Peggy E. Moore; Jan W. van Wagtendonk; Julie L. Yee; Mitchel P. McClaran; David N. Cole; Neil K. McDougald; Matthew L. Brooks

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate....

  1. Primary production, nutrient dynamics and mineralisation in a northeastern Greenland fjord during the summer thaw

    DEFF Research Database (Denmark)

    Rysgaard, S.; Finster, K.; Dahlgaard, H.

    1996-01-01

    This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m(...

  2. Sovereign funds: energy products and investors in energy

    International Nuclear Information System (INIS)

    Bertin Delacour, Caroline

    2009-01-01

    Energy, especially oil, is the source of wealth of two-thirds of SWFs, located in the Middle East, Africa, America, Russia and Norway. The countries exporting natural resources use these investment vehicles to fight against the drawbacks of their rent economy: price volatility, non-renewal of resources, resource curse and 'dutch disease'. SWFs can indeed stabilize export earnings, preserve wealth for future generations and diversify the economy. Energy is also a prime area for investment of sovereign wealth funds, which have different objectives depending on their origin. The funds of the Persian Gulf, already rich in fossil resources, form partnerships with leading groups in the field of energy to acquire the technology they lack. The funds from countries lacking natural resources, such as China, seek to take control of foreign companies operating or processing raw materials with a view to secure energy independence of their country

  3. Carbon and nitrogen trade-offs in biomass energy production

    Energy Technology Data Exchange (ETDEWEB)

    Cucek, Lidija; Klemes, Jiri Jaromir [University of Pannonia, Centre for Process Integration and Intensification (CPI" 2), Research Institute of Chemical and Process Engineering, Faculty of Information Technology, Veszprem (Hungary); Kravanja, Zdravko [University of Maribor, Faculty of Chemistry and Chemical Engineering, Maribor (Slovenia)

    2012-06-15

    This contribution provides an overview of carbon (CFs) and nitrogen footprints (NFs) concerning their measures and impacts on the ecosystem and human health. The adversarial relationship between them is illustrated by the three biomass energy production applications, which substitute fossil energy production applications: (i) domestic wood combustion where different fossil energy sources (natural gas, coal, and fuel oil) are supplemented, (ii) bioethanol production from corn grain via the dry-grind process, where petrol is supplemented, and (iii) rape methyl ester production from rape seed oil via catalytic trans-esterification, where diesel is supplemented. The life cycle assessment is applied to assess the CFs and NFs resulting from different energy production applications from 'cradle-to-grave' span. The results highlighted that all biomass-derived energy generations have lower CFs and higher NFs whilst, on the other hand, fossil energies have higher CFs and lower NFs. (orig.)

  4. Energy production and financial analysis of photovoltaic energy plants in Ivory Coast

    OpenAIRE

    Guaita Pradas, Inmaculada; Marí Soucase, Bernabé; BOKO, AKA

    2015-01-01

    One key factor for boosting economic growth in developing countries is the energetic independence of the countries. Renewable energies are well suited for such purpose even if effective dissemination of renewable energies is their production price. The energy production of solar plants is highly dependent of both sun radiation and climate data and therefore dependent of their location. This paper reports on the economic and financial calculations related to the energy production of a standard...

  5. Assessment of energy return on energy investment (EROEI) of oil bearing crops for renewable fuel production

    OpenAIRE

    A. Restuccia; S. Failla; D. Longo; L. Caruso; I. Mallia; G. Schillaci

    2013-01-01

    As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested) has been used. At this aim, an...

  6. Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Science.gov (United States)

    Tilstone, Gavin H.; Lange, Priscila K.; Misra, Ankita; Brewin, Robert J. W.; Cain, Terry

    2017-11-01

    Micro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m-2 d-1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)-1 h-1) followed by nano- (∼4 mg C (mg Chl a)-1 h-1) and pico- (∼2 mg C (mg Chl a)-1 h-1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998-2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC

  7. Can the primary algae production be measured precisely?

    International Nuclear Information System (INIS)

    Olesen, M.; Lundsgaard, C.

    1996-01-01

    Algae production in seawater is extremely important as a basic link in marine food chains. Evaluation of the algae quantity is based on 14CO 2 tracer techniques while natural circulation and light absorption in seawater is taken insufficiently into account. Algae production can vary by 500% in similar nourishment conditions, but varying water mixing conditions. (EG)

  8. Agrification: Agriculture for the industry and energy production

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The new aspect of agrification is the production of alternative products, which can replace fossil sources. This substitution is necessary in order to replace hazardous materials and to find a solution for the problem of depletion of conventional energy sources and basic materials. Attention is paid to some developments in Germany: agricultural products for the production of energy, and new industrial applications for vegetable filaments. With regard to energy production from agricultrual products one should distinguish between (a) solid energy sources (biomass), f.e. straw, fast-growing wood, elephant's grass, hay and rapeseed, and (b) fluid and gaseous energy sources, f.e. purified and partly refined rapeseed oil, rapeseed oil methyl-ester (RME), ethanol from sugar beet, methanol from straw and hydrogen from straw and/or elephant's grass. 4 figs., 7 refs

  9. Linking climate, gross primary productivity, and site index across forests of the western United States

    Science.gov (United States)

    Aaron R. Weiskittel; Nicholas L. Crookston; Philip J. Radtke

    2011-01-01

    Assessing forest productivity is important for developing effective management regimes and predicting future growth. Despite some important limitations, the most common means for quantifying forest stand-level potential productivity is site index (SI). Another measure of productivity is gross primary production (GPP). In this paper, SI is compared with GPP estimates...

  10. Go offshore -Combining food and energy production

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Stuiver, Marian; Guanche, Raul

    European oceans will be subject to massive development of marine infrastructure in the near future. The development includes energy facilities, e.g. offshore wind farms, exploitation of wave energy, and also development and implementation of marine aquaculture This change of infrastructure makes ...

  11. Energy production for environmental issues in Turkey

    Science.gov (United States)

    Yuksel, Ibrahim; Arman, Hasan; Halil Demirel, Ibrahim

    2017-11-01

    Due to the diversification efforts of energy sources, use of natural gas that was newly introduced into Turkish economy, has been growing rapidly. Turkey has large reserves of coal, particularly of lignite. The proven lignite reserves are 8.0 billion tons. The estimated total possible reserves are 30 billion tons. Turkey, with its young population and growing energy demand per person, its fast growing urbanization, and its economic development, has been one of the fast growing power markets of the world for the last two decades. It is expected that the demand for electric energy in Turkey will be 580 billion kWh by the year 2020. Turkey's electric energy demand is growing about 6-8% yearly due to fast economic growing. This paper deals with energy demand and consumption for environmental issues in Turkey.

  12. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  13. Energy efficiency and econometric analysis of broiler production farms

    International Nuclear Information System (INIS)

    Heidari, M.D.; Omid, M.; Akram, A.

    2011-01-01

    The objective of this study was to determine the energy consumption per 1000 bird for the broiler production in Yazd province, Iran. The data were collected from 44 farms by using a face-to-face questionnaire method during January–February 2010. The collected information was analyzed using descriptive statistics, economic analysis and stochastic frontier production function. The production technology of the farmer was assumed to be specified by the Cobb–Douglas (CD) production function. Total input energy was found to be 186,885.87 MJ (1000 bird) −1 while the output energy was 27,461.21 MJ (1000 bird) −1 . The values of specific energy and energy ratio were calculated at 71.95 MJ kg −1 and 0.15, respectively. The sensitivity of energy inputs was estimated using the marginal physical productivity (MPP) method. The MPP value showed the high impact of human labor and machinery energy inputs on output energy. Returns to scale (RTS) values for broiler were found to be 0.96; thus, there prevailed a decreasing RTS for the estimated model. The net return was found positive, as 1386.53 $ (1000 bird) −1 and the benefit to cost ratio from broiler production was calculated to be 1.38. The study revealed that production of meat was profitable in the studied area. -- Highlights: ► We determined the energy use efficiency (EUE) for the broiler production as 0.15, indicating inefficiency use of energy in these farms. ► Total input and output energies were found to be 186,885.87 MJ (1000 bird) −1 and 27,461.21 MJ (1000 bird) −1 , respectively. ► Cobb–Douglas (CD) frontier production function was found useful in developing econometric model for broiler production. ► The results of budgetary analysis indicate production of meat in broiler farms is profitable in the studied area.

  14. The impact of future energy demand on renewable energy production – Case of Norway

    International Nuclear Information System (INIS)

    Rosenberg, Eva; Lind, Arne; Espegren, Kari Aamodt

    2013-01-01

    Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export. - Highlights: • Projections to 2050 of Norwegian energy demand services, carriers and technologies. • Energy demand services calculated based on intensities and activities. • Energy carriers and technologies analysed by TIMES-Norway. • High renewable target results in more wind power production and electricity export. • Increased energy efficiency is important for a high renewable fraction

  15. Energy use in citrus production of Mazandaran province in Iran ...

    African Journals Online (AJOL)

    The total energy requirement under citrus farming was 17,112.2 MJ ha-1, whereas 36.3 and 33.62% was consumed due to fertilisers and pesticides, respectively. Renewable energy was about 12% of total energy input. The energy ratio, productivities, specific and net energy gain were 1.71, 0.905, 1.104 and 12,251.4 MJ ...

  16. Primary production of edaphic algal communities in a Mississippi salt marsh

    International Nuclear Information System (INIS)

    Sullivan, M.J.; Moncreiff, C.A.

    1988-01-01

    Primary production rates of edaphic algae associated with the sediments beneath four monospecific canopies of vascular plants were determined over an annual cycle in a Mississippi salt marsh. The edaphic algal flora was dominated by small, motile pennate diatoms. Algal production (as measured by 14 C uptake) was generally highest in spring-early summer and lowest in fall. Hourly rates ranged from a low of 1.4 mg C/m 2 in Juncus roemerianus Scheele to a high of 163 mg C/m 2 beneath the Scirpus olneyi Gray canopy. Stepwise multiple regressions identified a soil moisture index and chlorophyll a as the best environmental predictors of hourly production; light energy reaching the marsh surface and sediment and air temperature proved of little value. Adding the relative abundances of 33 diatom taxa to the set of independent variables only slightly increased R 2 ; however, virtually all variables selected were diatom taxa. R 2 was only 0.38 for the Spartina alterniflora Loisel. habitat but ranged from 0.70 to 0.87 for the remaining three vascular plant zones. Annual rates of algal production (g C/m 2 ) were estimated as follows: Juncus (28), Spartina (57), Distichlis spicata (L.) Greene (88), and Scirpus (151). The ratio of annual edaphic algal production to vascular plant net aerial production (EAP/VPP) was 10-12% for the first three habitats and 61% for Scirpus. Chlorophyll a concentrations, annual algal production rates, and EAP/VPP values were comparable to those determined in Texas, Delaware, and Massachusetts salt marshes but lower than those reported for Georgia and particularly California marshes

  17. 24 Energy production and financial analysis of photovoltaic energy ...

