WorldWideScience

Sample records for primary defects observed

  1. Enamel Defects of Human Primary Dentition as Virtual Memory of Early Developmental Events

    Directory of Open Access Journals (Sweden)

    Naser Asl Aminabadi

    2009-12-01

    Full Text Available Background and aims. The objectives of the present study were to investigate the prevalence and the position of enamel defects of primary teeth and hence to estimate the approximate time of an insult. Material and methods. 121 children aged 3 to 5 years were included in the study. The Modified Developmental Defects of Enamel Index was used to diagnose and classify the defects. The defects were categorized as hypoplasia, hypocalcification or a combination of them. Each tooth was investigated for occlusal/incisal, middle, cervical, incisomiddle, cervicomiddle and complete crown defects. Results. 55.37% of the children were affected by enamel defects, 23.96% being categorized as hypocalcification and 22.31% as hypoplasia. The enamel defects were more abundant in maxillary primary incisors and mandibular primary canines. Minimum involvement was seen in maxillary primary second molars and mandibular primary lateral incisors. The prevalence of cervical defects in maxillary primary incisors was significantly more than the middle or incisal defects (P < 0.05. The prevalence of incisal defects in mandibular primary incisors was significantly more than the middle or cervical defects (P < 0.05. Conclusions. The results revealed a considerable number of enamel defects which are multiple, symmetric and chronologically accordant with the estimated neonatal line in primary teeth of healthy children.

  2. Autograft reconstructions for bone defects in primary total knee replacement in severe varus knees

    Directory of Open Access Journals (Sweden)

    Yatinder Kharbanda

    2014-01-01

    Full Text Available Background: Large posteromedial defects encountered in severe varus knees during primary total knee arthroplasty can be treated by cementoplasty, structural bone grafts or metallic wedges. The option is selected depending upon the size of the defect. We studied the outcome of autograft (structural and impaction bone grafting reconstruction of medial tibial bone defects encountered during primary total knee replacement in severe varus knees. Materials and Methods: Out of 675 primary varus knees operated, bone defects in proximal tibia were encountered in 54 knees. Posteromedial defects involving 25-40% of the tibial condyle cut surface and measuring more than 5 mm in depth were grafted using a structural graft obtained from cut distal femur or proximal tibia in 48 knees. For larger, peripheral uncontained vertical defects in six cases, measuring >25 mm in depth and involving >40% cut surface of proximal tibial condyle, impaction bone grafting with a mesh support was used. Results: Bone grafts incorporated in 54 knees in 6 months. There was no graft collapse or stress fractures, loosening or nonunion. The average followup period was 7.8 years (range 5-10 years. We observed an average postoperative increase in the Knee Society Score from 40 to 90 points. There was improvement in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC scores in terms of pain, stiffness and physical function during activities of daily living. Conclusion: Bone grafting for defects in primary total knee is justified as it is biological, available then and is cost effective besides preserving bone stock for future revisions. Structural grafts should be used in defects >5 mm deep and involving 25-40% of the cut proximal tibial condyle surface. For larger peripheral vertical defects, impaction bone grafting contained in a mesh should be done.

  3. Primary Ovarian Insufficiency: X chromosome defects and autoimmunity.

    Science.gov (United States)

    Persani, Luca; Rossetti, Raffaella; Cacciatore, Chiara; Bonomi, Marco

    2009-08-01

    Premature ovarian failure (POF) is a primary ovarian defect characterized by absent menarche or premature depletion of ovarian follicles before the age of 40 years. However, in several instances the distinction between definitive or intermittent POF may be difficult on clinical bases, therefore the more appropriate term Primary Ovarian Insufficiency (POI) has been recently proposed and will be used in this review. POI is a heterogeneous disorder affecting approximately 1% of women disappearance of menstrual cycles (secondary amenorrhea) associated with a defective folliculogenesis. POI is generally characterized by low levels of gonadal hormones (estrogens and inhibins) and high levels of gonadotropins (LH and FSH) (hypergonadotropic amenorrhea). Heterogeneity of POI is reflected by the variety of possible causes, including autoimmunity, toxics, drugs, as well as genetic defects. Several data indicate that POI has a strong genetic component. In this manuscript we discuss the X chromosome abnormalities that are associated with POI.

  4. Stabilization of primary mobile radiation defects in MgF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsyn, V.M. [National Research Tomsk Polytechnic University, pr. Lenina 30, Tomsk 634050 (Russian Federation); Lisitsyna, L.A. [State University of Architecture and Building, pl. Solyanaya 2, Tomsk 634003 (Russian Federation); Popov, A.I., E-mail: popov@ill.fr [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga (Latvia); Kotomin, E.A. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga (Latvia); Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Abuova, F.U.; Akilbekov, A. [L.N. Gumilyov Eurasian National University, 3 Munaitpasova Str., Astana (Kazakhstan); Maier, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany)

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F–H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1–50 ps with the quantum yield up to 0.2–0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF{sub 2} and <0.001% in fluorides MeF{sub 2} (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF{sub 2} crystals with a focus on the H center stabilization in the form of the interstitial F{sub 2} molecules which is supported by presented experimental data.

  5. Direct Observation of Radiation Defects: Experiment and Interpretation

    International Nuclear Information System (INIS)

    Dudarev, S.L.

    2012-01-01

    Electron microscopy is arguably the only available experimental method suitable for the direct visualization of nano-scale defect structures formed under irradiation. Images of dislocation loops and point-defect clusters in crystals are usually produced using diffraction contrast methods. For relatively large defects, a combination of dynamical imaging and image contrast simulations is required for determining the nature of visible radiation defects. At the same time, density functional theory (DFT) models developed over the last decade have provided unique information about the structure of nano-scale defects produced by irradiation, including the defects that are so small that they cannot be observed in an electron microscope, and about the pathways of migration and interaction between radiation defects. DFT models, involving no experimental input parameters and being as quantitatively accurate and informative as the most advanced experimental techniques for the direct observation of defects, have created a new paradigm for the scientific investigation of radiation damage phenomena. In particular, DFT models offer new insight into the origin of temperature-dependent response of materials to irradiation, a problem of pivotal significance for applications. By combining information derived from the first-principles models for radiation defects with information derived from small-scale experimental observations it may be possible to acquire quantitative knowledge about how materials respond to irradiation and, using this knowledge, develop materials suitable for advanced applications in fission and fusion. It now appears possible to pose the question about the development of integrated fusion power plant models, combining neutron transport calculations and microscopic models for microstructural evolution of materials, for example models for ab initio prediction of helium embrittlement. Such models, based on scientific principles and quantitative data, and developed

  6. Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma.

    Science.gov (United States)

    Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Shiraga, Fumio

    2015-01-01

    To analyze the relationship between intraocular pressure (IOP) and the progression of visual field defects in Japanese primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG) patients. The subjects of the study were patients undergoing treatment for POAG or NTG who had performed visual field tests at least ten times with a Humphrey field analyzer (Swedish interactive thresholding algorithm standard, C30-2 program). The progression of visual field defects was defined by a significantly negative value of the mean deviation slope at the final visual field test during the follow-up period. The relationships between the progression of visual field defects and IOP, as well as other clinical factors, were retrospectively analyzed. A total of 156 eyes of 156 patients were included in the analysis. Significant progression of visual field defects was observed in 70 eyes of 70 patients (44.9%), while no significant progression was evident in 86 eyes of 86 patients (55.1%). The eyes with visual field defect progression had significantly lower baseline IOP (Pfield defect progression than in eyes without (Pfield defects. In NTG, IOP management should take into account not only achieving the target IOP, but also minimizing the fluctuation of IOP during follow-up period.

  7. Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects.

    Science.gov (United States)

    Chan, Doreen; Ding, Yichuan; Dauskardt, Reinhold H; Appel, Eric A

    2017-12-06

    Polymer networks are extensively utilized across numerous applications ranging from commodity superabsorbent polymers and coatings to high-performance microelectronics and biomaterials. For many applications, desirable properties are known; however, achieving them has been challenging. Additionally, the accurate prediction of elastic modulus has been a long-standing difficulty owing to the presence of loops. By tuning the prepolymer formulation through precise doping of monomers, specific primary network defects can be programmed into an elastomeric scaffold, without alteration of their resulting chemistry. The addition of these monomers that respond mechanically as primary defects is used both to understand their impact on the resulting mechanical properties of the materials and as a method to engineer the mechanical properties. Indeed, these materials exhibit identical bulk and surface chemistry, yet vastly different mechanical properties. Further, we have adapted the real elastic network theory (RENT) to the case of primary defects in the absence of loops, thus providing new insights into the mechanism for material strength and failure in polymer networks arising from primary network defects, and to accurately predict the elastic modulus of the polymer system. The versatility of the approach we describe and the fundamental knowledge gained from this study can lead to new advancements in the development of novel materials with precisely defined and predictable chemical, physical, and mechanical properties.

  8. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination

    Science.gov (United States)

    Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.

    2010-01-01

    Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766

  9. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.

  10. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1997-01-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies

  11. Developmental defects of enamel and dental caries in the primary dentition: A systematic review and meta-analysis.

    Science.gov (United States)

    Costa, Francine S; Silveira, Ethieli R; Pinto, Gabriela S; Nascimento, Gustavo G; Thomson, William Murray; Demarco, Flávio F

    2017-05-01

    This systematic review and meta-analysis evaluated the association between developmental defects of enamel and dental caries in the primary dentition. Electronic searches were performed in PubMed, Web of Knowledge, Scopus and Scielo for the identification of relevant studies. Observational studies that examined the association between developmental defects of enamel and dental caries in the deciduous dentition were included. Additionally, meta-analysis, funnel plots and sensitivity analysis were employed to synthesize the available evidence. Multivariable meta-regression analysis was performed to explore heterogeneity among studies. A total of 318 articles were identified in the electronic searches. Of those, 16 studies were included in the meta-analysis. Pooled estimates revealed that children with developmental defects of enamel had higher odds of having dental caries (OR 3.32; 95%CI 2.41-4.57), with high heterogeneity between studies (I 2 80%). Methodological characteristic of the studies, such as where it was conducted, the examined teeth and the quality of the study explained about 30% of the variability. Concerning type of defect, children with hypoplasia and diffuse opacities had higher odds of having dental caries (OR 4.28; 95%CI 2.24-8.15; OR1.42; 95%CI 1.15-1.76, respectively). This systematic review and meta-analysis demonstrates a clear association between developmental defects of enamel and dental caries in the primary dentition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. DIADEME: A computer code to assess in operation defective fuel characteristics and primary circuit contamination

    Energy Technology Data Exchange (ETDEWEB)

    Genin, J.B. [DEN/DEC/S3C, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Harrer, A. [EdF/SEPTEN, 69 - Villeurbanne (France); Musante, Y. [FRAMATOME-ANP, 69 - Lyon (France)

    2002-07-01

    DIADEME is a computer code developed within the framework of R and D cooperation between the French Atomic Energy Commission (CEA), Electricite de France (EdF) and FRAMATOME-ANP. Its aim is to assess in operation defective fuel characteristics and primary circuit contamination for actinides and long half-life fission products involved in health physics problems as well as in waste and decommissioning studies. DIADEME has been developed and qualified for the EDF nuclear power plants. For many years, both theoretical and experimental studies have been carried out at the CEA on the release of fission products and actinides out of defective fuel rods in operation, their migration and deposition in PWR primary circuits. These studies have allowed defect characteristic diagnosis methods to be developed, based on radiochemical measurements of the primary coolant. These methods are generally used along with gamma spectrometry measurements on primary water sampling. In order to be completely efficient, these methods can also be used in connection with an on-line primary water gamma spectrometry device. This permits to obtain the most comprehensive data on fission product activity evolutions at steady state and during operation transients, and allows the on-line characterization of the defective fuel assemblies. For long half-life fission products and for actinides, DIADEME is also able to assess the activities of soluble and insoluble forms in the primary water and in the chemical and voluminal control system (CVCS) filters and resins, as well as those activities deposited on primary circuit surfaces. (author)

  13. DIADEME: A computer code to assess in operation defective fuel characteristics and primary circuit contamination

    International Nuclear Information System (INIS)

    Genin, J.B.; Harrer, A.; Musante, Y.

    2002-01-01

    DIADEME is a computer code developed within the framework of R and D cooperation between the French Atomic Energy Commission (CEA), Electricite de France (EdF) and FRAMATOME-ANP. Its aim is to assess in operation defective fuel characteristics and primary circuit contamination for actinides and long half-life fission products involved in health physics problems as well as in waste and decommissioning studies. DIADEME has been developed and qualified for the EDF nuclear power plants. For many years, both theoretical and experimental studies have been carried out at the CEA on the release of fission products and actinides out of defective fuel rods in operation, their migration and deposition in PWR primary circuits. These studies have allowed defect characteristic diagnosis methods to be developed, based on radiochemical measurements of the primary coolant. These methods are generally used along with gamma spectrometry measurements on primary water sampling. In order to be completely efficient, these methods can also be used in connection with an on-line primary water gamma spectrometry device. This permits to obtain the most comprehensive data on fission product activity evolutions at steady state and during operation transients, and allows the on-line characterization of the defective fuel assemblies. For long half-life fission products and for actinides, DIADEME is also able to assess the activities of soluble and insoluble forms in the primary water and in the chemical and voluminal control system (CVCS) filters and resins, as well as those activities deposited on primary circuit surfaces. (author)

  14. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Effect of homologous impurities on primary radiation defect accumulation in alkali halides

    International Nuclear Information System (INIS)

    Chernov, S.A.; Gavrilov, V.V.

    1981-01-01

    To clarify the mechanism of the effect of anion and cation homologous impurities on the primary radiation-induced defect accumulation, the transient absorption of H and F centers was studied in KCl and KBr crystals. Pulse electron accelerator technique was used. Pure and doped crystals were investigated. It was obtained that the cation homologue Na in the concentration range from 0 to 0.5 m. % in 10 -8 -10 -6 s post-irradiation time has no effect on the defect accumulation efficiency at low temperature and increases the latter at high temperature. At large post-irradiation time and at high temperatures the rise of efficiency at low Na concentration and decrease of it at high Na concentrations were observed. The conclusion was made that Na does not affect the generation process. The anion homologous impurities (I and Br) lead to a significant increase of the accumulation efficiency due to the formation of more stable F-H pair at self-trapped exciton decay on anion impurities compared with that formed in perfect lattice. Some assumptions are advanced to explain the effect [ru

  16. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    Science.gov (United States)

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  17. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  18. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  19. Perception of color emotions for single colors in red-green defective observers.

    Science.gov (United States)

    Sato, Keiko; Inoue, Takaaki

    2016-01-01

    It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions). The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1) reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2) examine differences in color emotions related to the three cardinal channels in human color vision; and (3) explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP). Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance) as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth ratings in

  20. Perception of color emotions for single colors in red-green defective observers

    Directory of Open Access Journals (Sweden)

    Keiko Sato

    2016-12-01

    Full Text Available It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions. The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1 reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2 examine differences in color emotions related to the three cardinal channels in human color vision; and (3 explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP. Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth

  1. The effect of temperature on primary defect formation in Ni–Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chengbin, E-mail: wangchengbin@sinap.ac.cn [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, Wei; Ren, Cuilan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhiyuan [Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-02-15

    Molecular dynamics (MD) simulations have been used to study the influence of temperature on defect generation and evolution in nickel and Ni–Fe alloy (with 15% and 50% Fe content) with a 10-keV primary knock-on atom (PKA) at six different temperatures from 0 to 1500 K. The recently available Ni–Fe potential is used with its repulsive part modified by Vörtler. The temporal evolution and temperature dependence of stable defect formation and in-cascade clustering processes are analysed. The number of stable defect and the interstitial clustering fraction are found to increase with temperature whereas the vacancy clustering fraction decreases with temperature. The alloy composition dependence of the stable defect number is also found for the PKA energy considered here. Additionally, a study of the temperature influence on the cluster size distribution is performed, revealing a systematic change in the cluster size distributions, with higher temperature cascades producing larger interstitial clusters.

  2. Observation and analysis of defect cluster production and interactions with dislocations

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Matsukawa, Y.

    2004-01-01

    The current understanding of defect production fundamentals in neutron-irradiated face centered cubic (FCC) and body centered cubic (BCC) metals is briefly reviewed, based primarily on transmission electron microscope observations. Experimental procedures developed by Michio Kiritani and colleagues have been applied to quantify defect cluster size, density, and nature. Differences in defect accumulation behavior of irradiated BCC and FCC metals are discussed. Depending on the defect cluster obstacle strength, either the dispersed barrier hardening model or the Friedel-Kroupa-Hirsch weak barrier model can be used to describe major aspects of radiation hardening. Irradiation at low temperature can cause a change in deformation mode from dislocation cell formation at low doses to twinning or dislocation channeling at higher doses. The detailed interaction between dislocations and defect clusters helps determine the dominant deformation mode. Recent observations of the microstructure created by plastic deformation of quenched and irradiated metals are summarized, including in situ deformation results. Examples of annihilation of stacking fault tetrahedra by gliding dislocations and subsequent formation of mobile superjogs are shown

  3. In Situ Observation of Antisite Defect Formation during Crystal Growth

    International Nuclear Information System (INIS)

    Kramer, M. J.; Napolitano, R. E.; Mendelev, M. I.

    2010-01-01

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  4. The observable defects and the proper functioning guarantee in trading

    Directory of Open Access Journals (Sweden)

    Jorge Oviedo Albán

    2014-12-01

    Full Text Available This paper discusses two legal mechanisms for buyer´s protection contained in the Colombian Commercial Code, parallel to building regulations, because of hidden defects in the sale, which are: guarantee by observable defects at delivery and guarantee for proper functioning. The author analyzes the poor way such actions are enshrined in the Code as a consequence of a fragmented and dispersed regime for defective compliance actions in the laws of Private Law. This paper proposes a reinterpretation of such actions from the perspective of the lack of conformity that is based on a unified system of remedies for breach, concepts embodied in modern instruments of contract law.

  5. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    International Nuclear Information System (INIS)

    Clingen, Peter H.; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-01-01

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity

  6. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    International Nuclear Information System (INIS)

    Otero, M.P.

    1985-01-01

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 10 17 n/cm 2 , others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author) [pt

  7. Drinking water treatment is not associated with an observed increase in neural tube defects in mice

    Science.gov (United States)

    Melin, Vanessa E.; Johnstone, David W.; Etzkorn, Felicia A.

    2018-01-01

    Disinfection by-products (DBPs) arise when natural organic matter in source water reacts with disinfectants used in the water treatment process. Studies have suggested an association between DBPs and birth defects. Neural tube defects (NTDs) in embryos of untreated control mice were first observed in-house in May 2006 and have continued to date. The source of the NTD-inducing agent was previously determined to be a component of drinking water. Tap water samples from a variety of sources were analyzed for trihalomethanes (THMs) to determine if they were causing the malformations. NTDs were observed in CD-1 mice provided with treated and untreated surface water. Occurrence of NTDs varied by water source and treatment regimens. THMs were detected in tap water derived from surface water but not detected in tap water derived from a groundwater source. THMs were absent in untreated river water and laboratory purified waters, yet the percentage of NTDs in untreated river water were similar to the treated water counterpart. These findings indicate that THMs were not the primary cause of NTDs in the mice since the occurrence of NTDs was unrelated to drinking water disinfection. PMID:24497082

  8. Defects in low temperature electron irradiated InP

    International Nuclear Information System (INIS)

    Suski, J.; Bourgoin, J.

    1984-01-01

    n and p-InP has been irradiated at 25K with 1MeV electrons and the created defects were studied by deep level transient spectroscopy (DLTS) in the range 25K-400K. In n-InP, four traps are directly observed, with low introduction rates except for one. They anneal in three stages, and four new centers of still lower concentration appear after 70 0 C heat treatment. In p-InP, two dominant traps stable up to approx.= 400K with introduction rates close to the theoretical ones, which might be primary defects are found, while another one is clearly a secondary defect likely associated to Zn dopant. At least two of the low concentration irradiation induced electron traps, created between 25K and 100K are also secondary defects, which implies a mobility of some primary defects down to 100K at least. (author)

  9. Primary defect production by high energy displacement cascades in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Aaron P. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Xu, Donghua, E-mail: xudh@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Juslin, Niklas; Capps, Nathan A. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, P.O. Box 2008, MS6003, Oak Ridge, TN 37831 (United States)

    2013-06-15

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1–50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  10. Dental enamel defects in Italian children with cystic fibrosis: an observational study.

    Science.gov (United States)

    Ferrazzano, G F; Sangianantoni, G; Cantile, T; Amato, I; Orlando, S; Ingenito, A

    2012-03-01

    The relationship between cystic fibrosis (CF) and caries experience has already been explored, but relatively little information is available on dental enamel defects prevalence among children affected by cystic fibrosis. The aim of this study was to investigate this issue in deciduous and permanent teeth of children with CF resident in southern Italy. This cross sectional observational study was undertaken between October 2009 and March 2010. 88 CF patients and 101 healthy age-matched participated in this study. The prevalence of dental enamel defects was calculated using a modified Developmental Defects of Enamel (DDE) index. The comparison of dental enamel defects prevalence among groups was carried out using regression binary logistic analysis. In the CF subjects there was a higher prevalence (56%) of enamel defects in comparison to the healthy group (22%). The most prevalent enamel defect was hypoplasia with loss of enamel (23% of CF patients vs 1 1/2% of control group) in permanent teeth. This study confirms that children with cystic fibrosis are at increased risk of developing hypoplastic defects on their permanent teeth.

  11. Direct observation of cascade defect formation at low temperatures in ion-irradiated metals

    International Nuclear Information System (INIS)

    Muroga, T.; Hirooka, K.; Ishino, S.

    1984-01-01

    Direct transmission electron microscopy observations of cascade defect formation have been carried out in gold, Type 316 stainless steel, and aluminum irradiated by Al + , Ar - , and Xe + ions with energies between 80 and 400 keV. By utilizing a link of an ion accelerator to an electron microscope, in situ observations at low temperature (-150 0 C) have become possible. In gold, subcascade structures are clearly observed in all cases. Obvious dependence on projectile mass and energy is observed for cascade structure and vacancy clustering efficiency in gold and for defect visibility in aluminum and Type 316 stainless steel. A computer simulation calculation using MARLOWE shows subcascade distributions a little smaller in size and larger in number than the present observation

  12. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap.

    Science.gov (United States)

    Urita, Koki; Suenaga, Kazu; Sugai, Toshiki; Shinohara, Hisanori; Iijima, Sumio

    2005-04-22

    Direct observation of individual defects during formation and annihilation in the interlayer gap of double-wall carbon nanotubes (DWNT) is demonstrated by high-resolution transmission electron microscopy. The interlayer defects that bridge two adjacent graphen layers in DWNT are stable for a macroscopic time at the temperature below 450 K. These defects are assigned to a cluster of one or two interstitial-vacancy pairs (I-V pairs) and often disappear just after their formation at higher temperatures due to an instantaneous recombination of the interstitial atom with vacancy. Systematic observations performed at the elevated temperatures find a threshold for the defect annihilation at 450-500 K, which, indeed, corresponds to the known temperature for the Wigner energy release.

  13. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap

    International Nuclear Information System (INIS)

    Urita, Koki; Suenaga, Kazu; Iijima, Sumio; Sugai, Toshiki; Shinohara, Hisanori

    2005-01-01

    Direct observation of individual defects during formation and annihilation in the interlayer gap of double-wall carbon nanotubes (DWNT) is demonstrated by high-resolution transmission electron microscopy. The interlayer defects that bridge two adjacent graphen layers in DWNT are stable for a macroscopic time at the temperature below 450 K. These defects are assigned to a cluster of one or two interstitial-vacancy pairs (I-V pairs) and often disappear just after their formation at higher temperatures due to an instantaneous recombination of the interstitial atom with vacancy. Systematic observations performed at the elevated temperatures find a threshold for the defect annihilation at 450-500 K, which, indeed, corresponds to the known temperature for the Wigner energy release

  14. New aspects on the contribution of primary defects in silicon due to long-time degradation of detectors operating in high fields of radiation

    International Nuclear Information System (INIS)

    Lazanu, Sorina; Lazanu, Ionel

    2006-01-01

    Full text: Silicon detectors will represent an important option for the next generation of experiments in high energy physics, for astroparticle and nuclear experiments, where the requirements to operate long time in high radiation environments will represent a major problem. After the long-time operation in high radiation fields, the bulk displacement damage produces the following effects at the device level: increase of the leakage current, decrease of the satisfactory Signal/Noise ratio, increase of the effective carrier concentration, and thus of the depletion voltage, decrease of the charge collection efficiency up to unacceptable levels. In this contribution we investigate the new perspective in understanding the fundamental phenomena in silicon and implications for the degradation of the characteristics of detectors given by the consideration of the existence of the new primary defect: fourfold coordinated defect, Si FFCD , with a lower value of the formation energy by comparison with the 'classically' known vacancies and interstitials. Predicted by Goedecker and co-workers, its characteristics were indirectly determined by Lazanu and Lazanu. The correlation between the rate of generation of primary defects, material composition and observable effects is investigated considering different growth technologies and resistivities (up to tens of kΩcm) as time and fluence dependencies. This allows to estimate the expected behaviour of the materials and detectors in concrete environments at the next generations of high energy physics experiments as SLHC or VLHC for example. This new defect could represent the elementary block for new extended defects and in principle it could generate local amorphization of the semiconductor. Its existence and characteristics in other semiconductors is also investigated. (author)

  15. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation.

    Science.gov (United States)

    Eibach, Sebastian; Moes, Greg; Hou, Yong Jin; Zovickian, John; Pang, Dachling

    2017-10-01

    Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.

  16. Primary biochemical defect in copper metabolism in mice with a recessive X-linked mutation analogous to Menkes' disease in man

    International Nuclear Information System (INIS)

    Prins, H.W.; Hamer, C.J.A. van den.

    1979-01-01

    The defect in Menkes' disease in man is identical to that in Brindled mice. The defect manifests itself in a accumulation of copper in some tissues, such as renal, intestinal (mucosa and muscle), pancreatic, osseous, muscular, and dermal. Hence a fatal copper deficiency results in other tissues (e.g., hepatic). The copper transport through the intestine is impaired and copper, which circumvents the block in the copper resorption, is irreversibly trapped in the above-mentioned, copper accumulating tissues where it is bound to a cytoplasmatic protein with molecular weight 10,000 daltons, probably the primary cytoplasmatic copper transporting protein. This protein shows a Cu-S absorption band at 250 nm, and the copper:protein ratio is increased. Such copper rich protein was found neither in the kidneys of the unaffected mica nor in the liver of the mice that do have the defect. Three models of the primary defect in Menkes' disease are proposed

  17. Observation of defects evolution in electronic materials

    Science.gov (United States)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2

  18. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  19. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  20. Field-ion microscope studies of the defect structure of the primary state of damage of irradiated metals

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1975-01-01

    A review is presented of field ion microscope applications in studies of point defect distribution in irradiated metals. FIM results on the primary state of radiation damage in neutron and ion-irradiated iridium and tungsten, at both room-temperature and 78 0 K, showed that it consists of: (1) isolated vacancies; (2) depleted zones; (3) compact vacancy clusters of voids; and (4) dislocation loops. The fraction of vacancies stored in the dislocation loops represented a small fraction of the total vacancy concentration; in the case of tungsten it was approximately 10 percent. These FIM observations provide a simple explanation of the low yield-factor, determined by transmission electron microscopy, for a number of ion-irradiated metals

  1. Production of freely-migrating defects during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Okamoto, P.R.

    1986-09-01

    During irradiation at elevated temperatures, vacancy and interstitial defects that escape can produce several different types of microstructural changes. Hence the production rate of freely-migrating defects must be known as a function of irradiating particle species and energy before quantitative correlations can be made between microstructural changes. Our fundamental knowledge of freely-migrating defect production has increased substantially in recent years. Critical experimental findings that led to the improved understanding are reviewed in this paper. A strong similarity is found for the dependence of freely-migrating defect production on primary recoil energy as measured in a variety of metals and alloys by different authors. The efficiency for producing freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the efficiency for creating stable defects at liquid helium temperatures. The stronger decrease can be understood in terms of additional intracascade recombination that results from the nonrandom distribution of defects existing in the primary damage state for high primary recoil energies. Although the existing data base is limited to fcc materials, the strong similarity in the reported investigations suggests that the same dependence of freely-migrating defect production on primary recoil energy may be characteristic of a wide variety of other alloy systems as well. 52 refs., 4 figs

  2. The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity

    DEFF Research Database (Denmark)

    Gaster, Michael; Petersen, Ingrid; Højlund, Kurt

    2002-01-01

    The most well-described defect in the pathophysiology of type 2 diabetes is reduced insulin-mediated glycogen synthesis in skeletal muscles. It is unclear whether this defect is primary or acquired secondary to dyslipidemia, hyperinsulinemia, or hyperglycemia. We determined the glycogen synthase...

  3. Atomistic observations and analyses of lattice defects in transmission electron microscopes

    CERN Document Server

    Abe, H

    2003-01-01

    The transmission electron microscope (TEM) -accelerators was developed. TEM-Accelerator made possible to observe in situ experiments of ion irradiation and implantation. The main results are the experimental proof of new lattice defects by irradiation, the formation process and synthesized conditions of carbon onion by ion implantation, the microstructure and phase transformation conditions of graphite by ion irradiated phase transformation, the irradiation damage formation process by simultaneous irradiation of electron and ion and behavior of fullerene whisker under irradiation. The microstructural evolution of defect clusters in copper irradiated with 240-keV Cu sup + ions and a high resolution electron micrograph of carbon onions synthesized by ion implantation are explained as the examples of recent researches. (S.Y.)

  4. Effects of in-cascade defect clustering on near-term defect evolution

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.

  5. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects.

    Directory of Open Access Journals (Sweden)

    Amjad Horani

    Full Text Available Despite recent progress in defining the ciliome, the genetic basis for many cases of primary ciliary dyskinesia (PCD remains elusive. We evaluated five children from two unrelated, consanguineous Palestinian families who had PCD with typical clinical features, reduced nasal nitric oxide concentrations, and absent dynein arms. Linkage analyses revealed a single common homozygous region on chromosome 8 and one candidate was conserved in organisms with motile cilia. Sequencing revealed a single novel mutation in LRRC6 (Leucine-rich repeat containing protein 6 that fit the model of autosomal recessive genetic transmission, leading to a change of a highly conserved amino acid from aspartic acid to histidine (Asp146His. LRRC6 was localized to the cytoplasm and was up-regulated during ciliogenesis in human airway epithelial cells in a Foxj1-dependent fashion. Nasal epithelial cells isolated from affected individuals and shRNA-mediated silencing in human airway epithelial cells, showed reduced LRRC6 expression, absent dynein arms, and slowed cilia beat frequency. Dynein arm proteins were either absent or mislocalized to the cytoplasm in airway epithelial cells from a primary ciliary dyskinesia subject. These findings suggest that LRRC6 plays a role in dynein arm assembly or trafficking and when mutated leads to primary ciliary dyskinesia with laterality defects.

  6. Summary Report of the Technical Meeting on Primary Radiation Damage: From Nuclear Reaction to Point Defects

    International Nuclear Information System (INIS)

    Stoller, R. E.; Nordlund, K.; Simakov, S.P.

    2012-11-01

    The Meeting was convened to bring together the experts from both the nuclear data and materials research communities because of their common objective of accurately characterizing irradiation environments and resulting material damage. The meeting demonstrated that significant uncertainties remain regarding both the status of nuclear data and the use of these data by the materials modeling community to determine the primary damage state obtained in irradiated materials. At the conclusion of the meeting, the participants agreed that there is clear motivation to initiate a CRP that engages participants from the nuclear data and materials research communities. The overall objective of this CRP would be to determine the best possible parameter (or a few parameters) for correlating damage from irradiation facilities with very different particle types and energy spectra, including fission and fusion reactors, charged particle accelerators, and spallation irradiation facilities. Regarding progress achieved during the last decade in the atomistic simulation of primary defects in crystalline materials, one of the essential and quantitative outcomes from the CRP is expected to be cross sections for point defects left after recoil cascade quenching. (author)

  7. Observation of nanometer-sized electro-active defects in insulating layers by fluorescence microscopy and electrochemistry.

    Science.gov (United States)

    Renault, Christophe; Marchuk, Kyle; Ahn, Hyun S; Titus, Eric J; Kim, Jiyeon; Willets, Katherine A; Bard, Allen J

    2015-06-02

    We report a method to study electro-active defects in passivated electrodes. This method couples fluorescence microscopy and electrochemistry to localize and size electro-active defects. The method was validated by comparison with a scanning probe technique, scanning electrochemical microscopy. We used our method for studying electro-active defects in thin TiO2 layers electrodeposited on 25 μm diameter Pt ultramicroelectrodes (UMEs). The permeability of the TiO2 layer was estimated by measuring the oxidation of ferrocenemethanol at the UME. Blocking of current ranging from 91.4 to 99.8% was achieved. Electro-active defects with an average radius ranging between 9 and 90 nm were observed in these TiO2 blocking layers. The distribution of electro-active defects over the TiO2 layer is highly inhomogeneous and the number of electro-active defect increases for lower degree of current blocking. The interest of the proposed technique is the possibility to quickly (less than 15 min) image samples as large as several hundreds of μm(2) while being able to detect electro-active defects of only a few tens of nm in radius.

  8. Defect of the Eyelids.

    Science.gov (United States)

    Lu, Guanning Nina; Pelton, Ron W; Humphrey, Clinton D; Kriet, John David

    2017-08-01

    Eyelid defects disrupt the complex natural form and function of the eyelids and present a surgical challenge. Detailed knowledge of eyelid anatomy is essential in evaluating a defect and composing a reconstructive plan. Numerous reconstructive techniques have been described, including primary closure, grafting, and a variety of local flaps. This article describes an updated reconstructive ladder for eyelid defects that can be used in various permutations to solve most eyelid defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandipati, Giridhar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Washington, Seattle, WA (United States); Heinisch, Howard L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab., Oak Ridge, TN (United States); Kurtz, Richard J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780×Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect at a transition energy which occurs at approximately 250×Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.

  10. Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Daisuke; Uchihashi, Takayuki; Kodera, Noriyuki; Ando, Toshio

    2008-01-01

    The diffusion of individual point defects in a two-dimensional streptavidin crystal formed on biotin-containing supported lipid bilayers was observed by high-speed atomic force microscopy. The two-dimensional diffusion of monovacancy defects exhibited anisotropy correlated with the two crystallographic axes in the orthorhombic C 222 crystal; in the 2D plane, one axis (the a-axis) is comprised of contiguous biotin-bound subunit pairs whereas the other axis (the b-axis) is comprised of contiguous biotin-unbound subunit pairs. The diffusivity along the b-axis is approximately 2.4 times larger than that along the a-axis. This anisotropy is ascribed to the difference in the association free energy between the biotin-bound subunit-subunit interaction and the biotin-unbound subunit-subunit interaction. The preferred intermolecular contact occurs between the biotin-unbound subunits. The difference in the intermolecular binding energy between the two types of subunit pair is estimated to be approximately 0.52 kcal mol -1 . Another observed dynamic behavior of point defects was fusion of two point defects into a larger defect, which occurred much more frequently than the fission of a point defect into smaller defects. The diffusivity of point defects increased with increasing defect size. The fusion and the higher diffusivity of larger defects are suggested to be involved in the mechanism for the formation of defect-free crystals

  11. Waldmann's Disease (Primary Intestinal Lymphangiectasia) with Atrial Septal Defect.

    Science.gov (United States)

    Aroor, Shrikiran; Mundkur, Suneel; Kanaparthi, Shravan; Kumar, Sandeep

    2017-04-01

    Waldmann's disease or Primary Intestinal Lymphangiectasia (PIL) is a rare disorder of gastrointestinal tract characterized by dilated lymphatics and widened villi causing leakage of lymph into intestinal lumen. Loss of lymph leads to hypoalbuminemia, hyogammaglobulinemia and lymphopenia. Secondary lymphangiectasia occurs secondary to an elevated lymphatic pressure as in lymphoma, systemic lupus erythematosus, constrictive pericarditis, cardiac surgeries (Fontan's procedure), inflammatory bowel disease and malignancies. We, hereby present a five-year-old male child who presented with abdominal distension and poor weight gain. He had hypoalbuminemia, lymphocytopenia and hypogammaglobulinemia. Upper gastrointestinal endoscopy showed normal gastric mucosa and punctate white lesions in duodenal mucosa with biopsy confirming intestinal lymphangiectasia. Secondary causes of intestinal lymphangiectasia were ruled out. Echocardiography revealed atrial septal defect which is an uncommon association with Waldmann's disease. He was started on low fat, high protein diet and medium chain triglyceride supplementation following which he improved symptomatically. High index of suspicion, early diagnosis and appropriate dietary treatment are necessary to alleviate symptoms as well as to achieve a sustainable growth and development in these children.

