WorldWideScience

Sample records for primary energy intensity

  1. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  2. Defining climate change scenario characteristics with a phase space of cumulative primary energy and carbon intensity

    Science.gov (United States)

    Ritchie, Justin; Dowlatabadi, Hadi

    2018-02-01

    Climate change modeling relies on projections of future greenhouse gas emissions and other phenomena leading to changes in planetary radiative forcing. Scenarios of socio-technical development consistent with end-of-century forcing levels are commonly produced by integrated assessment models. However, outlooks for forcing from fossil energy combustion can also be presented and defined in terms of two essential components: total energy use this century and the carbon intensity of that energy. This formulation allows a phase space diagram to succinctly describe a broad range of possible outcomes for carbon emissions from the future energy system. In the following paper, we demonstrate this phase space method with the Representative Concentration Pathways (RCPs) as used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The resulting RCP phase space is applied to map IPCC Working Group III (WGIII) reference case ‘no policy’ scenarios. Once these scenarios are described as coordinates in the phase space, data mining techniques can readily distill their core features. Accordingly, we conduct a k-means cluster analysis to distinguish the shared outlooks of these scenarios for oil, gas and coal resource use. As a whole, the AR5 database depicts a transition toward re-carbonization, where a world without climate policy inevitably leads to an energy supply with increasing carbon intensity. This orientation runs counter to the experienced ‘dynamics as usual’ of gradual decarbonization, suggesting climate change targets outlined in the Paris Accord are more readily achievable than projected to date.

  3. Energy intensity: a new look

    International Nuclear Information System (INIS)

    Khatib, H.

    1995-01-01

    Energy intensity is compared among different countries by dividing their energy use by their gross domestic product (GDP) in dollar terms. GDP (US$), being a varying monetary value, will have different meaning in different countries because of the varying means of converting it into dollars. Therefore distorted results of energy intensity are obtained. The newly devised concept of presenting GDP in terms of purchasing power parity in dollars (US PPP) goes a long way to solving this distortion. It also allows the energy intensity of developing countries to be presented in a more favourable way. (author)

  4. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  5. Scenarios of future energy intensities

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In this chapter, the authors present scenarios of potential change in energy intensities in the OECD countries and in the Soviet Union. These scenarios are meant to illustrate how intensities might evolve over the next 20 years given different conditions with respect to energy prices, energy-efficiency policies, and other key factors. Changes in intensity will also be affected by the rates of growth and stock turnover in each sector. They have not tried to forecast how activity levels and structure will evolve. However, the OECD scenarios assume a world in which GDP averages growth in the 2-3%/year range, with some differences among countries. For the Soviet Union, the degree and pace of intensity decline will be highly dependent on the success of the transition to a market economy; each scenario explicitly envisions a different degree of success. They have not constructed comparable scenarios for the developing countries. The scenarios presented in this chapter do not predict what will happen in the future. They believe, however, that they illustrate a plausible set of outcomes if energy prices, policies, programs, and other factors evolve as described in each case. With higher energy prices and vigorous policies and programs, intensities in the OECD countries in 2010 could be nearly 50% less on average than the level where trends seem to be point. In the former Soviet Union, a combination of rapid, successful economic reform and extra effort to improve energy efficiency might result in average intensity being nearly 40% less than in a slow reform case. And in the LDCs, a mixture of sound policies, programs, and energy pricing reform could also lead to intensities being far lower than they would be otherwise. 8 refs., 10 figs., 1 tab

  6. Energy intensities of food products. Energie-intensiteiten van voedingsmiddelen

    Energy Technology Data Exchange (ETDEWEB)

    Kok, R.; Biesiot, W.; Wilting, H.C.

    1993-08-01

    The energy intensity of a product is the amount of primary energy used per Dutch guilder spent on consumer goods. The energy intensity can differ for each spending and varies from household to household. The aim of this study is to calculate the energy intensities and to provide an overview of the total package of consumer goods, including sociological categories and lifestyles, and the related use of primary energy to produce these goods. Use is made of the Energy Analysis Program (EAP) to calculate the energy intensities. EAP is based on the hybrid method: both the process analysis and the input-output analysis are applied in the model. The data input of the model consists of data from the Budget Survey 1990 of the Dutch Central Bureau of Statistics, which holds data of consumptions from 2767 households. In the chapters 4 to 10 energy intensities are given of the categories bread, pastry and groceries (chapter four), potatoes, vegetables and fruits (chapter five), sugary products and beverages (chapter six), oils and fats (chapter seven), meat, meat products and fish (chapter eight), dairy products (chapter nine), and other food products (chapter ten). The highest energy intensity is found for oils and fats (13.5 MJ per Dutch guilder). The energy intensities for the other products vary from 4.0 to 6.6 MJ/gld. It appears that most of the energy intensive products are products which do not use a large part of the primary energy, mainly because the consumption of these products is low. On the other hand many of the products that consume much of the primary energy (i.e. are consumed much themselves) are relatively energy extensive. The products that show a high consumption rate have relatively low energy intensities. Some of the options to shift towards a more energy extensive food package are the use of fresh products and outside grown products instead of treated products or greenhouse products and a more balanced diet. 5 figs., 18 tabs., 2 appendices, 52 refs.

  7. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  8. Energy efficiency benchmarking of energy-intensive industries in Taiwan

    International Nuclear Information System (INIS)

    Chan, David Yih-Liang; Huang, Chi-Feng; Lin, Wei-Chun; Hong, Gui-Bing

    2014-01-01

    Highlights: • Analytical tool was applied to estimate the energy efficiency indicator of energy intensive industries in Taiwan. • The carbon dioxide emission intensity in selected energy-intensive industries is also evaluated in this study. • The obtained energy efficiency indicator can serve as a base case for comparison to the other regions in the world. • This analysis results can serve as a benchmark for selected energy-intensive industries. - Abstract: Taiwan imports approximately 97.9% of its primary energy as rapid economic development has significantly increased energy and electricity demands. Increased energy efficiency is necessary for industry to comply with energy-efficiency indicators and benchmarking. Benchmarking is applied in this work as an analytical tool to estimate the energy-efficiency indicators of major energy-intensive industries in Taiwan and then compare them to other regions of the world. In addition, the carbon dioxide emission intensity in the iron and steel, chemical, cement, textile and pulp and paper industries are evaluated in this study. In the iron and steel industry, the energy improvement potential of blast furnace–basic oxygen furnace (BF–BOF) based on BPT (best practice technology) is about 28%. Between 2007 and 2011, the average specific energy consumption (SEC) of styrene monomer (SM), purified terephthalic acid (PTA) and low-density polyethylene (LDPE) was 9.6 GJ/ton, 5.3 GJ/ton and 9.1 GJ/ton, respectively. The energy efficiency of pulping would be improved by 33% if BAT (best available technology) were applied. The analysis results can serve as a benchmark for these industries and as a base case for stimulating changes aimed at more efficient energy utilization

  9. Analysis of energy intensity in Japan

    International Nuclear Information System (INIS)

    Okajima, Shigeharu; Okajima, Hiroko

    2013-01-01

    This study discusses the causes of the increase in Japan's energy intensity, defined as energy consumption divided by GDP, since the early 1990s. The significant reduction in Japan's energy intensity ceased in the early 1980s and has even slightly increased since the early 1990s, indicating that Japan seemingly stopped taking aggressive action to improve energy use. However, further analysis at prefecture level and sector level provides additional insight on energy intensity trends. To analyze the causes of the increase in Japan's energy intensity, energy intensity is decomposed into energy efficiency (improvements in energy efficiency) and energy activity (structural changes from the secondary sector to the tertiary sector of the economy). Our result indicates that the non-uniform energy intensity trends between prefectures are attributed to a high variability in energy efficiency. At sector level, we estimate the income elasticity of energy consumption in each sector and find that a structural change in energy consumption behaviors occurred in all sectors at different time points. The industrial sector and commercial sector became less energy efficient after 1981 and 1988, respectively, which is presumably responsible for the deterioration of Japan's energy intensity since the early 1990s. - Highlights: • We examine why the reduction in Japan's energy intensity increased in the early 1990s. • There is a high variability in energy intensity trends between regions. • The structural changes in energy consumption behaviors occurred in sector level. • These changes may be responsible for the deterioration of Japan's energy intensity

  10. Energy Intensity of the Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Mieczysław Dziubiński

    2017-12-01

    Full Text Available Continuous energy intensity is a dependency between continuous energy intensity and energy intensity of movement. In the paper it is proposed analyze energy intensity of the movement, as the size specifying the power demand to the wheel drive and presented the balance of power of an electric car moving in the urban cycle. The object of the test was the hybrid vehicle with an internal combustion engine and electric motor. The measurements were carried out for 4 speeds and 2 driving profiles.

  11. Government expenditure and energy intensity in China

    International Nuclear Information System (INIS)

    Yuxiang, Karl; Chen, Zhongchang

    2010-01-01

    The recent economic stimulus package of China has raised growing concern about its potential impact on energy demand and efficiency. To what extent does such expansion of government expenditure influence energy intensity? This question has not been well answered by the previous research. Using provincial panel data, this paper provides some evidence of a link between government expenditure and energy intensity in China. The empirical results demonstrate that the expansion of government expenditure since Asian financial crisis has exerted a significant influence on energy intensity. An increase in government expenditure in China leads to an increase in energy intensity. Further analysis compares such relationships in different economic situations. The comparison shows that such positive effect of government expenditure remains significant after the alteration in economic situation. Therefore, the results suggest introducing some measures to consolidate China's existing gains in energy efficiency. The analysis also explains why the downward trend in energy intensity is reversed in China since 2002. (author)

  12. Energy Reporting Practices among Top Energy Intensive Industries in Malaysia

    Science.gov (United States)

    Tasrip, N. E.; Mat Husin, N.; Alrazi, B.

    2016-03-01

    This study content analyses the energy content in the corporate report of top 30 Malaysian energy-intensive companies. Motivated by the gap among prior corporate social responsibility and environmental reporting studies in respect of energy, this study provides evidence of Malaysian companies’ initiative to reduce energy consumption. While the evidence suggests that not all 30 companies have reported energy-related information, the findings provide an overview on the response of energy intensive companies in relation to Malaysian government initiatives on energy.

  13. Measuring energy efficiency: Is energy intensity a good evidence base?

    International Nuclear Information System (INIS)

    Proskuryakova, L.; Kovalev, A.

    2015-01-01

    Highlights: • Energy intensity measure reflects consumption, not energy efficiency. • Thermodynamic indicators should describe energy efficiency at all levels. • These indicators should have no reference to economic or financial parameters. • A set of energy efficiency indicators should satisfy several basic principles. • There are trade-offs between energy efficiency, power and costs. - Abstract: There is a widespread assumption in energy statistics and econometrics that energy intensity and energy efficiency are equivalent measures of energy performance of economies. The paper points to the discrepancy between the engineering concept of energy efficiency and the energy intensity as it is understood in macroeconomic statistics. This double discrepancy concerns definitions (while engineering concept of energy efficiency is based on the thermodynamic definition, energy intensity includes economic measures) and use. With regard to the latter, the authors conclude that energy intensity can only provide indirect and delayed evidence of technological and engineering energy efficiency of energy conversion processes, which entails shortcomings for management and policymaking. Therefore, we suggest to stop considering subsectoral, sectoral and other levels of energy intensities as aggregates of lower-level energy efficiency. It is suggested that the insufficiency of energy intensity indicators can be compensated with the introduction of thermodynamic indicators describing energy efficiency at the physical, technological, enterprise, sub-sector, sectoral and national levels without references to any economic or financial parameters. Structured statistical data on thermodynamic efficiency is offered as a better option for identifying break-through technologies and technological bottle-necks that constrain efficiency advancements. It is also suggested that macro-level thermodynamic indicators should be based on the thermodynamic first law efficiency and the energy

  14. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  15. Energy intensity, target level of energy intensity, and room for improvement in energy intensity: An application to the study of regions in the EU

    International Nuclear Information System (INIS)

    Chang, Ming-Chung

    2014-01-01

    While the previous literature shows that a decline in energy intensity represents an improvement in energy use efficiency, it does not provide a target level of energy intensity, nor what room for improvement in terms of energy intensity could entail. This study establishes an indicator of such room for improvement in terms of energy intensity by measuring the difference between the target level of energy intensity and the actual energy intensity and thereby monitors energy use efficiency. The traditional indicator of energy intensity, defined as energy use over GDP, mainly estimates energy use efficiency, but is a partial effect between the energy input and GDP output. However, our proposed indicator of the room for improvement in terms of energy intensity is the total-factor effects based on the multiple-inputs model. By taking the 27 EU members to investigate their energy use efficiency using the indicator of the room for improvement in terms of energy intensity, this study concludes that an improvement in energy intensity does not fully depend on a decline in energy intensity, and we instead need to confirm whether the room for improvement in terms of energy intensity decreases. This finding is particularly relevant for energy policy-makers. - Highlights: • This paper establishes an indicator for the room for improvement in terms of energy intensity. • This study takes the 27 EU members to investigate their energy use efficiency. • A different result appears by using our proposed indicator

  16. China's numerical management system for reducing national energy intensity

    International Nuclear Information System (INIS)

    Li, Huimin; Zhao, Xiaofan; Yu, Yuqing; Wu, Tong; Qi, Ye

    2016-01-01

    In China, the national target for energy intensity reduction, when integrated with target disaggregation and information feedback systems, constitutes a numerical management system, which is a hallmark of modern governance. This paper points out the technical weaknesses of China's current numerical management system. In the process of target disaggregation, the national target cannot be fully disaggregated to local governments, sectors and enterprises without omissions. At the same time, governments at lower levels face pressure for reducing energy intensity that exceeds their respective jurisdictions. In the process of information feedback, information failure is inevitable due to statistical inaccuracy. Furthermore, the monitoring system is unable to correct all errors, and data verification plays a limited role in the examination system. To address these problems, we recommend that the government: use total energy consumption as the primary indicator of energy management; reform the accounting and reporting of energy statistics toward greater consistency, timeliness and transparency; clearly define the responsibility of the higher levels of government. - Highlights: •We assess drawbacks of China's numerical management system for energy intensity. •The national energy intensity target cannot be fully disaggregated without omissions. •Data distortion is due to failures in statistics, monitoring and examination system. •Lower-level governments’ ability to meet energy target is weaker than their pressure. •We provide three policy recommendations for China's policy-makers.

  17. Energy use and energy intensity of the U.S. chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  18. A Statistical Model for Energy Intensity

    Directory of Open Access Journals (Sweden)

    Marjaneh Issapour

    2012-12-01

    Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.

  19. Intensity-Modulated Radiation Therapy for Primary Brain Tumors

    Institute of Scientific and Technical Information of China (English)

    Zhong-min Wang

    2004-01-01

    Radiation therapy has been used to treat primary brain tumors as standard primary and/or adjunctive therapies for decades. It is difficult for conventional radiotherapy to deliver a lethal dose of radiation to the tumors while sparing surrounding normal brain due to complicated structures and multifunction in human brain. With the understanding of radiation physics and computer technology, a number of novel and more precise radiotherapies have been developed in recent years. Intensity modulated radiotherapy (IMRT) is one of these strategies. The use of IMRT in the treatment of primary brain tumors is being increasing nowadays. It shows great promise for some of primary brain tumors and also presents some problems, This review highlights current IMRT in the treatment of mainly primary brain tumors.

  20. Provincial energy intensity in China: The role of urbanization

    International Nuclear Information System (INIS)

    Yan, Huijie

    2015-01-01

    Chinese policymakers have attached great importance to energy intensity reduction. However, the unprecedented urbanization process exercises additional pressure on the realization of energy intensity reduction targets. A better understanding of the impacts of urbanization is necessary for designing effective policies aimed at reaching the next energy intensity reduction targets. This paper empirically investigates the impacts of urbanization on China's aggregate and disaggregated energy intensities using a balanced panel dataset of 30 provinces covering the period from 2000 to 2012 and panel estimation techniques. The results show that urbanization significantly increases aggregate energy intensity, electricity intensity and coal intensity. - Highlights: • This paper investigates the determinants of China's energy intensity. • Urbanization is responsible for the increase in China's energy intensity. • The fluctuation in China's energy intensity is also affected by other key factors.

  1. Firm-level determinants of energy and carbon intensity in China

    International Nuclear Information System (INIS)

    Cao, Jing; Karplus, Valerie J.

    2014-01-01

    In recent years, China's leaders have sought to coordinate official energy intensity reduction targets with new targets for carbon dioxide (CO 2 ) intensity reduction. The Eleventh Five-Year Plan (2006–2010) included for the first time a binding target for energy intensity, while a binding target for CO 2 intensity was included later in the Twelfth Five-Year Plan (2011–2015). Using panel data for a sample of industrial firms in China covering 2005 to 2009, we investigate the drivers of energy intensity reduction (measured in terms of direct primary energy use and electricity use) and associated CO 2 intensity reduction. Rising electricity prices were associated with decreases in electricity intensity and increases in primary energy intensity, consistent with a substitution effect. Overall, we find that energy intensity reduction by industrial firms during the Eleventh Five-Year Plan translated into more than proportional CO 2 intensity reduction because reducing coal use—in direct industrial use as well as in the power sector—was a dominant abatement strategy. If similar dynamics characterize the Twelfth Five-Year Plan (2011–2015), the national 17 percent CO 2 intensity reduction target may not be difficult to meet—and the 16 percent energy intensity reduction target may result in significantly greater CO 2 intensity reduction. - Highlights: • We describe China's Eleventh Five-Year Plan energy policies. • We examine the drivers of energy, electricity and carbon intensity reduction. • Higher electricity prices correlated with reductions in industrial electricity intensity. • Energy intensity reduction efforts were effective at reducing carbon intensity

  2. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  3. Dynamics of final sectoral energy demand and aggregate energy intensity

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2011-01-01

    This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge. - Research Highlights: → The residential sector accounts for most of final energy consumption at low income levels. → Its share drops at the benefit of the industrial, services and road transportation sectors in turn. → Sectoral shares' pattern is affected by changes in geographic, sociologic and economic factors. → Final energy intensity may show various shapes and does not exhibit necessarily a bell-shape.

  4. Energy price uncertainty, energy intensity and firm investment

    International Nuclear Information System (INIS)

    Yoon, Kyung Hwan; Ratti, Ronald A.

    2011-01-01

    This paper examines the effect of energy price uncertainty on firm-level investment. An error correction model of capital stock adjustment is estimated with data on U.S. manufacturing firms. Higher energy price uncertainty is found to make firms more cautious by reducing the responsiveness of investment to sales growth. The result is robust to consideration of energy intensity by industry. The effect is greater for high growth firms. It must be emphasized that the direct effect of uncertainty is not estimated. Conditional variance of energy price is obtained from a GARCH model. Findings suggest that stability in energy prices would be conducive to greater stability in firm-level investment. (author)

  5. Bacterial intensity and localization in primary molars with caries disease

    Directory of Open Access Journals (Sweden)

    A P Beltrame

    2012-01-01

    Full Text Available Aim: The aim was to assess the characteristics and outcomes of infections affecting the structures of carious primary molars. Materials and Methods: Forty primary molars were used and classified according to the following clinical situation: With profound caries lesion, with bone loss at the furcation region, with perforation of the pulp chamber floor, and residual roots. The teeth were demineralized, cut, and stained with both haematoxylin-eosin and Brown and Brenn staining techniques. Assessment was performed using optical microscopy. Results: Statistical analysis of the data by means of the Chi-square test suggests that there was a significant relationship (P<0.001 between the intensity and localization of infection and the level of destruction of dental structures. A significant difference was also observed in the intensity and localization of infection between the groups regarding crown, furca, and root (P<0.001. Conclusion: More intense and profound the infection, more severe is the dental destruction. The groups of residual roots showed the most severe bacterial infection compared to other groups.

  6. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  7. Single-energy intensity modulated proton therapy

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-09-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described. The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods. It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan. When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  8. Single-energy intensity modulated proton therapy.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-10-07

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT.

  9. Single-energy intensity modulated proton therapy

    International Nuclear Information System (INIS)

    Farace, Paolo; Righetto, Roberto; Cianchetti, Marco

    2015-01-01

    In this note, an intensity modulated proton therapy (IMPT) technique, based on the use of high single-energy (SE-IMPT) pencil beams, is described.The method uses only the highest system energy (226 MeV) and only lateral penumbra to produce dose gradient, as in photon therapy. In the study, after a preliminary analysis of the width of proton pencil beam penumbras at different depths, SE-IMPT was compared with conventional IMPT in a phantom containing titanium inserts and in a patient, affected by a spinal chordoma with fixation rods.It was shown that SE-IMPT has the potential to produce a sharp dose gradient and that it is not affected by the uncertainties produced by metal implants crossed by the proton beams. Moreover, in the chordoma patient, target coverage and organ at risk sparing of the SE-IMPT plan resulted comparable to that of the less reliable conventional IMPT technique. Robustness analysis confirmed that SE-IMPT was not affected by range errors, which can drastically affect the IMPT plan.When accepting a low-dose spread as in modern photon techniques, SE-IMPT could be an option for the treatment of lesions (e.g. cervical bone tumours) where steep dose gradient could improve curability, and where range uncertainty, due for example to the presence of metal implants, hampers conventional IMPT. (note)

  10. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  11. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  12. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  13. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  14. Empirical and dynamic primary energy factors

    International Nuclear Information System (INIS)

    Wilby, Mark Richard; Rodríguez González, Ana Belén; Vinagre Díaz, Juan José

    2014-01-01

    Current legislation, standards, and scientific research in the field of energy efficiency often make use of PEFs (primary energy factors). The measures employed are usually fixed and based on theoretical calculations. However given the intrinsically variable nature of energy systems, these PEFs should rely on empirical data and evolve in time. Otherwise the obtained efficiencies may not be representative of the actual energy system. In addition, incorrect PEFs may cause a negative effect on the energy efficiency measures. For instance, imposing a high value on the PEF of electricity may discourage the use of renewable energy sources, which have an actual value close to 1. In order to provide a solution to this issue, we propose an application of the Energy Networks (ENs), described in a previous work, to calculate dynamic PEFs based on empirical data. An EN represents an entire energy system both numerically and graphically, from its primary energy sources to their final energy forms, and consuming sectors. Using ENs we can calculate the PEF of any energy form and depict it in a simple and meaningful graph that shows the details of the contribution of each primary energy and the efficiency of the associated process. The analysis of these PEFs leads to significant conclusions regarding the energy models adopted among countries, their evolution in time, the selection of viable ways to improve efficiency, and the detection of best practices that could contribute to the overall energy efficiency targets. - Highlights: • Primary Energy Factors (PEFs) are foundation of much energy legislation and research. • Traditionally, they have been treated as geotemporally invariant. • This work provides a systematic and transparent methodology for adding variability. • It also shows the variability between regions due to market, policy, and technology. • Finally it demonstrates the utility of extended PEFs as a tool in their own right

  15. Turbulence generation through intense kinetic energy sources

    Science.gov (United States)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  16. Intensities of two-quanta cascades at different excitation energies of compound nuclei 146Nd, 174Yb, 183W

    International Nuclear Information System (INIS)

    Boneva, S.T.; Khitrov, V.A.; Sukhovoj, A.M.; Vojnov, A.V.

    1990-01-01

    Intensities of two-quanta cascades are obtained for 2-3 final low-lying levels of the following nuclei 146 Nd, 174 Yb and 183 W. These measured intensities are compared with the intensities calculated in the frame of various models at primary transition energies ranging from 0.5 MeV to the neutron binding energy. Some excitation energy intervals are revealed, experimentally obtained intensities of cascade are inconsistent with model calculations. 15 refs.; 7 figs

  17. Analysis of the overall energy intensity of alumina refinery process using unit process energy intensity and product ratio method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering,The University of Melbourne, Vic. 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-07-15

    Alumina refinery is an energy intensive industry. Traditional energy saving methods employed have been single-equipment-orientated. Based on two concepts of 'energy carrier' and 'system', this paper presents a method that analyzes the effects of unit process energy intensity (e) and product ratio (p) on overall energy intensity of alumina. The important conclusion drawn from this method is that it is necessary to decrease both the unit process energy intensity and the product ratios in order to decrease the overall energy intensity of alumina, which may be taken as a future policy for energy saving. As a case study, the overall energy intensity of the Chinese Zhenzhou alumina refinery plant with Bayer-sinter combined method between 1995 and 2000 was analyzed. The result shows that the overall energy intensity of alumina in this plant decreased by 7.36 GJ/t-Al{sub 2}O{sub 3} over this period, 49% of total energy saving is due to direct energy saving, and 51% is due to indirect energy saving. The emphasis in this paper is on decreasing product ratios of high-energy consumption unit processes, such as evaporation, slurry sintering, aluminium trihydrate calcining and desilication. Energy savings can be made (1) by increasing the proportion of Bayer and indirect digestion, (2) by increasing the grade of ore by ore dressing or importing some rich gibbsite and (3) by promoting the advancement in technology. (author)

  18. China's energy economy. Situation, reforms, behavior, and energy intensity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengyun [Henan Agricultural Univ., Zhengzhou (China). College of Economics and Management; Oxley, Les [Univ. of Canterbury, Christchurch (New Zealand). Dept of Economics and Finance

    2012-07-01

    In the new millennium, understanding China's energy economy is crucial for politicians, businesspeople and energy economists, as China's energy policy choices will mean both challenges and opportunities for the world in terms of an increasing share of primary energy consumption and investment. This book initially reviews the literature on China's energy economy and in so doing reveals that many important areas have been overlooked or are outdated in their coverage. Given the size of China and its global importance, the book then review s China's current energy situation and fills the gaps in the literature for those who are interested in and concerned about China's economic development and energy reform in the new millennium. The book is different from previous studies in several important ways: Firstly, it presents recent, pioneering research rather than a simple textbook, several sections of which have been published in high-quality energy journals. Secondly, the book first subdivides China's energy intensity change into aspects of budget constraint, technological change, factor substitution, energy demand and economic growth using a newly developed econometric approach. Thirdly, it provides many new and different econometric findings and derives many new policy implications for China's energy economy. And lastly, it brings to light a wealth of new knowledge for those who are interested in China's energy economy, the world energy market and global environmental and climate change issues.

  19. The unexpected challenges of using energy intensity as a policy objective: Examining the debate over the APEC energy intensity goal

    International Nuclear Information System (INIS)

    Samuelson, Ralph D.

    2014-01-01

    Aims: Energy intensity (energy demand per unit of economic output) is one of the most widely used indicators of energy efficiency in energy policy discussions. Yet its application in real-world policymaking can be surprisingly problematical. This paper aims to provide guidance to governments and organizations considering using energy intensity as a policy objective. Scope: In 2007 the APEC community adopted, then in 2011 revised, an APEC region-wide energy intensity improvement goal. This paper presents a case study of that experience, focusing on three key ‘lessons learned’. These lessons are not original findings. However, none of them have received the recognition they deserve, and consequently, they came as a surprise to many of those involved in APEC's policy discussions. Conclusions: The three lessons are as follows: (1) Energy intensity improvement is happening surprisingly quickly, but not quickly enough to meet the world's energy challenges. (2) It is difficult to find a definition of energy intensity that can make it suitable for use as an indicator of regional energy efficiency. (3) Whether the GDP's of individual economies are converted to common currency using market exchange rates or purchasing power parity (PPP) can dramatically change regional energy intensity improvement calculations. - Highlights: • APEC adopted, then subsequently revised, an energy intensity reduction goal. • This is a case study of APEC's use of energy intensity as a policy objective. • Energy intensity is declining more rapidly than many policymakers realized. • The definition of energy intensity adopted can dramatically change the incentives. • Currency conversion methodologies can dramatically change the calculations

  20. 2005 primary energy consumption in Germany

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    According to preliminar calculations by the Arbeitsgemeinschaft Energiebilanzen (Working Party on Energy Balances, AGEB), the consumption of an aggregate 486 million TCE of primary energy resources in Germany last year was 1.3% below the level of the year before. Energy consumption was influenced by both the high level of prices and the development of the economy. Hardly any influence was attributable to the level of temperatures, which was largely unchanged compared to the figure of the year before. Oil consumption in 2005 in Germany dropped by nearly 2% to 174.8 million TCE. On the whole, oil with its 36% share in the energy balance remained by far the most important energy resource in Germany. Natural gas consumption of 110.4 million TCE was at the level of the year before. Its share in the primary energy balance rose slightly to 22.7%. Hard coal, because of lower use in power plants and the decline in iron making, showed a 4.6% drop in consumption to 62.8 million TCE. In this way, hard coal contributed 13% to total energy consumption. Lignite consumption dropped by 3.2% to 54.4 million TCE as a result of lower deliveries to power plants. Its 11.2% share in the total consumption of primary energy continued to make lignite the most important domestic energy resource. More than 90% of the lignite produced is used for electricity generation. The contribution to primary energy consumption of nuclear power dropped by more than 2% to 60.7 million TCE. Hydroelectric plants and wind power plants increased their contribution by 3.6%. The contribution to primary energy consumption made by all renewable energy resources rose to 4.6%. AGEB evaluates statistics of all areas of the power economy on the basis of standard criteria in order to combine these data in a comprehensive picture. Since 1994, the energy balances for Germany have been compiled by DIW on behalf of AGEB. (orig.)

  1. Energy intensity and its determinants in China's regional economies

    International Nuclear Information System (INIS)

    Wu Yanrui

    2012-01-01

    This paper contributes to the existing literature as well as policy debates by examining energy intensity and its determinants in China's regional economies. The analysis is based on a comprehensive database of China's regional energy balance constructed for this project. Through its focus on regional China, this study extends the existing literature, which mainly covers nationwide studies. It is found in this paper that energy intensity declined substantially in China. The main contributing factor is the improvement in energy efficiency. Changes in the economic structure have so far affected energy intensity modestly. Thus there is considerable scope to reduce energy intensity through the structural transformation of the Chinese economy in the future. - Highlights: ► First study examining energy intensity and its determinants using sectoral data in Chinese regions. ► Major findings. ► Decline in energy intensity is due to the rise in energy efficiency. ► Economic structural change has played little role. ► Growth in capital intensity alone would not lead to the decline in energy consumption.

  2. The decline of sectorial components of the world's energy intensity

    International Nuclear Information System (INIS)

    Goldemberg, José; Siqueira Prado, Luiz Tadeo

    2013-01-01

    The world's primary energy consumption in the last 40 years has been increasing at 2.2%/year while GDP growth has been 3.4%/years over the same period. The decline of the energy intensity (I=E/GDP) has been, therefore, of 1.2%/year. In order to reduce the world's consumption growth proposal have been made to reduce the world's energy intensity by 40% by 2030 which corresponds to a reduction of 2.5%/year, roughly the double of the historical decline. Our analysis shoes that such goal could only be achieved by an unprecedented reduction of the energy intensity of “services” (which represent less than half the world energy consumption) since energy intensity of industry has remained practically constant in the last 40 years. - Highlights: ► GDP and world's energy consumption are split in 2 main sectors: industry and “services”, etc. ► The evolution of the energy intensity for these sectors since 1971 is calculated. ► The energy intensity of the industry sector is practically constant since 1971. ► All the decline of the energy intensity since 1971 comes from the “services” sector

  3. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  4. Substitution possibilities and determinants of energy intensity for China

    International Nuclear Information System (INIS)

    Ma, Hengyun; Oxley, Les; Gibson, John

    2009-01-01

    This paper measures technological change, factor demand and inter-factor and inter-fuel substitutability measures for China. We use individual fuel price data and a two-stage approach to estimate total factor cost functions and fuel share equations. Both inter-factor and inter-fuel substitution elasticities are calculated and the change in energy intensity is decomposed into its driving forces. The results suggest that energy is substitutable for capital regionally and for labor nationally. Capital substitutes for energy more easily than labor does. Energy intensity changes vary by region but the major drivers seem to be 'budget effect' and the adoption of energy-intensive technologies, which might be embodied in high-level energy-using exports and sectors, capital investment and even old technique and equipment imports. Whether the trend in rising energy intensity continues will be significant for China and the rest of the world. (author)

  5. Substitution possibilities and determinants of energy intensity for China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hengyun [College of Economics and Management, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002 (China); Department of Economics, University of Canterbury, Private bag 4800, Christchurch 8140 (New Zealand); Oxley, Les [Department of Economics, University of Canterbury, Private bag 4800, Christchurch 8140 (New Zealand); Gibson, John [Department of Economics, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2009-05-15

    This paper measures technological change, factor demand and inter-factor and inter-fuel substitutability measures for China. We use individual fuel price data and a two-stage approach to estimate total factor cost functions and fuel share equations. Both inter-factor and inter-fuel substitution elasticities are calculated and the change in energy intensity is decomposed into its driving forces. The results suggest that energy is substitutable for capital regionally and for labor nationally. Capital substitutes for energy more easily than labor does. Energy intensity changes vary by region but the major drivers seem to be 'budget effect' and the adoption of energy-intensive technologies, which might be embodied in high-level energy-using exports and sectors, capital investment and even old technique and equipment imports. Whether the trend in rising energy intensity continues will be significant for China and the rest of the world. (author)

  6. Energy intensity ratios as net energy measures of United States energy production and expenditures

    International Nuclear Information System (INIS)

    King, C W

    2010-01-01

    In this letter I compare two measures of energy quality, energy return on energy invested (EROI) and energy intensity ratio (EIR) for the fossil fuel consumption and production of the United States. All other characteristics being equal, a fuel or energy system with a higher EROI or EIR is of better quality because more energy is provided to society. I define and calculate the EIR for oil, natural gas, coal, and electricity as measures of the energy intensity (units of energy divided by money) of the energy resource relative to the energy intensity of the overall economy. EIR measures based upon various unit prices for energy (e.g. $/Btu of a barrel of oil) as well as total expenditures on energy supplies (e.g. total dollars spent on petroleum) indicate net energy at different points in the supply chain of the overall energy system. The results indicate that EIR is an easily calculated and effective proxy for EROI for US oil, gas, coal, and electricity. The EIR correlates well with previous EROI calculations, but adds additional information on energy resource quality within the supply chain. Furthermore, the EIR and EROI of oil and gas as well as coal were all in decline for two time periods within the last 40 years, and both time periods preceded economic recessions.

  7. Do urbanization and industrialization affect energy intensity in developing countries?

    International Nuclear Information System (INIS)

    Sadorsky, Perry

    2013-01-01

    Against a backdrop of concerns about climate change, peak oil, and energy security issues, reducing energy intensity is often advocated as a way to at least partially mitigate these impacts. This study uses recently developed heterogeneous panel regression techniques like mean group estimators and common correlated effects estimators to model the impact that income, urbanization and industrialization has on energy intensity for a panel of 76 developing countries. In the long-run, a 1% increase in income reduces energy intensity by − 0.45% to − 0.35%. Long-run industrialization elasticities are in the range 0.07 to 0.12. The impact of urbanization on energy intensity is mixed. In specifications where the estimated coefficient on urbanization is statistically significant, it is slightly larger than unity. The implications of these results for energy policy are discussed. - Highlights: ► The impact of urbanization and industrialization on energy intensity is modeled. ► Use recently developed heterogeneous panel regression techniques ► The model is tested on a panel of developing countries. ► Income has a negative impact on energy intensity. ► Industrialization has a positive impact on energy intensity

  8. China’s Energy Intensity, Determinants and Spatial Effects

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2016-06-01

    Full Text Available In the shadow of the energy crisis and environmental degradation, energy intensity is a hot topic in academic circles in China. The energy intensity distribution map of China indicates the fairly large geographic disparities globally and clustering locally in some areas, ascending from the southeast regions to the northwest provinces. Although energy intensity and its determinants vary from place to place, few studies have been made from the spatial perspective. Determinates of energy intensity and spatial spillover effects should be taken into consideration. Controlling for seven exogenous variables (per capita GDP; the share of the secondary sector; foreign direct investment; international trade, energy price, the share of coal, and transport sector and their spatial lags, we apply a spatial Durbin model to test for spatial spillover effects among energy intensity and exogenous variables from a panel of 29 Chinese provinces over 1998 to 2014. We find that per capita GDP has an insignificant and negative direct and indirect effect, but has a significant and negative total effect on energy intensity. The share of the secondary sector and the share of coal are found to have significant and positive direct and indirect effects on energy intensity. Foreign Direct Investment (FDI and Trade have significant and negative direct and indirect effects on energy intensity. The direct effect of energy price is found to be significantly positive while the indirect effect is negative. Only the direct effect of the Transport variable is significant and positive. The results of this study offer some theoretical evidence for differential localized policy making related to reduction in energy intensity.

  9. Trade Exposure of Energy Intensive Sectors

    International Nuclear Information System (INIS)

    Korteland, M.H.; Nelissen, D.; De Bruyn, S.M.

    2010-04-01

    In this report we analysed the origin and destinations of trade flows between EU and non-EU countries with respect to eight industrial sectors. In addition we looked at the political pledges made during the Copenhagen negotiations last December. If we combine these two types of insights, we get an idea of the risk of carbon leakage due to EU climate policies. Our analysis shows that the EU often trades with countries that have climate policy in place. As these major trading partners of the EU can be expected to adopt similar stringent climate policies, CO2 might get a price in these markets as well and the risk of carbon leakage is reduced/absent. Trade intensities should be corrected for that. In case the EU will adopt a -30% emission reduction target, trade with Australia, New Zealand, Japan, Switzerland, Brazil and Mexico, need to be excluded from the calculation of trade intensities since those countries will adopt comparable climate policies. The average downward correction on trade intensities is 3%. If the EU eventually decides to adopt a -20% reduction scenario, trade flows with Russia, Canada and the USA should also be excluded. Those countries will then have policies of similar stringency. The average correction on trade intensities is then -8,5%. These findings have direct consequences on the allocation mechanism for some sectors, which will no longer receive free emission rights as they do not qualify as 'exposed' to international competition anymore. These sectors are listed in Table 4 (-30% scenario) and Table 5 (-20% scenario) on page 31. Yet, those sectors that are expected to face large cost increases (>5%) due to EU ETS, will still receive free allocation.

  10. What induced China's energy intensity to fluctuate: 1997-2006?

    International Nuclear Information System (INIS)

    Liao, Hua; Fan, Ying; Wei, Yi-Ming

    2007-01-01

    China is the second largest energy consumer in the world. During 1997-2002, China's energy intensity declined by 33%. However, it rose by 10.7% over 2003-2005, and declined by 1.2% in 2006. What induced China's energy intensity to fluctuate so drastically? Industry accounts for approximately 70% of the total energy consumption in China. In this paper, we decompose China's industrial energy intensity changes between 1997 and 2002 into sectoral structural effects and efficiency effects (measured by sectoral energy intensities at two-digit level and including the shifts of product mix in the sub-sector or firm level), using Toernqvist and Sato-Vartia Index methods. The results show that in this period, efficiency effects possibly contributed to a majority of the decline, while the contribution from structural effects was less. During 2003-2005, the excessive expansion of high-energy consuming sub-sectors and the high investment ratio were foremost sources of the increasing energy intensity. Attributed to the government efforts, the energy intensity has started to decline slightly since July 2006. In future, to save more energy, in addition to technical progress, China should attach more importance to optimizing its sectoral structure, and lowering its investment ratio

  11. Emergy-based comparative analysis of energy intensity in different industrial systems.

    Science.gov (United States)

    Liu, Zhe; Geng, Yong; Wang, Hui; Sun, Lu; Ma, Zhixiao; Tian, Xu; Yu, Xiaoman

    2015-12-01

    With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although

  12. A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Maltz, Jonathan

    2008-01-01

    A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy

  13. Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis

    International Nuclear Information System (INIS)

    Lenzen, M.

    1998-01-01

    Input-output modeling of primary energy and greenhouse gas embodiments in goods and services is a useful technique for designing greenhouse gas abatement policies. The present paper describes direct and indirect primary energy and greenhouse gas requirements for a given set of Australian final consumption. It considers sectoral disparities in energy prices, capital formation and international trade flows and it accounts for embodiments in the Gross National Expenditure as well as the Gross Domestic Product. Primary energy and greenhouse gas intensities in terms of MJ/$ and kg CO 2 -e/$ are reported, as well as national balance of primary energy consumption and greenhouse gas emissions. (author)

  14. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    Science.gov (United States)

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential

  15. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  16. Dynamic Modelling with "MLE-Energy Dynamic" for Primary School

    Science.gov (United States)

    Giliberti, Enrico; Corni, Federico

    During the recent years simulation and modelling are growing instances in science education. In primary school, however, the main use of software is the simulation, due to the lack of modelling software tools specially designed to fit/accomplish the needs of primary education. In particular primary school teachers need to use simulation in a framework that is both consistent and simple enough to be understandable by children [2]. One of the possible area to approach modelling is about the construction of the concept of energy, in particular for what concerns the relations among substance, potential, power [3]. Following the previous initial research results with this approach [2], and with the static version of the software MLE Energy [1], we suggest the design and the experimentation of a dynamic modelling software—MLE dynamic-capable to represent dynamically the relations occurring when two substance-like quantities exchange energy, modifying their potential. By means of this software the user can graphically choose the dependent and independent variables and leave the other parameters fixed. The software has been initially evaluated, during a course of science education with a group of primary school teachers-to-be, to test the ability of the software to improve teachers' way of thinking in terms of substance-like quantities and their effects (graphical representation of the extensive, intensive variables and their mutual relations); moreover, the software has been tested with a group of primary school teachers, asking their opinion about the software didactical relevance in the class work.

  17. Scenarios with an intensive contribution of the nuclear energy to the world energy supply

    International Nuclear Information System (INIS)

    Nifenecker, H.; Heuer, D.; Huffer, E.; David, S.; Loiseaux, J.M.; Meplan, O.; Nuttin, A.; Martin, J.M.

    2002-01-01

    Temperature stabilization requires that CO 2 emissions be limited to less than 3 Gt Carbon equivalent, from the present level of more than 6 Gt. Despite an increase of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development of a 3000 GWe pool of PWR reactors by 2030 and of an additional 6000 GWe pool of U-Pu or Th-U reactors by 2050 would lead to temperature stabilization at a level 2 degrees above the pre-industrial level. (authors)

  18. Scenarios with an intensive contribution of nuclear energy to the world energy supply

    International Nuclear Information System (INIS)

    Nifenecker, H.; Heuer, D.; Loiseaux, J.M.; Meplan, O.; Nuttin, A.; David, S.; Martin, J.M.

    2001-01-01

    Temperature stabilization requires that Co2 emissions be limited to less than 3 Gt Carbon equivalent, from the present level of more than 6 Gt. Despite an increase of primary energy demand by 250% in 2050 we find that a nuclear intensive scenario assuming the development of a 3000 GW pool of PWR reactors by 2030 and of an additional 6000 GW pool of U-Pu or Th-U reactors by 2050 would lead to temperature stabilization at a level 2 degrees above the pre-industrial level. (author)

  19. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  20. Primary energy-transformations in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, A.L.