    African Journals Online (AJOL)

    Bernabé Marí Soucase

    ISSN 1813-548X, http://www.afriquescience.info. Inmaculada ... returns of the electricity production is calculated by using capital budgeting techniques. It is demonstrated ... into account in order to assess the profitability of the investment.

  18. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Evaluation of electrical energy production patterns

    International Nuclear Information System (INIS)

    Conti, F.; Graziani, G.; Zanantoni, C.

    1975-06-01

    The main features and typical applications of the code TOTEM, developed by the CCR under request of DG XVII are described. The code is used to evaluate the physical and economical consequences of electrical power station installation policies. The input data are: the time-dependent electrical energy demand and its load duration curve, the physical and economical characteristics of the power stations, and the splitting of the energy between the various types of stations, apart from the energy produced by a plutonium burner and plutonium producer, which is calculated by the code. The output includes; costs, fuel consumption, separative work requirements

  20. Nanoenergy Nanotechnology Applied for Energy Production

    CERN Document Server

    Leite, Edson

    2013-01-01

    Low dimensional systems have revolutionized the science and technology in several areas. However, their understanding is still a great challenge for the scientific community. Solar energy conversion devices based on nanostructured materials have shown exceptional gains in efficiency and stability. In this context, nanostructures allow an improvement of surface properties, transport and charge transfer, as well as direct application as sensors and storage devices and energy conversion. This book discuss the recent advances and future trends of the nanoscience in solar energy conversion and storage. It explores and discusses recent developments both in theory as well as in experimental studies and is of interest to materials scientists, chemists, physicists and engineers.

  1. The global contribution of energy consumption by product exports from China.

    Science.gov (United States)

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  2. Energy production on farms. Sustainability of energy crops

    International Nuclear Information System (INIS)

    Van Zeijts, H.

    1995-01-01

    In this article the results of a study on sustainability of energy crops are discussed. Contribution to the reduction of the greenhouse effect and other environmental effects were investigated for the Netherlands. The study assumed that energy crops are grown on set-aside land or grain land. Generating electricity and/or heat from hemp, reed, miscanthus, poplar and willow show the best prospects. These crops are sustainable and may in the future be economically feasible. Ethanol from winter wheat shows the most favourable environmental effects, but is not economically efficient. Liquid fuels from oil seed rape and sugar beet are not very sustainable. 2 tabs., 4 refs

  3. Studies of meson production at SIS energies

    International Nuclear Information System (INIS)

    Hartnack, Ch.; David, Ch.; Aichelin, J.

    1996-01-01

    IQMD results on kaon and pion data are presented. The influence of the equation of state and of the elementary kaon cross sections on the excitation function and on the system size dependence is analyzed. Effects of density dependent threshold reductions for the production of positive and negative kaons are studied. The influence of the Delta lifetime on the pion production is discussed. (author)

  4. PROMOTION OF PRIMARY PRODUCTS - A VIEW FROM THE CLOISTER

    OpenAIRE

    Quilkey, John J.

    1986-01-01

    This paper is a discourse on how promotion may contribute to the efficiency of consumption. The view is taken that, through its addition to the quantity of search with respect to product characteristics, promotion may enable consumers to allocate their expenditures more efficiently and yield additional revenue to producers of the promoted product. The central plea is for consistency in the identification of promotion objectives, the implementation of the promotion program and monitoring of th...

  5. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    Science.gov (United States)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  6. Productivity and Energy Expenditure by Sawyers When Using ...

    African Journals Online (AJOL)

    Therefore, based on overall results it is concluded that, the PLSP is technically more appropriate technology or method for reducing energy expenditure and for increasing productivity during timber harvesting in agroforestry farms. Keywords: Productivity, Energy expenditure, Pitsawing and Portable log sawing. Rwanda ...

  7. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  8. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  9. Problems of environment pollution in energy production

    International Nuclear Information System (INIS)

    Soyberk, Oe.

    2000-01-01

    This publication relates to nuclear fuel cycle and environment, nuclear accidents, risk analysis, test of nuclear weapon, security problems of nuclear power plants, advantages and disadvantages of energy sources, climate variation due to environment pollution

  10. The role of energy policy in agricultural biogas energy production in Visegrad countries

    Directory of Open Access Journals (Sweden)

    Chodkowska-Miszczuk Justyna

    2017-03-01

    Full Text Available Energy production by agricultural biogas plants has recently recorded considerable growth in Visegrad countries. The development was enhanced by European Union’s efforts to increase the proportion of energy produced from renewable sources. The paper aims to assess the role of energy policy in the development of agricultural biogas energy production in Visegrad region. Conducted studies have shown that among various forms of support for energy production from renewable energy sources, the price system prevails, including the support by feed in tariffs and bonuses. Feed in tariffs were adopted in Czech Republic, Hungary and Slovakia. Another kind of support system – a quota system – was adopted in Poland, what includes tendering and certificate systems. The results confirm the adoption of legal framework was necessary step to enable agricultural biogas energy production in Visegrad countries, but itself it was not enough to stimulate development of agricultural biogas energy production significantly. Rapid development in each country was recorded only after the certain financial support systems took effect, what made production of agricultural biogas energy economically efficient for investors. The production of energy from agricultural biogas grew the most in the Czech Republic and Slovakia, where the financial support was the highest. Nevertheless, the protracted process of changes in legal framework and transformation of energy policy, certain measures including state-controlled price-making systems, risk regarding with auction system might hamper agricultural biogas energy production further development.

  11. H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge.

    Science.gov (United States)

    Ki, Dongwon; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2017-06-06

    We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H 2 O 2 ) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H 2 O 2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H 2 O 2 production using PS in an MPPC, and the energy requirement for H 2 O 2 production was low (∼0.87 kWh/kg H 2 O 2 ) compared to previous studies using real wastewaters. The H 2 O 2 gradually decayed with time due to the diffusion of H 2 O 2 -scavenging carbonate ions from the anode. We compared the anodic performance with a H 2 -producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H 2 O 2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).

  12. 24 Energy production and financial analysis of photovoltaic energy ...

    African Journals Online (AJOL)

    Bernabé Marí Soucase

    A techno-economic analysis has been used for project cost control, ... First of all, we defined Cash Flow as movements of money in and out of any ... cost of electric energy in Côte d'Ivoire for the common use of families and small companies [9].

  13. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  14. Energy constraints and organizational change in US production

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    There is still considerable uncertainty about the way in which energy-supply constraints affect industrial thinking and activity. Yet, this is an important issue in determining the effectiveness of conservation programs and in formulating energy policy. The authors expand on a survey of US business attitudes and responses to energy constraints first published in the September 1979 Energy Policy with the results of further analysis of their survey. In particular, they examine correlations between perceived causes and preferred solutions of energy problems, organizational adjustments to energy constraints in energy-intensive industries, and the ways in which production operations have changed in response to supply problems. 5 references, 5 tables.

  15. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  16. Estimation of the energy ratio between primary and ambience components in stereo audio data

    NARCIS (Netherlands)

    Harma, A.S.

    2011-01-01

    Stereo audio signal is often modeled as a mixture of instantaneously mixed primary components and uncorrelated ambience components. This paper focuses on the estimation of the primary-to-ambience energy ratio, PAR. This measure is useful for signal decomposition in stereo and multichannel audio

  17. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  18. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Stith T. Gower; Maosheng Zhao; Steve W. Running; Steven C. Wofsy; Shawn Urbanski; Allison L. Dunn; J.W. Munger

    2003-01-01

    The Moderate Resolution Imaging Radiometer (MODIS) is the primary instrument in the NASA Earth Observing System for monitoring the seasonality of global terrestrial vegetation. Estimates of 8-day mean daily gross primary production (GPP) at the 1 km spatial resolution are now operationally produced by the MODIS Land Science Team for the global terrestrial surface using...

  19. Energy accounting of materials, products, processes and services. [Ten papers

    Energy Technology Data Exchange (ETDEWEB)

    Verbraeck, A [ed.

    1976-01-01

    Ten papers were presented, namely: Units in Energy Accounting--How Are They Defined, How Are They Measured, by Dr. Malcolm Slesser; Economics of Energy Analysis, by Dr. Thomas Veach Long II; Energy Considerations in Synthetic and Natural Fibers, by Mr. A. H. Woodhead; Energy Accounting in Food Products, by Mr. Gerald Leach; Energy Analysis of Transportation Systems, by Dr. E. J. Tuininga; Energy Accounting of Packaging Materials for Liquids and Their Transport viz Bottles and Pipes, by Mr. A. Bolzinger; Energy Accounting of Steel, by Dr. A. Decker; Energy Accounting of Aluminium, by Dr. D. Altenpohl, T. S. Daugherty, and W. Blum; Energy Requirement of Some Energy Sources, by Dr. P. F. Chapman and Dr. D. F. Hemming; Energy Analysis of Materials and Structures in the Building Industry, by Professor Dr. P. C. Kreijger. A panel discussion in response to a large number of questions was chaired by Professor Dr. W. van Gool. (MCW)

  20. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  1. Energy efficiency improvement target for SIC 34 - fabricated metal products

    Energy Technology Data Exchange (ETDEWEB)

    Byrer, T. G.; Billhardt, C. F.; Farkas, M. S.

    1977-03-15

    A March 15, 1977 revision of a February 15, 1977 document on the energy improvement target for the Fabricated Metal Products industry (SIC 34) is presented. A net energy savings in 1980 of 24% as compared with 1972 energy consumption in SIC 34 is considered a realistic goal. (ERA citation 04:045008)

  2. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  3. Biomass energy production in agriculture: A weighted goal programming analysis

    International Nuclear Information System (INIS)

    Ballarin, A.; Vecchiato, D.; Tempesta, T.; Marangon, F.; Troiano, S.

    2011-01-01

    Energy production from biomasses can be an important resource that, when combined with other green energies such as wind power and solar plants, can contribute to reduce dependency on fossil fuels. The aim of this study is to assess how agriculture could contribute to the production of bio-energy. A multi-period Weighted Goal Programming model (MpWGP) has been applied to identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production under three concurrent constraints: water, labour and soil availability. Alternative scenarios are considered that take into account the effect of climate change and social change. The MpWGP model was tested with data from the Rovigo county area (Italy) over a 15-year time period. Our findings show that trade-off exists between the two optimisation targets considered. Although the optimisation of the first target requires traditional agricultural crops, which are characterised by high revenue and a low production of biomass energy, the latter would be achievable with intensive wood production, namely, high-energy production and low income. Our results also show the importance of the constraints imposed, particularly water availability; water scarcity has an overall negative effect and specifically affects the level of energy production. - Research Highlights: → The aim of this study is to assess how agriculture could contribute to the production of bio-energy. → A multi-period (15-year) Weighted Goal Programming model (MpWGP) has been applied. → We identify the optimal land use combinations that simultaneously maximise farmers' income and biomass energy production. → Three concurrent constraints have been considered: water, labour and soil availability.→ Water scarcity has an overall negative effect and specifically affects the level of energy production.