  12. Identification of genetic defects in primary immunodeficiencies by whole exome sequencing

    DEFF Research Database (Denmark)

    Christiansen, Mette; Jensen, Jens Magnus Bernth; Veirum, Jens Erik

    2014-01-01

    to hypogammaglobulinaemia, and increased risk of both infections as well as cancer. We employed whole exome sequencing (WES) to identify mutations associated with primary immunodeficiency in severely affected children. We present WES data on 2 patients with severe immunodeficiency. WES was performed using TruSeq exome kit...... and severe infections including sepsis. Second, we identified compound heterozygote stopgain mutations in RAD52 and a heterozygote mutation in LRRC8A in a 7 year-old girl with T-cell deficiency, reduced T-cell mediated B-cell activity, hypogammaglobulinaemia, prolonged splenomegali and benign adenopathy. RAD......52 has not previously been linked to immunodeficiency and we are currently investigating the functional consequences. Knowledge of the mechanisms underlying immunodeficiencies is a prerequisite for understanding disease pathogenesis. WES allows the demonstration of immune defects that may result from...

  13. Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC

    International Nuclear Information System (INIS)

    Swaminathan, N.; Kamenski, Paul J.; Morgan, Dane; Szlufarska, Izabela

    2010-01-01

    Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ∼20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.

  14. Enamel defect of primary dentition in SGA children in relation to onset time of intrauterine growth disturbance

    Directory of Open Access Journals (Sweden)

    Willyanti Soewondo Sjarif

    2013-06-01

    Full Text Available Background: Prenatal disturbances disturb the development of organs resulting in small for gestational age (SGA babies and also causes enamel defects in primary teeth. There are disturbances occur in the beginning of pregnancy causing symmetrical SGA, and asymmetrical type of SGA, where the disturbances occur late in pregnancy. Purpose: This research was to determined differences in severity of enamel defect of primary dentition in small for gestational age children based on the time of intrauterine growth restriction. Methods: This was a clinical epidemiological cohort study. The Ponderal index was used to determine SGA type. The subjects were 129 SGA children aged 9-42 months, 82 with asymmetrical SGA and 47 with symmetrical SGA. Two hundred normal birth weight children were the control group. Intra-oral examinations to determine enamel defect used the FDI modification of the Developmental Defect of Enamel score at 3 months intervals. Statistical t-tests were used to test the difference in severity of enamel defect, and chisquare to find out the difference of Relative Risk Ratio (RRR. Results: The results showed that the enamel defect scores of symmetrical SGA were significantly higher than those with asymmetrical SGA. RRR for severe defect was also significantly higher in symmetrical type for anterior and canines. Conclusion: The study suggested that the severity of enamel defect for infants with symmetrical SGA was higher than those with asymmetrical SGA, indicating that the severity of the defect occurs in the beginning of pregnancy is more severe than in the late pregnancy.Latar belakang: Adanya gangguan prenatal mengganggu perkembangan organ, mengakibatkan terjadinya bayi lahir dengan kecil masa kehamilan (KMK dan defek email pada gigi sulung. Terdapat 2 tipe KMK yaitu tipe simetri; gangguan terjadi pada awal kehamilan; dimana lingkar kepala, berat dan panjang lahir lebih rendah dari normal. Tipe asimetri dimana gangguan terjadi saat

  15. Metastable and bistable defects in silicon

    International Nuclear Information System (INIS)

    Mukashev, Bulat N; Abdullin, Kh A; Gorelkinskii, Yurii V

    2000-01-01

    Existing data on the properties and structure of metastable and bistable defects in silicon are analyzed. Primary radiation-induced defects (vacancies, self-interstitial atoms, and Frenkel pairs), complexes of oxygen, carbon, hydrogen, and other impurity atoms and defects with negative correlation energy are considered. (reviews of topical problems)

  16. Defect formation in heavily doped Si upon irradiation

    International Nuclear Information System (INIS)

    Gubskaya, V.I.; Kuchinskii, P.V.; Lomako, V.M.

    1981-01-01

    The rates of the carrier removal and radiation defect introduction into n- and p-Si in the concentration range of 10 14 to 10 17 cm -3 upon 7-MeV-electron irradiation have been studied. The spectrum of the vacancy-type defects, defining the carrier removal rate in lightly doped crystals has been found. With doping level increase the carrier removal rate grows irrespective of conductivity type, and at n 0 , p 0 > 10 17 cm -3 is close to the total displacement number. At the same time a decrease in the introduction rate of the known vacancy-type defects is observed. x It is shown that a considerable growth of the carrier removal rate is defined neither by introduction of shallow compensating centers, nor by change in the primary defect charge state. It is suggested that at high doping impurity concentrations compensation in Si is due to the introduction of complexes doping impurity-interstitial or (impurity atom-interstitial) + vacancy, which give deep levels. (author)

  17. Defects in conformal field theory

    International Nuclear Information System (INIS)

    Billò, Marco; Gonçalves, Vasco; Lauria, Edoardo; Meineri, Marco

    2016-01-01

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  18. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  19. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs

    Directory of Open Access Journals (Sweden)

    Wen-I Lee

    2011-12-01

    Full Text Available Natural human immunity to the mycobacteria group, including Mycobacterium tuberculosis, Bacille Calmette-Guérin (BCG or nontuberculous mycobacteria (NTM, and/or Salmonella species, relies on the functional IL-12/23-IFN-γ integrity of macrophages (monocyte/dendritic cell connecting to T lymphocyte/NK cells. Patients with severe forms of primary immunodeficiency diseases (PIDs have more profound immune defects involving this impaired circuit in patients with severe combined immunodeficiencies (SCID including complete DiGeorge syndrome, X-linked hyper IgM syndrome (HIGM (CD40L mutation, CD40 deficiency, immunodeficiency with or without anhidrotic ectodermal dysplasia (NEMO and IKBA mutations, chronic granulomatous disease (CGD and hyper IgE recurrent infection syndromes (HIES. The patients with severe PIDs have broader diverse infections rather than mycobacterial infections. In contrast, patients with an isolated inborn error of the IL-12/23-IFN-γ pathway are exclusively prone to low-virulence mycobacterial infections and nontyphoid salmonella infections, known as Mendelian susceptibility to the mycobacterial disease (MSMD phenotype. Restricted defective molecules in the circuit, including IFN-γR1, IFN-γR2, IL-12p40, IL-12R-β1, STAT-1, NEMO, IKBA and the recently discovered CYBB responsible for autophagocytic vacuole and proteolysis, and interferon regulatory factor 8 (IRF8 for dendritic cell immunodeficiency, have been identified in around 60% of patients with the MSMD phenotype. Among all of the patients with PIDs referred for investigation since 1985, we have identified four cases with the specific defect (IFNRG1 for three and IL12RB for one, presenting as both BCG-induced diseases and NTM infections, in addition to some patients with SCID, HIGM, CGD and HIES. Furthermore, manifestations in patients with autoantibodies to IFN-γ (autoAbs-IFN-γ, which is categorized as an anticytokine autoantibody syndrome, can resemble the relatively

  20. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    Science.gov (United States)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  1. Clinical observation on the reconstruction of large areas lower eyelid defect with Medpor spacer graft

    Directory of Open Access Journals (Sweden)

    Hai-Yan Li

    2014-08-01

    Full Text Available AIM: To observe the effects of porous polyethylene(Medporas a spacer graft in the reconstruction of large areas eyelid defect after the operation of malignant tumors of lower eyelids.METHODS: Nineteen cases(19 eyesof malignant tumors of lower eyelid underwent the eyelid reconstruction were selected. Medpor lower eyelid inserts implantation were used to replace tarsal joint sliding conjunctival flap and pedicle flap, and repaired full-thickness lower eyelid defects then underwent eyelid reconstruction. RESULTS: Appearance of eyelids and functional improvements were satisfactory with no stimulation on the eyeball and no effect on the visual function. Implants is with no absorption, shift, exclusion or infection and no tumor recurrence in all cases during the follow up for 6-36mo.CONCLUSION: Medpor lower eyelid inserts implantation can instead tarsal plate for the reconstruction of medium to large areas lower eyelid defect, which is easy performing with rare complications. It is an ideal alternatives of tarsal plate.

  2. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts

    DEFF Research Database (Denmark)

    Guillery, O.; Malka, F.; Frachon, P.

    2008-01-01

    induced partial but significant mitochondrial fragmentation, whereas dissipation of mitochondrial membrane potential (D Psi m) provoked complete fragmentation, and glycolysis inhibition had no effect. Oxidative phosphorylation defective fibroblasts had essentially normal filamentous mitochondria under...... basal conditions, although when challenged some of them presented with mild alteration of fission or fusion efficacy. Severely defective cells disclosed complete mitochondrial fragmentation under glycolysis inhibition. In conclusion, mitochondrial morphology is modulated by D Psi m but loosely linked...... to mitochondrial oxidative phosphorylation. Its alteration by glycolysis, inhibition points to a severe oxidative phosphorylation defect. (C) 2008 Elsevier B.V. All rights reserved Udgivelsesdato: 2008/4...

  3. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation

    Science.gov (United States)

    Sajid, A.; Reimers, Jeffrey R.; Ford, Michael J.

    2018-02-01

    Key properties of nine possible defect sites in hexagonal boron nitride (h-BN), VN,VN -1,CN,VNO2 B,VNNB,VNCB,VBCN,VBCNS iN , and VNCBS iB , are predicted using density-functional theory and are corrected by applying results from high-level ab initio calculations. Observed h-BN electron-paramagnetic resonance signals at 22.4, 20.83, and 352.70 MHz are assigned to VN,CN, and VNO2 B , respectively, while the observed photoemission at 1.95 eV is assigned to VNCB . Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions is made for the two related defects VNCB and VBCN . VNCB is proposed for realizing long-lived quantum memory in h-BN. VBCN is predicted to have a triplet ground state, implying that spin initialization by optical means is feasible and suitable optical excitations are identified, making this defect of interest for possible quantum-qubit operations.

  4. Meningeal defects alter the tangential migration of cortical interneurons in Foxc1hith/hith mice

    Directory of Open Access Journals (Sweden)

    Zarbalis Konstantinos

    2012-01-01

    Full Text Available Abstract Background Tangential migration presents the primary mode of migration of cortical interneurons translocating into the cerebral cortex from subpallial domains. This migration takes place in multiple streams with the most superficial one located in the cortical marginal zone. While a number of forebrain-expressed molecules regulating this process have emerged, it remains unclear to what extent structures outside the brain, like the forebrain meninges, are involved. Results We studied a unique Foxc1 hypomorph mouse model (Foxc1hith/hith with meningeal defects and impaired tangential migration of cortical interneurons. We identified a territorial correlation between meningeal defects and disruption of interneuron migration along the adjacent marginal zone in these animals, suggesting that impaired meningeal integrity might be the primary cause for the observed migration defects. Moreover, we postulate that the meningeal factor regulating tangential migration that is affected in homozygote mutants is the chemokine Cxcl12. In addition, by using chromatin immunoprecipitation analysis, we provide evidence that the Cxcl12 gene is a direct transcriptional target of Foxc1 in the meninges. Further, we observe migration defects of a lesser degree in Cajal-Retzius cells migrating within the cortical marginal zone, indicating a less important role for Cxcl12 in their migration. Finally, the developmental migration defects observed in Foxc1hith/hith mutants do not lead to obvious differences in interneuron distribution in the adult if compared to control animals. Conclusions Our results suggest a critical role for the forebrain meninges to promote during development the tangential migration of cortical interneurons along the cortical marginal zone and Cxcl12 as the factor responsible for this property.

  5. Primary photoluminescence in as-neutron (electron) -irradiated n-type 6H-SiC

    International Nuclear Information System (INIS)

    Zhong, Z.Q.; Wu, D.X.; Gong, M.; Wang, O.; Shi, S.L.; Xu, S.J.; Chen, X.D.; Ling, C.C.; Fung, S.; Beling, C.D.; Brauer, G.; Anwand, W.; Skorupa, W.

    2006-01-01

    Low-temperature photoluminescence spectroscopy has revealed a series of features labeled S 1 , S 2 , S 3 in n-type 6H-SiC after neutron and electron irradiation. Thermal annealing studies showed that the defects S 1 , S 2 , S 3 disappeared at 500 deg. C. However, the well-known D 1 center was only detected for annealing temperatures over 700 deg. C. This experimental observation not only indicated that the defects S 1 , S 2 , S 3 were a set of primary defects and the D 1 center was a kind of secondary defect, but also showed that the D 1 center and the E 1 , E 2 observed using deep level transient spectroscopy might not be the same type of defects arising from the same physical origin

  6. Hydrogen absorption mechanisms and hydrogen interactions - defects: implications to stress corrosion of nickel based alloys in pressurized water reactors primary water

    International Nuclear Information System (INIS)

    Jambon, F.

    2012-01-01

    Since the late 1960's, a special form of stress corrosion cracking (SCC) has been identified for Alloy 600 exposed to pressurized water reactors (PWR) primary water: intergranular cracks develop during the alloy exposure, leading, progressively, to the complete ruin of the structure, and to its replacement. The main goal of this study is therefore to evaluate in which proportions the hydrogen absorbed by the alloy during its exposure to the primary medium can be responsible for SCC crack initiation and propagation. This study is aimed at better understanding of the hydrogen absorption mechanism when a metallic surface is exposed to a passivating PWR primary medium. A second objective is to characterize the interactions of the absorbed hydrogen with the structural defects of the alloy (dislocations, vacancies...) and evaluate to what extent these interactions can have an embrittling effect in relation with SCC phenomenon. Alloy 600-like single-crystals were exposed to a simulated PWR medium where the hydrogen atoms of water or of the pressuring hydrogen gas were isotopically substituted with deuterium, used as a tracer. Secondary ion mass spectrometry depth-profiling of deuterium was performed to characterize the deuterium absorption and localization in the passivated alloy. The results show that the hydrogen absorption during the exposure of the alloy to primary water is associated with the water molecules dissociation during the oxide film build-up. In an other series of experiments, structural defects were created in recrystallized samples, and finely characterized by positron annihilation spectroscopy and transmission electron microscopy, before or after the introduction of cathodic hydrogen. These analyses exhibited a strong hydrogen/defects interaction, evidenced by their structural reorganization under hydrogenation (coalescence, migrations). However, thermal desorption spectroscopy analyses indicated that these interactions are transitory, and dependent on

  7. Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma.

    Science.gov (United States)

    Nilforushan, Naveed; Yadgari, Maryam; Jazayeri, Anisalsadat

    2016-10-01

    To compare visual field defect patterns between pigmentary glaucoma and primary open-angle glaucoma. Retrospective, comparative study. Patients with diagnosis of primary open-angle glaucoma (POAG) and pigmentary glaucoma (PG) in mild to moderate stages were enrolled in this study. Each of the 52 point locations in total and pattern deviation plot (excluding 2 points adjacent to blind spot) of 24-2 Humphrey visual field as well as six predetermined sectors were compared using SPSS software version 20. Comparisons between 2 groups were performed with the Student t test for continuous variables and the Chi-square test for categorical variables. Thirty-eight eyes of 24 patients with a mean age of 66.26 ± 11 years (range 48-81 years) in the POAG group and 36 eyes of 22 patients with a mean age of 50.52 ± 11 years (range 36-69 years) in the PG group were studied. (P = 0.00). More deviation was detected in points 1, 3, 4, and 32 in total deviation (P = 0.03, P = 0.015, P = 0.018, P = 0.023) and in points 3, 4, and 32 in pattern deviation (P = 0.015, P = 0.049, P = 0.030) in the POAG group, which are the temporal parts of the field. It seems that the temporal area of the visual field in primary open-angle glaucoma is more susceptible to damage in comparison with pigmentary glaucoma.

  8. Lack of cilia and differentiation defects in the liver of human foetuses with the Meckel syndrome.

    Science.gov (United States)

    Clotman, Frédéric; Libbrecht, Louis; Killingsworth, Murray C; Loo, Christine C K; Roskams, Tania; Lemaigre, Frédéric P

    2008-03-01

    Meckel syndrome is an autosomal-recessive disease characterized by a combination of renal cysts, anomalies of the central nervous system, polydactyly and ductal plate malformations (DPM), which are hepatic anomalies consisting of excessive and abnormal foetal biliary structures. Among the genomic loci associated with Meckel syndrome, mutations in four genes were recently identified. These genes code for proteins associated with primary cilia and are possibly involved in cell differentiation. The aim of the present work was to investigate the formation of the primary cilia and the differentiation of the hepatic cells in foetuses with Meckel syndrome. Sections of livers from human foetuses with Meckel syndrome were analysed by immunofluorescence, immunohistochemistry and electron microscopy. The primary cilia of the biliary cells were absent in some Meckel foetuses, but were present in others. In addition, defects in hepatic differentiation were observed in Meckel livers, as evidenced by the presence of hybrid cells co-expressing hepatocytic and biliary markers. Defects in cilia formation occur in some Meckel livers, and most cases show DPM associated with abnormal hepatic cell differentiation. Because differentiation precedes the formation of the cilia during liver development, we propose that defective differentiation may constitute the initial defect in the liver of Meckel syndrome foetuses.

  9. Classroom observation data and instruction in primary mathematics education: improving design and rigour

    Science.gov (United States)

    Thompson, Carla J.; Davis, Sandra B.

    2014-06-01

    The use of formal observation in primary mathematics classrooms is supported in the literature as a viable method of determining effective teaching strategies and appropriate tasks for inclusion in the early years of mathematics learning. The twofold aim of this study was to (a) investigate predictive relationships between primary mathematics classroom observational data and student achievement data, and (b) to examine the impact of providing periodic classroom observational data feedback to teachers using a Relational-Feedback-Intervention (RFI) Database Model. This observational research effort focused on an empirical examination of student engagement levels in time spent on specific learning activities observed in primary mathematics classrooms as predictors of student competency outcomes in mathematics. Data were collected from more than 2,000 primary classroom observations in 17 primary schools during 2009-2011 and from standardised end-of-year tests for mathematics achievement. Results revealed predictive relationships among several types of teaching and learning tasks with student achievement. Specifically, the use of mathematics concepts, technology and hands-on materials in primary mathematics classrooms was found to produce substantive predictors of increased student mathematics achievement. Additional findings supported the use of periodic classroom observation data reporting as a positive influence on teachers' decisions in determining instructional tasks for inclusion in primary mathematics classrooms. Study results indicate classroom observational research involving a RFI Database Model is a productive tool for improving teaching and learning in primary mathematics classrooms.

  10. Oxygen vacancy defect engineering using atomic layer deposited HfAlOx in multi-layered gate stack

    Science.gov (United States)

    Bhuyian, M. N.; Sengupta, R.; Vurikiti, P.; Misra, D.

    2016-05-01

    This work evaluates the defects in high quality atomic layer deposited (ALD) HfAlOx with extremely low Al (estimated by the high temperature current voltage measurement shows that the charged oxygen vacancies, V+/V2+, are the primary source of defects in these dielectrics. When Al is added in HfO2, the V+ type defects with a defect activation energy of Ea ˜ 0.2 eV modify to V2+ type to Ea ˜ 0.1 eV with reference to the Si conduction band. When devices were stressed in the gate injection mode for 1000 s, more V+ type defects are generated and Ea reverts back to ˜0.2 eV. Since Al has a less number of valence electrons than do Hf, the change in the co-ordination number due to Al incorporation seems to contribute to the defect level modifications. Additionally, the stress induced leakage current behavior observed at 20 °C and at 125 °C demonstrates that the addition of Al in HfO2 contributed to suppressed trap generation process. This further supports the defect engineering model as reduced flat-band voltage shifts were observed at 20 °C and at 125 °C.

  11. Electroluminescence analysis of injection-enhanced annealing of electron irradiation-induced defects in GaInP top cells for triple-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tiancheng; Lu, Ming; Yang, Kui; Xiao, Pengfei; Wang, Rong, E-mail: wangr@bnu.edu.cn

    2014-09-15

    Direct injection-enhanced annealing of defects in a GaInP top cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.8 MeV electrons with a fluence of 1 × 10{sup 15} cm{sup −2} has been observed and analyzed using electroluminescence (EL) spectra. Minority-carrier injection under forward bias conditions is observed to enhance defect annealing in the GaInP top cell, and recovery of the EL intensity of the GaInP top cell was observed even at room temperature. Moreover, the injection-enhanced defect annealing rates obey a simple Arrhenius law; therefore, the annealing activation energy was determined and is equal to 0.51 eV. Lastly, the H2 defect has been identified as the primary non-radiative recombination center based on a comparison of the annealing activation energies.

  12. Sirenomelia: A Multi-systemic Polytopic Field Defect with Ongoing Controversies.

    Science.gov (United States)

    Boer, Lucas L; Morava, Eva; Klein, Willemijn M; Schepens-Franke, Annelieke N; Oostra, Roelof Jan

    2017-06-01

    The most impressive phenotypic appearance of sirenomelia is the presence of a 180°-rotated, axially positioned, single lower limb. Associated gastrointestinal and genitourinary anomalies are almost always present. This rare anomaly is still the subject of ongoing controversies concerning its nosology, pathogenesis, and possible genetic etiology. Sirenomelia can be part of a syndromic continuum, overlapping with other complex conditions including caudal dysgenesis and VATER/VACTERL/VACTERL-H associations, which could all be part of a heterogeneous spectrum, and originate from an early defect in blastogenesis. It is imaginable that different "primary field defects," whether or not genetically based, induce a spectrum of caudal malformations. In the current study, we review the contemporary hypotheses and conceptual approaches regarding the etiology and pathogenesis of sirenomelia, especially in the context of concomitant conditions. To expand on the latter, we included the external and internal dysmorphology of one third trimester sirenomelic fetus from our anatomical museum collection, in which multiple concomitant but discordant anomalies were observed compared with classic sirenomelia, and was diagnosed as VACTERL-H association with sirenomelia. Birth Defects Research 109:791-804, 2017. © 2017 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc. © 2017 The Authors. Birth Defects Research Published by Wiley Periodicals, Inc.

  13. PKA spectral effects on subcascade structures and free defect survival ratio as estimated by cascade-annealing computer simulation

    International Nuclear Information System (INIS)

    Muroga, Takeo

    1990-01-01

    The free defect survival ratio is calculated by ''cascade-annealing'' computer simulation using the MARLOWE and modified DAIQUIRI codes in various cases of Primary Knock-on Atom (PKA) spectra. The number of subcascades is calculated by ''cut-off'' calculation using MARLOWE. The adequacy of these methods is checked by comparing the results with experiments (surface segregation measurements and Transmission Electron Microscope cascade defect observations). The correlation using the weighted average recoil energy as a parameter shows that the saturation of the free defect survival ratio at high PKA energies has a close relation to the cascade splitting into subcascades. (author)

  14. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  15. On the influence of extrinsic point defects on irradiation-induced point-defect distributions in silicon

    International Nuclear Information System (INIS)

    Vanhellemont, J.; Romano-Rodriguez, A.

    1994-01-01

    A semi-quantitative model describing the influence of interfaces and stress fields on {113}-defect generation in silicon during 1-MeV electron irradiation, is further developed to take into account also the role of extrinsic point defects. It is shown that the observed distribution of {113}-defects in high-flux electron-irradiated silicon and its dependence on irradiation temperature and dopant concentration can be understood by taking into account not only the influence of the surfaces and interfaces as sinks for intrinsic point defects but also the thermal stability of the bulk sinks for intrinsic point defects. In heavily doped silicon the bulk sinks are related with pairing reactions of the dopant atoms with the generated intrinsic point defects or related with enhanced recombination of vacancies and self-interstitials at extrinsic point defects. The obtained theoretical results are correlated with published experimental data on boron-and phosphorus-doped silicon and are illustrated with observations obtained by irradiating cross-section transmission electron microscopy samples of wafer with highly doped surface layers. (orig.)

  16. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  17. Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutant

    International Nuclear Information System (INIS)

    Patel, S.C.; Suresh, S.; Weintroub, H.; Brady, R.O.; Pentchev, P.G.

    1987-01-01

    Esterification of cholesterol was investigated in primary neuroglial cultures obtained from newborn lysosomal cholesterol storage disorder (LCSD) mouse mutants. An impairment in 3 H-oleic acid incorporation into cholesteryl esters was demonstrated in cultures of homozygous LCSD brain. Primary cultures derived from other phenotypically normal pups of the carrier breeders esterified cholesterol at normal levels or at levels which were intermediary between normal and deficient indicating a phenotypic expression of the LCSD heterozygote genotype. These observations on LCSD mutant brain cells indicate that the defect in cholesterol esterification is closely related to the primary genetic defect and is expressed in neuroglial cells in culture

  18. Hypomineralized second primary molars: prevalence, defect characteristics and relationship with dental caries in Melbourne preschool children.

    Science.gov (United States)

    Owen, M L; Ghanim, A; Elsby, D; Manton, D J

    2018-03-01

    Dental caries and enamel defects (DDE) are prevalent amongst children. The presence of DDE, especially enamel hypomineralization, may increase caries experience. The reported prevalence of hypomineralized second primary molars (HSPM) is 2.7-21.8%, although the occurrence in Australian children remains unknown. These HSPM represent a potential predictive factor for molar-incisor hypomineralization (MIH). In total, 623 children aged 3-5 years from 30 randomly selected kindergartens participated. The HSPM were recorded using an index combining the European Academy of Paediatric Dentistry MIH Judgment Criteria and modified DDE Index. Caries was recorded using International Caries Detection and Assessment System criteria. In total, 144 HSPM were observed in 88 of the 623 (14.1%) children, a tooth-level prevalence of 5.8%. The prevalence of dentinal carious lesions was 13.2%, and caries prevalence (d 2-6 mft > 0) was 36.4%. Cavitated carious lesions affected 30.7% of HSPM. The relationship between an increase in HSPM lesion extent and increasing number of HSPM per child was statistically significant. A positive association between HSPM severity and extent at tooth level existed (P < 0.05). There was a positive relationship between the extent of HSPM and carious lesion severity (P < 0.05). In this population, children with HSPM did not have overall greater caries experience. © 2017 Australian Dental Association.

  19. Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection

    Science.gov (United States)

    Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.

    2016-03-01

    To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.

  20. Observation of new defect levels in nanodiamond membranes

    Czech Academy of Sciences Publication Activity Database

    Kravets, Roman; Johnston, K.; Potměšil, Jiří; Vorlíček, Vladimír; Rosa, Jan; Vaněček, Milan

    2005-01-01

    Roč. 202, č. 11 (2005), s. 2166-2170 ISSN 0031-8965 R&D Projects: GA ČR(CZ) GA202/05/2233; GA MŠk(CZ) LC510 Grant - others:Marie Curie Research Training Network, European Union, project DRIVE(XE) MRTN-CT-2004-512224 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * defects spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.041, year: 2005

  1. Interaction of alpha radiation with thermally-induced defects in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Majid, Abdul

    2008-01-01

    The interaction of radiation-induced defects created by energetic alpha particles and thermally-induced defects in silicon has been studied using a Deep Level Transient Spectroscopy (DLTS) technique. Two thermally-induced defects at energy positions E c -0.48 eV and E c -0.25 eV and three radiation-induced defects E2, E3 and E5 have been observed. The concentration of both of the thermally-induced defects has been observed to increase on irradiation. It has been noted that production rates of the radiation-induced defects are suppressed in the presence of thermally-induced defects. A significant difference in annealing characteristics of thermally-induced defects in the presence of radiation-induced defects has been observed compared to the characteristics measured in pre-irradiated samples

  2. Topological defects from the multiverse

    Science.gov (United States)

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  3. Topological defects from the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jun [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Blanco-Pillado, Jose J. [Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48013, Bilbao (Spain); Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, 08028, Barcelona (Spain); Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  4. Topological defects from the multiverse

    International Nuclear Information System (INIS)

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.; Garriga, Jaume

    2015-01-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble

  5. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  6. Annealing of radiation-induced defects in silicon in a simplified phenomenological model

    International Nuclear Information System (INIS)

    Lazanu, S.; Lazanu, I.

    2001-01-01

    The concentration of primary radiation-induced defects has been previously estimated considering both the explicit mechanisms of the primary interaction between the incoming particle and the nuclei of the semiconductor lattice, and the recoil energy partition between ionisation and displacements, in the frame of the Lindhard theory. The primary displacement defects are vacancies and interstitials that are essentially unstable in silicon. They interact via migration, recombination, annihilation or produce other defects. In the present work, the time evolution of the concentration of defects induced by pions in medium and high resistivity silicon for detectors is modelled, after irradiation. In some approximations, the differential equations representing the time evolution processes could be decoupled. The theoretical equations so obtained are solved analytically in some particular cases, with one free parameter, for a wide range of particle fluences and/or for a wide energy range of incident particles, for different temperatures; the corresponding stationary solutions are also presented

  7. Analysis of defects in ProTaper hand-operated instruments after clinical use.

    Science.gov (United States)

    Shen, Ya; Bian, Zhuan; Cheung, Gary Shun-pan; Peng, Bin

    2007-03-01

    The purpose of this study was to analyze the type and location of defects observed in ProTaper for Hand Use (PHU) instruments after routine clinical use. We analyzed a total of 401 PHUs discarded from an endodontic clinic over a 17-month period. Those failed instruments were examined on the lateral and fractographic surface by scanning electron microscope. Of the 86 PHUs that showed discernible defects, 28 were intact but partially unwound, and 58 were fractured (36 because of shear and 22 from fatigue failure). The primary characteristic of shear failure was the presence of a skewed dimple and/or tear ridge, a typical pattern developed because of a combination of various loads. Nearly 74% of the instruments with defects exhibited shear damage. About three-quarters of the instrument fractures occurred in the apical one-third of the canal, mostly in molars. The results of this study indicated that most PHU instruments fail because of either shear or fatigue.

  8. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Influence of oxygen on the annealing of radioactive defects in germanium

    International Nuclear Information System (INIS)

    Gasimov, G.M.; Mustafayev, Yn.M.; Gasimova, V.G.

    2002-01-01

    The isochronal annealing were carried out in the wide temperature range, for the establishment of oxygen influence on the annealing of radioactive defects (Rd) in any radiated germanium samples, concentrated with oxygen up to concentration of 9.7·10 16 cm -3 . It is shown that the curves of isochronal annealing of one of the such samples 1, with primary current charge concentration of 9.0·10 cm 14 , radiated by integral electron flow of φ= 8.0·10 16 cm -3 , at 293 K and also the non-oxygen samples 2, with primary concentration of 1.7·10 cm -3 , radiated at above mentioned conditions. The sample 1 is converted by radiation to p-type, but the conversion not occur in samples 2. It is illustrated, that that there is two annealing stage at 340-430 K, for the samples 2, which in results takes place the complete annealing of the RD. At 300 K the annealing takes place in samples of 1, but at 340 K - the reverse annealing of RD. The sample was at compensated state in the temperature range of 360-400 K. An annealing of RD takes place again at 440 K and the sample re-converted its conductivity type. The reverse annealing at 480 K, and at about 510 K, the substantial annealing of the defects has been observed, which in results a sample restores it's primary parameters. The carried out experiments show that as in converted, and also in n-type be samples, Is observed the reverse annealing of RD, but the reverse annealing of current charge carriers in n-type samples is observed only at such conditions, of the integral flow of accelerated elections exceeds the primary concentration of current charge carriers about 4 time of magnitude (φ≥4n 0 ). Besides, the complete annealing of RD in germanium samples concentrated with oxygen, takes place at more high temperatures in comparison with the non-oxygen samples

  10. Estimates of point defect production in α-quartz using molecular dynamics simulations

    Science.gov (United States)

    Cowen, Benjamin J.; El-Genk, Mohamed S.

    2017-07-01

    Molecular dynamics (MD) simulations are performed to investigate the production of point defects in α-quartz by oxygen and silicon primary knock-on atoms (PKAs) of 0.25-2 keV. The Wigner-Seitz (WS) defect analysis is used to identify the produced vacancies, interstitials, and antisites, and the coordination defect analysis is used to identify the under and over-coordinated oxygen and silicon atoms. The defects at the end of the ballistic phase and the residual defects, after annealing, increase with increased PKA energy, and are statistically the same for the oxygen and silicon PKAs. The WS defect analysis results show that the numbers of the oxygen vacancies and interstitials (VO, Oi) at the end of the ballistic phase is the highest, followed closely by those of the silicon vacancies and interstitials (VSi, Sii). The number of the residual oxygen and silicon vacancies and interstitials are statistically the same. In addition, the under-coordinated OI and SiIII, which are the primary defects during the ballistic phase, have high annealing efficiencies (>89%). The over-coordinated defects of OIII and SiV, which are not nearly as abundant in the ballistic phase, have much lower annealing efficiencies (PKA energy.

  11. Observation of point defects in impurity-doped zinc selenide films using a monoenergetic positron beam

    International Nuclear Information System (INIS)

    Miyajima, T.; Okuyama, H.; Akimoto, K.; Mori, Y.; Wei, L.; Tanigawa, S.

    1992-01-01

    We studied point defects in ZnSe films grown by molecular beam epitaxy using the positron annihilation method. We found that doping with Ga atoms induces vacancy-type defects such as Zn vacancies, and that heavy doping with oxygen atoms induces interstitial type defects. We think that these defects are one of the causes of active carrier saturation in doped ZnSe films. (author)

  12. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks

    Science.gov (United States)

    Bártfai, Zoltán; Bánhidy, Ferenc

    2011-01-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate (‘folate’). PMID:25083211

  13. Point defects and defect clusters examined on the basis of some fundamental experiments

    International Nuclear Information System (INIS)

    Zuppiroli, L.

    1975-01-01

    On progressing from the centre of the defect to the surface the theoretical approach to a point defect passes from electronic theories to elastic theory. Experiments by which the point defect can be observed fall into two categories. Those which detect long-range effects: measurement of dimensional variations in the sample; measurement of the mean crystal parameter variation; elastic X-ray scattering near the nodes of the reciprocal lattice (Huang scattering). Those which detect more local effects: low-temperature resistivity measurement; positron capture and annihilation; local scattering far from the reciprocal lattice nodes. Experiments involving both short and long-range effects can always be found. This is the case for example with the dechanneling of α particles by defects. Certain of the experimental methods quoted above apply also to the study of point defect clusters. These methods are illustrated by some of their most striking results which over the last twenty years have refined our knowledge of point defects and defect clusters: length and crystal parameter measurements; diffuse X-ray scattering; low-temperature resistivity measurements; ion emission microscopy; electron microscopy; elastoresistivity [fr

  14. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Science.gov (United States)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  15. Stochastic annealing simulations of defect interactions among subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N.

    1997-04-01

    The effects of the subcascade structure of high energy cascades on the temperature dependencies of annihilation, clustering and free defect production are investigated. The subcascade structure is simulated by closely spaced groups of lower energy MD cascades. The simulation results illustrate the strong influence of the defect configuration existing in the primary damage state on subsequent intracascade evolution. Other significant factors affecting the evolution of the defect distribution are the large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. Annealing simulations are also performed on high-energy, subcascade-producing cascades generated with the binary collision approximation and calibrated to MD results.

  16. Situs inversus totalis associated with subaortic stenosis, restrictive ventricular septal defect, and tricuspid dysplasia in an adult dog.

    Science.gov (United States)

    Piantedosi, Diego; Cortese, Laura; Meomartino, Leonardo; Di Loria, Antonio; Ciaramella, Paolo

    2011-11-01

    A rare association between situs inversus totalis (SIT), restrictive ventricular septal defect, severe subaortic stenosis, and tricuspid dysplasia was observed in an adult mixed-breed dog. Primary ciliary dyskinesia and Kartagener's syndrome were excluded. After 15 mo the dog died suddenly. The association between SIT and congenital heart diseases is discussed.

  17. Production and recombination of radiation defects in argon and krypton crystals

    International Nuclear Information System (INIS)

    Giersberg, E.J.

    1981-01-01

    Relative changes in the lattice constants of argon and krypton crystals have been measured by X-ray diffraction. As a result X-ray irradiation is found to produce stable defects. The recombination behaviour of these defects can be determined by isochronous and isothermal annealing. The creation of primary defects can be explained by exciton excitation and double-ionisation. (orig.) [de

  18. Situs inversus totalis associated with subaortic stenosis, restrictive ventricular septal defect, and tricuspid dysplasia in an adult dog

    OpenAIRE

    Piantedosi, Diego; Cortese, Laura; Meomartino, Leonardo; Di Loria, Antonio; Ciaramella, Paolo

    2011-01-01

    A rare association between situs inversus totalis (SIT), restrictive ventricular septal defect, severe subaortic stenosis, and tricuspid dysplasia was observed in an adult mixed-breed dog. Primary ciliary dyskinesia and Kartagener’s syndrome were excluded. After 15 mo the dog died suddenly. The association between SIT and congenital heart diseases is discussed.

  19. Human diseases associated with defective DNA repair

    International Nuclear Information System (INIS)

    Friedberg, E.C.; Ehmann, U.K.; Williams, J.I.