    1980-10-01

    In this paper I shall review the main outlines of current research on the molecular aspects of the primary energy-coupling mechanisms in cells, those carried out by energy-transducing membranes. They include the capture of solar energy by the chloroplast membranes of green plants, used to generate carbohydrates and molecular oxygen from carbon dioxide and water, and the counterpart of photosynthesis, the process of respiration in heterotrophic organisms, in which reduced organic products generated by photosynthesis are oxidized at the expense of dioxygen to form carbon dioxide and water. Although the cycling of dioxygen, carbon dioxide, and organic matter between the plant and animal worlds is well known, it is not generally appreciated that the magnitude of biological energy flux in these cycles is huge compared to the total energy flux in man-made devices. A major consequence is that the concentration of carbon dioxide in the atmosphere has been increasing at a significant rate, at a time when there is also a decrease, at least in some parts of the world, in the counterbalancing utilization of CO/sub 2/ by green plants, due to deforestation. The greenhouse effect of increased atmospheric CO/sub 2/ may not only change the earth's climate, but also may influence the rate of photosynthesis. It is also not generally appreciated that energy flow in the biosphere leads to production of enormous amounts of organic matter potentially useful in furnishing man's energy requirements.

  1. US long-term energy intensity: Backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, Hadi; Oravetz, Matthew A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency-especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand ε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions

  2. US long-term energy intensity: backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Oravetz, M.A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demandε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  3. US long-term energy intensity: backcast and projection

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H. [University of British Columbia, Vancouver (Canada); Oravetz, M.A. [International Energy Agency, Paris (France)

    2006-11-15

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, {pi}, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand{epsilon}. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires {pi} to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with {pi} than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO{sub 2} emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  4. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  5. Effect of material flows on energy intensity in process industries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)

    2006-09-15

    Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)

  6. The Impact of Urbanization on Energy Intensity in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mounir Belloumi

    2016-04-01

    Full Text Available This paper investigates the long-term and causal relationship between energy intensity, real GDP per capita, urbanization and industrialization in Saudi Arabia over the period 1971–2012 using the breakpoint unit root tests developed by Perron (1989 and the autoregressive distributed lag (ARDL model bounds testing to cointegration proposed by Pesaran et al. (2001 and employing a modified version of the Granger causality test proposed by Toda and Yamamoto (1995. Additionally, to test the robustness of the results, the fully modified ordinary least squares (OLS regression, the dynamic OLS regression, and the Hansen test are used. Our results show that the variables are cointegrated when energy intensity is the dependent variable. It is also found that urbanization positively affects energy intensity in both the short term and the long term. Causality tests indicate that urbanization causes economic output that causes energy intensity in the long term. Our results do not support the urban compaction hypothesis where urban cities benefit from basic public services and economies of scale for public infrastructure. Therefore, measures that slow down the rapid urbanization process should be taken to reduce energy intensity in Saudi Arabia. In addition, reducing energy inefficiency in energy consumption should be a strategy to attain sustainable development in the near future in Saudi Arabia.

  7. The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system

    International Nuclear Information System (INIS)

    Gómez, Antonio; Dopazo, César; Fueyo, Norberto

    2014-01-01

    The primary energy intensity of Kazakhstan is among the highest in the world. The aim of this paper is to explore, in a quantitative way, the reasons for this condition, and to highlight the opportunities for improvement. To do so, we have developed a detailed ‘bottom-up’ model of the Kazakh energy sector. With this model, we have calculated the potential energy savings on both the demand and supply sides, and for all the economy sectors. This potential is defined as the difference between the current energy consumption in each sector/activity and the energy consumption if best available technologies or energy efficiency standards prevailing in developed countries were adopted in Kazakhstan. We conclude that the main causes of the energy inefficiency in Kazakhstan are: the excessive energy demand of buildings (especially for space heating) in the household and service sector, the inefficiency of the industry sector, particularly in the iron and steel and non-ferrous metals subsectors, the obsolescence of the heating and power generation assets, and the inefficient management of associated gas (flaring and re-injection in oil wells). With current energy efficiency standards prevailing in developed countries, the primary energy consumption in Kazakhstan in 2010 would be reduced by 48.6%, from 75.4 to 38.7 Mtoe. - Highlights: • A detailed ‘bottom-up’ model of the Kazakh energy sector has been developed. • The reasons of the high primary energy intensity of Kazakhstan are determined. • Household and industrial sectors of Kazakhstan are highly inefficient. • Associated gas management shows the highest potential for energy saving. • Primary energy consumption would be reduced by 48.6% with the proposed measures

  8. Why does the energy intensity of freight transport rise?

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, D [Scientific Council for Government Policy (Netherlands)

    1996-12-01

    In advanced economies it is normal to observe declining energy intensities. Both improvements in conversion efficiency and in organisational efficiency of energy use cause energy demand to grow at a slower pace than the economy. In this context it is somewhat particular that in the vital sector of freight transport the energy intensity does not decline, but instead increases. The energy demand of this sector only takes a small share of the total energy demand. According to the World Energy Council the transport sector takes 30 percent of world energy demand and freight transport again takes 30 percent of the transport sector share, maritime transport excluded. Despite this small share some explanation is needed why the increase in energy demand form the volume growth of freight demand is not at least partly countered by a decline in the energy intensity. The purpose of this paper is to review some of the explanations that are given in the literature and to support these explanations with empirical evidence on the case of the Netherlands. (EG)

  9. prevalence and intensity of urinary schistosomiasis among primary ...

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. Urine samples were collected from 493 pupils (5-16 years) at Wasai and Dingim wards in Minjibir ... predominantly farmers. However, due ... of infection (113.36 EPC ) than females (33.67) EPC urine. These differences in prevalence and intensity of infection between males and females were highly significant.

  10. Experimental Research at the Intensity Frontier in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, Marvin L. [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-06-30

    This Final Report describes DOE-supported Intensity Frontier research by the University of Minnesota during the interval April 1, 2011 to March 31, 2014. Primary activities included the MINOS, NOvA and LBNE Experiments and Heavy Quark studies at BES III.

  11. Principles, effects and problems of differential power pricing policy for energy intensive industries in China

    International Nuclear Information System (INIS)

    Lin, Boqiang; Liu, Jianghua

    2011-01-01

    The Chinese government canceled the preferential power pricing policies for energy intensive industries and imposed a reverse differential pricing policy in order to promote energy efficiency and the adjustment and upgrading of the industrial structure. This article analyzes the principles of China's differential power pricing policy, the externalities of energy and the modified Ramsey pricing rule, and also points out the policy implications of China's differential power pricing policy. In our samples, we investigate eight power intensive products in the Henan province with respect to their power consumption per unit (power intensity), electricity cost, total cost, the electricity tariff and profit, in order to test the effects of the differential power pricing policy. The results show that the primary effect of the differential power pricing policy is that enterprises decrease their total costs and improve their productive efficiencies in advance, in anticipating a higher electricity tariff. -- Research highlights: → The article suggests a modified Ramsey pricing model where demand elasticity is replaced by elasticity of energy consumption and polluting elasticity to internalize the negative externality of high energy intensive industry. → The article assesses the effects of differential pricing policy through on-site survey of high energy intensive industries in Henan province and analyzes the reasons behind those effects. → The article presents the lessons and policy implications of implementing differential pricing policy aimed at energy conservation and emission reduction.

  12. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  13. Inequality of energy intensities across OECD countries: a note

    International Nuclear Information System (INIS)

    Alcantara, Vicent; Duro, J.A.

    2004-01-01

    This paper proposes the use of Theil's second measure to analyze international energy intensity differences. This index allows differences to be broken down within and between groups of countries in a consistent manner. An analysis of OECD countries for the period 1971-1999 shows some basic points: first, the fall in energy intensities differences is attributable both to within-group and between-group inequality components; second, between-group inequalities are currently the main contributor to the whole inequality value; finally, a detailed exploration on within-group inequalities reveals the significant explanatory role played by EU-countries

  14. Nuclear energy = more jobs. [Capital-intensive vs labor-intensive systems

    Energy Technology Data Exchange (ETDEWEB)

    Brookes, L G

    1979-07-01

    In the April 1979 issue of Energy Manager, Dr. David Elliott of Open University says capital-intensive systems employ less labor per unit of output, concluding that nuclear energy represented a poor bargain in terms of money invested per job created. Responding to this earlier article, Dr. Brookes argues that capital-intensive systems may employ less labor per unit of output, but they also produce more output and income per worker. Dr. Brookes uses a simple analysis to illustrate how progress results by increasing capital investment and disagrees strongly with Elliotts conclusions - says output must become more capital-intensive to provide more employment opportunities. Further, he feels that Elliott and other antinuclear and environmentalist writers have fallen into the trap of the fallacy of composition - assuming that what is true for a small number of constituent parts taken singly is true also for the total system taken as a whole. Examples can be found in economics of microeconomic elements which do not add up to the expected macroeconomic composition, which explains why some capital-intensive strategies are good and others are not. The excess income produced by capital-intensive energy strategies supports the service and public administration sectors. 3 figures, 1 table. (DCK)

  15. Role of fluctuations in the primary energy estimation of cosmic rays

    International Nuclear Information System (INIS)

    Kempa, J.; Malecki, R.

    2008-01-01

    Energy spectrum and chemical composition of primary cosmic ray for energies higher than 1 PeV are obtained mainly from research on the intensity and properties of extensive air showers (EAS). Similar additional information is obtained from research on properties of gamma ray families. A common characteristic of these researches is the fact that we are working in the range of high fluctuation parameters serving us to obtain primary energy spectrum. In this research different probability distributions have been used as well as their convolutions with the power spectrum. The role of the influence of different parameters on measurements of the primary energy spectrum

  16. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  17. Landscape of Future Accelerators at the Energy and Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M. J. [Northern Illinois U.; Chattopadhyay, S. [Northern Illinois U.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  18. Intensity of primary emotions in patients after implantation of an implantable cardioverter defibrillator

    DEFF Research Database (Denmark)

    Stoier, Louise; Pedersen, Preben Ulrich; Berg, Selina Kikkenborg

    2013-01-01

    Background: Experienced emotions can affect the outcome of, and adherence to a cardiac rehabilitation program, and patients coping with an illness. With more awareness of the expressed emotions, health professionals might be better able to understand the reactions of patients and to improve...... the support needed for coping. Living with an Implantable Cardi- overter Defibrillator can lead to anxiety and depression. Focus on the intensity of the primary emotions might be a potential to prevent development of these psychological states. Objectives: The aim of this paper are 1) to describe...... the intensity of primary emotions in patients after implantation of an Implantable Cardioverter Defibrillator and 2) to compare them with both the intensity of primary emotions in patients with a recent Myocardial Infarction and with a healthy population. Method: The intensity of primary emotions in patients...

  19. Changes in energy intensiveness of Hong Kong economy, 1995-2007

    International Nuclear Information System (INIS)

    Chow, Larry C.H.

    2010-01-01

    The growth of Primary Energy Requirements (PER) slackened appreciably since the late 1990s in Hong Kong while Final Energy Requirements (FER) actually declined. Yet GDP continued to grow at a respectable average annual growth rate during the period, leading to a drastic drop in the energy intensiveness of the economy. The article analyzed the factors that contributed to the emergence of the above phenomena and discussed its consequences. The factors that led to the drop in energy intensiveness with respect to FER includes the rising electrification of the fuel mix, improvements in energy end-use efficiency (partly induced by government policy), and changes in the structure of the Hong Kong economy. With respect to the decline in PER energy intensiveness, the following aspects are pertinent: the share of electricity consumption accounted for by nuclear imports, the efficiency of electricity generation in Hong Kong (partly determined by the type of fuels used) and losses due to transmission and distribution as well as station consumption (system losses). The decline in energy intensiveness is good to Hong Kong, both in terms of the economy and the environment. Its ramifications will be briefly discussed.

  20. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  1. The relationship between energy consumption structure, economic structure and energy intensity in China

    International Nuclear Information System (INIS)

    Feng Taiwen; Sun Linyan; Zhang Ying

    2009-01-01

    This paper investigates the long-run equilibrium relationships, temporal dynamic relationships and causal relationships between energy consumption structure, economic structure and energy intensity in China. Time series variables over the periods from 1980 to 2006 are employed in empirical tests. Cointegration tests suggest that these three variables tend to move together in the long-run. In addition, Granger causality tests indicate that there is a unidirectional causality running from energy intensity to economic structure but not vice versa. Impulse response analysis provides reasonable evidences that one shock of the three variables will cause the periods of destabilized that followed. However, the impact of the energy consumption structure shock on energy intensity and the impact of the economic structure shock on energy consumption structure seem to be rather marginal. The findings have significant implications from the point of view of energy conservation and economic development. In order to decrease energy intensity, Chinese government must continue to reduce the proportion of coal in energy consumption, increase the utilization efficiency of coal and promote the upgrade of economic structure. Furthermore, a full analysis of factors that may relate to energy intensity (e.g. energy consumption structure, economic structure) should be conducted before making energy policies.

  2. Baryon acoustic oscillation intensity mapping of dark energy.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  3. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  4. Primary care careers among recent graduates of research-intensive private and public medical schools.

    Science.gov (United States)

    Choi, Phillip A; Xu, Shuai; Ayanian, John Z

    2013-06-01

    Despite a growing need for primary care physicians in the United States, the proportion of medical school graduates pursuing primary care careers has declined over the past decade. To assess the association of medical school research funding with graduates matching in family medicine residencies and practicing primary care. Observational study of United States medical schools. One hundred twenty-one allopathic medical schools. The primary outcomes included the proportion of each school's graduates from 1999 to 2001 who were primary care physicians in 2008, and the proportion of each school's graduates who entered family medicine residencies during 2007 through 2009. The 25 medical schools with the highest levels of research funding from the National Institutes of Health in 2010 were designated as "research-intensive." Among research-intensive medical schools, the 16 private medical schools produced significantly fewer practicing primary care physicians (median 24.1% vs. 33.4%, p schools. In contrast, the nine research-intensive public medical schools produced comparable proportions of graduates pursuing primary care careers (median 36.1% vs. 36.3%, p = 0.87) and matching in family medicine residencies (median 7.4% vs. 10.0%, p = 0.37) relative to the other 66 public medical schools. To meet the health care needs of the US population, research-intensive private medical schools should play a more active role in promoting primary care careers for their students and graduates.

  5. The impacts of energy prices on energy intensity: Evidence from China

    International Nuclear Information System (INIS)

    Hang, Leiming; Tu, Meizeng

    2007-01-01

    In this paper, we present a review of the deregulation of energy prices in China between 1985 and 2004 and assess the impacts of changes in energy prices on aggregate energy intensity and coal/oil/electricity intensity. We used time series data to provide estimates of energy price elasticities. Empirical results showed that: (1) The own-price elasticities of coal, oil, and aggregate energy were negative in periods both before and after 1995, implying that higher relative prices of different energy types lead to the decrease in coal, oil, and aggregate energy intensities. However, the positive own-price elasticity of electricity after 1995 probably indicates that the price effect was weaker than other factors such as income effect and population effect. (2) The impacts of energy prices were asymmetric over time. (3) Sectoral adjustment also drove the decrease in aggregate energy intensity. Although raising energy prices to boost efficiency of energy use seems to be an effective policy tool, other policy implications concerned with energy prices, such as energy supply security and fuel poverty, must also be considered

  6. High-intensity focused ultrasound to treat primary hyperparathyroidism: a feasibility study in four patients

    DEFF Research Database (Denmark)

    Kovatcheva, Roussanka D; Vlahov, Jordan D; Shinkov, Alexander D

    2010-01-01

    Many patients with primary hyperparathyroidism either decline or are not candidates for surgical parathyroidectomy. There are drawbacks to medical therapy as well as percutaneous ethanol injection as alternative therapies for primary hyperparathyroidism. Therefore, in this pilot study, our aim...... was to test the feasibility, safety, and efficacy of a newly developed noninvasive high-intensity focused ultrasound (HIFU) technique for the nonsurgical management of primary hyperparathyroidism....

  7. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

    International Nuclear Information System (INIS)

    Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A.

    2013-01-01

    The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power. - Highlights: ► Nuclear, “renewable” and fossil energy are comparable on a uniform physical basis. ► Energy storage is considered for the calculation, reducing the ERoEI remarkably. ► All power systems generate more energy than they consume. ► Photovoltaics, biomass and wind (buffered) are below the economical threshold

  8. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    Science.gov (United States)

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  9. Challenges in participatory primary stress management interventions in knowledge intensive SMEs

    DEFF Research Database (Denmark)

    Gish, Liv; Ipsen, Christine

    2013-01-01

    relevant change processes. This paper presents the outline of our research and development project on participatory primary stress management interventions in knowledge intensive SMEs, as well as the preliminary results and related implications. The research and development project is conducted in order...... to develop an operational model which SMEs can use when they want to initiate participatory primary stress management interventions in their company. The development project builds on a process model for participatory primary interventions in larger knowledge intensive companies and the premises behind......While knowledge intensive SMEs have recognized the need for change with respect to productivity and wellbeing, and to some extend have access to tools and methods for enabling this, they still lack process competences and are uncertain about how to approach primary stress interventions and initiate...

  10. Effect of exercise intensity on exercise and post exercise energy ...

    African Journals Online (AJOL)

    The aim of this study was to determine if exercise and post exercise energy expenditure are affected by the intensity of exercise during a set distance of 4km walking and/or jogging. Subjects for this study were 12 moderately obese females with mean fat percentage of 31.7±6.3% and mean age of 38.2±4.6 years. For the low ...

  11. Comparison of the evolution of energy intensity in Spain and in the EU15. Why is Spain different?

    Energy Technology Data Exchange (ETDEWEB)

    Mendiluce, Maria; Perez-Arriaga, Ignacio; Ocana, Carlos [Instituto de Investigacion Tecnologica, Universidad Pontificia Comillas de Madrid, Santa Cruz de Marcenado 26, 28015 Madrid (Spain)

    2010-01-15

    Energy intensity in Spain has increased since 1990, while the opposite has happened in the EU15. Decomposition analysis of primary energy intensity ratios has been used to identify which are the key sectors driving the Spanish evolution and those responsible for most of the differences with the EU15 energy intensity levels. It is also a useful tool to quantify which countries and economic sectors have had most influence in the EU15 evolution. The analysis shows that the Spanish economic structure is driving the divergence in energy intensity ratios with the EU15, mainly due to strong transport growth, but also because of the increase of activities linked to the construction boom, and the convergence to EU levels of household energy demand. The results can be used to pinpoint successful EU strategies for energy efficiency that could be used to improve the Spanish metric. (author)

  12. Assessing Internet energy intensity: A review of methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Coroama, Vlad C., E-mail: vcoroama@gmail.com [Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Hilty, Lorenz M. [Department of Informatics, University of Zurich, Binzmühlestrasse 14, 8050 Zurich (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen (Switzerland); Centre for Sustainable Communications, KTH Royal Institute of Technology, Lindstedtsvägen 5, 100 44 Stockholm (Sweden)

    2014-02-15

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude — from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) top–down analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottom–up approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: • Assessments of the energy intensity of the Internet differ by a factor of 20,000. • We review top–down, model-based, and bottom–up estimates from literature. • Main divergence factors are the year studied and the inclusion of end devices

  13. Assessing Internet energy intensity: A review of methods and results

    International Nuclear Information System (INIS)

    Coroama, Vlad C.; Hilty, Lorenz M.

    2014-01-01

    Assessing the average energy intensity of Internet transmissions is a complex task that has been a controversial subject of discussion. Estimates published over the last decade diverge by up to four orders of magnitude — from 0.0064 kilowatt-hours per gigabyte (kWh/GB) to 136 kWh/GB. This article presents a review of the methodological approaches used so far in such assessments: i) top–down analyses based on estimates of the overall Internet energy consumption and the overall Internet traffic, whereby average energy intensity is calculated by dividing energy by traffic for a given period of time, ii) model-based approaches that model all components needed to sustain an amount of Internet traffic, and iii) bottom–up approaches based on case studies and generalization of the results. Our analysis of the existing studies shows that the large spread of results is mainly caused by two factors: a) the year of reference of the analysis, which has significant influence due to efficiency gains in electronic equipment, and b) whether end devices such as personal computers or servers are included within the system boundary or not. For an overall assessment of the energy needed to perform a specific task involving the Internet, it is necessary to account for the types of end devices needed for the task, while the energy needed for data transmission can be added based on a generic estimate of Internet energy intensity for a given year. Separating the Internet as a data transmission system from the end devices leads to more accurate models and to results that are more informative for decision makers, because end devices and the networking equipment of the Internet usually belong to different spheres of control. -- Highlights: • Assessments of the energy intensity of the Internet differ by a factor of 20,000. • We review top–down, model-based, and bottom–up estimates from literature. • Main divergence factors are the year studied and the inclusion of end devices

  14. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The Intense Neutron Source Facility, INS, has been proposed to provide a neutronic environment similar to that anticipated in a fully operational fusion-power reactor. The neutron generator will produce an intense flux of 14-MeV neutrons greater than 10 14 neutrons per cm 2 /sec from the collision of two intersecting beams, one of 1.1 A of 270 keV tritium ions and the other of a supersonic jet of deuterium gas. Using either the pure 14-MeV primary neutron spectrum or by tailoring the spectrum with appropriate moderators, crucial radiation-damage effects which are likely to occur in fusion reactors can be thoroughly explored and better understood

  15. Variations in embodied energy and carbon emission intensities of construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wan Omar, Wan-Mohd-Sabki [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia); Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia); Panuwatwanich, Kriengsak [Griffith School of Engineering, Griffith University, Gold Coast Campus, Queensland 4222 (Australia)

    2014-11-15

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.

  16. Variations in embodied energy and carbon emission intensities of construction materials

    International Nuclear Information System (INIS)

    Wan Omar, Wan-Mohd-Sabki; Doh, Jeung-Hwan; Panuwatwanich, Kriengsak

    2014-01-01

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models

  17. Public budgets for energy RD&D and the effects on energy intensity and pollution levels.

    Science.gov (United States)

    Balsalobre, Daniel; Álvarez, Agustín; Cantos, José María

    2015-04-01

    This study, based on the N-shaped cubic model of the environmental Kuznets curve, analyzes the evolution of per capita greenhouse gas emissions (GHGpc) using not just economic growth but also public budgets dedicated to energy-oriented research development and demonstration (RD&D) and energy intensity. The empirical evidence, obtained from an econometric model of fixed effects for 28 OECD countries during 1994-2010, suggests that energy innovations help reduce GHGpc levels and mitigate the negative impact of energy intensity on environmental quality. When countries develop active energy RD&D policies, they can reduce both the rates of energy intensity and the level of GHGpc emissions. This paper incorporates a moderating variable to the econometric model that emphasizes the effect that GDP has on energy intensity. It also adds a variable that reflects the difference between countries that have made a greater economic effort in energy RD&D, which in turn corrects the GHG emissions resulting from the energy intensity of each country.

  18. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  19. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  20. A comparative study on the influential factors of China's provincial energy intensity

    International Nuclear Information System (INIS)

    Yang, Guangfei; Li, Wenli; Wang, Jianliang; Zhang, Dongqing

    2016-01-01

    China has become the largest energy consumer worldwide, and it is important to study the energy intensity to realize the sustainable development goal of China. This paper focuses on investigating the influential factors of China's energy intensity using provincial-level panel data from 1985 to 2012. More specifically, we try to identify which factor is relatively more important to pay attention to. A novel approach based on evolutionary computation is proposed to intelligently mine the intrinsic relations between observed phenomena and to let the important factors automatically emerge from the discovered nonlinear models. However, due to China's vast territory and significant heterogeneities, this approach may fail to examine some detailed or hidden information when analyzing the country as a whole. Instead, we concentrate on the provincial level because the provinces play vital roles in reducing energy intensity in China. From our analytical results, the main findings are as follows: (1) the Total Population is the most important influential factor across China's provinces, while the Energy Price Index has the least impact; and (2) the provinces could be naturally classified into four categories based on the primary factors emerged from data, and such classification could reveal more about the true underlying features of each area. - Highlights: • Identify the important factors of China's energy intensity by symbolic regression. • Analyze China's energy intensity using provincial-level panel data from 1985 to 2012. • Intelligently investigate nonlinear models and the emergence of important factors. • The Total Population is discovered to be the most important influential factor. • Provinces are naturally classified into four categories by the influential factors.

  1. Changes in energy intensity in the manufacturing sector 1985--1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-15

    In this report, energy intensity is defined as the ratio of energy consumption per unit of output. Output is measured as the constant dollar of value of shipments and receipts, and two measures of energy consumption are presented in British thermal units (Btu): Offsite-Produced Energy and Total Inputs of Energy. A decrease in energy intensity from one period to another suggests an increase in energy efficiency, and vice versa. Energy efficiency can be defined and measured in various ways. Certain concepts of energy efficiency, especially those limited to equipment efficiencies, cannot be measured over time using changes in energy-intensity ratios. While improved energy efficiency will tend to reduce energy intensity, it is also true that a change in energy intensity can be due to factors unrelated to energy efficiency. For this report, energy intensity is used as a surrogate measure for energy efficiency, based on industry knowledge and current methodological analyses.

  2. Energy intensity, CO{sub 2} emissions and the environmental Kuznets curve. The Spanish case

    Energy Technology Data Exchange (ETDEWEB)

    Roca, J. [Universitat de Barcelona (Spain). Dpt. Teoria Economica; Alcantara, V. [Universitat Autonoma de Barcelona (Spain). Dpt. Economia Aplicada

    2001-06-01

    This article analyses the role of energy intensity and the relationship between CO{sub 2} emissions and primary energy in order to explain the evolution of CO{sub 2} emissions by unit of real GDP. It also distinguishes two different meanings of CO{sub 2} emissions Kuznets curve hypothesis: the weak and the strong sense. It considers the case of Spain in the period 1972-1997 as an example in which there is not any evidence supporting this hypothesis in either sense. (author)

  3. Life cycle primary energy analysis of residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-02-15

    The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO{sub 2} emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO{sub 2} emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO{sub 2} emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house. (author)

  4. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  5. Formation of a high intensity low energy positron string

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Syresin, E.M.; Itahashi, T.; Dubinov, A.E.

    2004-01-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5x10 9 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production

  6. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  7. Interpretation of diffuse low-energy electron diffraction intensities

    International Nuclear Information System (INIS)

    Saldin, D.K.; Pendry, J.B.; Van Hove, M.A.; Somorjai, G.A.

    1985-01-01

    It is shown that the diffuse low-energy electron diffraction (LEED) that occurs between sharp LEED beams can be used to determine the local bonding configuration near disordered surface atoms. Two approaches to the calculation of diffuse LEED intensities are presented for the case of lattice-gas disorder of an adsorbate on a crystalline substrate. The capabilities of this technique are most similar to those of near-edge extended x-ray absorption fine structure, but avoid the restrictions due to the use of photons

  8. Effects of intense ultraviolet radiation on electrostatic energy analyzers

    International Nuclear Information System (INIS)

    Mathew, J.; Jennings, W.C.; Hickok, R.L.; Connor, K.A.; Schoch, P.M.; Hallock, G.A.

    1984-01-01

    Intense ultraviolet radiation from the plasma poses a significant problem for the implementation of heavy ion beam probe diagnostic systems on fusion-oriented confinement devices. The radiation enters the electrostatic energy analyzer used to detect secondary ions, resulting in both a distortion of the electric field inside the analyzer and noise generation in the detector channels. Data acquisition procedures and mechanical design techniques have been developed to significantly reduce these effects. We have also been successful in modelling the electric field distortion and have developed a data correction procedure based on this model. Methods for approaching the problems anticipated in future devices are also suggested

  9. Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand

    International Nuclear Information System (INIS)

    Chontanawat, Jaruwan; Wiboonchutikula, Paitoon; Buddhivanich, Atinat

    2014-01-01

    The study computes and analyses the sources of the change of energy intensity of the manufacturing industries in Thailand during the period (1991–2011) using the decomposition method. The Logarithmic Mean Divisia Index is computed and the results show that the energy intensity in the period (1991–2000) increased greatly from the increased energy intensity of each industry. In the more recent period (2000–2011) the energy intensity declined a little. However the decline was mainly from the structural change effect with negligible contribution from decreased energy intensity of each industry. The findings imply the need to balance industrial restructuring policies with efforts to reduce energy intensity for a sustainable economic development. Besides, there is much room for individual industries to improve their energy efficiency. Policies on restructuring energy prices and other non-price related measures should be devised to induce individual industries, particularly the highly energy intensive ones, to reduce their energy intensity. - Highlights: • Decomposing change of energy intensity of Thai manufacturing industries, 1991–2011. • 1991–2000 energy intensity rose due to increased energy intensity of each industry. • 2000–2011 energy intensity declined due mainly to the structural change effect. • Need to balance industrial restructuring policies to reduce energy intensity

  10. Calculating economy-wide energy intensity decline rate: The role of sectoral output and energy shares

    International Nuclear Information System (INIS)

    Baksi, Soham; Green, Chris

    2007-01-01

    We specify formulas for computing the rate of decline in economy-wide energy intensity by aggregating its two determinants-technical efficiency improvements in the various sectors of the economy, and shifts in economic activity among these sectors. The formulas incorporate the interdependence between sectoral shares, and establish a one-to-one relation between sectoral output and energy shares. This helps to eliminate future energy intensity decline scenarios which involve implausible values of either sectoral share. An illustrative application of the formulas is provided, using within-sector efficiency improvement estimates suggested by Lightfoot-Green and Harvey

  11. Low energy intense electron beams with extra-low energy spread

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Calabrese, R.; Ciullo, G.; Dikansky, N.S.; Guidi, V.; Kot, N.C.; Kudelainen, V.I.; Lamanna, G.; Lebedev, V.A.; Logachov, P.V.; Tecchio, L.; Yang, B.

    1994-01-01

    Maximum achievable intensity for low energy electron beams is a feature that is not very often compatible with low energy spread. We show that a proper choice of the source and the acceleration optics allows one to match them together. In this scheme, a GaAs photocathode excited by a single-mode infrared laser and adiabatic acceleration in fully magnetised optics enables the production of a low-energy-spread electron beam with relatively high intensity. The technological problems associated with the method are discussed together with its limitations. (orig.)

  12. Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2015-01-01

    Despite the prevalence of voluntary and involuntary energy conservation policies, developing countries in Africa continue to struggle to achieve energy efficiency targets. Consequently, energy intensity levels have risen threatening the security of the energy system. This raises the important question: is there an economic state that induces agents to be energy conscious? In this study, we study the case of Algeria's energy intensity from 1971 to 2010. First, the paper argues that there is a certain economic state that economic agents find investing in energy conservation a viable option. Any state different from that would mean not investing in energy conservation. Second, the paper argues that the economy can do better even with an infinitesimal reduction in fuel subsidy, and that the gains in revenue from the policy can compensate for the negative socio-economic and equity impacts associated with such a policy. Third, the paper argues that, so long as, industrial expansion in the country move parallel with investment in technological innovation, long-term sustainable growth and energy conservation targets are jointly feasible. Fourth, the paper shows that income elasticity evolves with the business cycle, and the absorptive capability of the host country affects how FDI (foreign direct inflows) impact energy intensity. - Highlights: • Low income states inhibit fuel substitution and investment in energy conservation. • Income elasticity evolves as we pass through boom and recessionary periods. • The goals of sustainable growth and energy conservation are not mutually exclusive. • Absorptive capability affects the impact of FDI on energy intensity

  13. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  14. Particle Physics at the Cosmic, Intensity, and Energy Frontiers

    Energy Technology Data Exchange (ETDEWEB)

    Essig, Rouven

    2018-04-06

    Major efforts at the Intensity, Cosmic, and Energy frontiers of particle physics are rapidly furthering our understanding of the fundamental constituents of Nature and their interactions. The overall objectives of this research project are (1) to interpret and develop the theoretical implications of the data collected at these frontiers and (2) to provide the theoretical motivation, basis, and ideas for new experiments and for new analyses of experimental data. Within the Intensity Frontier, an experimental search for a new force mediated by a GeV-scale gauge boson will be carried out with the $A'$ Experiment (APEX) and the Heavy Photon Search (HPS), both at Jefferson Laboratory. Within the Cosmic Frontier, contributions are planned to the search for dark matter particles with the Fermi Gamma-ray Space Telescope and other instruments. A detailed exploration will also be performed of new direct detection strategies for dark matter particles with sub-GeV masses to facilitate the development of new experiments. In addition, the theoretical implications of existing and future dark matter-related anomalies will be examined. Within the Energy Frontier, the implications of the data from the Large Hadron Collider will be investigated. Novel search strategies will be developed to aid the search for new phenomena not described by the Standard Model of particle physics. By combining insights from all three particle physics frontiers, this research aims to increase our understanding of fundamental particle physics.

  15. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  16. Primary tetralogy of Fallot repair: predictors of intensive care unit morbidity.

    Science.gov (United States)

    Egbe, Alexander C; Uppu, Santosh C; Mittnacht, Alexander J C; Joashi, Umesh; Ho, Deborah; Nguyen, Khanh; Srivastava, Shubhika

    2014-09-01

    Primary repair of tetralogy of Fallot has low surgical mortality, but some patients still experience significant postoperative morbidity. Our objectives were to review our institutional experience with primary tetralogy of Fallot repair, and identify predictors of intensive care unit morbidity. We reviewed all patients with tetralogy of Fallot who underwent primary repair in infancy from 2001 to 2012. Preoperative, operative, and postoperative demographic and morphologic data were analyzed. Intensive care unit morbidity was defined as prolonged intensive care unit stay (≥ 7 days) and/or prolonged duration of mechanical ventilation (≥ 48 h). 97 patients who underwent primary surgical repair during the study period were included in the study. The median age was 4.9 months (range 1-9 months) and the median weight was 5.3 kg (range 3.1-9.8 kg). There was no early surgical mortality. The incidence of junctional ectopic tachycardia and persistent complete heart block was 2% and 1%, respectively. The median intensive care unit stay was 6 days (range 2-21 days) and the median duration of mechanical ventilation was 19 h (range 0-136 h). Age and weight were independent predictors of intensive care unit stay, while surgical era predicted the duration of mechanical ventilation. Primary tetralogy of Fallot repair is a safe procedure with low mortality and morbidity in a medium-sized program with outcomes comparable to national standards. Age and weight at the time of surgery were significant predictors of morbidity. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Primary energy: present status and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Thielheim, K O

    1982-01-01

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO/sub 2/ greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  18. Energy consumption and energetic intensities in the Mato Grosso meso-region 01

    International Nuclear Information System (INIS)

    Canavarros, Otacilio Borges; Silva, Ennio Peres da

    1999-01-01

    The energy intensity of a regional economy is dependent on its structure and degree of industrialization. Considering comparable general conditions it is also a measure for the efficient use of energy. Energy consumption contribute decisively to the modification of economical structures and to the decrease in energy intensity. In this context, the aim of the work was to evaluate the energy consumption and the energy intensity in a region of Mato Grosso State, Brazil

  19. Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis

    International Nuclear Information System (INIS)

    Zeng, Lin; Xu, Ming; Liang, Sai; Zeng, Siyu; Zhang, Tianzhu

    2014-01-01

    The decline of China's energy intensity slowed since 2000. During 2002–2005 it actually increased, reversing the long-term trend. Therefore, it is important to identify drivers of the fluctuation of energy intensity. We use input–output structural decomposition analysis to investigate the contributions of changes in energy mix, sectoral energy efficiency, production structure, final demand structure, and final demand category composition to China's energy intensity fluctuation during 1997–2007. We include household energy consumption in the study by closing the input–output model with respect to households. Results show that sectoral energy efficiency improvements contribute the most to the energy intensity decline during 1997–2007. The increase in China's energy intensity during 2002–2007 is instead explained by changes in final demand composition and production structure. Changes in final demand composition are mainly due to increasing share of exports, while changes in production structure mainly arise from the shift of Chinese economy to more energy-intensive industries. Changes in energy mix and final demand structure contribute little to China's energy intensity fluctuation. From the consumption perspective, growing exports of energy-intensive products and increasing infrastructure demands explain the majority of energy intensity increase during 2002–2007. - Highlights: • We analyzed energy intensity change from production and consumption perspectives. • We extended the research scope of energy intensity to cover household consumption. • Sectoral energy efficiency improvement contributed most to energy intensity decline. • Impact of production structure change on energy intensity varied at different times. • Growing export demand newly became main driver of China's energy intensity increase

  20. The empirical intensity of PWR primary coolant pumps failure and repair

    International Nuclear Information System (INIS)

    Milivojevicj, S.; Riznicj, J.

    1988-01-01

    The wealth of operating experience concerning PWR type and nuclear reactors that has been regularly monitored and systematically processes since 1971, enabled an analysis of the PWR primary coolant pumps operation. Failure intensity α and repair intensity μ of the pump during its working life were calculated, as these values are necessary in order to determine the reliability and availability of the pump as the basis for analyzing its effect on the safety and efficiency of the nuclear power plant. The trend of failure intensity α follows the theoretically expected changes in α over time, and this is around 10 -5 in the majority of life-time. Repair intensity μ indicates a slow rise during life-time, i.e. its faster return to operation. (author).7 refs.; 5 figs

  1. Evaluation of corporate energy management practices of energy intensive industries in Turkey

    International Nuclear Information System (INIS)

    Ates, Seyithan Ahmet; Durakbasa, Numan M.

    2012-01-01

    Turkey is one of a number of countries who still lack a national management standard for energy. Industrial energy consumption accounts for 42% of Turkey's total energy consumption. With the help of a questionnaire and analytical framework, this paper investigates Industrial Energy Management Practice in Turkey and highlights significant bottlenecks and shortcomings of energy intensive industries in terms of energy management application. The survey was carried out as a multiple case study of the Turkish iron, steel, cement, paper, ceramics and textile industries. Outcomes of the questionnaire are evaluated according to the analytical framework which covers company characteristics, regulations, external relations of the companies and internal organizational conditions. After analyzing these elements on the basis of a minimum requirement list, it was found that only 22% of the surveyed companies actually practice corporate energy management in Turkey. The main barriers to proper energy management implementation were identified as lack of synergy between the stakeholders, the extent and scope of energy manager courses, and inadequate awareness of and lack of financial support for energy management activities. As a guideline to overcome present obstacles, a set of policy options are offered: strengthening and restructuring of legal and institutional frameworks, promotion of energy efficiency, education, training and capacity building and facilitating implementation of the international energy management standard ISO 50001. -- Highlights: ► Developing an analytical scheme to assess degree of Energy Management Application. ► Investigation of Energy Management Practices in Turkish Energy Intensive Industries. ► Analysis of challenges which hinder full implementation of energy management in Turkey. ► Presenting a set of essential policy options thought for all stakeholders.

  2. Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina

    International Nuclear Information System (INIS)

    Recalde, Marina; Ramos-Martin, Jesús

    2012-01-01

    The link between energy consumption and economic growth has been widely studied in the economic literature. Understanding this relationship is important from both an environmental and a socio-economic point of view, as energy consumption is crucial to economic activity and human environmental impact. This relevance is even higher for developing countries, since energy consumption per unit of output varies through the phases of development, increasing from an agricultural stage to an industrial one and then decreasing for certain service based economies. In the Argentinean case, the relevance of energy consumption to economic development seems to be particularly important. While energy intensity seems to exhibit a U-Shaped curve from 1990 to 2003 decreasing slightly after that year, total energy consumption increases along the period of analysis. Why does this happen? How can we relate this result with the sustainability debate? All these questions are very important due to Argentinean hydrocarbons dependence and due to the recent reduction in oil and natural gas reserves, which can lead to a lack of security of supply. In this paper we study Argentinean energy consumption pattern for the period 1990–2007, to discuss current and future energy and economic sustainability. To this purpose, we developed a conventional analysis, studying energy intensity, and a non conventional analysis, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting methodology. Both methodologies show that the development process followed by Argentina has not been good enough to assure sustainability in the long term. Instead of improving energy use, energy intensity has increased. The current composition of its energy mix, and the recent economic crisis in Argentina, as well as its development path, are some of the possible explanations. -- Highlights: ► We analyze Argentinean energy consumption and social metabolism using MuSIASEM.

  3. GRB physics and cosmology with peak energy-intensity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Disha, E-mail: sawant@fe.infn.it [University of Ferrara, Via Saragat-1, Block C, Ferrara 44122 (Italy); University of Nice, 28 Avenue Valrose, Nice 06103 (France); IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); Amati, Lorenzo, E-mail: amati@iasfbo.inaf.it [INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); ICRANet, Piazzale Aldo Moro-5, Rome 00185 (Italy)

    2015-12-17

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  4. Nuclear primary energy carriers. Pt. 2

    International Nuclear Information System (INIS)

    1978-04-01

    A very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawsontype diagrams are given. The reserves and cost of lithium and deuterium, gives estimates of the total available from DT fusion and comments on production technology, availability and handling of the fuels are outlined. A survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of inertial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented, which is followed by a discussion of the key problems of fusion power plants. The main reqirements on the superconducting magnet system for possible fusion reactors, particularly tokamak reactors, are discussed and compared with the present state of the superconducting magent technology. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed. Finally the aspects of safety and environment are treated. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste. (orig.) [de

  5. Shifting Scarcities? The Energy Intensity of Water Supply Alternatives in the Mass Tourist Resort of Benidorm, Spain

    Directory of Open Access Journals (Sweden)

    Hyerim Yoon

    2018-03-01

    Full Text Available The energy intensity of water—‘energy (electricity-for-water’—is calculated for Benidorm, a mass tourism resort in the Spanish Mediterranean coast, where the urban water cycle has evolved in response to a series of episodes of water stress. The analysis is based on primary data compiled from various actors involved in the urban water cycle encompassing water extraction, end uses, and wastewater treatment, including tertiary treatment. The results provide one of the first analyses of the relations between energy and water in a mass tourist center, which may be of potential interest for other tourist areas. It is estimated that a total of 109 GWh/year of electricity is required to operate the water cycle of Benidorm. About 4% of total energy use in Benidorm is dedicated to extracting, transporting, and treating water. The most energy-intensive stage is represented by end uses, which accounts for 20% of the total energy use in Benidorm when the energy required for water pumping and hot water use is considered. Additionally, energy intensity for water extraction was estimated for normal, wet, and two dry year scenarios. In comparison with the normal scenario, energy intensity is six times larger when desalinated water is incorporated during a dry year, whereas the emergency interbasin water transfer resulted in a more moderate increase in energy intensity. While treated wastewater and emergency water transfers appear to be a more convenient solution in energy terms, the strong impulse given to desalination in Spain is forcing local water authorities towards the use of a resource that is much more energy intensive, although, on the other hand, much less dependent on the vagaries of climate. In light of recent technological and managerial developments, the Benidorm case illuminates the challenges appearing in the analysis of the water-energy nexus, especially the fact that scarcity may be transferred from water to energy.