  4. Upscaling Ameriflux observations to assess drought impacts on gross primary productivity across the Southwest

    Science.gov (United States)

    Barnes, M.; Moore, D. J.; Scott, R. L.; MacBean, N.; Ponce-Campos, G. E.; Breshears, D. D.

    2017-12-01

    Both satellite observations and eddy covariance estimates provide crucial information about the Earth's carbon, water and energy cycles. Continuous measurements from flux towers facilitate exploration of the exchange of carbon dioxide, water and energy between the land surface and the atmosphere at fine temporal and spatial scales, while satellite observations can fill in the large spatial gaps of in-situ measurements and provide long-term temporal continuity. The Southwest (Southwest United States and Northwest Mexico) and other semi-arid regions represent a key uncertainty in interannual variability in carbon uptake. Comparisons of existing global upscaled gross primary production (GPP) products with flux tower data at sites across the Southwest show widespread mischaracterization of seasonality in vegetation carbon uptake, resulting in large (up to 200%) errors in annual carbon uptake estimates. Here, remotely sensed and distributed meteorological inputs are used to upscale GPP estimates from 25 Ameriflux towers across the Southwest to the regional scale using a machine learning approach. Our random forest model incorporates two novel features that improve the spatial and temporal variability in GPP. First, we incorporate a multi-scalar drought index at multiple timescales to account for differential seasonality between ecosystem types. Second, our machine learning algorithm was trained on twenty five ecologically diverse sites to optimize both the monthly variability in and the seasonal cycle of GPP. The product and its components will be used to examine drought impacts on terrestrial carbon cycling across the Southwest including the effects of drought seasonality and on carbon uptake. Our spatially and temporally continuous upscaled GPP product drawing from both ground and satellite data over the Southwest region helps us understand linkages between the carbon and water cycles in semi-arid ecosystems and informs predictions of vegetation response to future

  5. Application of controlled thermonuclear reactor fusion energy for food production

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, M.

    1975-06-01

    Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

  6. Energy analysis of solar photovoltaic module production in India

    International Nuclear Information System (INIS)

    Prakash, R.; Bansal, N.K.

    1995-01-01

    The objective of this article is to evaluate the energy consumption in solar photovoltaic (SPV) module production in India and examine its implications for large-scale introduction of SPV plants in the country. Data on energy used in SPV production were collected from existing manufacturing facilities in the country. The energy payback period turns out to be approximately 4 years. This is comparable to energy payback periods of similar modules produced internationally. However, if an ambitious program of introducing SPV power production is undertaken to contribute substantially to the power scenario in the country, an annual growth rate beyond 21% will render the program an energy sink rather than an energy source, as borne out by dynamic energy analysis. Policy implications are also discussed in light of this analysis

  7. Associated strangeness production at intermediate energies

    International Nuclear Information System (INIS)

    Saghai, B.

    1996-04-01

    Elementary strangeness production reactions with hadronic and electromagnetic probes are briefly reviewed. Some recent theoretical and experimental findings are underlined and a few open questions are singled out. (author)

  8. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  9. Production of chemical energy carriers by non-expendable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, J

    1976-01-01

    The different forms of energy (radiation, high-temperature heat and electricity) arising from non-expendable energy sources like solar energy can be used for the production of chemical energy-carriers. Possible methods are the splitting of water by means of photolysis, thermochemical cycles and electrolysis, as well as the storage of energy in closed loop chemical systems. These methods are described and efficiencies and costs of the production of these energy carriers are specified. Special problems of the long-distance transportation of hydrogen produced by solar energy are described and the resulting costs are estimated.

  10. Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis

    International Nuclear Information System (INIS)

    Trupin-Wasselin, V.

    2000-01-01

    The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e - aq , H . , OH . , H 2 O 2 , H 2 ). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H 2 O 2 yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H 2 O 2 yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H 2 O 2 formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O 2 .- yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)

  11. Next generation of energy production systems

    International Nuclear Information System (INIS)

    Rouault, J.; Garnier, J.C.; Carre, F.

    2003-01-01

    This document gathers the slides that have been presented at the Gedepeon conference. Gedepeon is a research group involving scientists from Cea (French atomic energy commission), CNRS (national center of scientific research), EDF (electricity of France) and Framatome that is devoted to the study of new energy sources and particularly to the study of the future generations of nuclear systems. The contributions have been classed into 9 topics: 1) gas cooled reactors, 2) molten salt reactors (MSBR), 3) the recycling of plutonium and americium, 4) reprocessing of molten salt reactor fuels, 5) behavior of graphite under radiation, 6) metallic materials for molten salt reactors, 7) refractory fuels of gas cooled reactors, 8) the nuclear cycle for the next generations of nuclear systems, and 9) organization of research programs on the new energy sources

  12. Strategic environmental assessment for energy production

    International Nuclear Information System (INIS)

    Jay, Stephen

    2010-01-01

    Amongst the approaches that have developed to improve environmental protection within the energy sector, strategic environmental assessment (SEA) has received relatively little attention. This is despite its potential to overcome some of the shortcomings associated with project-level assessment by intervening at higher levels of energy system planning. In this article, a review is presented of the extent to which SEA has been adopted and otherwise promoted in strategic energy planning processes in a wide range of countries throughout the world (with an emphasis on European Union nations). In this regard, the growing importance of regulatory compliance is underlined, especially within the EU, with a particular focus upon the application of SEA to grid systems. The case of the Belgian transmission system is described, illustrating a proactive approach to SEA. But the difficulties inherent in introducing SEA to an increasingly fragmented and liberalised sector are also drawn out, leading to suggestions by which these difficulties may be addressed.

  13. Simulation Tool For Energy Consumption and Production

    DEFF Research Database (Denmark)

    Nysteen, Michael; Mynderup, Henrik; Poulsen, Bjarne

    2013-01-01

    In order to promote adoption of smart grid with the general public it is necessary to be able to visualize the benefits of a smart home. Software tools that model the effects can help significantly with this. However, only little work has been done in the area of simulating and visualizing...... the energy consumption in smart homes. This paper presents a prototype simulation tool that allows graphical modeling of a home. Based on the modeled homes the user is able to simulate the energy consumptions and compare scenarios. The simulations are based on dynamic weather and energy price data as well...... as well as appliances and other electrical components used in the modeled homes....

  14. The Prospects of Rubberwood Biomass Energy Production in Malaysia

    Directory of Open Access Journals (Sweden)

    Jegatheswaran Ratnasingam

    2015-03-01

    Full Text Available Rubber has been shown to be one of the most important plantation crops in Malaysia, and rubber tree biomass has widespread applications in almost all sectors of the wood products manufacturing sector. Despite its abundance, the exploitation of rubberwood biomass for energy generation is limited when compared to other available biomass such as oil palm, rice husk, cocoa, sugarcane, coconut, and other wood residues. Furthermore, the use of biomass for energy generation is still in its early stages in Malaysia, a nation still highly dependent on fossil fuels for energy production. The constraints for large scale biomass energy production in Malaysia are the lack of financing for such projects, the need for large investments, and the limited research and development activities in the sector of efficient biomass energy production. The relatively low cost of energy in Malaysia, through the provision of subsidy, also restricts the potential utilization of biomass for energy production. In order to fully realize the potential of biomass energy in Malaysia, the environmental cost must be factored into the cost of energy production.

  15. Computing the Net Primary Productivity for a Savanna- Dominated ...

    African Journals Online (AJOL)

    komla

    2003-05-19

    May 19, 2003 ... productivity of CO2 (between 1–2% per year) continues, a doubling of the CO2 ... The work ... Numerous isotope mass balance equa-tions are proposed to ..... Terrestrial ecoregions of the world: a new map of life on earth.

  16. Products of tungstate ion interaction with primary aliphatic amines

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sejfullina, I.I.; Purich, A.N.; Babinets, S.K.

    1982-01-01

    Using the methods of conductometric titration, IR-spectroscopic and thermographic analyses precipitates formed in the process of interaction of diluted aqueous solutions of sodium tungstate with alcoholic solutions of dodecyl-, tetradecyl- and octadecylamine have been studied. It is shown that as a result of interaction tungstates of corresponding amines are formed. The structure and thermal stability of singled out products are determined

  17. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and

  18. Energy in France. References

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet is a compilation of key data about the energy in France: energy and economy (energy industries and gross internal product, employment, investments), overall energies (primary energy production and consumption, sectoral consumption, energy bill, price of imported crude oil), petroleum (primary production, sectoral consumption of refined petroleum products, automotive fuels demand, import and export of petroleum products), natural gas (production, sectoral consumption, imports per country of origin), coal (production, sectoral consumption, imports), electric power (production per origin, classical thermal production per type of fuel, sectoral consumption), renewable energies (overall production, heat networks supplied with non-conventional energy sources, wood consumption, wind power production, solar thermal and photovoltaic production), rational use of energy (primary energy intensity, cumulated energy saving), energy prices (in industries and households, automotive fuel prices, energy consumptions in households), energy and environment (CO 2 emissions). A synthesis of the main energy tariffs and prices is given in a separate folder. (J.S.)

  19. Algae production for energy and foddering

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Attila; Jobbagy, Peter; Durko, Emilia [University of Debrecen, Faculty of Applied Economics and Rural Development (UD-FAERD), Centre for Agricultural and Applied Economic Sciences, Debrecen (Hungary)

    2011-09-15

    This study not only presents the results of our own experiments in alga production, but also shows the expected economic results of the various uses of algae (animal feed, direct burning, pelleting, bio-diesel production), the technical characteristics of a new pelleting method based on literature, and also our own recommended alga production technology. In our opinion, the most promising alternative could be the production of alga species with high levels of oil content, which are suitable for utilization as by-products for animal feed and in the production of bio-diesel, as well as for use in waste water management and as a flue gas additive. Based on the data from our laboratory experiments, of the four species we analyzed, Chlorella vulgaris should be considered the most promising species for use in large-scale experiments. Taking expenses into account, our results demonstrate that the use of algae for burning technology purposes results in a significant loss under the current economic conditions; however, the utilization of algae for feeding and bio-diesel purposes - in spite of their innovative nature - is nearing the level needed for competitiveness. By using the alga production technology recommended by us and described in the present study in detail, with an investment of 545 to 727 thousand EUR/ha, this technology should be able to achieve approximately 0-29 thousand EUR/ha net income, depending on size. More favorable values emerge in the case of the 1-ha (larger) size, thanks to the significant savings on fixed costs (depreciation and personnel costs). (orig.)