    1979-01-01

    The observations on xeroderma pigmentosum (XP) cells in culture were the first indications of defective DNA repair in association with human disease. Since then, a wealth of information on DNA repair in XP, and to a lesser extent in other diseases, has accumulated in the literature. Rather than clarifying the understanding of DNA repair mechanisms in normal cells and of defective DNA repair in human disease, the literature suggests an extraordinary complexity of both of the phenomena. In this review a number of discrete human diseases are considered separately. An attempt was made to systematically describe the pertinent clinical features and cellular and biochemical defects in these diseases, with an emphasis on defects in DNA metabolism, particularly DNA repair. Wherever possible observations have been correlated and unifying hypotheses presented concerning the nature of the basic defect(s) in these diseases. Discussions of the following diseases are presented: XP, ataxia telangiectasia; Fanconi's anemia; Hutchinson-Gilford progeria syndrome; Bloom's syndrome, Cockayne's syndrome; Down's syndrome; retinoblastoma; chronic lymphocytic leukemia; and other miscellaneous human diseases with possble DNA repair defects

  20. Strip defect recognition in electrical tests of silicon microstrip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Valentan, Manfred, E-mail: valentan@mpp.mpg.de

    2017-02-11

    This contribution describes the measurement procedure and data analysis of AC-coupled double-sided silicon microstrip sensors with polysilicon resistor biasing. The most thorough test of a strip sensor is an electrical measurement of all strips of the sensor; the measured observables include e.g. the strip's current and the coupling capacitance. These measurements are performed to find defective strips, e.g. broken capacitors (pinholes) or implant shorts between two adjacent strips. When a strip has a defect, its observables will show a deviation from the “typical value”. To recognize and quantify certain defects, it is necessary to determine these typical values, i.e. the values the observables would have without the defect. As a novel approach, local least-median-of-squares linear fits are applied to determine these “would-be” values of the observables. A least-median-of-squares fit is robust against outliers, i.e. it ignores the observable values of defective strips. Knowing the typical values allows to recognize, distinguish and quantify a whole range of strip defects. This contribution explains how the various defects appear in the data and in which order the defects can be recognized. The method has been used to find strip defects on 30 double-sided trapezoidal microstrip sensors for the Belle II Silicon Vertex Detector, which have been measured at the Institute of High Energy Physics, Vienna (Austria).

  1. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  2. Combined constraints on global ocean primary production using observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le

    2013-09-01

    production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

  3. The p53 codon 72 PRO/PRO genotype may be associated with initial central visual field defects in caucasians with primary open angle glaucoma.

    Directory of Open Access Journals (Sweden)

    Janey L Wiggs

    Full Text Available Loss of vision in glaucoma is due to apoptotic retinal ganglion cell loss. While p53 modulates apoptosis, gene association studies between p53 variants and glaucoma have been inconsistent. In this study we evaluate the association between a p53 variant functionally known to influence apoptosis (codon 72 Pro/Arg and the subset of primary open angle glaucoma (POAG patients with early loss of central visual field.Genotypes for the p53 codon 72 polymorphism (Pro/Arg were obtained for 264 POAG patients and 400 controls from the U.S. and in replication studies for 308 POAG patients and 178 controls from Australia (GIST. The glaucoma patients were divided into two groups according to location of initial visual field defect (either paracentral or peripheral. All cases and controls were Caucasian with European ancestry.The p53-PRO/PRO genotype was more frequent in the U.S. POAG patients with early visual field defects in the paracentral regions compared with those in the peripheral regions or control group (p=2.7 × 10(-5. We replicated this finding in the GIST cohort (p  =7.3 × 10(-3, and in the pooled sample (p=6.6 × 10(-7 and in a meta-analysis of both the US and GIST datasets (1.3 × 10(-6, OR 2.17 (1.58-2.98 for the PRO allele.These results suggest that the p53 codon 72 PRO/PRO genotype is potentially associated with early paracentral visual field defects in primary open-angle glaucoma patients.

  4. Direct observation of weight-related communication in primary care: a systematic review.

    Science.gov (United States)

    McHale, Calum T; Laidlaw, Anita H; Cecil, Joanne E

    2016-08-01

    Primary care is ideally placed to play an effective role in patient weight management; however, patient weight is seldom discussed in this context. A synthesis of studies that directly observe weight discussion in primary care is required to more comprehensively understand and improve primary care weight-related communication. To systematically identify and examine primary care observational research that investigates weight-related communication and its relationship to patient weight outcomes. A systematic review of literature published up to August 2015, using seven electronic databases (including MEDLINE, Scopus and PsycINFO), was conducted using search terms such as overweight, obese and/or doctor-patient communication. Twenty papers were included in the final review. Communication analysis focused predominantly on 'practitioner' use of specific patient-centred communication. Practitioner use of motivational interviewing was associated with improved patient weight-related outcomes, including patient weight loss and increased patient readiness to lose weight; however, few studies measured patient weight-related outcomes. Studies directly observing weight-related communication in primary care are scarce and limited by a lack of focus on patient communication and patient weight-related outcomes. Future research should measure practitioner and patient communications during weight discussion and their impact on patient weight-related outcomes. This knowledge may inform the development of a communication intervention to assist practitioners to more effectively discuss weight with their overweight and/or obese patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The Use of Tensor Fascia Lata Pedicled Flap in Reconstructing Full Thickness Abdominal Wall Defects and Groin Defects Following Tumor Ablation

    International Nuclear Information System (INIS)

    Rifaat, M.A.; Abdel Gawad, W.S.

    2005-01-01

    The tensor fascia lata is a versatile flap with many uses in reconstructive plastic surgery. As a pedicled flap its reach to the lower abdomen and groin made it an attractive option for reconstructing soft tissue defects after tumor ablation. However, debate exists on the safe dimension of the flap, as distal tip necrosis is common. Also, the adequacy of the fascia lata as a sole substitute for abdominal wall muscles has been disputable. The aim of the current study is to report our experience and clinical observations with this flap in reconstructing those challenging defects and to discuss the possible options to minimize the latter disputable issues. Patients and Methods: From April 2001 to April 2004, 12 pedicled TFL flaps were used to reconstruct 5 central abdominal wall full thickness defects and 6 groin soft tissue defects following tumor resection. ]n one case, bilateral flaps were used to reconstruct a large central abdominal wall defect. There were 4 males and 7 females. Their age ranged from 19 to 60. From the abdominal wall defects group, all repairs were enforced primarily with a prolene mesh except for one patient who was the first in this study. Patients presenting with groin defects required coverage of exposed vessels following tumor resection. All patients in the current study underwent immediate reconstruction. The resulting soft tissue defects in this study were due to resection of 4 abdominal wall desmoid tumors, a colonic carcinoma infiltrating the abdominal wall, 4 primary groin soft developed in a flap used to cover a groin defect. In the former 3 cases, The flap was simply transposed without complete islanding of the flap. In the latter case, a very large flap was harvested beyond the safe limits with its distal edge just above the knee. In addition, wound dehiscence of the flap occurred in 2 other cases from the groin group. Nevertheless, all the wounds healed spontaneously with repeated dressings. Out of the 5 cases that underwent

  6. Reduced TCA Flux in Diabetic Myotubes: Determined by Single Defects?

    Science.gov (United States)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP production in isolated mitochondria from substrates entering the TCA cycle at various points. ATP production was measured by luminescence with or without concomitant ATP utilisation by hexokinase in mitochondria isolated from myotubes established from eight lean and eight type 2 diabetic subjects. The ATP production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate, there was no significant difference between groups. These results show that the primary reduced TCA cycle flux in diabetic myotubes is not explained by defects in specific part of the TCA cycle but rather results from a general downregulation of the TCA cycle.

  7. Inflammatory Bowel Disease in Primary Immunodeficiencies.

    Science.gov (United States)

    Kelsen, Judith R; Sullivan, Kathleen E

    2017-08-01

    Inflammatory bowel disease is most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. There is, however, increasing recognition of single gene defects that underlie a subset of patients with inflammatory bowel disease, particularly those with early-onset disease, and this review focuses on the primary immunodeficiencies associated with early-onset inflammatory bowel disease. The advent of next-generation sequencing has led to an improved recognition of single gene defects underlying some cases of inflammatory bowel disease. Among single gene defects, immune response genes are the most frequent category identified. This is also true of common genetic variants associated with inflammatory bowel disease, supporting a pivotal role for host responses in the pathogenesis. This review focuses on practical aspects related to diagnosis and management of children with inflammatory bowel disease who have underlying primary immunodeficiencies.

  8. The Observation Of Defects Of School Buildings Over 100 Years Old In Perak

    Directory of Open Access Journals (Sweden)

    Alauddin Kartina

    2016-01-01

    Full Text Available Malaysia is blessed with a rich legacy of heritage buildings with unique architectural and historical values. The heritage buildings become a symbol of the national identity of our country. Therefore, heritage buildings, as important monuments should be conserved well to ensure the extension of the building’s life span and to make sure continuity functions of the building for future generations. The aim of this study is to analyze the types of defects attached in school buildings over 100 years located in Perak. The data were collected in four different schools aged over 100 years in Perak. The finding of the study highlighted the types of defects which were categorized based on building elements, including external wall, roof, door, ceiling, staircase, column, internal wall, floor and windows. Finding showed that the type of defects occurred in school buildings over 100 years in Perak is the same as the other heritage buildings. This finding can be used by all parties to take serious actions in preventing defects from occurring in buildings over 100 years. This would ensure that buildings’ functional life span can be extended for future use.

  9. Anatomical manifestations of primary blast ocular trauma observed in a postmortem porcine model.

    Science.gov (United States)

    Sherwood, Daniel; Sponsel, William E; Lund, Brian J; Gray, Walt; Watson, Richard; Groth, Sylvia L; Thoe, Kimberly; Glickman, Randolph D; Reilly, Matthew A

    2014-02-24

    We qualitatively describe the anatomic features of primary blast ocular injury observed using a postmortem porcine eye model. Porcine eyes were exposed to various levels of blast energy to determine the optimal conditions for future testing. We studied 53 enucleated porcine eyes: 13 controls and 40 exposed to a range of primary blast energy levels. Eyes were preassessed with B-scan and ultrasound biomicroscopy (UBM) ultrasonography, photographed, mounted in gelatin within acrylic orbits, and monitored with high-speed videography during blast-tube impulse exposure. Postimpact photography, ultrasonography, and histopathology were performed, and ocular damage was assessed. Evidence for primary blast injury was obtained. While some of the same damage was observed in the control eyes, the incidence and severity of this damage in exposed eyes increased with impulse and peak pressure, suggesting that primary blast exacerbated these injuries. Common findings included angle recession, internal scleral delamination, cyclodialysis, peripheral chorioretinal detachments, and radial peripapillary retinal detachments. No full-thickness openings of the eyewall were observed in any of the eyes tested. Scleral damage demonstrated the strongest associative tendency for increasing likelihood of injury with increased overpressure. These data provide evidence that primary blast alone (in the absence of particle impact) can produce clinically relevant ocular damage in a postmortem model. The blast parameters derived from this study are being used currently in an in vivo model. We also propose a new Cumulative Injury Score indicating the clinical relevance of observed injuries.

  10. Using video-based observation research methods in primary care health encounters to evaluate complex interactions.

    Science.gov (United States)

    Asan, Onur; Montague, Enid

    2014-01-01

    The purpose of this paper is to describe the use of video-based observation research methods in primary care environment and highlight important methodological considerations and provide practical guidance for primary care and human factors researchers conducting video studies to understand patient-clinician interaction in primary care settings. We reviewed studies in the literature which used video methods in health care research, and we also used our own experience based on the video studies we conducted in primary care settings. This paper highlighted the benefits of using video techniques, such as multi-channel recording and video coding, and compared "unmanned" video recording with the traditional observation method in primary care research. We proposed a list that can be followed step by step to conduct an effective video study in a primary care setting for a given problem. This paper also described obstacles, researchers should anticipate when using video recording methods in future studies. With the new technological improvements, video-based observation research is becoming a promising method in primary care and HFE research. Video recording has been under-utilised as a data collection tool because of confidentiality and privacy issues. However, it has many benefits as opposed to traditional observations, and recent studies using video recording methods have introduced new research areas and approaches.

  11. Reactive evaporation of low-defect density hafnia

    International Nuclear Information System (INIS)

    Chow, R.; Falabella, S.; Loomis, G.E.; Rainer, F.; Stolz, C.J.; Kozlowski, M.R.

    1993-01-01

    Motivation for this work includes observations at Lawrence Livermore National Laboratory of a correlation between laser damage thresholds and both the absorption and the nodular-defect density of coatings. Activated oxygen is used to increase the metal-oxidation kinetics at the coated surface during electron-beam deposition. A series of hafnia layers are made with various conditions: two μ-wave configuations, two sources (hafnium and hafnia), and two reactive oxygen pressures. Laser damage thresholds (1064-nm, 10-ns pulses), absorption (at 511 nm), and nodular-defect densities from these coatings are reported. The damage thresholds are observed to increase as the absorption of the coatings decreases. However, no significant increase in damage thresholds are observed with the coatings made from a low nodular-defect density source material (hafnium). Hafnia coatings can be made from hafnium sources that have lower nodular-defect densities, lower absorption, and damage thresholds that are comparable with coatings made from a conventional hafnia source

  12. A molecular dynamics simulation study of irradiation induced defects in gold nanowire

    Science.gov (United States)

    Liu, Wenqiang; Chen, Piheng; Qiu, Ruizhi; Khan, Maaz; Liu, Jie; Hou, Mingdong; Duan, Jinglai

    2017-08-01

    Displacement cascade in gold nanowires was studied using molecular dynamics computer simulations. Primary knock-on atoms (PKAs) with different kinetic energies were initiated either at the surface or at the center of the nanowires. We found three kinds of defects that were induced by the cascade, including point defects, stacking faults and crater at the surface. The starting points of PKAs influence the number of residual point defects, and this consequently affect the boundary of anti-radiation window which was proposed by calculation of diffusion of point defects to the free surface of nanowires. Formation of stacking faults that expanded the whole cross-section of gold nanowires was observed when the PKA's kinetic energy was higher than 5 keV. Increasing the PKA's kinetic energy up to more than 10 keV may lead to the formation of crater at the surface of nanowires due to microexplosion of hot atoms. At this energy, PKAs started from the center of nanowires can also result in the creation of crater because length of cascade region is comparable to diameter of nanowires. Both the two factors, namely initial positions of PKAs as well as the craters induced by higher energy irradiation, would influence the ability of radiation resistance of metal nanowires.

  13. A study of point defects in quenched stainless steels

    International Nuclear Information System (INIS)

    Kheloufi, Khelifa.

    1977-07-01

    Thin foils of stainless steels (18%Cr, 14%Ni) containing boron (50x10 -6 ) and stabilised with titanium have been quenched at different rates in order to observe secondary defects by transmission electron microscopy. A rapid quenching in gallium has not given any secondary defects either before or after annealing. But samples quenched from temperatures greater than 800 0 C-900 0 C exhibit a dislocation density approximately 10 9 cm/cm 3 . A vacancy concentration less than 10 -6 has been observed by positron annihilation technique. After a moderate quenching, any secondary defects has been observed. It is thus clear that boron does not favour the secondary defects formation as does phosphorus [fr

  14. Channelized relevance vector machine as a numerical observer for cardiac perfusion defect detection task

    Science.gov (United States)

    Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.

  15. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    International Nuclear Information System (INIS)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions

  16. Computer experiment studies on mechanisms for irradiation induced defect production and annealing processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beeler, J.R. Jr.; Beeler, M.F.

    1979-06-01

    This research is based on pair potentials used in the Brookhaven work. It extends their use in defect production simulations to the 5 MeV range and characterizes the short term annealing of the primary defect states. Defect properties and interactions are studied. Defect interactions include carbon, helium, and misfit metallic substitutional impurity interactions with vacancy and interstitial defects as well as vacancy-vacancy, interstitial-interstitial and vacancy-interstitial interactions. (FS)

  17. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun, E-mail: stscjun@mail.sysu.edu.cn

    2017-03-31

    Highlights: • A thermo-enhanced field emission phenomenon was observed from dendritic ZnO nanowires under the temperature of 323–723 K. • Defect-assisted field emission mechanism was proposed and quantitative calculation fits well with the experiment results. • The mechanism was verified by the field emission from ZnO nanowires with different defect concentrations. • A diode X-ray source making use of thermo-enhanced field emission phenomenon was proposed for separate tuning of dose and energy. - Abstract: A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole–Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  18. Structure and flux pinning properties of irradiation defects in YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1992-06-01

    We review our investigations of defects produced in YBa 2 Cu 3 O 7-x by various forms of irradiation. The defect microstructure has been studied by transmission electron microscopy (TEM). Irradiation enhancements of flux pinning have been studied by SQUID magnetometry on single crystals. In many cases the same single crystals were used in both TEM and SQUID investigations. The primary atom recoil spectra for all the irradiations studied have been carefully calculated and used to correlate the TEM and magnetization results for the different types of irradiation. Correlation of annealing experiments, employing both TEM and SQUID measurements, among several types of irradiation has also yielded information on the different defect structures present. Defect densities, sizes and strain field anisotropies have been determined by TEM. Defect flux pinning anisotropies have been determined for two field orientations in twinned single crystals. The temperature dependences of the flux pinning have been measured. The maximum field of irreversibility at 70 K is shown to change markedly upon both neutron and proton irradiations in some crystals and not others. The defect structure, chemistry and location in the unit cell has been determined in some cases. Some interaction with existing defect structure has been observed in proton and electron irradiations. The damage character and directionality has been determined in GeV ion irradiated crystals

  19. Approach to a child with primary immunodeficiency

    Directory of Open Access Journals (Sweden)

    Özge Yılmaz

    2010-09-01

    Full Text Available Primary immunodeficiencies are clinically and epidemiologically important, despite their low prevalence, due to the associated risk of high morbidity and mortality. Most commonly encountered primary immunodeficiencies include humoral immune system deficiencies, cellular immune system defects, combined immunodeficiencies, phagocyte system defects, complement system defects. Classical clinical findings of immunodeficiencies include recurrent, severe infections which do not respond to treatment or which progress with complications as well as tendency to develop infections with low virulence microorganisms. Moreover, they may present with autoimmunity, autoinflammatory or hemaphagocytic syndromes. Congenital diseases usually start in early childhood and lead to morbidity and mortality. Therefore, early diagnosis may be life saving and allow increasing quality of life, genetic counseling or prenatal diagnosis. Considering primary immunodeficiencies more frequently in differential diagnosis and early immunological evaluation would lead to early diagnosis of these patients and allow them to reach early treatment or preventive measures.

  20. The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects.

    Science.gov (United States)

    Chen, Li-Wei; Lan, Yu-Wen; Hsieh, Jui-Wen

    2016-06-01

    To evaluate the morphologic characteristics of optic neuropathy and its association with visual field (VF) defects in primary open-angle glaucoma (POAG) eyes with high myopia. In this cross-sectional study, we reviewed data from 375 Taiwanese patients (375 eyes) of POAG, ages 20 to 60 years. Optic disc photographs were used for planimetric measurements of morphologic variables. The myopic refraction was divided into high myopia (<-6.0 D) and nonhigh myopia (moderate myopia to hyperopia). The optic disc area was classified as moderate (1.59 to 2.85 mm), large, and small. Differences in characteristics between groups, correlations with the disc area, and factors associated with VF defects were determined. Of the 142 highly myopic eyes, 33 (23%) had a large disc, 26 (18%) had a small disc, and 55 (39%) had a tilted disc. Large discs had a higher cup-to-disc (C/D) area ratio and a higher tilt ratio; small discs had a smaller rim area and a lower tilt ratio (all P<0.05). Characteristics associated with high myopia included a smaller rim area, a higher C/D area ratio, and a lower tilt ratio (all P<0.001). In logistic regression, the refraction, the C/D area ratio, the rim area, and the tilt ratio (all P<0.05) were associated with VF defects. In Taiwanese individuals with POAG, our study found that tilted, large, or small discs were prevalent in highly myopic eyes. Of these characteristics, only the disc tilt and high myopia by itself were associated with the severity of glaucomatous optic neuropathy.

  1. Light-induced defect creation in hydrogenated polymorphous silicon

    International Nuclear Information System (INIS)

    Morigaki, K.; Takeda, K.; Hikita, H.; Roca i Cabarrocas, P.

    2005-01-01

    Light-induced defect creation in hydrogenated polymorphous silicon (pm-Si:H) is investigated from electron spin resonance measurements and is compared with that in hydrogenated amorphous silicon (a-Si:H). Light-induced defect creation occurs at room temperature similarly for both types of films prepared at 250 deg. C. Thermal annealing of light-induced defects is also investigated as a function of temperature. Different behaviours of annealing characteristics for pm-Si:H from those for a-Si:H are observed and discussed. In particular, we observed a decrease of the light-induced defect creation efficiency with repeated light-soaking-annealing cycles and discuss it with respect to the hydrogen bonding in pm-Si:H films

  2. Hypomineralized Second Primary Molars as Predictor of Molar Incisor Hypomineralization

    Science.gov (United States)

    Negre-Barber, A.; Montiel-Company, J. M.; Boronat-Catalá, M.; Catalá-Pizarro, M.; Almerich-Silla, J. M.

    2016-01-01

    Molar incisor hypomineralization (MIH) is a developmental defect of dental enamel that shares features with hypomineralized second primary molars (HSPM). Prior to permanent tooth eruption, second primary molars could have predictive value for permanent molar and incisor hypomineralization. To assess this possible relationship, a cross-sectional study was conducted in a sample of 414 children aged 8 and 9 years from the INMA cohort in Valencia (Spain). A calibrated examiner (linear-weighted Kappa 0.83) performed the intraoral examinations at the University of Valencia between November 2013 and 2014, applying the diagnostic criteria for MIH and HSPM adopted by the European Academy of Paediatric Dentistry. 100 children (24.2%) presented MIH and 60 (14.5%) presented HSPM. Co-occurrence of the two defects was observed in 11.1% of the children examined. The positive predictive value was 76.7% (63.9–86.6) and the negative predictive value 84.7% (80.6–88.3). The positive likelihood ratio (S/1-E) was 10.3 (5.9–17.9) and the negative likelihood ratio (1-S/E) 0.57 (0.47–0.68). The odds ratio was 18.2 (9.39–35.48). It was concluded that while the presence of HSPM can be considered a predictor of MIH, indicating the need for monitoring and control, the absence of this defect in primary dentition does not rule out the appearance of MIH. PMID:27558479

  3. Long-term Observation of Regenerated Periodontium Induced by FGF-2 in the Beagle Dog 2-Wall Periodontal Defect Model.

    Directory of Open Access Journals (Sweden)

    Jun Anzai

    Full Text Available The long-term stability and qualitative characteristics of periodontium regenerated by FGF-2 treatment were compared with normal physiological healing tissue controls in a Beagle dog 2-wall periodontal defect model 13 months after treatment by assessing tissue histology and three-dimensional microstructure using micro-computed tomography (μCT. After FGF-2 (0.3% or vehicle treatment at the defect sites, serial changes in the bone mineral content (BMC were observed using periodic X-ray imaging. Tissues were harvested at 13 months, evaluated histomorphometrically, and the cortical bone volume and trabecular bone structure of the newly formed bone were analyzed using μCT. FGF-2 significantly increased the BMC of the defect area at 2 months compared with that of the control group, and this difference was unchanged through 13 months. The cortical bone volume was significantly increased by FGF-2, but there was no difference between the groups in trabecular bone structure. Bone maturation was occurring in both groups because of the lower cortical volume and denser trabecular bone than what is found in intact bone. FGF-2 also increased the area of newly formed bone as assessed histomorphometrically, but the ratios of trabecular bone in the defect area were similar between the control and FGF-2 groups. These results suggest that FGF-2 stimulates neogenesis of alveolar bone that is of similar quality to that of the control group. The lengths of the regenerated periodontal ligament and cementum, measured as the distance from the defect bottom to the apical end of the gingival epithelium, and height and area of the newly formed bone in the FGF-2 group were larger than those in the control group. The present study demonstrated that, within the limitation of artificial periodontal defect model, the periodontal tissue regenerated by FGF-2 was maintained for 13 months after treatment and was qualitatively equivalent to that generated through the physiological

  4. Cellular structure formed by ion-implantation-induced point defect

    International Nuclear Information System (INIS)

    Nitta, N.; Taniwaki, M.; Hayashi, Y.; Yoshiie, T.

    2006-01-01

    The authors have found that a cellular defect structure is formed on the surface of Sn + ion implanted GaSb at a low temperature and proposed its formation mechanism based on the movement of the induced point defects. This research was carried out in order to examine the validity of the mechanism by clarifying the effect of the mobility of the point defects on the defect formation. The defect structure on the GaSb surfaces implanted at cryogenic temperature and room temperature was investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) observation. In the sample implanted at room temperature, the sponge-like structure (a pileup of voids) was formed and the cellular structure, as observed at a low temperature, did not develop. This behavior was explained by the high mobility of the vacancies during implantation at room temperature, and the proposed idea that the defect formation process is dominated by the induced point defects was confirmed

  5. Electron irradiation-induced defects in {beta}-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Ryuichiro [Osaka Prefectural Univ., Sakai (Japan). Reseach Inst. for Advanced Science and Technology

    1996-04-01

    To add information of point defects in cubic crystal SiC, polycrystal {beta}-SiC on the market was used as sample and irradiated by neutron and electron. In situ observation of neutron and electron irradiation-induced defects in {beta}-SiC were carried out by ultra high-voltage electronic microscope (UHVEM) and ordinary electronic microscope. The obtained results show that the electron irradiation-induced secondary defects are micro defects less than 20 nm at about 1273K, the density of defects is from 2x10{sup 17} to 1x10{sup 18}/cc, the secondary defects may be hole type at high temperature and the preexistant defects control nuclear formation of irradiation-induced defects, effective sink. (S.Y.)

  6. Study of irradiation induced defects in silicon

    International Nuclear Information System (INIS)

    Pal, Gayatri; Sebastian, K.C.; Somayajulu, D.R.S.; Chintalapudi, S.N.

    2000-01-01

    Pure high resistivity (6000 ohm-cm) silicon wafers were recoil implanted with 1.8 MeV 111 In ions. As-irradiated wafers showed a 13 MHz quadrupole interaction frequency, which was not observed earlier. The annealing behaviour of these defects in the implanted wafers was studied between room temperature and 1073 K. At different annealing temperatures two more interaction frequencies corresponding to defect complexes D2 and D3 are observed. Even though the experimental conditions were different, these are identical to the earlier reported ones. Based on an empirical point charge model calculation, an attempt is made to identify the configuration of these defect complexes. (author)

  7. Defects and defect processes in nonmetallic solids

    CERN Document Server

    Hayes, W

    2004-01-01

    This extensive survey covers defects in nonmetals, emphasizing point defects and point-defect processes. It encompasses electronic, vibrational, and optical properties of defective solids, plus dislocations and grain boundaries. 1985 edition.

  8. Prevalence of enamel defects and association with dental caries in preschool children.

    Science.gov (United States)

    Massignan, C; Ximenes, M; da Silva Pereira, C; Dias, L; Bolan, M; Cardoso, M

    2016-12-01

    This was to evaluate the prevalence of the developmental defects of enamel (DDE) in primary teeth and its association with dental caries. A cross-sectional study with a randomised representative sample was carried out with 1101 children aged 2-5 years enrolled in public preschools (50% prevalence of DDE in primary teeth, a standard error of 3%, and a confidence level of 95%). Three calibrated dentists (K > 0.62) performed clinical examination. Data collected were: sex, age, DDE (Modified DDE Index) and dental caries (WHO). Descriptive analysis, Chi-square test and multinomial logistic regression were applied for data analysis. Among children, 565 (51.3%) were boys; mean age was 3.7 (±0.9 years). The prevalence of enamel defect was 39.1%; the prevalence of diffuse opacities, demarcated opacities and enamel hypoplasia was 25.3, 19.1 and 6.1%, respectively. The prevalence of dental caries was 31.0%, with mean def-t 1.14 (±2.44). Primary teeth with enamel hypoplasia had three times the odds of having dental caries than those with absence of enamel defects (OR = 3.10; 95% CI: 1.91, 5.01). The presence of enamel defects was moderate and associated with dental caries.

  9. Interocular asymmetry of the visual field defects in newly diagnosed normal-tension glaucoma, primary open-angle glaucoma, and chronic angle-closure glaucoma.

    Science.gov (United States)

    Huang, Ping; Shi, Yan; Wang, Xin; Liu, Mugen; Zhang, Chun

    2014-09-01

    To compare the interocular asymmetry of visual field loss in newly diagnosed normal-tension glaucoma (NTG), primary open-angle glaucoma (POAG), and chronic angle-closure glaucoma (CACG) patients. Visual field results of 117 newly diagnosed, treatment-naive glaucoma patients (42 NTG, 38 POAG, and 37 CACG) were studied retrospectively. The following 3 visual field defect parameters were used to evaluate the interocular asymmetry: (1) global indices; (2) local mean deviations (MDs) of 6 predefined visual field areas; and (3) stage designated by glaucoma staging system 2. The differences of the above parameters between the trial eye (the eye with greater MDs) and the fellow eye in each subject were defined as interocular asymmetry scores. Interocular asymmetry of visual field loss was presented in all the 3 groups (all P0.05). Interocular asymmetry scores of glaucoma staging system 2 had no significant difference among the 3 groups (P=0.068). All CACG, POAG, and NTG groups presented with interocular asymmetric visual field loss at the time of diagnosis. CACG had greater interocular asymmetry compared with NTG and POAG. No significant interocular asymmetry difference was observed between NTG and POAG.

  10. Carrier removal and defect behavior in p-type InP

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  11. PAT challenges routine techniques on defect spectroscopy in material science

    International Nuclear Information System (INIS)

    Badawi, E.A.

    2005-01-01

    Atomic or Point Defects are the most simple defects in solids. Due to the small size their direct observation by the routine techniques is not possible. A single type of defects (thermal defect) was observed in the quenching process. Using the Arrhenius method and threshold method we recommended the accurate both method of treatments. The calculated values for formation enthalpies and self-diffusion using positron lifetime and Doppler broadening in a good agreement in (A356.0) and (A413.1). Specifically it is show how PAT detect defect concentrations, (formation- migration) enthalpies and grain size for the material under investigation. Most of the these data are reported

  12. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  13. Metastable defect response in CZTSSe from admittance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; Levi, Dean; Agrawal, Rakesh

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se)4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the device measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.

  14. Platelet rich fibrin in jaw defects

    Science.gov (United States)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  15. Anisotropic bias dependent transport property of defective phosphorene layer

    Science.gov (United States)

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  16. Persistent renal cortical scintigram defects in children 2 years after urinary tract infection

    International Nuclear Information System (INIS)

    Ditchfield, Michael R.; Cook, David J.; Campo, John F. de; Grimwood, Keith; Powell, Harley R.; Gulati, Sanjeev; Sloane, Robert

    2004-01-01

    Background: Renal cortical scintigraphic studies challenge the role of vesicoureteric reflux in renal scar development, emphasizing instead the part played by acute pyelonephritis. Objective: To determine the prevalence of renal cortical defects in a child cohort 2 years after the child's first diagnosed urinary tract infection and to analyze the relationship of these defects with acute illness variables, primary vesicoureteric reflux and recurrent infections. Materials and methods: In a prospective cohort study, 193 children younger than 5 years with their first proven urinary tract infection underwent renal sonography, voiding cystourethrogram, and renal cortical scintigraphy within 15 days of diagnosis. Two years later, 150 of the 193 children, or 77.7%, had a further renal cortical scintigram, including 75, or 86.2%, of the 87 children who had acute scintigraphic defects. The relationship of cortical defects to age, gender, pre-treatment symptom duration, hospitalization, presence and grade of vesicoureteric reflux, and recurrent urinary tract infections was evaluated. Results: Overall, 20 of the 150 (13.3%; 95% confidence interval (CI) 8.3, 19.8) children had persistent defects 2 years after infection. This included 20 of 75 (26.7%; 95% CI 17.1, 38.1) with initially abnormal scintigrams. No new defects were detected. Although acute defects were more common in the young, those with persistent defects were older (median ages 16.4 vs. 6.8 months, P=0.004) than those with transient abnormalities. After adjustment for age, persistent defects were no longer associated with gender and were not predicted by acute illness variables, primary vesicoureteric reflux or recurrent infections. (orig.)

  17. Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects

    Science.gov (United States)

    Deng, Yuanchen; Ge, Hao; Tian, Yuan; Lu, Minghui; Jing, Yun

    2017-11-01

    This article reports on the experimental realization of a flow-free, pseudospin-based acoustic topological insulator designed using the strategy of zone folding. Robust sound one-way propagation is demonstrated with the presence of non-spin-mixing defects. On the other hand, it is shown that spin-mixing defects, which break the geometric symmetry and therefore the pseudo-time-reversal symmetry, can open up nontrivial band gaps within the edge state frequency band, and their width can be tailored by the extent of the defect. This provides a possible route for realizing tunable acoustic topological insulators.

  18. Defect dynamics and coarsening dynamics in smectic-C films

    Science.gov (United States)

    Pargellis, A. N.; Finn, P.; Goodby, J. W.; Panizza, P.; Yurke, B.; Cladis, P. E.

    1992-12-01

    We study the dynamics of defects generated in free-standing films of liquid crystals following a thermal quench from the smectic-A phase to the smectic-C phase. The defects are type-1 disclinations, and the strain field between defect pairs is confined to 2π walls. We compare our observations with a phenomenological model that includes dipole coupling of the director field to an external ordering field. This model is able to account for both the observed coalescence dynamics and the observed ordering dynamics. In the absence of an ordering field, our model predicts the defect density ρ to scale with time t as ρ lnρ~t-1. When the dipole coupling of the director field to an external ordering field is included, both the model and experiments show the defect coarsening proceeds as ρ~e-αt with the strain field confined to 2π walls. The external ordering field most likely arises from the director's tendency to align with edge dislocations within the liquid-crystal film.

  19. Defects in Cu(In,Ga)Se{sub 2} chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing; Gunawan, Oki; Copel, Matthew; Reuter, Kathleen B; Chey, S Jay; Mitzi, David B [IBM T.J. Watson Research Center, Yorktown Heights, NY (United States); Deline, Vaughn R [IBM Almaden Resesarch Center, San Jose, CA (United States)

    2011-10-15

    Understanding defects in Cu(In,Ga)(Se,S){sub 2} (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga){sub Cu}) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current-voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga){sub Cu} defects on device PV performance is also established. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Extrinsic- and intrinsic-defect creation in amorphous SiO2

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Francou, J.

    1990-01-01

    We have studied the creation efficiency of various intrinsic and extrinsic defects in high-[OH] amorphous silica subjected to the ultraviolet emission from an O 2 plasma or 60 Co γ-ray radiation. Both oxygen-vacancy- and nitrogen-related defects are observed following γ-ray irradiation or ultraviolet exposure. The wavelength range responsible for defect creation is estimated to be 200 approx-lt λ approx-lt 300 nm (4 approx-lt E photon approx-lt 5.9 eV). The ultraviolet power output of the plasma estimated by comparing defect yields with those from a Hg lamp (λ=185 and 254 nm) suggests 200 approx-lt P approx-lt 900 mW cm -2 for a plasma power density ∼300 mW cm -3 . Nonbridging oxygen-hole centers and hydrogen-related defect centers as well as methyl radical (CH 3 . ) defects are observed after γ-ray irradiation but not after ultraviolet exposure. The efficiency of creation of the various defects is material dependent

  1. Altering graphene line defect properties using chemistry

    Science.gov (United States)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  2. Primary radiation damage characterization of α-iron under irradiation temperature for various PKA energies

    Science.gov (United States)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-04-01

    The understanding of radiation-induced microstructural defects in body-centered cubic (BCC) iron is of major interest to those using advanced steel under extreme conditions in nuclear reactors. In this study, molecular dynamics (MD) simulations were implemented to examine the primary radiation damage in BCC iron with displacement cascades of energy 1, 5, 10, 20, and 30 keV at temperatures ranging from 100 to 1000 K. Statistical analysis of eight MD simulations of collision cascades were carried out along each [110], [112], [111] and a high index [135] direction and the temperature dependence of the surviving number of point defects and the in-cascade clustering of vacancies and interstitials were studied. The peak time and the corresponding number of defects increase with increasing irradiation temperature and primary knock-on atom (PKA) energy. However, the final number of surviving point defects decreases with increasing lattice temperature. This is associated with the increase of thermal spike at high PKA energy and its long timespan at higher temperatures. Defect production efficiency (i.e., surviving MD defects, per Norgett-Robinson-Torrens displacements) also showed a continuous decrease with the increasing irradiation temperature and PKA energy. The number of interstitial clusters increases with both irradiation temperature and PKA energy. However, the increase in the number of vacancy clusters with PKA energy is minimal-to-constant and decreases as the irradiation temperature increases. Similarly, the probability and cluster size distribution for larger interstitials increase with temperature, whereas only smaller size vacancy clusters were observed at higher temperatures.

  3. Freely-migrating defects: Their production and interaction with cascade remnants

    International Nuclear Information System (INIS)

    Rehn, L.E.; Wiedersich, H.