  6. The drivers of energy intensity in China : A spatial panel data approach

    NARCIS (Netherlands)

    Jiang, Lei; Folmer, Henk; Ji, Minhe

    2014-01-01

    We use a panel of 29 Chinese provinces for the period 2003-2011 to estimate the drivers of energy intensity by means of a spatial Durbin error model. We find an inverted U-shaped relationship between energy intensity and income (energy intensity Kuznets curve). Ten provinces, notably the developed

  7. Decoupling of industrial energy consumption and CO2-emissions in energy-intensive industries in Scandinavia

    International Nuclear Information System (INIS)

    Enevoldsen, Martin K.; Ryelund, Anders V.; Andersen, Mikael Skou

    2007-01-01

    As methodology the ex-post analysis deserves more attention as a device to calibrate energy sector models. This paper studies the impact of energy prices and taxes on energy efficiency and carbon emissions of ten industrial sectors in the three Scandinavian countries. A database with sector-specific energy prices and taxes has been established, which allows the analysis to take various price reductions and tax exemptions better into account. A translog factor demand system estimation for a cross industry pooled model is explored and fixed effects across industries and time is estimated. The findings here confirm recent analyses which indicate higher long-term elasticities for industries than normally assumed in Scandinavian energy-sector models. With the observations on differences in energy-intensities among sectors and countries the findings allow for some optimism as to the opportunities for further decoupling between trends in gross value added, carbon emissions and energy consumption

  8. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.M.

    1993-01-01

    The costs for hydrogen production through water electrolysis are estimated, assuming the electricity is produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the power generation, heat and transportation sectors are also calculated, based on a state of the art technology and a more advanced technology expected to represent the state by the year 2010. The costs for hydrogen utilization (without energy taxes) are shown to be higher than current prices for fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen shall not gain a significant market share in either of the cases discussed. 2 figs., 3 tabs., 4 refs

  9. Primary energy sources for hydrogen production

    International Nuclear Information System (INIS)

    Hassmann, K.; Kuehne, H.-M.

    1993-01-01

    The cost of hydrogen from water electrolysis is estimated, assuming that the electricity was produced from solar, hydro-, fossil, or nuclear power. The costs for hydrogen end-use in the sectors of power generation, heat and transportation are calculated, based on a state-of-the-art technology and a more advanced technology expected to represent the state by the year 2010. The cost of hydrogen utilization (without energy taxes) is higher than the current price of fossil fuels (including taxes). Without restrictions imposed on fossil fuel consumption, hydrogen will not gain a significant market share in either of the cases discussed. (Author)

  10. Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, S.; Faeh, D.; Schwarz-Zanetti, G.

    2012-06-15

    In recent years the upper Rhone Valley has been one of the most intensively investigated regions by the Swiss Seismological Service. The high seismicity in the region encourages research in the seismological field and one main focus has been historical seismology. This report presents the state of the art of our historical investigations by giving an overview of the effects of four damaging earthquakes with intensity larger than VII, for which a fairly large number of documents could be found and analyzed. The overview includes the events of 1584 (Aigle, epicentral intensity VIII), 1755 (Brig, epicentral intensity VIII), 1855 (Visp, epicentral intensity VIII), and 1946 (Sierre, epicentral intensity VIII for the main shock and intensity VII for the largest aftershock). The paper focuses mainly on primary and secondary effects in the epicentral region, providing the key data and a general characterization of the event. Generally, primary effects such as the reaction of the population and impact on buildings took more focus in the past. Thus building damage is more frequently described in historic documents. However, we also found a number of sources describing secondary effects such as landslides, snow avalanches, and liquefaction. Since the sources may be useful, we include citations of these documents. The 1584 Aigle event, for example, produced exceptional movements in the Lake of Geneva, which can be explained by an expanded sub aquatic slide with resultant tsunami and seiche. The strongest of the aftershocks of the 1584 event triggered a destructive landslide covering the villages Corbeyrier and Yvorne, Vaud. All macroseismic data on the discussed events are accessible through the web page of the Swiss Seismological Service (http://www.seismo.ethz.ch). (authors)

  11. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  12. Turbulence generation through intense localized sources of energy

    Science.gov (United States)

    Maqui, Agustin; Donzis, Diego

    2015-11-01

    Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.

  13. Primary Energy of the District city and Suburb

    Science.gov (United States)

    Pitonak, Anton; Lopusniak, Martin; Bagona, Miloslav

    2017-10-01

    In member states of the European Union, portion of buildings in the total consumption of energy represents 40 %, and their share in CO2 emissions represents 35 %. Taking into account the dependence of the European Union on import of energy, this represents a large quantity of energy and CO2 in spite of the fact that effective solutions for the reduction of energy demand of buildings exist. The European Union adopted three main commitments for fulfilment of criteria by year 2020 in the 20-20-20 Directive. Based on this Directive Slovakia declares support for renovating the building stock. The goal of the paper was to prove that renovation of the building stock is environmentally and energy preferably as construction of new buildings. In the paper, the settlement unit with the suburban one were compared. Both territories are dealt with in Kosice city, in Slovakia. The settlement units include apartment dwelling houses, amenities, parking areas and green. Suburban part contains family houses. The decisive factor for the final assessment of the buildings was global indicator. Global indicator of the energy performance is primary energy. The new building must meet minimum requirements for energy performance and it must be classified to energy class A1 since 2016, and to energy class A0 since 2020. The paper analyses the effects of the use of different resources of heat considering the global indicator. Primary energy was calculated and based on comparable unit. The primary energy was accounted for on the built-up area, area corresponding to district city and suburb, number of inhabitants. The study shows that the lowest values of global indicator are achieved by using wood. The highest values of global indicator are achieved by using electricity or district heating as an energy source. The difference between the highest and lowest value is 87 %. Primary energy based on inhabitant is 98 % lower in settlement unit compared to the suburban one.

  14. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  15. Determinants of innovation in energy intensive industry and implications for energy policy

    International Nuclear Information System (INIS)

    Song, ChiUng; Oh, Wankeun

    2015-01-01

    Abstracts: The Korean government adopted “green growth” in 2008 as an environmentally friendly growth strategy. The energy efficiency of Korea, however, is still relatively low due to the large portion of energy intensive industry (EII) in its manufacturing sector. To improve energy efficiency in Korea, from an EII perspective a new approach has to be taken because restructuring entire industries would take too much time and be too costly. This study aims to emphasize the importance of innovation and analyze the effects of R&D on product and process innovations in EII in Korea. The Probit model is adopted to estimate the effects of eight determinants in the Korea Innovation Survey 2008 data. The results of this study demonstrate that one of the most important determinants, the R&D personnel ratio, has a strong positive effect on both product and process innovation, while another determinant, R&D intensity, only has a strong and positive effect on process innovation in EII. Because of the resulting innovation, energy policies should be enacted to enhance energy efficiency. Thus, the Korean government should keep providing incentives for firms in EII to invest more financial and human resources in their R&D activities. -- Highlights: •We analyze determinants on two innovations in energy intensive industry (EII). •The R&D personnel ratio is effective in product innovation in EII. •Both R&D intensity and R&D personnel are effective in process innovation in EII. •In less EII, R&D variables have positive effects on product and process innovations. •The Korean government should strongly support R&D to improve energy efficiency

  16. Encoding of Touch Intensity But Not Pleasantness in Human Primary Somatosensory Cortex

    Science.gov (United States)

    Laubacher, Claire M.; Olausson, Håkan; Wang, Binquan; Spagnolo, Primavera A.; Bushnell, M. Catherine

    2016-01-01

    Growing interest in affective touch has delineated a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, have cast doubt on the segregation of touch discrimination and affect, suggesting that S1 also encodes affective qualities. We used functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) to examine the role of S1 in processing touch intensity and pleasantness. Twenty-six healthy human adults rated brushing on the hand during fMRI. Intensity ratings significantly predicted activation in S1, whereas pleasantness ratings predicted activation only in the anterior cingulate cortex. Nineteen subjects also received inhibitory rTMS over right hemisphere S1 and the vertex (control). After S1 rTMS, but not after vertex rTMS, sensory discrimination was reduced and subjects with reduced sensory discrimination rated touch as more intense. In contrast, rTMS did not alter ratings of touch pleasantness. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. SIGNIFICANCE STATEMENT Growing interest in affective touch has identified a neural network that bypasses primary somatosensory cortex (S1). Several recent studies, however, cast doubt on the separation of touch discrimination and affect. We used functional magnetic resonance imaging and repetitive transcranial magnetic stimulation to demonstrate the representation of touch discrimination and intensity in S1, but the representation of pleasantness in the anterior cingulate cortex, not S1. Our findings support divergent neural processing of touch intensity and pleasantness, with affective touch encoded outside of S1. Our study contributes to growing delineation of the affective touch system, a crucial step in understanding its dysregulation in numerous clinical conditions such as autism, eating disorders, depression, and chronic pain. PMID:27225773

  17. The effect of increasing exports on industrial energy intensity in China

    International Nuclear Information System (INIS)

    Zheng Yingmei; Qi Jianhong; Chen Xiaoliang

    2011-01-01

    Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO 2 emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors. - Research highlights: → We examine the impact of exports on industrial energy intensity in China. → Greater exports increase industrial energy intensity as a whole. → Divergences exist in the impact of exports on energy intensity across sub-sectors. → China should discard policies encouraging exports at the cost of energy efficiency. → Export policy to reduce energy intensity should cater to sub-sector characteristics.

  18. The effect of increasing exports on industrial energy intensity in China

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yingmei [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China); Qi Jianhong, E-mail: sducatherine@gmail.co [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China); Chen Xiaoliang [School of Economics, Shandong University, 27 Shanda South Road, Jinan, Shandong Province 250100 (China)

    2011-05-15

    Given China's heavy reliance on fuel energy and the dominance of its industrial sector in the economy, improving energy efficiency remains one of the practical means for the country to decrease energy intensity and to fulfill its commitment made at the Copenhagen Climate Change Conference to achieve a 40-45 percent reduction in CO{sub 2} emission intensity by 2020. This study investigates the impact of exports on industrial energy intensity to explore the possibility of reducing energy intensity through greater exports. A panel varying-coefficient regression model with a dataset of China's 20 industrial sub-sectors over 1999-2007 suggests that in general, greater exports aggravate energy intensity of the industrial sector and that great divergences exist in the impact of exports on energy intensity across sub-sectors. A panel threshold model further estimates the thresholds for the major determinants of energy intensity: exports, input in technological innovations, and Foreign Direct Investment (FDI) intensity. Given the great differences in specific sub-sector characteristics and the changing roles played by different factors across sub-sectors, there is no general export policy that would work for all sub-sectors in reducing sub-sector energy intensity. Instead, policies and measures aiming to encourage more efficient use of energy should take into full consideration the characteristics and situations of individual sub-sectors. - Research highlights: {yields} We examine the impact of exports on industrial energy intensity in China. {yields} Greater exports increase industrial energy intensity as a whole. {yields} Divergences exist in the impact of exports on energy intensity across sub-sectors. {yields} China should discard policies encouraging exports at the cost of energy efficiency. {yields} Export policy to reduce energy intensity should cater to sub-sector characteristics.

  19. China cuts energy intensity, but overall energy growth continues, report notes

    Science.gov (United States)

    Showstack, Randy

    2012-02-01

    A new report states that China has cut its energy intensity—defined as energy use per unit of economic output—by 19.1% from 2006 to 2010, reversing the previous upward trend. However, energy use and carbon emissions in the country continue to grow sharply, according to the Climate Policy Initiative's (CPI) Annual Review of Low-Carbon Development in China: 2010, the second of such reports. China nearly hit its goal of a 20% target reduction in energy intensity during that time period, which spanned the country's eleventh Five-Year Period (FYP) for social and economic development, but during that same period energy-related growth in carbon dioxide (CO2) emissions in China increased by 33.6%, from 5.15 billion tons to 6.88 billion tons, said Qi Ye, CPI's Beijing office director, at a 2 February briefing held at the Brookings Institution in Washington, D. C.

  20. Dynamic energy spectrum and energy deposition in solid target by intense pulsed ion beams

    Institute of Scientific and Technical Information of China (English)

    Xiao Yu; Xiao-Yun Le; Zheng Liu; Jie Shen; Yu I.Isakova; Hao-Wen Zhong; Jie Zhang; Sha Yan; Gao-Long Zhang; Xiao-Fu Zhang

    2017-01-01

    A method for analyzing the dynamic energy spectrum of intense pulsed ion beam (IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes (MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450 (active MID) and TEMP-4M (passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.

  1. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  2. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    Energy Technology Data Exchange (ETDEWEB)

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for

  3. Primary immunodeficiency investigation in patients during and after hospitalization in a pediatric Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Erica Suavinho

    2014-03-01

    Full Text Available Objective: To analyze whether the patients with severe infections, admitted in the Pediatric Intensive Care Unit of the Hospital de Clínicas of the Universidade Federal de Uberlândia, underwent the active screening for primary immunodeficiencies (PID. Methods: Retrospective study that assessed the data records of patients with any severe infections admitted in the Pediatric Intensive Care Unit, covering a period from January 2011 to January 2012, in order to confirm if they performed an initial investigation for PID with blood count and immunoglobulin dosage. Results: In the studied period, 53 children were hospitalized with severe infections in the Pediatric Intensive Care Unit, and only in seven (13.2% the initial investigation of PID was performed. Among these patients, 3/7 (42.8% showed quantitative alterations in immunoglobulin G (IgG levels, 1/7 (14.3% had the diagnosis of cyclic neutropenia, and 1/7 (14.3% presented thrombocytopenia and a final diagnosis of Wiskott-Aldrich syndrome. Therefore, the PID diagnosis was confirmed in 5/7 (71.4% of the patients. Conclusions: The investigation of PID in patients with severe infections has not been routinely performed in the Pediatric Intensive Care Unit. Our findings suggest the necessity of performing PID investigation in this group of patients.

  4. High intensity beam profile monitors for the LAMPF primary beam lines

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; van Dyck, O.; Lee, D.; Harvey, A.; Bridge, J.; Cainet, J.

    1979-01-01

    Two types of beam profile monitors are in use at LAMPF to measure the properties of the 800 MeV, 500 μA proton beam external to the linac. Both types use secondary electron emission from a wire to produce a current signal proportional to the amount of proton beam that intercepts the wire. The wire scanner system uses a pair of orthogonal wires which are passed through the beam and the harp system uses two fixed planes of parallel wires. Most of the harps are not retractable and are exposed continuously to the primary beam. The high beam intensities available lead to a number of technical problems for instruments that intercept the beam or are close to primary beam targets. The thermal, electrical, radiation-damage, and material selection problems encountered, and some solutions which have been implemented are discussed

  5. ORC waste heat recovery in European energy intensive industries: Energy and GHG savings

    International Nuclear Information System (INIS)

    Campana, F.; Bianchi, M.; Branchini, L.; De Pascale, A.; Peretto, A.; Baresi, M.; Fermi, A.; Rossetti, N.; Vescovo, R.

    2013-01-01

    Highlights: • A methodology to estimate ORC industrial heat recovery potential is defined. • Heat recovery applications for different industrial processes are shown. • Cement, steel, glass and oil and gas applications are considered in EU27. • Savings in electricity costs and greenhouse gases are quantified. - Abstract: Organic Rankine Cycle (ORC) is a technology with important opportunities in heat recovery from energy intensive industrial processes. This paper represents the first comprehensive estimate of ORC units that can be installed in cement, steel, glass and oil and gas industries in the 27 countries of the European Union based on an accurate methodology related to real plants in operation or under construction. An evaluation of energy savings, depending on the number of operating hours per year and of the consequent decrease in CO 2 emission and electricity expenditure, is also provided. The study, carried out in the framework of an European research project on heat recovery in energy intensive industries, found that, in the most convenient considered scenario, up to about 20,000 GW h of thermal energy per year can be recovered and 7.6 M ton of CO 2 can be saved by the application of ORC technology to the investigated and most promising industrial sectors

  6. China’s energy economy situation, reforms, behavior, and energy intensity

    CERN Document Server

    Ma, Hengyun

    2012-01-01

    In the new millennium, understanding China’s energy economy is crucial for politicians, businesspeople and energy economists, as China’s energy policy choices will mean both challenges and opportunities for the world in terms of an increasing share of primary energy consumption and investment. This book initially reviews the literature on China’s energy economy and in so doing reveals that many important areas have been overlooked or are outdated in their coverage. Given the size of China and its global importance, the book then review s China’s current energy situation and fills the gaps in the literature for those who are interested in and concerned about China’s economic development and energy reform in the new millennium.   The book is different from previous studies in several important ways: Firstly, it presents recent,  pioneering research rather than a simple textbook, several sections of which have been published in high-quality energy journals. Secondly, the book first subdivides China'...

  7. Nuclear energy ranks first as primary energy source in Europe in 2012

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    According to the 2012 report of Eurostat, nuclear energy represents 30% of the production of primary energy in the member states of the E.U., renewable energies a little less than 20% and fossil energies a little more than 50%. In Europe the production of primary energy has been decreasing since 2001, from 940 million tonnes in 2001 to 794 million tonnes in 2012. In Europe the gross energy consumption has decreased in 24 member states to reach the level of 1995 year. In 2012 the E.U.'s dependence rate for energy was of 53% on average. Only Denmark was a net exporter of energy while the dependence rate for energy of the main E.U. energy consumers were: Germany (61%), Spain (73%), France (48%), United-Kingdom (42%) and Italy (81%). (A.C.)

  8. Energy markets in the 1990's and beyond: A comparison of energy intensity in the United States and Japan

    Science.gov (United States)

    McDonald, S. C.

    1989-10-01

    A comparative analysis is provided of energy intensity in the U.S. and Japan. According to aggregate International Energy Agency (IEA) data, the U.S. has one of the most energy-intensive economies while Japan has one of the least. Energy-intensity measures are constructed and examined which that are more detailed than aggregate measures used by the IEA to see if they can better explain these differences. The year chosen for this analysis is 1985. The issue of energy intensity may become particularly critical if scientific findings on global climate change and greenhouse emissions lead to negotiations on restricting carbon emissions. The burning of fossil fuels is the most important anthropogenic source of carbon emissions. As shown by this analysis, developing a consistent and fair set of goals for each country for carbon emissions, which are interlocked with energy intensity, may be a difficult task.

  9. CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity

    International Nuclear Information System (INIS)

    Andersson, Fredrik N.G.; Karpestam, Peter

    2013-01-01

    We analyze the short-term and the long-term determinants of energy intensity, carbon intensity and scale effects for eight developed economies and two emerging economies from 1973 to 2007. Our results show that there is a difference between the short-term and the long-term results and that climate policy are more likely to affect emission over the long-term than over the short-term. Climate policies should therefore be aimed at a time horizon of at least 8 years and year-on-year changes in emissions contains little information about the trend path of emissions. In the long-run capital accumulation is the main driver of emissions. Productivity growth reduces the energy intensity while the real oil price reduces both the energy intensity and the carbon intensity. The real oil price effect suggests that a global carbon tax is an important policy tool to reduce emissions, but our results also suggest that a carbon tax is likely to be insufficient decouple emission from economic growth. Such a decoupling is likely to require a structural transformation of the economy. The key policy challenge is thus to build new economic structures where investments in green technologies are more profitable. - Highlights: • We model determinants of scale, energy intensity and carbon intensity. • Using band spectrum regressions, we separate between short and long run effects. • Different economic variables affect emission in the short and long run. • CO 2 reducing policies should have a long run horizon of (at least 8 years). • A low carbon society requires a structural transformation of the economy

  10. Linear energy transfer incorporated intensity modulated proton therapy optimization

    Science.gov (United States)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the

  11. Energy intensity in road freight transport of heavy goods vehicles in Spain

    International Nuclear Information System (INIS)

    Andrés, Lidia; Padilla, Emilio

    2015-01-01

    This paper examines the factors that have influenced the energy intensity trend of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of these factors and to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices. -- Highlights: •We examine energy intensity of Spanish road freight transport over 1996–2012. •We employ single-period and chained multi-period multiplicative LMDI-II decomposition. •Energy intensity reduction is explained by the change in real energy intensity index. •This is partially offset by the behaviour of the structural index. •The attribution of Divisia indices changes gives the contribution of each commodity

  12. Impact of an intensive multifactorial intervention in patients with type 2 diabetes at Primary Health Care

    Directory of Open Access Journals (Sweden)

    Mª Carmen Serrano Cepas

    2013-11-01

    Full Text Available Diabetes is one of the diseases with a higher social and sanitary impact and therefore, it is one of the priorities in the service we provide. The success of the interventions with people suffering from diabetes lies in the efficacy of the pharmacological treatments as well as in the change of lifestyles and the different confrontations how these patients face their process. Health workers feel quite frustrated as a result of the slight success of our actions to achieve them to follow an adequate diet, make physical exercise or improve their self-sufficiency and self control when dealing with the different situations that should be faced because of diabetes. For such reason, the primary care professionals from Guadalhorce valley Sanitary District applied several different interventions from those generally used for many years. These intensive interventions will consist on eight group sessions of diabetological education, planning and accompaniment at the physical exercises and patients will also receive personalized diet advice; the intervention will be developed during three months, and afterward the level of glycosylated haemoglobin will be measured in order to see if it has improved. Therefore, we are going to evaluate in an objective way the effectiveness of this intensive intervention comparing it to the habitual intervention followed in Primary Health Care.

  13. Access to primary energy sources - the basis of national energy security

    Science.gov (United States)

    Szlązak, Jan; Szlązak, Rafał A.

    2017-11-01

    National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

  14. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H.

    2007-01-01

    Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2007. The water footprint of energy consumption: an assessment of water requirements of primary energy carriers. In: proceedings ‘First World Water Sustainability-Renewable Energy Congress and Exhibition’. 25-28 November 2007, Maastricht, the

  15. Energy intensities of the Netherlands consumer expenditures in 1996

    International Nuclear Information System (INIS)

    Kok, R.; Benders, R.M.J.; Moll, H.C.

    2001-03-01

    The Energy Analysis Programme (EAP) is a method developed to calculate the direct and indirect fossil fuel energy consumption of consumer products. EAP is based on both the analysis of the process as the analysis of the input and output. This report is an update of the 1990 data of EAP. The data concern energy indicators of basic materials and packages, industrial and other sectors, transport, trade and services, energy sources and waste processing in the Netherlands [nl

  16. Using Sankey diagrams to map energy flow from primary fuel to end use

    International Nuclear Information System (INIS)

    Subramanyam, Veena; Paramshivan, Deepak; Kumar, Amit; Mondal, Md. Alam Hossain

    2015-01-01

    Highlights: • Energy flows from both supply and demand sides shown through Sankey diagrams. • Energy flows from reserves to energy end uses for primary and secondary fuels shown. • Five main energy demand sectors in Alberta are analyzed. • In residential/commercial sectors, highest energy consumption is in space heating. • In the industrial sector, highest energy use is in the mining subsector. - Abstract: The energy sector is the largest contributor to gross domestic product (GDP), income, employment, and government revenue in both developing and developed nations. But the energy sector has a significant environmental footprint due to greenhouse gas (GHG) emissions. Efficient production, conversion, and use of energy resources are key factors for reducing the environmental footprint. Hence it is necessary to understand energy flows from both the supply and the demand sides. Most energy analyses focus on improving energy efficiency broadly without considering the aggregate energy flow. We developed Sankey diagrams that map energy flow for both the demand and supply sides for the province of Alberta, Canada. The diagrams will help policy/decision makers, researchers, and others to understand energy flow from reserves through to final energy end uses for primary and secondary fuels in the five main energy demand sectors in Alberta: residential, commercial, industrial, agricultural, and transportation. The Sankey diagrams created for this study show total energy consumption, useful energy, and energy intensities of various end-use devices. The Long-range Energy Alternatives Planning System (LEAP) model is used in this study. The model showed that Alberta’s total input energy in the five demand sectors was 189 PJ, 186 PJ, 828.5PJ, 398 PJ, and 50.83 PJ, respectively. On the supply side, the total energy input and output were found to be 644.84 PJ and 239 PJ, respectively. These results, along with the associated energy flows were depicted pictorially using

  17. The petrochemical industry and its energy use. Prospects for the Dutch energy intensive industry

    International Nuclear Information System (INIS)

    Gielen, D.J.; Vos, D.; Van Dril, A.W.N.

    1996-04-01

    The current state and the future of the Dutch petrochemical industry are discussed. First, its current energy use, technology and its markets are analysed. Competitiveness of Dutch and Western European producers compared to foreign producers is shown. Main technological developments and other key issues (e.g. environmental issues) are discussed. Based on this analysis, a future scenario is derived for petrochemical industrial energy use for the period 2000-2015. This case study can be divided into an analysis of the current situation (Chapter 2-6) and alternatives for production and energy consumption of the Dutch petrochemical industry within its Western European context (Chapter 7-11). Chapter 2 analyses the current production structure and the historical developments. Chapter 3 discusses current technologies. Chapter 4 analyses markets for Dutch petrochemical products. Chapter 5 analyses the industry economics in the Netherlands in terms of costs and revenues. Chapter 6 provides information on institutional factors that influence industrial activities. Chapter 7 discusses global competition with special emphasis on competition for the European market. Chapter 8 analyses potential technology shifts. In Chapter 9, data from the preceding chapters on markets, competition, structure and technology are combined to compare competing production options. This is followed by a sensitivity analysis in Chapter 10. Based on a production volume forecast and the development of energy intensity of production, energy consumption of the Dutch petrochemical industry is forecast in Chapter 11. Finally, Chapter 12 provides conclusions and policy recommendations. 24 figs., 48 tabs., 103 refs., 2 appendices

  18. Intense neutron source facility for the fusion energy program

    International Nuclear Information System (INIS)

    Armstrong, D.D.; Emigh, C.R.; Meier, K.L.; Meyer, E.A.; Schneider, J.D.

    1975-01-01

    The intense neutron source is based on the ability of a supersonic flow of gas to dissipate an enormous quantity of heat generated in the neutron-producing target by multiple Coulomb collisions. A description is given of the principles involved in forming the supersonic jet, in forming the intense tritium-ion beam, in the vacuum systems, and in the tritium handling systems. An overview of the entire facility is included. It is believed that the facility can be operated with high reliability, ensuring a productive radiation damage program. (U.S.)

  19. The impact of the crisis on the energy demand and energy intensity in Central and Eastern European countries

    Directory of Open Access Journals (Sweden)

    Attila HUGYECZ

    2011-12-01

    Full Text Available The purpose of our paper is to analyze the impact of the recent crisis on the oil and electricity demand and the energy intensity of different Central and Eastern European countries, namely the Czech Republic, Hungary, Poland and Slovakia. Furthermore, we would like to reveal whether there is a lag in the adjustment of energy consumption. In analyzing energy intensity, we use motor gasoline, diesel oil and electricity consumption data and ignore coal and natural gas data. By so doing, we avoid failures arising from changing coal/gas consumption due to changing weather conditions. Our results show that the crisis did impact energy consumption and reveal that the improvement of energy intensity halted in 2009, implying that the economic players did not immediately adjust their energy consumption according to their economic activity. The gasoline and diesel intensity, however, deteriorated (increased only in the Czech Republic and in Hungary. In Slovakia and Poland there were no significant changes.

  20. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, R; Yadav, R S [Aligarh Muslim Univ. (India). Dept. of Physics; Naqvi, T H [Z.H. Engineering Coll., Aligarh (India); Ahmed, Rais [National Council of Educational Research and Training, New Delhi (India)

    1975-12-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described.

  1. Primary radioactivity standardization and gamma intensities determination of {sup 124}Sb

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, A. [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)/Instituto de Radioprotecao e Dosimetria (IRD)/Comissao Nacional de Energia Nuclear - CNEN, Av. Salvador Allende, s/no, Recreio, CEP 22780-160, Rio de Janeiro (Brazil)], E-mail: iwahara@ird.gov.br; Delgado, J.U.; Poledna, R.; Silva, C.J. da; Almeida, M.C.M. de; Silva, R.L. da [Laboratorio Nacional de Metrologia das Radiacoes Ionizantes (LNMRI)/Instituto de Radioprotecao e Dosimetria (IRD)/Comissao Nacional de Energia Nuclear - CNEN, Av. Salvador Allende, s/no, Recreio, CEP 22780-160, Rio de Janeiro (Brazil)

    2009-04-21

    A solution containing {sup 124}Sb was primarily standardized by the 4{pi}{beta}-{gamma} coincidence and anticoincidence extrapolation methods in the frame of the EUROMET 907 international comparison organized by Laboratoire National Henri Bequerel (LNHB)/France, in 2007. The main purposes of this exercise are the improvement in the uncertainties on the gamma-ray emission intensities and they clarify the discrepancies verified among the intensity values for many weak gamma rays reported in the literature. In this work the results of the activity obtained were used to determine the absolute and relative gamma-ray intensities using a planar and coaxial HPGe detectors calibrated by {sup 152}Eu and {sup 116m}Ho multi-gamma standard sources covering the energy range from 20 to 1408 keV. Additionally the half-life of {sup 124}Sb was determined following the decay of a solution of {sup 124}Sb contained in a glass ampoule over a period of three half-lives using two 4{pi}{gamma} ionization chambers.

  2. A Comprehensive System of Energy Intensity Indicators for the US: Methods, Data and Key Trends

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cort, Katherine A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-29

    This report provides an update to a previously published (Rev 1) report that describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

  3. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-01-01

    The limited resource and environmental impacts of fossil fuels are becoming more and more serious problems in the world. Consequently, hydrogen is in the limelight as a future alternative energy due to its clean combustion and inexhaustibility and a transition from the traditional fossil fuel system to a hydrogen-based energy system is under considerations. Several countries are already gearing the industries to the hydrogen economy to cope with the limitations of the current fossil fuels. Unfortunately, hydrogen has to be chemically separated from the hydrogen compounds in nature such as water by using some energy sources. In this paper, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S

  4. Measurements of high energy photons in Z-pinch experiments on primary test stand

    International Nuclear Information System (INIS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-01-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10 10 cm −2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region

  5. Hydrogen Production Costs of Various Primary Energy Sources

    International Nuclear Information System (INIS)

    Choi, Jae Hyuk; Tak, Nam Il; Kim, Yong Hee; Park, Won Seok

    2005-11-01

    Many studies on the economical aspects of hydrogen energy technologies have been conducted with the increase of the technical and socioeconomic importance of the hydrogen energy. However, there is still no research which evaluates the economy of hydrogen production from the primary energy sources in consideration of Korean situations. In this study, the hydrogen production costs of major primary energy sources are compared in consideration of the Korean situations such as feedstock price, electricity rate, and load factor. The evaluation methodology is based on the report of the National Academy of Science (NAS) of U.S. The present study focuses on the possible future technology scenario defined by NAS. The scenario assumes technological improvement that may be achieved if present research and development (R and D) programs are successful. The production costs by the coal and natural gas are 1.1 $/kgH 2 and 1.36 $/kgH 2 , respectively. However, the fossil fuels are susceptible to the price variation depending on the oil and the raw material prices, and the hydrogen production cost also depends on the carbon tax. The economic competitiveness of the renewable energy sources such as the wind, solar, and biomass are relatively low when compared with that of the other energy sources. The estimated hydrogen production costs from the renewable energy sources range from 2.35 $/kgH 2 to 6.03 $/kgH 2 . On the other hand, the production cost by nuclear energy is lower than that of natural gas or coal when the prices of the oil and soft coal are above $50/barrel and 138 $/ton, respectively. Taking into consideration the recent rapid increase of the oil and soft coal prices and the limited fossil resource, the nuclear-hydrogen option appears to be the most economical way in the future

  6. Primary defect production by high energy displacement cascades in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Aaron P. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Xu, Donghua, E-mail: xudh@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Juslin, Niklas; Capps, Nathan A. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831 (United States)

    2013-06-15

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1–50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  7. Carbon Capture Methods and Relative Competitiveness of Primary Energies

    International Nuclear Information System (INIS)

    Amigues, Jean-Pierre; Lafforgue, Gilles; Moreaux, Michel

    2016-01-01

    We characterise the optimal exploitation paths of two primary energies (coal and solar) that supply the energy needs of two sectors. Sector 1 can reduce its carbon emissions at a reasonable cost thanks to a CCS device. Sector 2 has access only to air capture technology, but at a significantly higher cost. We assume that the atmospheric carbon stock cannot exceed a given ceiling. We show that the optimal approach consists in, first, fully capturing sector-1 emissions before the ceiling is reached and, second, deploying air capture to partially abate sector-2 emissions. The optimal carbon tax should increase in the pre-ceiling phase then decline in stages to zero

  8. The impact of the year-on-year variation in the intensity of solar radiation on the energy intensity of low-energy and passive houses

    Directory of Open Access Journals (Sweden)

    Šubrt Roman

    2017-01-01

    Full Text Available Solar radiation is a significant segment of heat gains in the operation of buildings. The importance of this segment is highlighted by lowering the energy performance of buildings. The current condition of assessment considers the standard values of solar radiation but these are often very different from the fair values. In the contribution it draws attention to not only to on-year variation in solar fluctuations in the intensity of solar radiation and its significant long-term deviation from the standard values but also to the impact to energy building in reliance to its energy intensity. The attention will be focused also to different values in standards valid in the Czech Republic. This specification of energy assessment of buildings is not only necessary to approximate calculations of real state, but mainly because we can expect more disputes about if a building has declared calculating the parameters of a building with nearly zero-energy or passive house.

  9. Instrumentation for continuous monitoring of low energy cosmic ray intensity

    International Nuclear Information System (INIS)

    Kumar, S.; Prasad, R.; Yadav, R.S.; Ahmed, Rais

    1975-01-01

    A high counting rate neutron monitor developed at Aligarh for continuous monitoring of low energy nucleonic component of cosmic rays is described. Transistorized electronic circuits used are described. (author)

  10. A less energy intensive process for dehydrating onion

    OpenAIRE

    Grewal, Manpreet Kaur; Jha, S. N.; Patil, R. T.; Dhatt, A. S.; Kaur, Amandeep; Jaiswal, P.

    2013-01-01

    Onion powder has an extensive demand and wide application worldwide as flavour additive in convenience foods and medicinal products. Conventionally onion powder is prepared by hot air drying of onion slices followed by grinding. Convective air drying when used alone demands longer drying time and thus has a high expense of energy. As bulk of onion is water (82–87 %), removal of moisture prior to drying can reduce moisture loading on dryer and hence the energy consumption. Keeping this in view...

  11. Effects of Primary, Secondary and Tertiary Education on Conflict Intensity in Africa

    Directory of Open Access Journals (Sweden)

    Julius A. Agbor

    2015-10-01

    Full Text Available This study investigates the impact of different schooling dimensions (primary, secondary and tertiary on the intensity of intra-state conflicts in 25 African states during the period 1989–2008. It uses fixed-effects and Generalized Methods of Moments (GMM estimators in an annualized panel data framework. Parameter estimates suggest the following (1 primary schooling broadly mitigates conflicts in Africa. However, in environments with high natural resource rents, it could ignite conflicts; (2 there is evidence, although not overwhelming, that secondary schooling potentially drives conflicts in Africa. There is also evidence that urbanization potentially drives conflicts in Africa. However, although secondary schooling and urbanization potentially drives conflicts, in environments where secondary schooling (urbanization is high, urbanization (secondary schooling mitigates conflicts; (3 there is no evidence of a strong direct positive impact of tertiary education on conflicts and conditioning on tertiary schooling, income inequality potentially drives conflicts in African states. However, in contexts where income inequality (tertiary schooling is high, tertiary schooling (inequality mitigates conflict. Two important policy implications follow from this study. First, in contexts where income inequality is high (for instance, in South Africa, governments should strive to foster tertiary education in order to reduce conflict. Second, where urbanization rates are high, they should foster both secondary and tertiary education. This study contributes to existing knowledge by clearly demonstrating the utility of distinguishing between different educational dimensions and the contexts wherein they matter for conflict mitigation in Africa.

  12. Intensity-Modulated Radiotherapy for Cervical Lymph Node Metastases From Unknown Primary Cancer

    International Nuclear Information System (INIS)

    Madani, Indira; Vakaet, Luc; Bonte, Katrien; Boterberg, Tom; Neve, Wilfried de

    2008-01-01

    Purpose: To compare the effectiveness of intensity-modulated radiotherapy (IMRT) and conventional (two-dimensional) radiotherapy in the treatment of cervical lymph node metastases from unknown primary cancer (UPC). Methods and Materials: Between February 2003 and September 2006, 23 patients with UPC of squamous cell carcinoma were treated with IMRT. Extended putative mucosal and bilateral nodal sites were irradiated to a median dose of 66 Gy. In 19 patients, IMRT was performed after lymph node dissection, and in 4 patients primary radiotherapy was given. The conventional radiotherapy group (historical control group) comprised 18 patients treated to a median dose of 66 Gy between August 1994 and October 2003. Results: Twenty patients completed treatment. As compared with conventional radiotherapy, the incidence of Grade 3 acute dysphagia was significantly lower in the IMRT group (4.5% vs. 50%, p = 0.003). By 6 months, Grade 3 xerostomia was detected in 11.8% patients in the IMRT group vs. 53.4% in the historical control group (p = 0.03). No Grade 3 dysphagia or skin fibrosis was observed after IMRT but these were noted after conventional radiotherapy (26.7%, p = 0.01) and 26.7%, p = 0.03) respectively). With median follow-up of living patients of 17 months, there was no emergence of primary cancer. One patient had persistent nodal disease and another had nodal relapse at 5 months. Distant metastases were detected in 4 patients. The 2-year overall survival and distant disease-free probability after IMRT did not differ significantly from those for conventional radiotherapy (74.8% vs. 61.1% and 76.3% vs. 68.4%, respectively). Conclusions: Use of IMRT for UPC resulted in lower toxicity than conventional radiotherapy, and was similar in efficacy

  13. Dimensions and intensity of inter-professional teamwork in primary care: evidence from five international jurisdictions.

    Science.gov (United States)

    Levesque, Jean-Frederic; Harris, Mark F; Scott, Cathie; Crabtree, Benjamin; Miller, William; Halma, Lisa M; Hogg, William E; Weenink, Jan-Willem; Advocat, Jenny R; Gunn, Jane; Russell, Grant

    2017-10-23

    Inter-professional teamwork in primary care settings offers potential benefits for responding to the increasing complexity of patients' needs. While it is a central element in many reforms to primary care delivery, implementing inter-professional teamwork has proven to be more challenging than anticipated. The objective of this study was to better understand the dimensions and intensity of teamwork and the developmental process involved in creating fully integrated teams. Secondary analyses of qualitative and quantitative data from completed studies conducted in Australia, Canada and USA. Case studies and matrices were used, along with face-to-face group retreats, using a Collaborative Reflexive Deliberative Approach. Four dimensions of teamwork were identified. The structural dimension relates to human resources and mechanisms implemented to create the foundations for teamwork. The operational dimension relates to the activities and programs conducted as part of the team's production of services. The relational dimension relates to the relationships and interactions occurring in the team. Finally, the functional dimension relates to definitions of roles and responsibilities aimed at coordinating the team's activities as well as to the shared vision, objectives and developmental activities aimed at ensuring the long-term cohesion of the team. There was a high degree of variation in the way the dimensions were addressed by reforms across the national contexts. The framework enables a clearer understanding of the incremental and iterative aspects that relate to higher achievement of teamwork. Future reforms of primary care need to address higher-level dimensions of teamwork to achieve its expected outcomes. © The Author 2017. Published by Oxford University Press.

  14. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  15. Energy and intensity modulated radiation therapy with electrons

    OpenAIRE

    Olofsson, Lennart

    2005-01-01

    In recent years intensity modulated radiation therapy with photons (xIMRT) has gained attention due to its ability to reduce the dose in the tissues close to the tumour volume. However, this technique also results in a large low dose volume. Electron IMRT (eIMRT) has the potential to reduce the integral dose to the patient due to the dose fall off in the electron depth dose curves. This dose fall off makes it possible to modulate the dose distribution in the direction of the beam by selecting...

  16. Multi-energy ion implantation from high-intensity laser

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Torrisi, L.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 61, č. 2 (2016), s. 109-113 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : high-intensity laser * implantation * material modification Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 0.760, year: 2016

  17. Tracking Energy Flow Using a Volumetric Acoustic Intensity Imager (VAIM)

    Science.gov (United States)

    Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas P.

    2006-01-01

    A new measurement device has been invented at the Naval Research Laboratory which images instantaneously the intensity vector throughout a three-dimensional volume nearly a meter on a side. The measurement device consists of a nearly transparent spherical array of 50 inexpensive microphones optimally positioned on an imaginary spherical surface of radius 0.2m. Front-end signal processing uses coherence analysis to produce multiple, phase-coherent holograms in the frequency domain each related to references located on suspect sound sources in an aircraft cabin. The analysis uses either SVD or Cholesky decomposition methods using ensemble averages of the cross-spectral density with the fixed references. The holograms are mathematically processed using spherical NAH (nearfield acoustical holography) to convert the measured pressure field into a vector intensity field in the volume of maximum radius 0.4 m centered on the sphere origin. The utility of this probe is evaluated in a detailed analysis of a recent in-flight experiment in cooperation with Boeing and NASA on NASA s Aries 757 aircraft. In this experiment the trim panels and insulation were removed over a section of the aircraft and the bare panels and windows were instrumented with accelerometers to use as references for the VAIM. Results show excellent success at locating and identifying the sources of interior noise in-flight in the frequency range of 0 to 1400 Hz. This work was supported by NASA and the Office of Naval Research.

  18. Modeling primary energy substitution in the Asia Pacific

    International Nuclear Information System (INIS)

    Aguilera, Roberto F.; Ripple, Ronald D.

    2013-01-01

    Highlights: • We model the market shares (i.e. energy mix) of gases, liquids and solids in the Asia Pacific. • The model matches the historical energy mix and projects three scenarios of the future mix to 2030. • We then model the past and future hydrogen to carbon ratio (a proxy for environmental quality). • Importance of natural gas in the region could increase significantly, depending on policy and tech progress. - Abstract: A Global Energy Market model (GEM) is used to analyze the market shares (i.e. the primary energy mix) of gases, liquids and solids in the Asia Pacific. The model is successful in matching the historical energy mix from 1850 to 2009. The model also provides a good match of the hydrogen to carbon ratio, which is a proxy for environmental quality. Given these validations, the GEM is then used to present scenarios of the Asia Pacific energy mix and hydrogen to carbon ratio until the year 2030. Three energy mix scenarios are presented – reference case; alternative case 1; alternative case 2. The reference case assumes limited divergence from current policies and technologies. It indicates that Asia Pacific energy needs will be met by approximately 46% solids, 34% liquids, and 20% gases by 2030. Alternative cases 1 and 2 represent policies and technologies that either encourage or discourage the use of gases. The good matches observed for historical data suggest the GEM can be used cautiously for evaluating outcomes and opportunities in the region. Although the model can be used for projecting far into the future, it is currently calibrated to what we consider a reasonable time horizon – until the year 2030. Given appropriate energy policies and sufficient technological advancement, the importance of natural gas in the region could increase significantly

  19. High-Resolution Energy and Intensity Measurements with CVD Diamond at REX-ISOLDE

    CERN Document Server

    Griesmayer, E; Dobos, D; Wenander, F; Bergoz, J; Bayle, H; Frais-Kölbl, H; Leinweber, J; Aumeyr, T; CERN. Geneva. BE Department

    2009-01-01

    A novel beam instrumentation device for the HIE-REX (High In-tensity and Energy REX) upgrade has been developed and tested at the On-Line Isotope Mass Separator ISOLDE, located at the European Laboratory for Particle Physics (CERN). This device is based on CVD diamond detector technology and is used for measuring the beam intensity, particle counting and measuring the energy spectrum of the beam. An energy resolution of 0.6% was measured at a carbon ion energy of 22.8 MeV. This corresponds to an energy spread of ± 140 keV.