  20. A model of regional primary production for use with coarse resolution satellite data

    Science.gov (United States)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  1. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    Science.gov (United States)

    Madani, Nima; Kimball, John S.; Running, Steven W.

    2017-11-01

    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.

  2. MODIS-based global terrestrial estimates of gross primary productivity and evapotranspiration

    Science.gov (United States)

    Ryu, Y.; Baldocchi, D. D.; Kobayashi, H.; Li, J.; van Ingen, C.; Agarwal, D.; Jackson, K.; Humphrey, M.

    2010-12-01

    We propose a novel approach to quantify gross primary productivity (GPP) and evapotranspiration (ET) at global scale (5 km resolution with 8-day interval). The MODIS-based, process-oriented approach couples photosynthesis, evaporation, two-leaf energy balance and nitrogen, which are different from the previous satellite-based approaches. We couple information from MODIS with flux towers to assess the drivers and parameters of GPP and ET. Incoming shortwave radiation components (direct and diffuse PAR, NIR) under all sky condition are modeled using a Monte-Carlo based atmospheric radiative transfer model. The MODIS Level 2 Atmospheric products are gridded and overlaid with MODIS Land products to produce spatially compatible forcing variables. GPP is modeled using a two-leaf model (sunlit and shaded leaf) and the maximum carboxylation rate is estimated using albedo-Nitrogen-leaf trait relations. The GPP is used to calculate canopy conductance via Ball-Berry model. Then, we apply Penman-Monteith equation to calculate evapotranspiration. The process-oriented approach allows us to investigate the main drivers of GPP and ET at global scale. Finally we explore the spatial and temporal variability of GPP and ET at global scale.

  3. Sustainable Production of Switchgrass for Biomass Energy

    Science.gov (United States)

    Switchgrass (Panicum virgatum L.) is a C4 grass native to the North American tallgrass prairies, which historically extended from Mexico to Canada. It is the model perennial warm-season grass for biomass energy. USDA-ARS in Lincoln, NE has studied switchgrass continuously since 1936. Plot-scale rese...

  4. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  5. Improved assessment of gross and net primary productivity of Canada's landmass

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  6. Energy-Performance as a driver for optimal production planning

    International Nuclear Information System (INIS)

    Salahi, Niloofar; Jafari, Mohsen A.

    2016-01-01

    Highlights: • A 2-dimensional Energy-Performance measure is proposed for energy aware production. • This is a novel approach integrates energy efficiency with production requirements. • This approach simultaneously incorporates machine and process related specifications. • The problem is solved as stochastic MILP with constraints addressing risk averseness. • The optimization is illustrated for 2 cases of single and serial machining operation. • Impact of various electricity pricing schemes on proposed production plan is analyzed. - Abstract: In this paper, we present energy-aware production planning using a two-dimensional “Energy-Performance” measure. With this measure, the production plan explicitly takes into account machine-level requirements, process control strategies, product types and demand patterns. The “Energy-Performance” measure is developed based on an existing concept, namely, “Specific Energy” at machine level. It is further expanded to an “Energy-Performance” profile for a production line. A production planning problem is formulated as a stochastic MILP with risk-averse constraints to account for manufacturer’s risk averseness. The objective is to attain an optimal production plan that minimizes the total loss distribution subject to system throughput targets, probabilistic risk constraints and constraints imposed by the underlying “Energy-Performance” pattern. Electricity price and demand per unit time are assumed to be stochastic. Conditional Value at Risk (CVaR) of loss distributions is used as the manufacturer’s risk measure. Both single-machine and production lines are studied for different profiles and electricity pricing schemes. It is shown that the shape of “Energy-Performance” profile can change optimal plans.

  7. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  8. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  9. France's energy balance for 2014: production peak and a consumption low

    International Nuclear Information System (INIS)

    Rouquette, Celine

    2015-07-01

    2014 was the warmest year since 1900 in France and in the rest of the world. In particular, the mild winter led to heating needs 7 million tonnes of oil equivalent (Mtoe) lower than the needs in an average year. Real primary energy consumption fell below the symbolic 250 Mtoe level, a low it had not reached since 1995. Although energy demand decreased, national primary energy production increased for the second year running, reaching 139 Mtoe, a little over 1 Mtoe higher than in 2013. This rise in production is explained by nuclear generated electricity. The 2014 physical trade deficit for energy therefore decreased significantly, by 10 Mtoe, to below 114 Mtoe. Such a low level had not been observed since 1988. The level of energy self-sufficiency rose sharply in 2014, to 55.8%, a level not hitherto reached. The decrease in net energy imports was accompanied by a drop in quoted prices for energy products on the European and international markets. As a result, France's energy bill was 17% lower than in 2013. At around euro 55 billion, it fell to a level close to that of the early 1980's. Even excluding the effects of the higher temperatures in 2014, thereby adjusting for climate variations, primary energy went from 275 Mtoe - its maximum, reached in 2005 - to 257 Mtoe, with an average annual decrease of -2 Mtoe, confirming the downward trend initiated in the mid-2000's. Final energy consumption was 150 Mtoe in 2014, the lowest level since 1996. It decreased by a little more than 1% in relation to 2013, with reductions in all sectors except for transport, where consumption remained stable. (author)

  10. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  11. Energy and Production Planning for Process Industry Supply Chains

    OpenAIRE

    Waldemarsson, Martin

    2012-01-01

    This thesis addresses industrial energy issues from a production economic perspective. During the past decade, the energy issue has become more important, partly due to rising energy prices in general, but also from a political pressure on environmental awareness concerning the problems with climate change. As a large user of energy the industry sector is most likely responsible for a lot of these problems. Things need to change and are most likely to do so considering current and assumed fut...

  12. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  13. LIFE CYCLE OF THE PHARMACEUTICAL PRODUCT AND PRIMARY STRATEGIC GOALS

    Directory of Open Access Journals (Sweden)

    Cristina\tCIOT

    2015-12-01

    Full Text Available In addition to innovation, production at high standards, market and marketing policy, pharmaceutical companies need strategies that could cope with apparent contradictions, convergences and divergences, centralisation and involution, at the global and local level, focus and liberty, domestic production and external supply, ownership and alliances, networks and hierarchies, science or market orientation, all these being part of the essence of a profitable and expanding pharmaceutical company. Specialists appreciate that the 20 century will remain in the collective memory for its technological achievements, including a better understanding of the atomic structure, „information explosion” encouraged by the progress of the computer technology, the news from space exploration. If one wants to evaluate its importance in terms of impact on people’s lives, the 20 century could be called THE DRUG AREA. Many experts agree that, at the end of this century, pharmaceutical products would have a higher importance for our lives due to the special progress in neurobiology, immunology, molecular biology, cellular differentiation, cell membrane and genetic studies. In the pharmaceutical industry, important funds are directed towards research and development, while few understand and appreciate the contribution brought by the pharmaceutical marketing system and by the professionals in this field. These ones make the drug accessible at the right time and place, in the required quantity, at a reasonable price and with all the information required.

  14. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Romankiewicz, John [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  15. Field Experience from Li-Ion BESS Delivering Primary Frequency Regulation in the Danish Energy Market

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Lærke, Rasmus

    2014-01-01

    In this paper it is presented the practical experience from operating a 1.6 MW/ 0.4 MWh lithium ion battery energy storage system, which is providing primary frequency regulation service on the Danish energy market. Aspects of the battery system requirements and the used control strategy...

  16. Water Use of Fossil Energy Production and Supply in China

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2017-07-01

    Full Text Available Fossil energy and water resources are both important for economic and social development in China, and they are tightly interlinked. Fossil energy production consumes large amounts of water, and it is essential to investigate the water footprint of fossil energy production (WFEP in China. In addition, fossil energy is supplied to consumers in China by both domestic and foreign producers, and understanding the water footprint of fossil energy supply (WFES is also highly significant for water and energy development programs in the long-term. The objectives of this paper were to provide an estimation of the blue component of WFEP and WFES in China for the period from 2001 to 2014, and to evaluate the impact on water resources from energy production, the contribution of internal and external WFES, and water-energy related issues of the international energy trade by applying water footprint analysis based on the bottom-up approach. The results indicate that generally, the WFEP and WFES in China both maintained steady growth before 2013, with the WFEP increasing from approximately 3900 million m3/year to 10,400 million m3/year, while the WFES grew from 3900 million m3/year to 11,600 million m3/year. The fossil energy production caps of the 13th Five Year Plan can bring the water consumed for fossil energy production back to a sustainable level. Over the long-term, China’s energy trade plan should also consider the water and energy resources of the countries from which fossil energy is imported.

  17. Energy requirement and economic analysis of citrus production in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan, Burhan E-mail: bozkan@akdeniz.edu.tr; Akcaoz, Handan; Karadeniz, Feyza

    2004-07-01

    The aim of this research was to examine the energy requirements of the inputs and output in citrus production in the Antalya province of Turkey. Data for the production of citrus fruits (orange, lemon and mandarin) were collected from 105 citrus farms by using a face to face questionnaire method. The research results revealed that lemon production was the most energy intensive among the three fruits investigated. The energy input of chemical fertilizer (49.68%), mainly nitrogen, has the biggest share in the total energy inputs followed by Diesel (30.79%). The lemon production consumed a total of 62 977.87 MJ/ha followed by orange and mandarin with 60 949.69 and 48 838.17 MJ/ha, respectively. The energy ratios for orange, mandarin and lemon were estimated to be 1.25, 1.17 and 1.06, respectively. On average, the non-renewable form of energy input was 95.90% of the total energy input used in citrus production compared to only 3.74% for the renewable form. The benefit-cost ratio was the highest in orange production (2.37) followed by lemon. The results indicate that orange production in the research area is most remunerative to growers compared to lemon and mandarin.

  18. Estimating climatological variability of solar energy production

    Czech Academy of Sciences Publication Activity Database

    Juruš, Pavel; Eben, Kryštof; Resler, Jaroslav; Krč, Pavel; Kasanický, Ivan; Pelikán, Emil; Brabec, Marek; Hošek, Jiří

    98 Part C, December (2013), s. 255-264 ISSN 0038-092X R&D Projects: GA MŠk LD12009 Institutional support: RVO:67985807 ; RVO:68378289 Keywords : MERRA * reanalysis * numerical weather prediction * photovoltaic power production Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.541, year: 2013

  19. Improved parametrization of K+ production in p-Be collisions at low energy using Feynman scaling

    International Nuclear Information System (INIS)

    Mariani, C.; Cheng, G.; Shaevitz, M. H.; Conrad, J. M.