    1991-05-01

    Many microstructural changes that occur during irradiation are driven primarily by freely-migrating defects, i.e. those defects which escape from nascent cascades to migrate over distances that are large relative to typical cascade dimensions. Several measurements during irradiation at elevated temperatures have shown that the survival rate of freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the survival rate for defects generated at liquid helium temperatures. For typical fission or fusion recoil spectra, and for heavy-ion bombardment, the fraction of defects that migrate long-distances is apparently only ∼1% of the calculated dpa. This small surviving fraction of freely-migrating defects results at least partially from additional intracascade recombination at elevated temperatures. However, cascade remnants, e.g., vacancy and interstitial clusters, also contribute by enhancing intercascade defect annihilation. A recently developed rate-theory approach is used to discuss the relative importance of intra- and intercascade recombination to the survival rate of freely-migrating defects. Within the validity of certain simplifying assumptions, the additional sink density provided by defect clusters produced directly within individual cascades can explain the difference between a defect survival rate of about 30% for low dose, low temperature irradiations with heavy ions, and a survival rate of only ∼1% for freely-migrating defects at elevated temperatures. The status of our current understanding of freely-migrating defects, including remaining unanswered questions, is also discussed. 33 refs., 5 figs

  4. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Defect propagation in NiTi rotary instruments: a noncontact optical profilometry analysis.

    Science.gov (United States)

    Barbosa, I; Ferreira, F; Scelza, P; Neff, J; Russano, D; Montagnana, M; Zaccaro Scelza, M

    2018-04-10

    To evaluate the presence and propagation of defects and their effects on surfaces of nickel-titanium (NiTi) instruments using noncontact, three-dimensional optical profilometry, and to assess the accuracy of this method of investigation. The flute surface areas of instruments from two commercial instrumentation systems, namely Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were assessed and compared before and after performing two instrumentation cycles in simulated root canals in clear resin blocks. All the analyses were conducted on areas measuring 211 × 211 μm, located 3 mm from the tips of the instruments. A quantitative analysis was conducted before and after the first and second instrumentation cycles, using the Sa (average roughness over the measurement field), Sq (root mean square roughness) and Sz (average height over the measurement field) amplitude parameters. All the data were submitted to statistical analysis at a 5% level of significance. There was a significant increase (P = 0.007) in wear in both groups, especially between baseline and the second instrumentation cycle, with significantly higher wear values being observed on WaveOne instruments (Sz median values = 33.68 and 2.89 μm, respectively, for WO and RP groups). A significant increase in surface roughness (P = 0.016 and P = 0.008, respectively, for Sa and Sq) was observed in both groups from the first to the second instrumentation cycle, mostly in WaveOne specimens. Qualitative analysis revealed a greater number of defects on the flute topography of all the instruments after use. More defects were identified in WaveOne Primary instruments compared to Reciproc R25, irrespective of the evaluation stage. The investigation method provided an accurate, repeatable and reproducible assessment of NiTi instruments at different time-points. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Failures and Defects in the Building Process

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2009-01-01

    Function failures, defects, mistakes and poor communication are major problems for the construction sector. As the empirical element in the research, a large construction site was observed from the very start to the very end and all failures and defects of a certain size were recorded and analysed...

  7. Impurity-defect complexes in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Yang, L.H.; Fong, C.Y.; Nichols, C.S.

    1991-01-01

    The two most outstanding features observed for dopants in hydrogenated amorphous silicon (a-Si:H)-a shift in the Fermi level accompanied by an increase in the defect density and an absence of degenerate doping have previously been postulated to stem from the formation of substitutional dopant-dangling bond complexes. Using first-principles self-consistent pseudopotential calculations in conjunction with a supercell model for the amorphous network and the ability of network relaxation from the first-principles results. The authors have studied the electronic and structural properties of substitutional fourfold-coordinated phosphorus and boron at the second neighbor position to a dangling bond defect. This paper demonstrates that such impurity-defect complexes can account for the general features observed experimentally in doped a-Si:H

  8. French approach on the definition of reference defects to be considered for fracture mechanics analyses at design state

    Energy Technology Data Exchange (ETDEWEB)

    Grandemange, J M; Pellissier-Tanon, A [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1988-12-31

    This document describes the french approach for verifying fracture resistance of PWR primary components. Three reference defects have been defined, namely the envelope defect, the exceptional defect and the conventional defect. It appears that a precise estimation of the available margins may be obtained by analyzing a set of reference defects representative of the flaws likely to exist in the components. (TEC). 5 refs.

  9. [Inconformity between soft tissue defect and bony defect in incomplete cleft palate].

    Science.gov (United States)

    Zhou, Xia; Ma, Lian

    2014-12-01

    To evaluate the inconformity between soft tissue defect and bony defect by observing the cleft extent of palate with complete secondary palate bony cleft in incomplete cleft palate patient. The patients with incomplete cleft palate treated in Hospital of Stomatology Peking University from July 2012 to June 2013 were reviewed, of which 75 cases with complete secondary palate bony cleft were selected in this study. The CT scan and intraoral photograph were taken before operation. The patients were classified as four types according to the extent of soft tissue defect. Type 1: soft tissue defect reached incisive foremen region, Type 2 was hard and soft cleft palate, Type 3 soft cleft palate and Type 4 submucous cleft palate. Type 1 was defined as conformity group (CG). The other three types were defined as inconformity group (ICG) and divided into three subgroups (ICG-I), (ICG-II) and (ICG-III). Fifty-seven patients were in ICG group, and the rate of inconformity was 76% (57/75). The percentage of ICG-I, ICG-II and ICG-III was 47% (27/57), 23% (13/57) and 30% (17/57), respevtively. There are different types of soft tissue deformity with complete secondary palate bony cleft. The inconformity between soft tissue and hard tissue defect exits in 3/4 of isolated cleft palate patients.

  10. Measurements of the lattice constant of ceria when doped with lanthana and praseodymia - the possibility of local defect ordering and the observation of extensive phase separation

    International Nuclear Information System (INIS)

    Ryan, K M; McGrath, J P; Farrell, R A; O'Neill, W M; Barnes, C J; Morris, M A

    2003-01-01

    Conventionally, the addition of sesquioxide cation dopants to ceria has been thought of as a class of almost model systems. The most important defect mechanism involves simple anion vacancy charge compensation with those vacancy defects associating themselves with the trivalent cation and being distributed randomly through the lattice. However, this simple model has been significantly challenged in recent years and it seems possible that these associated defects might cluster in ordered arrangements. Whilst evidence has been provided by theoretical work, only limited experimental data are available. This letter reports the first observation of local ordering in these systems as observed by careful powder x-ray diffraction studies. In detail, it is shown that measurements of the lattice parameter do not vary monotonically with dopant concentration. It is also shown that far from being ideal systems with very high dopant solubilities and true solid-state solutions, these systems have complex solubility. (letter to the editor)

  11. Defect structure in proton-irradiated copper and nickel

    International Nuclear Information System (INIS)

    Tsukuda, Noboru; Ehrhart, P.; Jaeger, W.; Schilling, W.; Dworschak, F.; Gadalla, A.A.

    1987-01-01

    This single crystals of copper or nickel with a thickness of about 10 μm are irradiated with 3 MeV protons at room temperature and the structures of resultant defects are investigated based on measurements of the effects of irradiation on the electrical resistivity, length, lattice constants, x-ray diffraction line profile and electron microscopic observations. The measurements show that the electrical resistivity increases with irradiation dose, while leveling off at high dose due to overlapping of irradiation cascades. The lattice constants decreases, indicating that many vacancies still remain while most of the interstitial stoms are eliminated, absorbed or consumed for dislocation loop formation. The x-ray line profile undergoes broadening, which is the result of dislocation loops, dislocation networks and SFT's introduced by the proton irradiation. Various defects have different effects though they cannot be identified separately from the profile alone. A satellite peak appears at a low angle, which seems to arise from periodic defect structures that are found in electron microscopic observations. In both copper and nickel, such periodic defect structures are seen over a wide range from high to low dose. Defect-free and defect-rich domains (defect walls), 0.5 to several μm in size, are alingned parallel to the {001} plane at intervals of 60 nm. The defect walls, which consist of dislocations, dislocation loops and SFT's, is 20 - 40 nm thick. (Nogami, K.)

  12. Perfusion lung scanning: differentiation of primary from thromboembolic pulmonary hypertension

    International Nuclear Information System (INIS)

    Lisbona, R.; Kreisman, H.; Novales-Diaz, J.; Derbekyan, V.

    1985-01-01

    Of eight patients with pulmonary arterial hypertension, final diagnosis established by autopsy or angiography, four had primary hypertension and four hypertension from thromboembolism. The perfusion lung scan was distinctly different in the two groups. The lung scan in primary pulmonary hypertension was associated with nonsegmental, patchy defects of perfusion, while in thromboembolic hypertensives it was characterized by segmental and/or lobar defects of perfusion with or without subsegmental defects. The perfusion lung scan is a valuable, noninvasive study in the evaluation of the patient with pulmonary hypertension of undetermined cause and in the exclusion of occult large-vessel pulmonary thromboembolism

  13. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  14. Defect diffusion during annealing of low-energy ion-implanted silicon

    International Nuclear Information System (INIS)

    Bedrossian, P.J.; Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors present a new approach for investigating the kinetics of defect migration during annealing of low-energy, ion-implanted silicon, employing a combination of computer simulations and atomic-resolution tunneling microscopy. Using atomically-clean Si(111)-7 x 7 as a sink for bulk point defects created by 5 keV Xe and Ar irradiation, they observe distinct, temperature-dependent surface arrival rates for vacancies and interstitials. A combination of simulation tools provides a detailed description of the processes that underlie the observed temperature-dependence of defect segregation, and the predictions of the simulations agree closely with the experimental observations

  15. Use of autologous tissue engineered skin to treat porcine full-thickness skin defects

    Institute of Scientific and Technical Information of China (English)

    CAI Xia; CAO Yi-lin; CUI Lei; LIU Wei; GUAN Wen-xiang

    2005-01-01

    Objective: To explore a feasible method to repair full-thickness skin defects utilizing tissue engineered techniques. Methods: The Changfeng hybrid swines were used and the skin specimens were cut from the posterior limb girdle region, from which the keratinocytes and fibroblasts were isolated and harvested by trypsin, EDTA, and type II collagenase. The cells were seeded in Petri dishes for primary culture. When the cells were in logarithmic growth phase, they were treated with trypsin to separate them from the floor of the tissue culture dishes. A biodegradable material, Pluronic F-127, was prefabricated and mixed with these cells, and then the cell-Pluronic compounds were seeded evenly into a polyglycolic acid (PGA). Then the constructs were replanted to the autologous animals to repair the full-thickness skin defects. Histology and immunohistochemistry of the neotissue were observed in 1, 2, 4, and 8 postoperative weeks. Results: The cell-Pluronic F-127-PGA compounds repaired autologous full-thickness skin defects 1 week after implantation. Histologically, the tissue engineered skin was similar to the normal skin with stratified epidermis overlying a moderately thick collageneous dermis. Three of the structural proteins in the epidermal basement membrane zone, type IV collagen, laminin, and type VII collagen were detected using immunohistochemical methods. Conclusions: By studying the histology and immunohistochemistry of the neotissue, the bioengineered skin graft holds great promise for improving healing of the skin defects.

  16. Graphene defects induced by ion beam

    Science.gov (United States)

    Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek

    2017-10-01

    The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.

  17. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder.

    LENUS (Irish Health Repository)

    Casey, Jillian P

    2015-01-01

    Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterised by abnormal ciliary motion and impaired mucociliary clearance, leading to recurrent respiratory infections, sinusitis, otitis media and male infertility. Some patients also have laterality defects. We recently reported the identification of three disease-causing PCD genes in the Irish Traveller population; RSPH4A, DYX1C1 and CCNO. We have since assessed an additional Irish Traveller family with a complex phenotype involving PCD who did not have any of the previously identified PCD mutations.

  18. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  19. Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2014-01-01

    Making semiconductors ferromagnetic has been a long dream. One approach is to dope semiconductors with transition metals (TM). TM ions act as local moments and they couple with free carriers to develop collective magnetism. However, there are no fundamental reasons against the possibility of local moment formation from localized sp states. Recently, ferromagnetism was observed in nonmagnetically doped, but defective semiconductors or insulators including ZnO and TiO 2 . This kind of observation challenges the conventional understanding of ferromagnetism. Often the defect-induced ferromagnetism has been observed in samples prepared under non-optimized condition, i.e. by accident or by mistake. Therefore, in this field theory goes much ahead of experimental investigation. To understand the mechanism of the defect-induced ferromagnetism, one needs a better controlled method to create defects in the crystalline materials. As a nonequilibrium and reproducible approach of inducing defects, ion irradiation provides such a possibility. Energetic ions displace atoms from their equilibrium lattice sites, thus creating mainly vacancies, interstitials or antisites. The amount and the distribution of defects can be controlled by the ion fluence and energy. By ion irradiation, we have generated defect-induced ferromagnetism in ZnO, TiO 2 and SiC. In this short review, we also summarize some results by other groups using energetic ions to introduce defects, and thereby magnetism in various materials. Ion irradiation combined with proper characterizations of defects could allow us to clarify the local magnetic moments and the coupling mechanism in defective semiconductors. Otherwise we may have to build a new paradigm to understand the defect-induced ferromagnetism

  20. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    Science.gov (United States)

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  1. Bony defects in chronic anterior posttraumatic dislocation of the shoulder: Is there a correlation between humeral and glenoidal lesions?

    Science.gov (United States)

    Ciais, Grégoire; Klouche, Shahnaz; Fournier, Alexandre; Rousseau, Benoit; Bauer, Thomas; Hardy, Philippe

    2016-08-01

    The prevalence of combined humeral and glenoid defects varies between 79 and 84 % in case of chronic posttraumatic anterior shoulder instability. The main goal of this study was to evaluate the relationship between humeral and glenoid defects based on quantitative radiological criteria. A retrospective study was performed between 2000 and 2011 including patients who underwent primary surgical shoulder stabilization for chronic posttraumatic anterior shoulder instability, with bone defects in both the glenoid and humerus and a healthy contralateral shoulder. The following measurements were taken: D/R ratio (Hill-Sachs lesion depth/humeral head radius) on an AP X-ray in internal rotation and the D1/D2 ratio [diameter of the involved glenoid articular surfaces (D1)/the healthy one (D2)] on a comparative Bernageau glenoid profile view. Measurements were taken by two observers. Correlations were determined by the Spearman correlation coefficients (r), Bland and Altman diagrams, and intra-class correlation coefficients (ICC). A sample size calculation was done. Thirty patients were included, 25 men/5 women, mean age 29.8 ± 11.2 years. The mean D/R was 23 ± 12 % for observer 1 and 23 ± 10 % for observer 2. The mean D1/D2 was 95 ± 4 % for observer 1 and 94 ± 6 % for observer 2. No significant correlation was found between humeral and glenoid bone defects by observer 1 (r = 0.23, p = 0.22) or observer 2 (r = 0.05, p = 0.78). Agreement of the observers for the D/R ratio was excellent (ICC = 0.89 ± 0.04, p < 0.00001) and good for the D1/D2 ratio (ICC = 0.54 ± 0.14, p = 0.006). Humeral and glenoid bone defects were not correlated. Inter-observer reliability was excellent for the D/R ratio and good for the D1/D2 ratio. Nonconsecutive Patients, Diagnostic Study, Level III.

  2. Graphene defect formation by extreme ultraviolet generated photoelectrons

    NARCIS (Netherlands)

    Gao, An; Lee, Christopher James; Bijkerk, Frederik

    2014-01-01

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy

  3. Electrical Characterisation of electron beam exposure induced Defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Danga, Helga T., E-mail: helga.danga@up.ac.za; Auret, Francois D.; Coelho, Sergio M.M.; Diale, Mmantsae

    2016-01-01

    The defects introduced in epitaxially grown p-type silicon (Si) during electron beam exposure were electrically characterised using deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. In this process, Si samples were first exposed to the conditions of electron beam deposition (EBD) without metal deposition. This is called electron beam exposure (EBE) herein. After 50 minutes of EBE, nickel (Ni) Schottky contacts were fabricated using the resistive deposition method. The defect level observed using the Ni contacts had an activation energy of H(0.55). This defect has an activation energy similar to that of the I-defect. The defect level is similar to that of the HB4, a boron related defect. DLTS depth profiling revealed that H(0.55) could be detected up to a depth of 0.8 μm below the junction. We found that exposing the samples to EBD conditions without metal deposition introduced a defect which was not introduced by the EBD method. We also observed that the damage caused by EBE extended deeper into the material compared to that caused by EBD.

  4. Point defect thermodynamics and diffusion in Fe3C: A first-principles study

    International Nuclear Information System (INIS)

    Chao Jiang; Uberuaga, B.P.; Srinivasan, S.G.

    2008-01-01

    The point defect structure of cementite (Fe 3 C) is investigated using a combination of the statistical mechanical Wagner-Schottky model and first-principles calculations within the generalized gradient approximation. Large 128-atom supercells are employed to obtain fully converged point defect formation energies. The present study unambiguously shows that carbon vacancies and octahedral carbon interstitials are the structural defects in C-depleted and C-rich cementite, respectively. The dominant thermal defects in C-depleted and stoichiometric cementite are found to be carbon Frenkel pairs. In C-rich cementite, however, the primary thermal excitations are strongly temperature-dependent: interbranch, Schottky and Frenkel defects dominate successively with increasing temperature. Using the nudged elastic band technique, the migration barriers of major point defects in cementite are also determined and compared with available experiments in the literature

  5. Defect tolerance in resistor-logic demultiplexers for nanoelectronics.

    Science.gov (United States)

    Kuekes, Philip J; Robinett, Warren; Williams, R Stanley

    2006-05-28

    Since defect rates are expected to be high in nanocircuitry, we analyse the performance of resistor-based demultiplexers in the presence of defects. The defects observed to occur in fabricated nanoscale crossbars are stuck-open, stuck-closed, stuck-short, broken-wire, and adjacent-wire-short defects. We analyse the distribution of voltages on the nanowire output lines of a resistor-logic demultiplexer, based on an arbitrary constant-weight code, when defects occur. These analyses show that resistor-logic demultiplexers can tolerate small numbers of stuck-closed, stuck-open, and broken-wire defects on individual nanowires, at the cost of some degradation in the circuit's worst-case voltage margin. For stuck-short and adjacent-wire-short defects, and for nanowires with too many defects of the other types, the demultiplexer can still achieve error-free performance, but with a smaller set of output lines. This design thus has two layers of defect tolerance: the coding layer improves the yield of usable output lines, and an avoidance layer guarantees that error-free performance is achieved.

  6. Primary versus secondary achalasia: New signs on barium esophagogram

    Science.gov (United States)

    Gupta, Pankaj; Debi, Uma; Sinha, Saroj Kant; Prasad, Kaushal Kishor

    2015-01-01

    Aim: To investigate new signs on barium swallow that can differentiate primary from secondary achalasia. Materials and Methods: Records of 30 patients with primary achalasia and 17 patients with secondary achalasia were reviewed. Clinical, endoscopic, and manometric data was recorded. Barium esophagograms were evaluated for peristalsis and morphology of distal esophageal segment (length, symmetry, nodularity, shouldering, filling defects, and “tram-track sign”). Results: Mean age at presentation was 39 years in primary achalasia and 49 years in secondary achalasia. The mean duration of symptoms was 3.5 years in primary achalasia and 3 months in secondary achalasia. False-negative endoscopic results were noted in the first instance in five patients. In the secondary achalasia group, five patients had distal esophageal segment morphology indistinguishable from that of primary achalasia. None of the patients with primary achalasia and 35% patients with secondary achalasia had a length of the distal segment approaching combined height of two vertebral bodies. None of the patients with secondary achalasia and 34% patients with primary achalasia had maximum caliber of esophagus approaching combined height of two vertebral bodies. Tertiary contractions were noted in 90% patients with primary achalasia and 24% patients with secondary achalasia. Tram-track sign was found in 55% patients with primary achalasia. Filling defects in the distal esophageal segment were noted in 94% patients with secondary achalasia. Conclusion: Length of distal esophageal segment, tertiary contractions, tram-track sign, and filling defects in distal esophageal segment are useful esophagographic features distinguishing primary from secondary achalasia. PMID:26288525

  7. Defects induced by helium implantation in SiC

    International Nuclear Information System (INIS)

    Oliviero, E.; Barbot, J.F.; Declemy, A.; Beaufort, M.F.; Oliviero, E.

    2008-01-01

    SiC is one of the considered materials for nuclear fuel conditioning and for the fabrication of some core structures in future nuclear generation reactors. For the development of this advance technology, a fundamental research on this material is of prime importance. In particular, the implantation/irradiation effects have to be understood and controlled. It is with this aim that the structural alterations induced by implantation/irradiation in SiC are studied by different experimental techniques as transmission electron microscopy, helium desorption, X-ray diffraction and Rutherford backscattering spectrometry. In this work, the different types of defects induced by helium implantation in SiC, point or primary defects (obtained at low energy (∼100 eV) until spread defects (obtained at higher energy (until ∼2 MeV)) are exposed. The amorphization/recrystallization and swelling phenomena are presented too. (O.M.)

  8. Percutaneous treatment of atrial septal defects, muscular ventricular septal defects and patent ductus arteriosus in infants under one year of age.

    Science.gov (United States)

    Prada, Fredy; Mortera, Carlos; Bartrons, Joaquim; Rissech, Miguel; Jiménez, Lorenzo; Carretero, Juan; Llevadias, Judit; Araica, Mireya

    2009-09-01

    Amplatzer devices are used for the percutaneous closure of ostium secundum atrial septal defects, muscular ventricular septal defects and patent ductus arteriosus. However, very little experience has been gained in using these devices in infants under 1 year of age. Between January 2001 and January 2008, 22 symptomatic infants aged under 1 year underwent percutaneous treatment: three had an ostium secundum atrial septal defect, 15 had patent ductus arteriosus, and four had a muscular ventricular septal defect. All the procedures were completed successfully. No immediate or medium-term complications were observed. Closure of these types of defect using an Amplatzer device in infants under 1 year of age, who would otherwise require surgery, is a safe and effective procedure.

  9. Ectopic germinal center and megalin defect in primary Sjogren syndrome with renal Fanconi syndrome.

    Science.gov (United States)

    Wang, Jing; Wen, Yubing; Zhou, Mengyu; Shi, Xiaoxiao; Jiang, Lanping; Li, Mingxi; Yu, Yang; Li, Xuemei; Li, Xuewang; Zhang, Wen; Lundquist, Andrew L; Chen, Limeng

    2017-06-02

    This study reports the clinical and pathological features of 12 cases of primary Sjogren syndrome (pSS) with renal involvement presenting with proximal tubular dysfunction in a single center, and investigates the possible correlation of ectopic germinal center formation and megalin/cubilin down-expression. Clinical and pathological records were reviewed. Immunohistochemistry was carried out to detect megalin, cubilin, CD21 and IL-17 expression. Patients presented with different degrees of proximal renal tubule lesion and decreased estimated glomerular filtration rate (eGFR). Renal biopsy revealed tubulointerstitial nephritis, with tubular epithelial cell degeneration, tubular atrophy, interstitial inflammation and focal fibrosis. Immunohistochemistry revealed decreased expression of megalin and cubilin, two important multiligand protein receptors on the brush border of proximal tubular epithelial cells. IL-17 secreted by Th17 subtype effector T cells was diffusely detected in the renal proximal tubule, with a negative correlation of IL-17 and megalin expression. In addition, ectopic germinal centers characterized by CD21 + follicular dendritic cells were present in the renal interstitium. In patients with a decreased eGFR, treatment with 4 weeks of glucocorticoid therapy resulted in an improved eGFR in 75% of patients. We report 12 cases of pSS characterized by Fanconi syndrome. The decreased megalin and cubilin expression may contribute to the proximal tubular reabsorption defect, possibly secondary to Th17 infiltration and formation of ectopic germinal centers.

  10. Primary Occipital Encephalocele in an Elderly Patient.

    Science.gov (United States)

    Barros, Fernanda Carvalho; Barros, Henrique Almeida; Júnior, Helvécio Marangon; Taitson, Paulo Franco

    2016-05-01

    The encephalocele is a condition characterized by the protrusion of the intracranial contents through a bone defect of the skull. The authors report a clinical case of an 80-year-old woman with primary occipital encephalocele on the right side and that was affected by trauma and presented liquor fistula and infection. Tomographic sections were obtained by injection intravenous of contrast. The images showed bone thickness thinning on the right occipital region and solution of continuity (encephalocele) with regular contours, reduction in brain volume, and hypodensity of the periventricular white substance were observed. The patient was successfully operated.

  11. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.

    Science.gov (United States)

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-12-20

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.

  12. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence

    DEFF Research Database (Denmark)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels

    2016-01-01

    Background: The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac...... defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge...... in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Case presentation: Our first case was a white girl...

  13. Proton irradiation induced defects in Cd and Zn doped InP

    International Nuclear Information System (INIS)

    Rybicki, G.C.; Williams, W.S.

    1993-01-01

    Proton irradiation induced defects in Zn and Cd doped InP have been studied by deep level transient spectroscopy, (DLTS). After 2 MeV proton irradiation the defects H4 and H5 were observed in lightly Zn doped InP, while the defects H3 and H5 were observed in more heavily Zn and Cd doped InP. The defect properties were not affected by the substitution of Cd for Zn, but the introduction rate of H5 was lower in Cd doped InP. The annealing rate of defects was also higher in Cd doped InP. The use of Cd doped InP may thus result in an InP solar cell with even greater radiation resistance

  14. Varying stiffness and load distributions in defective ball bearings: Analytical formulation and application to defect size estimation

    Science.gov (United States)

    Petersen, Dick; Howard, Carl; Prime, Zebb

    2015-02-01

    This paper presents an analytical formulation of the load distribution and varying effective stiffness of a ball bearing assembly with a raceway defect of varying size, subjected to static loading in the radial, axial and rotational degrees of freedom. The analytical formulation is used to study the effect of the size of the defect on the load distribution and varying stiffness of the bearing assembly. The study considers a square-shaped outer raceway defect centered in the load zone and the bearing is loaded in the radial and axial directions while the moment loads are zero. Analysis of the load distributions shows that as the defect size increases, defect-free raceway sections are subjected to increased static loading when one or more balls completely or partly destress when positioned in the defect zone. The stiffness variations that occur when balls pass through the defect zone are significantly larger and change more rapidly at the defect entrance and exit than the stiffness variations that occur for the defect-free bearing case. These larger, more rapid stiffness variations generate parametric excitations which produce the low frequency defect entrance and exit events typically observed in the vibration response of a bearing with a square-shaped raceway defect. Analysis of the stiffness variations further shows that as the defect size increases, the mean radial stiffness decreases in the loaded radial and axial directions and increases in the unloaded radial direction. The effects of such stiffness changes on the low frequency entrance and exit events in the vibration response are simulated with a multi-body nonlinear dynamic model. Previous work used the time difference between the low frequency entrance event and the high frequency exit event to estimate the size of the defect. However, these previous defect size estimation techniques cannot distinguish between defects that differ in size by an integer number of the ball angular spacing, and a third feature

  15. Imaging features of primary Sarcomas of the great vessels in CT, MRI and PET/CT: a single-center experience

    International Nuclear Information System (INIS)

    Falck, Christian von; Meyer, Bernhard; Fegbeutel, Christine; Länger, Florian; Bengel, Frank; Wacker, Frank; Rodt, Thomas

    2013-01-01

    To investigate the imaging features of primary sarcomas of the great vessels in CT, MRI and 18 F-FDG PET/CT. Thirteen patients with a primary sarcoma of the great vessels were retrospectively evaluated. All available images studies including F-18 FDG PET(/CT) (n = 4), MDCT (n = 12) and MRI (n = 6) were evaluated and indicative image features of this rare tumor entity were identified. The median interval between the first imaging study and the final diagnosis was 11 weeks (0–12 weeks). The most frequently observed imaging findings suggestive of malignant disease in patients with sarcomas of the pulmonary arteries were a large filling defect with vascular distension, unilaterality and a lack of improvement despite effective anticoagulation. In patients with aortic sarcomas we most frequently observed a pedunculated appearance and an atypical location of the filling defect. The F-18 FDG PET(/CT) examinations demonstrated an unequivocal hypermetabolism of the lesion in all cases (4/4). MRI proved lesion vascularization in 5/6 cases. Intravascular unilateral or atypically located filling defects of the great vessels with vascular distension, a pedunculated shape and lack of improvement despite effective anticoagulation are suspicious for primary sarcoma on MDCT or MRI. MR perfusion techniques can add information on the nature of the lesion but the findings may be subtle and equivocal. F-18 FDG PET/CT may have a potential role in these patients and may be considered as part of the imaging workup

  16. Thyroid Medication Use and Birth Defects in the National Birth Defects Prevention Study.

    Science.gov (United States)

    Howley, Meredith M; Fisher, Sarah C; Van Zutphen, Alissa R; Waller, Dorothy K; Carmichael, Suzan L; Browne, Marilyn L

    2017-11-01

    Thyroid disorders are common among reproductive-aged women, with hypothyroidism affecting 2 to 3% of pregnancies, and hyperthyroidism affecting an additional 0.1 to 1%. We examined associations between thyroid medications and individual birth defects using data from the National Birth Defects Prevention Study (NBDPS). The NBDPS is a multisite, population-based, case-control study that included pregnancies with estimated delivery dates from 1997 to 2011. We analyzed self-reported thyroid medication use from mothers of 31,409 birth defect cases and 11,536 unaffected controls. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression for birth defects with five or more exposed cases, controlling for maternal age, race/ethnicity, and study center. Crude ORs and exact 95% CIs were estimated for defects with 3 to 4 exposed cases. Thyroid hormone was used by 738 (2.3%) case and 237 (2.1%) control mothers, and was associated with anencephaly (OR = 1.68; 95% CI, 1.03-2.73), holoprosencephaly (OR = 2.48; 95% CI, 1.13-5.44), hydrocephaly (1.77; 95% CI, 1.07-2.95) and small intestinal atresia (OR = 1.81; 95% CI, 1.04-3.15). Anti-thyroid medication was used by 34 (0.1%) case and 10 (<0.1%) control mothers, and was associated with aortic valve stenosis (OR = 6.91; 95% CI, 1.21-27.0). While new associations were identified, our findings are relatively consistent with previous NBDPS analyses. Our findings suggest thyroid medication use is not associated with most birth defects studied in the NBDPS, but may be associated with some specific birth defects. These results should not be interpreted to suggest that medications used to treat thyroid disease are teratogens, as the observed associations may reflect effects of the underlying thyroid disease. Birth Defects Research 109:1471-1481, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Fibrous metaphyseal defect (fibrous cortical defect, non-ossifying fibroma). Pt. 2

    International Nuclear Information System (INIS)

    Freyschmidt, J.; Ostertag, H.; Saure, D.

    1981-01-01

    FMD, whether in the stage of a fibrous cortical defect or a non-ossifying fibroma, possesses very characteristic radiological appearances which rarely make it necessary to resort to biopsy. In order to avoid mistakes, it is necessary to observe strictly the known radiological features: metaphyseal position, clearcut relationship to the cortex, well defined margins, maximal size 6 to 7 cm., presence during growth, rarely observed in the upper extremity. The differential diagnosis, which needs to be considered only rarely, is discussed. (orig.) [de

  18. Mechanisms of defect production and atomic mixing in high energy displacement cascades: A molecular dynamics study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Guinan, M.W.

    1991-01-01

    We have performed molecular dynamics computer simulation studies of displacement cascades in Cu at low temperature. For 25 keV recoils we observe the splitting of a cascade into subcascades and show that cascades in Cu may lead to the formation of vacancy and interstitial dislocation loops. We discuss a new mechanism of defect production based on the observation of interstitial prismatic dislocation loop punching from cascades at 10 K. We also show that below the subcascade threshold, atomic mixing in the cascade is recoil-energy dependent and obtain a mixing efficiency that scales as the square root of the primary recoil energy. 44 refs., 12 figs

  19. A device for tracking-down the defective fuel rods in a reactor

    International Nuclear Information System (INIS)

    Preda, Marin; Ciocanescu, Marin; Barbos, Dumitru; Rogociu, Ioan

    2008-01-01

    The paper gives first the fuel element description and its operation. If a cladding defect arises, some of the fission isotopes pass into the primary cooling system and, as these isotopes are extremely radio-active, the danger of primary cooling system contamination occurs what entails expensive decontamination operations. For identification of the bundle containing the defective pins a simple, modular device was designed and made. It works by pointing-out the bundle(s) which has at least one defective fuel pin. After tracking, the fuel bundle is picked-up from the core and searching is continued to point-out the defective pin inside post-irradiation-hot cells. For dosimetric survey in the reactor hall, an aerosol detector was used. When an accident arises the released noble gases will be detected by this detector. The detector can give no information where the damage is located for one of the fuel pins inside the irradiation devices (loop or capsule) can also get defective and consequently it can release radioactive noble gases in the reactor hall. For avoiding this a radioactive survey device for core cooling agent was mounted by the primary cooling system. The device for defective fuel rod identification in the nuclear reactor is composed of the following components: - a device for water sampling from the fuel bundle; - a suction valve; - a handling tool; - an electric pump; - ionic filters; - a flexible hose. When fission isotopes arise in primary cooling system, the device is brought to the edge of the reactor pool in a sharp positioning. By means of the handling tool the sampling device is inserted at the top of the fuel bundle. The suction inlet circuit and the electric pump are filled with pool water, and after that the ionic filter and outlet circuit are filled also. The electric pump is actuated and the following circuit is operated: fuel bundle, electric pump, ionic filter, pool. For avoiding the overheating of the pump, part of the flow is by

  20. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.

    Science.gov (United States)

    Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas

    2017-11-01

    The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Birth Defects

    Science.gov (United States)

    A birth defect is a problem that happens while a baby is developing in the mother's body. Most birth defects happen during the first 3 months of ... in the United States is born with a birth defect. A birth defect may affect how the ...

  2. Patient-reported vision-related quality of life differences between superior and inferior hemifield visual field defects in primary open-angle glaucoma.

    Science.gov (United States)

    Cheng, Hui-Chen; Guo, Chao-Yu; Chen, Mei-Ju; Ko, Yu-Chieh; Huang, Nicole; Liu, Catherine Jui-ling

    2015-03-01

    Previous studies have found that glaucoma is associated with impaired patient-reported vision-related quality of life (pVRQOL) but few, to our knowledge, have assessed how the visual field (VF) defect location impacts the pVRQOL. To investigate the associations of VF defects in the superior vs inferior hemifields with pVRQOL outcomes in patients with primary open-angle glaucoma. Prospective cross-sectional study at a tertiary referral center from March 1, 2012, to January 1, 2013, including patients with primary open-angle glaucoma who had a best-corrected visual acuity in the better eye equal to or better than 20/60 and reliable VF tests. The pVRQOL was assessed by a validated Taiwanese version of the 25-item National Eye Institute Visual Function Questionnaire. Reliable VF tests obtained within 3 months of enrollment were transformed to binocular integrated VF (IVF). The IVF was further stratified by VF location (superior vs inferior hemifield). The association between each domain of the 25-item National Eye Institute Visual Function Questionnaire and superior or inferior hemifield IVF was determined using multivariable linear regression analysis. The analysis included 186 patients with primary open-angle glaucoma with a mean age of 59.1 years (range, 19-86 years) and IVF mean deviation (MD) of -4.84 dB (range, -27.56 to 2.17 dB). In the multivariable linear regression analysis, the MD of the full-field IVF showed positive associations with near activities (β = 0.05; R2 = 0.20; P < .001), vision-specific role difficulties (β = 0.04; R2 = 0.19; P = .01), vision-specific dependency (β = 0.04; R2 = 0.20; P < .001), driving (β = 0.05; R2 = 0.24; P < .001), peripheral vision (β = 0.03; R2 = 0.18; P = .02), and composite scores (β = 0.04; R2 = 0.27; P = .005). Subsequent analysis showed that the MD of the superior hemifield IVF was associated only with near activities (β = 0.04; R2

  3. Public health approach to birth defects: the Argentine experience.

    Science.gov (United States)

    Bidondo, María Paz; Groisman, Boris; Barbero, Pablo; Liascovich, Rosa

    2015-04-01

    Birth defects are a global problem, but their impact is particularly severe in low and middle income countries, where the conditions for prevention, treatment, and rehabilitation are more critical. The epidemiological transition in the infant mortality causes, and the concern of the community and the mass media about the teratogenic risk of environmental pollutants, has made health authorities aware of the importance of birth defects in Argentina. The objective of this paper is to outline those actions specifically taken in Argentina aimed at the prevention of birth defects at a national level. Firstly, we focus on birth defects in Argentina on a general basis, and then we present different laws and actions taken in terms of surveillance and public health programs, primary, secondary, and tertiary prevention. Finally, we present the Teratology Information Service "Fetal Health Line", and the genetic services organization and health professionals training by the National Center of Medical Genetics and the National Program of Genetics Network. In conclusion, in the country, several programs focus on different approaches to the problem, and the challenge is to coordinate the teamwork between them. Finally, we list tips to address birth defects from the public health perspective.

  4. Defect occurrence, detection, location and characterization; essential variables of the LBB concept application to primary piping

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, S.; Koble, T.D.; Lemaitre, P. [and others

    1997-04-01

    Applications of the Leak Before Break (LBB) concept involve the knowledge of flaw presence and characteristics. In Service Inspection is given the responsibility of detecting flaws of a determined importance to locate them precisely and to classify them in broad families. Often LBB concepts application imply the knowledge of flaw characteristics such as through wall depth; length at the inner diameter (ID) or outer diameter (OD) surface; orientation or tilt and skew angles; branching; surface roughness; opening or width; crack tip aspect. Besides detection and characterization, LBB evaluations consider important the fact that a crack could be in the weld material or in the base material or in the heat affected zone. Cracks in tee junctions, in homogenous simple welds and in elbows are not considered in the same way. Essential variables of a flaw or defect are illustrated, and examples of flaws found in primary piping as reported by plant operators or service vendors are given. If such flaw variables are important in the applications of LBB concepts, essential is then the knowledge of the performance achievable by NDE techniques, during an ISI, in detecting such flaws, in locating them and in correctly evaluating their characteristics.