  20. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  1. Primary energy use for heating in the Swedish building sector-Current trends and proposed target

    International Nuclear Information System (INIS)

    Johansson, P.; Nylander, A.; Johnsson, F.

    2007-01-01

    One goal of the Swedish energy policy is to reduce the amount of electricity used for heating in the building sector. This means to reduce the primary energy used for heating which in this paper is analyzed in the context of various heating technologies and CO 2 emissions. The analysis is applied to a region in Sweden (southern Sweden) for which detailed information on the energy infrastructure (the capital stock of the buildings and heating systems together with geographical variations in heat intensity) is available from a previous work [Johansson, P., Nylander, A., Johnsson, F., 2005. Electricity dependency and CO 2 emissions from heating in the Swedish building sector-current trends in conflict with governmental policy? Energy policy] and which is large enough to be assumed representative for Sweden as a whole. The detailed mapping of the energy infrastructure allows a good estimate on the rate at which the energy system can be expected to be replaced with respect to economical lifetime of the capital stock (the year 2025 in this case). Two scenarios are investigated; a target scenario for which energy savings are employed (e.g. improving climate shell in buildings) and oil and most of the electricity used for heating purposes are phased out and a second for which the current trend in the heating market continues. In the target scenario it is shown that although only applying commercially competitive heating technologies, it is possible to achieve a 47% reduction in primary energy use for heating with a 34% decrease in heat demand together with significant reduction in CO 2 emissions. However, the scenario which continues the current trends on the heating market instead yields an increase (of about 10%) in primary energy use (reduction in conversion efficiency) of the heating system of the region over the period studied, in spite of a slight decrease in heat demand (9%, mainly due to energy efficiency measures) as well as in CO 2 emissions. In light of the

  2. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  3. Why did China's energy intensity increase during 1998-2006. Decomposition and policy analysis

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Ma, Chunbo; Hong, Dongyue

    2010-01-01

    Despite the fact that China's energy intensity has continuously decreased during the 1980s and mostly 1990s, the decreasing trend has reversed since 1998 and the past few years have witnessed rapid increase in China's energy intensity. We firstly conduct an index decomposition analysis to identify the key forces behind the increase. It is found that: (1) the high energy demand in industrial sectors is mainly attributed to expansion of production scale, especially in energy-intensive industries; (2) energy saving mainly comes from efficiency improvement, with energy-intensive sectors making the largest contribution; and (3) a heavier industrial structure also contributes to the increase. This study also makes the first attempt to bridge the quantitative decomposition analysis with qualitative policy analyses and fill the gap between decomposition results and policy relevance in previous work. We argue that: (1) energy efficiency improvement in energy-intensive sectors is mainly due to the industrial policies that have been implemented in the past few years; (2) low energy prices have directly contributed to high industrial energy consumption and indirectly to the heavy industrial structure. We provide policy suggestions in the end. (author)

  4. Changes in energy intensities of Thai industry between 1981 and 2000: a decomposition analysis

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Ussanarassamee, Arjaree

    2005-01-01

    Industrial demand accounts for about 30% of total final energy demand in Thailand, which experienced rapid increases in energy demand. This paper analyzes the changes in industrial energy intensities over a period of 20 years (1981-2000) and identifies the factors affecting the energy consumption using logarithmic mean Divisia decomposition technique. It is found that Thai industry has passed through four different phases of growth and energy consumption has closely followed the industrial growth pattern. Energy intensity of Thai industry decreased from 17.6 toe/million baht (constant 1988 prices) in 1981 to 15.8 toe/million baht (1988 prices) in 2000. Non-metallic mineral industry is the most intensive industry followed by basic metal, food and beverage, chemical and paper industries. The factor analysis indicates that both the structural effect and intensity effect contributed to a decline of aggregate intensity by 8% during 1981-1986 but in the rest of the periods, the two effects acted in opposite directions and thereby reducing the overall effect on aggregate intensity. Food and beverages, non-metallic mineral and chemical industries had significantly influenced the changes in aggregate intensity at sectoral level

  5. Patterns of local-regional failure after primary intensity modulated radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kong, Fangfang; Ying, Hongmei; Du, Chengrun; Huang, Shuang; Zhou, Junjun; Chen, Junchao; Sun, Lining; Chen, Xiaohui; Hu, Chaosu

    2014-01-01

    To analyze patterns of local-regional failure after primary intensity modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). A total of 370 non-metastatic NPC patients consecutively treated with IMRT (with or without chemotherapy) were analyzed. Radiotherapy was administered using a simultaneous integrated boost (SIB) technique at the total prescribed dose of 66-70.4Gy (2.0-2.2Gy per fraction). The location and extent of local-regional failures were transferred to the pretreatment planning computed tomography (CT) for dosimetric analysis. The dose of radiation received by V recur (volume of recurrence) was calculated and analyzed with dose-volume histogram (DVH). Failures were classified as: 'in field' if 95% of V recur was within the 95% isodose, 'marginal' if 20% to 95% of V recur was within the 95% isodose, or 'outside' if less than 20% of V recur was inside the 95% isodose. With a median follow up of 26 months, 25 local-regional failures were found in 18 patients. The 1- and 2-year actuarial local-regional control rates for all patients were 99.7% and 95.5% respectively. Among the 22 local–regional failures with available diagnostic images, 16 (64%) occurred within the 95% isodose lines and were considered in-field failures; 3 (12%) were marginal and 3 (12%) were outside-field failures. Intensity-modulated radiotherapy provides excellent local-regional control for NPC. In-field failures are the main patterns for local-regional recurrence. Reducing the coverage of critical adjacent tissues in CTV purposefully for potential subclinical diseases was worth of study. Great attention in all IMRT steps is necessary to reduce potential causes of marginal failures. More studies about radioresistance are needed to reduce in-field failures

  6. Future of high intensity accelerators in nuclear energy

    International Nuclear Information System (INIS)

    Schriber, S.O.; Fraser, J.S.; Tunnicliffe, P.R.

    1977-08-01

    A possible application for a high mean current, intermediate-energy proton linear accelerator is the ''electrical breeding'' of fuel for nuclear electrical power stations. The possible role of the spallation breeder in the context of a Canadian nuclear power economy and its relationship to nuclear fuel resources are discussed. The production of fissile material using the spallation process in a target containing actinide elements appears desirable and feasible from engineering and economic considerations. Current development work in Canada and some of the outstanding problems are discussed. (author)

  7. Decoupling of CO2-emissions from Energy Intensive Industries

    DEFF Research Database (Denmark)

    Andersen, M. S.; Enevoldsen, M. K.; Ryelund, A. V.

    and taxes on the trends in CO2 emissions on the basis of a novel method that relies on sector-specific energy prices. Whereas previous research has been unable to account for the implications of complex tax exemptions and price discounts, the present report bridges the gap and provides innovative estimates....... This finding suggests that price increases, whether induced by taxes or market fluctuations, can be effective in curbing CO2 emissions when they accurately reflect the CO2 burden. It also suggests that CO2-specific taxes on fuels are more effective than end-user electricity taxes which do not reflect actual...

  8. Total Factor Productivity and Energy Intensity in Indian Manufacturing: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Sahu

    2011-01-01

    Full Text Available The objective of the paper is to estimate the transcendental logarithmic production function and further study the determinants of total factor productivity (TFP of Indian manufacturing industries. The estimation of TFP is based on four inputs model, where apart from labour and capital, material and energy are the other two inputs. The findings of the paper suggest that labour and material inputs play major role as compared to the capital and energy input. Age of the firm, ownership, energy intensity, embodied and disembodied technology imports, research and development and exports were considered as the possible determinants of the TFP in the second stage regression. The finding of the estimates suggest that age of the firm, export intensity and disembodied technology import are positively related to the TFP, where ownership, energy intensity, embodied technology import and R&D intensity are negatively related to the TFP of the firms for Indian manufacturing.

  9. Energy intensity decline implications for stabilization of atmospheric CO2 content

    International Nuclear Information System (INIS)

    Lightfoot, H.D.; Green, C.

    2002-01-01

    By calculating the amount of carbon-free energy required to stabilize the level of carbon dioxide in the atmosphere at some level, such as 550 parts per million by volume (ppmv) in 2100, the authors estimate the appropriate rate of world average annual energy intensity decline. The roles played by energy efficiency and long term sectoral changes like shifts in economic activity from high energy intensity sectors or industries to low energy intensity sectors or industries are distinguished. Advances in technology and better and improved procedures, as well as a broader adoption of more efficient technologies currently available are included in the improvements made in energy efficiency. The objective was, for the period 1990 to 2100 (110 years), to estimate the potential energy efficiency increase for world electricity generation. It is noted that electricity generation represents 38 per cent of world energy consumption in 1995, while transportation accounts for 19 per cent and residential, industrial and commercial uses account for 43 per cent. In 2100, it is expected that the overall average decline in energy intensity will be 40.1 per cent of that of 1990, according to the results obtained. Looked at from another perspective, it represents an average annual rate of energy intensity decline of 0.83 per cent for 110 years. Between 0.16 and 0.30 per cent could be added to the impact of sectoral changes on the average annual rate of decline in energy intensity, while 0.83 per cent would be attributable to improvements in energy efficiency, as shown by sensitivity analysis. 33 refs., 9 tabs., 1 fig

  10. On the treatment of primary extinction in diffraction theories based on intensity coupling

    International Nuclear Information System (INIS)

    Schneider, J.R.; Goncalves, O.D.; Graf, H.A.

    1988-01-01

    Czochralski-grown silicon crystals of approximately 10 cm diameter and 1 cm thickness have been annealed at 1470 K in order to create a homogeneous defect structure, which is a basic condition for all statistical treatment of extinction. Absolute values of the integrated reflecting power of the 220, 440 and 660 reflections have been measured with 0.0392 A γ-radiation in symmetrical Laue geometry for sample thicknesses between 1 and 3 cm. The amount of extinction in the experimental data varies between γ≅0.95 and γ≅0.05. Darwin's extinction theory has been used to describe the thickness dependence of the data sets. Despite some shortcomings of the model, it is shown that the assumption of a physically unrealistic Lorentzian mosaic distribution models the effect of primary extinction in an extinction theory based on the energy-transfer model. The sharp central part of the Lorentzian distribution produces a reduction of the effective sample thickness due to primary extinction, whereas the wings of the distribution dominate the correction for secondary extinction in the remaining part of the sample. A more flexible mosaic distribution function is proposed, which should be useful in cases of severe extinction. (orig.)

  11. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    OpenAIRE

    Chinhao Chong; Weidou Ni; Linwei Ma; Pei Liu; Zheng Li

    2015-01-01

    Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate t...

  12. Environmental Tax Reforms and Mitigation for Energy-intensive Industries: Some Lessons from European Experience

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2009-01-01

    The purpose of this paper is to analyse in more detail the international experiences in applying carbon-energy taxation in two important energy-intensive sectors; iron and steel, as well as non-metallic mineral products (where cement is the most significant subsector).......The purpose of this paper is to analyse in more detail the international experiences in applying carbon-energy taxation in two important energy-intensive sectors; iron and steel, as well as non-metallic mineral products (where cement is the most significant subsector)....

  13. EU energy-intensive industries and emissions trading: losers becoming winners?

    Energy Technology Data Exchange (ETDEWEB)

    Wettestad, Joergen

    2008-11-15

    The EU Emissions Trading System (ETS) initially treated power producers and energy-intensive industries similarly, despite clear structural differences between these industries regarding pass through of costs and vulnerability to global competition. Hence, the energy-intensive industries could be seen as losing out in the internal distribution. In the January 2008 proposal for a reformed ETS post-2012, a differentiated system was proposed where the energy-intensive industries come out relatively much better. What is the explanation for the change taking place? Although power producers still have a dominant position in the system, the increasing consensus about windfall profits has weakened their standing. Conversely, the energy-intensive industries have become better organised and more active. This balance shift is first and foremost noticeable in several important EU-level stake holder consultation processes. Energy-intensive industries have, however, also successfully utilised the national pathway to exert influence on Brussels policy-making. Finally, growing fear of lax global climate policies and related carbon leakage has strengthened the case of these industries further. The latter dimension indicates that although energy-intensive industries have managed to reduce internal distribution anomalies, external challenges remain. (author). 9 refs

  14. The energy intensity in Lithuania during 1995-2009: A LMDI approach

    International Nuclear Information System (INIS)

    Balezentis, Alvydas; Balezentis, Tomas; Streimikiene, Dalia

    2011-01-01

    The measurement, assessment, and effective mitigation of energy intensity compose a foremost objective of contemporary energy policy. Although the European Union (EU) Member States have been experiencing the convergence in energy efficiency indicators, Lithuania, acceded to the EU in 2004, still remains peculiar with relatively high energy intensity. Our study, therefore, is aimed at analyzing the energy intensity trends in Lithuanian economy as a whole as well as in separate economic sectors. The investigation covers the period of 1995-2009. The Logarithmic Mean Divisia Index was applied for decomposition analysis. Our analysis has shown that energy efficiency falls during economic downturn. In order to facilitate these challenges the Lithuanian Government as well as business should opt for increasing energy efficiency in the most problematic sectors of transport and services. In addition, the analysis of legal acts, namely National Energy Efficiency Programme for 2006-2010 and Energy Efficiency Action plan for 2010-2016, was taken into consideration. Some suggestions, thus, were offered for successful implementation of strategic goals outlined in the aforementioned strategic documents. - Highlights: → The Logarithmic Mean Divisia Index was applied for decomposition analysis. → Our analysis has shown that energy efficiency is the most problematic issue for transport and services sectors. → The main policy document to promote energy efficiency in Lithuania, namely National Energy Efficiency Programme for 2006-2010, is analyzed in the paper.

  15. Data intensive high energy physics analysis in a distributed cloud

    Science.gov (United States)

    Charbonneau, A.; Agarwal, A.; Anderson, M.; Armstrong, P.; Fransham, K.; Gable, I.; Harris, D.; Impey, R.; Leavett-Brown, C.; Paterson, M.; Podaima, W.; Sobie, R. J.; Vliet, M.

    2012-02-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  16. Emittance scanner for intense low-energy ion beams

    International Nuclear Information System (INIS)

    Allison, P.W.; Sherman, J.D.; Holtkamp, D.B.

    1983-01-01

    An emittance scanner has been developed for use with low-energy H - ion beams to satisfy the following requirements: (1) angular resolution of +-1/2 mrad, (2) small errors from beam space charge, and (3) compact and simple design. The scanner consists of a 10-cm-long analyzer containing two slits and a pair of electric deflection plates driven by a +-500-V linear ramp generator. As the analyzer is mechanically driven across the beam, the front slit passes a thin ribbon of beam through the plates. The ion transit time is short compared with the ramp speed; therefore, the initial angle of the ions that pass through the rear slit is proportional to the instantaneous ramp voltage. The current through the rear slit then is proportional to the phase-space density d 2 i/dxdx'. The data are computer-analyzed to give, for example, rms emittance and phase-space density contours. Comparison of measured data with those calculated from a prepared (collimated) phase space is in good agreement

  17. Data intensive high energy physics analysis in a distributed cloud

    International Nuclear Information System (INIS)

    Charbonneau, A; Impey, R; Podaima, W; Agarwal, A; Anderson, M; Armstrong, P; Fransham, K; Gable, I; Harris, D; Leavett-Brown, C; Paterson, M; Sobie, R J; Vliet, M

    2012-01-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  18. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  19. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)

    International Nuclear Information System (INIS)

    Gao, Hao; Osher, Stanley; Yu, Hengyong; Wang, Ge

    2011-01-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. (papers)

  20. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes - A Systematic Conversion Approach for the Anodizing Process

    Science.gov (United States)

    >D Stollenwerk, T Kuvarakul, I Kuperjans,

    2013-06-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  1. Renewable Energy Supply for Power Dominated, Energy Intense Production Processes – A Systematic Conversion Approach for the Anodizing Process

    International Nuclear Information System (INIS)

    Stollenwerk, D; Kuvarakul, T; Kuperjans, I

    2013-01-01

    European countries are highly dependent on energy imports. To lower this import dependency effectively, renewable energies will take a major role in future energy supply systems. To assist the national and inter-European efforts, extensive changes towards a renewable energy supply, especially on the company level, will be unavoidable. To conduct this conversion in the most effective way, the methodology developed in this paper can support the planning procedure. It is applied to the energy intense anodizing production process, where the electrical demand is the governing factor for the energy system layout. The differences between the classical system layout based on the current energy procurement and an approach with a detailed load-time-curve analysis, using process decomposition besides thermodynamic optimization, are discussed. The technical effects on the resulting energy systems are shown besides the resulting energy supply costs which will be determined by hourly discrete simulation.

  2. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Chapas, Richard B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colwell, Jeffery A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  3. Fecal energy losses in enterally fed intensive care patients: An explorative study using bomb calorimetry

    NARCIS (Netherlands)

    Strack van Schijndel, R.J.M.; Wierdsma, N.J.; van Heijningen, E.M.B.; Weijs, P.J.M.; de Groot, S.D.W.; Girbes, A.R.J.

    2006-01-01

    Background & Aims: Early enteral nutrition and tailored supply of nutrients have become standard in most of the intensive care units (ICU). So far little attention has been given to losses of energy in the stools. The purpose of this explorative study was to evaluate the energy losses of patients

  4. Derivation of Building Energy Use Intensity Targets for ASHRAE Standard 100

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Terry R [ORNL

    2014-06-01

    The steps to develop the building energy use intensity targets for American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 100, Energy Efficiency in Existing Buildings are outlined in this report. The analyses were conducted by Oak Ridge National Laboratory (ORNL) in collaboration with the ASHRAE Standard 100 committee and Dr. Alexander Zhivov, the subcommittee chair responsible for targets development.

  5. Energy intensity developments in 40 major economies: Structural change or technology improvement?

    International Nuclear Information System (INIS)

    Voigt, Sebastian; De Cian, Enrica; Schymura, Michael; Verdolini, Elena

    2014-01-01

    This study analyzes energy intensity trends and drivers in 40 major economies using the WIOD database, a novel harmonized and consistent dataset of input–output table time series accompanied by environmental satellite data. We use logarithmic mean Divisia index decomposition to (1) attribute efficiency changes to either changes in technology or changes in the structure of the economy, (2) study trends in global energy intensity between 1995 and 2007, and (3) highlight sectoral and regional differences. For the country analysis we apply the traditional two factor index decomposition approach, while for the global analysis we use a three factor decomposition which includes the consideration of regional structural changes in the global economy. We first show that heterogeneity within each sector across countries is high. These general trends within sectors are dominated by large economies, first and foremost the United States. In most cases, heterogeneity is lower within each country across the different sectors. Regarding changes of energy intensity at the country level, improvements between 1995 and 2007 are largely attributable to technological change while structural change is less important in most countries. Notable exceptions are Japan, the United States, Australia, Taiwan, Mexico and Brazil where a change in the industry mix was the main driver behind the observed energy intensity reduction. At the global level we find that despite a shift of the global economy to more energy-intensive countries, aggregate energy efficiency improved mostly due to technological change

  6. Variation in U.V. primary fluorescence-intensity of vital cells depending on 60Co γ-radiation dose

    International Nuclear Information System (INIS)

    Merkle, K.

    1978-01-01

    Using impulse-cytofluorophotometry in the ultra-violet spectral region it has been shown on vital, unstained Ehrlich ascites tumour cells that the primary fluorescence intensity of this tumour was on day 11 after transplantation 20 per cent higher than on day 8. Storage of the vital cells for 25 min at 20 0 C had no effect on this result. When the cells were exposed to 60 Co γ-radiation on day 6, a new stable fluorescence level was established after 20 hours. Measurements of the primary fluorescence intensity depending on dose have shown a significant rise starting from 75 rad at 48 hours after irradiation. The fluorescence intensity rose by 42.5 per cent of the control value at 3000 rad, but only by 31.5 per cent on exposure to 4000 rad. (author)

  7. Prevalence of Primary Dysmenorrhea and Factors Associated with Its Intensity Among Undergraduate Students: A Cross-Sectional Study.

    Science.gov (United States)

    Habibi, Nahal; Huang, Mary Soo Lee; Gan, Wan Ying; Zulida, Rejali; Safavi, Sayyed Morteza

    2015-12-01

    Primary dysmenorrhea is a womanhood problem around the world and negatively affects quality of life. This study was designed to investigate the prevalence of primary dysmenorrhea and to determine the factors associated with its intensity. A cross-sectional study was carried out among 311 undergraduate female students aged 18 to 27 years in Isfahan University of Medical Sciences, Iran. Socio-demographic characteristics and menstrual factors were obtained through interviews with the help of a pretested questionnaire. The prevalence of primary dysmenorrhea was 89.1%. Residing at home, younger age, lower number of years of formal education for the mother, positive family history of dysmenorrhea, higher severity of bleeding, and shorter menstrual period intervals were significantly associated with the higher intensity of primary dysmenorrhea. Primary dysmenorrhea is a common health concern among young women. Being aware of the factors that are associated with its intensity makes it possible for health professionals to organize better focused programs to reduce the adverse effects of dysmenorrhea. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  8. The logic of the primary energy prices evolution

    International Nuclear Information System (INIS)

    Giraud, P.N.

    1992-01-01

    This paper deals, very briefly, with the basis factors determining the prices levels of the primary energies and the logic of their evolution both in the short and in the long term. It first gives definitions: of the limits of mineral commodities prices fluctuations and of the long term equilibrium prices. Then, it tries to demonstrate three points: (1) Coal and nuclear electricity prices are driven in the long term only by their own production and environmental costs. Moreover, coal prices fluctuations are surrounded by factors which are basically independent from oil prices. (2) There is no such thing as one single equilibrium price for oil, but several ones, depending on political factors, and among them, on the degree of consensus between the 'Five' of the Gulf (Saudi Arabia, Iran, Irak, Koweit, The Emirates). (3) Natural gas prices are in an intermediate situation, but tend to get closer to the case of coal and nuclear prices. 4 figs

  9. An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Amalnick, M.S.; Ghaderi, S.F.; Asadzadeh, S.M.

    2007-01-01

    This paper introduces an integrated approach based on data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT) for total energy efficiency assessment and optimization in energy intensive manufacturing sectors. Total energy efficiency assessment and optimization of the proposed approach considers structural indicators in addition conventional consumption and manufacturing sector output indicators. The validity of the DEA model is verified and validated by PCA and NT through Spearman correlation experiment. Moreover, the proposed approach uses the measure-specific super-efficiency DEA model for sensitivity analysis to determine the critical energy carriers. Four energy intensive manufacturing sectors are discussed in this paper: iron and steel, pulp and paper, petroleum refining and cement manufacturing sectors. To show superiority and applicability, the proposed approach has been applied to refinery sub-sectors of some OECD (Organization for Economic Cooperation and Development) countries. This study has several unique features which are: (1) a total approach which considers structural indicators in addition to conventional energy efficiency indicators; (2) a verification and validation mechanism for DEA by PCA and NT and (3) utilization of DEA for total energy efficiency assessment and consumption optimization of energy intensive manufacturing sectors

  10. CO_2 emissions and energy intensity reduction allocation over provincial industrial sectors in China

    International Nuclear Information System (INIS)

    Wu, Jie; Zhu, Qingyuan; Liang, Liang

    2016-01-01

    Highlights: • DEA is used to evaluate the energy and environmental efficiency of 30 provincial industrial sector in China. • A new DEA-based model is proposed to allocate the CO_2 emissions and energy intensity reduction targets. • The context-dependent DEA is used to characterize the production plans. - Abstract: High energy consumption by the industry of developing countries has led to the problems of increasing emission of greenhouse gases (GHG) (primarily CO_2) and worsening energy shortages. To address these problems, many mitigation measures have been utilized. One major measure is to mandate fixed reductions of GHG emission and energy consumption. Therefore, it is important for each developing country to disaggregate their national reduction targets into targets for various geographical parts of the country. In this paper, we propose a DEA-based approach to allocate China’s national CO_2 emissions and energy intensity reduction targets over Chinese provincial industrial sectors. We firstly evaluate the energy and environmental efficiency of Chinese industry considering energy consumption and GHG emissions. Then, considering the necessity of mitigating GHG emission and energy consumption, we develop a context-dependent DEA technique which can better characterize the changeable production with reductions of CO_2 emission and energy intensity, to help allocate the national reduction targets over provincial industrial sectors. Our empirical study of 30 Chinese regions for the period 2005–2010 shows that the industry of China had poor energy and environmental efficiency. Considering three major geographical areas, eastern China’s industrial sector had the highest efficiency scores while in this aspect central and western China were similar to each other at a lower level. Our study shows that the most effective allocation of the national reduction target requires most of the 30 regional industrial to reduce CO_2 emission and energy intensity, while a

  11. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

    International Nuclear Information System (INIS)

    Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C.

    2010-01-01

    The automobile industry in China has rapidly developed in recent years which resulted in an increase in gasoline usage and greenhouse gas (GHG) emissions. Focus on climate change has also accelerated to grow pressure on reducing vehicle weight and improving fuel efficiency. Aluminum (Al) as a light metal has demonstrated a great potential for weight savings in applications such as engine blocks, cylinder heads, wheels, hoods, tailgates etc. However, primary Al production requires intensive energy and the cost of Al is more than traditional steel, which may affect the total benefits realized from using Al in automobiles. Therefore, it is very essential to conduct a study to quantify the life cycle GHG emissions and energy consumption if the plan is to achieve fleet-wide Al intensive vehicles. This paper describes a life cycle assessment (LCA) methodology and the general modeling assumptions used to evaluate the impact of Al intensive vehicle on GHG emissions and energy consumption. The results indicated that the reductions in life cycle GHG emissions and energy consumption were not significant when the maximum Al content in an automobile is 145 kg, which is the average level of Al usage in automobiles in North America. A neural network methodology was used to forecast the vehicle stock in China from 2010 to 2020 and a vehicle fleet model was established to track GHG emissions and energy consumption of the vehicle fleet. A material availability factor was also introduced into the LCA methodology to further assist decision makers in providing rational proposals for a widespread implementation of Al in automobiles. A sensitivity analysis was also conducted to study the impact of the Al content in a vehicle on the final outcomes. The GHG emissions and energy consumption could be further reduced when the Al content in an automobile increases.

  12. The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use

    Directory of Open Access Journals (Sweden)

    Chinhao Chong

    2015-04-01

    Full Text Available Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate that Malaysia’s energy use depends heavily on fossil fuels, including oil, gas and coal. In the past 30 years, Malaysia has successfully diversified its energy structure by introducing more natural gas and coal into its power generation. To sustainably feed the rapidly growing energy demand in end-use sectors with the challenge of global climate change, Malaysia must pay more attention to the development of renewable energy, green technology and energy conservation in the future.

  13. Trigeneration primary energy saving evaluation for energy planning and policy development

    International Nuclear Information System (INIS)

    Chicco, Gianfranco; Mancarella, Pierluigi

    2007-01-01

    Trigeneration or combined heat, cooling and power (CHCP) is becoming an increasingly important energy option, particularly on a small-scale basis (below 1 MW e ), with several alternatives nowadays available for the cooling power production and the coupling to cogeneration systems. This paper deals with the introduction of a suitable framework for assessing the energy saving performance of trigeneration alternatives, orientated towards energy planning studies and the development of regulatory policies. In particular, a new generalized performance indicator-the trigeneration primary energy saving (TPES)-is introduced and discussed, with the aim of effectively evaluating the primary energy savings from different CHCP alternatives. The potential of the TPES indicator is illustrated through specific analyses run over different combinations of trigeneration equipment, providing numerical examples based on time-domain simulations to illustrate the dependence of the energy saving characteristics on the CHCP system configurations and equipment, as well as on the loading levels. In addition, the key aspect of adequately establishing the reference efficiencies for the conventional separate production of electrical, thermal and cooling power is addressed in detail. This aspect affects both equipment selection and potential profitability of the considered solutions under the outlook of receiving financial incentives

  14. Intensive Outpatient Behavioral Treatment of Primary Urinary Incontinence of Children With Autism

    Science.gov (United States)

    LeBlanc, Linda A.; Carr, James E.; Crossett, Sarah E.; Bennett, Christine M.; Detweiler, Dawn D.

    2005-01-01

    Three children with autism who were previously nonresponsive to low-intensity toilet training interventions were toilet trained using a modified Azrin and Foxx (1971) intensive toilet training procedure. Effects were demonstrated using a nonconcurrent multiple baseline design across participants. The training was conducted across home and school…

  15. A Systematic Review of the Energy Cost and Metabolic Intensity of Yoga.

    Science.gov (United States)

    Larson-Meyer, D Enette

    2016-08-01

    With the increasing popularity of Hatha yoga, it is important to understand the energy cost and METs of yoga practice within the context of the American College of Sports Medicine (ACSM) and the American Heart Association (AHA) physical activity guidelines. This systematic review evaluated the energy cost and metabolic intensity of yoga practice including yoga asanas (poses/postures) and pranayamas (breath exercises) measured by indirect calorimetry. The English-speaking literature was surveyed via PubMed using the general terms "yoga" and "energy expenditure" with no date limitations. Thirteen manuscripts were initially identified with an additional four located from review of manuscript references. Of the 17 studies, 10 evaluated the energy cost and METs of full yoga sessions or flow through Surya Namaskar (sun salutations), eight of individual asanas, and five of pranayamas. METs for yoga practice averaged 3.3 ± 1.6 (range = 1.83-7.4 METs) and 2.9 ± 0.8 METs when one outlier (i.e., 7.4 METs for Surya Namaskar) was omitted. METs for individual asanas averaged 2.2 ± 0.7 (range = 1.4-4.0 METs), whereas that of pranayamas was 1.3 ± 0.3. On the basis of ACSM/AHA classification, the intensity of most asanas and full yoga sessions ranged from light (less than 3 METs) to moderate aerobic intensity (3-6 METs), with the majority classified as light intensity. This review suggests that yoga is typically classified as a light-intensity physical activity. However, a few sequences/poses, including Surya Namaskar, meet the criteria for moderate- to vigorous-intensity activity. In accordance with the ACSM/AHA guidelines, the practice of asana sequences with MET intensities higher than three (i.e., >10 min) can be accumulated throughout the day and count toward daily recommendations for moderate- or vigorous-intensity physical activity.

  16. Long-term trends in direct and indirect household energy intensities: a factor in dematerialisation?

    International Nuclear Information System (INIS)

    Vringer, K.; Blok, K.

    2000-01-01

    Dematerialisation is assumed to contribute significantly to the alleviation of environmental problems. One of the possible causes of dematerialisation is a change in the consumption patterns of households. The aim of this article is to analyse changes in consumption patterns of Dutch households in the period between 1948 to 1996 in order to discover whether these changes have influenced the energy intensity of society. Due to the rise in consumption, the total household energy requirement per capita grew on average by 2.4 per cent per year over a period of 48 years (this figure ignores efficiency changes in the supplying sectors). In the same period the total energy intensity of households fluctuated but on average changed from 5.6 to 6.3 MJ/NLG, an increase of 0.25 per cent per year. If we exclude the direct energy consumption we find a slight decline in the indirect energy intensity, namely from 3.8 to 3.6 MJ/NLG ( - 0.14 per cent per year). No significant trends to a lower energy intensity are found and there is no indication of dematerialisation of the consumption patterns. If governments pursue a policy of sustainable development they have to take into account the fact that dematerialisation of the consumption pattern does not seem to be an autonomous process. (author)

  17. System dynamics analysis of strategies to reduce energy use in aluminum-intensive sectors

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca J.; Nicholson, Scott; 25-29 June 2017, Carpenter, Alberta

    2017-07-13

    Aluminum is one of the most widely used materials in industry, with applications in buildings, vehicles, aircraft, and consumer products. Its ubiquity is also on the rise: aluminum is beginning to supplant steel in lightweight vehicles and aircraft, and is used in many green or LEED-certified buildings. Although aluminum tends to be highly recycled, particularly by manufacturers of aluminum products, the sector as a whole is still far from a closed system. As a result, the increase in aluminum consumption also means an increase in primary aluminum production-an energy-intensive process-and an increase in consumption of the raw material bauxite, which in the U.S. is almost entirely imported. Our objectives for this study are to identify and analyze aluminum sector technologies and practices that reduce the energy required to manufacture aluminum products and reduce U.S. dependence on imported aluminum and bauxite. To accomplish these objectives, we will develop a system dynamics (SD) model of aluminum production, use and recycling in key application areas, including aerospace, ground vehicles and consumer products. The model will cover the entire aluminum supply chain as it exists in the U.S., from bauxite importing and refining, to the manufacture of products, to the product use phase and end-of-life processing steps. Aluminum flows throughout the model will be determined by the annual domestic demand for each application area as well as demand projections that extend to 2030. Energy consumption will be tracked based on the flows of aluminum through each step of the supply chain. Using the SD model, we will evaluate several technologies and practices that have the potential to reduce energy consumption and reliance on imported bauxite. These include implementation of advanced primary aluminum production technologies, increased recycling within and between application areas, increased material efficiency and increased product lifetimes. Each of these strategies

  18. High-intensity Erotic Visual Stimuli De-activate the Primary Visual Cortex in Women

    NARCIS (Netherlands)

    Huynh, Hieu K.; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Schultz, Willibrord Weijmar; Holstege, Gert

    Introduction. The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the

  19. High-intensity Erotic Visual Stimuli De-activate the Primary Visual Cortex in Women

    NARCIS (Netherlands)

    Huynh, Hieu K.; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-01-01

    Introduction. The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the

  20. Going nuclear. Some implications of the introduction of nuclear energy as the basic primary energy supply of a developped society

    International Nuclear Information System (INIS)

    Haefele, W.; Sassin, W.

    1975-01-01

    On the basis of nuclear energy as primary energy source, the future development potentialities of secondary energies are considered; these energy forms are coal gaseification, process heat for industrial uses and district heating, and mainly hydrogen production which represents 60% of the future secondary energy demands. By using decision tree method, the eventuality of using nuclear energy as unique energy source is examined, and the successive options implied in this approach are analyzed [fr

  1. Decomposition of intensity of energy-related CO_2 emission in Chinese provinces using the LMDI method

    International Nuclear Information System (INIS)

    Zhang, Wei; Li, Ke; Zhou, Dequn; Zhang, Wenrui; Gao, Hui

    2016-01-01

    Uncovering the driving factors of CO_2 emission intensity declining is important for China. This paper improves the logarithmic mean Divisia index technique, which includes energy density and energy consumption intensity, to explore the driving factors of carbon emission intensity (CI) in 29 Chinese provinces from 1995–2012. The main results are: (1) energy consumption intensity plays a more important role than carbon emission density (CD) for a rapid decrease in CI during the research period, so a much room is left for a significant CD reduction through carbon emission reduction technology, energy structural reduction, and energy consumption proportional reduction. (2) The decrease in energy consumption technology and energy structure in secondary industries contributes the most reduction in energy consumption intensity. (3)The energy consumption proportions of secondary and tertiary industries are the two most important drivers to decrease CD. (4) During the research period, the energy consumption proportions of secondary industries result in the most decrease in CD, whereas the energy consumption proportions of tertiary industries cause the most increase in CD. - Highlights: •Carbon emission intensity decreased rapidly from 1995 to 2012. •Energy intensity is the more significant driver for decrease of carbon intensity. •The most contribution of EI's decrease came from secondary industries. •The most contribution of CD's decrease came from secondary and tertiary industries. •Several policies of reducing carbon emission intensity in China have been raised.

  2. Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia

    OpenAIRE

    Klinge Jacobsen, Henrik

    2007-01-01

    The increase in oil prices has put pressure on the global economy. Even economies that have a high degree of self-sufficiency concerning oil products are experiencing rising production costs and price increases for households energy use. Therefore, changes in energy policies are under consideration for countries highly dependent on imported energy as well as countries with a high degree of self-sufficiency. Examination of dependence on cheap energy sources for economic growth in different...

  3. Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia

    OpenAIRE

    Klinge Jacobsen, Henrik

    2007-01-01

    The increase in oil prices has put pressure on the global economy. Even economies that have a high degree of self-sufficiency concerning oil products are experiencing rising production costs and price increases for households energy use. Therefore, changes in energy policies are under consideration for countries highly dependent on imported energy as well as countries with a high degree of self-sufficiency. Examination of dependence on cheap energy sources for economic growth in different eco...

  4. Provision of protein and energy in relation to measured requirements in intensive care patients

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Esmailzadeh, Negar; Knudsen, Anne Wilkens

    2012-01-01

    , also when adjusted for baseline prognostic variables (APACHE II, SOFA scores and age). Provision of energy, measured resting energy expenditure or energy and nitrogen balance was not related to mortality. The possible cause-effect relationship is discussed after a more detailed analysis of the initial......BACKGROUND & AIMS: Adequacy of nutritional support in intensive care patients is still a matter of investigation. This study aimed to relate mortality to provision, measured requirements and balances for energy and protein in ICU patients. DESIGN: Prospective observational cohort study of 113 ICU...... part of the admission. CONCLUSION: In these severely ill ICU patients, a higher provision of protein and amino acids was associated with a lower mortality. This was not the case for provision of energy or measured resting energy expenditure or energy or nitrogen balances. The hypothesis that higher...

  5. Evaluation of high-energy lithium thionyl chloride primary cells

    Science.gov (United States)

    Frank, H. A.

    1980-02-01

    An advanced commercial primary lithium cell (LiSoCl2) was evaluated in order to establish baseline data for improved lithium batteries for aerospace applications. The cell tested had nominal capacity of 6 Ah. Maximum energy density at low rates (less than C/30, where C is the cell capacity in amp-hrs and 30 corresponds to a 30 hr discharge time) was found to be near 300 Wh/kg. An equation which predicts the operating voltage of these cells as a function of current and state of charge is presented. Heat generation rates of these cells were determined as a function of current in a calorimeter. It was found that heat rates could be theoretically predicted with some degree of accuracy at currents less than 1 amp or the C/6 rate. No explosions were observed in the cells during the condition of overdischarge or reversal nor during high rate discharge. It was found, however, that the cells can vent when overdischarge currents are greater than C/30 and when discharge rates are greater than 1.5C.

  6. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  7. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  8. Energy Expenditure and Intensity of Active Video Games in Children and Adolescents

    Science.gov (United States)

    Canabrava, Karina L. R.; Faria, Fernanda R.; de Lima, Jorge R. P.; Guedes, Dartagnan P.; Amorim, Paulo R. S.

    2018-01-01

    Purpose: This study aimed to compare the energy expenditure and intensity of active video games to that of treadmill walking in children and adolescents. Method: Seventy-two boys and girls (aged 8-13 years) were recruited from local public schools. Energy expenditure and heart rate were measured during rest, during 3-km/hr, 4-km/hr, and 5-km/hr…

  9. The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries

    International Nuclear Information System (INIS)

    Galli, R.; Univ. della Svizzera Italiana, Lugano

    1998-01-01

    This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita

  10. Quantifying the statistical importance of utilizing regression over classic energy intensity calculations for tracking efficiency improvements in industry

    Energy Technology Data Exchange (ETDEWEB)

    Nimbalkar, Sachin U. [ORNL; Wenning, Thomas J. [ORNL; Guo, Wei [ORNL

    2017-08-01

    In the United States, manufacturing facilities account for about 32% of total domestic energy consumption in 2014. Robust energy tracking methodologies are critical to understanding energy performance in manufacturing facilities. Due to its simplicity and intuitiveness, the classic energy intensity method (i.e. the ratio of total energy use over total production) is the most widely adopted. However, the classic energy intensity method does not take into account the variation of other relevant parameters (i.e. product type, feed stock type, weather, etc.). Furthermore, the energy intensity method assumes that the facilities’ base energy consumption (energy use at zero production) is zero, which rarely holds true. Therefore, it is commonly recommended to utilize regression models rather than the energy intensity approach for tracking improvements at the facility level. Unfortunately, many energy managers have difficulties understanding why regression models are statistically better than utilizing the classic energy intensity method. While anecdotes and qualitative information may convince some, many have major reservations about the accuracy of regression models and whether it is worth the time and effort to gather data and build quality regression models. This paper will explain why regression models are theoretically and quantitatively more accurate for tracking energy performance improvements. Based on the analysis of data from 114 manufacturing plants over 12 years, this paper will present quantitative results on the importance of utilizing regression models over the energy intensity methodology. This paper will also document scenarios where regression models do not have significant relevance over the energy intensity method.

  11. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, Andrea M. [Millennium Institute, 2111 Wilson Blvd, Suite 700, Arlington, VA 22201 (United States); University of Bergen, Postboks 7800, 5020 Bergen (Norway); Yudken, Joel S. [High Road Strategies, LLC, 104 N. Columbus Street, Arlington, VA 22203 (United States); Ruth, Matthias [University of Maryland, 3139 Van Munching Hall, College Park, MD 20742 (United States)

    2009-08-15

    This study examines the impacts of energy price changes resulting from different carbon-pricing policies on the competitiveness of selected US energy-intensive industries. It further examines possible industry responses, and identifies and provides a preliminary evaluation of potential opportunities to mitigate these impacts. The industry sectors investigated - steel, aluminum, chemicals and paper - are among the largest industrial users of fossil fuels in the US economy. The results of this examination show that climate policies that put a price on carbon could have substantial impacts on the competitiveness of US energy-intensive manufacturing sectors over the next two decades, if climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies. The extent of these impacts will vary across industries, depending on their energy intensities, the mix of energy sources they rely on and how energy is used in production activities (heat and power, feedstock). Of relevance is also the speed and rigor with which industries adopt new technologies and retire (or replace) old ones. Other factors affecting these impacts include an industry's vulnerability to foreign imports and its ability to pass through cost increases to its customers in the face of international market competition. (author)

  12. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    Science.gov (United States)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10 19 W cm -2 , we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm -3 , equivalent to a pressure of 0.35 Tbar.