    2011-01-01

    This paper describes an improved parametrization for proton-beryllium production of secondary K + mesons for experiments with primary proton beams from 8.89 to 24 GeV/c. The parametrization is based on Feynman scaling in which the invariant cross section is described as a function of x F and p T . This method is theoretically motivated and provides a better description of the energy dependence of kaon production at low beam energies than other parametrizations such as the commonly used modified Sanford-Wang model. This Feynman scaling parametrization has been used for the simulation of the neutrino flux from the Booster Neutrino Beam at Fermilab and has been shown to agree with the neutrino interaction data from the SciBooNE experiment. This parametrization will also be useful for future neutrino experiments with low primary beam energies, such as those planned for the Project X accelerator.

  20. Affordability for sustainable energy development products

    International Nuclear Information System (INIS)

    Riley, Paul H.

    2014-01-01

    Highlights: • Clean cookstoves that also generate electricity improve affordability. • Excel spreadsheet model to assist stakeholders to choose optimum technology. • Presents views for each stakeholder villager, village and country. • By adding certain capital costs, affordability and sustainability are improved. • Affordability is highly dependent on carbon credits and social understandings. - Abstract: Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions. Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target. Thermo-electric is currently the only

  1. DEPENDENCE OF ENERGY EFFICIENCY AND COST OF PRODUCTION

    Directory of Open Access Journals (Sweden)

    D. Sklyarov

    2016-01-01

    Full Text Available Economic systems exist on condition of receipt and spending of energy. Energy consumption is a necessary condition for the existence and functioning of the economic systems of any scale: macroeconomics, microeconomics, regional economy or the world economy.The economic system operates on the scale at which it is able to produce energy and get access to energy. Moreover, receipt and consumption of energy in the operation of the economic system is mainly determined by, the level of energy production from energy sources, since this level is determined by the level of energy consumption by industries and enterprises of the economy.Currently, the economic system does not produce energy in reserve. Thus, the question of energy effi ciency and energy saving was always acute.The article describes the energy efficiency and energy saving effect on the cost of production. Were used two methods: “costs and release” matrix and “price - value added” matrix. The result is the equation of dependence of energy efficiency and costs.

  2. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  3. Energy requirement for the production of silicon solar arrays

    Science.gov (United States)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  4. Development of a nuclear spallation simulation code and calculations of primary spallation products

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Nakahara, Yasuaki; Tsutsui, Tsuneo

    1986-08-01

    In order to make evaluations of computational models for the nuclear spallation reaction from a nuclear physics point of view, a simulation code NUCLEUS has been developed by modifying and combining the Monte Carlo codes NMTC/JAERI and NMTA/JAERI for calculating only the nuclear spallation reaction (intranuclear cascade + evaporation and/or fast fission) between a nucleus and a projectile without taking into consideration of internuclear transport. New several plotting routines have been provided for the rapid process of much more event data, obtained by using the ARGUS plotting system. The results obtained by our code can be directly compared with the experimental results using by thin foil experiments in which internuclear multiple collisions have little effects, and will serve to upgrade the calculational methods and the values of nuclear parameters currently used in the calculations. Some discussions are done about the preliminary computational results obtained by using NUCLEUS. The mass distribution and charge dispersion of reaction products are examined in some detail for the nuclear spallation reaction between incident protons and target nuclei, such as U, Pb and Ag, in the energy range from 0.5 GeV to 3.0 GeV. These results show that the distribution of reaction products ceases to change its form as the proton energy increases over about 2 GeV. The same tendency is seen in the energy dependence of the number of primary particles emitted from a nucleus. After spallation reactions, a variety of nuclei, especially many neutron deficient nuclides with nuclear charges nearly equal to ones of a target nucleus, are produced. Due to their short lifetime most of them will change to stable nuclides in due time. Finally, some important issues are discussed to improve the present simulation method. (author)

  5. Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Goyal, D.P.; Yugindro Singh, K.; Singh, S.

    1986-01-01

    The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)

  6. Environmental assessment of energy production from waste and biomass

    DEFF Research Database (Denmark)

    Tonini, Davide

    . To evaluate the environmental and energy performance of bioenergy and wasteto-energy systems life cycle assessment was used in this thesis. This was supported by other tools such as material, substance, energy flow analysis and energy system analysis. The primary objective of this research was to provide...... a consistent framework for the environmental assessment of innovative bioenergy and waste-to-energy systems including the integration of LCA with other tools (mentioned earlier). The focus was on the following aspects: - Evaluation of potential future energy scenarios for Denmark. This was doneby integrating...... assessing the environmental performance of the waste refinery, a detailed knowledge of the waste composition is recommendable as this determines the energy outputs and thereby the assessment results. The benefits offered by the waste refinery compared with incinerators and MBT plants are primarily related...

  7. Primary Screening of 10 - Hydroxy - 2 - Decenoic Acid Productive Strains

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, eleven strains, which vere screened strictly from raw royal.jelly, soil and honeycomb etc. by means of dilution plate and spread plate methods, were cultured at 28°C for60 h with shaking. To determine whether they could yield 10-Hydroxy-2-decenoic acid during fermentation, gas chromatography and gas chromatography-mass spectrometry methods were used. The results showed that the strains BH002 and BH004. were both identified as Crvtococcaceae. where BH002 was primarily classified into Candida for possessing the abilities. The 10-HDA productivity of Candida BH002 and that of BH004 were 0.327% and 0.2648% respectively.

  8. The impact of energy prices on industrial energy efficiency and productivity

    International Nuclear Information System (INIS)

    Boyd, G.A.

    1993-01-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers

  9. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  10. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  11. Development of a framework and tool to asses on-farm energy uses of cotton production

    International Nuclear Information System (INIS)

    Chen Guangnan; Baillie, Craig

    2009-01-01

    Within highly mechanised agricultural productions systems such as the Australian cotton industry, operational energy inputs represent a major cost to the growers. In this paper, a framework to assess the operational energy inputs of various production systems and the relative performance of a grower within an adopted system is developed. It divides energy usage of cotton production into six broadly distinct processes, including fallow, planting, in-crop, irrigation, harvesting and post harvest. This enables both the total energy inputs and the energy usage of each production processes to be assessed. This framework is later implemented and incorporated into an online energy assessment tool (EnergyCalc). Using the developed software, seven farm audits are conducted. It is found that overall, depending on the management and operation methods adopted, the total energy inputs for these farms range from 3.7 to 15.2 GJ/ha of primary energy, which corresponds to $80-310/ha and 275-1404 kg CO 2 equivalent/ha greenhouse gas emissions. Among all the farming practices, irrigation water energy use is found to be the highest and is typically 40-60% of total energy costs. Energy use of the harvesting operation is also significant, accounting for approximately 20% of overall direct energy use. If a farmer moves from conventional tillage to minimum tillage, there is a potential saving of around 10% of the overall fuel used on the farm. Compared with cotton, energy uses by other crops are generally much smaller, due to less intensive management practices, and reduced irrigation requirements.

  12. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  13. Energy Production from Marine Biomass (Ulva lactuca)

    DEFF Research Database (Denmark)

    Nikolaisen, Lars; Daugbjerg Jensen, Peter; Svane Bech, Karin

    The background for this research activity is that the 2020 goals for reduction of the CO2 emissions to the atmosphere are so challenging that exorbitant amounts of biomass and other renewable sources of energy must be mobilised in order to – maybe – fulfil the ambitious 2020 goals. The macroalgae...... is an unexploited, not researched, not developed source of biomass and is at the same time an enormous resource by mass. It is therefore obvious to look into this vast biomass resource and by this report give some of the first suggestions of how this new and promising biomass resource can be exploited....

  14. Primary production measurements at three reservoirs in the state of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Jureidini, P.; Chinez, S.J.; Agudo, E.G.

    1983-01-01

    Primary production measurements were carried out at three reservoirs in the state of Sao Paulo, Barra Bonita, Paiva Castro and Ponte nova using the 14 C technique. Meanwhile, several physical and chemical parameters of these water were also evaluated, in order to find out the limnological conditions of these reservoirs. Primary production rates ranged from 7,6mg C/m 3 d at Ponte Nova, to 247,2mg C/m 3 d at Barra Bonita. There seems to be god correlation between water quality data and primary production measurements. Regarding the results, it may be stated that the Barra Bonita reservoir has reached the eutrophic level, while the other two exibit mesotrophic levels. As a way of testing the water quality data collected was used in Churchill and Nicholas model, issuing results in agreement with those of the primary production measurements. (Author) [pt

  15. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  16. Safety assessment of smoke flavouring primary products by the European Food Safety Authority

    NARCIS (Netherlands)

    Theobald, A.; Arcella, D.; Carere, A.; Croera, C.; Engel, K.H.; Gott, D.; Gurtler, R.; Meier, D.; Pratt, I.; Rietjens, I.M.C.M.; Simon, R.; Walker, R.

    2012-01-01

    This paper summarises the safety assessments of eleven smoke flavouring primary products evaluated by the European Food Safety Authority (EFSA). Data on chemical composition, content of polyaromatic hydrocarbons and results of genotoxicity tests and subchronic toxicity studies are presented and

  17. NODC Standard Format Primary Productivity 1 (F029) Data (1958-1983) (NODC Accession 0014152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains data from measurements of primary productivity. The data are collected to provide information on nutrient levels and nutrient flow in offshore...

  18. Recent Primary Production and Small Phytoplankton Contribution in the Yellow Sea during the Summer in 2016

    Science.gov (United States)

    Jang, Hyo Keun; Kang, Jae Jung; Lee, Jae Hyung; Kim, Myungjoon; Ahn, So Hyun; Jeong, Jin-Yong; Yun, Mi Sun; Han, In-Seong; Lee, Sang Heon

    2018-05-01

    The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.

  19. Primary productivity in the Karwar Bay, Karnataka, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, U.G.; Naik, R.K.; Nayak, V.N.

    The measurement of primary production is of great importance because of its significance to the problems of aquatic ecology and fishery management. The interaction of light intensity, temperature and nutrient levels determines the photosynthetic...

  20. Remote sensing of oceanic primary production: Computations using a spectral model

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R.

    A spectral model of underwater irradiance is coupled with a spectral version of the photosynthesis-light relationship to compute oceanic primary production. The results are shown to be significantly different from those obtained using...

  1. Phytoplankton pigments and primary production around the oil fields off Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.J.; Ramaiah, Neelam; Mehta, P.; Krishnakumari, L.; Nair, V.R.

    Studies on phytoplankton pigments, primary productivity and particulate organic carbon were made at 21 locations off Bombay (Maharashtra, India) and adjacent waters during the 48th cruise of @iORV Sagar Kanya@@ in December 1988 to January 1989...

  2. Ocean primary production and available light: Further algorithms for remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Platt, T.; Sathyendranath, S.; Caverhill, C.M.; Lewis, M.R.

    (1986, Deep-Sea Research, 33, 149-163) Further empirical evidence is presented to show the stability of the relationship between surface light and biomass-normalized primary production of the ocean water column A theoretical explanation is given...