  5. Stainless steel corrosion in conditions simulating WWER-1000 primary coolant. Corrosion behaviour in mixed core

    International Nuclear Information System (INIS)

    Krasnorutskij, V.S.; Petel'guzov, I.A.; Gritsina, V.M.; Zuek, V.A.; Tret'yakov, M.V.; Rud', R.A.; Svichkar', N.V.; Slabospitskaya, E.A.; Ishchenko, N.I.

    2011-01-01

    Research into corrosion kinetics of austenitic stainless steels (06Cr18Ni10Ti, 08Cr18Ni10Ti, 12Cr18Ni10Ti) in medium which corresponds to composition and parameters of WWER-1000 primary coolant with different pH values in autoclave out-pile conditions during 14000 hours is given. Surface of oxide films on stainless steels is investigated. Visual inspection of Westinghouse and TVEL fuel was carried out after 4 cycles in WWER-1000 primary water chemistry conditions at South Ukraine NPP. Westinghouse and TVEL fuel cladding materials possess high corrosion resistance. Blushing of weldments was observed. No visual corrosion defects or deposits were observed on fuel rods.

  6. Transient fatty cortical defects following fractures in children

    International Nuclear Information System (INIS)

    Malghem, J.; Maldague, B.

    1986-01-01

    Self-regressing subperiosteal defects appearing during consolidation of fractures were observed in two children aged 6 and 10 years, in the tibia and the radious respectively. These transient defects appeared several weeks after fracture, at a distance from the fracture site. They involved the newly formed subperiosteal bone, did not enlarge, and were replaced progressively by normal-appearing bone. A computed tomography (CT) study performed on one of these defects demonstrated a density consistent with a fatty content. It is suggested that these transient post-traumatic defect could result from the inclusion of medulary fat drops within the subperiosteal heamtoma near the fracture site. (orig.)

  7. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture

    International Nuclear Information System (INIS)

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-01-01

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone–Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp–sp 2 bonding network and an sp–sp 2 –sp 3 bonding network are observed in vacancy-defected and Stone–Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending–saturating–improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp–sp 2 and sp–sp 2 –sp 3 rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone–Wales defects account for their distinctive rules of the evolution of the fracture strain. (paper)

  8. Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon

    International Nuclear Information System (INIS)

    Chroneos, A.; Londos, C. A.; Sgourou, E. N.

    2011-01-01

    Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of oxygen- and carbon-related defects in electron-irradiated Czochralski silicon. The results verify previous reports that Sn doping reduces the formation of the VO defect and suppresses its conversion to the VO 2 defect. Within experimental accuracy, a small delay in the growth of the VO 2 defect is observed. Regarding carbon-related defects, it is determined that Sn doping leads to a reduction in the formation of the C i O i , C i C s , and C i O i (Si I ) defects although an increase in their thermal stability is observed. The impact of strain induced in the lattice by the larger tin substitutional atoms, as well as their association with intrinsic defects and carbon impurities, can be considered as an explanation to account for the above observations. The density functional theory calculations are used to study the interaction of tin with lattice vacancies and oxygen- and carbon-related clusters. Both experimental and theoretical results demonstrate that tin co-doping is an efficient defect engineering strategy to suppress detrimental effects because of the presence of oxygen- and carbon-related defect clusters in devices.

  9. Nonlinear effects in defect production by atomic and molecular ion implantation

    International Nuclear Information System (INIS)

    David, C.; Dholakia, Manan; Chandra, Sharat; Nair, K. G. M.; Panigrahi, B. K.; Amirthapandian, S.; Amarendra, G.; Varghese Anto, C.; Santhana Raman, P.; Kennedy, John

    2015-01-01

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al 3 , resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed due to Al 4 implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations

  10. Effect of potential barrier growth of auto-localized excitons decay on radiation defects in AHC at low lattice symmetry

    International Nuclear Information System (INIS)

    Shunkeev, K.; Sagimbaeva, Sh.; Shunkeev, S.

    2007-01-01

    Effect of auto-localized excitons (ALE) luminescence strengthening is conditioned by two mechanisms: either decrease of potential barrier divided of quasi-free states and auto-localized states or decrease of emission-less channel effectiveness of exciton decay on primary radiation defects. In considered range (80 K) all excitons are only in auto-localized state. Therefore a realization of the first mechanism is improbable, For instant, in KI crystal at 80-100 K luminescence of free exciton is completely putting out, and ALE luminescence has maximal intensity. It is known that in the temperature range when ALE luminescence putting out is beginning an effectiveness of radiation defects is beginning to grow. This effect is related with predominating at that time emission-less exciton decay on radiation defects (F-H pairs). Experimentally by luminescence spectroscopy method activation energy of temperature putting out of ALE in AHC under uniaxial deformation. It is revealed, that increase of activation energy value has observed in a number of crystals: KBr→NaCl→KI→Na Br→CsBr→RbI. It is concluded, that effect of ALE intensity building-up and decrease of effectiveness of radiation defect formation are interpreted by growth of potential barrier of ALE decay into radiation defects under low symmetry of AHC lattice of low-temperature uniaxial deformation

  11. Radiographic detection of artificial intra-bony defects in the edentulous area.

    Science.gov (United States)

    Van Assche, N; Jacobs, R; Coucke, W; van Steenberghe, D; Quirynen, M

    2009-03-01

    Since intra-bony pathologies might jeopardize implant outcome, their preoperative detection is crucial. In sixteen human cadaver bloc sections from upper and lower jaws, artificial defects with progressively increasing size (n=7) have been created. From each respective defect, analogue and digital intra-oral radiographs were taken, the latter processed via a periodontal filter and afterwards presented in black-white as well as in colour, resulting in three sets of 7 images per bloc section. Eight observers were asked to diagnosis an eventual defect on randomly presented radiographs, and at another occasion to rank each set based on the defect size. The clinicians were only able to identify a defect, when the junctional area was involved, except for bony pieces with a very homogeneous structure. For longitudinal evaluation of healing bone (e.g. after tooth extraction), colour digital images can be recommended. These observations indicate that intra-oral radiographs are not always reliable for the detection of any intra-bony defect.

  12. Combined osteoplasty of metaepiphysial defects in total knee arthroplasty with osteoplastic biomaterial

    Directory of Open Access Journals (Sweden)

    Gavrilov М.А.

    2012-12-01

    Full Text Available The research goal is to study the results of osteoplastic biomaterials application to reach the improvement of primary and long-term secondary stability of fixation. Materials and methods: 62 patients with bone defect of metaepiphy-sis of type 2 according to AORI have been included into the research. Total knee arthroplasty with osteoplasty of the defect has been carried out in all the patients. In the basic group (n=32 combined osteoplasty has been used, and in comparison group (n=30 cement osteoplasty has been applied. In cases with total arthroplasty in the basic group modifying standard resections, structural autograft of laminar form has been received simultaneously. After preparing the floor of the defect its plasty has been carried out: in the basic group the defect has been filled with osteoconductive biomaterial, and in the comparison group — with polymethylmethacrylate to restore the anatomical configuration of condyles. Besides, before cement fixation of the prosthesis in the basic group the received autograft has been put on the restored implant plateau. Results: Assessing the results during the period from 2 to 4 years objective criteria have included the data of X-ray imaging, biomechanical research and WOMAC test. In the postoperative period significant differences have not been revealed. In the follow-up period in the group with application of the combined osteoplasty joint remodulation of autograft and osteoplastic biomaterial with regenerative restoration of bone tissue of the implant plateau has been observed. Conclusion: The described technique may reduce the relative risk of revision arthroplasty.

  13. Observation of magnetically anisotropic defects during stage I recovery in nickel after low-temperature electron irradiation

    International Nuclear Information System (INIS)

    Forsch, K.; Hemmerich, J.; Knoll, H.; Lucki, G.

    1974-01-01

    The measurement of defect-induced changes of magnetic anisotropy in a nickel single crystal after low-temperature electron irradiation was undertaken. A dynamic measuring method was used after reorienting a certain fraction of the radiation-induced defects in an external magnetic field of 5 kOe. In the temperature range of recovery stage I sub(C,D,E) (45 to 60 k) the crystallographic direction dependence of defect-induced anisotropy could be determined. The results show that in this temperature range the (100) split interstitial is mobile and able to reorient. The obtained data are further discussed with respect to existing information on magnetic after effect and resistivity annealing in electron-irradiated nickel

  14. Defect characterization in high-purity silicon after γ- and hadron irradiation

    International Nuclear Information System (INIS)

    Stahl, J.

    2004-07-01

    The challenge for silicon particle detectors in future high energy physics experiments caused by extreme radiation fields can only be met by an appropriate defect engineering of the starting material. Appreciable improvements had already been obtained by enriching high resistivity float zone silicon with oxygen as demonstrated by the CERN RD48 collaboration. This thesis will focus on the difference observed after irradiation between standard and oxygenated float zone and detector grade Czochralski silicon. Results obtained with diodes manufactured on epitaxial layers are also included, envisioning effects arising from the possible migration of impurities during the crystal growth from the oxygen rich Czochralski substrate. Deep level transient spectroscopy (DLTS) and thermally stimulated current (TSC) measurements have been performed for defect characterization after γ- and hadron irradiation. Also a new high resolution DLTS technique has been used for the first time to separate defect levels with similar parameters. During the microscopic studies additionally to the well known defects like VO i , V 2 , C i O i or VP, four new radiation induced defects have been discovered and characterized. Two of these defects are closely correlated with the detector performance: A deep acceptor labeled as I-defect, and a bistable donor (BD). The formation of the I-defect is strongly suppressed in oxygen rich materials, while the formation of the BD is suppressed in oxygen lean material. With their properties the I- and the BD-defect are able to explain the different macroscopic behavior of standard and oxygen enriched float zone silicon after γ-irradiation. Furthermore, the BD defect is most probably responsible for the observation that in Cz and Epi diodes space charge sign inversion does not occur even after high fluences of proton irradiation. Additionally the γ-irradiated diodes were annealed at temperatures between 100 C and 350 C. During these studies some new reaction

  15. Imaging active topological defects in carbon nanotubes

    Science.gov (United States)

    Suenaga, Kazu; Wakabayashi, Hideaki; Koshino, Masanori; Sato, Yuta; Urita, Koki; Iijima, Sumio

    2007-06-01

    A single-walled carbon nanotube (SWNT) is a wrapped single graphene layer, and its plastic deformation should require active topological defects-non-hexagonal carbon rings that can migrate along the nanotube wall. Although in situ transmission electron microscopy (TEM) has been used to examine the deformation of SWNTs, these studies deal only with diameter changes and no atomistic mechanism has been elucidated experimentally. Theory predicts that some topological defects can form through the Stone-Wales transformation in SWNTs under tension at 2,000 K, and could act as a dislocation core. We demonstrate here, by means of high-resolution (HR)-TEM with atomic sensitivity, the first direct imaging of pentagon-heptagon pair defects found in an SWNT that was heated at 2,273 K. Moreover, our in situ HR-TEM observation reveals an accumulation of topological defects near the kink of a deformed nanotube. This result suggests that dislocation motions or active topological defects are indeed responsible for the plastic deformation of SWNTs.

  16. Eddy Current Signature Classification of Steam Generator Tube Defects Using A Learning Vector Quantization Neural Network

    International Nuclear Information System (INIS)

    Garcia, Gabe V.

    2005-01-01

    A major cause of failure in nuclear steam generators is degradation of their tubes. Although seven primary defect categories exist, one of the principal causes of tube failure is intergranular attack/stress corrosion cracking (IGA/SCC). This type of defect usually begins on the secondary side surface of the tubes and propagates both inwards and laterally. In many cases this defect is found at or near the tube support plates

  17. Effects of alloy composition and Si-doping on vacancy defect formation in (InxGa1-x)2O3 thin films

    Science.gov (United States)

    Prozheeva, V.; Hölldobler, R.; von Wenckstern, H.; Grundmann, M.; Tuomisto, F.

    2018-03-01

    Various nominally undoped and Si-doped (InxGa1-x)2O3 thin films were grown by pulsed laser deposition in a continuous composition spread mode on c-plane α-sapphire and (100)-oriented MgO substrates. Positron annihilation spectroscopy in the Doppler broadening mode was used as the primary characterisation technique in order to investigate the effect of alloy composition and dopant atoms on the formation of vacancy-type defects. In the undoped samples, we observe a Ga2O3-like trend for low indium concentrations changing to In2O3-like behaviour along with the increase in the indium fraction. Increasing indium concentration is found to suppress defect formation in the undoped samples at [In] > 70 at. %. Si doping leads to positron saturation trapping in VIn-like defects, suggesting a vacancy concentration of at least mid-1018 cm-3 independent of the indium content.

  18. [TREATMENT OBSERVATION OF NASAL TIP DEFECTS RECONSTRUCTED BY BILOBED FLAPS AFTER GAINT NEVI EXCISION].

    Science.gov (United States)

    Li, Zhengyong; Pu, Yi; Cen, Ying; Wu, Junliang; Zhang, Zhenyu

    2016-11-08

    To discuss a reliable and aesthetic surgery method for the reconstruction of large defects on the top of nose after giant nevi resection. Between January 2011 and June 2015, 46 cases of nasal tip defects caused by giant nevi resection were treated. Of 46 cases, 22 were male and 24 were female, aged 15-59 years (median, 28 years). The right ala nasi was involved in 28 cases, the apex nasi in 8 cases, and the left ala nasi in 10 cases. The diameters of nevi were from 8 to 12 mm (mean, 9.75 mm); no alar cartilage was invaded. Hair growth was seen in 14 cases. The duration of nasal nevi was from 3 years to 49 years (mean, 9.8 years). There were 9 recurrent patients who received laser therapy before surgery. The defects sizes after excision were from 10 mm×10 mm to 14 mm×14 mm. The bilobed flaps were used for one-stage reconstruction, which sizes were from 11 mm×10 mm to 15 mm×14 mm and from 10 mm×10 mm to 15 mm×14 mm. All the incisions healed by first intention, and the flaps survived. No complication of intracranial hemorrhage or subdural hemorrhage occurred. The patients were followed up 6 months to 5 years (mean, 18 months). The appearance of nasal tip and nasolabial fold was satisfactory, and no recurrence was found during follow-up. One-stage bilobed flap reconstruction for nasal tip defects after giant nevus resection is one of the effective, safe, and aesthetic surgery methods.

  19. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Samuel A., E-mail: sabriggs2@wisc.edu [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Barr, Christopher M. [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Pakarinen, Janne [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); SKC-CEN Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium); Mamivand, Mahmood [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Hattar, Khalid [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Morgan, Dane D. [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States); Taheri, Mitra [Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Sridharan, Kumar [University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)

    2016-10-15

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni{sup 4+} ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy. - Highlights: • Binary Ni-Cr alloys were irradiated with protons or Ni ions at 400 and 500 °C. • Higher irradiation temperatures yield increased size, decreased density of defects. • Hypothesize that varying Cr content affects interstitial binding energy. • Fitting CD models for loop nucleation to data supports this hypothesis.

  20. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation

    DEFF Research Database (Denmark)

    Clement, Christian A; Kristensen, Stine G; Møllgård, Kjeld

    2009-01-01

    Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent...... P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine...... development. These data support the conclusion that cardiac primary cilia are crucial in early heart development, where they partly coordinate hedgehog signaling....

  1. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use.

    Science.gov (United States)

    Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya

    2012-11-01

    Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.

  2. In situ probing of the evolution of irradiation-induced defects in copper

    International Nuclear Information System (INIS)

    Li, N.; Hattar, K.; Misra, A.

    2013-01-01

    Through in situ Cu 3+ ion irradiation at room temperature in a transmission electron microscope (TEM), we have investigated the evolution of defect clusters as a function of the radiation dose at different distances from the 3 {1 1 2} incoherent twin boundary (ITB) in Cu. Post in situ ion irradiation, high resolution TEM was used to explore the types of defects, which are composed of a high-density of vacancy stacking fault tetrahedra (SFT) and sparsely distributed interstitial Frank loops. During irradiation, defect clusters evolve through four stages: (i) incubation, (ii) non-interaction, (iii) interaction and (iv) saturation; and the corresponding density was observed to initially increase with irradiation dose and then approach saturation. No obvious denuded zone is observed along the 3 {1 1 2} ITB and the configuration of defects at the boundary displays as truncated SFTs. Several defect evolution models have been proposed to explain the observed phenomena

  3. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    Science.gov (United States)

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  4. Tuning thermal conduction via extended defects in graphene

    Science.gov (United States)

    Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui

    2013-05-01

    Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.

  5. Nonarteritic Anterior Ischemic Optic Neuropathy and Double Thrombophilic Defect: A New Observation

    Directory of Open Access Journals (Sweden)

    Eleni Papageorgiou

    2012-02-01

    Full Text Available We report the first case of nonarteritic anterior ischemic neuropathy (NAION associated with double thrombophilia: protein S deficiency and prothrombin G20210A mutation. A 58-year-old man is presented including the clinical and laboratory findings, cardiovascular profile and thrombophilia screening. The patient presented with 3/10 vision and an inferior altitudinal defect in the right eye. Funduscopic examination of the right eye revealed a hyperemic optic disk with blurred superior optic disk border and sectoral nerve fiber layer edema. Complete blood count, erythrocyte sedimentation rate and C-reactive protein were normal, suggesting a NAION. A workup of cardiovascular risk factors revealed hyperlipidemia, arterial hypertension and high-risk asymptomatic coronary artery disease. Due to the family history of deep vein thrombosis in the patient’s daughter, a thrombophilia screening was additionally performed. The results revealed a double thrombophilic defect, namely congenital protein S deficiency and heterozygosity for prothrombin G20210A mutation, which were also identified in the patient’s daughter. Anticoagulant warfarin therapy was initiated and the patient underwent a triple bypass surgery. At three-month follow-up, the right optic disk edema had resolved, leaving a pale superior optic nerve head. Visual acuity in the right eye had slightly improved to 4/10; however, the dense inferior altitudinal field defect had remained unchanged. The patient is currently treated with warfarin, atorvastatin, irbesartan and metoprolol. This case suggests that the first line of investigation in all patients with NAION involves assessment of cardiovascular risk factors. However, careful history taking will identify NAION patients who are eligible for additional thrombophilia screening: young patients without vasculopathic risk factors, bilateral or recurrent NAION, idiopathic or recurrent venous thromboembolism (VTE, positive family history of VTE

  6. Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B

    2014-01-01

    Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously

  7. Peculiarities of radiation defect formation and annealing in n-Si due to their interaction with each other and defect clusters

    International Nuclear Information System (INIS)

    Lugakov, P.F.; Lukyanitsa, V.V.

    1984-01-01

    Rearrangement processes proceeding during annealing (T/sub a/ = 50 to 500 0 C) of radiation defects in 60 Co γ-irradiated (T/sub irr/ 0 C) n-Si crystals (rho = 100 to 600 Ωcm) grown by the vacuum float-zone technique are studied. The temperature dependences of the Hall coefficient are measured. The results obtained are interpreted taking into account the interaction during annealing of vacancy-type defects (E-centres, divacancies) with each other and interstitial radiation defects (C/sub i/-C/sub s/ complexes, interstitial carbon C/sub i/). Phosphorus-two vacancies complexes, stable to T/sub a/ >= 500 0 C, are shown to be formed as a result of rearrangements and interaction of E-centres between themselves. The character of interaction of vacancy defects with interstitial ones is found to change significantly in the presence of defect clusters in the bulk of the crystal which are formed under heat treatment (T = 800 0 C, two hours) of the samples preliminary irradiated with fast neutrons (flux PHI/sub n/ = 1x10 14 to 1x10 16 cm -2 ). The peculiarities of radiation defects annealing observed in this case are explained taking into account the influence of defect clusters on the migration processes of mobile defects. Nature of radiation defects being formed at various stages of annealing is discussed. (author)

  8. Neurons in primary motor cortex engaged during action observation.

    Science.gov (United States)

    Dushanova, Juliana; Donoghue, John

    2010-01-01

    Neurons in higher cortical areas appear to become active during action observation, either by mirroring observed actions (termed mirror neurons) or by eliciting mental rehearsal of observed motor acts. We report the existence of neurons in the primary motor cortex (M1), an area that is generally considered to initiate and guide movement performance, responding to viewed actions. Multielectrode recordings in monkeys performing or observing a well-learned step-tracking task showed that approximately half of the M1 neurons that were active when monkeys performed the task were also active when they observed the action being performed by a human. These 'view' neurons were spatially intermingled with 'do' neurons, which are active only during movement performance. Simultaneously recorded 'view' neurons comprised two groups: approximately 38% retained the same preferred direction (PD) and timing during performance and viewing, and the remainder (62%) changed their PDs and time lag during viewing as compared with performance. Nevertheless, population activity during viewing was sufficient to predict the direction and trajectory of viewed movements as action unfolded, although less accurately than during performance. 'View' neurons became less active and contained poorer representations of action when only subcomponents of the task were being viewed. M1 'view' neurons thus appear to reflect aspects of a learned movement when observed in others, and form part of a broadly engaged set of cortical areas routinely responding to learned behaviors. These findings suggest that viewing a learned action elicits replay of aspects of M1 activity needed to perform the observed action, and could additionally reflect processing related to understanding, learning or mentally rehearsing action.

  9. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  10. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    International Nuclear Information System (INIS)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui

    2007-01-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr ∼ 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1∼9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI

  11. Congenital heart defects and extracardiac malformations.

    Science.gov (United States)

    Rosa, Rosana Cardoso M; Rosa, Rafael Fabiano M; Zen, Paulo Ricardo G; Paskulin, Giorgio Adriano

    2013-06-01

    To review the association between congenital heart defects and extracardiac malformations. Scientific articles were searched in the Medline, Lilacs, and SciELO databases, using the descriptors "congenital heart disease," "congenital heart defects," "congenital cardiac malformations," "extracardiac defects," and "extracardiac malformations." All case series that specifically explored the association between congenital heart defects and extracardiac malformations were included. Congenital heart diseases are responsible for about 40% of birth defects, being one of the most common and severe malformations. Extracardiac malformations are observed in 7 to 50% of the patients with congenital heart disease, bringing a greater risk of comorbidity and mortality and increasing the risks related to heart surgery. Different studies have attempted to assess the presence of extracardiac abnormalities in patients with congenital heart disease. Among the changes described, those of the urinary tract are more often reported. However, no study has evaluated all patients in the same way. Extracardiac abnormalities are frequent among patients with congenital heart disease, and patients with these alterations may present an increased risk of morbimortality. Therefore, some authors have been discussing the importance and cost-effectiveness of screening these children for other malformations by complementary exams.

  12. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, F.; Feghhi, S.A.H., E-mail: a.feghhi@gmail.com; Arjhangmehr, A., E-mail: ms.arjangmehr@gmail.com; Esfandiarpour, A.

    2016-11-15

    In this paper, we investigate interaction of primary cascades with grain boundaries (GBs) in α-Zr using the atomistic-scale simulations, and intend to study the influence of different GB structures on production and evolution of defects on picosecond timescale. We observe that, contrary to the previous results in cubic metals, GBs in α-Zr are not necessarily biased toward interstitials, and can preferentially absorb vacancies. Further, in terms of energetic and kinetic behavior, we find that GBs act as defect sinks due to the substantial reduction of defect formation energies and migration barriers in close vicinity of the GB center, with either a preference toward interstitials or vacancies which depends on the atomic structure of the boundaries. Finally, using continuous ion bombardment, we investigate the stability of GBs in sever irradiation environment. The results indicate that the sink strength and efficiency of boundaries varies with increasing accumulated defects in GB region. - Highlights: • GBs in hcp Zr are not necessarily biased toward interstitials. • Defect content within bulk depends on PKA energy, PKA distance, and GB texture. • Defect formation energies and diffusion barriers decrease in close vicinity of GBs. • GBs become locally unstable due to absorption of excess defects in ion bombardment.

  13. Mobility of point defects induced by subthreshold collisions

    International Nuclear Information System (INIS)

    Tenenbaum, A.; Nguyen Van Doan

    1976-01-01

    The effect of thermal vibrations on atomic collision focusing was studied with the view to demonstrate that such collisions may induce point defect migration through the crystal. The persistence of the phenomenon of focused atomic collisions in a crystal at thermal equilibrium was studied, using a computer simulation by the Molecular Dynamics Technique. In the temperature range (0 to 500K) matter and momentum transfers in c.f.c. crystals proceed mainly by focused collisions along and directions. Their contribution to the induced migration of radiation defects was determined from the threshold energy of every primary able to be involved in the process. As an example, the quantitative model is applied to electron irradiation along the crystallographic directions [fr

  14. How to operate safely steam generators with multiple tube through-wall defects

    International Nuclear Information System (INIS)

    Hernalsteen, P.

    1993-01-01

    For a Nuclear Power Plant (NPP) of the Pressurized Water Reactor (PWR) type, the Steam Generator (SG) tube bundle represents the major but also the thinnest part of the primary pressure boundary. To the extent that no tube material has yet been identified to be immune to corrosion, defects may initiate in service and easily propagate through wall. While not a desirable feature, a Through Wall Deep (TWD) defect does not necessarily pose a threat to either the structural integrity or leaktightness and this paper shows how SG can (and indeed, do) operate safely and reliably while having many tubes affected by deep and even TWD defects

  15. The fractal character of radiation defects aggregation in crystals

    International Nuclear Information System (INIS)

    Akylbekov, A.; Akimbekov, E.; Baktybekov, K.; Vasil'eva, I.

    2002-01-01

    In processes of self-organization, which characterize open systems, the source of ordering is a non-equilibrium. One of the samples of ordering system is radiation-stimulated aggregation of defects in solids. In real work the analysis of criterions of ordering defects structures in solid, which is continuously irradiate at low temperature is presented. The method of cellular automata used in simulation of irradiation. It allowed us to imitate processes of defects formation and recombination. The simulation realized on the surfaces up to 1000x1000 units with initial concentration of defects C n (the power of dose) 0.1-1 %. The number of iterations N (duration of irradiation) mounted to 10 6 cycles. The single centers, which are the sources of formation aggregates, survive in the result of probabilistic nature of formation and recombination genetic pairs of defects and with strictly fixed radius of recombination (the minimum inter anionic distance). For determination the character of same type defects distribution the potential of their interaction depending of defects type and reciprocal distance is calculated. For more detailed study of processes, proceeding in cells with certain sizes of aggregates, the time dependence of potential interaction is constructed. It is shown, that on primary stage the potential is negative, then it increase and approach the saturation in positive area. The minimum of interaction potential corresponds to state of physical chaos in system. Its increasing occurs with formation of same type defects aggregates. Further transition to saturation and 'undulating' character of curves explains by formation and destruction aggregates. The data indicated that - these processes occur simultaneously in cells with different sizes. It allows us to assume that the radiation defects aggregation have a fractal nature

  16. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    Science.gov (United States)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  17. Effects of specialized drill bits on hole defects of CFRP laminates

    Science.gov (United States)

    Li, Chao; Xu, Jinyang; Chen, Ming

    2018-05-01

    Drilling is a conventional machining process widely applied to carbon fiber reinforced plastics (CFRP) for the riveting and fastening purposes in the aerospace and automotive industries. However, the machining mechanism of CFRP composites differ significantly from that of homogeneous metal alloys owing to their prominent anisotropy and heterogeneity. Serious hole defects such as fiber pullout, matrix debonding and delamination are generally produced during the hole-making process, resulting in the poor machined surface quality, low fatigue durability or even the part rejections. In order to minimize the defects especially the delamination damage in composites drilling, specialized drill bits are often a primary choice being widely adopted in a real production. This paper aims to study the effects of two drills differing in geometrical characteristics during the drilling of CFRP laminates. A number of drilling experiments were carried out with the aim to evaluate the drilling performance of different drill bits. A scanning electron microscope (SEM) was used to observe the drilled surfaces to study the surface roughness. A high frequency scanning acoustic microscope (SAM) was applied to characterize the drilled hole morphologies with a particular focus on the delamination damage occurring in the CFRP laminates. The obtained results indicate that the fiber orientation relative to the cutting direction is a key factor affecting hole morphology and hole wall defects can be reduced by utilizing specialized drill geometries. Moreover, the dagger drill was confirmed outperforming the brad spur drill from the aspect of reducing drilling-induced delamination.

  18. Evaluation of pipeline defect's characteristic axial length via model-based parameter estimation in ultrasonic guided wave-based inspection

    International Nuclear Information System (INIS)

    Wang, Xiaojuan; Tse, Peter W; Dordjevich, Alexandar

    2011-01-01

    The reflection signal from a defect in the process of guided wave-based pipeline inspection usually includes sufficient information to detect and define the defect. In previous research, it has been found that the reflection of guided waves from even a complex defect primarily results from the interference between reflection components generated at the front and the back edges of the defect. The respective contribution of different parameters of a defect to the overall reflection can be affected by the features of the two primary reflection components. The identification of these components embedded in the reflection signal is therefore useful in characterizing the concerned defect. In this research, we propose a method of model-based parameter estimation with the aid of the Hilbert–Huang transform technique for the purpose of decomposition of a reflection signal to enable characterization of the pipeline defect. Once two primary edge reflection components are decomposed and identified, the distance between the reflection positions, which closely relates to the axial length of the defect, could be easily and accurately determined. Considering the irregular profiles of complex pipeline defects at their two edges, which is often the case in real situations, the average of varied axial lengths of such a defect along the circumference of the pipeline is used in this paper as the characteristic value of actual axial length for comparison purpose. The experimental results of artificial defects and real corrosion in sample pipes were considered in this paper to demonstrate the effectiveness of the proposed method

  19. Electronic structure of point defects in semiconductors

    International Nuclear Information System (INIS)

    Bruneval, Fabien

    2014-01-01

    This 'Habilitation a diriger des Recherches' memoir presents most of my scientific activities during the past 7 years, in the field of electronic structure calculations of defects in solids. Point defects (vacancies, interstitials, impurities) in functional materials are a key parameter to determine if these materials will actually fill the role they have been assigned or not. Indeed, the presence of defects cannot be avoided when the temperature is increased or when the material is subjected to external stresses, such as irradiation in the nuclear reactors and in artificial satellites with solar radiations. However, in many cases, defects are introduced in the materials on purpose to tune the electronic transport, optical or even magnetic properties. This procedure is called the doping of semiconductors, which is the foundation technique for transistors, diodes, or photovoltaic cells. However, doping is not always straightforward and unexpected features may occur, such as doping asymmetry or Fermi level pinning, which can only be explained by complex phenomena involving different types of defects or complexes of defects. In this context, the calculations of electronic structure ab initio is an ideal tool to complement the experimental observations, to gain the understanding of phenomena at the atomic level, and even to predict the properties of defects. The power of the ab initio calculations comes from their ability to describe any system of electrons and nuclei without any specific adjustment. But although there is a strong need for numerical simulations in this field, the ab initio calculations for defects are still under development as of today. The work presented in this memoir summarizes my contributions to methodological developments on this subject. These developments have followed two main tracks. The first topic is the better understanding of the unavoidable finite size effects. Indeed, defects in semiconductors or insulators are generally present in

  20. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  1. Prosthetic rehabilitation of large mid-facial defect with magnet-retained silicone prosthesis

    Directory of Open Access Journals (Sweden)

    Kirti Jajoo Shrivastava

    2015-01-01

    Full Text Available Rehabilitation of maxillofacial defect patients is a challenging task. The most common prosthetic treatment problem with such patients is, getting adequate retention, stability, and support. In cases of large maxillofacial defect, movement of the prosthesis is inevitable. The primary objectives in rehabilitating the maxillofacial defect patients are to restore the function of mastication, deglutition, speech, and to achieve normal orofacial appearance. This clinical report describes maxillofacial prosthetic rehabilitation of large midfacial defect including orbit along with its contents, zygoma and soft tissues including half of the nose, cheeks, upper lip of left side, accompanying postsurgical microstomia and orofacial communication, which resulted from severe fungal infection mucormycosis. The defect in this case was restored with magnet retained two piece maxillofacial prosthesis having hollow acrylic resin framework and an overlying silicone facial prosthesis. The retention of prosthesis was further enhanced with the use of spectacles. This type of combination prosthesis enhanced the cosmesis and functional acceptability of prosthesis.

  2. Scaling defect decay and the reionization history of the Universe

    International Nuclear Information System (INIS)

    Avelino, P.P.; Barbosa, D.

    2004-01-01

    We consider a model for the reionization history of the Universe in which a significant fraction of the observed optical depth is a result of direct reionization by the decay products of a scaling cosmic defect network. We show that such network can make a significant contribution to the reionization history of the Universe even if its energy density is very small (the defect energy density has to be greater than about 10 -11 of the background density). We compute the Cosmic Microwave Background temperature, polarization and temperature-polarization cross power spectrum and show that a contribution to the observed optical depth due to the decay products of a scaling defect network may help to reconcile a high optical depth with a low redshift of complete reionization suggested by quasar data. However, if the energy density of defects is approximately a constant fraction of the background density then these models do not explain the large scale bump in the temperature-polarization cross power spectrum observed by Wilkinson Microwave Anisotropy Probe

  3. Color Vision Defects in School Going Children

    Directory of Open Access Journals (Sweden)

    R K Shrestha

    2010-12-01

    Full Text Available Introduction: Color Vision defect can be observed in various diseases of optic nerve and retina and also a significant number of people suffer from the inherited condition of red and green color defect. Methods: A cross-sectional descritptive study was designed with purposive sampling of students from various schools of Kathmandu Valley. All children were subjected to color vision evaluation using Ishihara Isochromatic color plates along with other examination to rule out any other causes of color deficiency. Results: A total of 2001 students were examined, 1050 male students and 951 females with mean age of 10.35 (±2.75 and 10.54 (±2.72 respectively. Among the total students examined, 2.1% had some form of color vision defects. Of the male population , 3.9% had color vision defects while none of the female was found with the deficiency. Conclusions: The prelevance of color vision defect in Nepal is significant and comparable with the prelevance quoted in the studies from different countries. Keywords:color vision; congenital red green color effect; Nepal; prevalence.

  4. Point defect states in Sb-doped germanium

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Neil S., E-mail: neilp@mit.edu; Monmeyran, Corentin, E-mail: comonmey@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Agarwal, Anuradha [Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Kimerling, Lionel C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States); Microphotonics Center, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  5. Influence of point defects on the near edge structure of hexagonal boron nitride

    Science.gov (United States)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  6. Questions Asked by Primary Student Teachers about Observations of a Science Demonstration

    Science.gov (United States)

    Ahtee, Maija; Juuti, Kalle; Lavonen, Jari; Suomela, Liisa

    2011-01-01

    Teacher questioning has a central role in guiding pupils to learn to make scientific observations and inferences. We asked 110 primary student teachers to write down what kind of questions they would ask their pupils about a demonstration. Almost half of the student teachers posed questions that were either inappropriate or presupposed that the…

  7. Observation of silicon self-diffusion enhanced by the strain originated from end-of-range defects using isotope multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Isoda, Taiga; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2015-09-21

    Si self-diffusion in the presence of end-of-range (EOR) defects is investigated using {sup nat}Si/{sup 28}Si isotope multilayers. The isotope multilayers were amorphized by Ge ion implantation, and then annealed at 800–950 °C. The behavior of Si self-interstitials is investigated through the {sup 30}Si self-diffusion. The experimental {sup 30}Si profiles show further enhancement of Si self-diffusion at the EOR defect region, in addition to the transient enhanced diffusion via excess Si self-interstitials by EOR defects. To explain this additional enhanced diffusion, we propose a model which takes into account enhanced diffusion by tensile strain originated from EOR defects. The calculation results based on this model have well reproduced the experimental {sup 30}Si profiles.

  8. How safe is defect specific maintenance of steam generator tubes?

    International Nuclear Information System (INIS)

    Dvorsek, T.; Cizelj, L.

    1995-01-01

    Outside diameter stress corrosion cracking at the tube to tube support plate intersections is assessed in the paper. The impact of defect specific maintenance on steam generator operation safety and reliability was investigated. This was performed by comparing efficiencies of defect specific and traditional maintenance strategy. The efficiency was studied through expected primary-to-secondary leak rate and tube rupture probability in a case of postulated accidental operating conditions, and number of tubes which shall be plugged using both maintenance strategies. In general, the efficiency of specific maintenance is function of particular steam generator and operating cycle. (author)

  9. The Boomerang-shaped Pectoralis Major Musculocutaneous Flap for Reconstruction of Circular Defect of Cervical Skin.

    Science.gov (United States)

    Azuma, Shuchi; Arikawa, Masaki; Miyamoto, Shimpei

    2017-11-01

    We report on a patient with a recurrence of oral cancer involving a cervical lymph node. The patient's postexcision cervical skin defect was nearly circular in shape, and the size was about 12 cm in diameter. The defect was successfully reconstructed with a boomerang-shaped pectoralis major musculocutaneous flap whose skin paddle included multiple intercostal perforators of the internal mammary vessels. This flap design is effective for reconstructing an extensive neck skin defect and enables primary closure of the donor site with minimal deformity.