  13. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  14. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bargsten, Clayton [Colorado State Univ., Fort Collins, CO (United States); Hollinger, Reed [Colorado State Univ., Fort Collins, CO (United States); Capeluto, Maria Gabriela [Univ. of Buenos Aires (Argentina); Kaymak, Vural [Heinrich Heine Univ., Dusseldorf (Germany); Pukhov, Alexander [Heinrich Heine Univ., Dusseldorf (Germany); Wang, Shoujun [Colorado State Univ., Fort Collins, CO (United States); Rockwood, Alex [Colorado State Univ., Fort Collins, CO (United States); Wang, Yong [Colorado State Univ., Fort Collins, CO (United States); Keiss, David [Colorado State Univ., Fort Collins, CO (United States); Tommasini, Riccardo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, Jaebum [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Busquet, Michel [ARTEP Inc., Ellicott City, MD (United States); Klapisch, M [ARTEP Inc., Ellicott City, MD (United States); Shlyaptsev, Vyacheslav N. [Colorado State Univ., Fort Collins, CO (United States); Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-11-11

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

  15. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Bassi, Andrea M.; Yudken, Joel S.; Ruth, Matthias

    2009-01-01

    This study examines the impacts of energy price changes resulting from different carbon-pricing policies on the competitiveness of selected US energy-intensive industries. It further examines possible industry responses, and identifies and provides a preliminary evaluation of potential opportunities to mitigate these impacts. The industry sectors investigated - steel, aluminum, chemicals and paper - are among the largest industrial users of fossil fuels in the US economy. The results of this examination show that climate policies that put a price on carbon could have substantial impacts on the competitiveness of US energy-intensive manufacturing sectors over the next two decades, if climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies. The extent of these impacts will vary across industries, depending on their energy intensities, the mix of energy sources they rely on and how energy is used in production activities (heat and power, feedstock). Of relevance is also the speed and rigor with which industries adopt new technologies and retire (or replace) old ones. Other factors affecting these impacts include an industry's vulnerability to foreign imports and its ability to pass through cost increases to its customers in the face of international market competition.

  16. Collisionless energy absorption in the short-pulse intense laser-cluster interaction

    International Nuclear Information System (INIS)

    Kundu, M.; Bauer, D.

    2006-01-01

    In a previous paper [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by means of three-dimensional particle-in-cell simulations and a simple rigid-sphere model that nonlinear resonance absorption is the dominant collisionless absorption mechanism in the intense, short-pulse laser cluster interaction. In this paper we present a more detailed account of the matter. In particular we show that the absorption efficiency is almost independent of the laser polarization. In the rigid-sphere model, the absorbed energy increases by many orders of magnitude at a certain threshold laser intensity. The particle-in-cell results display maximum fractional absorption around the same intensity. We calculate the threshold intensity and show that it is underestimated by the common overbarrier ionization estimate

  17. PREFACE: XXX International Conference on Interaction of Intense Energy Fluxes with Matter

    Science.gov (United States)

    Fortov, V. E.; Khishchenko, K. V.; Karamurzov, B. S.; Efremov, V. P.; Sultanov, V. G.

    2015-11-01

    This paper is a preface to the proceedings of the XXX International Conference on Interaction of Intense Energy Fluxes with Matter, which was held in Elbrus settlement, in the Kabardino-Balkar Republic of the Russian Federation, from March 1-6, 2015.

  18. GAMUT: A computer code for γ-ray energy and intensity analysis

    International Nuclear Information System (INIS)

    Firestone, R.B.

    1991-05-01

    GAMUT is a computer code to analyze γ-ray energies and intensities. It does a linear least-squares fit of measured γ-ray energies from one or more experiments to the level scheme. GAMUT also performs a non-linear least-squares analysis of branching intensities. For both energy and intensity data, a statistical Chi-square analysis is performed with an iterative uncertainty adjustment. The uncertainties of outlying measured values and sets of measurements with x 2 /f>1 are increased, and the calculation is repeated until the uncertainties are consistent with the fitted values. GAMUT accepts input from standard or special-format ENSDF data sets. The special-format ENSDF data sets were designed to permit analysis of more than one set of measurements associated with a single ENSDF data set. GAMUT prepares a standard ENSDF format output data set containing the adjusted values. If more than one input ENSDF data set is provided, GAMUT creates an ADOPTED LEVELS, GAMMAS data set containing the adjusted level and γ-ray energies and branching intensities from each level normalized to 100 for the strongest γ-ray. GAMUT also provides a summary of the results and an extensive log of the iterative analysis. GAMUT is interactive prompting the user for input and output file names and for default calculation options. This version of GAMUT has adjustable dimensions so that any maximum number of data sets, levels, and γ-rays can be established at the time of implementation. 6 refs

  19. Investment risk evaluation techniques: use in energy-intensive industries and implications for ERDA's Industrial Conservation Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-07-13

    The trade-off between risk and rate-of-return in investment evaluations is crucial in assessing the commercial potential of future energy-conservation technologies. The focus of the Industrial Conservation Program at ERDA is to reduce the perceived risks of a given technology to the extent that the private sector will adopt the technology within the normal course of its business operations. These perceived risks may emanate from technical, institutional, or commercial uncertainties, or in many cases they may result merely from a company's or industry's lack of previous experience with a particular technology. Regardless of the source of the risk surrounding a project, the uncertainty it poses to the private sector will serve to inhibit decisions to invest. This study evaluates the treatment of risk in capital investments in certain energy-intensive industries which are the primary targets of ERDA's Industrial Conservation Program. These risks evaluation considerations were placed within a context that includes capital budgeting practices and procedures, organizational considerations, and basic rate-of-return evaluation procedures in the targeted energy-intensive industries (petroleum, chemicals, paper, textiles, cement, food processing, aluminum, steel, glass, and agriculture).

  20. A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year.

  1. Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Cuadros, A.; Luo, D.

    2016-01-01

    Highlights: • We analyze foreign and indigenous innovation on energy intensity. • We consider different types of investment ownership in China. • Our results suggest that both foreign and domestic innovation are important. • The interaction between foreign and domestic innovation still is modest. • Geographical location is important for energy policy purpose. - Abstract: The aim of this work is to analyze the role played by both foreign and indigenous innovation on energy intensity as well as the possible interactions between them across 30 Chinese regions. In addition, we consider different types of corporate ownership that operate in China. We control our estimates by energy price and the composition effect. We provide a complete picture of energy sector by examining all sources of energy. We use Beck and Katz estimator in order to take into account heterocedasticity and serial correlation over the period 2006–2010. Our results suggest that both foreign and domestic innovation efforts played a significant role in improving energy efficiency in China. However, the interaction between foreign and indigenous innovations is modest. We observe significant differences among investment ownership due to its geographical location. These findings have important policy implications for energy sector in China.

  2. Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Oludunsin Arodudu

    2016-12-01

    Full Text Available In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture. Estimates of the net energy gain (NEG and the energy return on energy invested (EROEI obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5–488.3 GJ·ha−1 of NEG and an EROEI of 5.4–5.9 for maize ethanol production systems, and as much as 155.0–283.9 GJ·ha−1 of NEG and an EROEI of 14.7–22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8–52.5 GJ·ha−1 and an EROEI of 1.2–1.7 for maize ethanol production systems, as well as a NEG of 59.3–188.7 GJ·ha−1 and an EROEI of 2.2–10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.

  3. Impact of carbon intensity and energy security constraints on China's coal import

    International Nuclear Information System (INIS)

    Lin Boqiang; Liu Jianghua; Yang Yingchun

    2012-01-01

    Logistic and Gaussian Curves are adopted in this article to predict the coal production peak for Shanxi province, Henan province as well as the whole of China. According to the prediction based on the basic coal reserve data, coal production in China will reach its peak in the 2030 s while that of Shanxi and Henan provinces will be achieved by the 2040 s and 2020 s respectively. This article also assesses the influential factors of China's coal peak and revises the forecast of about China's coal demand by taking the CO2 intensity constraint into consideration, and then predicting the corresponding coal import. The results show that China would import 983 million tonnes of coal in 2020; which takes as high as 27% of China's total coal consumption. This article demonstrates that even if China fulfills CO2 intensity constraint, the country's energy situation would still be grim as a result of its high GDP growth rate. Therefore, China has to consider both CO2 intensity and energy security constraints when establishing strategic energy plan. Finally, this article suggests an adjustment of energy structure by which those constraints can be addressed and further assesses the effect of the adjusted energy structure. - Highlights: ► China's coal peak will arrive in 2040s when basic reserve data is used. ► China's peak production would be 4.8–5.8 billion tons. ► The energy security is still grim even if China meets CO 2 intensity constraint. ► The energy structure suggested should be “natural gas in place of oil and coal”.

  4. Intensity of leg and arm training after primary middle-cerebralartery stroke: a randomised trial

    NARCIS (Netherlands)

    Kwakkel, G.; Wagenaar, R.C.; Twisk, J.W.R.; Lankhorst, G.J.; Koetsier, J.C.

    1999-01-01

    Background. We investigated the effects of different intensities of arm and leg rehabilitation training on the functional recovery of activities of daily living (ADL), walking ability, and dexterity of the paretic arm, in a single-blind randomised controlled trial. Methods. Within 14 days after

  5. The Structural Changes in the Economy of Ukraine and its Energy Intensity

    Directory of Open Access Journals (Sweden)

    Kyzym Mykola O.

    2017-12-01

    Full Text Available The article is concerned with an analysis of structural changes in the economy of Ukraine in view of energy intensity of types of economic activity (TEA. On considering the main tendencies of development of Ukraine’s economy in 2000 – 2015, it has been proved that, unlike the world economy, its development is of more unevenly nature. In order to research structural changes in the domestic economy in the period from 2000 to 2015, the methodical approach consisting of a number of interconnected stages has been proposed. Using this approach: the structure of economy of Ukraine by TEA has been analyzed, the classification and structure of the TEA distribution by their importance have been suggested; the dynamics of TEA of Ukraine have been analyzed, the classification and structure of distribution of Ukraine’s TEA by dynamics of development has been proposed; a matrix of positioning of the TEA of Ukraine in the plane of «proportion – rate of change» has been built; the values have been calculated and directions of structural changes of TEA in economy of Ukraine have been defined; a characterization of the TEA of economy of Ukraine as to the degree of materiality of structural shift has been formed; the integral coefficients of structural shifts in economy for the studied period have been calculated; the classification of the TEA of Ukraine according to the level of energy intensity has been developed, the structure of economy by the energy intensity groups has been presented; the indices have been calculated and directions of structural shifts of groups with different energy intensity of TEA have been determined; the integral coefficients of structural shift of economy due to the groups of TEA with different energy intensity have been calculated; the general characterization of structural shifts of the TEA of Ukraine in 2000 – 2015 has been formed.

  6. The fluctuations of China’s energy intensity: Biased technical change

    International Nuclear Information System (INIS)

    Wang, Ce; Liao, Hua; Pan, Su-Yan; Zhao, Lu-Tao; Wei, Yi-Ming

    2014-01-01

    Highlights: • Biased technical change is considered in the adjusting the input–output tables. • The level of biased technical change is determined by TFP and energy efficiency. • The increase in energy intensity was mostly attributed to the structural change. • The changes in the production technology actually decreased the energy intensity. • The decomposition results are sensitive to the level of biased technical change. - Abstract: The fluctuations of China’s energy intensity have attracted the attention of many scholars, but fewer studies consider the data quality of official input–output tables. This paper conducts a decomposition model by using the Divisia method based on the input–output tables. Because of the problems with input–output tables and price deflators, we first produce constant prices to deflate the input–output tables. And then we consider different levels of biased technical change for different sectors in the adjusting the input–output table. Finally, we use RAS technique to adjust input–output matrix. Then the decomposition model is employed to empirically analyze the change of China’s energy intensity. We compare the decomposition results with and without biased technical change and do sensitive analysis on the level of biased technical change. The decomposition results are that during 2002–2007, the energy intensity of coal and electricity increased, the changes were mostly attributed to the structural change and the contribution was 594.08%, 73.88%, respectively; as for crude oil and refined oil, the energy intensity decreased, the changes were mostly attributed to the changes in the production technology and the contribution was 978.89%, 246.95%, respectively. And the results of sensitive analysis shows that 1% variation of the level of biased technical change will cause at most 0.6% change of decomposition results. Therefore, we can draw our conclusions: compared to the decomposition without biased technical

  7. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Neutral Vanadium (V i)

    Energy Technology Data Exchange (ETDEWEB)

    Saloman, Edward B. [Dakota Consulting, Inc., 1110 Bonifant Street, Suite 310, Silver Spring, MD 20910 (United States); Kramida, Alexander [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of the neutral vanadium atom, V i, have been compiled. Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factors and leading percentage compositions for the levels are included where available, as well as wavelengths calculated from the energy levels (Ritz wavelengths). Wavelengths are reported for 3985 transitions, and 549 energy levels are determined. The observed relative intensities normalized to a common scale are provided.

  8. Energy Level Composite Curves-a new graphical methodology for the integration of energy intensive processes

    International Nuclear Information System (INIS)

    Anantharaman, Rahul; Abbas, Own Syed; Gundersen, Truls

    2006-01-01

    Pinch Analysis, Exergy Analysis and Optimization have all been used independently or in combination for the energy integration of process plants. In order to address the issue of energy integration, taking into account composition and pressure effects, the concept of energy level as proposed by [X. Feng, X.X. Zhu, Combining pinch and exergy analysis for process modifications, Appl. Therm. Eng. 17 (1997) 249] has been modified and expanded in this work. We have developed a strategy for energy integration that uses process simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. The proposed graphical representation of energy levels of processes is very similar to the Composite Curves of Pinch Analysis-the interpretation of the Energy Level Composite Curves reduces to the Pinch Analysis case when dealing with heat transfer. Other similarities and differences are detailed in this work. Energy integration of a methanol plant is taken as a case study to test the efficacy of this methodology. Potential integration schemes are identified that would have been difficult to visualize without the help of the new graphical representation

  9. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  10. Cluster of Candida parapsilosis primary bloodstream infection in a neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Carmem Lúcia P. da Silva

    Full Text Available Candida parapsilosis is an increasingly important bloodstream pathogen in neonatal intensive care units (NICU. We investigated a cluster of bloodstream infections in a NICU to determine whether nosocomial transmission occurred. During a 3-day period, 3 premature infants hospitalized in the same unit presented with sepsis caused by C. parapsilosis. Electrophoretic karyotype of the organisms was performed by using pulsed field gel electrophoresis in a countour-clamped homogeneous electric field system. The isolate from 1 newborn could not be typed, and the isolates from the remaining 2 infants had identical patterns. All 3 cases are described. We conclude that nosocomial transmission of C. parapsilosis occurred and that neonates under intensive care may represent a risk group for this pathogen.

  11. Cluster of Candida parapsilosis primary bloodstream infection in a neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Silva Carmem Lúcia P. da

    2001-01-01

    Full Text Available Candida parapsilosis is an increasingly important bloodstream pathogen in neonatal intensive care units (NICU. We investigated a cluster of bloodstream infections in a NICU to determine whether nosocomial transmission occurred. During a 3-day period, 3 premature infants hospitalized in the same unit presented with sepsis caused by C. parapsilosis. Electrophoretic karyotype of the organisms was performed by using pulsed field gel electrophoresis in a countour-clamped homogeneous electric field system. The isolate from 1 newborn could not be typed, and the isolates from the remaining 2 infants had identical patterns. All 3 cases are described. We conclude that nosocomial transmission of C. parapsilosis occurred and that neonates under intensive care may represent a risk group for this pathogen.

  12. Effects of red ginger capsule supplementin reducing PGF2α concentrations and pain intensity in primary dysmenorrhea

    Science.gov (United States)

    Simarmata, M.; Halim, B.; Ardinata, D.

    2018-03-01

    Primary dysmenorrhea is a gynecological disorder which most commonly occurs like a pain in the initial menstruation. One ofthe attempts to handle dysmenorrhea is by using anon-pharmacological method such as herbal therapy which uses red ginger. The research was at Akbid and Akper Harapan Mama, Deli Serdang Regency, with pre-experimental design and one group pretest-posttest. The samples were 32 female students as the respondents, taken by using non-probability or consecutive sampling technique. PGF2a content measurement by ELISA, theintensity of pain by Visual Analogue Scale and analyzed by using Wilcoxon test. PGF2α content before giving red ginger capsule supplement median was 156.50 pg/ml (min-max: 57-1037 pg/ml), after giving it was 101 (min-max: 22-785), pain intensity before giving it in the mean score of 2 was 15 respondents (47%), after giving it in the mean score of 0 was 14 respondents (44%). The result of statistic test on PGF2α content before and after giving it was p-value = 0.001, and pain intensity before and after giving it was p < 0.001 which indicated that there was asignificant decrease in PGF2α and pain intensity after giving it. Red ginger capsule supplement could decrease PGF2α content during primary dysmenorrhea.

  13. Primary energy implications of different design strategies for an apartment building

    International Nuclear Information System (INIS)

    Tettey, Uniben Yao Ayikoe; Dodoo, Ambrose; Gustavsson, Leif

    2016-01-01

    In this study, we explored the effects of different design strategies on final and primary energy use for production and operation of a newly constructed apartment building. We analysed alternatives of the building “As built” as well as to energy efficiency levels of the Swedish building code and passive house criteria. Our approach is based on achieving improved versions of the building alternatives from combination of design strategies giving the lowest space heating and cooling demand and primary energy use, respectively. We found that the combination of design strategies resulting in the improved building alternatives varies depending on the approach. The improved building alternatives gave up to 19–34% reduction in operation primary energy use compared to the initial alternatives. The share of production primary energy use of the improved building alternatives was 39–54% of the total primary energy use for production, space heating, space cooling and ventilation over 50-year lifespan, compared to 31–42% for the initial alternatives. This study emphasises the importance of incorporating appropriate design strategies to reduce primary energy use for building operation and suggests that combining such strategies with careful choice of building frame materials could result in significant primary energy savings in the built environment. - Highlights: • Primary energy implications of different design strategies were analysed. • The improved building alternatives had 19–34% lower operation primary energy use. • The improved building alternatives had higher production primary energy use. • Still, the improved building alternatives had lower overall primary energy use. • Design strategies should be combined with careful building frame material choice.

  14. A comparative analysis of energy and CO2 taxes on the primary energy mix for electricity generation

    International Nuclear Information System (INIS)

    Voorspools, Kris; Peersman, Inneke; D'haeseleer, William

    2005-01-01

    In many countries, economies are moving towards internalization of external costs of greenhouse-gas (GHG) emissions. This can best be achieved by either imposing additional taxes or by using an emission-permit-trading scheme. The electricity sector is under scrutiny in the allocation of emission-reduction objectives, not only because it is a large homogeneous target, but also because of the obvious emission-reduction potential by decreasing power generation based on carbon-intensive fuels. In this paper, we discuss the impact of a primary-energy tax and a CO 2 tax on the dispatching strategy in power generation. In a case study for the Belgian power-generating context, several tax levels are investigated and the impact on the optimal dispatch is simulated. The impact of the taxes on the power demand or on the investment strategies is not considered. As a conclusion, we find that a CO 2 tax is more effective than a primary-energy tax. Both taxes accomplish an increased generation efficiency in the form of a promotion of combined-cycle gas-fired units over coal-fired units. The CO 2 tax adds an incentive for fuel switching which can be achieved by altering the merit order of power plants or by switching to a fuel with a lower carbon content within a plant. For the CO 2 tax, 13 euros/ton CO 2 is withheld as the optimal value which results in an emission reduction of 13% of the electricity-related GHG emissions in the Belgian power context of 2000. A tax higher than 13 euros/ton CO 2 does not contribute to the further reduction of GHGs. (Author)

  15. Sensible use of primary energy in organic greenhouse production

    NARCIS (Netherlands)

    Stanghellini, C.; Baptista, F.; Eriksson, Evert; Gilli, Celine; Giuffrida, F.; Kempkes, F.L.K.; Munoz, P.; Stepowska, Agnieszka; Montero, J.I.

    2016-01-01

    Review of the major sources for energy consumption in organic greenhouse horticulture and analyse of the options available to reduce energy consumption or, at least, increase the energy use efficiency of organic production in greenhouses. At the moment, the best way to match demand and availability

  16. Wavelength dependence of momentum-space images of low-energy electrons generated by short intense laser pulses at high intensities

    International Nuclear Information System (INIS)

    Maharjan, C M; Alnaser, A S; Litvinyuk, I; Ranitovic, P; Cocke, C L

    2006-01-01

    We have measured momentum-space images of low-energy electrons generated by the interaction of short intense laser pulses with argon atoms at high intensities. We have done this over a wavelength range from 400 to 800 nm. The spectra show considerable structure in both the energy and angular distributions of the electrons. Some, but not all, energy features can be identified as multi-photon resonances. The angular structure shows a regularity which transcends the resonant structure and may be due instead to diffraction. The complexity of the results defies easy model-dependent interpretations and invites full solutions to Schroedinger's equation for these systems

  17. Characterisation of the Mechanical Loads and Metabolic Intensity of the CAPO Kids Exercise Intervention for Healthy Primary School Children

    Directory of Open Access Journals (Sweden)

    Rossana C. Nogueira, Benjamin K. Weeks, Belinda R. Beck

    2015-09-01

    Full Text Available Sedentarism is associated with obesity and other chronic diseases at all ages. Increasing physical activity with in-school interventions, focusing on energy expenditure and bone loading reduces risk of a number of costly chronic diseases. The aim of the current study was to characterise the metabolic and musculoskeletal load intensity of the recent successful CAPO Kids exercise intervention. Pre and early pubertal children (10.4 ± 0.5 years old from the CAPO Kids trial wore an armband sensor to estimate energy expenditure during a 10-minute CAPO Kids session. Eleven participants performed manoeuvres from the session on a force platform to determine vertical ground reaction forces. In total, 28 boys and 20 girls had armband measures and 11 boys and girls undertook GRF testing. The energy expenditure associated with the 10-minute session was 39.7 ± 9.3 kcal, with an average of 4 kcal·min-1. The intensity of physical activity was ‘vigorous’ to ‘very vigorous’ for 34% of the session. Vertical ground reaction forces of the CAPO Kids manoeuvres ranged from 1.3 ± 0.2 BW (cartwheels to 5.4 ± 2.3 BW (360° jump. CAPO Kids generates adequate load intensity to stimulate positive health adaptations in both metabolic and musculoskeletal systems of pre and early pubertal children.

  18. The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010

    International Nuclear Information System (INIS)

    Fernández González, P.; Landajo, M.; Presno, M.J.

    2013-01-01

    This paper analyzes the evolution of real energy efficiency in the European Union and the attribution across countries of its percent change. Relying on a multiplicative energy intensity approach that is implemented through the Sato-Vartia Logarithmic Mean Divisia Index method, we decompose the change in aggregate energy intensity in 20 European countries for the period from 1995 to 2010. A comparative analysis of real energy intensity indices is also carried out. In addition, a new tool to monitor changes in real energy intensity in greater detail is applied. The attribution analysis of IDA (Index Decomposition Analysis) as proposed by Choi and Ang (Choi KH, Ang BW. Attribution of changes in Divisia real energy intensity index – an extension to index decomposition analysis. Energy Economics 2012;34:171–6) is used in order to assess the contribution of each individual sector to the percent change in real energy intensity. Results indicate that the European countries, particularly the former communist ones, made a remarkable effort to improve energy efficiency. Our analysis also suggests some strategies –including promotion and adaptation to more efficient techniques, innovation, improved use of technologies, R and D, and substitution for higher quality energies-, which are of particular interest to the industry sector -including construction- in ex-communist EU members, and to the industry and transport plus hotels and restaurants sectors in Western countries. - Highlights: • We apply a single and multi-period attribution analysis approach [1]. • Technical change, improved use of tech and quality energies, keys to AEI drop. • Real energy intensity shows valuable progress in former communist European members. • The biggest attribution of percent change in real energy intensity was to Industry. • Western EU: Services and Agriculture poor contributors to real energy intensity drop

  19. Direct measurement of the energy spectrum of an intense proton beam

    International Nuclear Information System (INIS)

    Leeper, R.J.; Lee, J.R.; Kissel, L.; Johnson, D.J.; Stygar, W.A.; Hebron, D.E.; Roose, L.D.

    1983-01-01

    A time-resolved magnetic spectrometer has been used to measure the energy spectrum of an intense (0.5 TW/cm 2 ) proton beam. A thin (2400 A) gold foil placed at the focus of an ion diode Rutherford scattered protons by 90 0 into the spectrometer, reducing the beam intensity to a level suitable for magnetic analysis. The scattered beam was collimated by two 1 mm diameter apertures separated by 12.3 cm. The collimated protons were deflected in a 12.7 cm diameter, 6.65 Kg samarium-cobalt permanent magnet. The deflected protons were recorded simultaneously on CR-39 and eight 1 mm 2 by 35 μm thick PIN diodes. A Monte Carlo computer code was used to calculate the sensitivity and resolution of the spectrometer. Data taken on Proto-I show a 150 keV to 250 keV wide proton energy spectrum at each instant in time

  20. What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level

    International Nuclear Information System (INIS)

    Song, Feng; Zheng, Xinye

    2012-01-01

    We employ decomposition analysis and econometric analysis to investigate the driving forces behind China's changing energy intensity using a provincial-level panel data set for the period from 1995 to 2009. The decomposition analysis indicates that: (a) all of the provinces except for a few experienced efficiency improvement, while around three-fourths of the provinces' economics became more energy intensive or remained unchanged; (b) consequently the efficiency improvement accounts for more than 90% of China's energy intensity change as opposed to the economic structural change. The econometric analysis shows that the rising income plays a significant role in the reduction of energy intensity while the effect of energy price is relatively limited. The result may reflect the urgency of deregulating the price and establishing a market-oriented pricing system in China's energy sector. The implementation of the energy intensity reduction policies in the Eleventh Five-Year Plan (FYP) has helped reverse the increasing trend of energy intensity since 2002. Although the Chinese Government intended to change the industry-led economic growth pattern, it seems that most of the policy effects flow through the efficiency improvement as opposed to the economic structure adjustment. More fundamental changes to the economic structure are needed to achieve more sustainable progress in energy intensity reduction. - Highlights: ► We examine the determinants of China's energy intensity change at provincial level. ► Rising income plays a significant role in reducing China's energy intensity. ► Policy effects mainly flow through the efficiency improvement. ► Fundamental structure changes are needed to further reduce China's energy intensity.

  1. Energies and intensities of weak transitions in the decay of 132I

    International Nuclear Information System (INIS)

    Nettles, W.G.; Scoggins, R.K.; James, W.K.; Whitlock, L.C.; Subba RaoD, B.N.; Hamilton, J.H.; Ramayya, A.V.; Gunnink, R.

    1978-01-01

    The γ-ray spectrum of a 132 Te- 132 I equilibrium source was measured with an 18% efficiency Ge(Li) detector to search for weak transitions in the 132 I decay. A more detailed study was made of an earlier spectrum taken with a Compton suppression system and a chemically purified source. The results are compared with all available data and average values of the energies and intensities are given

  2. Momenta of particles emitted by target at intensive irradiation by low-energy ions

    CERN Document Server

    Beshenkov, V G; Marchenko, V A

    2002-01-01

    One measured the aggregate momenta of the target emitted particles at the intensive sputtering by E sub 0 approx = 0.5 keV energy heavy inert gases. For liquid and being under premelting temperature Ga target the measured values are close to the expected momenta of sputtered metallic atoms and reflection ions, for Cu and Zr targets they are essentially higher. One assumes that sputtering of atoms of gas-diffuser implanted into the target causes the surplus momentum. The estimated average energy of these atoms approx = 20 eV. Under Ga irradiation the implanted atoms diffuse mainly towards the surface and are desorbed

  3. The energy requirements of Eurasian perch (Perca fluviatilis L.) in intensive culture

    DEFF Research Database (Denmark)

    Strand, A.; Overton, Julia Lynne; Alanara, A.

    2011-01-01

    requirements of this species. The aim of this study was to develop an energy requirement model for intensive culture of Eurasian perch reared at rational temperatures. Data on growth (the thermal unit growth coefficient, TGC, 3√g ‧ (℃ ‧ days)-1) and digestible energy need (DEN, kJ DE ‧ g -1) of Eurasian perch...... at a size range of 20–180 g and at temperatures of 17–23 ℃ were used. Regression analysis revealed that both TGC and DEN were affected significantly by fish size (P 0.05). Two models including body size of the fish were developed: (i) an inverse TGC model for evaluation...

  4. A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, David B.

    2014-08-31

    This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.

  5. An efficient power market - consequences for energy-intensive industries and regions

    International Nuclear Information System (INIS)

    Bye, Torstein; Hoel, Michael; Stroem, Steinar

    2000-01-01

    From economic theory we know that, unless special arguments can be made, we obtain economic efficiency if all buyers of a homogeneous good pay the same price for the good. If this principle is violated inefficiency will occur. The principle holds for all goods, i.e. both for consumer goods (e.g. clothing or food), inputs in a production process (e.g. raw materials), and for combined goods. Electricity is an example of a combined good that can be used both as a final good and as an input in production processes. In Norway, the energy intensive industry (metals and chemicals) and the paper and pulp industry pay a lower price for their use of electricity than other users pay. The reason is that this industry has signed long-term contracts where the prices have been influenced by political processes. This pricing leads to an inefficient use of electricity in Norway. In this book we study the consequences of changing the electricity prices for this sectors so that we obtain a situation where all domestic users of electricity pay the same price. The book contains numerical calculations of potential structural changes and changes in overall economic welfare (producer and consumer surplus). We also calculate changes in emissions both from these sectors and from the rest of the economy. The last chapter deals with structural change and regional differences, with emphasis on the regions in which the energy intensive firms are located. We discuss how strong the negative impact on these regions will be as a consequence of shutting down non-profitable energy intensive firms when the price of electricity changes. A main conclusion in the book is that Norway will benefit from increasing the electricity price paid by the energy intensive sectors, both in economic terms and with respect to overall pollution. Reduced electricity use in the energy intensive sectors will in the short run lead to increased export of electricity. In the longer run, new investments in power producing

  6. Clinical efficacy of Trigonella foenum graecum (Fenugreek) and dry cupping therapy on intensity of pain in patients with primary dysmenorrhea.

    Science.gov (United States)

    Inanmdar, Wajida; Sultana, Arshiya; Mubeen, Umraz; Rahman, Khaleequr

    2016-05-25

    To determine the effificacy and safety of fenugreek seed and dry cupping on intensity of pain in primary dysmenorrhea. Sixty patients with primary dysmenorrhea were enrolled in this prospective, open-labeled, randomized, standard-controlled study, conducted in the National Institute of Unani Medicine Hospital between February 2010 and April 2011. In group A (20 cases), 3 g powder of fenugreek seed (3 capsules, 1 g each) was given orally twice daily from day 1 to 3 of menstrual cycle. Group B (20 cases) received the same dose of fenugreek seed as group A along with dry cupping therapy [two 4.2-cm and one 2.5-cm cups (internal diameter)], which was applied below the umbilicus for 15 min on day 1 and day 3 of menstrual cycle for 3 consecutive months. The control group C (20 cases) was given mefenamic acid, 500 mg twice daily, on the same protocol. The reduction in menstrual pain intensity was measured with well validated Visual Analogue Scale and safety of fenugreek seed was evaluated by clinical examination and laboratory investigations. Baseline characteristics and biochemical parameters were comparable and homogenous among all groups (P>0.05). The percentage reduction in lower abdominal pain was 66.89%, 66.49%, and 62.88% in A, B and C groups respectively at the end of the treatment. No adverse drug effects were noticed. The fenugreek seed and dry cupping are effificacious, safe, cost effective, and well tolerated.

  7. Measuring the efficiency of energy-intensive industries across European countries

    International Nuclear Information System (INIS)

    Makridou, Georgia; Andriosopoulos, Kostas; Doumpos, Michael; Zopounidis, Constantin

    2016-01-01

    This study evaluates the energy efficiency trends of five energy-intensive industries in 23 European Union (EU) countries over the period 2000–2009. In particular, the performance of the construction, electricity, manufacturing, mining and quarrying, and transport sectors is examined. The analysis is based on Data Envelopment Analysis (DEA) combined with the Malmquist Productivity Index (MPI), which allows for distinctions between efficiency and technology changes over time. At the second stage of the analysis, cross-classified multilevel modelling is applied to analyse the main drivers behind efficiency performance using a number of sector and country characteristics. Based on DEA results, an overall improvement in efficiency is observed in all sectors over the period. The decomposition of the MPI indicates that technology change is primarily responsible for the improvements achieved in most sectors. The results obtained by the cross-classified model show, among other things, that the high electricity prices, energy taxes, and market share of the largest generator in the electricity market have a negative effect on industrial energy efficiency. - Highlights: • Analysis of energy efficiency and trends of industrial sectors in EU. • Combination of non-parametric frontier models and multilevel explanatory analysis. • Examination of the drivers of energy efficiency. • Industrial energy efficiency performance is mainly driven by technological improvement.

  8. Beam dynamics studies of the ISOLDE post-accelerator for the high intensity and energy upgrade

    CERN Document Server

    Fraser, M A

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  9. Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade

    CERN Document Server

    Fraser, Matthew Alexander; Pasini, M

    2012-01-01

    The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...

  10. Energy Expenditure and Intensity of Active Video Games in Children and Adolescents.

    Science.gov (United States)

    Canabrava, Karina L R; Faria, Fernanda R; Lima, Jorge R P de; Guedes, Dartagnan P; Amorim, Paulo R S

    2018-03-01

    This study aimed to compare the energy expenditure and intensity of active video games to that of treadmill walking in children and adolescents. Seventy-two boys and girls (aged 8-13 years) were recruited from local public schools. Energy expenditure and heart rate were measured during rest, during 3-km/hr, 4-km/hr, and 5-km/hr walks, and during active games (Adventure, Boxing I, Boxing II, and Dance). During walking and active games, we also assessed physical activity using an accelerometer. The energy expenditure of the active games Adventure, Boxing I, Boxing II, and Dance was similar to that of treadmill walking at 5 km/hr in boys and girls. Heart rate was significantly higher for the game Adventure compared with walking at 3 km/hr, 4 km/hr, and 5 km/hr and the game Dance in both genders. The heart rate of girls during the games Adventure and Dance was significantly higher compared with boys. There was a statistically significant difference (p games provide energy expenditure and physical activity of moderate intensity for both genders. The use of active video games can be an interesting alternative to increase physical activity levels.

  11. Search for ultra high energy primary photons at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Colalillo Roberta

    2016-01-01

    Full Text Available The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  12. Solar Wind Energy Input during Prolonged, Intense Northward Interplanetary Magnetic Fields: A New Coupling Function

    Science.gov (United States)

    Du, A. M.; Tsurutani, B. T.; Sun, W.

    2012-04-01

    Sudden energy release (ER) events in the midnight sector at auroral zone latitudes during intense (B > 10 nT), long-duration (T > 3 hr), northward (Bz > 0 nT = N) IMF magnetic clouds (MCs) during solar cycle 23 (SC23) have been examined in detail. The MCs with northward-then-southward (NS) IMFs were analyzed separately from MCs with southward-then-northward (SN) configurations. It is found that there is a lack of substorms during the N field intervals of NS clouds. In sharp contrast, ER events do occur during the N field portions of SN MCs. From the above two results it is reasonable to conclude that the latter ER events represent residual energy remaining from the preceding S portions of the SN MCs. We derive a new solar wind-magnetosphere coupling function during northward IMFs: ENIMF = α N-1/12V 7/3B1/2 + β V |Dstmin|. The first term on the right-hand side of the equation represents the energy input via "viscous interaction", and the second term indicates the residual energy stored in the magnetotail. It is empirically found that the magnetosphere/magnetotail can store energy for a maximum of ~ 4 hrs before it has dissipated away. This concept is defining one for ER/substorm energy storage. Our scenario indicates that the rate of solar wind energy injection into the magnetosphere/magnetotail determines the form of energy release into the magnetosphere/ionosphere. This may be more important than the dissipation mechanism itself (in understanding the form of the release). The concept of short-term energy storage is applied for the solar case. It is argued that it may be necessary to identify the rate of energy input into solar magnetic loop systems to be able to predict the occurrence of solar flares.

  13. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il [KHNP Radiation Health Institute, Gyeongju (Korea, Republic of)

    2017-04-15

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  14. Primary Study about Intensity Signal of Electron Paramagnetic Resonance in vivo Tooth Dosimetry

    International Nuclear Information System (INIS)

    Choi, Hoon; Gang, Seo Gon; Kim, Jeong In; Lee, Byung Il

    2017-01-01

    The signal of Electron Paramagnetic Resonance(EPR) dosimetry system using human tooth has been well introduced as one of the efficient tool to evaluate radiation exposure. But, EPR dosimetry, even in the case of classical in vitro EPR system using tooth sample(measured molars), was regarded as having big signal fluctuation. One of reason for such difficulty in getting accurate intensity was the big effect of organic materials mixed in enamel part of teeth samples. They are mainly caused by the adaptation process of system itself to the movement of measured human subject. Generally, when we measured human teeth in vivo, five of six teeth spectrum were gathered and averaged for real evaluation. The these spectrum are measured under very different environment like angle of external magnet making magnetic filed with teeth(incisor). Random movement of these signals should be considered in different view point to understand and compare each EPR in vivo EPR spectrum. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation. But, in overall view, the EPR signal, especially at no irradiation level, is almost same for every measurement trial which is mainly composed of big noise and very small signal from real free radicals. The peak to peak value of obtained five or six in vivo EPR system to get averaged value for final quantity of free radicals in hydroxy apatite crystal construction in enamel part of human teeth looks so randomly changed without regulation.

  15. High dose intensity of cisplatin and etoposide in adenocarcinoma of unknown primary.

    Science.gov (United States)

    Gill, I; Guaglianone, P; Grunberg, S M; Scholz, M; Muggia, F M

    1991-01-01

    Adenocarcinoma of unknown primary (AUP) has generally a poor prognosis. Previous studies have suggested that Cisplatin and Etoposide have activity in AUP. The aim of this study was to determine if dose intensification of this combination would result in increased efficacy. Each 28 day cycle consisted of Cisplatin 100 mg/m2 given on Day 1 and 8 with Etoposide 80 mg/m2 given on day 1, 2, 8 and 9. Sixteen patients (Pts) with no prior chemotherapy were accrued to this study. Predominant sites of disease were lung, liver, and bone. BHCG and AFP were not elevated. One complete remission was seen in a patient with a mediastinal mass (duration of remission = 59 weeks). Two other patients had a partial response. Overall response rate was 19%. Moderate to severe renal toxicity was recorded in 8 patients, with neuro- and ototoxicities in 2 patients each. Severe granulocytopenia occurred in 8 patients, and one patient died of congestive heart failure on day 1 of cycle 2. This excessive toxicity, without enhanced efficacy does not encourage a more extensive empiric trial by this dose schedule in the treatment of AUP.

  16. Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.; Grado, S.C.

    1992-01-01

    A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel

  17. Review of intense-ion-beam propagation with a view toward measuring ion energy

    International Nuclear Information System (INIS)

    Garcia, M.

    1982-01-01

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements

  18. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  19. Design of a compact Faraday cup for low energy, low intensity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Cantero, E.D., E-mail: esteban.cantero@cern.ch [CERN, 1211 Geneva 23 (Switzerland); Sosa, A. [CERN, 1211 Geneva 23 (Switzerland); The University of Liverpool, Liverpool (United Kingdom); Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D. [CERN, 1211 Geneva 23 (Switzerland); Welsch, C.P. [The University of Liverpool, Liverpool (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom)

    2016-01-21

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  20. Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Nilsson, Lars J.; Åhman, Max; Schneider, Clemens

    2016-01-01

    The need for deep decarbonisation in the energy intensive basic materials industry is increasingly recognised. In light of the vast future potential for renewable electricity the implications of electrifying the production of basic materials in the European Union is explored in a what-if thought-experiment. Production of steel, cement, glass, lime, petrochemicals, chlorine and ammonia required 125 TW-hours of electricity and 851 TW-hours of fossil fuels for energetic purposes and 671 TW-hours of fossil fuels as feedstock in 2010. The resulting carbon dioxide emissions were equivalent to 9% of total greenhouse gas emissions in EU28. A complete shift of the energy demand as well as the resource base of feedstocks to electricity would result in an electricity demand of 1713 TW-hours about 1200 TW-hours of which would be for producing hydrogen and hydrocarbons for feedstock and energy purposes. With increased material efficiency and some share of bio-based materials and biofuels the electricity demand can be much lower. Our analysis suggest that electrification of basic materials production is technically possible but could have major implications on how the industry and the electric systems interact. It also entails substantial changes in relative prices for electricity and hydrocarbon fuels. - Highlights: • Energy intensive basic materials industry has a high share in EU greenhouse gas emissions. • Decarbonising these industries is very important, but still relatively unexplored. • Electrification is possible regarding renewable energy resources and technologies. • Combination with energy and materials efficiency, biofuels and CCS is crucial. • Electrification needs very high amounts of electricity and strong policies.

  1. Critically Evaluated Energy Levels, Spectral Lines, Transition Probabilities, and Intensities of Singly Ionized Vanadium (V ii)

    Energy Technology Data Exchange (ETDEWEB)

    Saloman, Edward B. [Dakota Consulting, Inc., 1110 Bonifant Street, Suite 310, Silver Spring, MD 20910 (United States); Kramida, Alexander [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2017-08-01

    The energy levels, observed spectral lines, and transition probabilities of singly ionized vanadium, V ii, have been compiled. The experimentally derived energy levels belong to the configurations 3 d {sup 4}, 3 d {sup 3} ns ( n  = 4, 5, 6), 3 d {sup 3} np , and 3 d {sup 3} nd ( n  = 4, 5), 3 d {sup 3}4 f , 3 d {sup 2}4 s {sup 2}, and 3 d {sup 2}4 s 4 p . Also included are values for some forbidden lines that may be of interest to the astrophysical community. Experimental Landé g -factors and leading percentages for the levels are included when available, as well as Ritz wavelengths calculated from the energy levels. Wavelengths and transition probabilities are reported for 3568 and 1896 transitions, respectively. From the list of observed wavelengths, 407 energy levels are determined. The observed intensities, normalized to a common scale, are provided. From the newly optimized energy levels, a revised value for the ionization energy is derived, 118,030(60) cm{sup −1}, corresponding to 14.634(7) eV. This is 130 cm{sup −1} higher than the previously recommended value from Iglesias et al.