  3. Primary productivity of marine macrophytes in the coral reef lagoon of the Kadmat Island, Lakshadweep

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Shaikh, N.

    n situ primary productivity measurements were carried out with different macrophyte species (belonging to four groups) dominating the benthic communities in the coral reef lagoon of the Kadmat Island of the Lakshadweep Archipelago...

  4. Corrosion products behaviour under VVER primary coolant conditions

    International Nuclear Information System (INIS)

    Grygar, T.; Zmitko, M.

    2002-01-01

    The aim of this work was to collect data on thermodynamic stability of Cr, Fe, and Ni oxides, mechanisms of hydrothermal corrosion of stainless steels and to compare the real observation with the theory. We found that the electrochemical potential and pH in PWR and VVER are close to the thermodynamic boundary between two fields of stable spinel type oxides. The ways of degradation of the passivating layers due to changes in water chemistry were considered and PWR and VVER systems were found to be potentially endangered by reductive attack. In certain VVER systems the characteristics of the passivating layer on steels and also concentration of soluble corrosion products seem to be in contradiction with the theoretical expectations. (author)

  5. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...... rotary kilns, while NOx formation from fuel-N and reduction of NOx take place in calciners. NOx formation in the rotary kiln is mainly governed by the necessary clinker burning temperature and is not very amenable to control, while net NOx formation in calciners depends strongly on calciner design......, calciner operation, fuel properties and on the NOx level from the rotary kiln. The low-NOx calciner types presently marketed are based on combinations of reburning, air staging and temperature control and seem equivalent in their ability to restrict NOx formation. If fuels with a significant volatile...

  6. Energy efficiency improvements in ammonia production--perspectives and uncertainties

    International Nuclear Information System (INIS)

    Rafiqul, Islam; Weber, Christoph; Lehmann, Bianca; Voss, Alfred

    2005-01-01

    The paper discusses the energy consumption and energy saving potential for a major energy-intensive product in the chemical industry-ammonia, based on technologies currently in use and possible process improvements. The paper consists of four parts. In the first part, mainly references to various ammonia production technologies are given. Energy consumption, emissions and saving potentials are discussed in the second part. Thereby, the situation in Europe, the US and India is highlighted and various data sources are compared. In the third part of the paper, a novel approach for modeling energy efficiency improvements is described that accounts for uncertainties and unobserved heterogeneity in the production processes. Besides new investments, revamping investments are also included in the modeling and the development of the production stock is accounted for. Finally, in the fourth part, this approach is applied to the modeling of energy efficiency improvements and CO 2 emission reductions in ammonia production. Thereby, considerable improvements in specific energy use and CO 2 emissions are found in the reference scenario, yet under the assumption of high oil and gas prices, a partial switch to coal based technologies is expected which lowers notably the CO 2 efficiency. Introduction of a CO 2 penalty under a certificate trading or other regime is on contrary found to foster energy efficiency and the use of low carbon technologies

  7. Report revision master: an energy analysis of consumer products packaging

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This report serves as a foundation for quantifying the potential for energy conservation in the Canadian consumer products packaging sector. Investigation was made of energy consumption, waste management, and energy conservation potential in the various stages of the packaging and consumption process: raw material acquisition, material and packaging manufacture, package filling and distribution, consumer use, post-consumption options (energy recovery, disposal, recycling), and cleaning and transportation (if applicable) between each stage. The food and beverage industry was singled out as the most important sector because of its large consumption of packaging. Significant opportunities for energy conservation were found, although any savings accomplished through packaging changes appear to be difficult to implement. Packaging energy savings seem to be able to be achieved only through a product-by-product, industry-by-industry initiative by means of product and package standardization. An efficient example of this is the milk distribution system, where refillable plastic jugs require only 1.4 MBtu per 3000 quarts delivered (as compared with, for example, 68.9 MBtu for disposable aluminium soft drink cans). Other conclusions are made concerning the optimization of packaging energy, with respect to types of packaging, energy requirements related to use of packaged products, impact of government policies and of retailing techiques, consumer lifestyles, and the like. 95 refs., 3 figs., 54 tabs.

  8. 78 FR 79638 - Energy Conservation Program for Consumer Products: Proposed Determination of Hearth Products as a...

    Science.gov (United States)

    2013-12-31

    ... Conservation Program for Consumer Products: Proposed Determination of Hearth Products as a Covered Consumer... determined that hearth products qualify as a covered product under Part A of Title III of the Energy Policy and Conservation Act (EPCA), as amended. More specifically, DOE has tentatively determined that hearth...

  9. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  10. Methylmercury bioaccumulation in stream food webs declines with increasing primary production

    Science.gov (United States)

    Walters, David; D.F. Raikow,; C.R. Hammerschmidt,; M.G. Mehling,; A. Kovach,; J.T. Oris,

    2015-01-01

    Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048–0.71 mg O2 L–1 d–1) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.

  11. Parameterization of surface irradiance and primary production in Århus Bay, SW Kattegat, Baltic Sea

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Sørensen, Helene Munk

    2009-01-01

    . The study is based on a one year long time-series of PAR, CTD-casts (n = 45), and primary production measurements (n = 24) from Århus Bay (56°09′ N; 10°20′ E), south west Kattegat. Results showed a high and positive correlation between observed and calculated primary production in the bay, as based...

  12. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...... and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...

  13. Sustainable Algal Energy Production and Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, William E. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  14. The forest products industry at an energy/climate crossroads

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Baek, Youngsun

    2010-01-01

    Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other 'green' products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO 2 emissions. - Research highlights: →Transformational energy and climate policies such as a national renewable electricity standard, a national policy of carbon constraints, and incentives for industrial energy efficiency could have significant impact upon the future of the forest products industry. →Each policy scenario reduces CO 2 emissions over time, compared to the business-as-usual forecast, with the carbon constrained policy producing the largest decline. As a package, the three policies together could cut CO 2 emissions from the electricity sector by an estimated 41% by 2030. →This study underscores the value of incentivizing energy efficiency in a portfolio of energy and

  15. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    Science.gov (United States)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  16. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  17. THE RENEWABLE ENERGY PRODUCTION-ECONOMIC DEVELOPMENT NEXUS

    Directory of Open Access Journals (Sweden)

    Gorkemli Kazar

    2014-04-01

    Full Text Available As renewable energy requirements increases, its relation with development is controversial. In this study, by taking human development index for development level, the relationship between renewable electricity net generation values and development has been searched with panel analysis. Study covers two different time periods: 1980-2010 with 5 year data to analyze long term effects and 2005-2010 yearly data for short term effects. Unlike previous studies, energy generation has been taken into consideration for it is thought to be more related with economic development. It is found that in the long run economic development will be leading to renewable energy production, while in the short run there exists a bidirectional causal relationship between renewable energy production and economic development. In addition, the causal relationship between economic development and renewable energy production varies both in the long run and in the short run due to human development level of the countries.

  18. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  19. Department of Energy programs and objectives: energy conservation in agricultural production

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This document describes the current Department of Energy agriculture research program as it relates to the research recommendations submitted by a 1976 workshop on energy conservation in agricultural production. In-depth discussions on fertilizers, irrigation, crop drying, fuel substitution, crop and animal production systems, greenhouses, materials handling, and transport systems are included. (MCW)

  20. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.

    Science.gov (United States)

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2016-04-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  2. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  3. Hypernucleus Production at RHIC and HIRFL-CSR Energy

    International Nuclear Information System (INIS)

    Zhang, S.; Xu, Z.; Chen, J.H.; Ma, Y.G.; Tang, Z.B.

    2010-01-01

    We calculated the hypertriton production at RHIC-STAR and HIRFL-CSR acceptance, with a multi-phase transport model (AMPT) and a relativistic transport model (ART), respectively. In specific, we calculated the Strangeness Population Factor S 3 = Λ 3 H/( 3 H e x Λ/p) at different beam energy. Our results from AGS to RHIC energy indicated that the collision system may change from hadronic phase at AGS energies to partonic phase at RHIC energies. Our calculation at HIRFL-CSR energy supports the proposal to measure hypertriton at HIRFL-CSR.

  4. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  5. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  6. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Sama Amid

    2016-06-01

    Full Text Available A literature review shows that energy consumption in agricultural production in Iran is not efficient and a high degree of inefficiency in broiler production exists in Iran. Energy consumption of broiler production in Ardabil province of Iran was studied and the non-parametric method of data envelopment analysis (DEA was used to analyze energy efficiency, separate efficient from inefficient broiler producers, and calculate wasteful use of energy to optimize energy. Data was collected using face-to-face questionnaires from 70 broiler farmers in the study area. Constant returns to scale (CCR and variable returns to scale (BCC models of DEA were applied to assess the technical efficiency of broiler production. The results indicated that total energy use was 154,283 MJ (1000 bird−1 and the share of fuel at 61.4% was the highest of all inputs. The indices of energy efficiency, energy productivity, specific energy, and net energy were found to be 0.18, 0.02 kg MJ−1, 59.56 MJ kg−1, and −126,836 MJ (1000 bird−1, respectively. The DEA results revealed that 40% and 22.86% of total units were efficient based on the CCR and BCC models, respectively. The average technical, pure technical, and scale efficiency of broiler farmers was 0.88, 0.93, and 0.95, respectively. The results showed that 14.53% of total energy use could be saved by converting the present units to optimal conditions. The contribution of fuel input to total energy savings was 72% and was the largest share, followed by feed and electricity energy inputs. The results of this study indicate that there is good potential for increasing energy efficiency of broiler production in Iran by following the recommendations for efficient energy use.

  7. Composition of cosmic rays in the knee region of the primary energy spectrum

    International Nuclear Information System (INIS)

    Das Gupta, U.

    1989-01-01

    The Soudan Surface-Underground Cosmic Ray Telescope is located at the Soudan iron mine in northern Minnesota. It consists of a coincidence arrangement of two detectors-one installed at the surface of the mine and the other located underground, at a vertical depth of 600 meters. Using such an arrangement, the energy and composition of a primary cosmic ray particle can be determined independently of one another. When a high energy cosmic ray enters the Earth's atmosphere, secondary particles are produced in successive interactions, creating an extensive air shower. Using the surface detector, the number of particles in the shower at the surface of the Earth can be counted and the energy of the primary particle estimated. Of all the particles that are created in a cosmic ray air shower, only the energetic muons are able to penetrate underground. The separations of the muons below ground are measured by the Soudan 1 detector and this serves as an indicator of the type of nucleus that initiated the shower. The Soudan surface-underground detector is sensitive to primary cosmic rays of energies between 10 14 and 10 18 eV. The data from the experiment were compared to the predictions of various cosmic ray composition models, within this energy range. The data supported a composition model that was proton dominated up to the highest energies measured. There was no indication of a shift in the composition towards heavier primaries as would be expected on the basis of some models

  8. Classification and performance analysis of primary energy consumers during 1980-1999

    International Nuclear Information System (INIS)

    Ediger, Volkan S.