  10. A large-scale molecular dynamics study of the divacancy defect in graphene

    International Nuclear Information System (INIS)

    Leyssale, Jean-Marc; Vignoles, Gerard L.

    2014-01-01

    We report on the dynamical behavior of single divacancy defects in large graphene sheets as studied by extensive classical molecular dynamics (MD) simulations at high temperatures and static calculations. In the first part of the paper, the ability of the used interatomic potential to properly render the stability and dynamics (energy barriers) of such defects is validated against electronic structure calculations from the literature. Then, results from MD simulations are presented. In agreement with recent TEM studies, some mobility is observed through a series of Stone-Wales-like bond rotations involving the 5-8-5, 555-777, and 5555-6-7777 reconstructions. Although these three structures are by far the most probable structures of the DV defect, not less than 18 other full reconstructions, including the experimentally observed 55-66-77 defect, were occasionally observed in the ∼1.5 μs of MD trajectories analyzed in this work. Most of these additional reconstructions have moderate formation energies and can be formed by a bond rotation mechanism from one of the aforementioned structures, with a lower activation energy than the one required to form a Stone-Wales defect in graphene. Therefore their future experimental observation is highly probable. The results presented here also suggest that the barrier to a conventional Stone-Wales transformation (the formation of two pentagon/heptagon pairs from four hexagons) can be significantly reduced in the vicinity of an existing defect, strengthening a recently proposed melting mechanism for graphene based on the aggregation of Stone-Wales defects. From a structural point of view, in addition to pentagons, heptagons, and octagons, these new DV reconstructions can also contain four- and nine-member rings and show a particularly large spatial extent of up to 13 rings (42 atoms) against three (14 atoms) for the original 5-8-5 defect. (authors)

  11. Neural tube defects – recent advances, unsolved questions and controversies

    Science.gov (United States)

    Copp, Andrew J.; Stanier, Philip; Greene, Nicholas D. E.

    2014-01-01

    Neural tube defects (NTDs) are severe congenital malformations affecting around 1 in every 1000 pregnancies. Here we review recent advances and currently unsolved issues in the NTD field. An innovation in clinical management has come from the demonstration that closure of open spina bifida lesions in utero can diminish neurological dysfunction in children. Primary prevention by folic acid has been enhanced through introduction of mandatory food fortification in some countries, although not yet in UK. Genetic predisposition comprises the majority of NTD risk, and genes that regulate folate one-carbon metabolism and planar cell polarity have been strongly implicated. The sequence of human neural tube closure events remains controversial, but study of mouse NTD models shows that anencephaly, open spina bifida and craniorachischisis result from failure of primary neurulation, while skin-covered spinal dysraphism results from defective secondary neurulation. Other ‘NTD’ malformations, such as encephalocele, are likely to be post-neurulation disorders. PMID:23790957

  12. Birth Defects in the Newborn Population: Race and Ethnicity

    Directory of Open Access Journals (Sweden)

    Alexander C. Egbe

    2015-06-01

    Conclusion: This is a comprehensive description of racial differences in the risk of birth defects in the United States. Observed racial differences in the risk of birth defects may be related to genetic susceptibilities, to cultural or social differences that could modify exposures, or to the many potential combinations between susceptibilities and exposures.

  13. Reconstruction of Defects After Fournier Gangrene: A Systematic Review.

    Science.gov (United States)

    Karian, Laurel S; Chung, Stella Y; Lee, Edward S

    2015-01-01

    Reconstruction of scrotal defects after Fournier gangrene is often achieved with skin grafts or flaps, but there is no general consensus on the best method of reconstruction or how to approach the exposed testicle. We systematically reviewed the literature addressing methods of reconstruction of Fournier defects after debridement. PubMed and Cochrane databases were searched from 1950 to 2013. Inclusion criteria were reconstruction for Fournier defects, patients 18 to 90 years old, and reconstructive complication rates reported as whole numbers or percentages. Exclusion criteria were studies focused on methods of debridement or other phases of care rather than reconstruction, studies with fewer than 5 male patients with Fournier defects, literature reviews, and articles not in English. The initial search yielded 982 studies, which was refined to 16 studies with a total pool of 425 patients. There were 25 (5.9%) patients with defects that healed by secondary intention, 44 (10.4%) with delayed primary closure, 36 (8.5%) with implantation of the testicle in a medial thigh pocket, 6 (1.4%) with loose wound approximation, 96 (22.6%) with skin grafts, 68 (16.0%) with scrotal advancement flaps, 128 (30.1%) with flaps, and 22 (5.2%) with flaps or skin grafts in combination with tissue adhesives. Four outcomes were evaluated: number of patients, defect size, method of reconstruction, and wound-healing complications. Most reconstructive techniques provide reliable coverage and protection of testicular function with an acceptable cosmetic result. There is no conclusive evidence to support flap coverage of exposed testes rather than skin graft. A reconstructive algorithm is proposed. Skin grafting or flap reconstruction is recommended for defects larger than 50% of the scrotum or extending beyond the scrotum, whereas scrotal advancement flap reconstruction or healing by secondary intention is best for defects confined to less than 50% of the scrotum that cannot be closed

  14. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  15. A study on the healing process of bone defect-examination of healing stages of bone defect in the irradiated mandibular rim by microradiography and autoradiography

    International Nuclear Information System (INIS)

    Shimoyama, Tetsuo

    1980-01-01

    The mandibular rim of 150 female Donryu strain rats was exposed to 2000 rads (B group) or to 3000 rads (C group), and a bone defect of 1 x 1 x 2 mm in size was formed in the madibular rim. Cure process of this bone defect was observed periodically by microradiography and autoradiography using 45 Ca as a tracer, compared with that in the control group (A group, non-irradiated). Irradiated rats having bone defects recovered smoothly. Microradiographic findings of the A group showed that new bone was formed on the surface of the perosteum of the mandible on the 7th days after the irradiation. Bone defects in all rats were repaired completely by the 49th days after the irradiation. Microradiographic findings of the B and C groups showed that new bone was formed on the tongue side surface of the periosteum of the mandible in the early stage after the irradiation. However, after that, osteogenesis became slower, and the edge of bone defects or a part of the mandible became smaller. Bone defects were not repaired and became larger. These findings were more marked in the C group than in the B group. Autoradiographic findings showed marked uptake of 45 Ca into new bone in the A group. Rats of which bone defects were repaired showed the uptake of 45 Ca in accordance with the shape of the mandibular rim. The edge of bone defect of the B and C groups where new bone was not formed was destroyed since the 14th day after the irradiation. There were some cases in which the uptake of 45 Ca into the surface of the periosteum of the mandible near bone defect was observed even when bone defect was enlarged. (Tsunoda, M.)

  16. Atomic Defects and Doping of Monolayer NbSe2.

    Science.gov (United States)

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J P; Lawlor, Sean; Sanchez, Ana M; Sloan, Jeremy; Gorbachev, Roman V; Grigorieva, Irina V; Krasheninnikov, Arkady V; Haigh, Sarah J

    2017-03-28

    We have investigated the structure of atomic defects within monolayer NbSe 2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe 2 lattice stabilizing Se divacancies. We further observe evidence of Pt substitution into both Se and Nb vacancy sites. This knowledge of the character and relative frequency of different atomic defects provides the potential to better understand and control the unusual electronic and magnetic properties of this exciting two-dimensional material.

  17. Lithography-based automation in the design of program defect masks

    Science.gov (United States)

    Vakanas, George P.; Munir, Saghir; Tejnil, Edita; Bald, Daniel J.; Nagpal, Rajesh

    2004-05-01

    In this work, we are reporting on a lithography-based methodology and automation in the design of Program Defect masks (PDM"s). Leading edge technology masks have ever-shrinking primary features and more pronounced model-based secondary features such as optical proximity corrections (OPC), sub-resolution assist features (SRAF"s) and phase-shifted mask (PSM) structures. In order to define defect disposition specifications for critical layers of a technology node, experience alone in deciding worst-case scenarios for the placement of program defects is necessary but may not be sufficient. MEEF calculations initiated from layout pattern data and their integration in a PDM layout flow provide a natural approach for improvements, relevance and accuracy in the placement of programmed defects. This methodology provides closed-loop feedback between layout and hard defect disposition specifications, thereby minimizing engineering test restarts, improving quality and reducing cost of high-end masks. Apart from SEMI and industry standards, best-known methods (BKM"s) in integrated lithographically-based layout methodologies and automation specific to PDM"s are scarce. The contribution of this paper lies in the implementation of Design-For-Test (DFT) principles to a synergistic interaction of CAD Layout and Aerial Image Simulator to drive layout improvements, highlight layout-to-fracture interactions and output accurate program defect placement coordinates to be used by tools in the mask shop.

  18. Inspection of surface defects for cladding tube with laser

    International Nuclear Information System (INIS)

    Senoo, Shigeo; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    This paper presents the results of experiment on mechanizing the visual inspection of surface defects of cladding tubes and improving the reliability of surface defect inspection. Laser spot inspection method was adopted for this purpose. Since laser speckle pattern includes many informations about surface aspects, the method can be utilized as an effective means for detection or classification of the surface defects. Laser beam is focussed on cladding tube surfaces, and the reflected laser beam forms typical stellar speckle patterns on a screen. Sample cladding tubes are driven in longitudinal direction, and a photo-detector is placed at a position where secondary reflection will fall on the detector. Reflected laser beam from defect-free surfaces shows uniform distribution on the detector. When the incident focussed laser beam is directed to defects, the intensity of the reflected light is reduced. In the second method, laser beam is scanned by a rotating cube mirror. As the results of experiment, the typical patterns caused by defects were observed. It is clear that reflection patterns change with the kinds of defects. The sensitivity of defect detection decreases with the increase in laser beam diameter. Surface defect detection by intensity change was also tested. (Kato, T.)

  19. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...... the trapped state iri the defect. The annihilation characteristics (e.g., the lifetime of the positron) can be measured and provide information about the nature of the defect (e.g., size, density, morphology). The technique is sensitive to both defect size (in the range from monovacancies up to cavities...

  20. The Boomerang-shaped Pectoralis Major Musculocutaneous Flap for Reconstruction of Circular Defect of Cervical Skin

    Directory of Open Access Journals (Sweden)

    Shuchi Azuma, MD

    2017-11-01

    Full Text Available Summary:. We report on a patient with a recurrence of oral cancer involving a cervical lymph node. The patient’s postexcision cervical skin defect was nearly circular in shape, and the size was about 12 cm in diameter. The defect was successfully reconstructed with a boomerang-shaped pectoralis major musculocutaneous flap whose skin paddle included multiple intercostal perforators of the internal mammary vessels. This flap design is effective for reconstructing an extensive neck skin defect and enables primary closure of the donor site with minimal deformity.

  1. Defect modelling

    International Nuclear Information System (INIS)

    Norgett, M.J.

    1980-01-01

    Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)

  2. In-Situ Photoexcitation-Induced Suppression of Point Defect Generation in Ion Implanted Silicon

    International Nuclear Information System (INIS)

    Cho, C.R.; Rozgonyi, G.A.; Yarykin, N.; Zuhr, R.A.

    1999-01-01

    The formation of vacancy-related defects in n-type silicon has been studied immediately after implantation of He, Si, or Ge ions at 85 K using in-situ DLTS. A-center concentrations in He-implanted samples reach a maximum immediately after implantation, whereas, with Si or Ge ion implanted samples they continuously increase during subsequent anneals. It is proposed that defect clusters, which emit vacancies during anneals, are generated in the collision cascades of Si or Ge ions. An illumination-induced suppression of A-center formation is seen immediately after implantation of He ions at 85 K. This effect is also observed with Si or Ge ions, but only after annealing. The suppression of vacancy complex formation via photoexcitation is believed to occur due to an enhanced recombination of defects during ion implantation, and results in reduced number of vacancies remaining in the defect clusters. In p-type silicon, a reduction in K-center formation and an enhanced migration of defects are concurrently observed in the illuminated sample implanted with Si ions. These observations are consistent with a model where the injection of excess carriers modifies the defect charge state and impacts their diffusion

  3. Radiation defects in lithium fluoride induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, C.; Schwartz, K.; Steckenreiter, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Costantini, J.M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France). DPTA/SPMC; Toulemonde, M. [Centre Interdisciplinaire de Recherches avec les Ions Lourds (CIRIL), 14 - Caen (France)

    1998-07-01

    Single crystals of lithium fluoride were irradiated with various species of heavy ions in the energy regime between 1 and 30 MeV/u. The induced radiation damage was studied with techniques such as optical absorption spectroscopy, small-angle x-ray scattering, chemical etching and profilometry, complemented by annealing experiments. Clear evidence is given for a complex track structure and defect morphology. Single defects such as F-centers are produced in a large halo of several tens of nanometers around the ion trajectory. The defect creation in this zone is similar to that under conventional radiation. For heavy ions above a critical energy loss of 10 keV/nm, new effects occur within a very small core region of 2-4 nm in diameter. The damage in this zone is responsible for chemical etching and for a characteristic anisotropic x-ray scattering. It is assumed that in this core, complex defect aggregates (e.g., cluster of color centers, molecular anions and vacancies) are created. Their formation is only slightly influenced by the irradiation temperature and takes place even at 15 K where diffusion processes of primary defects are frozen. Furthermore, irradiation with heavy ions leads to pronounced swelling effects which can be related to an intermediate zone of around 10 nm around the ion path. (orig.) 40 refs.

  4. Defects in silicon carbide grown by fluorinated chemical vapor deposition chemistry

    Science.gov (United States)

    Stenberg, Pontus; Booker, Ian D.; Karhu, Robin; Pedersen, Henrik; Janzén, Erik; Ivanov, Ivan G.

    2018-04-01

    Point defects in n- and p-type 4H-SiC grown by fluorinated chemical vapor deposition (CVD) have been characterized optically by photoluminescence (PL) and electrically by deep-level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). The results are considered in comparison with defects observed in non-fluorinated CVD growth (e.g., using SiH4 instead of SiF4 as silicon precursor), in order to investigate whether specific fluorine-related defects form during the fluorinated CVD growth, which might prohibit the use of fluorinated chemistry for device-manufacturing purposes. Several new peaks identifying new defects appear in the PL of fluorinated-grown samples, which are not commonly observed neither in other halogenated chemistries, nor in the standard CVD chemistry using silane (SiH4). However, further investigation is needed in order to determine their origin and whether they are related to incorporation of F in the SiC lattice, or not. The electric characterization does not find any new electrically-active defects that can be related to F incorporation. Thus, we find no point defects prohibiting the use of fluorinated chemistry for device-making purposes.

  5. Observations of infection prevention and control practices in primary health care, Kenya.

    Science.gov (United States)

    Bedoya, Guadalupe; Dolinger, Amy; Rogo, Khama; Mwaura, Njeri; Wafula, Francis; Coarasa, Jorge; Goicoechea, Ana; Das, Jishnu

    2017-07-01

    To assess compliance with infection prevention and control practices in primary health care in Kenya. We used an observational, patient-tracking tool to assess compliance with infection prevention and control practices by 1680 health-care workers during outpatient interactions with 14 328 patients at 935 health-care facilities in 2015. Compliance was assessed in five domains: hand hygiene; protective glove use; injections and blood sampling; disinfection of reusable equipment; and waste segregation. We calculated compliance by dividing the number of correct actions performed by the number of indications and evaluated associations between compliance and the health-care worker's and facility's characteristics. Across 106 464 observed indications for an infection prevention and control practice, the mean compliance was 0.318 (95% confidence interval, CI: 0.315 to 0.321). The compliance ranged from 0.023 (95% CI: 0.021 to 0.024) for hand hygiene to 0.871 (95% CI: 0.866 to 0.876) for injection and blood sampling safety. Compliance was weakly associated with the facility's characteristics (e.g. public or private, or level of specialization) and the health-care worker's knowledge of, and training in, infection prevention and control practices. The observational tool was effective for assessing compliance with infection prevention and control practices across multiple domains in primary health care in a low-income country. Compliance varied widely across infection prevention and control domains. The weak associations observed between compliance and the characteristics of health-care workers and facilities, such as knowledge and the availability of supplies, suggest that a broader focus on behavioural change is required.

  6. Chest Radiographic Findings in Primary Pulmonary Tuberculosis: Observations from High School Outbreaks

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Won Jung; Kwon, O Jung; Lee, Kyung Soo [Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Jeong, Yeon Joo [Pusan National University School of Medicine, Pusan National University Hospital, Busan (Korea, Republic of); Kim, Hee Jin; Lew, Woo Jin [Korean Institute of Tuberculosis, Seoul (Korea, Republic of); Cho, En Hi [4Korea Centers for Disease Control and Prevention, Seoul (Korea, Republic of)

    2010-12-15

    To describe the radiographic findings of primary pulmonary tuberculosis (TB) in previously healthy adolescent patients. The Institutional Review Board approved this retrospective study, with a waiver of informed consent from the patients. TB outbreaks occurred in 15 senior high schools and chest radiographs from 58 students with identical strains of TB were analyzed by restriction fragment length polymorphism analysis by two independent observers. Lesions of nodule(s), consolidation, or cavitation in the upper lung zones were classified as typical TB. Mediastinal lymph node enlargement; lesions of nodule(s), consolidation, or cavitation in lower lung zones; or pleural effusion were classified as atypical TB. Inter-observer agreement for the presence of each radiographic finding was examined by kappa statistics. Of 58 patients, three (5%) had normal chest radiographs. Cavitary lesions were present in 25 (45%) of 55 students. Lesions with upper lung zone predominance were observed in 27 (49%) patients, whereas lower lung zone predominance was noted in 18 (33%) patients. The remaining 10 (18%) patients had lesions in both upper and lower lung zones. Pleural effusion was not observed in any patient, nor was the mediastinal lymph node enlargement. Hilar lymph node enlargement was seen in only one (2%) patient. Overall, 37 (67%) students had the typical form of TB, whereas 18 (33%) had TB lesions of the atypical form. The most common radiographic findings in primary pulmonary TB by recent infection in previously healthy adolescents are upper lung lesions, which were thought to be radiographic findings of reactivation pulmonary TB by remote infection

  7. Osterix-Cre transgene causes craniofacial bone development defect

    Science.gov (United States)

    Wang, Li; Mishina, Yuji; Liu, Fei

    2015-01-01

    The Cre/loxP system has been widely used to generate tissue-specific gene knockout mice. Inducible (Tet-off) Osx-GFP::Cre (Osx-Cre) mouse line that targets osteoblasts is widely used in the bone research field. In this study, we investigated the effect of Osx-Cre on craniofacial bone development. We found that newborn Osx-Cre mice showed severe hypomineralization in parietal, frontal, and nasal bones as well as the coronal sutural area when compared to control mice. As the mice matured the intramembranous bone hypomineralization phenotype became less severe. The major hypomineralization defect in parietal, frontal, and nasal bones had mostly disappeared by postnatal day 21, but the defect in sutural areas persisted. Importantly, Doxycycline treatment eliminated cranial bone defects at birth which indicates that Cre expression may be responsible for the phenotype. In addition, we showed that the primary calvarial osteoblasts isolated from neonatal Osx-Cre mice had comparable differentiation ability compared to their littermate controls. This study reinforces the idea that Cre positive litter mates are indispensable controls in studies using conditional gene deletion. PMID:25550101

  8. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  9. Role of the bond defect for structural transformations between crystalline and amorphous silicon: A molecular-dynamics study

    International Nuclear Information System (INIS)

    Stock, D. M.; Weber, B.; Gaertner, K.

    2000-01-01

    The relation between the bond defect, which is a topological defect, and structural transformations between crystalline and amorphous silicon, is studied by molecular-dynamics simulations. The investigation of 1-keV boron implantation into crystalline silicon proves that the bond defect can also be generated directly by collisional-induced bond switching in addition to its formation by incomplete recombination of primary defects. This supports the assumption that the bond defect may play an important role in the amorphization process of silicon by light ions. The analysis of the interface between (001) silicon and amorphous silicon shows that there are two typical defect configurations at the interface which result from two different orientations of the bond defect with respect to the interface. Thus the bond defect appears to be a characteristic structural feature of the interface. Moreover, annealing results indicate that the bond defect acts as a growth site for interface-mediated crystallization

  10. New fundamental defects in a-SiO2

    International Nuclear Information System (INIS)

    Karna, S.P.; Kurtz, H.A.; Shedd, W.M.; Pugh, R.D.; Singaraju, B.K.

    1999-01-01

    Throughout the three decades of research into radiation-induced degradation of metal-oxide-semiconductor (MOS) devices, investigators understood that point defects in the Si-SiO 2 structure (localized deviations from stoichiometrically pure Si and SiO 2 ) are responsible for many observed anomalies. Basic research in this area has progressed along two tracks: (i) differentiating the anomalies based upon subtle differences in their characteristic behavior, and (ii) precise description of the defects responsible for the anomalous behavior. These two research tracks are complementary since often a discovery in one area provides insight and ultimately leads to discoveries in the other. Here, the atomic structure and spin properties of two previously undescribed amorphous silicon dioxide fundamental point defects have been characterized for the first time by ab initio quantum mechanical calculations. Both defects are electrically neutral trivalent silicon centers in the oxide. One of the defects, the X-center, is determined to have an O 2 Sitriple b ondSi ↑ atomic structure. The other defect, called the Y-center, is found to have an OSi 2 triple b ondSi ↑ structure. Calculated electronic and electrical properties of the new defect centers are consistent with the published characteristics of the oxide switching trap or border trap precursors

  11. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Lee, Y H; Cho, O K; Park, C Y [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  12. Benign gastric filling defect

    International Nuclear Information System (INIS)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y.

    1979-01-01

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  13. Benign gastric filling defect

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. K.; Lee, Y. H.; Cho, O. K.; Park, C. Y. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1979-06-15

    The gastric lesion is a common source of complaints to Orientals, however, evaluation of gastric symptoms and laboratory examination offer little specific aid in the diagnosis of gastric diseases. Thus roentgenography of gastrointestinal tract is one of the most reliable method for detail diagnosis. On double contract study of stomach, gastric filling defect is mostly caused by malignant gastric cancer, however, other benign lesions can cause similar pictures which can be successfully treated by surgery. 66 cases of benign causes of gastric filling defect were analyzed at this point of view, which was verified pathologically by endoscope or surgery during recent 7 years in Yensei University College of Medicine, Severance Hospital. The characteristic radiological picture of each disease was discussed for precise radiologic diagnosis. 1. Of total 66 cases, there were 52 cases of benign gastric tumor 10 cases of gastric varices, 5 cases of gastric bezoar, 5 cases of corrosive gastritis, 3 cases of granulomatous disease and one case of gastric hematoma. 2. The most frequent causes of benign tumors were adenomatous polyp (35/42) and the next was leiomyoma (4/42). Others were one of case of carcinoid, neurofibroma and cyst. 3. Characteristic of benign adenomatous polyp were relatively small in size, smooth surface and were observed that large size, benign polyp was frequently type IV lesion with a stalk. 4. Submucosal tumors such as leiomyoma needed differential diagnosis with polypoid malignant cancer. However, the characteristic points of differentiation was well circumscribed smooth margined filling defect without definite mucosal destruction on surface. 5. Gastric varices showed multiple lobulated filling defected especially on gastric fundus that changed its size and shape by respiration and posture of patients. Same varices lesions on esophagus and history of liver disease were helpful for easier diagnosis. 6. Gastric bezoar showed well defined movable mass

  14. Primary Mural Endocarditis Without Valvular Involvement.

    Science.gov (United States)

    Tahara, Mai; Nagai, Tomoo; Takase, Yoshiyuki; Takiguchi, Shunichi; Tanaka, Yoshiaki; Kunihara, Takashi; Arakawa, Junko; Nakaya, Kazuhiro; Hamabe, Akira; Gatate, Youdou; Kujiraoka, Takehiko; Tabata, Hirotsugu; Katsushika, Shuichi

    2017-03-01

    Primary mural endocarditis is an extremely rare infection in which nonvalvular endocardial involvement is seen without any cardiac structural abnormalities such as ventricular septal defects. The rapid and precise diagnosis of this disease remains challenging. We present 2 cases (67- and 47-year-old male patients) of pathologically confirmed primary mural endocarditis that could have been detected by initial transthoracic echocardiography in the emergency department. Transthoracic echocardiography and transesophageal echocardiography play critical roles in the early recognition and confirmation of primary mural endocarditis. © 2017 by the American Institute of Ultrasound in Medicine.

  15. Mechanisms of Mitochondrial Defects in Gulf War Syndrome

    Science.gov (United States)

    2011-08-01

    alanine. Additional abnormalities included a small fiber neuropathy in 35% (7/20) and cerebral folate defects. Cerebral folate deficiency (CFD) is...CoA ligase, ADP-forming, beta subunit (SUCLA2), Thymidine kinase 2, mitochondrial ( TK2 ), Thymidine phosphorylase (TYMP) may harbor mutations or that...syndrome patients have tissue deficiencies in CoQ10. This abnormality is observed in GWS patients. This defect can be treated with high levels of coenzyme

  16. Effects of parathyroidectomy versus observation on the development of vertebral fractures in mild primary hyperparathyroidism

    DEFF Research Database (Denmark)

    Lundstam, Karolina; Heck, Ansgar; Mollerup, Charlotte

    2015-01-01

    CONTEXT: Mild primary hyperparathyroidism (PHPT) is a common disease especially in middle-aged and elderly women. The diagnosis is frequently made incidentally and treatment strategies are widely discussed. OBJECTIVE: To study the effect of parathyroidectomy (PTX) compared with observation (OBS...... compartments (P treatment effect of surgery compared to observation (P

  17. Nucleic acid-based approaches to investigate microbial-related cheese quality defects

    Directory of Open Access Journals (Sweden)

    Daniel eO Sullivan

    2013-01-01

    Full Text Available AbstractThe microbial profile of cheese is a primary determinant of cheese quality. Microorganisms can contribute to aroma and taste defects, form biogenic amines, cause gas and secondary fermentation defects, and can contribute to cheese pinking and mineral deposition issues. These defects may be as a result of seasonality and the variability in the composition of the milk supplied, variations in cheese processing parameters, as well as the nature and number of the non-starter microorganisms which come from the milk or other environmental sources. Such defects can be responsible for production and product recall costs and thus represent a significant economic burden for the dairy industry worldwide. Traditional non-molecular approaches are often considered biased and have inherently slow turnaround times. Molecular techniques can provide early and rapid detection of defects that result from the presence of specific spoilage microbes and, ultimately, assist in enhancing cheese quality and reducing costs. Here we review the DNA-based methods that are available to detect/quantify spoilage bacteria, and relevant metabolic pathways, in cheeses and, in the process, highlight how these strategies can be employed to improve cheese quality and reduce the associated economic burden on cheese processors.

  18. Characterization of point defects in CdTe by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elsharkawy, M. R. M. [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt); Kanda, G. S.; Keeble, D. J., E-mail: d.j.keeble@dundee.ac.uk [Carnegie Laboratory of Physics, SUPA, School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Abdel-Hady, E. E. [Physics Department, Faculty of Science, Minia University, P.O. Box 61519, Minia (Egypt)

    2016-06-13

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  19. A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jung, Seung Ho; Jung, Hyun Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-10-15

    When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly

  20. Influence of defects on the thermal conductivity of compressed LiF

    Science.gov (United States)

    Jones, R. E.; Ward, D. K.

    2018-02-01

    Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.

  1. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  2. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  3. Closure of Myelomeningocele Defects Using a Limberg Flap or Direct Repair

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Shim

    2016-01-01

    Full Text Available BackgroundThe global prevalence of myelomeningocele has been reported to be 0.8–1 per 1,000 live births. Early closure of the defect is considered to be the standard of care. Various surgical methods have been reported, such as primary skin closure, local skin flaps, musculocutaneous flaps, and skin grafts. The aim of this study was to describe the clinical characteristics of myelomeningocele defects and present the surgical outcomes of recent cases of myelomeningocele at our institution.MethodsPatients who underwent surgical closure of myelomeningocele at our institution from January 2004 to December 2013 were included in this study. A retrospective chart review of their medical records was performed, and comorbidities, defect size, location, surgical procedures, complications, and the final results were analyzed.ResultsA total of 14 patients underwent surgical closure for myelomeningocele defects. Twelve cases were closed with direct skin repair, while two cases required local skin flaps to cover the skin defects. Three cases of infection occurred, requiring incision and either drainage or removal of allogenic materials. One case of partial flap necrosis occurred, requiring secondary revision using a rotational flap and a full-thickness skin graft. Despite these complications, all wounds eventually healed completely.ConclusionsMost myelomeningocele defects can be managed by direct skin repair alone. In cases of large defects, in which direct repair is not possible, local flaps may be used to cover the defect. Complications such as wound dehiscence and partial flap necrosis occurred in this study; however, all such complications were successfully managed with simple ancillary procedures.

  4. Topological defect clustering and plastic deformation mechanisms in functionalized graphene

    Science.gov (United States)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio

    2011-03-01

    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  5. Enamel hypoplasia in deciduous teeth of great apes: do differences in defect prevalence imply differential levels of physiological stress?

    Science.gov (United States)

    Lukacs, J R

    1999-11-01

    This paper presents new data on enamel hypoplasia in the deciduous canine teeth of great apes. The enamel defect under consideration is known as localized hypoplasia of primary canines (LHPC), and is characterized by an area of thin or missing enamel on the labial surface of deciduous canine teeth (Skinner [1986a] Am. J. Phys. Anthropol. 69:59-69). Goals of this study are: 1) to determine if significant differences in the frequency of LHPC occur among three genera of great apes, and 2) to evaluate variation in LHPC prevalence among great apes as evidence of differential physiological stress. Infant and juvenile apes with deciduous teeth were examined at the Cleveland Museum of Natural History (n = 100) and at the Smithsonian Institution, National Museum of Natural History (n = 36). Deciduous teeth were observed under oblique incandescent light, with the naked eye and with a 10x hand lens. Enamel hypoplasia was scored using Federation Dentaire International (FDI)-Defects of Dental Enamel (DDE) standards. Hypoplasias were recorded by drawing defect location and size on a dental chart, and by measuring defect size and location with Helios needlepoint dial calipers. The prevalence of LHPC is reported by genus and sex, using two approaches: 1) the frequency of affected individuals-those having one or more deciduous canine teeth scored positive for LHPC; and 2) the number of canine teeth scored positive for LHPC as a percentage of all canine teeth observed. Variation in defect size and location will be described elsewhere. Localized hypoplasia of primary canine teeth was found in 62.5% of 128 individual apes, and in 45.5% of 398 great ape deciduous canines. As in humans, LHPC is the most common form of enamel hypoplasia in deciduous teeth of great apes, while LEH is rare or absent. The distribution and pattern of expression of LHPC in great apes is similar to that described in humans: side differences are not significant, but mandibular canines exhibit the defect two to

  6. Band gap control in a line-defect magnonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Morozova, M. A., E-mail: mamorozovama@yandex.ru; Grishin, S. V.; Sadovnikov, A. V.; Romanenko, D. V.; Sharaevskii, Yu. P.; Nikitov, S. A. [Laboratory ' Metamaterials,' Saratov State University, Astrakhanskaya 83, Saratov 410012 (Russian Federation)

    2015-12-14

    We report on the experimental observation of the spin wave spectrum control in a line-defect magnonic crystal (MC) waveguide. We demonstrate the possibility to control the forbidden frequency band (band gap) for spin waves tuning the line-defect width. In particular, this frequency may be greater or lower than the one of 1D MC waveguide without line-defect. By means of space-resolved Brillouin light scattering technique, we study the localization of magnetization amplitude in the line-defect area. We show that the length of this localization region depends on the line-defect width. These results agree well with theoretical calculations of spin wave spectrum using the proposed model of two coupled magnonic crystal waveguides. The proposed simple geometry of MC with line-defect can be used as a logic and multiplexing block for application in the novel field of magnonic devices.

  7. Dirichlet topological defects

    International Nuclear Information System (INIS)

    Carroll, S.M.; Trodden, M.

    1998-01-01

    We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society

  8. Defect production in Ar irradiated graphene membranes under different initial applied strains

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Asencio, J., E-mail: jesusmartinez@ua.es [Dept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-036090 (Spain); Ruestes, C.J.; Bringa, E. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina); Caturla, M.J. [Dept. Física Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-036090 (Spain)

    2017-02-15

    Highlights: • Defects in graphene membranes are formed due to 140 eV Ar ions irradiation using MD. • Different initial strains are applied, which influence the type and number of defects. • Mono-vacancies, di-vacancies and tri-vacancies production behaves linearly with dose. • The total number of defects under compression is slightly higher than under tension. - Abstract: Irradiation with low energy Ar ions of graphene membranes gives rise to changes in the mechanical properties of this material. These changes have been associated to the production of defects, mostly isolated vacancies. However, the initial state of the graphene membrane can also affect its mechanical response. Using molecular dynamics simulations we have studied defect production in graphene membranes irradiated with 140 eV Ar ions up to a dose of 0.075 × 10{sup 14} ions/cm{sup 2} and different initial strains, from −0.25% (compressive strain) to 0.25% (tensile strain). For all strains, the number of defects increases linearly with dose with a defect production of about 80% (80 defects every 100 ions). Defects are mostly single vacancies and di-vacancies, although some higher order clusters are also observed. Two different types of di-vacancies have been identified, the most common one being two vacancies at first nearest neighbours distance. Differences in the total number of defects with the applied strain are observed which is related to the production of a higher number of di-vacancies under compressive strain compared to tensile strain. We attribute this effect to the larger out-of-plane deformations of compressed samples that could favor the production of defects in closer proximity to others.

  9. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex.

    Science.gov (United States)

    Lehner, Rea; Meesen, Raf; Wenderoth, Nicole

    2017-07-01

    Observing another person experiencing exogenously inflicted pain (e.g. by a sharp object penetrating a finger) modulates the excitability of the observer' primary motor cortex (M1). By contrast, far less is known about the response to endogenously evoked pain such as sudden back pain provoked by lifting a heavy object. Here, participants (n=26) observed the lifting of a heavy object. During this action the actor (1) flexed and extended the legs (LEG), (2) flexed and extended the back (BACK) or (3) flexed and extended the back which caused visible pain (BACKPAIN). Corticomotor excitability was measured by applying a single transcranial magnetic stimulation pulse to the M1 representation of the muscle erector spinae and participants scored their perception of the actor's pain on the numeric pain rating scale (NPRS). The participants scored vicarious pain as highest during the BACKPAIN condition and lowest during the LEG condition. MEP size was significantly lower for the LEG than the BACK and BACKPAIN condition. Although we found no statistical difference in the motor-evoked potential (MEP) size between the conditions BACK and BACKPAIN, there was a significant correlation between the difference in NPRS scores between the conditions BACKPAIN and BACK and the difference in MEP size between these conditions. Participants who believed the vicarious pain to be much stronger in the BACKPAIN than in the BACK condition also exhibited higher MEPs for the BACKPAIN than the BACK condition. Our results indicate that observing how others lift heavy objects facilitates motor representations of back muscles in the observer. Modulation occurs in a movement-specific manner and is additionally modulated by the extent to which the participants perceived the actor's pain. Our findings suggest that movement observation might be a promising paradigm to study the brain's response to back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Defect Characterization in Semiconductors with Positron Annihilation Spectroscopy

    Science.gov (United States)

    Tuomisto, Filip

    Positron annihilation spectroscopy is an experimental technique that allows the selective detection of vacancy defects in semiconductors, providing a means to both identify and quantify them. This chapter gives an introduction to the principles of the positron annihilation techniques and then discusses the physics of some interesting observations on vacancy defects related to growth and doping of semiconductors. Illustrative examples are selected from studies performed in silicon, III-nitrides, and ZnO.

  11. Studies on intrinsic defects related to Zn vacancy in ZnO nanoparticles

    International Nuclear Information System (INIS)

    Singh, V.P.; Das, D.; Rath, Chandana

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Williamson–Hall analysis of ZnO indicates strain in the lattice and size is of 20 nm. ► PL shows a broad emission peak in visible range due to native defects. ► Raman active modes corresponding to P6 3 mc and a few additional modes are observed. ► FTIR detects few local vibrational modes of hydrogen attached to zinc vacancies. ► V Zn -H and Zn + O divacancies are confirmed by PAS. -- Abstract: ZnO being a well known optoelectronic semiconductor, investigations related to the defects are very promising. In this report, we have attempted to detect the defects in ZnO nanoparticles synthesized by the conventional coprecipitation route using various spectroscopic techniques. The broad emission peak observed in photoluminescence spectrum and the non zero slope in Williamson–Hall analysis indicate the defects induced strain in the ZnO lattice. A few additional modes observed in Raman spectrum could be due to the breakdown of the translation symmetry of the lattice caused by defects and/or impurities. The presence of impurities can be ruled out as XRD pattern shows pure wurtzite structure. The presence of the vibrational band related to the Zn vacancies (V Zn ), unintentional hydrogen dopants and their complex defects confirm the defects in ZnO lattice. Positron life time components τ 1 and τ 2 additionally support V Zn attached to hydrogen and to a cluster of Zn and O di-vacancies respectively.