  2. ENERGY EXPENDITURE AND INTENSITY OF PHYSICAL ACTIVITY IN SOCCER REFEREES DURING MATCH-PLAY

    Directory of Open Access Journals (Sweden)

    Alberto Inácio da Silva

    2008-09-01

    Full Text Available The aim of this study was to determine the caloric expenditure and the intensity of physical activities performed by official soccer referees during a match expressed in Metabolic Equivalent (METs. The physical activity of referees accredited by CBF (Brazilian Confederation of Soccer was video-recorded during twenty-nine official games of Paraná Championship (Brasil, Series A and B of the 2005/2006. Computerized video analysis was used to determine the time spent in 6 locomotor activities (standing still, walking, jogging, backwards running, running and sprint. The frequency and duration of each activity were recorded and these data were utilized to calculate the distance covered by the referee. Energy expenditure values were estimated, utilizing specific equations, from the time players spent in each motor activity. The referees observed in this study had a mean age of 38.9 ± 3.8 years, body mass of 86.1 ± 7.1 kg, stature of 1.80 ± 0.07 m and a body mass index of 26.5 ± 0.6 kg·m-2. During match-play, referees covered an average distance of 9155.4 ± 70.3 meters (8411 - 9765, with a mean energy expenditure of 734.7 ± 65 kcal. This energy expenditure was significantly reduced in the second half: 359.9 ± 6.3 vs 374.7 ± 6.6 kcal (p = 0.006, and averaged to be moderate energy intensity (5 METs with predominant utilization of the aerobic energy system. In total, during 67% of match-play the intensity was equal or lower than 3.8 METs and in 33% it was higher than 9.8 METs. The pattern of movement observed in the present study confirms that soccer refereeing may be considered as a highly intermittent exercise mode. The high to low-intensity activity ratio may be defined as 1:7.1. In conclusion, referees officiating in professional soccer matches in Brazil should perform a physical conditioning regime that provides the stamina required at this level and consume appropriate and adequate nutrition to meet the energetic demands for match-play

  3. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  4. A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003

    Energy Technology Data Exchange (ETDEWEB)

    Shammin, Md. R.; Herendeen, Robert A.; Hanson, Michelle J.; Wilson, Eric J.H.

    2010-10-15

    We explore the energy intensity of sprawl versus compact living by analyzing the total energy requirements of U.S. households for the year 2003. The methods used are based on previous studies on energy cost of living. Total energy requirement is calculated as a function of individual energy intensities of goods and services derived from economic input-output analysis and expenditures for those goods and services. We use multivariate regression analysis to estimate patterns in household energy intensities. We define sprawl in terms of location in rural areas or in areas with low population size. We find that even though sprawl-related factors account for about 83% of the average household energy consumption, sprawl is only 17-19% more energy intensive than compact living based on how people actually lived. We observe that some of the advantages of reduced direct energy use by people living in high density urban centers are offset by their consumption of other non-energy products. A more detailed analysis reveals that lifestyle choices (household type, number of vehicles, and family size) that could be independent of location play a significant role in determining household energy intensity. We develop two models that offer opportunities for further analysis. (author)

  5. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    Science.gov (United States)

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Acute Impact of Moderate-Intensity and Vigorous-Intensity Exercise Bouts on Daily Physical Activity Energy Expenditure in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Xuewen Wang

    2011-01-01

    Full Text Available This study determined whether performing a single moderate- or vigorous-intensity exercise bout impacts daily physical activity energy expenditure (PAEE, by accelerometer. Overweight/obese postmenopausal women underwent a 5-month caloric restriction and moderate- (n=18 or vigorous-intensity (n=18 center-based aerobic exercise intervention. During the last month of intervention, in women performing moderate-intensity exercise, PAEE on days with exercise (577.7±219.7 kcal⋅d−1 was higher (P=.011 than on days without exercise (450.7±140.5 kcal⋅d−1; however, the difference (127.0±188.1 kcal⋅d−1 was much lower than the energy expended during exercise. In women performing vigorous-intensity exercise, PAEE on days with exercise (450.6±153.6 kcal⋅d−1 was lower (P=.047 than on days without exercise (519.2±127.4 kcal⋅d−1. Thus, women expended more energy on physical activities outside of prescribed exercise on days they did NOT perform center-based exercise, especially if the prescribed exercise was of a higher intensity.

  7. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China

    International Nuclear Information System (INIS)

    Ou, Xunmin; Yan, Xiaoyu; Zhang, Xiliang; Liu, Zhen

    2012-01-01

    Highlights: ► We analyzed the life cycle energy intensity and GHG emissions of about 40 pathways of alternative vehicle fuels in China. ► Coal-based liquid fuel has higher life cycle energy intensities and first generation technology bio-fuel has relatively lower intensity. ► By 2020 electricity will have significantly lower GHG intensity and second generation technology bio-fuel will have near zero intensities. -- Abstract: Fossil energy consumption (FEC) and greenhouse gas (GHG) emission intensities of major alternative vehicle fuels (AVFs) in China are calculated and compared with conventional fuels by means of full life-cycle analysis. Currently most of the AVFs have not relatively obvious GHG emission reduction when compared to the gasoline pathway: (1) coal-based AVF has higher intensities in terms of both the FEC and GHG emissions; (2) electricity from the average Chinese grid has the GHG emission intensity similar to that of gasoline pathway although relatively lower FEC intensity; and (3) first generation technology bio-fuel has relatively lower GHG emission intensity and substantially lower FEC intensity. It is forecasted that by 2020 when still comparing to the gasoline pathway: (1) coal-based AVF will still have FEC and GHG emission intensities that are 1.5–1.8 and 1.8–2.5 time those of gasoline pathway, and the application of carbon capture and storage technology can reduce the GHG emission intensity of coal-based AVF; (2) electricity will have significantly lower GHG intensity; and (3) second generation technology bio-fuel will have near zero FEC and GHG intensities.

  8. On China's energy intensity statistics: Toward a comprehensive and transparent indicator

    International Nuclear Information System (INIS)

    Wang Xin

    2011-01-01

    A transparent and comprehensive statistical system in China would provide an important basis for enabling a better understanding of the country. This paper focuses on energy intensity (EI), which is one of the most important indicators of China. It firstly reviews China's GDP and energy statistics, showing that China has made great improvements in recent years. The means by which EI data are released and adjusted are then explained. It shows that EI data releases do not provide complete data for calculating EI and constant GDP, which may reduce policy transparency and comprehensiveness. This paper then conducts an EI calculation method that is based on official sources and that respects the data availability of different data release times. It finds that, in general, China's EI statistics can be considered as reliable because most of the results generated by author's calculations match the figures in the official releases. However, two data biases were identified, which may necessitate supplementary information on related constant GDP values used in the official calculation of EI data. The paper concludes by proposing short- and long-term measures for improving EI statistics to provide a transparent and comprehensive EI indicator. - Highlights: → This paper examines data release and adjustment process of energy intensity (EI) target of China. → New insights on the comprehensiveness and transparency of EI data. → Potential data bias between author's calculation and official data due to lack of constant GDP data. → Proposition for improving short- and long-term EI statistical works.

  9. Cervical Lymph Node Metastases From Unknown Primary Cancer: A Single-Institution Experience With Intensity-Modulated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, Hugo, E-mail: hugo.villeneuve@umontreal.ca [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Despres, Philippe; Fortin, Bernard; Filion, Edith; Donath, David [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Soulieres, Denis [Department of Medical Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Guertin, Louis; Ayad, Tarek; Christopoulos, Apostolos [Department of Head and Neck Surgery, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada); Nguyen-Tan, Phuc Felix [Department of Radiation Oncology, Centre hospitalier de l' Universite de Montreal, Montreal, QC (Canada)

    2012-04-01

    Purpose: To determine the effectiveness and rate of complications of intensity-modulated radiotherapy (IMRT) in the treatment of cervical lymph node metastases from unknown primary cancer. Methods and Materials: Between February 2005 and November 2008, 25 patients with an unknown primary cancer underwent IMRT, with a median radiation dose of 70 Gy. The bilateral neck and ipsilateral putative pharyngeal mucosa were included in the target volume. All patients had squamous cell carcinoma, except for 1 patient who had adenosquamous differentiation. They were all treated with curative intent. Of the 25 included patients, 20 were men and 5 were women, with a median age of 54 years. Of these patients, 3 had Stage III, 18 had Stage IVa, and 4 had Stage IVb. Of the 25 patients, 18 (72%) received platinum-based chemotherapy in a combined-modality setting. Neck dissection was reserved for residual disease after definitive IMRT. Overall survival, disease-free survival, and locoregional control were calculated using the Kaplan-Meier method. Results: With a median follow-up of 38 months, the overall survival, disease-free survival, and locoregional control rates were all 100% at 3 years. No occurrence of primary cancer was observed during the follow-up period. The reported rates of xerostomia reduced with the interval from the completion of treatment. Nine patients (36%) reported Grade 2 or greater xerostomia at 6 months, and only 2 (8%) of them reported the same grade of salivary function toxicity after 24 months of follow-up. Conclusion: In our institution, IMRT for unknown primary cancer has provided good overall and disease-free survival in all the patients with an acceptable rate of complications. IMRT allowed us to address the bilateral neck and ipsilateral putative pharyngeal mucosa with minimal late salivary function toxicity. The use of concurrent chemotherapy and IMRT for more advanced disease led to good clinical results with reasonable toxicities.

  10. Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids

    Directory of Open Access Journals (Sweden)

    Akhtar Hussain

    2017-06-01

    Full Text Available Integration of demand response (DR programs and battery energy storage system (BESS in microgrids are beneficial for both microgrid owners and consumers. The intensity of DR programs and BESS size can alter the operation of microgrids. Meanwhile, the optimal size for BESS units is linked with the uncertainties associated with renewable energy sources and load variations. Similarly, the participation of enrolled customers in DR programs is also uncertain and, among various other factors, uncertainty in market prices is a major cause. Therefore, in this paper, the impact of DR program intensity and BESS size on the operation of networked microgrids is analyzed while considering the prevailing uncertainties. The uncertainties associated with forecast load values, output of renewable generators, and market price are realized via the robust optimization method. Robust optimization has the capability to provide immunity against the worst-case scenario, provided the uncertainties lie within the specified bounds. The worst-case scenario of the prevailing uncertainties is considered for evaluating the feasibility of the proposed method. The two representative categories of DR programs, i.e., price-based and incentive-based DR programs are considered. The impact of change in DR intensity and BESS size on operation cost of the microgrid network, external power trading, internal power transfer, load profile of the network, and state-of-charge (SOC of battery energy storage system (BESS units is analyzed. Simulation results are analyzed to determine the integration of favorable DR program and/or BESS units for different microgrid networks with diverse objectives.

  11. Ion energy distributions from laser-generated plasmas at two different intensities

    Science.gov (United States)

    Ceccio, Giovanni; Torrisi, Lorenzo; Okamura, Masahiro; Kanesue, Takeshi; Ikeda, Shunsuke

    2018-01-01

    Laser-generated non-equilibrium plasmas were analyzed at Brookhaven National Laboratory (NY, USA) and MIFT Messina University (Italy). Two laser intensities of 1012 W/cm2 and 109 W/cm2, have been employed to irradiate Al and Al with Au coating targets in high vacuum conditions. Ion energy distributions were obtained using electrostatic analyzers coupled with ion collectors. Time of flight measurements were performed by changing the laser irradiation conditions. The study was carried out to provide optimum keV ions injection into post acceleration systems. Possible applications will be presented.

  12. Report in the Energy and Intensity Frontiers, and Theoretical at Northwestern University

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Mayda [Northwestern Univ., Evanston, IL (United States); Schmitt, Michael [Northwestern Univ., Evanston, IL (United States); deGouvea, Andre [Northwestern Univ., Evanston, IL (United States); Low, Ian [Northwestern Univ., Evanston, IL (United States); Petriello, Frank [Northwestern Univ., Evanston, IL (United States); Schellman, Heidi [Northwestern Univ., Evanston, IL (United States)

    2016-03-31

    The Northwestern (NU) Particle Physics (PP) group involved in this report is active on all the following priority areas: Energy and Intensity Frontiers. The group is lead by 2 full profs. in experimental physics (Schmitt and Velasco), 3 full profs. in theoretical physics (de Gouvea, Low and Petriello), and Heidi Schellman who is now at Oregon State. Low and Petriello hold joint appointments with the HEP Division at Argonne National Laboratory. The theoretical PP research focuses on different aspects of PP phenomenology. de Gouvea dedicates a large fraction of his research efforts to understanding the origin of neutrino masses, neutrino properties and uncovering other new phenomena, and investigating connections between neutrino physics and other aspects of PP. Low works on Higgs physics as well as new theories beyond the Standard Model. Petriello pursues a research program in precision QCD and its associated collider phenomenology. The main goal of this effort is to improve the Standard Model predictions for important LHC observables in order to enable discoveries of new physics. In recent years, the emphasis on experimental PP at NU has been in collider physics. NU expands its efforts in new directions in both the Intensity and the Cosmic Frontiers (not discussed in this report). In the Intensity Frontier, Schmitt has started a new effort on Mu2e. He was accepted as a collaborator in April 2015 and is identified with important projects. In the Energy Frontier, Hahn, Schmitt and Velasco continue to have a significant impact and expanded their CMS program to include R&D for the real-time L1 tracking trigger and the high granularity calorimeter needed for the high-luminosity LHC. Hahn is supported by an independent DOE Career Award and his work will not be discussed in this document. The NU analysis effort includes searches for rare and forbidden decays of the Higgs bosons, Z boson, top quark, dark matter and other physics beyond the standard model topics. Four

  13. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  14. Photon energy dependent intensity variations observed in Auger spectra of free argon clusters

    International Nuclear Information System (INIS)

    Lundwall, M; Lindblad, A; Bergersen, H; Rander, T; Oehrwall, G; Tchaplyguine, M; Peredkov, S; Svensson, S; Bjoerneholm, O

    2006-01-01

    Photon energy dependent intensity variations are experimentally observed in the L 2,3 M 2,3 M 2,3 Auger spectra of argon clusters. Two cluster sizes are examined in the present study. Extrinsic scattering effects, both elastic and inelastic, involving the photoelectron are discussed and suggested as the explanation of the variations in the Auger signal. The atoms in the first few coordination shells surrounding the core-ionized atom are proposed to be the main targets for the scattering processes

  15. Measuring the energy intensity of domestic activities from smart meter data

    International Nuclear Information System (INIS)

    Stankovic, L.; Stankovic, V.; Liao, J.; Wilson, C.

    2016-01-01

    Highlights: • Innovative method linking appliance usage and energy use with domestic activities. • Inferring the energy and time use profile of activities based on smart meter data. • Standardised metrics quantifying energy intensity + temporal routines of activities. • Insights from analysing electricity consumption through the lens of activities. - Abstract: Household electricity consumption can be broken down to appliance end-use through a variety of methods such as modelling, sub-metering, load disaggregation or non-intrusive appliance load monitoring (NILM). We advance and complement this important field of energy research through an innovative methodology that characterises the energy consumption of domestic life by making the linkages between appliance end-use and activities through an ontology built from qualitative data about the household and NILM data. We use activities as a descriptive term for the common ways households spend their time at home. These activities, such as cooking or laundering, are meaningful to households’ own lived experience. Thus, besides strictly technical algorithmic approaches for processing quantitative smart meter data, we also draw on social science time use approaches and interview and ethnography data. Our method disaggregates a households total electricity load down to appliance level and provides the start time, duration, and total electricity consumption for each occurrence of appliance usage. We then make inferences about activities occurring in the home by combining these disaggregated data with an ontology that formally specifies the relationships between electricity-using appliances and activities. We also propose two novel standardised metrics to enable easy quantifiable comparison within and across households of the energy intensity and routine of activities of interest. Finally, we demonstrate our results over a sample of ten households with an in-depth analysis of which activities can be inferred with

  16. Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes

    International Nuclear Information System (INIS)

    Ma, Ben

    2015-01-01

    Although there has been extensive debate in the literature that addresses the impact of urbanization on total energy use, the relative magnitude of each impact channel has not been empirically examined and urbanization's effects on energy transition dynamics in China remains unknown. Using panel datasets at the provincial level from 1986 to 2011, this paper employs dynamic models to investigate both the long-run and short-run elasticities of urbanization on energy intensities and the most significant impact channel is identified. Coal intensity and electricity intensity are also modeled to reveal energy transition dynamics driven by urbanization. A set of newly developed regression techniques, namely well-performed common correlated effects mean group (CCEMG) and augmented mean group (AMG) estimators, are used to treat residual cross-sectional dependence, nonstationary residuals, and unlikely-to-hold homogeneous slope assumptions. The results obtained verify that the net effects of urbanization on overall energy intensity and electricity intensity are statistically positive, with long-run elasticities of 0.14% to 0.37% and 0.23% to 0.29%, respectively, whereas China's urbanization does not significantly increase coal intensity. The fact that short-run elasticities account for a majority of corresponding long-run values indicates that the short-run effect, that is, indirect energy use induced by urban infrastructures is the most significant impact channel of urbanization on energy use in China. An energy transition from high-pollution coal to clean electricity is also present in China, although the fundamental transition to renewable energy is still in its infancy. From a regional perspective, urbanization exerts asymmetric impacts on provincial energy use so that energy policies associated with urbanization should be province-specific. The findings also illustrate that for a panel dataset on regional dimension within large and fast-growing economies such

  17. Long-term effect of intensive prevention on dental health of primary school children by socioeconomic status.

    Science.gov (United States)

    Winter, Julia; Jablonski-Momeni, Anahita; Ladda, Annett; Pieper, Klaus

    2017-12-29

    Children in a German region took part in regular toothbrushing with fluoride gel during their time in primary school after having received a preventive program in kindergarten. The study aimed at determining the dental health of the students as a function of prevention in kindergarten and at school while taking into account their socioeconomic status and other confounders. The subjects were in six groups: groups 1 and 2, intensive prevention in kindergarten with and without fluoride gel at school; groups 3 and 4, basic prevention in kindergarten with and without fluoride gel at school; groups 5 and 6, no organized prevention in kindergarten with and without fluoride gel at school. Two dental examinations were performed for assessing caries experience and calculating caries increment from second grade (7-year-olds) to fourth grade (9-year-olds). A standardized questionnaire was used to record independent variables. To compare caries scores and preventive measures of various subgroups, non-parametric tests and a binary logistic regression analysis were performed. A significant difference was found in the mean decayed, missing, and filled tooth/teeth (DMFT) depending on socioeconomic status (no prevention in kindergarten, fluoride gel at school in children with low SES: DMFT = 0.47 vs. DMFT = 0.18 in children with high SES; p = 0.023). Class-specific differences were no longer visible among children who had taken part in an intensive preventive program combining daily supervised toothbrushing in kindergarten and application of fluoride gel in school. Early prevention, focusing on professionally supported training of toothbrushing in kindergarten and at school, has a positive effect on dental health and is able to reduce class-specific differences in caries distribution. Early training of toothbrushing and fissure sealing of first permanent molars are the most important factors for the dental health of primary school children.

  18. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions

    DEFF Research Database (Denmark)

    Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard

    2007-01-01

    High-frequency stimulation of skeletal muscle has long been associated with ionic perturbations, resulting in the loss of membrane excitability, which may prevent action potential propagation and result in skeletal muscle fatigue. Associated with intense skeletal muscle contractions are large...... with control muscles, the resting metabolites ATP, phosphocreatine, creatine, and lactate, as well as the resting muscle excitability as measured by M-waves, were unaffected by treatment with BTS plus dantrolene. Following 20 or 30 s of continuous 60-Hz stimulation, BTS-plus-dantrolene-treated muscles showed...... changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy...

  19. Electron energy distribution from intense electron beams in the upper mesosphere and lower thermosphere

    International Nuclear Information System (INIS)

    Martinez-Sanchez, M.; Cheng, Wai; Dvore, D.; Zahniser, M.S.

    1992-01-01

    A model was developed to calculate the electron energy spectrum created by an electron beam in the upper atmosphere. A significant feature of the model is the inclusion of the effects of electron-electron collisions which are important at high beam intensity when the ratio of the electron to ambient gas density is high. Comparing the calculated results for a 2.6-kV, 20-A beam at 110-km altitude from models with and without the electron-electron collision term, the electron-electron collisions have the effect of smoothing out the electron spectrum in the low-energy region ( 2 and O 2 are filled in, resulting in an increase in the calculated production rate of these species compared with model calculations that neglect this effect

  20. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  1. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  2. Efficient energy absorption of intense ps-laser pulse into nanowire target

    Energy Technology Data Exchange (ETDEWEB)

    Habara, H.; Honda, S.; Katayama, M.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1 Suita, Osaka 565-0871 (Japan); Sakagami, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagai, K. [Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuda 4259, Midori-ku, Yokohama 226-8503, Kanagawa (Japan)

    2016-06-15

    The interaction between ultra-intense laser light and vertically aligned carbon nanotubes is investigated to demonstrate efficient laser-energy absorption in the ps laser-pulse regime. Results indicate a clear enhancement of the energy conversion from laser to energetic electrons and a simultaneously small plasma expansion on the surface of the target. A two-dimensional plasma particle calculation exhibits a high absorption through laser propagation deep into the nanotube array, even for a dense array whose structure is much smaller than the laser wavelength. The propagation leads to the radial expansion of plasma perpendicular to the nanotubes rather than to the front side. These features may contribute to fast ignition in inertial confinement fusion and laser particle acceleration, both of which require high current and small surface plasma simultaneously.

  3. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  4. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  5. Self-generated magnetic fields and energy transport by ultra-intense laser-plasma interaction

    International Nuclear Information System (INIS)

    Abudurexiti, A.; Tuniyazi, P.; Wang Qian

    2011-01-01

    The electromagnetic instability (Weibel instability) and its mechanism in ultra-intense laser-plasma interactions are studied by using three-dimensional particle-in-cell simulations. The transport of energy in electron thermal conduction is analyzed by the Spitzer-Harm theory, and the election's vertical pyrogenation phenomenon that resulted from anisotropic heating of laser is observed. The results indicate that the strong magnetic field excited by Weibel instability makes the electron beam deposit its energy within a very short distance, and it restrains the electron thermal flux formed when the laser ponderomotive force bursts through the electron. With the increase of the self-generated magnetic field, the electron will be seized by the wave of magnetic field, and the transport of heat will be restricted. (authors)

  6. Medium energy high intensity proton accelerator (MEHIPA): Reference Design Report (RDR) Ver. 1.0

    International Nuclear Information System (INIS)

    2016-11-01

    Recent progress in accelerator technology has made it possible to use a proton accelerator to produce nuclear energy. In an accelerator-driven system (ADS), a high-intensity proton accelerator is used to produce protons of around 1 GeV energy, which strike a target such as lead or tungsten to produce spallation neutrons. ADS can be used to produce power, incinerate minor actinides and long-lived fission products, and for the utilization of thorium as an alternative nuclear fuel. The accelerator for ADS has to produce high energy (1 GeV) protons, and deliver tens of milli amperes of beam current with minimum (< 1 nA/m) beam loss for hands-on maintenance of the accelerator. This makes the development of accelerators for ADS very challenging. In India, it is planned to take a staged approach towards development of the requisite accelerator technology, and it is planned to develop the accelerator in three phases: 20 MeV, 200 MeV and 1 GeV. This report presents a reference design report for the Medium Energy High Intensity Proton Accelerator (MEHIPA) which will accelerate the beam to 200 MeV. The linac consists of a 3 MeV normal conducting RFQ followed by three families of superconducting Single Spoke Resonators (SSR) to accelerate the beam to 200 MeV. The major elements of the physics design of MEHIPA, as well as layouts and specifications of the major accelerator sub-systems are presented in this report. (author)

  7. Fibromyalgia, mood disorders, and intense creative energy: A1AT polymorphisms are not always silent.

    Science.gov (United States)

    Schmechel, Donald E; Edwards, Christopher L

    2012-12-01

    Persons with single copies of common alpha-1-antitrypsin polymorphisms such as S and Z are often considered "silent carriers". Published evidence however supports a complex behavioral phenotype or trait - intense creative energy ("ICE")-associated with A1AT polymorphisms. We now confirm that phenotype and present an association of fibromyalgia syndrome (FMS) and A1AT in a consecutive series of neurological patients. This is a retrospective case control series of 3176 consecutive patients presenting to Duke University Memory Clinic (747 patients) and to regional community-based Caldwell Hospital Neurology and Memory center (2429 patients). Work-up included medical history and examination, psychological evaluation, and genetic analysis. Chronic widespread pain (CWP) or FMS were diagnosed according to clinical guidelines, mostly as secondary diagnoses. Neurological patients carrying A1AT polymorphisms were common (ca 16% prevalence) and carriers had significantly higher use of inhaler and anxiolytic medications. Patients with ICE phenotype had a significantly higher proportion of A1AT polymorphisms (42%) compared to non-ICE patients (13%). Presence of CWP or FMS was common (14-22%) with average age at presentation of 56 years old and mostly female gender (82%). Patients with CWP/FMS had again significantly higher proportion of A1AT polymorphisms (38%) compared to other neurological patients (13%). Patients with anxiety disorders, bipolar I or bipolar II disorders or PTSD also had increased proportion of A1AT polymorphisms and significant overlap with ICE and FMS phenotype. Significant reductions in CWP/FMS prevalence are seen in apolipoprotein E4 carriers and methylene tetrahydrofolate reductase (MTHFR) mutation homozygotes. Since ICE phenotype is reported as a lifelong behavioral attribute, the presumption is that A1AT carriers have fundamental differences in brain development and inflammatory response. In support of this concept is finding those persons reporting a

  8. Hatha Yoga Practices: Energy Expenditure, Respiratory Changes and Intensity of Exercise

    Science.gov (United States)

    Ray, Uday Sankar; Pathak, Anjana; Tomer, Omveer Singh

    2011-01-01

    The aim of this study was to critically observe the energy expenditure, exercise intensity and respiratory changes during a full yoga practice session. Oxygen consumption (V˙O2), carbon dioxide output (V˙CO2), pulmonary ventilation (V˙E), respiratory rate (Fr) and tidal volume (VT), were measured in 16 physical posture (asanas), five yoga breathing maneuvers (BM) and two types of meditation. Twenty male (age 27.3 ± 3.5 years, height 166.6 ± 5.4 cm and body weight 58.8 ± 9.6 kg) yoga instructors were studied. Their maximal oxygen consumption (V˙O2max) was recorded. The exercise intensity in asanas was expressed in percentage V˙O2max . In asanas, exercise intensity varied from 9.9 to 26.5% of V˙O2max . Highest energy cost was 3.02 kcal min−1. In BM highest V˙E was 53.7 ± 15.5 l min−1. VT was 0.97 ± 0.59, 1.41 ± 1.27 and 1.28 ± l/breath with corresponding Fr of 14.0 ± 5.3, 10.0 ± 6.35, 10.0 ± 5.8 breaths/min. Average energy expenditure in asanas, BM and meditation were 2.29, 1.91 and 1.37 kcal min−1, respectively. Metabolic rate was generally in the range of 1-2 metabolic equivalents (MET) except in three asanas where it was >2 MET. V˙O2 was 0.27 ± 0.05 and 0.24 ± 0.04 l min−1 in meditation and Shavasana, respectively. Although yogic practices are low intensity exercises within lactate threshold, physical performance improvement is possible owing to both better economy of breathing by BM and also by improvement in cardiovascular reserve. Other factors such as psycho-physiological and better relaxation may contribute to it. PMID:21799675

  9. Primary energy consumption of the dwelling with solar hot water system and biomass boiler

    International Nuclear Information System (INIS)

    Berković-Šubić, Mihaela; Rauch, Martina; Dović, Damir; Andrassy, Mladen

    2014-01-01

    Highlights: • Methodology for determing delivered and primary energy is developed. • Conventional and solar hot water system are analyzed. • Influence of system components, heat losses and energy consumption is explored. • Savings when using solar system in delivered energy is 30% and in primary 75%. • Dwelling with higher Q H,nd has 60% shorter payback period. - Abstract: This paper presents a new methodology, based on the energy performance of buildings Directive related European norms. It is developed to overcome ambiguities and incompleteness of these standards in determining the delivered and primary energy. The available procedures from the present “Algorithm for determining the energy demands and efficiency of technical systems in buildings”, normally used for energy performance certification of buildings, also allow detailed analyzes of the influence of particular system components on the overall system energy efficiency. The calculation example is given for a Croatian reference dwelling, equipped with a solar hot water system, backed up with a biomass boiler for space heating and domestic hot water purposes as a part of the dwelling energy performance certification. Calculations were performed for two cases corresponding to different levels of the dwelling thermal insulation with an appropriate heating system capacity, in order to investigate the influence of the building heat losses on the system design and energy consumption. The results are compared against those obtained for the conventional system with a gas boiler in terms of the primary energy consumption as well as of investment and operating costs. These results indicate great reduction in both delivered and primary energy consumption when a solar system with biomass boiler is used instead of the conventional one. Higher savings are obtained in the case of the dwelling with higher energy need for space heating. Such dwellings also have a shorter payback period than the ones with

  10. Estimation of the energy ratio between primary and ambience components in stereo audio data

    NARCIS (Netherlands)

    Harma, A.S.

    2011-01-01

    Stereo audio signal is often modeled as a mixture of instantaneously mixed primary components and uncorrelated ambience components. This paper focuses on the estimation of the primary-to-ambience energy ratio, PAR. This measure is useful for signal decomposition in stereo and multichannel audio

  11. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1995-01-01

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  12. Improved Dosimetric and Clinical Outcomes With Intensity-Modulated Radiotherapy for Head-and-Neck Cancer of Unknown Primary Origin

    International Nuclear Information System (INIS)

    Chen, Allen M.; Li Baoqing; Farwell, D. Gregory; Marsano, Joseph; Vijayakumar, Srinivasan; Purdy, James A.

    2011-01-01

    Purpose: To compare differences in dosimetric, clinical, and quality-of-life endpoints among a cohort of patients treated by intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (CRT) for head-and-neck cancer of unknown primary origin. Methods and Materials: The medical records of 51 patients treated by radiation therapy for squamous cell carcinoma of the head and neck presenting as cervical lymph node metastasis of occult primary origin were reviewed. Twenty-four patients (47%) were treated using CRT, and 27 (53%) were treated using IMRT. The proportions of patients receiving concurrent chemotherapy were 54% and 63%, respectively. Results: The 2-year estimates of overall survival, local-regional control, and disease-specific survival for the entire patient population were 86%, 89%, and84%, respectively. There were no significant differences in any of these endpoints with respect to radiation therapy technique (p > 0.05 for all). Dosimetric analysis revealed that the use of IMRT resulted in significant improvements with respect to mean dose and V30 to the contralateral (spared) parotid gland. In addition, mean doses to the ipsilateral inner and middle ear structures were significantly reduced with IMRT (p < 0.05 for all). The incidence of severe xerostomia in the late setting was 58% and 11% among patients treated by CRT and IMRT, respectively (p < 0.001). The percentages of patients who were G-tube dependent at 6 months after treatment were 42% and 11%, respectively (p < 0.001). Conclusions: IMRT results in significant improvements in the therapeutic ratio among patients treated by radiation therapy for head-and-neck cancer of unknown primary origin.

  13. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  14. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  15. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  16. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  17. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  18. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  19. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  20. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  1. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Science.gov (United States)

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...

  2. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks

    International Nuclear Information System (INIS)

    Lee, Mengshan; Keller, Arturo A.; Chiang, Pen-Chi; Den, Walter; Wang, Hongtao; Hou, Chia-Hung; Wu, Jiang; Wang, Xin; Yan, Jinyue

    2017-01-01

    Highlights: •This study quantifies the nexus as energy intensity and greenhouse gas potential. •Baseline water stress and return flow ratio are identified as water risks. •Source water accessibility significantly contributes to variations in the nexus. •Water risks have little impact on the nexus of wastewater systems. •Study on the nexus is suggested to be conducted at regional levels. -- Abstract: The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great

  3. Field Experience from Li-Ion BESS Delivering Primary Frequency Regulation in the Danish Energy Market

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Lærke, Rasmus

    2014-01-01

    In this paper it is presented the practical experience from operating a 1.6 MW/ 0.4 MWh lithium ion battery energy storage system, which is providing primary frequency regulation service on the Danish energy market. Aspects of the battery system requirements and the used control strategy...

  4. Monte Carlo study of radial energy deposition from primary and secondary particles for narrow and large proton beamlet source models

    International Nuclear Information System (INIS)

    Peeler, Christopher R; Titt, Uwe

    2012-01-01

    In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)

  5. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  6. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    International Nuclear Information System (INIS)

    Rodriguez, Ricardo; Lewis, Winston G

    2014-01-01

    Adequately identifying and managing hazards at the workplace can be a tedious task which extends into the realm of uncertainty, probability and prediction models in order to fully comprehend the nature of the hazard. As such, organizations cannot be blamed for knowledge gaps in the training of personnel they contract to ensure a safe and healthy work environment, especially where there are latent hazards. Electromagnetic wave propagation at frequencies in the SAR (specific absorption rate) region is a special concern to authorities involved in setting RF (radiofrequency) and microwave exposure guidelines. Despite that there is no conclusive evidence to suggest that non-ionizing electromagnetic radiation causes adverse health effects other than thermal, no effort should be lost to ensure that workers and the public at large are adequately protected from unnecessary exposure to radiation. Standards however set exposure limits for free space, plane wave propagation but fall short in compiling information on intensities of these waves after they undergo reflection and diffraction from wall surfaces. Waveguide technology has managed to constrain microwaves to remain within set boundaries, with fixed frequencies that force the waves to behave differently to if they were moving in free space. This technology has offered the ability to transport more energy for communication purposes other than transmission lines. The size of a waveguide may be to the order of a few centimetres and can guide RF of wavelengths of the order of centimetres also but what if spaces of larger dimensions are capable of being waveguides and can guide waves of larger wavelengths such as those that correspond to frequencies between 30MHz to 300MHz? Such RF waves belong to the SAR region of the spectrum where strict exposure limits are set for health and safety protection since a standing man acts as a dipole antenna for this radiation and can absorb maximum energy from propagating RF waves. This

  7. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    Science.gov (United States)

    Rodriguez, Ricardo; Lewis, Winston G.

    2014-07-01

    Adequately identifying and managing hazards at the workplace can be a tedious task which extends into the realm of uncertainty, probability and prediction models in order to fully comprehend the nature of the hazard. As such, organizations cannot be blamed for knowledge gaps in the training of personnel they contract to ensure a safe and healthy work environment, especially where there are latent hazards. Electromagnetic wave propagation at frequencies in the SAR (specific absorption rate) region is a special concern to authorities involved in setting RF (radiofrequency) and microwave exposure guidelines. Despite that there is no conclusive evidence to suggest that non-ionizing electromagnetic radiation causes adverse health effects other than thermal, no effort should be lost to ensure that workers and the public at large are adequately protected from unnecessary exposure to radiation. Standards however set exposure limits for free space, plane wave propagation but fall short in compiling information on intensities of these waves after they undergo reflection and diffraction from wall surfaces. Waveguide technology has managed to constrain microwaves to remain within set boundaries, with fixed frequencies that force the waves to behave differently to if they were moving in free space. This technology has offered the ability to transport more energy for communication purposes other than transmission lines. The size of a waveguide may be to the order of a few centimetres and can guide RF of wavelengths of the order of centimetres also but what if spaces of larger dimensions are capable of being waveguides and can guide waves of larger wavelengths such as those that correspond to frequencies between 30MHz to 300MHz? Such RF waves belong to the SAR region of the spectrum where strict exposure limits are set for health and safety protection since a standing man acts as a dipole antenna for this radiation and can absorb maximum energy from propagating RF waves. This

  8. The efficiency, energy intensity and visual impact of the accent lighting in the retail grocery stores

    Directory of Open Access Journals (Sweden)

    Ľudmila Nagyová

    2014-11-01

    Full Text Available Over the last few years, topics of displaying, presentation, lighting, energy saving and issues related to the environment while selling the fresh food (fruits, vegetable, bakery products, meat are becoming an important matter among traders. However, just bigger companies with transnational capital have devoted their attention to this issue yet. Generally, the energy costs make up 70% of operating costs in retail stores where the cooling system and lighting are the most energy consuming. Accent lighting in modern retails is largely involved in the overall design and atmosphere in shops and plays a crucial role in presenting the goods as well. Using of accent lighting can draw the customer's attention to a specific part of the sales area and achieve the overall harmonization in the store. With the rational using of combination of energy saving and effective accent lighting retailers can achieve not only attractive presentation of displayed products but also appreciable savings in the operation of their stores. It is the only factor that can be exactly measured and controlled. Using a Colour and Lux Meters we found out the intensity and color temperature of accent lighting used in domestic and foreign retail chains for the different kinds of fresh food products. Based on the obtained values we have compiled graphs, which are showing visual comfort. We also identified different types of accent lighting, which we assigned to their impact on emotional involvement of consumers. The starting points were the tests we conducted in simulated laboratory conditions. While searching of a compromise between effective and energy efficient accent lighting we take into consideration consumers' emotional response as well as the annual electricity consumption of different types of light sources. At the end we recommend options for energy-efficient, effective and spectacular lighting while using the optimal number of light sources and their logical organization

  9. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  10. Comparative study of various methods of primary energy estimation in nucleon-nucleon interactions

    International Nuclear Information System (INIS)

    Goyal, D.P.; Yugindro Singh, K.; Singh, S.

    1986-01-01

    The various available methods for the estimation of primary energy in nucleon-nucleon interactions have been examined by using the experimental data on angular distributions of shower particles from p-N interactions at two accelerator energies, 67 and 400 GeV. Three different groups of shower particle multiplicities have been considered for interactions at both energies. It is found that the different methods give quite different estimates of primary energy. Moreover, each method is found to give different values of energy according to the choice of multiplicity groups. It is concluded that the E ch method is relatively the better method among all the methods available, and that within this method, the consideration of the group of small multiplicities gives a much better result. The method also yields plausible estimates of inelasticity in high energy nucleon-nucleon interactions. (orig.)

  11. Efficacy and Toxicity of Chemoradiotherapy Using Intensity-Modulated Radiotherapy for Unknown Primary of Head and Neck

    International Nuclear Information System (INIS)

    Sher, David J.; Balboni, Tracy A.; Haddad, Robert I.; Norris, Charles M.; Posner, Marshall R.; Wirth, Lori J.; Goguen, Laura A.; Annino, Donald; Tishler, Roy B.

    2011-01-01

    Purpose: No single standard treatment paradigm is available for head-and-neck squamous cell carcinoma of an unknown primary (HNCUP). Bilateral neck radiotherapy with mucosal axis irradiation is widely used, with or without chemotherapy and/or surgical resection. Intensity-modulated radiotherapy (IMRT) is a highly conformal method for delivering radiation that is becoming the standard of care and might reduce the long-term treatment-related sequelae. We report the Dana-Farber Cancer Institute experience with IMRT-based treatment for HNCUP. Patients and Materials: A retrospective study of all patients treated at the Dana-Farber Cancer Institute for HNCUP with IMRT between August 2004 and January 2009. The primary endpoint was overall survival; the secondary endpoints were locoregional and distant control, and acute and chronic toxicity. Results: A total of 24 patients with HNCUP were included. Of these patients, 22 had Stage N2 disease or greater. All patients underwent neck computed tomography, positron emission tomography-computed tomography, and examination under anesthesia with directed biopsies. Of the 24 patients, 22 received concurrent chemotherapy, and 7 (29%) also underwent induction chemotherapy. The median involved nodal dose was 70 Gy, and the median mucosal dose was 60 Gy. With a median follow-up of 2.1 years, the 2-year actuarial overall survival and locoregional control rate was 92% and 100%, respectively. Only 25% of the patients had Grade 2 xerostomia, although 11 patients (46%) required esophageal dilation for stricture. Conclusion: In a single-institution series, IMRT-based chemoradiotherapy for HNCUP was associated with superb overall survival and locoregional control. The xerostomia rates were promising, but the aggressive therapy was associated with significant rates of esophageal stenosis.

  12. On the non-convergence of energy intensities: evidence from a pair-wise econometric approach

    International Nuclear Information System (INIS)

    Le Pen, Yannick; Sevi, Benoit

    2008-01-01

    This paper evaluates convergence of energy intensities for a group of 97 countries in the period 1971-2003. Convergence is tested using a recent method proposed by Pesaran (2007) [M.H. Pesaran. A pair- wise approach to testing for output and growth convergence. Journal of Econometrics 138, 312-355.] based on the stochastic convergence criterion. Main advantages of this method are that results do not depend on a benchmark against which convergence is assessed, and that it is more robust. Applications of several unit-root tests as well as a stationarity test uniformly reject the global convergence hypothesis. Locally, for Middle- East, OECD and Europe sub-groups, non-convergence is less strongly rejected. The introduction of possible structural breaks in the analysis only marginally provides more support to the convergence hypothesis. (authors)

  13. CO2-afgifter: Beskeden regning til den energi-intensive industri

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    2008-01-01

    De store energi-intensive virksomheder i Europa har fordel af vidtrækkende undtagelser for de CO2- og energiafgifter som medlemslandene har indført. Bekymring for konkurrence-evnen har som regel været baggrunden for at give en særlig rabat til de største udledere. Størrelsen af rabatten og dermed...... den egentlige klima-regning til virksomhederne er imidlertid vanskelig at gennemskue. Med slutrapporten fra det store EU-projekt COMETR er det nu blevet muligt både at sætte tal på de reelle afgifter og at vurdere betydningen for konkurrence-evnen for erhvervene....

  14. Electromagnetic Weible Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    In plasmas with strongly anisotropic distribution functions, collective instabilities may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Our previous numerical and theoretical studies of intense charged particle beams with large temperature anisotropy [E. A. Startsev, R. C. Davidson and H. Qin, PRSTAB, 6, 084401 (2003); Phys. Plasmas 9, 3138 (2002)] demonstrated that a fast, electrostatic, Harris-like instability develops, and saturates nonlinearly, for sufficiently large temperature anisotropy (T perpendi c ular b /T parallelb >> 1). The total distribution function after saturation, however, is still far from equipartitioned. In this paper the linearized Vlasov-Maxwell equations are used to investigate detailed properties of the transverse electromagnetic Weibel-type instability for a long charge bunch propagating through a cylindrical pipe of radius r w . The kinetic stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. The most unstable modes are identified, and their eigenfrequencies, radial mode structure and instability thresholds are determined. The stability analysis shows that, although there is free energy available to drive the electromagnetic Weibel instability, the finite transverse geometry of the charged particle beam introduces a large threshold value for the temperature anisotropy ((T perpendi c ularb /T parallelb ) Weibel >> (T perpendi c ularb /T parallelb ) Harris ) below which the instability is absent. Hence, unlike the case of an electrically neutral plasma, the Weibel instability is not expected to play as significant a role in the process of energy isotropization of intense unneutralized charged particle beams as the electrostatic Harris-type instability

  15. Acute effects of exercise intensity on subsequent substrate utilisation, appetite, and energy balance in men and women.