    2003-01-01

    Five primary energy consumer classes, namely Super, Major, Big, Medium and Small, are proposed, depending on the polymodal characteristics of the frequency distribution curve of their share of the total. The total primary energy consumption and its annual additions decrease, whereas the rates increase steadily from the Super to the Medium consumers. Since the frequency distribution histogram of additional primary energy consumptions of the Medium and above consumers during 1980-1999 is a typical bell shaped curve, the additional amounts and rates are used together to evaluate the performance levels of the countries in both parameters. The most successful countries are the USA, China, South Korea, Thailand, India, Indonesia, Taiwan, Turkey and Iran. The reason why the Super consumer USA and the Major consumer China are the biggest energy markets is because they are the first two biggest economies in the world. The success of the developing Asian countries is mostly related to their economic ties with the Super consumer USA. Among the other emerging markets, Turkey's primary energy demand has grown more rapidly than that of Iran and is expected to continue growing in the future. The emerging Medium and Big consumer markets will continue to play a significant role in the world's energy sector during the first two decades of the 21st century

  9. The change in the primary production of Danish coastal waters

    International Nuclear Information System (INIS)

    Edelvang, K.; Erichsen, A.; Gustavson, K.; Bundgaard, K.; Dahl-Madsen, K.I.

    2001-01-01

    The background for this study is the development of the 'Farvandsmodel' for the NOVA-2003 programme and the nationally founded research project DECO (Danish Environmental Monitoring of Coastal Waters), which focuses on the use of remote sensing for the monitoring of Danish Coastal waters. Danish national programmes for the monitoring of the marine ecosystem are a relatively new activity, which has grown during the last 20 years. The HAV90 research programme amassed important information to be included in future environmental efforts such as the NOVA-2003 programme, aimed at monitoring the Danish coastal waters. The following is a selection of the topics mentioned in the NOVA-2003 programme (NOVA-2003, 2000) especially relevant to this study: 1) Hydrography. 2) Concentration and spatial distribution of nutrients. 3) Water and nutrient fluxes. 4) Oxygen depletion. As part of this programme, a 3D hydrographic model describing currents and fluxes in Danish waters has been designed by DHI Water and Environment for the Danish Ministry of Energy and Environment. The model is called the 'Farvandsmodel', which is the collective Danish name of this regional 3D hydrodynamic model and its associated database for storage and dissemination of model results and field measurements. The model is planned to be in operation until 2004. It has a great potential within hydrographic modelling in Danish waters, as it is capable of running 5-day prognoses for currents, water levels and stratification. The model is also able to calculate the sensitivity of the present system to changes in various input parameters. In this way the model may be used as a tool for testing the sensitivity of Danish coastal waters to the impact of the green house effects. The nationally funded research programme, DECO (1997-2000), aims to investigate the use of remote sensing for monitoring Danish coastal waters. To support this research, a eutrophication module (EU) was set up for the 'Farvandsmodel'. The

  10. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    Science.gov (United States)

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  11. Low energy production processes in manufacturing of silicon solar cells

    Science.gov (United States)

    Kirkpatrick, A. R.

    1976-01-01

    Ion implantation and pulsed energy techniques are being combined for fabrication of silicon solar cells totally under vacuum and at room temperature. Simplified sequences allow very short processing times with small process energy consumption. Economic projections for fully automated production are excellent.

  12. Implications of energy efficiency measures in wheat production

    DEFF Research Database (Denmark)

    Meyer-Aurich, Andreas; Ziegler, T.; Scholz, L.

    The economic and environmental effect of energy saving measures were analyzed for a typical wheat production system in Germany. The introduction of precision farming, reduced nitrogen fertilization and improved crop drying technologies proved to be efficient measures for enhancing energy efficiency...

  13. ENERGY PRODUCTION AND RESIDENTIAL HEATING: TAXATION, SUBSIDIES, AND COMPARATIVE COSTS

    Science.gov (United States)

    This analysis is in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. It examines the effect of economic incentives on public and private decisions affecting energy production and us...

  14. Optimal use of biomass for energy production

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Cleijne, H.

    2000-10-01

    In addition to the EWAB programme, which is focused mainly on the application of waste and biomass for generating electricity, Novem is also working on behalf of the government on the development of a programme for gaseous and liquid energy carriers (GAVE). The Dutch ministries concerned have requested that Novem provide more insight concerning two aspects. The first aspect is the world-wide availability of biomass in the long term. A study group under the leadership of the University of Utrecht has elaborated this topic in greater detail in the GRAIN project. The second aspect is the question of whether the use of biomass for biofuels, as aimed at in the GAVE programme, can go hand in hand with the input for the electricity route. Novem has asked the Dutch research institute for the electric power industry (KEMA) to study the driving forces that determine the future use of biomass for electricity and biofuels, the competitive strength of each of the routes, and the possible future scenarios that emerge. The results of this report are presented in the form of copies of overhead sheets

  15. 78 FR 57922 - American Energy Production, Inc., Best Energy Services, Inc., Community Central Bank Corporation...

    Science.gov (United States)

    2013-09-20

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] American Energy Production, Inc., Best Energy Services, Inc., Community Central Bank Corporation, Explortex Energy, Inc., HemoBioTech, Inc., Larrea... concerning the securities of Community Central Bank Corporation because it has not filed any periodic reports...

  16. Energy Production System Management - Renewable energy power supply integration with Building Automation System

    International Nuclear Information System (INIS)

    Figueiredo, Joao; Martins, Joao

    2010-01-01

    Intelligent buildings, historically and technologically, refers to the integration of four distinctive systems: Building Automation Systems (BAS), Telecommunication Systems, Office Automation Systems and Computer Building Management Systems. The increasing sophisticated BAS has become the 'heart and soul' of modern intelligent buildings. Integrating energy supply and demand elements - often known as Demand-Side Management (DSM) - has became an important energy efficiency policy concept. Nowadays, European countries have diversified their power supplies, reducing the dependence on OPEC, and developing a broader mix of energy sources maximizing the use of renewable energy domestic sources. In this way it makes sense to include a fifth system into the intelligent building group: Energy Production System Management (EPSM). This paper presents a Building Automation System where the Demand-Side Management is fully integrated with the building's Energy Production System, which incorporates a complete set of renewable energy production and storage systems.

  17. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  18. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    Poeschl, Martina; Ward, Shane; Owende, Philip

    2010-01-01

    The energy efficiency of different biogas systems, including single and co-digestion of multiple feedstock, different biogas utilization pathways, and waste-stream management strategies was evaluated. The input data were derived from assessment of existing biogas systems, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Germany. The energy balance was evaluated as Primary Energy Input to Output (PEIO) ratio, to assess the process energy efficiency, hence, the potential sustainability. Results indicate that the PEIO correspond to 10.5-64.0% and 34.1-55.0% for single feedstock digestion and feedstock co-digestion, respectively. Energy balance was assessed to be negative for feedstock transportation distances in excess of 22 km and 425 km for cattle manure and for Municipal Solid Waste, respectively, which defines the operational limits for respective feedstock transportation. Energy input was highly influenced by the characteristics of feedstock used. For example, agricultural waste, in most part, did not require pre-treatment. Energy crop feedstock required the respect cultivation energy inputs, and processing of industrial waste streams included energy-demanding pre-treatment processes to meet stipulated hygiene standards. Energy balance depended on biogas yield, the utilization efficiency, and energy value of intended fossil fuel substitution. For example, obtained results suggests that, whereas the upgrading of biogas to biomethane for injection into natural gas network potentially increased the primary energy input for biogas utilization by up to 100%; the energy efficiency of the biogas system improved by up to 65% when natural gas was substituted instead of electricity. It was also found that, system energy efficiency could be further enhanced by 5.1-6.1% through recovery of residual biogas from enclosed digestate storage units. Overall, this study provides bases for more detailed assessment

  19. Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gagne-Maynard, William C.; Ward, Nicholas D.; Keil, Richard G.; Sawakuchi, Henrique O.; Da Cunha, Alan C.; Neu, Vania; Brito, Daimio C.; Da Silva Less, Diani F.; Diniz, Joel E. M.; De Matos Valerio, Aline; Kampel, Milton; Krusche, Alex V.; Richey, Jeffrey E.

    2017-02-07

    The Amazon River outgasses nearly an equivalent amount of CO2 as the rainforest sequesters on an annual basis due to microbial decomposition of terrigenous and aquatic organic matter. Most research performed in the Amazon has been focused on unraveling the mechanisms driving CO2 production since the recognition of a persistent state of CO2 supersaturation. However, although the river system is clearly net heterotrophic, the interplay between primary production and respiration is an essential aspect to understanding the overall metabolism of the ecosystem and potential transfer of energy up trophic levels. For example, an efficient ecosystem is capable of both decomposing high amounts of organic matter at lower trophic levels, driving CO2 emissions, and accumulating energy/biomass in higher trophic levels, stimulating fisheries production. Early studies found minimal evidence for primary production in the Amazon River mainstem and it has since been assumed that photosynthesis is strongly limited by low light penetration attributed to the high sediment load. Here, we test this assumption by measuring the stable isotopic composition of O218O-O2) and O2 saturation levels in the lower Amazon River from Óbidos to the river mouth and its major tributaries, the Xingu and Tapajós rivers, during high and low water periods. An oxygen mass balance model was developed to estimate the input of photosynthetic oxygen in the discrete reach from Óbidos to Almeirim, midway to the river mouth. Based on the oxygen mass balance we estimate that primary production occurred at a rate of 0.39 ± 0.24 g O m3 d-1 at high water and 1.02 ± 0.55 g O m3 d-1 at low water. This translates to 41 ± 24% of the rate of O2 drawdown via respiration during high water and 67 ± 33% during low water. These primary production rates are 2-7 times higher than

  20. Hot-spots of primary productivity: An Alternative interpretation to Conventional upwelling models

    Science.gov (United States)

    van Ruth, Paul D.; Ganf, George G.; Ward, Tim M.

    2010-12-01

    The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports a commercial fishery, quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from 500 mg C m -2 day -1. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. This study examines spatial variations in primary productivity in the EGAB during the upwelling seasons of 2005 and 2006. Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro-nutrient concentrations could not be used to explain the difference in the low and high productivities (silica > 1 μmol L -1, nitrate/nitrite > 0.4 μmol L -1, phosphate > 0.1 μmol L -1). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humboldt currents.