  12. Temperature dependence of radiation induced defect creation in a-SiO2

    International Nuclear Information System (INIS)

    Devine, R.A.B.; Grouillet, A.; Berlivet, J.Y.

    1988-01-01

    The efficiency of oxygen vacancy defect creation in samples of amorphous SiO 2 subjected to ultraviolet laser or ionizing particle radiation (energetic H + ions) has been measured as a function of sample temperature during irradiation. For the case of laser radiation (E photon ≅ 5 eV) we find that vacancy centers are only created when the irradiation temperature is above 150 K. The efficiency of peroxy radical defect creation observed after post irradiation annealing is consistent with the behaviour of the oxygen vacancy creation efficiency. In samples with energetic protons, the opposite behaviour is observed and one finds that defect creation is enhanced as the implantation temperature is lowered. Possible physical mechanisms controlling the defect creation efficiency as a function of sample temperature and radiation are discussed. (orig.)

  13. Micromagnetic simulation of exploratory magnetic logic device with missing corner defect

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokuo, E-mail: yangxk0123@163.com; Cai, Li; Zhang, Bin; Cui, Huanqing; Zhang, Mingliang

    2015-11-15

    Magnetic film nanostructures are attractive components of nonvolatile magnetoresistive memories and nanomagnet logic circuits. Recently, we studied switching properties (i.e., null logic preserving) of rectangle shape nanomagnet subjected to fabrication imperfections. Specifically, we presented typical missing corner material-related imperfections and adopted an isosceles triangle to model this defect for nanomagnets. Micromagnetic simulation shows that this kind of imperfections modeling method agrees well with previous experimental observations. Using the proposed defect modeling scheme, we investigate in detail the switching characteristics of different defective stand-alone and coupled nanomagnets. The results suggest that the state transition of defective nanomagnet element highly depends on defect type and device’s aspect ratio, and the defect type B{sub d} needs the largest coercive field, while the defect type D requires the largest null field for switching. These findings can provide key technical parameters and guides for nanomagnet logic circuit design. - Highlights: • We have modeled missing corner defect issue for nanomagnet logic device. • The logic state of defective NML element highly depends on defect type and AR. • The NML device with defect type B{sub d} needs the largest coercive field to reverse state. • The defect type D in the NML devices requires the largest null field to switch.

  14. Defect forces, defect couples and path integrals in fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1979-07-01

    In this work, it is shown that the path integrals can be introduced without any reference to the material behavior. The method is based on the definition in a continuous medium of a set of vectors and couples having the dimension of a force or a moment. More precisely, definitions are given of volume defect forces, surface defect forces, volume defect couples, and surface defect couples. This is done with the help of the stress working variation of a particule moving through the solid. The most important result is: the resultant of all the defect forces included in a volume V is the J integral on the surface surrounding V and the moment resultant is the L integral. So these integrals are defined without any assumption on the material constitutive equation. Another result is the material form of the virtual work principle - defect forces are acting like conventional forces in the conventional principles of virtual work. This lead to the introduction of the energy momentum tensor and of the associated couple stress. Application of this method is made to fracture mechanics in studying the defect forces distribution around a crack [fr

  15. Neutron cross sections for defect production by high-energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1983-08-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects

  16. Neutron cross sections for defect production by high energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1984-01-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after short-term annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after short-term annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects. (orig.)

  17. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  18. Physical models and codes for prediction of activity release from defective fuel rods under operation conditions and in leakage tests during refuelling

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Khoruzhii, O.; Sorokin, A.; Novikov, V.

    2003-01-01

    It is appropriate to use the dependences, based on physical models, in the design-analytical codes for improving of reliability of defective fuel rod detection and for determination of defect characteristics by activity measuring in the primary coolant. In the paper the results on development of some physical models and integral mechanistic codes, assigned for prediction of defective fuel rod behaviour are presented. The analysis of mass transfer and mass exchange between fuel rod and coolant showed that the rates of these processes depends on many factors, such as coolant turbulent flow, pressure, effective hydraulic diameter of defect, fuel rod geometric parameters. The models, which describe these dependences, have been created. The models of thermomechanical fuel behaviour, stable gaseous FP release were modified and new computer code RTOP-CA was created thereupon for description of defective fuel rod behaviour and activity release into the primary coolant. The model of fuel oxidation in in-pile conditions, which includes radiolysis and RTOP-LT after validation of physical models are planned to be used for prediction of defective fuel rods behaviour

  19. Investigation of Defects Origin in p-Type Si for Solar Applications

    Science.gov (United States)

    Gwóźdź, Katarzyna; Placzek-Popko, Ewa; Mikosza, Maciej; Zielony, Eunika; Pietruszka, Rafal; Kopalko, Krzysztof; Godlewski, Marek

    2017-07-01

    In order to improve the efficiency of a solar cell based on silicon, one must find a compromise between its price and crystalline quality. That is precisely why the knowledge of defects present in the material is of primary importance. This paper studies the defects in commercially available cheap Schottky titanium/gold silicon wafers. The electrical properties of the diodes were defined by using current-voltage and capacitance-voltage measurements. Low series resistance and ideality factor are proofs of the good quality of the sample. The concentration of the acceptors is in accordance with the manufacturer's specifications. Deep level transient spectroscopy measurements were used to identify the defects. Three hole traps were found with activation energies equal to 0.093 eV, 0.379 eV, and 0.535 eV. Comparing the values with the available literature, the defects were determined as connected to the presence of iron interstitials in the silicon. The quality of the silicon wafer seems good enough to use it as a substrate for the solar cell heterojunctions.

  20. Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries.

    Science.gov (United States)

    Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui

    2017-07-26

    Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.

  1. Study on surface defects in milling Inconel 718 super alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liu; Chengzu, Ren; Guofeng, Wang; Yinwei, Yang; Lu, Zhang [Tianjin University, Tianjin (China)

    2015-04-15

    Nickel-based alloys have been extensively used as critical components in aerospace industry, especially in the key section of aero engine. In general, these sections are manufactured by milling process because most of them have complex forms. However, surface defects appear frequently in milling due to periodic impact force, which leads to the deterioration of the fatigue life. We conducted milling experiments under different cutting conditions and found that four kinds of defects, i.e., tear, cavity, build up edge (BUE) and groove, commonly appear on the machined surface. Based on the observed results, the morphology and generation regime of these defects are analyzed and the carbide particle cracking is discussed to explain the appearance of the nickel alloy defects. To study the effect of the cutting parameters on the severity of these surface defects, two qualitative indicators, which are named as average number of the defects per field and average area ratio of the defects per field, are presented and the influence laws are summarized based on the results correspondingly. This study is helpful for understanding the generation mechanism of the surface defects during milling process of nickel based super alloy.

  2. Model of defect reactions and the influence of clustering in pulse-neutron-irradiated Si

    International Nuclear Information System (INIS)

    Myers, S. M.; Cooper, P. J.; Wampler, W. R.

    2008-01-01

    Transient reactions among irradiation defects, dopants, impurities, and carriers in pulse-neutron-irradiated Si were modeled taking into account the clustering of the primal defects in recoil cascades. Continuum equations describing the diffusion, field drift, and reactions of relevant species were numerically solved for a submicrometer spherical volume, within which the starting radial distributions of defects could be varied in accord with the degree of clustering. The radial profiles corresponding to neutron irradiation were chosen through pair-correlation-function analysis of vacancy and interstitial distributions obtained from the binary-collision code MARLOWE, using a spectrum of primary recoil energies computed for a fast-burst fission reactor. Model predictions of transient behavior were compared with a variety of experimental results from irradiated bulk Si, solar cells, and bipolar-junction transistors. The influence of defect clustering during neutron bombardment was further distinguished through contrast with electron irradiation, where the primal point defects are more uniformly dispersed

  3. In-situ observation of the energy dependence of defect production in Cu and Ni

    International Nuclear Information System (INIS)

    King, W.E.; Merkel, K.L.; Baily, A.C.; Haga, K.; Meshii, M.

    1983-01-01

    The damage function, the average number of Frenkel pairs created as a function of lattice atom recoil energy, was investigated in Cu and Ni using in-situ electrical-resistivity damage-rate measurements in the high-voltage electron micrscope (HVEM) at T < 10K. Electron and proton irradiations were performed in-situ on the same polycrystalline specimens using the Argonne National Laboratory HVEM-Ion Beam Interface. Both Ni and Cu exhibit a sharp rise in the damage function above the minimum threshold energy (approx. 18 eV for Cu and approx. 20 eV for Ni) as displacements in the low-threshold energy regions of the threshold energy surface become possible. A plateau is observed for both materials (0.54 Frenkel pairs for Cu and 0.46 Frenkel pairs for Ni) indicating that no further directions become productive until much higher recoil energies. These damage functions show strong deviations from simple theoretical models, such as the Modified Kinchin-Pease damage function. The results are discussed in terms of the mechanisms of defect production that govern the single-displacement regime of the damage function and are compared with results from recent molecular-dynamics simulations

  4. Influence of Casting Defects on S- N Fatigue Behavior of Ni-Al Bronze

    Science.gov (United States)

    Sarkar, Aritra; Chakrabarti, Abhishek; Nagesha, A.; Saravanan, T.; Arunmuthu, K.; Sandhya, R.; Philip, John; Mathew, M. D.; Jayakumar, T.

    2015-02-01

    Nickel-aluminum bronze (NAB) alloys have been used extensively in marine applications such as propellers, couplings, pump casings, and pump impellers due to their good mechanical properties such as tensile strength, creep resistance, and corrosion resistance. However, there have been several instances of in-service failure of the alloy due to high cycle fatigue (HCF). The present paper aims at characterizing the casting defects in this alloy through X-ray radiography and X-ray computed tomography into distinct defect groups having particular defect size and location. HCF tests were carried out on each defect group of as-cast NAB at room temperature by varying the mean stress. A significant decrease in the HCF life was observed with an increase in the tensile mean stress, irrespective of the defect size. Further, a considerable drop in the HCF life was observed with an increase in the size of defects and proximity of the defects to the surface. However, the surface proximity indicated by location of the defect in the sample was seen to override the influence of defect size and maximum cyclic stress. This leads to huge scatter in S- N curve. For a detailed quantitative analysis of defect size and location, an empirical model is developed which was able to minimize the scatter to a significant extent. Further, a concept of critical distance is proposed, beyond which the defect would not have a deleterious consequence on the fatigue behavior. Such an approach was found to be suitable for generating S- N curves for cast NAB.

  5. Transition from Spirals to Defect-Mediated Turbulence Driven by a Doppler Instability

    International Nuclear Information System (INIS)

    Ouyang, Qi; Swinney, Harry L.; Li, Ge

    2000-01-01

    A transition from rotating chemical spirals to turbulence is observed in experiments on the Belousov-Zhabotinsky reaction. The transition occurs when the waves near the spiral tip spontaneously break, generating defects. Measurements reveal that this defect-mediated turbulence is caused by the Doppler effect on the traveling waves. The observations are in good accord with numerical simulations and theory. (c) 2000 The American Physical Society

  6. Defect engineering of the electronic transport through cuprous oxide interlayers

    KAUST Repository

    Fadlallah, Mohamed M.

    2016-06-03

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  7. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  8. Defect analysis of NiMnSb epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Stonert, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, F. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France); Molenkamp, L.W. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Bach, P. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Schmidt, G. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, POB 510119, 01314 Dresden (Germany)

    2005-10-15

    NiMnSb layers grown on InP substrates with InGaAs buffer were studied by the backscattering/channeling spectrometry (RBS/C) with He beams. The nature of predominant defects observed in the layers was studied by determination of incident-energy dependence of the relative channeling yield. The defects are described as a combination of large amount of interstitial atoms and of stacking faults or grain boundaries. The presence of grains was confirmed by transmission electron microscopy.

  9. Exploring the multiverse with topological defects

    Science.gov (United States)

    Zhang, Jun

    Inflationary cosmology suggests a nontrivial spacetime structure on scales beyond our observable universe, the multiverse. Based on the observation that topological defects and vacuum bubbles can spontaneously nucleate in a de Sitter like inflating space, we explore two different aspects of the multiverse model in this thesis. Hence the main body of this study consists of two parts. In the first part, we investigate domain walls and cosmic strings that may nucleate in the false vacuum. If we live in a bubble universe surrounded by the false vacuum, as suggested by the eternal inflationary multiverse model, the nucleating defects could collide with our bubble universe, and leave potentially observable signals. We investigate different kinds of collisions and their consequences. We suggest such collisions generically result in signals such as radiation and gravitational waves or the defects themselves or a combination of both propagating into our bubble, and therefore provide a new approach to searching for the multiverse. In the second part, we study the fate of domain walls and vacuum bubbles that could nucleate in the slow roll inflation. We show that, depending on their sizes, these objects will form either black holes or wormholes after inflation. We study the spacetime structure of the resulting wormholes. Our analysis indicates the presence of domain walls and vacuum bubbles in the slow roll inflation has significant effects on the global structure of our universe, that is by forming wormholes, it can lead to the picture of a multiverse. We also calculate the mass spectrum of the resulting black holes and wormholes under certain assumptions. We argue that the observation of a population of black holes with such mass spectrum could be considered as evidence of the existence of both inflation and multiverse.

  10. Defects and their inspectability by UT in current heavy section steels for nuclear power plant

    International Nuclear Information System (INIS)

    Onodera, S.; Ohkubo, Y.; Takeya, M.; Wataya, M.

    1983-01-01

    The ultrasonic examination (UT, hereinafter) techniques and their equipment have been improved in search of the defects in steels and structures for nuclear power plant components, while the acceptance standards of the defects became continually more stringent in a ''sword and armour'' race. Consequently, the steel making technique had to respond in minimizing the possible defects in steels with successful results in the past two decades. The conventional UT procedures cover basically the following categories of function. 1) Detection and location of defects. 2) Sizing of defects. 3) Characterization of defects. 4) Structure and residual stress effects in ultrasonic field. With proper considerations to the configuration of the steels under examination, the inspectability of the possible defects is further to be optimized. However, the final evaluation has often to be left to the discretion of a competent NDE engineer, well experienced in UT and knowledgeable in steel making. It is therefore the intention of the present paper to review the states-of-the-art of the defects found in the current heavy section steels for primary and secondary components of nuclear power plant, manufactured by the authors' plant. Typical defects, detectable size of them and inspectability of them are discussed

  11. Contribution to the study of defect quenching in gold

    International Nuclear Information System (INIS)

    Hillairet, J.; Delaplace, J.; Mairy, C.; Adda, Y.

    1964-01-01

    We have studied by resistivity measurements at low temperatures the influence of quenching conditions on the behaviour of defects in gold. We have quenched from a high temperature and in various liquids gold wires of 0.3 and 0.5 mm diameter having a purity of 99.999 per cent. For cooling rates of 25,000 deg C/second and above all the defects in equilibrium at high temperature are retained by quenching. The annealing of the defects thus obtained occurs in two stages, the first below 150 deg C and the second between 450 and 650 deg C. The mobility energy of the defects which are annealed during the first stage is 0.70 ± 0.06 eV, The annealing kinetics depend on the initial concentration of the defects and of the diameter of the sample. The second stage corresponds to disappearance of the stacking fault tetrahedra which are formed from defect packets during annealing. The formation energy of the defects measured on the 0. 5 mm samples is 0.94 eV. The values obtained with 0,3 mm diameter samples, much lower than 0.94 eV, can be explained by assuming that packets of defects occur at the end of the annealing of the samples. Electron microscope observations have been carried out on strips of annealed gold. (authors) [fr

  12. Freely-migrating-defect production during irradiation at elevated temperatures

    Science.gov (United States)

    Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.

    1988-12-01

    Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.

  13. Microsurgical reconstruction of large nerve defects using autologous nerve grafts.

    Science.gov (United States)

    Daoutis, N K; Gerostathopoulos, N E; Efstathopoulos, D G; Misitizis, D P; Bouchlis, G N; Anagnostou, S K

    1994-01-01

    Between 1986 and 1993, 643 patients with peripheral nerve trauma were treated in our clinic. Primary neurorraphy was performed in 431 of these patients and nerve grafting in 212 patients. We present the functional results after nerve grafting in 93 patients with large nerve defects who were followed for more than 2 years. Evaluation of function was based on the Medical Research Council (MRC) classification for motor and sensory recovery. Factors affecting functional outcome, such as age of the patient, denervation time, length of the defect, and level of the injury were noted. Good results according to the MRC classification were obtained in the majority of cases, although function remained less than that of the uninjured side.

  14. Anisotropic Magnus Force in Type-II Superconductors with Planar Defects

    Science.gov (United States)

    Monroy, Ricardo Vega; Gomez, Eliceo Cortés

    2015-02-01

    The effect of planar defects on the Magnus force in type-II superconductors is studied. It is shown that the deformation of the vortex due to the presence of a planar defect leads to a local decrease in the mean free path of electrons in the vortex. This effect reduces the effective Magnus coefficient in normal direction to the planar defect, leading to an anisotropic regime of the Hall effect. The presented developments here can qualitatively explain experimental observations of the anisotropic Hall effect in high- T c superconductors in the mixed state.

  15. Primary and secondary patient data in contrast: the use of observational studies like RABBIT.

    Science.gov (United States)

    Richter, Adrian; Meißner, Yvette; Strangfeld, Anja; Zink, Angela

    2016-01-01

    The study of secondary patient data, particularly represented by claims data, has increased in recent years. The strength of this approach involves easy access to data that have been generated for administrative purposes. By contrast, collection of primary data for research is time-consuming and may therefore appear outdated. Both administrative data and data collected prospectively in clinical care can address similar research questions concerning effectiveness and safety of treatments. Therefore, why should we invest the precious time of rheumatologists to generate primary patient data? This article will outline some features of primary patient data collection illustrated by the German biologics register RABBIT (Rheumatoid arthritis: observation of biologic therapy). RABBIT is a long-term observational cohort study that was initiated more than 15 years ago. We will discuss as quality indicators: (i) study design, (ii) type of documentation, standardisation of (iii) clinical and (iv) safety data, (v) monitoring of the longitudinal follow-up, (vi) losses to follow-up as well as (vii) the possibilities to link the data base. The impact of these features on interpretation and validity of results is illustrated using recent publications. We conclude that high quality and completeness of data prospectively-collected offers many advantages over large quantities of non-standardised data collected in an unsupervised manner. We expect the enthusiasm about the use of secondary patient data to decline with more awareness of their methodological limitations while studies with primary patient data like RABBIT will maintain and broaden their impact on daily clinical practice.

  16. Vacancy-related defect distributions in 11B-, 14N-, and 27Al-implanted 4H-SiC: Role of channeling

    International Nuclear Information System (INIS)

    Janson, M.S.; Slotte, J.; Kuznetsov, A.Yu.; Saarinen, K.; Hallen, A.

    2004-01-01

    The defect distributions in 11 B-, 14 N-, and 27 Al-implanted epitaxial 4H-SiC are studied using monoenergetic positron beams. At least three types of defects are needed to account for the Doppler broadening annihilation spectra and two of the defects are tentatively identified as V Si , and V Si V C . By comparing the defect profiles extracted from the annihilation spectra to the chemical profiles determined by secondary ion mass spectrometry, and to the primary defect profiles obtained from binary collision approximation simulations, it is concluded that the defects found at depths considerably deeper than the projected range of the implanted ions mainly originate from deeply channeled ions

  17. Copper implantation defects in MgO observed by positron beam analysis, RBS and X-TEM

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Smulders, P.J.M.; Kooi, B.J.; Hosson, J.Th.M. de

    2000-01-01

    In this work, effects of copper ion implantation in MgO were studied. (1 0 0) MgO samples were implanted with 50 keV Cu ions and thermally annealed stepwise in air for 30 minutes at 550, 750, 1000, 1250 and 1350 K. After ion implantation and after each annealing step, the samples were analysed with positron beam analysis (PBA). Use was also made of Rutherford backscattering spectrometry/channeling (RBS-C) and cross-sectional transmission electron microscopy (X-TEM). The combination of these techniques enabled to monitor the depth resolved evolution of both created defects and the copper atom depth distribution. PBA results show that copper implantation at a dose of 10 15 ions cm -2 yields a single layer of vacancy type defects after annealing. However a copper implantation at a dose of 10 16 ions cm -2 clearly yields two layers of defects in the material after annealing, separated by an intermediate layer. In both layers nanocavities have been identified. RBS experimental results show that the implanted copper atoms diffuse into the bulk material during annealing. X-TEM and channeling results show that after annealing, the lattice of the copper nanoprecipitates is epitaxial to the MgO host lattice. Under some circumstances, copper precipitates and small voids can co-exist. Furthermore, X-TEM measurements show that the nanocavities have rectangular shapes

  18. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  19. Enhanced defects recombination in ion irradiated SiC

    International Nuclear Information System (INIS)

    Izzo, G.; Litrico, G.; Grassia, F.; Calcagno, L.; Foti, G.

    2010-01-01

    Point defects induced in SiC by ion irradiation show a recombination at temperatures as low as 320 K and this process is enhanced after running current density ranging from 80 to 120 A/cm 2 . Ion irradiation induces in SiC the formation of different defect levels and low-temperature annealing changes their concentration. Some levels (S 0 , S x and S 2 ) show a recombination and simultaneously a new level (S 1 ) is formed. An enhanced recombination of defects is besides observed after running current in the diode at room temperature. The carriers introduction reduces the S 2 trap concentration, while the remaining levels are not modified. The recombination is negligible up to a current density of 50 A/cm 2 and increases at higher current density. The enhanced recombination of the S 2 trap occurs at 300 K, which otherwise requires a 400 K annealing temperature. The process can be related to the electron-hole recombination at the associated defect.

  20. Atomic defects and doping of monolayer NbSe2

    OpenAIRE

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J.P.; Lawlor, Sean; Sanchez, Ana M.; Sloan, Jeremy; Gorbachev, Roman; Grigorieva, Irina; Krasheninnikov, Arkady V.; Haigh, Sarah

    2017-01-01

    We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reve...

  1. Regenerative wound healing in acute degree III mandibular defects in dogs.

    Science.gov (United States)

    Mardas, Nikos; Kraehenmann, Michael; Dard, Michel

    2012-05-01

    To evaluate the healing events in degree III furcation defects in dogs following the application of the combination of an enamel matrix derivative with a biphasic calcium phosphate (Emdogain Plus). Seventeen degree III furcation defects, 5 mm high and 4 mm wide, were created in 9 dogs. In both groups, the defects were conditioned with EDTA. One defect was treated with Emdogain Plus (n = 9), while the contralateral defect serving as control remained empty (n = 8). The defects in both groups were fully covered by coronally repositioned flaps. After 5 months of healing, histologic and histometric analysis was preformed. A significant amount of new attachment and bone formation was observed in both control and test specimens. However, in a number of control specimens, ankylosis was also observed. In the control and test groups, respectively, the mean new cementum length was 10.8 ± 2.1 mm and 8.6 ± 3.2 mm; the mean periodontal ligament length was 7.6 ± 3.8 mm and 8.1 ± 4.0 mm. The mean new bone height was 4.4 ± 1.3 mm and 4.3 ± 1.6 mm in the control and test groups, respectively. No statistical differences were found between the two groups in terms of amount of cementum, periodontal ligament, and alveolar bone regeneration. The present study failed to show higher amounts of newly formed cementum and bone following treatment of acute degree III mandibular furcation defects following use of Emdogain Plus compared with a coronally advanced flap. Emdogain Plus seems to have a protective role against ankylosis in this type of defect.

  2. Dark matter from cosmic defects on galactic scales?

    International Nuclear Information System (INIS)

    Guerreiro, N.; Carvalho, J. P. M. de; Avelino, P. P.; Martins, C. J. A. P.

    2008-01-01

    We discuss the possible dynamical role of extended cosmic defects on galactic scales, specifically focusing on the possibility that they may provide the dark matter suggested by the classical problem of galactic rotation curves. We emphasize that the more standard defects (such as Goto-Nambu strings) are unsuitable for this task but show that more general models (such as transonic wiggly strings) could in principle have a better chance. In any case, we show that observational data severely restricts any such scenarios.

  3. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.

    Science.gov (United States)

    Yu, D; Li, Q; Mu, X; Chang, T; Xiong, Z

    2008-10-01

    Active artificial bone composed of poly lactide-co-glycolide (PLGA)/ tricalcium phosphate (TCP) was prefabricated using low-temperature rapid-prototyping technology so that the process of osteogenesis could be observed in it. PLGA and TCP were the primary materials, they were molded at low temperature, then recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to form an active artificial bone. Goats with standard cranial defects were randomly divided into experimental (implants with rhBMP-2 added) and control (implants without rhBMP-2) groups, and osteogenesis was observed and evaluated by imaging and biomechanical and histological examinations. The PLGA-TCP artificial bone scaffold (90% porosity) had large and small pores of approximately 360microm and 3-5microm diameter. Preliminary and complete repair of the cranial defect in the goats occurred 12 and 24 weeks after surgery, respectively. The three-point bending strength of the repaired defects attained that of the normal cranium. In conclusion, low-temperature rapid-prototyping technology can preserve the biological activity of this scaffold material. The scaffold has a good three-dimensional structure and it becomes an active artificial bone after loading with rhBMP-2 with a modest degradation rate and excellent osteogenesis in the goat.

  4. Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections

    Science.gov (United States)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2015-12-01

    Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance

  5. Issues in first-principles calculations for defects in semiconductors and oxides

    International Nuclear Information System (INIS)

    Nieminen, Risto M

    2009-01-01

    Recent advances in density-functional theory (DFT) calculations of defect electronic properties in semiconductors and insulators are discussed. In particular, two issues are addressed: the band-gap underestimation of standard density-functional methods with its harmful consequences for the positioning of defect-related levels in the band-gap region, and the slow convergence of calculated defect properties when the periodic supercell approach is used. Systematic remedies for both of these deficiencies are now available, and are being implemented in the context of popular DFT codes. This should help in improving the parameter-free accuracy and thus the predictive power of the methods to enable unambiguous explanation of defect-related experimental observations. These include not only the various fingerprint spectroscopies for defects but also their thermochemistry and dynamics, i.e. the temperature-dependent concentration and diffusivities of defects under various doping conditions and in different stoichiometries

  6. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  7. Nitrotyrosine adsorption on defective graphene: A density functional theory study

    Science.gov (United States)

    Majidi, R.; Karami, A. R.

    2015-06-01

    We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.

  8. On the performance limiting behavior of defect clusters in commercial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Chen, W.; Jones, K. [National Renewable Energy Lab., Golden, CO (United States); Gee, J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-09-01

    The authors report the observation of defect clusters in high-quality, commercial silicon solar cell substrates. The nature of the defect clusters, their mechanism of formation, and precipitation of metallic impurities at the defect clusters are discussed. This defect configuration influences the device performance in a unique way--by primarily degrading the voltage-related parameters. Network modeling is used to show that, in an N/P junction device, these regions act as shunts that dissipate power generated within the cell.

  9. Immediate implant placement into posterior sockets with or without buccal bone dehiscence defects: A retrospective cohort study.

    Science.gov (United States)

    Hu, Chen; Gong, Ting; Lin, Weimin; Yuan, Quan; Man, Yi

    2017-10-01

    To evaluate bone reconstruction and soft tissue reactions at immediate implants placed into intact sockets and those with buccal bone dehiscence defects. Fifty-nine internal connection implants from four different manufacturers were immediately placed in intact sockets(non-dehiscence group, n=40), and in alveoli with buccal bone dehiscence defects: 1) Group 1(n= N10), the defect depth measured 3-5 mm from the gingival margin. 2) Group 2(n=9), the depth ranged from 5mm to 7mm. The surrounding bony voids were grafted with deproteinized bovine bone mineral (DBBM) particles. Cone beam computed tomography(CBCT) was performed immediately after surgery (T1), and at 6 months later(T2). Radiographs were taken at prosthesis placement and one year postloading(T3). Soft tissue parameters were measured at baseline (T0), prosthesis placement and T3. No implants were lost during the observation period. For the dehiscence groups, the buccal bone plates were radiographically reconstructed to comparable horizontal and vertical bone volumes compared with the non-dehiscence group. Marginal bone loss occurred between the time of final restoration and 1-year postloading was not statistically different(P=0.732) between groups. Soft tissue parameters did not reveal inferior results for the dehiscence groups. Within the limitations of this study, flapless implant placement into compromised sockets in combination with DBBM grafting may be a viable technique to reconstitute the defected buccal bone plates due to space maintenance and primary socket closure provided by healing abutments and bone grafts. Immediate implants and DBBM grafting without using membranes may be indicated for sockets with buccal bone defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Defect studies in electron-irradiated ZnO and GaN

    International Nuclear Information System (INIS)

    Tuomisto, F.; Look, D.C.; Farlow, G.C.

    2007-01-01

    We present experimental results obtained with positron annihilation spectroscopy in room-temperature electron-irradiated n-type ZnO and GaN. The cation vacancies act as important compensating centers in 2 MeV electron-irradiated samples, even though their introduction rates are different by 2 orders of magnitude. In addition, negatively charged non-open volume defects that also compensate the n-type conductivity are produced together with the cation vacancies at similar introduction rates. The low introduction rates of compensating defects in ZnO demonstrate the radiation hardness of the material. Isochronal thermal annealings were performed to study the dynamics of the irradiation-induced defects. In 2 MeV electron-irradiated ZnO, all the defects introduced in the irradiation disappear already at 600 K, while 1100 K is needed in GaN. Several separate annealing stages of the defects are observed in both materials, the first at 400 K

  11. Defect studies in electron-irradiated ZnO and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F. [Laboratory of Physics, Helsinki University of Technology, 02015 TKK Espoo (Finland)], E-mail: filip.tuomisto@tkk.fi; Look, D.C. [Semiconductor Research Center, Wright State University, Dayton, OH 45435 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Farlow, G.C. [Physics Department, Wright State University, Dayton, OH 45435 (United States)

    2007-12-15

    We present experimental results obtained with positron annihilation spectroscopy in room-temperature electron-irradiated n-type ZnO and GaN. The cation vacancies act as important compensating centers in 2 MeV electron-irradiated samples, even though their introduction rates are different by 2 orders of magnitude. In addition, negatively charged non-open volume defects that also compensate the n-type conductivity are produced together with the cation vacancies at similar introduction rates. The low introduction rates of compensating defects in ZnO demonstrate the radiation hardness of the material. Isochronal thermal annealings were performed to study the dynamics of the irradiation-induced defects. In 2 MeV electron-irradiated ZnO, all the defects introduced in the irradiation disappear already at 600 K, while 1100 K is needed in GaN. Several separate annealing stages of the defects are observed in both materials, the first at 400 K.

  12. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  13. Nucleation of voids and other irradiation-produced defect aggregates

    International Nuclear Information System (INIS)

    Wiedersich, H.; Katz, J.L.

    1976-01-01

    The nucleation of defect clusters in crystalline solids from radiation-produced defects is different from the usual nucleation processes in one important aspect: the condensing defects, interstitial atoms and vacancies, can mutually annihilate and are thus similar to matter and antimatter. The nucleation process is described as the simultaneous reaction of vacancies and interstitials (and gas atoms if present) with embryos of all sizes. The reaction rates for acquisition of point defects (and gas atoms) are calculated from their respective jump frequencies and concentrations in the supersaturated system. The reaction rates for emission of point defects are derived from the free energies of the defect clusters in the thermodynamic equilibrium system, i.e., the system without excess point defects. This procedure differs from that used in conventional nucleation theory and permits the inclusion of the ''antimatter'' defect into the set of reaction-rate equations in a straightforward manner. The method is applied to steady-state nucleation, during irradiation, of both dislocation loops and voids in the absence and in the presence of immobile and mobile gas. The predictions of the nucleation theory are shown to be in qualitative agreement with experimental observations, e.g., void densities increase with increasing displacement rates; gases such as helium enhance void nucleation; at low displacement rates and at high temperatures the presence of gas is essential to void formation. For quantitative predictions, the theory must be extended to include the termination of nucleation

  14. Repair of chest wall defects after irradiation for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, L E

    1976-03-01

    A simple technique using a contralateral deltopectoral flap is described for the immediate repair of defects of the chest wall resulting from excision of radionecrosis or persistent tumour after radiotherapy. Successful use in 3 consecutive cases has shown that the deltopectoral flap may be rotated through a full 180/sup 0/ without compromise of blood supply and that primary healing may be obtained.

  15. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly

    Directory of Open Access Journals (Sweden)

    Swiderski Ruth E

    2012-10-01

    Full Text Available Abstract Background Hydrocephalus is a heterogeneous disorder with multiple etiologies that are not yet fully understood. Animal models have implicated dysfunctional cilia of the ependyma and choroid plexus in the development of the disorder. In this report, we sought to determine the origin of the ventriculomegaly in four Bardet Biedl syndrome (BBS mutant mouse strains as models of a ciliopathy. Methods Evans Blue dye was injected into the lateral ventricle of wild- type and BBS mutant mice to determine whether obstruction of intra- or extra-ventricular CSF flow contributed to ventriculomegaly. Transmission electron microscopy (TEM was used to examine the ultrastructure of the choroid plexus, subfornical organ (SFO, subcommisural organ (SCO, and ventricular ependyma to evaluate their ultrastructure and the morphology of their primary and motile cilia. Results and discussion No obstruction of intra- or extra-ventricular CSF flow was observed, implying a communicating form of hydrocephalus in BBS mutant mice. TEM analyses of the mutants showed no evidence of choroidal papillomas or breakdown of the blood:CSF barrier. In contrast, structural defects were observed in a subpopulation of cilia lining the choroid plexus, SFO, and ventricular ependyma. These included disruptions of the microtubular structure of the axoneme and the presence of electron-dense vesicular-like material along the ciliary shaft and at the tips of cilia. Conclusions Abnormalities in cilia structure and function have the potential to influence ciliary intraflagellar transport (IFT, cilia maintenance, protein trafficking, and regulation of CSF production. Ciliary structural defects are the only consistent pathological features associated with CSF-related structures in BBS mutant mice. These defects are observed from an early age, and may contribute to the underlying pathophysiology of ventriculomegaly.

  16. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  17. Fundamental investigation of point defect interactions in FE-CR alloys

    International Nuclear Information System (INIS)

    Wirth, B.D.; Lee, H.J.; Wong, K.

    2008-01-01

    Full text of publication follows. Fe-Cr alloys are a leading candidate material for structural applications in Generation TV and fusion reactors, and there is a relatively large database on their irradiation performance. However, complete understanding of the response of Fe-Cr alloys to intermediate-to-high temperature irradiation, including the radiation induced segregation of Cr, requires knowledge of point defect and point defect cluster interactions with Cr solute atoms and impurities. We present results from a hierarchical multi-scale modelling approach of defect cluster behaviour in Fe-Cr alloys. The modelling includes ab initio electronic structure calculations performed using the VASP code with projector-augmented electron wave functions using PBE pseudo-potentials and a collinear treatment of magnetic spins, molecular dynamics using semi-empirical Finnic-Sinclair type potentials, and kinetic Monte Carlo simulations of coupled defect and Cr transport responsible for microstructural evolution. The modelling results are compared to experimental observations in both binary Fe-Cr and more complex ferritic-martensitic alloys, and provide a basis for understanding a dislocation loop evolution and the observations of Cr enrichment and depletion at grain boundaries in various irradiation experiments. (authors)

  18. Electric field dependent paramagnetic defect creation in single step implanted Simox films

    International Nuclear Information System (INIS)

    Leray, J.L.; Margail, J.

    1991-01-01

    X irradiation induced oxygen-vacancy defect creation has been studied in SIMOX produced by single step implantation and annealing. It is shown that SIMOX is substantially more radiation sensitive (for these defects) than thermal or bulk oxide. Irradiation in the presence of an electric field 0.5 -1 MV cm -1 is found to enhance the rate of defect creation by ≥ 2 times. Further enhanced defect creation is observed in SIMOX samples whose substrate has been chemically thinned prior to irradiation. This enhancement is attributed to modification of the network induced by hydrogen introduced during the thinning process

  19. Automation for Primary Processing of Hardwoods

    Science.gov (United States)

    Daniel L. Schmoldt

    1992-01-01

    Hardwood sawmills critically need to incorporate automation and computer technology into their operations. Social constraints, forest biology constraints, forest product market changes, and financial necessity are forcing primary processors to boost their productivity and efficiency to higher levels. The locations, extent, and types of defects found in logs and on...

  20. Fibrous metaphyseal defects

    International Nuclear Information System (INIS)

    Ritschl, P.; Hajek, P.C.; Pechmann, U.