    Science.gov (United States)

    Shamlan, Ghalia; Bech, Paul; Robertson, M Denise; Collins, Adam L

    2017-12-01

    Exercise is capable of influencing the regulation of energy balance by acutely modulating appetite and energy intake coupled to effects on substrate utilization. Yet, few studies have examined acute effects of exercise intensity on aspects of both energy intake and energy metabolism, independently of energy cost of exercise. Furthermore, little is known as to the gender differences of these effects. One hour after a standardised breakfast, 40 (19 female), healthy participants (BMI 23.6 ± 3.6 kg·m -2 , V̇O 2peak 34.4 ± 6.8 mL·kg -1 ·min -1 ) undertook either high-intensity intermittent cycling (HIIC) consisting of 8 repeated 60 s bouts of cycling at 95% V̇O 2peak or low-intensity continuous cycling (LICC), equivalent to 50% V̇O 2peak , matched for energy cost (∼950 kJ) followed by 90 mins of rest, in a randomised crossover design. Throughout each study visit, satiety was assessed subjectively using visual analogue scales alongside blood metabolites and GLP-1. Energy expenditure and substrate utilization were measured over 75 min postexercise via indirect calorimetry. Energy intake was assessed for 48 h postintervention. No differences in appetite, GLP-1, or energy intakes were observed between HIIC and LICC, with or without stratifying for gender. Significant differences in postexercise nonesterified fatty acid concentrations were observed between intensities in both genders, coupled to a significantly lower respiratory exchange ratio following HIIC (P = 0.0028), with a trend towards greater reductions in respiratory exchange ratioin males (P = 0.079). In conclusion, high-intensity exercise, if energy matched, does not lead to greater appetite or energy intake, but may exert additional beneficial metabolic effects that may be more pronounced in males.

  16. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  17. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  18. An intensive primary-literature-based teaching program directly benefits undergraduate science majors and facilitates their transition to doctoral programs.

    Science.gov (United States)

    Kozeracki, Carol A; Carey, Michael F; Colicelli, John; Levis-Fitzgerald, Marc; Grossel, Martha

    2006-01-01

    UCLA's Howard Hughes Undergraduate Research Program (HHURP), a collaboration between the College of Letters and Science and the School of Medicine, trains a group of highly motivated undergraduates through mentored research enhanced by a rigorous seminar course. The course is centered on the presentation and critical analysis of scientific journal articles as well as the students' own research. This article describes the components and objectives of the HHURP and discusses the results of three program assessments: annual student evaluations, interviews with UCLA professors who served as research advisors for HHURP scholars, and a survey of program alumni. Students indicate that the program increased their ability to read and present primary scientific research and to present their own research and enhanced their research experience at UCLA. After graduating, they find their involvement in the HHURP helped them in securing admission to the graduate program of their choice and provided them with an advantage over their peers in the interactive seminars that are the foundation of graduate education. On the basis of the assessment of the program from 1998-1999 to 2004-2005, we conclude that an intensive literature-based training program increases student confidence and scientific literacy during their undergraduate years and facilitates their transition to postgraduate study.

  19. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    Science.gov (United States)

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  20. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsethagen, Todd O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hathaway, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guillen, Zoe C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dirks, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorton, Ian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Yan [Concordia Univ., Montreal, QC (Canada)

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  1. Laser-energy scaling law for neutrons generated from nano particles Coulomb-exploded by intense femtosecond laser pulses

    International Nuclear Information System (INIS)

    Sakabe, Shuji; Hashida, Masaki

    2015-01-01

    To discuss the feasibility of compact neutron sources the yield of laser produced neutrons is scaled by the laser energy. High-energy ions are generated by Coulomb explosion of clusters through intense femtosecond laser-cluster interactions. The laser energy scaling law of the neutron yield is estimated using the laser intensity scaling law for the energy of ions emitted from clusters Coulomb-exploded by an intense laser pulse. The neutron yield for D (D, n) He shows the potential of compact neutron sources with modern laser technology, and the yield for p (Li, n) Be shows much higher than that for Li (p, n) Be with the assumption of 500 nm-class cluster Coulomb explosion. (author)

  2. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.

    Science.gov (United States)

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2016-04-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. Labour productivity, energy intensity and economic performance in small enterprises: A study of brick enterprises cluster in India

    International Nuclear Information System (INIS)

    Bala Subrahmanya, M.H.

    2006-01-01

    This paper probes the role of labour efficiency in promoting energy efficiency and economic performance with reference to small scale brick enterprises' cluster in Malur, Karnataka State, India. In the bricks industry, the technology in use being similar, labour efficiency has a negative influence on energy cost. Therefore, those enterprises that exhibited higher labour productivities had lower average energy intensity and higher returns to scale as compared to those that had lower labour productivities. Considering this, improvement of labour efficiency can be an alternative approach for energy efficiency improvement in energy intensive small scale industries in developing countries like India, which face the obstacle of financial constraints in up-grading technology as a means of energy efficiency improvement

  4. Costs, CO{sub 2}- and primary energy balances of forest-fuel recovery systems at different forest productivity

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Lisa; Gustavsson, Leif [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2010-05-15

    Here we examine the cost, primary energy use, and net carbon emissions associated with removal and use of forest residues for energy, considering different recovery systems, terrain, forwarding distance and forest productivity. We show the potential recovery of forest fuel for Sweden, its costs and net carbon emissions from primary energy use and avoided fossil carbon emissions. The potential annual net recovery of forest fuel is about 66 TWh, which would cost one billion EUR{sub 2005} to recover and would reduce fossil emissions by 6.9 Mt carbon if coal were replaced. Of the forest fuel, 56% is situated in normal terrain with productivity of >30 t dry-matter ha{sup -1} and of this, 65% has a forwarding distance of <400 m. In normal terrain with >30 t dry-matter ha{sup -1} the cost increase for the recovery of forest fuel, excluding stumps, is around 4-6% and 8-11% for medium and longer forwarding distances, respectively. The stump and small roundwood systems are less cost-effective at lower forest fuel intensity per area. For systems where loose material is forwarded, less dry-matter per hectare increases costs by 6-7%, while a difficult terrain increases costs by 3-4%. Still, these systems are quite cost-effective. The cost of spreading ash is around 40 EUR{sub 2005} ha{sup -1}, while primary energy use for spreading ash in areas where logging residues, stumps, and small roundwood are recovered is about 0.025% of the recovered bioenergy. (author)

  5. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  6. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.

    Science.gov (United States)

    Strogen, Bret; Horvath, Arpad; Zilberman, David

    2013-12-01

    Petroleum fuels are predominantly transported domestically by pipelines, whereas biofuels are almost exclusively transported by rail, barge, and truck. As biofuel production increases, new pipelines may become economically attractive. Location-specific variables impacting pipeline viability include construction costs, availability and costs of alternative transportation modes, electricity prices and emissions (if priced), throughput, and subsurface temperature. When transporting alcohol or diesel-like fuels, pipelines have a lower direct energy intensity than rail, barge, and trucks if fluid velocity is under 1 m/s for 4-inch diameter pipelines and 2 m/s for 8-inch or larger pipelines. Across multiple hypothetical state-specific scenarios, profit-maximizing design velocities range from 1.2 to 1.9 m/s. In costs and GHG emissions, optimized pipelines outperform trucks in each state and rail and barge in most states, if projected throughput exceeds four billion liters/year. If emissions are priced, optimum design diameters typically increase to reduce pumping energy demands, increasing the cost-effectiveness of pipeline projects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Composition of cosmic rays in the knee region of the primary energy spectrum

    International Nuclear Information System (INIS)

    Das Gupta, U.

    1989-01-01

    The Soudan Surface-Underground Cosmic Ray Telescope is located at the Soudan iron mine in northern Minnesota. It consists of a coincidence arrangement of two detectors-one installed at the surface of the mine and the other located underground, at a vertical depth of 600 meters. Using such an arrangement, the energy and composition of a primary cosmic ray particle can be determined independently of one another. When a high energy cosmic ray enters the Earth's atmosphere, secondary particles are produced in successive interactions, creating an extensive air shower. Using the surface detector, the number of particles in the shower at the surface of the Earth can be counted and the energy of the primary particle estimated. Of all the particles that are created in a cosmic ray air shower, only the energetic muons are able to penetrate underground. The separations of the muons below ground are measured by the Soudan 1 detector and this serves as an indicator of the type of nucleus that initiated the shower. The Soudan surface-underground detector is sensitive to primary cosmic rays of energies between 10 14 and 10 18 eV. The data from the experiment were compared to the predictions of various cosmic ray composition models, within this energy range. The data supported a composition model that was proton dominated up to the highest energies measured. There was no indication of a shift in the composition towards heavier primaries as would be expected on the basis of some models

  8. Classification and performance analysis of primary energy consumers during 1980-1999

    International Nuclear Information System (INIS)

    Ediger, Volkan S.

    2003-01-01

    Five primary energy consumer classes, namely Super, Major, Big, Medium and Small, are proposed, depending on the polymodal characteristics of the frequency distribution curve of their share of the total. The total primary energy consumption and its annual additions decrease, whereas the rates increase steadily from the Super to the Medium consumers. Since the frequency distribution histogram of additional primary energy consumptions of the Medium and above consumers during 1980-1999 is a typical bell shaped curve, the additional amounts and rates are used together to evaluate the performance levels of the countries in both parameters. The most successful countries are the USA, China, South Korea, Thailand, India, Indonesia, Taiwan, Turkey and Iran. The reason why the Super consumer USA and the Major consumer China are the biggest energy markets is because they are the first two biggest economies in the world. The success of the developing Asian countries is mostly related to their economic ties with the Super consumer USA. Among the other emerging markets, Turkey's primary energy demand has grown more rapidly than that of Iran and is expected to continue growing in the future. The emerging Medium and Big consumer markets will continue to play a significant role in the world's energy sector during the first two decades of the 21st century

  9. High-intensity low energy titanium ion implantation into zirconium alloy

    Science.gov (United States)

    Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.

    2018-05-01

    This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.

  10. Study of the Solar Anisotropy for Cosmic Ray Primaries of about 200 GeV Energy with the L3+C Muon Detector

    CERN Document Server

    Achard, P; Aguilar-Benitez, M; van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, J; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, Valery P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bahr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillere, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Bohm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo, M; Chiarusi, T; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J; de Asmundis, R; Deglon, P; Debreczeni, J; Degre, A; Dehmelt, K; Deiters, K; della Volpe, D; Delmeire, E; Denes, P; DeNotaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Duran, I; Echenard, B; Eline, A; El Hage, A; El Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagan, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H; Fiandrini, E; Field, J H; Filthaut, F; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Iouri; Ganguli, S N; Garcia-Abia, Pablo; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grabosch, H J; Grenier, G; Grimm, O; Groenstege, H; Gruenewald, M W; Guida, M; Guo, Y N; Gupta, S; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, Ch; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Herve, Alain; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Hu, Y; Ito, N; Jin, B N; Jing, C L; Jones, Lawrence W; de Jong, P; Josa-Mutuberria, I; Kantserov, V; Kaur, M; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; Konig, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V; Kraber, M; Kuang, H H; Kraemer, R W; Kruger, A; Kuijpers, J; Kunin, A; Ladron de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levtchenko, P; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, F L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Mana, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, y G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novak, T; Kluge, Hannelies; Ofierzynski, R; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J -F; Passaleva, G; Patricelli, S; Paul, Thomas Cantzon; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroue, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pojidaev, V; Pothier, J; Prokofev, D; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, Mohammad Azizur; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P; Riemann, y S; Riles, Keith; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, Stefan; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sanchez, E; Schafer, C; Schegelsky, V; Schmitt, V; Schoeneich, B; Schopper, H; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Straessner, A; Sudhakar, K; Sulanke, H; Sultanov, G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillasi, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, Charles; Ting, Samuel C C; Ting, S M; Tonwar, S C; Toth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vasquez, R; Veszpremi, V; Vesztergombi, G; Vetlitsky, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopianov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; van Wijk, R; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yang, X F; Yao, Z G; Yeh, S C; Yu, Z Q; Zalite, An; Zalite, Yu; Zhang, C; Zhang, F; Zhang, J; Zhang, S; Zhang, Z P; Zhao, J; Zhou, S J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zhu, Q Q; Zichichi, A; Zimmermann, B; Zoller, M; Zwart, A N M

    2008-01-01

    Primary cosmic rays experience multiple deflections in the nonuniform galactic and heliospheric magnetic fields which may generate anisotropies. A study of anisotropies in the energy range between 100 and 500 GeV is performed. This energy range is not yet well explored. The L3 detector at the CERN electron-positron collider, LEP, is used for a study of the angular distribution of atmospheric muons with energies above 20 GeV. This distribution is used to investigate the isotropy of the time-dependent intensity of the primary cosmic-ray flux with a Fourier analysis. A small deviation from isotropy at energies around 200 GeV is observed for the second harmonics at the solar frequency. No sidereal anisotropy is found at a level above 10^-4. The measurements have been performed in the years 1999 and 2000.

  11. Investigation of the economic possibilities regarding the reduction of energy intensity for electrical household appliances. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Orth, G

    1980-01-01

    Investigation results concerning the analysis of the energy application for electrical household appliances have not been available up to now. The investigation had the purpose of analysing the energy consumption of energy-intensive household appliances so that energy conservation possibilities with regard to the effectiveness may be developed. The parts of the effective and of the lost energy are being experimentally determined for the following appliances: large-scale hot water tank, washing machine, laundry drier, dish washer, electric hearth, coolers and refrigerators. The influence of the utilization habits on the specific energy consumption and the relationship between the energy application and the application properties are being investigated. On the basis of the investigation results the different possibilities of energy conservation are shown, together with some aspects of economical operation. On the basis of the investigation results also, the potential of the energy conservation, related to practical consumption values, is estimated at about 5-40%, depending on the appliance.

  12. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  13. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  14. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  15. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  16. Energy resource management under the influence of the weekend transition considering an intensive use of electric vehicles

    DEFF Research Database (Denmark)

    Sousa, T.; Morais, Hugo; Pinto, T.

    2015-01-01

    Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distri......Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use...... of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps...

  17. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    Energy Technology Data Exchange (ETDEWEB)

    Barseghyan, M.G., E-mail: mbarsegh@ysu.am

    2016-11-10

    Highlights: • The electron-impurity interaction on energy levels in nanoring have been investigated. • The electron-impurity interaction on far-infrared absorption have been investigated. • The energy levels are more stable for higher values of electric field. - Abstract: The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  18. Energy Intensity and Greenhouse Gas Emissions from Oil Production in the Eagle Ford Shale

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Sonia; Ghandi, Abbas; Scanlon, Bridget R.; Brandt, Adam R.; Cai, Hao; Wang, Michael Q.; Vafi, Kourosh; Reedy, Robert C.

    2017-01-30

    A rapid increase in horizontal drilling and hydraulic fracturing in shale and “tight” formations that began around 2000 has resulted in record increases in oil and natural gas production in the U.S. This study examines energy consumption and greenhouse gas (GHG) emissions from crude oil and natural gas produced from ~8,200 wells in the Eagle Ford Shale in southern Texas from 2009 to 2013. Our system boundary includes processes from primary exploration wells to the refinery entrance gate (henceforth well-to-refinery or WTR). The Eagle Ford includes four distinct production zones—black oil (BO), volatile oil (VO), condensate (C), and dry gas (G) zones—with average monthly gas-to-liquids ratios (thousand cubic feet per barrel—Mcf/bbl) varying from 0.91 in the BO zone to 13.9 in the G zone. Total energy consumed in drilling, extracting, processing, and operating an Eagle Ford well is ~1.5% of the energy content of the produced crude and gas in the BO and VO zones, compared with 2.2% in the C and G zones. On average, the WTR GHG emissions of gasoline, diesel, and jet fuel derived from crude oil produced in the BO and VO zones in the Eagle Ford play are 4.3, 5.0, and 5.1 gCO2e/MJ, respectively. Comparing with other known conventional and unconventional crude production where upstream GHG emissions are in the range 5.9–30 gCO2e/MJ, oil production in the Eagle Ford has lower WTR GHG emissions.

  19. Declining primary energy consumption in nine countries of the European Community in 1980

    International Nuclear Information System (INIS)

    Gabel, R.

    1981-01-01

    The Statistical Office of the European Communities has published preliminary figures for energy consumption in the Community (of the Nine) for the year 1980. These show a primary energy consumption for the EEC in 1980 of approx. 1344 mtce. That is 63 mtce or 4.5% less than in the previous year. Primary energy consumption in 1980 still bore comparison, to some extent, with the previous record figures for 1973, the last 'normal year' before the first crisis. The figures for all the Community countries show that the energy policy measures introduced in recent years are becoming more effective, particularly the attempts to restrict oil consumption. There is also the effect of oil prices, which again rose dramatically in 1979/80. Whether this decline in consumption will continue in the future will only become clear when the promised economic upturn arrives. (orig./UA) [de

  20. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  1. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.

    Science.gov (United States)

    Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2013-01-01

    The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.

  2. Radiation damage in materials. Primary knock-on atom energy analyses of cascade damage

    International Nuclear Information System (INIS)

    Sekimura, Naoto

    1995-01-01

    To understand cascade damage formation as a function of primary recoil energy, thin foils of gold were irradiated with 20 - 400 keV self-ions to 1.0 x 10 14 ions/m 2 at 300 K. Yield of groups of vacancy clusters saturated at ion energy higher than 100 keV. Number of clusters in a group had variation even from the same energy ions. Size distribution of the clusters was not strongly dependent on number of clusters in a group and ion energy. Density of vacancy clusters in a group formed near the specimen surface was calibrated to estimate vacancy cluster formation in neutron-irradiated material. A model was proposed to predict distribution of defect clusters in the irradiated materials based on a primary recoil spectrum. Examples of recomposed distribution of vacancy clusters in a group in irradiated gold were compared with the measured data. (author)

  3. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

    International Nuclear Information System (INIS)

    Antanasijević, Davor; Pocajt, Viktor; Ristić, Mirjana; Perić-Grujić, Aleksandra

    2015-01-01

    This paper presents a new approach for the estimation of energy-related GHG (greenhouse gas) emissions at the national level that combines the simplicity of the concept of GHG intensity and the generalization capabilities of ANNs (artificial neural networks). The main objectives of this work includes the determination of the accuracy of a GRNN (general regression neural network) model applied for the prediction of EC (energy consumption) and GHG intensity of energy consumption, utilizing general country statistics as inputs, as well as analysis of the accuracy of energy-related GHG emissions obtained by multiplying the two aforementioned outputs. The models were developed using historical data from the period 2004–2012, for a set of 26 European countries (EU Members). The obtained results demonstrate that the GRNN GHG intensity model provides a more accurate prediction, with the MAPE (mean absolute percentage error) of 4.5%, than tested MLR (multiple linear regression) and second-order and third-order non-linear MPR (multiple polynomial regression) models. Also, the GRNN EC model has high accuracy (MAPE = 3.6%), and therefore both GRNN models and the proposed approach can be considered as suitable for the calculation of GHG emissions. The energy-related predicted GHG emissions were very similar to the actual GHG emissions of EU Members (MAPE = 6.4%). - Highlights: • ANN modeling of GHG intensity of energy consumption is presented. • ANN modeling of energy consumption at the national level is presented. • GHG intensity concept was used for the estimation of energy-related GHG emissions. • The ANN models provide better results in comparison with conventional models. • Forecast of GHG emissions for 26 countries was made successfully with MAPE of 6.4%

  4. Scatter correction method with primary modulator for dual energy digital radiography: a preliminary study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Jeon, Pil-Hyun; Kim, Hee-Joung

    2014-03-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, resulting in the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement and non-measurement-based methods have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate primary radiation. Cylindrical phantoms of variable size were used to quantify imaging performance. For scatter estimation, we used Discrete Fourier Transform filtering. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without correction. In the subtraction study, the average CNR with correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of scatter correction and the improvement of image quality using a primary modulator and showed the feasibility of

  5. Nuclear Power and Resource Efficiency—A Proposal for a Revised Primary Energy Factor

    Directory of Open Access Journals (Sweden)

    Ola Eriksson

    2017-06-01

    Full Text Available Measuring resource efficiency can be achieved using different methods, of which primary energy demand is commonly used. The primary energy factor (PEF is a figure describing how much energy from primary resources is being used per unit of energy delivered. The PEF for nuclear power is typically 3, which refers to thermal energy released from fission in relation to electricity generated. Fuel losses are not accounted for. However; nuclear waste represents an energy loss, as current plans for nuclear waste management mostly include final disposal. Based on a literature review and mathematical calculations of the power-to-fuel ratio for nuclear power, PEF values for the open nuclear fuel cycle (NFC option of nuclear power and different power mixes are calculated. These calculations indicate that a more correct PEF for nuclear power would be 60 (range 32–88; for electricity in Sweden (41% nuclear power PEF would change from 1.8 to 25.5, and the average PEF for electricity in the European Union (EU would change from 2.5 to 18. The results illustrate the poor resource efficiency of nuclear power, which paves the way for the fourth generation of nuclear power and illustrates the policy implication of using PEFs which are inconsistent with current waste management plans.

  6. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  7. Primary energy sources and greenhouse effect; Sources d'energie primaires et effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, B. [Commission Nationale d' Evaluation des Recherches sur la Gestion des Dechets Nucleaires, 75 - Paris (France)

    2003-07-01

    In the frame of the diminution of fossil energy and climate change, the two most difficult demands to satisfy are providing electricity to megalopolises and fuels for transportation. Renewable energies have to be promoted but will not be able to replace fossil fuels in their current uses before several decades. According to the previsions for this century, carefulness is necessary to preserve the future of humanity and the environment. (author)

  8. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  9. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  10. Strategies for the design of functional MOFs: addressing energy-intensive separations

    KAUST Repository

    Eddaoudi, Mohamed

    2017-12-19

    Metal Organic Frameworks (MOFs) are a promising class of crystalline solid-state materials amenable to tailoring their porosity and functionality towards various applications. MOF reticular chemistry using the Molecular Building Block (MBB) approach offers potential to construct robust made-to-order MOFs, where desired structural and geometrical information are incorporated into the building blocks prior to the assembly process. We will discuss two recently implemented conceptual approaches facilitating the design and deliberate construction of metal–organic frameworks (MOFs), namely supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Additionally, the concept of net-coded building units (net-cBUs), where precise embedded geometrical information codes uniquely and matchlessly a selected net, as a compelling route for the rational design of MOFs will be presented. Our progress in the development of functional metal-organic frameworks (MOFs) to address some energy-intensive separations will be discussed. Namely, the successful practice of reticular chemistry affording the fabrication of various stable MOFs with controlled pore-aperture size and allowing effective separation of various gas or vapors pairs.

  11. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  12. Bottom-Up modeling, a tool for decision support for long-term policy on energy and environment - The TIMES model applied to the energy intensive industries

    International Nuclear Information System (INIS)

    Djemaa, A.

    2009-01-01

    Among the energy users in France and Europe, some industrial sectors are very important and should have a key role when assessing the final energy demand patterns in the future. The aim of our work is to apply a prospective model for the long range analysis of energy/technology choices in the industrial sector, focussing on the energy-intensive sectors. The modelling tool applied in this study is the TIMES model (family of best known MARKAL model). It is an economic linear programming model generator for local, national or multi regional energy systems, which provides a technology-rich basis for estimating energy dynamics over a long term, multi period time. We illustrate our work with nine energy-intensive industrial sectors: paper, steel, glass, cement, lime, tiles, brick, ceramics and plaster. It includes a detailed description of the processes involved in the production of industrial products, providing typical energy uses in each process step. In our analysis, we identified for each industry, several commercially available state-of-the-art technologies, characterized and chosen by the Model on the basis of cost effectiveness. Furthermore, we calculated potential energy savings, carbon dioxide emissions' reduction and we estimated the energy impact of a technological rupture. This work indicates that there still exists a significant potential for energy savings and carbon dioxide emissions' reduction in all industries. (author)

  13. Control mechanisms for battery energy storage system performing primary frequency regulation and self-consumption optimization

    NARCIS (Netherlands)

    Pliatskas Stylianidis, A.

    2016-01-01

    This report contains the design of a model for the integration of a battery energy system in a household level and its use for primary frequency regulation and self-consumption optimization. The main goal of this project was to investigate what are the possible applications and the most suitable for

  14. Optimal Offering Strategies for Wind Power in Energy and Primary Reserve Markets

    DEFF Research Database (Denmark)

    Soares, Tiago; Pinson, Pierre; Jensen, Tue Vissing

    2016-01-01

    generation from the turbines. These offering strategies aim at maximizing expected revenues from both market floors using probabilistic forecasts for wind power generation, complemented with estimated regulation costs and penalties for failing to provide primary reserve. A set of numerical examples, as well......Wind power generation is to play an important role in supplying electric power demand, and will certainly impact the design of future energy and reserve markets. Operators of wind power plants will consequently develop adequate offering strategies, accounting for the market rules...... and the operational capabilities of the turbines, e.g., to participate in primary reserve markets. We consider two different offering strategies for joint participation of wind power in energy and primary reserve markets, based on the idea of proportional and constant splitting of potentially available power...

  15. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  16. Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case

    International Nuclear Information System (INIS)

    Seck, Gondia Sokhna; Guerassimoff, Gilles; Maïzi, Nadia

    2016-01-01

    A large number of studies have been conducted on the contribution of technological progress and structural change to the evolution of aggregate energy intensity in the industrial sector. However, no analyses have been done to examine theses changes in the non-energy intensive industry in France. We analyzed their importance in French industry with respect to their energy intensity, energy costs, value added, labour and the diffusion of production sites by using data at the 3-digit level with 236 sectors. Using a new decomposition method that gives no residual, this paper attempted to examine, over 10 years from 1996 to 2005, the changes that occurred in an area that has been neglected in energy analysis. We found that structural change had an overwhelming effect on the decline of aggregate energy intensity. Furthermore, we found that the higher the level of sector disaggregation, the more significant the changes that can be attributed to structural change, due to the homogeneity of this industrial group. The results of our study show that it is important to take into account the effects of structural change in “bottom-up” modelling exercises so as to improve the accuracy of energy demand forecasting for policy-makers and scientists. - Highlights: • Defining NEI industries with a quantitative approach from relevant indicators in France. • Developing new decomposition method given in additive form with no residual in NEI. • Structural change is the overwhelming factor in improving energy performance within NEI. • Revealed consistent trend with level of sector disaggregation if homogeneous industries.

  17. Energy dependence of photon-induced L shell x-ray intensity ratios in Ta and W

    Energy Technology Data Exchange (ETDEWEB)

    Shatendra, K; Allawadhi, K L; Sood, B S

    1984-02-01

    The L shell x-ray intensity ratios have been measured for the elements Ta and W by photoionization of L shell electrons in the photon energy region 14 <= E <= 44 keV. The experimental results are compared with those calculated at the photon energies used in the present measurements. The measured values show fairly good agreement with the calculated values within the experimental uncertainties. 11 references, 7 figures.

  18. Energy dependence of photon-induced L-shell x-ray intensity ratios in some high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Shatendra, K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-12-14

    The L-shell x-ray intensity ratios in Au, Pb, Th and U at various photon energies have been measured and their energy dependence is studied. A comparison of the experimental values is made with those calculated using the x-ray emission rates and subshell photoelectric cross sections, subshell fluorescence yields and Coster-Kronig transition probabilities and fairly good agreement is observed.

  19. Energy conservation in the primary aluminum and chlor-alkali industries

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  20. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-12-01

    We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.; Schleich, J.

    The iron and steel sector is the largest industrial CO2 emitter and energy consumer in the world. Energy efficiency is key to reduce energy consumption and GHG emissions. To understand future developments of energy use in the steel sector, it is worthwhile to analyze energy efficiency developments

  2. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2013-09-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  3. Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, Jan, E-mail: junkelbach@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Botas, Pablo [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Faculty of Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg (Germany); Giantsoudi, Drosoula; Gorissen, Bram L.; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2016-12-01

    Purpose: We describe a treatment plan optimization method for intensity modulated proton therapy (IMPT) that avoids high values of linear energy transfer (LET) in critical structures located within or near the target volume while limiting degradation of the best possible physical dose distribution. Methods and Materials: To allow fast optimization based on dose and LET, a GPU-based Monte Carlo code was extended to provide dose-averaged LET in addition to dose for all pencil beams. After optimizing an initial IMPT plan based on physical dose, a prioritized optimization scheme is used to modify the LET distribution while constraining the physical dose objectives to values close to the initial plan. The LET optimization step is performed based on objective functions evaluated for the product of LET and physical dose (LET×D). To first approximation, LET×D represents a measure of the additional biological dose that is caused by high LET. Results: The method is effective for treatments where serial critical structures with maximum dose constraints are located within or near the target. We report on 5 patients with intracranial tumors (high-grade meningiomas, base-of-skull chordomas, ependymomas) in whom the target volume overlaps with the brainstem and optic structures. In all cases, high LET×D in critical structures could be avoided while minimally compromising physical dose planning objectives. Conclusion: LET-based reoptimization of IMPT plans represents a pragmatic approach to bridge the gap between purely physical dose-based and relative biological effectiveness (RBE)-based planning. The method makes IMPT treatments safer by mitigating a potentially increased risk of side effects resulting from elevated RBE of proton beams near the end of range.

  4. Linear Energy Transfer-Guided Optimization in Intensity Modulated Proton Therapy: Feasibility Study and Clinical Potential

    International Nuclear Information System (INIS)

    Giantsoudi, Drosoula; Grassberger, Clemens; Craft, David; Niemierko, Andrzej; Trofimov, Alexei; Paganetti, Harald

    2013-01-01

    Purpose: To investigate the feasibility and potential clinical benefit of linear energy transfer (LET) guided plan optimization in intensity modulated proton therapy (IMPT). Methods and Materials: A multicriteria optimization (MCO) module was used to generate a series of Pareto-optimal IMPT base plans (BPs), corresponding to defined objectives, for 5 patients with head-and-neck cancer and 2 with pancreatic cancer. A Monte Carlo platform was used to calculate dose and LET distributions for each BP. A custom-designed MCO navigation module allowed the user to interpolate between BPs to produce deliverable Pareto-optimal solutions. Differences among the BPs were evaluated for each patient, based on dose–volume and LET–volume histograms and 3-dimensional distributions. An LET-based relative biological effectiveness (RBE) model was used to evaluate the potential clinical benefit when navigating the space of Pareto-optimal BPs. Results: The mean LET values for the target varied up to 30% among the BPs for the head-and-neck patients and up to 14% for the pancreatic cancer patients. Variations were more prominent in organs at risk (OARs), where mean LET values differed by a factor of up to 2 among the BPs for the same patient. An inverse relation between dose and LET distributions for the OARs was typically observed. Accounting for LET-dependent variable RBE values, a potential improvement on RBE-weighted dose of up to 40%, averaged over several structures under study, was noticed during MCO navigation. Conclusions: We present a novel strategy for optimizing proton therapy to maximize dose-averaged LET in tumor targets while simultaneously minimizing dose-averaged LET in normal tissue structures. MCO BPs show substantial LET variations, leading to potentially significant differences in RBE-weighted doses. Pareto-surface navigation, using both dose and LET distributions for guidance, provides the means for evaluating a large variety of deliverable plans and aids in

  5. Self magnetic field effects on energy deposition by intense relativistic electron beams

    International Nuclear Information System (INIS)

    Nardi, E.; Peleg, E.; Zinamon, Z.

    1977-01-01

    The effect of the penetration of the self magnetic field of an intense relativsistic electron beam on the process of beam-target interaction is calculated. The diffusion of the magnetic field and the hydrodynamic expansion of the target are dynamically taken into account. It is found that at beam intensities of interest for pellet fusion considerable range shortening occurs by magnetic stopping. (author)

  6. The implications of the historical decline in US energy intensity for long-run CO2 emission projections

    International Nuclear Information System (INIS)

    Sue Wing, Ian; Eckaus, Richard S.

    2007-01-01

    This paper analyzes the influence of the long-run decline in US energy intensity on projections of energy use and carbon emissions to the year 2050. We build on our own recent work which decomposes changes in the aggregate US energy-GDP ratio into shifts in sectoral composition (structural change) and adjustments in the energy demand of individual industries (intensity change), and identifies the impact on the latter of price-induced substitution of variable inputs, shifts in the composition of capital and embodied and disembodied technical progress. We employ a recursive-dynamic computable general equilibrium (CGE) model of the US economy to analyze the implications of these findings for future energy use and carbon emissions. Comparison of the simulation results against projections of historical trends in GDP, energy use and emissions reveals that the range of values for the rate of autonomous energy efficiency improvement (AEEI) conventionally used in CGE models is consistent with the effects of structural changes at the sub-sector level, rather than disembodied technological change. Even so, our results suggest that US emissions may well grow faster in the future than in the recent past

  7. Specific features of energy and spatial distribution of primary knocked-out atoms in monocrystals

    International Nuclear Information System (INIS)

    Taratin, A.M.; Vorob'ev, S.A.

    1978-01-01

    By simulation trajectories of 0.2 MeV protons in 1 μm thick Al monocrystal, the energy and spatial distributions of primary atoms knocked out by the protons (PKA) have been studied. Different orientations of the incident beam axis relative to the densely packed direction in the case of ''quasichanneling'' and ''chaotic'' scattering of particles by the crystal have been researched. The depth dependence of the number of generated PKA, their distribution in the plane transverse to the preferred direction, and the energy spectrum of PKA have been obtained. It is shown that the PKA volume density is higher than that obtained using evaluations not accounting for the crystalline structure, and the energy spectrum contains more low energy PKAs. A concept of the cross section of the PKA production on an atomic chain is introduced for ipterpretation of the data obtained

  8. Clinical application of intensity and energy modulated radiotherapy with photon and electron beams

    International Nuclear Information System (INIS)

    Xiangkui Mu

    2005-01-01

    In modern, advanced radiotherapy (e.g. intensity modulated photon radiotherapy, IMXT) the delivery time for each fraction becomes prolonged to 10-20 minutes compared with the conventional, commonly 2-5 minutes. The biological effect of this prolongation is not fully known. The large number of beam directions in IMXT commonly leads to a large integral dose in the patient. Electrons would reduce the integral dose but are not suitable for treating deep-seated tumour, due to their limited penetration in tissues. By combining electron and photon beams, the dose distributions may be improved compared with either used alone. One obstacle for using electron beams in clinical routine is that there is no available treatment planning systems that optimise electron beam treatments in a similar way as for IMXT. Protons have an even more pronounced dose fall-off, larger penetration depth and less penumbra widening than electrons and are therefore more suitable for advanced radiotherapy. However, proton facilities optimised for advanced radiotherapy are not commonly available. In some instances electron beams may be an acceptable surrogate. The first part of this study is an experimental in vitro study where the situation in a tumour during fractionated radiotherapy is simulated. The effect of the prolonged fraction time is compared with the predictions by radiobiological models. The second part is a treatment planning study to analyse the mixing of electron and photon beams for at complex target volume in comparison with IMXT. In the next step a research version of an electron beam optimiser was used for the improvement of treatment plans. The aim was to develop a method for translating crude energy and intensity matrices for optimised electrons into a deliverable treatment plan without destroying the dose distribution. In the final part, different methods of treating the spinal canal in medulloblastoma were explored in a treatment planning study that was evaluated with

  9. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  10. Evidence of direct cardiac damage following high-intensity exercise in chronic energy restriction: A case report and literature review.

    Science.gov (United States)

    Baird, Marianne F; Grace, Fergal; Sculthorpe, Nicholas; Graham, Scott M; Fleming, Audrey; Baker, Julien S

    2017-07-01

    Following prolonged endurance events such as marathons, elevated levels of cardiospecific biomarkers are commonly reported. Although transiently raised levels are generally not considered to indicate clinical myocardial damage, comprehension of this phenomenon remains incomplete. The popularity of high-intensity interval training highlights a paucity of research measuring cardiac biomarker response to this type of exercise. This a posteriori case report discusses the elevation of cardiac troponins (cTn) associated with short interval, high-intensity exercise. In this case report, an apparently healthy 29-year-old recreationally active female presented clinically raised cardiac troponin I (cTnI) levels (>0.04 ng/mL), after performing high-intensity cycle ergometer sprints. As creatine kinase (CK) is expressed by multiple organs (e.g., skeletal muscle, brain, and myocardium), cTnI assays were performed to determine any changes in total serum CK levels not originating from skeletal muscle damage. A posteriori the individual's daily energy expenditure indicated chronically low-energy availability. Psychometric testing suggested that the individual scored positive for disordered eating, highly for fatigue levels, and low in mental health components. The current case report provides novel evidence of elevated cTnI occurring as a result of performing short duration, high intensity, cycle ergometer exercise in an individual with self-reported chronically depleted energy balance. A schematic to identify potentially "at risk" individuals is presented. Considering this as a case report, results cannot be generalized; however, the main findings suggest that individuals who habitually restrict their calorie intake below their bodies' daily energy requirements, may have elevated biomarkers of exercise induced myocardial stress from performing high-intensity exercise.

  11. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Meeting ambitious goals of transition to distributed and environmentally-friendly renewable energy generation can be difficult to achieve without energy storage systems due to technical and economical challenges. Moreover, energy storage systems have a high potential of not only smoothing and imp...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...

  12. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  13. The primary exposure standard of ENEA for medium energy X-ray: characteristics and measurements procedures

    International Nuclear Information System (INIS)

    Laitano, R.F.; Toni, M.P.

    1983-01-01

    A description is given of a medium energy X-ray free-air chamber used, as primary exposure standard, at the Laboratorio di Metrologia delle Radiazioni Ionizzanti of the Enea in Italy. The main features of an X-ray facility for the production of radiation between 40 KeV and 400 KeV are also described. The measurements procedures are then analyzed with respect to the realization of the exposure unit in the relevant energy range. Finally the results of some international comparisons are reported

  14. The improvement gap in energy intensity: Analysis of China's thirty provincial regions using the improved DEA (data envelopment analysis) model

    International Nuclear Information System (INIS)

    Li, Ke; Lin, Boqiang

    2015-01-01

    Enacting a reduction target for energy intensity in provinces has become an important issue for the central and local governments in China. But the energy intensity index has provided little information about energy efficiency improvement potential. This study re-estimates the TFEE (total-factor energy efficiency) using an improved DEA (data envelopment analysis) model, which combines the super-efficiency and sequential DEA models to avoid “discriminating power problem” and “technical regress”, and then used it to calculated the TEI (target for energy intensity). The REI (improvement potential in energy intensity) is calculated by the difference between TEI and the actual level of energy intensity. In application, we calculate the REIs for different provinces under the metafrontier and group-frontier respectively, and their ratios are the technology gaps for energy use. The main result shows that China's REIs fluctuate around 21%, 7.5% and 12% for Eastern, Central and Western China respectively; and Eastern China has the highest level of energy technology. These findings reveal that energy intensities of China's provinces do not converge to the optimal level. Therefore, the target of energy-saving policy for regions should be enhancing the energy efficiency of the inefficient ones, and thereby reduce the gap for improvement in energy intensity across regions. - Highlights: • We present an improved DEA model to calculate the TFEE (total-factor energy efficiency). • The improved TFEE combines with a meta-frontier analysis. • We estabilish a new indicator for improvement gap in energy intensity. • Improvement in energy intensity of regions in China is analysed

  15. High energy pair production in arbitrary configuration of intense electromagnetic fields

    International Nuclear Information System (INIS)

    Ayasli, S.; Hacinliyan, A.

    1978-01-01

    The photon attenuation coefficient for pair production in intense electric and magnetic fields of arbitrary confiquration is derived. The results are applied to a cascade calculation of electromagnetic processes in pulsars. (author)

  16. Assessing the extent and intensity of energy poverty using Multidimensional Energy Poverty Index: Empirical evidence from households in India

    International Nuclear Information System (INIS)

    Sadath, Anver C.; Acharya, Rajesh H.

    2017-01-01

    In this paper, we have made a comprehensive assessment of the extent and various socio-economic implications of energy poverty in India. Amartya Sens's capability approach to development underpins the analysis of household-level data taken from the India Human Development Survey-II (IHDS-II), 2011-12 using the Multidimensional Energy Poverty Index (MEPI). The overall results show that energy poverty is widespread in India and the existence of energy poverty also coincides with the other forms of deprivations such as income poverty and social backwardness. For example, Dalits (Lower Caste) and Adivasis (Tribal) are found to be extremely energy poor compared to the other social groups in India. The results also reveal that it is the responsibility of women to manage the domestic chores such as collection of firewood and making of dung cake in traditional Indian households. Inefficient use of such biomass fuels is found to cause health hazards. - Highlights: • Energy poverty in India is assessed based on Multidimensional Energy Poverty Index (MEPI). • Energy poverty is widespread in India with large geographical variation across states. • Energy poverty coincides with socioeconomic backwardness of people. • Energy poverty is associated with health hazards like Asthma and Tuberculosis. • Access to energy may increase labor market participation of women.

  17. Is the primary energy spectrum around the knee a statistical game?

    International Nuclear Information System (INIS)

    Kempa, J.

    2001-01-01

    The present state of research of the shape of the energy spectrum of primary cosmic ray nuclei and the chemical composition in the region of the so-called, knee, and beyond is highly unsatisfactory. It was not very successful when using extensive air showers. In the present paper an attempt is made to explain what is the cause of such a situation. The experimental results as to which there is no doubt that they were wrongly interpreted, will be indicated

  18. Analysis of energy poverty intensity from the perspective of the regional administration: Empirical evidence from households in southern Europe

    International Nuclear Information System (INIS)

    Scarpellini, Sabina; Rivera-Torres, Pilar; Suárez-Perales, Inés; Aranda-Usón, Alfonso

    2015-01-01

    The current economic situation has increased the number of households in Europe experiencing restrictions and/or limitations of affordability of energy services, demonstrating the urgent need to intervene in those extreme cases in which households suffer the daily consequences of what is internationally defined as energy poverty. In such a context, this paper presents the results obtained in a case study characterising a sample of 615 households with demonstrated energy poverty in the region of Aragón (Spain). In parallel, the intensity of energy poverty in the studied cases is examined by measuring the percentage of energy expenditures with respect to income in the households that suffer it, and a descriptive analysis of the main determinants of energy poverty in the homes studied is presented as well as the policy implication at regional level. - Highlights: • New approach to energy poverty through the collaboration with social services. • Regular data collection systems on energy poverty are needed at the regional level. • Household's conditions in accredited energy poverty have been measured. • A comprehensive analysis of the energy poverty at Regional level in the Southern Europe.

  19. The Deployment of Low Carbon Technologies in Energy Intensive Industries: A Macroeconomic Analysis for Europe, China and India

    Directory of Open Access Journals (Sweden)

    Stefan Nabernegg

    2017-03-01

    Full Text Available Industrial processes currently contribute 40% to global CO2 emissions and therefore substantial increases in industrial energy efficiency are required for reaching the 2 °C target. We assess the macroeconomic effects of deploying low carbon technologies in six energy intensive industrial sectors (Petroleum, Iron and Steel, Non-metallic Minerals, Paper and Pulp, Chemicals, and Electricity in Europe, China and India in 2030. By combining the GAINS technology model with a macroeconomic computable general equilibrium model, we find that output in energy intensive industries declines in Europe by 6% in total, while output increases in China by 11% and in India by 13%. The opposite output effects emerge because low carbon technologies lead to cost savings in China and India but not in Europe. Consequently, the competitiveness of energy intensive industries is improved in China and India relative to Europe, leading to higher exports to Europe. In all regions, the decarbonization of electricity plays the dominant role for mitigation. We find a rebound effect in China and India, in the size of 42% and 34% CO2 reduction, respectively, but not in Europe. Our results indicate that the range of considered low-carbon technology options is not competitive in the European industrial sectors. To foster breakthrough low carbon technologies and maintain industrial competitiveness, targeted technology policy is therefore needed to supplement carbon pricing.