  1. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2017-03-01

    Full Text Available According to the Malaysia’s biofuel policy, renewable fuels are crucial for energy sustainability in the transportation sector in the future. This study was aimed to evaluate the potential of bioethanol production from Sri Kanji 1 cassava in Malaysia in terms of energy efficiency and renewability, as well to estimate the potential greenhouse gas (GHG emissions reduction in CO2 equivalent. Bioethanol production process from cassava includes cassava farming, ethanol production, and transportation in which the primary energy consumption was considered. The Net Energy Balance (NEB and Net Energy Ratio (NER of 25.68 MJ/L and 3.98, respectively, indicated that bioethanol production from Sri Kanji 1 cassava in Malaysia was energy efficient. From the environmental perspective, the GHG balance results revealed that the production and distribution of 1 L of Cassava Fuel Ethanol (CFE could reduce GHG emissions by 73.2%. Although found promising in the present study, Sri Kanji 1 cassava as bioethanol feedstock should be further investigated by constructing an actual ethanol plant to obtain real life data.

  2. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose

  3. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  4. Energy use pattern analyses of greenhouse vegetable production

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Akinci, I. [Department of Agricultural Machinery, Faculty of Agriculture, Akdeniz University, 07070 Antalya (Turkey)

    2006-07-15

    Greenhouse farming is a growing industry in many states. It is a very expensive way to produce greenhouse crops and there are many variables to consider before the farmer decides to take this route. A good location is essential for crop planning and growing. However, current studies related to energy use patterns and resources present in vegetable production are very limited. This research attempts to investigate the energy use patterns in greenhouse vegetable production, to determine the energy output-input ratio and their relationships. Antalya province, which has greenhouse area of about 13,337ha (30.2%), is the center of greenhouse farming in Turkey. A questionnaire was distributed to 101 greenhouse farms from 11 villages in order to obtain the available data for vegetable production. Power requirement of the machines used in greenhouse operations were measured by using a computer based data acquisition system. Energy and economical variables (i.e. output-input ratio, specific energy, production cost, net return, etc.) were calculated by using the standard equations. As a result, the operational energy and energy source requirements of the greenhouse vegetable production were found between the ranges of 23,883.5-28,034.7 and 45,763.3-49,978.8MJ/1000m{sup 2}, respectively. The energy ratio of four major greenhouse vegetables-tomato, pepper, cucumber and eggplant-was 0.32, 0.19, 0.31, 0.23, respectively. The crop yields increased as a function of the total energy inputs with the best form being second-degree polynomial. The net return of the vegetable production was found in the 595.6-2775.3$/1000m{sup 2} ranges. Among the greenhouse vegetables, tomato cultivation resulted in being the most profitable. (author)

  5. Forecasting forest chip energy production in Finland 2008-2014

    International Nuclear Information System (INIS)

    Linden, Mikael

    2011-01-01

    Energy policy measures aim to increase energy production from forest chips in Finland to 10 TWh by year 2010. However, on the regional level production differences are large, and the regional estimates of the potential base of raw materials for the production of forest chips are heterogeneous. In order to analyse the validity of the above target, two methods are proposed to derive forecasts for region-level energy production from forest chips in Finland in the years 2008-2014. The plant-level data from 2003-2007 gives a starting point for a detailed statistical analysis of present and future region-level forest chip production. Observed 2008 regional levels are above the estimated prediction 95% confidence intervals based on aggregation of plant-level time averages. A simple time trend model with fixed-region effects provides accurate forecasts for the years 2008-2014. Forest chip production forecast confidence intervals cover almost all regions for the 2008 levels and the estimates of potential production levels for 2014. The forecast confidence intervals are also derived with re-sampling methods, i.e. with bootstrap methods, to obtain more reliable results. Results confirm that a general materials shortfall is not expected in the near future for forest chip energy production in Finland.

  6. Energy inputs and outputs in a chickpea production system in ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum L.) is one of the most important grain legumes which traditionally cultivated in marginal areas and saline soils. In this study, chickpea production in Kurdistan, Iran and the energy equivalences of input used in production were investigated. The aims of this study were to determine the amount of ...

  7. Economic feasibility constraints for renewable energy source power production

    International Nuclear Information System (INIS)

    Biondi, L.

    1992-01-01

    Suitable analysis criteria for use in economic feasibility studies of renewable energy source power plants are examined for various plant types, e.g., pumped storage hydroelectric, geothermal, wind, solar, refuse-fuelled, etc. The paper focusses on the impacts, on operating cost and rate structure, of the necessity, depending on demand characteristics, to integrate renewable energy source power production with conventional power production in order to effectively and economically meet peak power demand. The influence of commercialization and marketing trends on renewable energy source power plant economic feasibility are also taken into consideration

  8. Synergies between renewable energy and fresh water production. Scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Geurts, F.; Noothout, P.; Schaap, A. [Ecofys Netherlands, Utrecht (Netherlands)

    2011-02-15

    The IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD) investigated the opportunities for coupling renewable energy systems with fresh water supply systems. The four main conclusions of the scoping study, carried out by Ecofys, are: (1) Fresh water production based on desalination technologies provide most options for synergies with renewable energy production; (2) Linking desalination to renewable sources is currently not economically viable; (3) There is a large potential for small scale (decentralised) desalination plants; (4) Current commercially-sized desalination technologies are in need of a constant operation point. Reverse osmosis and thermal membrane technologies might give future synergies as deferrable load.

  9. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  10. Estimation of livestock appropriation of net primary productivity in Texas Drylands

    Science.gov (United States)

    Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell

    2009-01-01

    The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...

  11. Patterns of new versus recycled primary production in the terrestrial biosphere

    Science.gov (United States)

    Nitrogen (N) and phosphorus (P) availability regulate plant productivity throughout the terrestrial biosphere, influencing the patterns and magnitude of net primary production (NPP) by land plants both now and into the future. These nutrients enter ecosystems via geologic and atmospheric pathways, a...

  12. PRIMARY PRODUCTION OF SEAGRASS BEDS IN SOUTH SULAWESI (INDONESIA) - A COMPARISON OF HABITATS, METHODS AND SPECIES

    NARCIS (Netherlands)

    ERFTEMEIJER, PLA; OSINGA, R; MARS, AE

    Primary production of tropical seagrass meadows was studied between April and August 1990 in South Sulawesi, Indonesia. Oxygen evolution studies in enclosures over seagrass vegetation revealed gross community production values between 900 and 4400 mg C m-2 day-1. Assumed community respiration ranged

  13. Interest in energy wood and energy crop production among Finnish non-industrial private forest owners

    International Nuclear Information System (INIS)

    Raemoe, A.-K.; Jaervinen, E.; Latvala, T.; Toivonen, R.; Silvennoinen, H.

    2009-01-01

    EU targets and regulations regarding energy production and the reduction of greenhouse gas emissions have been tightening in the 2000s. In Finland the targets are planned to be achieved mainly by increasing the use of biomass. Wood already accounts for a marked proportion of Finnish energy production, but additional reserves are still available. Energy crop production also has considerable potential. Practically all Finnish farmers are also forest owners. Therefore, private forest owners are in a decisive position regarding the supply of energy wood and crops in Finland. In this paper the future supply of biomass is examined according to their past behaviour, intentions and attitudes. Finnish forest owners have a positive attitude towards the use of wood and crops in energy production. Price is becoming more critical as a motive for the supply of energy wood. Recreation and nature conservation play a smaller role than factors related to wood production and forest management as for motives for harvesting energy wood. However, almost a half of forest owners in this study were uncertain of their willingness to supply biomass. This is partly due to limited knowledge of the issues involved in energy wood and agricultural energy crop production and the underdeveloped markets for energy biomass. In order to achieve the targets, supply should be activated by further developing market practices, information, guidance and possibly other incentives for landowners. In general, there is interest among landowners in increasing the supply of energy biomass. However, the growth of supply presumes that production is an economically attractive and competitive alternative, that the markets are better organized than at present, and that more comprehensive information is available about bioenergy and biomass markets and production techniques.

  14. Towards nuclear energy applications other than electricity production

    International Nuclear Information System (INIS)

    Lecomte, M.

    2007-01-01

    Use of nuclear energy relies on operation of a boiler, involving practically no greenhouse gas emission. Whereas production of electricity is, nowadays, virtually its sole purpose, demand for heat production could equally arise, particularly with the emergence of high-temperature, or even very-high-temperature reactors. With the abilities this involves, as regards the recovery of heavy crude oils from tar sands, seawater desalination, or, most importantly, production of hydrogen by electrolysis, or thermochemistry, this being the energy carrier of tomorrow. (authors)

  15. Mesonic atom production in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  16. Intrinsic charm and charmed particle production at Serpukhov energies

    International Nuclear Information System (INIS)

    Zmushko, V.V.

    1995-01-01

    This paper presents a study of the charmed particle production by protons on nuclei in the framework of two-component model at the Serpukhov energies. This model combines the leading-twist QCD and intrinsic charm contributions. It is shown that both contributions are comparable at 70 GeV energy of a proton, which makes possible the testing of the intrinsic charm predictions: the asymmetry between the leading and non-leading charm production and the A dependence of charm production. The asymmetry for D-bar/D mesons and Λ c + /Λ c - baryons and the cross section ratios for different nuclei are estimated [ru

  17. Higgs production as a probe of dark energy interactions

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Seery, David

    2009-11-01

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W ± . We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength. (orig.)

  18. Higgs production as a probe of dark energy interactions

    CERN Document Server

    Brax, Philippe; Davis, Anne-Christine; Seery, David; Weltman, Amanda

    2010-01-01

    We study Higgs production under the influence of a light, scalar dark energy field with chameleon-like couplings to matter. Our analysis is relevant for hadron colliders, such as the Large Hadron Collider, which are expected to manufacture Higgs particles through weak boson fusion, or associated production with a Z or W. We show that the corrections arising in these models are too small to be observed. This result can be attributed to the gauge invariance of the low energy Lagrangian. As a by-product of our analysis, we provide the first microphysical realization of a dark energy model coupled to the electromagnetic field strength. In models where dark energy couples to all matter species in a uniform manner we are able to give a new, stringent bound on its coupling strength.

  19. Disaggregate energy consumption and industrial production in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, UNISA 0003 (South Africa)

    2009-06-15

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment. (author)

  20. Disaggregate energy consumption and industrial production in South Africa

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2009-01-01

    This paper tries to assess the relationship between disaggregate energy consumption and industrial output in South Africa by undertaking a cointegration analysis using annual data from 1980 to 2005. We also investigate the causal relationships between the various disaggregate forms of energy consumption and industrial production. Our results imply that industrial production and employment are long-run forcing variables for electricity consumption. Applying the [Toda, H.Y., Yamamoto, T., 1995. Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics 66, 225-250] technique to Granger-causality, we find bi-directional causality between oil consumption and industrial production. For the other forms of energy consumption, there is evidence in support of the energy neutrality hypothesis. There is also evidence of causality between employment and electricity consumption as well as coal consumption causing employment.