  20. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    Science.gov (United States)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  1. 78 FR 13566 - Energy Conservation Program for High-Intensity Discharge Lamps: Public Meeting and Availability...

    Science.gov (United States)

    2013-02-28

    ...). III. Summary of the Analyses DOE conducted in-depth technical analyses in the following areas for the... to the LCC and PBP analysis and NIA. In addition to these analyses, DOE has begun preliminary work on... Technical Support Document AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy...

  2. Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass

    NARCIS (Netherlands)

    de Hert, Stefan G.; van der Linden, Philippe J.; Cromheecke, Stefanie; Meeus, Roel; ten Broecke, Pieter W.; de Blier, Ivo G.; Stockman, Bernard A.; Rodrigus, Inez E.

    2004-01-01

    BACKGROUND: Volatile anesthetics protect the myocardium during coronary surgery. This study hypothesized that the use of a volatile agent in the anesthetic regimen would be associated with a shorter intensive care unit (ICU) and hospital length of stay (LOS), compared with a total intravenous

  3. New primary energy source by thorium molten-salt reactor technology

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kato, Yoshio; Furuhashi, Akira; Numata, Hiroo; Mitachi, Koushi; Yoshioka, Ritsuo; Sato, Yuzuru; Arakawa, Kazuto

    2005-01-01

    Among the next 30 years, we have to implement a practical measure in the global energy/environmental problems, solving the followings: (1) replacing the fossil fuels without CO 2 emission, (2) no severe accidents, (3) no concern on military, (4) minimizing wastes, (5) economical, (6) few R and D investment and (7) rapid/huge global application supplying about half of the total primary energy till 50 years later. For this purpose the following system was proposed: THORIMS-NES [Thorium Molten-Salt Nuclear Energy Synergetic System], which is composed of (A) simple fission Molten-Salt power stations (FUJI), and (B) fissile-producing Accelerator Molten-Salt Breeder (AMSB). It has been internationally prepared a practical Developmental Program for its huge-size industrialization of Th breeding fuel cycle to produce a new rational primary energy. Here it is explained the social meaning, the conceptual system design and technological bases, especially, including the molten fluoride salt technology, which was developed as the triple-functional medium for nuclear-engineering, heat-transfer and chemical engineering. The complex function of this system is fully achieved by the simplified facility using a single phase molten-salt only. (author)

  4. Presidential: an intense lobbying. The energy transition in the presidential campaign

    International Nuclear Information System (INIS)

    Mary, Olivier; Signoret, Stephane

    2017-01-01

    A first article proposes a discussed overview of proposals made by various think tanks, professional bodies or non governmental organisations regarding energy savings, energy transition, climate policies, and mobility. It outlines how contrasted these opinions can be. A second article publishes answers made by the five main candidates (F. Fillon, M. Le Pen, E. Macron, J.-L. Melenchon, and B. Hamon) to the French presidential election on different themes: climate policy, reduction of energy consumption, development of renewable energies, energy transition and social dynamics. A set of more precise questions (with a choice between three simple answers) has also been proposed to the candidates. These questions related to the precautionary principle, means awarded to public bodies and agencies, energy tariff regulation, the climate-energy contribution, the issue of air quality, the promotion of gas-powered vehicles, the decrease of speed limit on roads and motorways, policy of dwelling thermal renewal, the energy saving certificate, the development of heat and cold networks, the mandatory energy audit, the acceptability of renewable energy projects, how to develop biomass energy, the interest of farm methanization, the development of shale gas in France, the shutting down of Fessenheim, the nuclear plant lifetime, perspectives for electricity and heat storage, and the emergence of electricity self-consumption

  5. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  6. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  7. Experimental results of beryllium exposed to intense high energy proton beam pulses

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Butcher, M; Guinchard, M; Calviani, M; Losito, R; Roberts, S; Kuksenko, V; Atherton, A; Caretta, O; Davenne, T; Densham, C; Fitton, M; Loveridge, J; O'Dell, J

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and co...

  8. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  9. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  10. Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building

    International Nuclear Information System (INIS)

    Dodoo, Ambrose; Gustavsson, Leif; Sathre, Roger

    2012-01-01

    Highlights: ► The effect of thermal mass on life cycle primary energy balance of concrete and wood building is analyzed. ► A concrete building has slightly lower space heating demand than a wood alternative. ► Still, a wood building has a lower life cycle primary energy use than a concrete alternative. ► The influence of thermal mass on space heating energy use for buildings in Nordic climate is small. -- Abstract: In this study we analyze the effect of thermal mass on space heating energy use and life cycle primary energy balances of a concrete- and a wood-frame building. The analysis includes primary energy use during the production, operation, and end-of-life phases. Based on hour-by-hour dynamic modeling of heat flows in building mass configurations we calculate the energy saving benefits of thermal mass during the operation phase of the buildings. Our results indicate that the energy savings due to thermal mass is small and varies with the climatic location and energy efficiency levels of the buildings. A concrete-frame building has slightly lower space heating demand than a wood-frame alternative, due to the higher thermal mass of concrete-based materials. Still, a wood-frame building has a lower life cycle primary energy balance than a concrete-frame alternative. This is due primarily to the lower production primary energy use and greater bioenergy recovery benefits of the wood-frame buildings. These advantages outweigh the energy saving benefits of thermal mass. We conclude that the influence of thermal mass on space heating energy use for buildings located in Nordic climate is small and that wood-frame buildings with cogeneration based district heating would be an effective means of reducing primary energy use in the built environment.

  11. Resource analysis of the Chinese society 1980-2002 based on energy-Part 5: Resource structure and intensity

    International Nuclear Information System (INIS)

    Chen, G.Q.; Chen, B.

    2007-01-01

    This paper is the continuation of the fourth part on fishery and rangeland. The total resource inflow to the Chinese society from 1980 to 2002 is investigated in four parts published afore. The total resource energy input corresponds to GDP is presented in comparison with the purchasing power parity in this paper. The structure of the resource energy inflow is also outlined. Finally, a novel concept referred to as resource intensity is suggested to serve as a basic indicator to illustrate the real status of the economic development in China

  12. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  13. Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Worrell, Ernst

    2013-01-01

    Additional efforts will be needed by European countries to improve the energy efficiency, as with current trends the 20% objective will be missed. Small and medium-sized enterprises (SMEs) manufacturing sector is a promising field, as SMEs are less energy-efficient than larger enterprises. Several studies investigated the barriers to the diffusion of technologies and practices for industrial energy efficiency, but little attention has been paid to understand the factors affecting the perception of such barriers by SMEs. In this multiple case-study, we have investigated 20 Primary Metal manufacturing SMEs in Northern Italy. Economic and information barriers are perceived as the major issues. Interestingly, firm's size, innovativeness of the market in which enterprises operate, as well as product and process innovation are factors affecting barriers to energy efficiency. Differences have been observed within SMEs, especially for information and competence-related barriers. In particular, a more innovative external context in which enterprises operate and a greater production process complexity seem to reduce barriers. Moreover, more product innovative enterprises seem to have a lower perception of behavioral and technology-related barriers. The results of this exploratory investigation provide useful suggestions for policy design and further research on industrial energy efficiency. - highlights: • Economic and Information emerge as the most relevant barriers to energy efficiency. • Market, product and process innovation seem relevant factors affecting barriers. • Firm's size is a factor affecting barriers' perception

  14. Electric vehicles, primary energy sources and CO2 emissions: Romanian case study

    International Nuclear Information System (INIS)

    Varga, Bogdan Ovidiu

    2013-01-01

    Starting on the 24th of April, 2011, the Romanian government offered to subsidize all potential buyers of electric vehicles, both private and corporate, offering 25% off of the retail price up to 5000 euros with no pollution tax. The Romanian government encourages all governmental institutions to consider buying electric vehicles when deciding to change their existing vehicles stock. This decision is strictly related to the Romanian government's approval of a long-term Energy Strategy, building on the National Energy Strategy for the Medium Term. The government's strategy emphasizes increasing energy efficiency and boosting renewable energy use. The first electric vehicles distributed in the Romanian market are the Citroen-C-Zero, the Mitsubishi i-MiEV, the Renault Kangoo Z.E. and the Renault Fluence Z.E. The energy consumption of these vehicles was analyzed, considering the CO 2 generation characteristics of a Romanian electric power plant. -- Highlights: ► Tax and governmental support for electrical vehicles in Romania. ► Evaluate the CO 2 pollution of the electrical vehicles in Romania's case. ► Comprehensive understanding of the influence of primary energy source over the pollution of an electrical vehicle. ► Approach to decrees the pollution of the electrical vehicles.

  15. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    Science.gov (United States)

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  16. Asymmetries in angular distributions of nucleon emission intensity in high energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    Asymmetry in nucleon emission intensity angular distributions relatively to the hadron deflection plane and to two planes normal to it and related to it uniquely is analyzed, using appropriate experimental data on pion-xenon nucleus collisions at 3.5 GeV/c momentum. Quantative characteristics of the asymmetries found are presented in tables and on figures

  17. Proceedings of solar energy storage options. Volume I. An intensive workshop on thermal energy storage for solar heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Separate abstracts were prepared for the 28 papers presented. Panel chairmen's summaries are included; the complete panel reports will be published in Volume II of the Solar Energy Storage Options Workshop proceedings. (WHK)

  18. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  19. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  20. Exercising for Life? Energy Metabolism, Body Composition, and Longevity in Mice Exercising at Different Intensities

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Daan, Serge; Garland, Theodore; Visser, G. Henk; Garland Jr., Theodore

    2010-01-01

    Studies that have found a positive influence of moderate, non-exhaustive exercise on life expectancy contradict the rate-of-living theory, which predicts that high energy expenditure in exercising animals should shorten life. We investigated effects of exercise on energy metabolism and life span in

  1. L X-ray energy shifts and intensity ratios in tantalum with C and N ions

    Indian Academy of Sciences (India)

    charged particles. Study of atomic ... authors [1–10] have observed that the X-ray energy shifts in heavy ion collision process are relative to the ... and observed the L X-ray energy shifts of different L X-ray components in some high Z elements.

  2. Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces

    Science.gov (United States)

    Kartavtcev, S.; Matveev, S.; Neshporenko, E.

    2018-03-01

    Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.

  3. Energy saving opportunity with variable speed drive in primary air-handling unit

    International Nuclear Information System (INIS)

    Li, J.S.M.

    2007-01-01

    Air conditioners used in the court buildings in Kowloon City, Hong Kong were retrofitted with variable speed drives in the primary air handling unit (PAU) in an effort to reduce energy consumption. The initial effect of this retrofit was investigated along with the feasibility of using a carbon dioxide (CO 2 ) based demand control ventilation to reduce energy consumption while optimizing indoor air quality. The air flow in most air conditioning fans is either constant or controlled by motorized inlet guide vanes. Although this controls the flow and may reduce the load on the fan, this constriction adds an energy loss, resulting in inefficient operation. Variable speed drives should be used on the PAU in order to maintain system efficiency. As the speed of the fans are reduced, the flow will decrease proportionally, while the power required by the fan will reduce the cube of the speed. Therefore, if the fresh air supply can be controlled by reducing the speed of the fan motor, then flow control would be more efficient. The energy saving associated with variable fresh air supply flow rate was evaluated along with the cost to building owners. This paper presented the results of the potential energy and cost savings associated with this retrofit, and included implementation cost and pay back period. It was estimated that about 20 per cent of power consumption and electricity costs can be saved per year, with a simple payback period of 2 years. 7 refs., 3 tabs., 3 figs

  4. Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach

    International Nuclear Information System (INIS)

    Farreny, Ramon; Gabarrell, Xavier; Rieradevall, Joan

    2008-01-01

    The aim of this paper is to describe the energetic metabolism of a retail park service system under an integrative approach. Energy flow accounting was applied to a case study retail park in Spain, representative of the sector across Europe, after redefining the functional unit to account for both direct energy use (buildings, gardens and outdoor lighting) and indirect energy use (employee and customer transportation). A life cycle assessment (LCA) was then undertaken to determine energy global warming potential (GWP) and some energy intensity and greenhouse gases (GHG) emission indicators were defined and applied. The results emphasise the importance of service systems in global warming policies, as a potential emission of 9.26 kg CO 2 /purchase was obtained for the case study, relating to a consumption of 1.64 KOE of energy, of which 21.9% was spent on buildings and 57.9% on customer transportation. Some strategies to reduce these emissions were considered: increased supply, energy efficiency, changes in distribution of modes of transport, changes in location and changes in the mix of land uses. A combination of all of these elements in a new retail park could reduce GHG emissions by more than 50%, as it is planning strategies, which seem to be the most effective. (author)

  5. Generation of narrow energy spread ion beams via collisionless shock waves using ultra-intense 1 um wavelength laser systems

    Science.gov (United States)

    Albert, Felicie; Pak, A.; Kerr, S.; Lemos, N.; Link, A.; Patel, P.; Pollock, B. B.; Haberberger, D.; Froula, D.; Gauthier, M.; Glenzer, S. H.; Longman, A.; Manzoor, L.; Fedosejevs, R.; Tochitsky, S.; Joshi, C.; Fiuza, F.

    2017-10-01

    In this work, we report on electrostatic collisionless shock wave acceleration experiments that produced proton beams with peak energies between 10-17.5 MeV, with narrow energy spreads between Δ E / E of 10-20%, and with a total number of protons in these peaks of 1e7-1e8. These beams of ions were created by driving an electrostatic collisionless shock wave in a tailored near critical density plasma target using the ultra-intense ps duration Titan laser that operates at a wavelength of 1 um. The near critical density target was produced through the ablation of an initially 0.5 um thick Mylar foil with a separate low intensity laser. A narrow energy spread distribution of carbon / oxygen ions with a similar velocity to the accelerated proton distribution, consistent with the reflection and acceleration of ions from an electrostatic field, was also observed. This work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development program under project 15-LW-095, and the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.

  6. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  7. Estimating energy intensity and CO{sub 2} emission reduction potentials in the manufacturing sectors in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Wangskarn, P.; Khummongkol, P.; Schrattenholzer, L. [and others

    1996-12-31

    The final energy consumption in Thailand increased at about ten percent annually within the last 10 years. To slow the energy demand growth rate while maintaining the country`s economic advance and environmental sustainability, the Energy Conservation Promotion Act (ECPA) was adopted in 1992. With this Act, a comprehensive Energy Conservation Program (ENCON) was initiated. ENCON commits the government to promoting energy conservation, to developing appropriate regulations, and to providing financial and organizational resources for program implementation. Due to this existing ENCON program a great benefit is expected not only to reducing energy consumption, but also to decreasing GHGs emissions substantially. This study is a part of the ENCON research program which was supported by the German Federal Government under the program called Prompt-Start Measures to Implement the U.N. Framework Convention on Climate Change (FCCC). The basic activities carried out during the project included (1) An assessment of Thailand`s total and specific energy consumption in the industrial sectors and commercial buildings; (2) Identification of existing and candidate technologies for GHG emission reduction and energy efficiency improvements in specific factories and commercial buildings; and (3) Identification of individual factories and commercial buildings as candidates for detailed further study. Although the energy assessment had been carried out for the commercial buildings also, this paper will cover only the work on the manufacturing sector. On the basis of these steps, 14 factories were visited by the project team and preliminary energy audits were performed. As a result, concrete measures and investments were proposed and classified into two groups according to their economic characteristics. Those investments with a payback time of less than four years were considered together in a Moderate scenario, and those with longer payback times in an Intensive scenario.

  8. A participatory approach to sustainable energy strategy development in a carbon-intensive jurisdiction: The case of Nova Scotia

    International Nuclear Information System (INIS)

    Adams, Michelle; Wheeler, David; Woolston, Genna

    2011-01-01

    The need for governments to reduce the exposure of energy consumers to future increases in fossil fuel prices places urgent pressure on policy-makers to deliver fundamental transformations in energy strategies, particularly in jurisdictions with high dependency on fossil fuel sources (). This transformation is unlikely without a high level of stakeholder engagement in the policy development process. This paper describes two policy development processes recently undertaken in Nova Scotia in which the inclusion of stakeholder views was central to the approach. The first delivered a new institutional framework for electricity energy efficiency involving the inception of an independent performance-based administrator. The second required the delivery of a strategy to significantly increase renewable energy generation in the Province. It involved recommendations for changes in institutional arrangements, financial incentives and technological options. This process was followed by new commitments to renewable energy developments, new infrastructure for the importation of hydro-electricity, and the announcement of FITs for ocean energy. In both cases, recommendations were made by an independent academic institution, and the Government responded directly to a majority of recommendations. The paper concludes with a discussion of lessons learned and the implications for future energy policy making in carbon-intensive jurisdictions. - Research highlights: → Fundamental transformations in energy policy require stakeholder engagement to be successful. → We describe two policy development processes where stakeholder views were key considerations. → The first delivered a new institutional framework for electricity energy efficiency. → The second delivered a strategy to significantly increase renewable energy generation. → In each case, the Government directly responded to the majority of recommendations.

  9. A participatory approach to sustainable energy strategy development in a carbon-intensive jurisdiction: The case of Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michelle, E-mail: adamsm@dal.c [School for Resource and Environmental Studies, Dalhousie University, 6100 University Avenue, Suite 5010, Halifax, NS, B3H 3J5 (Canada); Wheeler, David [Plymouth Business School, University of Plymouth, Cookworthy Building, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Woolston, Genna [School for Resource and Environmental Studies, Dalhousie University, 6100 University Avenue, Suite 5010, Halifax, NS, B3H 3J5 (Canada)

    2011-05-15

    The need for governments to reduce the exposure of energy consumers to future increases in fossil fuel prices places urgent pressure on policy-makers to deliver fundamental transformations in energy strategies, particularly in jurisdictions with high dependency on fossil fuel sources (). This transformation is unlikely without a high level of stakeholder engagement in the policy development process. This paper describes two policy development processes recently undertaken in Nova Scotia in which the inclusion of stakeholder views was central to the approach. The first delivered a new institutional framework for electricity energy efficiency involving the inception of an independent performance-based administrator. The second required the delivery of a strategy to significantly increase renewable energy generation in the Province. It involved recommendations for changes in institutional arrangements, financial incentives and technological options. This process was followed by new commitments to renewable energy developments, new infrastructure for the importation of hydro-electricity, and the announcement of FITs for ocean energy. In both cases, recommendations were made by an independent academic institution, and the Government responded directly to a majority of recommendations. The paper concludes with a discussion of lessons learned and the implications for future energy policy making in carbon-intensive jurisdictions. - Research highlights: {yields} Fundamental transformations in energy policy require stakeholder engagement to be successful. {yields} We describe two policy development processes where stakeholder views were key considerations. {yields} The first delivered a new institutional framework for electricity energy efficiency. {yields} The second delivered a strategy to significantly increase renewable energy generation. {yields} In each case, the Government directly responded to the majority of recommendations.

  10. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  11. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  12. Spectrally and Energy Efficient OFDM (SEE-OFDM) for Intensity Modulated Optical Wireless Systems

    OpenAIRE

    Lam, Emily; Wilson, Sarah Kate; Elgala, Hany; Little, Thomas D. C.

    2015-01-01

    Spectrally and energy efficient orthogonal frequency division multiplexing (SEE-OFDM) is an optical OFDM technique based on combining multiple asymmetrically clipped optical OFDM (ACO-OFDM) signals into one OFDM signal. By summing different components together, SEE-OFDM can achieve the same spectral efficiency as DC-biased optical OFDM (DCO-OFDM) without an energy-inefficient DC-bias. This paper introduces multiple methods for decoding a SEE-OFDM symbol and shows that an iterative decoder wit...

  13. Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Kooy, Hanne M. [F. H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-01

    Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.

  14. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial

  15. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.

    Science.gov (United States)

    Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-11-01

    In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  16. Development of a high energy resolution magnetic bolometer for the determination of photon emission intensities by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Rodrigues, M.

    2007-12-01

    In this research thesis, a first chapter describes the metrological difficulties for the determination of radionuclide photon emission intensities. Then, it discusses the understanding and the required tools for the computing of a magnetic bolometer signal with respect to the different operation parameters and to the sensor geometry. The author describes the implementation of the experimental device and its validation with a first sensor. The new sensor is then optimised for the measurement of photon emission intensities with a good efficiency and a theoretical energy resolution less than 100 eV up to 200 keV. The sensor's detection efficiency and operation have been characterized with a 133 Ba source. The author finally presents the obtained results

  17. Measurement of Auger electron energies and intensities from muonic transitions in silver

    International Nuclear Information System (INIS)

    Callies, R.; Daniel, H.; Egidy, T. von; Hagn, H.; Hartmann, F.J.; Neumann, W.

    1983-01-01

    There is now general agreement that Coulomb capture of mesonic particles and deexcitation of the formed exotic atom must be accompanied by Auger electron emission. Auger electrons from a thin silver foil were counted by Si-pn-junction detectors with an extraordinarily thin dead layer. Lines could be resolved and intensity ratios determined. Two types of experiments were performed simultaneously, (I) with the slow-muon telescope in coincidence with any e - detector of the array and (II) as above but with an additional Ag X-ray coincidence from a Ge(Li) detector placed close to the target. (Auth.)

  18. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  19. Life cycle primary energy use and carbon emission of an eight-storey wood-framed apartment building

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Leif; Joelsson, Anna; Sathre, Roger [Ecotechnology, Department of Engineering and Sustainable Development, Mid Sweden University, 83125 Oestersund (Sweden)

    2010-02-15

    In this study the life cycle primary energy use and carbon dioxide (CO{sub 2}) emission of an eight-storey wood-framed apartment building are analyzed. All life cycle phases are included, including acquisition and processing of materials, on-site construction, building operation, demolition and materials disposal. The calculated primary energy use includes the entire energy system chains, and carbon flows are tracked including fossil fuel emissions, process emissions, carbon stocks in building materials, and avoided fossil emissions due to biofuel substitution. The results show that building operation uses the largest share of life cycle energy use, becoming increasingly dominant as the life span of the building increases. The type of heating system strongly influences the primary energy use and CO{sub 2} emission; a biomass-based system with cogeneration of district heat and electricity achieves low primary energy use and very low CO{sub 2} emissions. Using biomass residues from the wood products chain to substitute for fossil fuels significantly reduces net CO{sub 2} emission. Excluding household tap water and electricity, a negative life cycle net CO{sub 2} emission can be achieved due to the wood-based construction materials and biomass-based energy supply system. This study shows the importance of using a life cycle perspective when evaluating primary energy and climatic impacts of buildings. (author)

  20. Relation between field energy and RMS emittance in intense particle beams

    International Nuclear Information System (INIS)

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs

  1. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  2. Humidified micro gas turbines for domestic users: An economic and primary energy savings analysis

    International Nuclear Information System (INIS)

    Montero Carrero, Marina; De Paepe, Ward; Bram, Svend; Musin, Frédéric; Parente, Alessandro; Contino, Francesco

    2016-01-01

    Micro Gas Turbines (mGTs) offer valuable advantages for small-scale Combined Heat and Power (CHP) production compared to reciprocating Internal Combustion Engines (ICEs): lower maintenance costs per kWh_e, cleaner exhaust, lower vibration levels and concentration of the residual heat in a single source (the exhaust gases). Nevertheless, mGTs have lower electrical efficiencies, fact that has prevented them from penetrating in the CHP market. Hot liquid water injection—by means of a saturation tower within the micro Humid Air Turbine (mHAT) cycle—allows both improving the flexibility of heat production and the electrical efficiency of mGTs; two qualities that if enhanced would increase the economic feasibility of the technology. Although the advantages of mHAT technology have been proven from a thermodynamic point of view, its economic performance has not yet been fully investigated. This paper presents a comparison of the economic profitability and the primary energy savings of an mGT, an ICE and an mHAT unit operating in real network conditions. Our aim is to investigate whether the increase in flexibility and electrical efficiency, achieved when transforming an mGT into an mHAT, allows this technology to economically outperform ICEs. Results show that the three units are viable in scenarios with high electricity and low natural gas prices. For the cases in which investment is feasible, the revenues with mHAT are the highest: thanks to their flexibility in heat generation, mHAT units are able to run all year long. On the other hand, the greatest primary energy savings are achieved with ICE units—which have the highest overall efficiencies—while mHAT savings are substantially lower. - Highlights: • We analyse the economics and primary energy savings of an ICE, an mGT and an mHAT. • We consider hourly heat and electricity demand profiles and 25 price scenarios. • Our analysis is carried out for two domestic users with distinctive demand profiles. • If

  3. Electricity of nuclear origin and primary and end-use energy consumption; Electricite nucleaire et consommation d'energie primaire et finale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    In France, the electricity of nuclear origin corresponds to about 40% of the primary energy consumption, while electricity as a whole represents about 23% of the end-use energy. This apparent paradox can be explained by 2 methodological points: 1 - the primary energy consumption, in the case of electricity, includes only the energy of nuclear, hydraulic, wind, photovoltaic and geothermal origin. On the other hand, the end-use energy consumption includes all forms of electricity consumed, i.e. the electricity of both primary and secondary origin. 2 - By international convention, the coefficients used to convert MWth into tpe (ton of petroleum equivalent) can change according to two factors: the power generation source and the type of kWh considered, either produced or consumed. The coexistence of different concepts and definitions is justified by the different usages made with them. Therefore, calculations referring to different definitions or equivalence coefficients are not immediately comparable. (J.S.)

  4. Empirical Study of How Traffic Intensity Detector Parameters Influence Dynamic Street Lighting Energy Consumption: A Case Study in Krakow, Poland

    Directory of Open Access Journals (Sweden)

    Igor Wojnicki

    2018-04-01

    Full Text Available The deployment of dynamic street lighting, which adjusts lighting levels to fulfill particular needs, leads to energy savings. These savings contribute to the overall lighting infrastructure maintenance cost. Yet another contribution is the cost of traffic intensity data. The data is read directly from sensor systems or intelligent transportation systems (ITSs. The more frequent the readings are, the more costly they become, because of hardware capabilities, data transfer and software license costs, among others. The paper investigates a relationship between the frequency of readings, in particular the averaging window size and step, and achieved energy savings. It is based on a simulation, taking into account a representative part of a city and traffic intensity data, which span over a period of one year. While the energy consumption reduction is simulated, all data, including each luminaire power setting, induction loop locations and street characteristics, come from a representative sample of the city of Krakow, Poland. Controlling the power settings complies with the lighting standard CEN/TR 13201. Analysis of the outcomes indicates that the shorter the window size or step are, the more energy saving that is available. In particular, for the previous standard CEN/TR 13201 2004, having the window size and step at 15 min results in 26.75% of energy saving, while reducing these values to 6 min provides 27%. Savings are more profound for the current standard (CEN/TR 13201 2014, assuming a 15 min size and step results in 47.43%, while having a 6 min size and step provides 47.69%. The results can serve as a guideline for identifying the economic viability of dynamic lighting control systems. Additionally, it can be observed that the current lighting standard provides far greater potential for dynamic control then the previous standard.

  5. Investigation of the added value of high-energy electrons in intensity-modulated radiotherapy: four clinical cases

    International Nuclear Information System (INIS)

    Korevaar, Erik W.; Huizenga, Henk; Loef, Johan; Stroom, Joep C.; Leer, Jan Willem H.; Brahme, Anders

    2002-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) with photon beams is currently pursued in many clinics. Theoretically, inclusion of intensity- and energy-modulated high-energy electron beams (15-50 MeV) offers additional possibilities to improve radiotherapy treatments of deep-seated tumors. In this study the added value of high-energy electron beams in IMRT treatments was investigated. Methods and Materials: In a comparative treatment planning study, conventional treatment plans and various types of IMRT plans were constructed for four clinical cases (cancer of the bladder, pancreas, chordoma of the sacrum, and breast). The conventional plans were used for the actual treatment of the patients. The IMRT plans were optimized using the Orbit optimization code (Loef et al., 2000) with a radiobiologic objective function. The IMRT plans were either photon or combined electron and photon beam plans, with or without dose homogeneity constraints assuming standard or increased radiosensitivities of organs at risk. Results: Large improvements in expected treatment outcome are found using IMRT plans compared to conventional plans, but differences in tumor control probability (TCP) and normal tissue complication probabilities (NTCP) values between IMRT plans with and without electrons are small. However, the use of electrons improves the dose-volume histograms for organs at risk, especially at lower dose levels (e.g., 0-40 Gy). Conclusions: This preliminary study indicates that addition of higher energy electrons to IMRT can only marginally improve treatment outcome for the selected cases. The dose-volume histograms of organs at risk show improvements for IMRT with higher energy electrons, which may reduce tumor induction but does not substantially reduce NTCP

  6. Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen—nitrogen mixtures

    International Nuclear Information System (INIS)

    Sima Wen-Xia; Peng Qing-Jun; Yang Qing; Yuan Tao; Shi Jian

    2013-01-01

    Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures. (physics of gases, plasmas, and electric discharges)

  7. Bioenergy from Low-Intensity Agricultural Systems : An Energy Efficiency Analysis

    NARCIS (Netherlands)

    Arodudu, Oludunsin; Helming, Katharina; Wiggering, Hubert; Voinov, Alexey

    2017-01-01

    In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed

  8. High energy density plasma physics using high intensity lasers: past and future

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1999-01-01

    Inertial Confinement Fusion (ICF) research in the US is in a dynamic upswing based on the construction of the National Ignition Facility (NIF). The US Congress has appropriated more than two-thirds of the funds necessary to build NIF. The NIF laser building shell is complete, the concrete structure for the target area is rising above ground level, and contracts for producing the laser hardware are rapidly going into place. The entire facility will be complete by the end of 2003 with eight beams becoming operational at the end of 2001 to begin experiments. All external reviews have recommended that the DOE encourage international collaborations on NIF and the DOE has directed the Project Team to design the facility so that is possible. The DOE has begun expanding several bilateral agreements on fusion energy to include inertial fusion energy (IFE). The DOE has also proposed to the International Energy Agency that its fusion energy activities include IFE. This paper will describe how NIF and the ICF Program intend to implement these changes and outlines some of the proposed experiments

  9. A high intensity beam line of γ-rays up to 22MeV energy based on Compton backscattering

    International Nuclear Information System (INIS)

    Guo, W.; Xu, W.; Chen, J.G.; Ma, Y.G.; Cai, X.Z.; Wang, H.W.; Xu, Y.; Wang, C.B.; Lu, G.C.; Tian, W.D.; Yuan, R.Y.; Xu, J.Q.; Wei, Z.Y.; Yan, Z.; Shen, W.Q.

    2007-01-01

    Shanghai Laser Electron Gamma Source, a high intensity beam line of γ-ray, has been proposed recently. The beam line is expected to generate γ-rays up to the maximum energy of 22MeV by Compton backscattering between a CO 2 laser and electrons in the 3.5 GeV storage ring of the Shanghai Synchrotron Radiation Facility. The flux of non-collimated γ-rays is estimated to be 10 9 -10 10 s -1 when a CO 2 laser of several hundred Watt power is employed. We will discuss physics issues in the design and optimization of the beam line

  10. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  11. Reducing of thermal power energy-intensive pro-cesses costs in the mixed fodders technology

    Directory of Open Access Journals (Sweden)

    L. I. Lytkina

    2016-01-01

    Full Text Available Methodological approach to the creation of energy-efficient processes with direct involvement in the produc-tion process of heat pump technology for the preparation of of energy resources in obtaining of mixed fodders of the given particle size distribution was formed. Completed experimental and analytical studies paved the way for the development of energy efficient technolo-gies of mixed fodders with a vapor compression connection (VCHP and steam ejector (SEHP heat pumps on the closed thermody-namic schemes. It was shown that the strategy of the operational management of process parameters in the allowable technological properties of the resulting mixed fodder production does not allow a compromise between the conflicting technical and economic param-eters and let the main technical contradiction between productivity and power consumption. The control problem becomes much more complicated when there is no practical possibility of a detailed description of thermal processes occurring in the closed thermodynamic recycles based on the phenomenological laws of thermodynamics considering a balance of material and energy flows in the technologi-cal system. There is a need for adaptive control systems based on the extreme characteristics of the controlled object. The adaptation effect is achieved by obtaining information about the processes occurring in the conditions of technological line of mixed fodders pro-duction equalized particle size distribution, which allows to generate a control signal for the extreme value of the objective function. The scheme of automatic optimization ensuring continuous monitoring of the minimum value of the specific heat energy costs is proposed. It provides optimal consumption of the starting loose mixed fodder and rational strain on the line equipment.

  12. Sources of high energy particles obtained with intense lasers for applications in nuclear physics; Sources de particules de hautes energies obtenues avec des lasers intenses pour applications a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaux, M

    2007-12-15

    This experimental study concerns the characterization of the beams of electrons and protons with energies above a few MeV produced in the interaction of an ultra-intense (10{sup 19} W/cm{sup 2}) laser beam with a 10 {mu}m thick solid target. This work was issued in the framework to use these beams in nuclear physics experiments. It was hence necessary to know quantitatively the characteristics of these particle beams. Laser accelerated particle beams have very different characteristics from conventional ones produced in accelerators, especially on account of their transience and intensity as well as their continuous energy distribution. These properties make their characterization complex and led us to develop methods combining measurements with diodes spectrometers, radiochromic films, nuclear activation of chosen materials and Monte-Carlo simulations. These methods have been employed on 2 different facilities but with similar characteristics for the study of the electron beams as a function of the target material. The angular aperture of the electron beam appears to be strongly dependent on the atomic number of the target. An experiment was also carried out to characterize at each shot the proton beam produced with the LULI 100 TW laser facility. This experiment also proved the possibility to induce nuclear reactions in plasma and to measure quantitatively the reaction rate in order to scale an experiment on the perturbation of the nucleus electronic-shells coupling via a strong electromagnetic field due to the laser. (author)

  13. Cost-benefit analysis of retrofit of high-intensity discharge factory lighting with energy-saving alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Preston, D.J. [Alabama Industrial Assessment Center, The University of Alabama, 1530 W. Tremont St, Allentown, PA 18102 (United States); Woodbury, K.A. [Alabama Industrial Assessment Center, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487-0276 (United States)

    2013-05-15

    Due to increased concern about overall energy costs and the appearance of efficient and inexpensive lighting system alternatives, factories and plants with high-intensity discharge (HID) lighting are forced to consider retrofit with more modern, energy-efficient lighting. The decision is complicated from an economic perspective, and there is a lack of information readily available on the topic. This study provides an analysis of the replacement by retrofit of common probe-start metal halide and high-pressure sodium industrial lighting systems. Retrofit options considered include the more recent pulse-start metal halide lamps and a range of T5 high output and T8 fluorescent lamp configurations. Recent data on lighting system pricing, labor and energy costs, and time required for tasks are reported. The results generated include savings, payback period, and net present value for many retrofit options, as well as the change in energy consumption, carbon footprint, and lumen output for each retrofit. Effects of varying rate of return and daily duration of operation are considered. Based on change in lumen output, payback period, net present value, and comparison of lighting quality, one or two options are recommended from the overall retrofit options considered. A fluorescent retrofit is recommended for each of the HID initial scenarios considered. The payback period is no more than 3 years in any recommended case. The focus of this study is on the potential energy and cost savings, and some proposed solutions may, or may not, be acceptable due to lack of illuminance uniformity.

  14. Influence of energy and axial momentum spreads on the cyclotron maser instability in intense hollow electron beams

    International Nuclear Information System (INIS)

    Uhm, H.S.; Davidson, R.C.

    1979-01-01

    The influence of energy and axial momentum spreads on the cyclotron maser instability in an intense hollow electron beam propagating parallel to a uniform axial magnetic field B 0 e/sub z/ is investigated. The stability analysis is carried out within the framework of the linearized Vlasov--Maxwell equations. It is assumed that ν/gamma-circumflexvery-much-less-than1, where ν is Budker's parameter and gamma-circumflexmc 2 is the characteristic electron energy. Stability properties are investigated for the choice of electron distribution function in which all electrons have a step-function distribution in energy (H=γmc 2 ) and a step-function distribution in axial momentum (p/sub z/). The instability growth rate is calculated including the important stabilizing influence of energy spread (epsilon=Δγ) and axial momentum spread (Δ=Δp/sub z/). It is shown that a modest energy spread (epsilonapprox. = a few percent) is sufficient to stabilize perturbations with high magnetic harmonic number (s> or =2). Moreover, a relatively small axial momentum spread (Δ/mcapprox. =0.1) can easily stabilize perturbations with axial wavenumber satisfying vertical-barkc/ω/sub c/vertical-bar> or approx. =0.2, for typical beam parameters of experimental interest

  15. Single High Intensity Focused Ultrasound Session as a Whole Gland Primary Treatment for Clinically Localized Prostate Cancer: 10-Year Outcomes

    Directory of Open Access Journals (Sweden)

    Ksenija Limani

    2014-01-01

    Full Text Available Objectives. To assess the treatment outcomes of a single session of whole gland high intensity focused ultrasound (HIFU for patients with localized prostate cancer (PCa. Methods. Response rates were defined using the Stuttgart and Phoenix criteria. Complications were graded according to the Clavien score. Results. At a median follow-up of 94months, 48 (44.4% and 50 (46.3% patients experienced biochemical recurrence for Phoenix and Stuttgart definition, respectively. The 5- and 10-year actuarial biochemical recurrence free survival rates were 57% and 40%, respectively. The 10-year overall survival rate, cancer specific survival rate, and metastasis free survival rate were 72%, 90%, and 70%, respectively. Preoperative high risk category, Gleason score, preoperative PSA, and postoperative nadir PSA were independent predictors of oncological failure. 24.5% of patients had self-resolving LUTS, 18.2% had urinary tract infection, and 18.2% had acute urinary retention. A grade 3b complication occurred in 27 patients. Pad-free continence rate was 87.9% and the erectile dysfunction rate was 30.8%. Conclusion. Single session HIFU can be alternative therapy for patients with low risk PCa. Patients with intermediate risk should be informed about the need of multiple sessions of HIFU and/or adjuvant treatments and HIFU performed very poorly in high risk patients.

  16. Energy expenditure and EPOC between water-based high-intensity interval training and moderate-intensity continuous training sessions in healthy women.

    Science.gov (United States)

    Schaun, Gustavo Zaccaria; Pinto, Stephanie Santana; Praia, Aline Borges de Carvalho; Alberton, Cristine Lima

    2018-02-05

    The present study compared the energy expenditure (EE) during and after two water aerobics protocols, high-intensity interval training (HIIT) and moderate continuous training (CONT). A crossover randomized design was employed comprising 11 healthy young women. HIIT consisted of eight 20s bouts at 130% of the cadence associated with the maximal oxygen consumption (measured in the aquatic environment) with 10s passive rest. CONT corresponded to 30 min at a heart rate equivalent to 90-95% of the second ventilatory threshold. EE was measured during and 30 min before and after the protocols and excess post-exercise oxygen consumption (EPOC) was calculated. Total EE during session was higher in CONT (227.62 ± 31.69 kcal) compared to HIIT (39.91 ± 4.24 kcal), while EE per minute was greater in HIIT (9.98 ± 1.06 kcal) than in CONT (7.58 ± 1.07 kcal). Post-exercise EE (64.48 ± 3.50 vs. 63.65 ± 10.39 kcal) and EPOC (22.53 ± 4.98 vs.22.10 ± 8.00 kcal) were not different between HIIT and CONT, respectively. Additionally, oxygen uptake had already returned to baseline fifteen minutes post-exercise. These suggest that a water aerobics CONT session results in post-exercise EE and EPOC comparable to HIIT despite the latter supramaximal nature. Still, CONT results in higher total EE.

  17. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  18. A partial life cycle assessment approach to evaluate the energy intensity and related greenhouse gas emission in dairy farms

    Directory of Open Access Journals (Sweden)

    Lelia Murgia

    2013-09-01

    Full Text Available Dairy farming is constantly evolving towards more intensive levels of mechanization and automation which demand more energy consumption and result in higher economic and environmental costs. The usage of fossil energy in agricultural processes contributes to climate change both with on-farm emissions from the combustion of fuels, and by off-farm emissions due to the use of grid power. As a consequence, a more efficient use of fossil resources together with an increased use of renewable energies can play a key role for the development of more sustainable production systems. The aims of this study were to evaluate the energy requirements (fuels and electricity in dairy farms, define the distribution of the energy demands among the different farm operations, identify the critical point of the process and estimate the amount of CO2 associated with the energy consumption. The inventory of the energy uses has been outlined by a partial Life Cycle Assessment (LCA approach, setting the system boundaries at the farm level, from cradle to farm gate. All the flows of materials and energy associated to milk production process, including crops cultivation for fodder production, were investigated in 20 dairy commercial farms over a period of one year. Self-produced energy from renewable sources was also accounted as it influence the overall balance of emissions. Data analysis was focused on the calculation of energy and environmental sustainability indicators (EUI, CO2-eq referred to the functional units. The production of 1 kg of Fat and Protein Corrected Milk (FPCM required on average 0.044 kWhel and 0.251 kWhth, corresponding to a total emission of 0.085 kg CO2-eq. The farm activities that contribute most to the electricity requirements were milk cooling, milking and slurry management, while feeding management and crop cultivation were the greatest diesel fuel consuming operation and the largest in terms of environmental impact of milk production (73% of

  19. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances

    International Nuclear Information System (INIS)

    Murphy, Fionnuala; Devlin, Ger; McDonnell, Kevin

    2014-01-01

    Highlights: • Wood energy supply chains are analysed for energy requirements and GHG emissions. • Use of residues and stumps for energy is evaluated for Irish conditions. • Results highlight transportation as the most energy and GHG emission intensive step. • Wood energy compares favourably with other biomass sources and fossil fuels. - Abstract: The demand for wood for energy production in Ireland is predicted to double from 1.5 million m 3 over bark (OB) in 2011 to 3 million m 3 OB by 2020. There is a large potential for additional biomass recovery for energetic purposes from both thinning forest stands and by harvesting of tops and branches, and stumps. This study builds on research within the wood-for-energy concept in Ireland by analysing the energy requirements and greenhouse gas emissions associated with thinning, residue bundling and stump removal for energy purposes. To date there have been no studies on harvesting of residues and stumps in terms of energy balances and greenhouse gas emissions across the life cycle in Ireland. The results of the analysis on wood energy supply chains highlights transport as the most energy and greenhouse gas emissions intensive step in the life cycle. This finding illustrates importance of localised production and use of forest biomass. Production of wood chip, and shredded bundles and stumps, compares favourably with both other sources of biomass in Ireland and fossil fuels

  20. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    International Nuclear Information System (INIS)

    Iwata, Tadao; Iwase, Akihiro

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T 1/2 , is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T 1/2 , if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T 1/2 . This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  1. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Tadao; Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T{sub 1/2}, is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T{sub 1/2}, if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T{sub 1/2}. This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)