    1989-01-01

    Sixteen patients with fibrous metaphyseal defects were examined with both plain radiography and magnetic resonance (MR) imaging. Depending on the age of the fibrous metaphyseal defects, characteristic radiomorphologic changes were found which correlated well with MR images. Following intravenous Gadolinium-DTPA injection, fibrous metaphyseal defects invariably exhibited a hyperintense border and signal enhancement. (orig./GDG)

  1. Ferromagnetically coupled local moments along an extended line defect in graphene

    Science.gov (United States)

    White, Carter T.; Vasudevan, Smitha; Gunlycke, Daniel

    2011-03-01

    Recently an extended line defect was observed composed of octagonal and pentagonal carbon rings embedded in a graphene sheet [Nat. Nanotech. 5, 326 (2010)]. We report results of studies we have made of this defect using both first-principles and semi-empirical methods. Two types of boundary-localized states arising from the defect are identified. The first (second) type has eigenstates with wavefunctions that are anti- symmetric (symmetric) with respect to a mirror plane that is perpendicular to the graphene sheet and passes through the line defect center line. The boundary-localized anti-symmetric states are shown to be intimately connected to the zigzag edge states of semi-infinite graphene. They exhibit little dispersion along the defect line and lie close to the Fermi level giving rise to a spontaneous spin polarization along the defect once electron-electron interactions are included at the level of a mean field approximation to a Hubbard Model. Within this approach, symmetry requires that the principal moments couple ferromagnetically both along and across the line defect leading to approximately 2/3 more up than down spin electrons per defect repeat unit. This work was supported by ONR, directly and through NRL.

  2. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Science.gov (United States)

    Liu, Ji; Nie, Huarong; Xu, Zhengliang; Niu, Xin; Guo, Shangchun; Yin, Junhui; Guo, Fei; Li, Gang; Wang, Yang; Zhang, Changqing

    2014-01-01

    The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  3. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects.

    Directory of Open Access Journals (Sweden)

    Ji Liu

    Full Text Available The discovery of induced pluripotent stem cells (iPSCs rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM, the Cell Counting Kit-8 (CCK-8, histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo.

  4. Vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association with Mayer-Rokitansky-Küster-Hauser syndrome in co-occurrence: two case reports and a review of the literature.

    Science.gov (United States)

    Bjørsum-Meyer, Thomas; Herlin, Morten; Qvist, Niels; Petersen, Michael B

    2016-12-21

    The vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome are rare conditions. We aimed to present two cases with the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser co-occurrence from our local surgical center and through a systematic literature search detect published cases. Furthermore, we aimed to collect existing knowledge in the embryopathogenesis and genetics in order to discuss a possible link between the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome. Our first case was a white girl delivered by caesarean section at 37 weeks of gestation; our second case was a white girl born at a gestational age of 40 weeks. A co-occurrence of vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal defect, and limb defect association and Mayer-Rokitansky-Küster-Hauser syndrome was diagnosed in both cases. We performed a systematic literature search in PubMed ((VACTERL) OR (VATER)) AND ((MRKH) OR (Mayer-Rokitansky-Küster-Hauser) OR (mullerian agenesis) OR (mullerian aplasia) OR (MURCS)) without limitations. A similar search was performed in Embase and the Cochrane library. We added two cases from our local center. All cases (n = 9) presented with anal atresia and renal defect. Vertebral defects were present in eight patients. Rectovestibular fistula was confirmed in seven patients. Along with the uterovaginal agenesis, fallopian tube aplasia appeared in five of nine cases and in two cases ovarian involvement also existed. The co-occurrence of the vertebral defect, anal atresia, cardiac defect, tracheoesophageal fistula/esophageal atresia, renal

  5. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  6. Motion of Defect Clusters and Dislocations at a Crack Tip of Irradiated Material

    International Nuclear Information System (INIS)

    Moon, Won Jin; Kwon, Sang Chul; Kim, Whung Whoe

    2007-01-01

    Effects of defect clusters on mechanical properties of irradiated materials have not been clarified until now. Two radiation hardening models have been proposed. One is a dispersed barrier hardening mechanism based on the Orowan hardening model. This explains defect clusters as barriers to a dislocation motion. Generally the dislocation would rather shear or remove the defect clusters than make so-called Orowan loops. And the other is a cascade induced source hardening mechanism, which explains defect clusters as a Cottrell atmosphere for dislocation motions. However, the above mechanisms can not explain the microstructure of deformed material after irradiation and the phenomenon of yield softening. These mechanisms are based on an immobility of clusters. But we observed defect clusters could move into a specific crystallographic direction easily. Through 3 times of High Voltage Electron Microscope analysis, defect clusters have been observed to make one dimensional motion without applied external stress. If very small defect clusters could move under a stress gradient due to interactions between clusters, we can suggest that the clusters will move more actively when a stress gradient is applied externally. In-situ tensile test at TEM, we confirmed that kind of motion. We suggest defect clusters can move into crack tip, a stress-concentrated area due to tensile stress gradient and dislocations move out from the area by shear stress. Therefore radiation hardening can be explained agglomeration of defect clusters at stress concentrated area prohibits a generation of dislocation and make an increase of yield point

  7. Disorder and defect formation mechanisms in molecular-beam-epitaxy grown silicon epilayers

    International Nuclear Information System (INIS)

    Akbari-Sharbaf, Arash; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Fanchini, Giovanni

    2013-01-01

    We investigate the role of disorder, stress and crystallite size in determining the density of defects in disordered and partially ordered silicon thin films deposited at low or moderate temperatures by molecular beam epitaxy. We find that the paramagnetic defect density measured by electron spin resonance (ESR) is strongly dependent on the growth temperature of the films, decreasing from ∼ 2 · 10 19 cm −3 at 98 °C to ∼ 1 · 10 18 cm −3 at 572 °C. The physical nature of the defects is strongly dependent on the range of order in the films: ESR spectra consistent with dangling bonds in an amorphous phase are observed at the lowest temperatures, while the ESR signal gradually becomes more anisotropic as medium-range order improves and the stress level (measured both by X-ray diffraction and Raman spectroscopy) is released in more crystalline films. Anisotropic ESR spectra consistent with paramagnetic defects embedded in an epitaxial phase are observed at the highest growth temperature (572 °C). - Highlights: ► Disordered Si epilayers were grown by molecular beam epitaxy. ► Growth has been carried out at temperatures T = 98 °C–514 °C. ► A correlation between defect density and disorder in the films has been found. ► Lack of medium range order and stress cause the formation of defects at low T. ► At high T, defects are associated to grain boundaries and oriented stacking faults

  8. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  9. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  10. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Tang, Haibin; Guo, Haiding

    2017-01-01

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  11. Multiple-level defect species evaluation from average carrier decay

    Science.gov (United States)

    Debuf, Didier

    2003-10-01

    An expression for the average decay is determined by solving the the carrier continuity equations, which include terms for multiple defect recombination. This expression is the decay measured by techniques such as the contactless photoconductance decay method, which determines the average or volume integrated decay. Implicit in the above is the requirement for good surface passivation such that only bulk properties are observed. A proposed experimental configuration is given to achieve the intended goal of an assessment of the type of defect in an n-type Czochralski-grown silicon semiconductor with an unusually high relative lifetime. The high lifetime is explained in terms of a ground excited state multiple-level defect system. Also, minority carrier trapping is investigated.

  12. Defect detection based on extreme edge of defective region histogram

    Directory of Open Access Journals (Sweden)

    Zouhir Wakaf

    2018-01-01

    Full Text Available Automatic thresholding has been used by many applications in image processing and pattern recognition systems. Specific attention was given during inspection for quality control purposes in various industries like steel processing and textile manufacturing. Automatic thresholding problem has been addressed well by the commonly used Otsu method, which provides suitable results for thresholding images based on a histogram of bimodal distribution. However, the Otsu method fails when the histogram is unimodal or close to unimodal. Defects have different shapes and sizes, ranging from very small to large. The gray-level distributions of the image histogram can vary between unimodal and multimodal. Furthermore, Otsu-revised methods, like the valley-emphasis method and the background histogram mode extents, which overcome the drawbacks of the Otsu method, require preprocessing steps and fail to use the general threshold for multimodal defects. This study proposes a new automatic thresholding algorithm based on the acquisition of the defective region histogram and the selection of its extreme edge as the threshold value to segment all defective objects in the foreground from the image background. To evaluate the proposed defect-detection method, common standard images for experimentation were used. Experimental results of the proposed method show that the proposed method outperforms the current methods in terms of defect detection.

  13. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  14. Impact of interstitial iron on the study of meta-stable B-O defects in Czochralski silicon: Further evidence of a single defect

    Science.gov (United States)

    Kim, Moonyong; Chen, Daniel; Abbott, Malcolm; Nampalli, Nitin; Wenham, Stuart; Stefani, Bruno; Hallam, Brett

    2018-04-01

    We explore the influence of interstitial iron (Fei) on lifetime spectroscopy of boron-oxygen (B-O) related degradation in p-type Czochralski silicon. Theoretical and experimental evidence presented in this study indicate that iron-boron pair (Fe-B) related reactions could have influenced several key experimental results used to derive theories on the fundamental properties of the B-O defect. Firstly, the presence of Fei can account for higher apparent capture cross-section ratios (k) of approximately 100 observed in previous studies during early stages of B-O related degradation. Secondly, the association of Fe-B pairs can explain the initial stage of a two-stage recovery of carrier lifetime with dark annealing after partial degradation. Thirdly, Fei can result in high apparent k values after the permanent deactivation of B-O defects. Subsequently, we show that a single k value can describe the recombination properties associated with B-O defects throughout degradation, that the recovery during dark annealing occurs with a single-stage, and both the fast- and slow-stage B-O related degradation can be permanently deactivated during illuminated annealing. Accounting for the recombination activity of Fei provides further evidence that the B-O defect is a single defect, rather than two separate defects normally attributed to fast-forming recombination centers and slow-forming recombination centers. Implications of this finding for the nature of the B-O defect are also discussed.

  15. On kinetics of paramagnetic radiation defects accumulation in beryllium ceramics

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Zashkvara, O.V.; Bitenbaev, M.I.; Petykhov, Yu.V.

    1999-01-01

    Results of paramagnetic radiation defects concentration dependence study in beryllium ceramics from gamma-irradiation dose ( 60 Co) within interval 0-100 Mrem are cited. Obtained dose dependence has form of accumulation curve with saturation typical of for majority of solids (crystals, different polymers, organic substances and others) , in which under irradiation occur not only formation of paramagnetic radiation defects, but its destruction due to recombination and interaction with radiation fields. Analysis of accumulation curve by the method of distant asymptotics allows to determine that observed in gamma-irradiated beryllium ceramics double line of electron spin resonance is forming of two types of paramagnetic radiation defects. It was defined, that sum paramagnetic characteristics of beryllium ceramics within 1-100 Mrad gamma- irradiation dose field change insignificantly and define from first type of paramagnetic radiation defects

  16. Defects in electron irradiated vitreous SiO2 probed by positron annihiliation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao; Itoh, Hisayoshi

    1994-01-01

    Defects in 3 MeV electron irradiated vitreous SiO 2 (v-SiO 2 ) were probed by the positron annihilation technique. For unirradiated v-SiO 2 specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author)

  17. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  18. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1988-01-01

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects

  19. In and Cd as defect traps in titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Schell, Juliana, E-mail: juliana.schell@cern.ch [European Organization for Nuclear Research (CERN) (Switzerland); Lupascu, Doru C. [University of Duisburg-Essen, Institute for Materials Science and Center for Nanointegration, Duisburg-Essen (CENIDE) (Germany); Martins Correia, João Guilherme [European Organization for Nuclear Research (CERN) (Switzerland); Carbonari, Artur Wilson [Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Deicher, Manfred [Universität des Saarlandes, Experimentalphysik (Germany); Barbosa, Marcelo Baptista [Instituto de Física dos Materiais da Universidade do Porto (Portugal); Mansano, Ronaldo Domingues [Universidade de São Paulo, Escola Politécnica (Brazil); Johnston, Karl [European Organization for Nuclear Research (CERN) (Switzerland); Ribeiro, Ibere S. [Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Collaboration: ISOLDE Collaboration, ISOLDE (European Organization for Nuclear Research (CERN) (Switzerland)

    2017-11-15

    We present a study of TiO{sub 2} single crystals from the point of view of the dopant atom that simultaneously behaves as the probing element. We used gamma-gamma time dependent perturbed angular correlations working with selected tracer elements ({sup 111}In/ {sup 111}Cd, {sup 111m}Cd/ {sup 111}Cd) together to investigate the different behavior of Cd and In dopants, particularly their interaction with point defects in the TiO{sub 2} lattice. Results show that the hyperfine interactions observed at {sup 111}Cd from {sup 111}In or {sup 111m}Cd decay are quite different. {sup 111}In/ {sup 111}Cd results show a single site fraction characterized by a quadrupole frequency with asymmetry parameter similar to those observed for the same probe nuclei in bulk TiO{sub 2} oxides. Results for {sup 111m}Cd/ {sup 111}Cd reveal two site fractions, one characterized by the same hyperfine parameters to those measured in bulk TiO{sub 2} and another fraction characterized by a quadrupole frequency and asymmetry parameters with higher values, as observed in thin TiO{sub 2} films and correlated with point defects. The results are discussed emphasizing the differences for Cd and In as defect traps on TiO{sub 2}.

  20. Study of point defects in pure iron by means of electrical resistivity

    International Nuclear Information System (INIS)

    Minier-Cassayre, C.

    1965-04-01

    In the first part of this work, after having reviewed the production, observation and the annealing of point defects In metals, we resume the present state of research. In the second part, we explain the techniques we have employed to produce point defects at low temperatures: irradiation, quenching and cold-work; and go on to the study of their migration and annealing. The experimental results obtained for pure iron and for iron containing certain impurities are presented in the third part. In the fourth part we suggest a model which explains the different stages of annealing observed, and their properties. We then compare the energies of interaction between point defects with the values deduced from the theory of elasticity. (author) [fr

  1. Oxygen-related 1-platinum defects in silicon: An electron paramagnetic resonance study

    Science.gov (United States)

    Juda, U.; Scheerer, O.; Höhne, M.; Riemann, H.; Schilling, H.-J.; Donecker, J.; Gerhardt, A.

    1996-09-01

    A monoclinic 1-platinum defect recently detected was investigated more thoroughly by electron paramagnetic resonance (EPR). The defect is one of the dominating defects in platinum doped silicon. With a perfect reproducibility it is observed in samples prepared from n-type silicon as well as from p-type silicon, in float zone (FZ) silicon as well as in Czochralski (Cz) silicon. Its concentration varies with the conditions of preparation and nearly reaches that of isolated substitutional platinum in Cz silicon annealed for 2 h at 540 °C after quenching from the temperature of platinum diffusion. Because of its concentration which in Cz-Si exceeds that in FZ-Si the defect is assumed to be oxygen-related though a hyperfine structure with 17O could not be resolved. The defect causes a level close to the valence band. This is concluded from variations of the Fermi level and from a discussion of the spin Hamiltonian parameters. In photo-EPR experiments the defect is coupled to recently detected acceptorlike self-interstitial related defects (SIRDs); their level position turns out to be near-midgap. These defects belong to the lifetime limiting defects in Pt-doped Si.

  2. Introduction and recovery of point defects in electron-irradiated ZnO

    International Nuclear Information System (INIS)

    Tuomisto, F.; Saarinen, K.; Look, D.C.; Farlow, G.C.

    2005-01-01

    We have used positron annihilation spectroscopy to study the introduction and recovery of point defects in electron-irradiated n-type ZnO. The irradiation (E el =2 MeV, fluence 6x10 17 cm -2 ) was performed at room temperature, and isochronal annealings were performed from 300 to 600 K. In addition, monochromatic illumination of the samples during low-temperature positron measurements was used in identification of the defects. We distinguish two kinds of vacancy defects: the Zn and O vacancies, which are either isolated or belong to defect complexes. In addition, we observe negative-ion-type defects, which are attributed to O interstitials or O antisites. The Zn vacancies and negative ions act as compensating centers and are introduced at a concentration [V Zn ]≅c ion ≅2x10 16 cm -3 . The O vacancies are introduced at a 10-times-larger concentration [V O ]≅3x10 17 cm -3 and are suggested to be isolated. The O vacancies are observed as neutral at low temperatures, and an ionization energy of 100 meV could be fitted with the help of temperature-dependent Hall data, thus indicating their deep donor character. The irradiation-induced defects fully recover after the annealing at 600 K, in good agreement with electrical measurements. The Zn vacancies recover in two separate stages, indicating that the Zn vacancies are parts of two different defect complexes. The O vacancies anneal simultaneously with the Zn vacancies at the later stage, with an activation energy of E V,O m =1.8±0.1 eV. The negative ions anneal out between the two annealing stages of the vacancies

  3. A study of defects in diamond

    International Nuclear Information System (INIS)

    Hunt, D.C.

    1999-01-01

    Defects, intrinsic and extrinsic, in natural and synthetic diamond, have been studied using Electron Paramagnetic Resonance (EPR) and optical absorption techniques. EPR measurements have been used in conjunction with infrared absorption to identify the defect-induced one-phonon infrared spectra produced by ionised single substitutional nitrogen, N s + . This N s + spectrum is characterised by a sharp peak at the Raman energy, 1332 cm -1 , accompanied by several broader resonances at 950(5), 1050(5), and 1095(5) cm -1 . Detailed concentration measurements show that a concentration of 5.5(5) ppm gives rise to an absorption of 1 cm -1 at 1332 cm -1 . The optical absorption band ND1, identified as the negative vacancy (V - ), is frequently used by diamond spectroscopists to measure the concentration of V - . Isoya has identified V - in the EPR spectra of irradiated diamond. The accuracy of EPR in determining concentrations, has been used to correlate the integrated absorption of the ND1 zero-phonon line to the concentration of V - centres. The parameter derived from this correlation is ∼16 times smaller than the previously accepted value obtained by indirect methods. A systematic study has been made - using EPR and optical absorption techniques - of synthetic type IIa diamonds, which have been irradiated with 2 MeV electrons in a specially developed dewar, allowing irradiation down to a measured sample temperature of 100K. Measurement of defect creation rates of the neutral vacancy and EPR defects, show a radical difference in the production rate of the EPR defect R2 between irradiation with the sample held at 100K and 350K. At 100K its production rate is 1.1(1) cm -1 , ∼10 times greater that at 350K. Observation of the di- -split interstitial (Ri) after irradiation at 100K proves the self-interstitial in diamond must be mobile at 100K, under the conditions of irradiation. Further study of the properties of the R2 defect (the most dominant EPR after electron

  4. Improvement to defect detection by ultrasonic data processing: the DTVG method

    International Nuclear Information System (INIS)

    Francois, D.

    1995-10-01

    The cast elbows of the pipes of the principal primary circuit of French PWR, made of austenitic-ferritic stainless steel, pose problems to control. In order to improve the ultrasonic detection of defects in coarse-grained materials, we propose a method (called DTVG) based on the statistic study of the spatial stability of events contained in temporal signals. At the Beginning, the method was developed during a thesis (G. Corneloup, 1998) to improve the detection of cracks in thin thickness austenitic welds. Here, we propose to adapt the DTVG method and estimate its performances in detection of defects in thick materials representative of cast austenitic-ferritic elbows steels. The first objective of the study is adapting the original treatment applied to the thin thickness austenitic welds for the detection of defects in thick thickness austenitic-ferritic cast steels. The second objective consist of improving the algorithm to take in account the difference between thin and thick material and estimating the performances of the DTVG method in detection in specimen block with artificial defects. This work has led to adapt the original DTVG method to control thick cast austenitic-ferritic specimen (80 mm) under normal and oblique incidence. More, the study has allowed to make the the treatment automatic (automatic research of parameters). The results have shown that the DTVG method is fitted to detect artificial defects in thick cast austenitic-ferritic sample steel. All the defects in the specimen block have been detected without revealing false indication. (author). 4 refs., 4 figs

  5. Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome.

    Science.gov (United States)

    Levy, Y; Gupta, N; Le Deist, F; Garcia, C; Fischer, A; Weill, J C; Reynaud, C A

    1998-10-27

    Common Variable Immuno-Deficiency (CVID) is the most common symptomatic primary antibody-deficiency syndrome, but the basic immunologic defects underlying this syndrome are not well defined. We report here that among eight patients studied (six CVID and two hypogammaglobulinemic patients with recurrent infections), there is in two CVID patients a dramatic reduction in Ig V gene somatic hypermutation with 40-75% of IgG transcripts totally devoid of mutations in the circulating memory B cell compartment. Functional assays of the T cell compartment point to an intrinsic B cell defect in the process of antibody affinity maturation in these two cases.

  6. Influence on ultrasonic incident angle and defect detection sensitivity by cast stainless steel structure

    International Nuclear Information System (INIS)

    Kurozumi, Y.

    2004-01-01

    It is well known that ultrasonic waves are affected strongly by macro-structures in cast stainless steel, as in the primary pipe or other components in pressurized water reactors (PWRs). In this work, ultrasonic refractive angles and defect detection sensitivities are investigated at different incident angles to cast stainless steel. The aims of the investigation are to clarify the transmission of ultrasonic waves in cast stainless steel and to contribute to the transducer design. The results are that ultrasonic refractive angles in cast stainless steel shift towards the 45-degree direction with respect to the direction of dendritic structures by 11.8 degrees at the maximum and that the sensitivity of transducer for inner surface breaking cracks increases with decreasing incident angle. However, in an ultrasonic inspection of actual welds at smaller incident angles, a trade-off occurs between increased defect detection sensitivity and decreased defect discrimination capability due to intense false signals produced by non-defective features. (orig.)

  7. Dipole defects in beryl

    International Nuclear Information System (INIS)

    Holanda, B A; Cordeiro, R C; Blak, A R

    2010-01-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be 3 Al 2 Si 6 O 18 ) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  8. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis

    Directory of Open Access Journals (Sweden)

    Laura A. Porter

    2011-11-01

    Full Text Available The Burkholderia cepacia complex (Bcc is a group of Gram-negative bacteria that are ubiquitous in the environment and have emerged as opportunistic pathogens in immunocompromised patients. The primary patient populations infected with Bcc include individuals with cystic fibrosis (CF, as well as those with chronic granulomatous disease (CGD. While Bcc infection in CF is better characterized than in CGD, these two genetic diseases are not obviously similar and it is currently unknown if there is any commonality in host immune defects that is responsible for the susceptibility to Bcc. CF is caused by mutations in the CF transmembrane conductance regulator, resulting in manifestations in various organ systems, however the major cause of morbidity and mortality is currently due to bacterial respiratory infections. CGD, on the other hand, is a genetic disorder that is caused by defects in phagocyte NADPH oxidase. Because of the defect in CGD, phagocytes in these patients are unable to produce reactive oxygen species, which results in increased susceptibility to bacterial and fungal infections. Despite this significant defect in microbial clearance, the spectrum of pathogens frequently implicated in infections in CGD is relatively narrow and includes some bacterial species that are considered almost pathognomonic for this disorder. Very little is known about the cause of the specific susceptibility to Bcc over other potential pathogens more prevalent in the environment, and a better understanding of specific mechanisms required for bacterial virulence has become a high priority. This review will summarize both the current knowledge and future directions related to Bcc virulence in immunocompromised individuals with a focus on the roles of bacterial factors and neutrophil defects in pathogenesis.

  9. Nanohydroxyapatite Silicate-Based Cement Improves the Primary Stability of Dental Implants: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Hooman Khorshidi

    2017-01-01

    Full Text Available Objectives. Insufficient cortical bone volume when placing implants can lead to lack of primary stability. The use of cement as a bone fill material in bone defects around dental implant could result in better clinical outcome. HA has shown excellent biological properties in implant dentistry. The purpose of this study was to evaluate the effect of nanohydroxyapatite powder (Nano-HA in combination with accelerated Portland cement (APC on implant primary stability in surgically created circumferential bone defects in a bovine rib in vitro model. Materials and Methods. Sixteen bovine rib bones and thirty-six implants of same type and size (4 mm × 10 mm were used. Implants were divided into six groups: no circumferential bone defect, defect and no grafting, bone chips grafting, Nano-HA grafting, APC grafting, and Nano-HA mixed to APC grafting (Nano-HA-APC. Circumferential defects around the implants were prepared. The implant stability quotient (ISQ values were measured before and after the grafting. Results. APC exhibited the highest ISQ values. A significant increase of ISQ values following the grafting of Nano-HA-APC (18.08±5.82 and APC alone (9.50±4.12 was achieved. Increase of ISQ values after 72 hours was 24.16±5.01 and 17.58±4.89, respectively. Nano-HA grafting alone exhibited the least rise in ISQ values. Conclusions. Nanohydroxyapatite silicate-based cement could improve the primary stability of dental implants in circumferential bone defect around implants.

  10. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  11. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO i , C i O i , C i C s , VP or V 2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO 2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to

  12. Computed tomography on a defective CANDU fuel pencil end cap

    International Nuclear Information System (INIS)

    Lupton, L.R.

    1985-09-01

    Five tomographic slices through a defective end cap from a CANDU fuel pencil have been generated using a Co-60 source and a first generation translate-rotate tomography scanner. An anomaly in the density distribution that is believed to have resulted from the defect has been observed. However, with the 0.30 mm spatial resolution used, it has not been possible to state unequivocally whether the change in density is caused by a defect in the weld or a statistical anomaly in the data. It is concluded that a microtomography system, with a spatial resolution in the range of 0.1 mm, could detect the flaw

  13. A Study of Defect Behavior in Almandine Garnet

    Science.gov (United States)

    Geiger, C. A.; Brearley, A. J.; Dachs, E.; Tipplet, G.; Rossman, G. R.

    2016-12-01

    Transport and diffusion in crystals are controlled by defects. However, a good understanding of the defect types in many silicates, including garnet, is not at hand. We undertook a study on synthetic almandine, ideal end-member Fe3Al2Si3O12, to better understand its precise chemical and physical properties and defect behavior. Crystals were synthesized at high pressures and temperatures under different fO2 conditions using various starting materials with H2O and without. The almandine obtained came in polycrystalline and single-crystal form. The synthetic reaction products and crystals were carefully characterized using X-ray powder diffraction, electron microprobe and TEM analysis and with 57Fe Mössbauer, UV/VIS single-crystal absorption and IR single-crystal spectroscopy. Various possible intrinsic defects, such as the Frenkel, Schottky and site-disorder types, along with Fe3+, in both synthetic and natural almandine crystals, were analyzed based on model defects expressed in Kröger-Vink notation. Certain types of minor microscopic- to macroscopic-sized precipitation or exsolution phases, including some that are nanosized, that are observed in synthetic almandine (e.g., magnetite), as well as in more compositionally complex natural crystals (e.g., magnetite, rutile, ilmenite), may result from defect reactions. An explanation for their origin through minor amounts of defects in garnet has certain advantages over other models that have been put forth in the literature that assume strict garnet stoichiometry for their formation and/or open-system atomic transport over relatively long length scales. Physical properties, including magnetic, electrical conductivity and diffusion behavior, as well as the color, of almandine are also analyzed in terms of various possible model defects. It is difficult, if not impossible, to synthesize stoichiometric end-member almandine, Fe3Al2Si3O12, in the laboratory, as small amounts of extrinsic OH- and/or Fe3+ defects, for example

  14. Studies on defect detectability in banded stainless steel tubes

    International Nuclear Information System (INIS)

    Shyamsunder, M.T.; Rao, B.P.C.; Babu Rao, C.; Jayakumar, T.; Kalyanasundaram, P.; Baldev Raj

    1996-01-01

    During inspection of one batch of stainless steel cladding tubes, a few of the tubes gave rise to continuous large amplitude indications throughout the length of the tube. It was observed that the presence of any defects in such tubes would be impossible to detect, due to the poor signal-to-noise ratio. Detailed investigations regarding the surface profile of the tubes were carried out using a novel technique called the projected interferometry method revealed periodic diametral variations and the same were further confirmed by cross sectional profiling. The feasibility of detecting defects in such banded tubes, using eddy current testing were carried out on tubes with artificial defects. This paper discusses the use of three different eddy current methods and their relative performances for inspection. The specific advantages of the phased array eddy current testing method in unambiguous defect detection in situations similar to the one encountered during the present investigations are also discussed. (author)

  15. Potential implications of the helical heart in congenital heart defects.

    Science.gov (United States)

    Corno, Antonio F; Kocica, Mladen J

    2007-01-01

    The anatomic and functional observations made by Francisco Torrent-Guasp, in particular his discovery of the helical ventricular myocardial band (HVMB), have challenged what has been taught to cardiologists and cardiac surgeons over centuries. A literature debate is ongoing, with interdependent articles and comments from supporters and critics. Adequate understanding of heart structure and function is obviously indispensable for the decision-making process in congenital heart defects. The HVMB described by Torrent-Guasp and the potential impact on the understanding and treatment of congenital heart defects has been analyzed in the following settings: embryology, ventriculo-arterial discordance (transposition of great arteries), Ebstein's anomaly, pulmonary valve regurgitation after repair of tetralogy of Fallot, Ross operation, and other congenital heart defects. The common structural spiral feature is only one of the elements responsible for the functional interaction of right and left ventricles, and understanding the form/function relationship in congenital heart defects is more difficult than for acquired heart disease because of the variety and complexity of congenital heart defects. Individuals involved in the care of patients with congenital heart defects have to be stimulated to consider further investigations and alternative surgical strategies.

  16. Microvascular free flaps in the management of war wounds with tissue defects

    Directory of Open Access Journals (Sweden)

    Kozarski Jefta

    2003-01-01

    Full Text Available Background. War wounds caused by modern infantry weapons or explosive devices are very often associated with the defects of soft and bone tissue. According to their structure, tissue defects can be simple or complex. In accordance with war surgical doctrine, at the Clinic for Plastic Surgery and Burns of the Military Medical Academy, free flaps were used in the treatment of 108 patients with large tissue defects. With the aim of closing war wounds, covering deep structures, or making the preconditions for reconstruction of deep structures, free flaps were applied in primary, delayed, or secondary term. The main criteria for using free flaps were general condition of the wounded, extent, location, and structure of tissue defects. The aim was also to point out the advantages and disadvantages of the application of free flaps in the treatment of war wounds. Methods. One hundred and eleven microvascular free flaps were applied, both simple and complex, for closing the war wounds with extensive tissue defects. The main criteria for the application of free flaps were: general condition of the wounded, size, localization, and structure of tissue defects. For the extensive defects of the tissue, as well as for severely contaminated wounds latissimus dorsi free flaps were used. For tissue defects of distal parts of the lower extremities, scapular free flaps were preferred. While using free tissue transfer for recompensation of bone defects, free vascularized fibular grafts were applied, and in skin and bone defects complex free osteoseptocutaneous fibular, free osteoseptocutaneous radial forearm, and free skin-bone scapular flaps were used. Results. After free flap transfer 16 (14,4% revisions were performed, and after 8 unsuccessful revisions another free flaps were utilized in 3 (37,5% patients, and cross leg flaps in 5 (62,5% patients. Conclusion. The treatment of war wounds with large tissue defects by the application of free microvascular flaps

  17. Production behavior of irradiation defects in solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)

    1998-03-01

    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  18. Primary or recurring extra-abdominal desmoid fibromatosis: assessment of treatment by observation only.

    Science.gov (United States)

    Barbier, O; Anract, P; Pluot, E; Larouserie, F; Sailhan, F; Babinet, A; Tomeno, B

    2010-12-01

    Extra-abdominal desmoid fibromatosis (EADF) is a benign tumoral condition, classically managed by more or less radical and sometimes mutilating excision. This treatment strategy is associated with a recurrence rate of nearly 50% according to various reports. EADF may show spontaneous stabilization over time. A retrospective series of 26 cases of EADF managed by simple observation was studied to assess spontaneous favorable evolution and identify possible factors impacting evolution. Eleven cases were of primary EADF with no treatment or surgery, and 15 of recurrence after surgery with no adjuvant treatment. MRI was the reference examination during follow-up. Twenty-four cases showed stabilization at a median 14 months; there were no cases of renewed evolution after stabilization. One primary tumor showed spontaneous regression, and one recurrence still showed evolution at end of follow-up (23 months). The sole factor impacting potential for evolution was prior surgery. No radiologic or pathologic criteria of evolution emerged from analysis. The present series, one of the largest dedicated to EADF managed by observation, confirmed recent literature findings: a conservative "wait-and-see" attitude is reasonable and should be considered when large-scale resection would entail significant functional or esthetic impairment. Level IV, retrospective study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten

    Science.gov (United States)

    Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.

    2018-03-01

    Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.

  20. Point defects in cubic boron nitride after neutron irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Ide, Munetoshi; Yamaji, Hiromichi; Matsukawa, Tokuo; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1993-01-01

    The production of point defects induced by reactor neutrons and the thermal behavior of defects in sintered cubic boron nitride are investigated using the optical absorption and electron spin resonance (ESR) methods. A strong structureless absorption over the visible region was observed after fast neutron irradiation to a dose of 5.3 x 10 16 n/cm 2 (E > 0.1 MeV) at 25 K. This specimen also shows an ESR signal with g-value 2.006 ± 0.001, which can be tentatively identified as an electron trapped in a nitrogen vacancy. On examination of the thermal decay of the signal, the activation energy for recovery of the defects was determined to be about 1.79 eV. (author)

  1. Facts about Birth Defects

    Science.gov (United States)

    ... label> Information For… Media Policy Makers Facts about Birth Defects Language: English (US) Español (Spanish) Recommend on ... having a baby born without a birth defect. Birth Defects Are Common Every 4 ½ minutes, a ...

  2. The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons

    Science.gov (United States)

    Mohammadi, Amin; Haji-Nasiri, Saeed

    2018-04-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.

  3. Young's modulus of defective graphene sheet from intrinsic thermal vibrations

    International Nuclear Information System (INIS)

    Thomas, Siby; Mrudul, M S; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to establish a relation between thermally excited ripples and Young's modulus of defective graphene sheet within a range of temperatures. The presence of the out-of-plane intrinsic ripples stabilizes the graphene membranes and the mechanical stability is analyzed by means of thermal mean square vibration amplitude in the long wavelength regime. We observed that the presence of vacancy and Stone-Wales (SW) defects reduces the Young's modulus of graphene sheets. Graphene sheet with vacancy defects possess superior Young's modulus to that of a sheet with Stone-Wales defects. The obtained room temperature Young's modulus of pristine and defective graphene sheet is ∼ 1 TPa, which is comparable to the results of earlier experimental and atomistic simulation studies. (paper)

  4. Revisiting the reasons for contact fatigue defects in rails

    Directory of Open Access Journals (Sweden)

    Darenskiy Alexander

    2017-01-01

    Full Text Available As it is known rail is one of the most significant elements of the whole railway construction. Operation under alternating loads from wheels of the rolling stock and different ambient temperatures lead to appearance and development of rail defects and damages. A great variety of operational factors (freight traffic density, axial loads, traffic speeds, track layout and profile as well as special features of manufacturing and thermal treatment of rails create certain difficulties while identifying reasons for defects and damages. The article deals with an attempt to estimate influence of track layout and lateral forces on appearance of defects and damages in rails on the base of long-term observations of rail operation in Kharkiv Metro. On the basis of the vehicle/track mathematical model which considers structural features of both rolling stock and permanent way in underground systems, the level of lateral forces in curves was calculated. The coefficients of correlation between the track curvature, the level of forces and the amount of defected rails removed were later obtained, that made it possible to determine the dominant factor which may lead to appearance and development of contact fatigue defects in rails laid in curves.

  5. Approach to a child with primary immunodeficiency made simple

    Directory of Open Access Journals (Sweden)

    Dhrubajyoti Sharma

    2017-01-01

    Full Text Available Primary immunodeficiency disorders (PIDs are a group of disorders affecting the capability to fight against infection. These include defects in T cells and B cells affecting cell-mediated and humoral immunity, respectively, combined humoral and cell-mediated immunodeficiency, defects in phagocytosis, complement defects, and defects in cytokine or cytokine signalling pathways which are detrimental for immune function. Depending upon the type and severity, age at onset of symptoms can vary from neonatal period to late childhood. Clinically, this group of disorders can involve any organ system of an individual such as respiratory system, gastrointestinal system, skin and mucous membrane, bone and joints, endocrine organs, and nervous system. Common dermatological manifestations include eczema, warts, molluscum contagiosum, mucocutaneous candidiasis, recurrent nonhealing ulcers, skin abscesses, erythroderma, petechiae, and nail changes. The common skin manifestations of various PIDs include eczema (seen in Wiskott–Aldrich syndrome and autosomal dominant hyper IgE syndrome; erythroderma (in Omen syndrome; viral warts or molluscum contagiosum (in autosomal recessive hyper IgE syndrome; chronic mucocutaneous candidiasis (in hyper IgE syndrome, autoimmune polyendocrinopathy candidiasis ectodermal dysplasia syndrome, Th17 cell defects; recurrent nonhealing ulcers (in leucocyte adhesion defect; skin abscesses (in antibody defects, hyper IgE syndrome, and chronic granulomatous disease; petechial or purpuric spots (in Wiskott–Aldrich syndrome.

  6. Development of Geometry Normalized Electromagnetic System (GNES) instrument for metal defect detection

    Science.gov (United States)

    Zakaria, Zakaria; Surbakti, Muhammad Syukri; Syahreza, Saumi; Mat Jafri, Mohd. Zubir; Tan, Kok Chooi

    2017-10-01

    It has been already made, calibrated and tested a geometry normalized electromagnetic system (GNES) for metal defect examination. The GNES has an automatic data acquisition system which supporting the efficiency and accuracy of the measurement. The data will be displayed on the computer monitor as a graphic display then saved automatically in the Microsoft Excel format. The transmitter will transmit the frequency pair (FP) signals i.e. 112.5 Hz and 337.5 Hz; 112.5 Hz and 1012.5 Hz; 112.5 Hz and 3037.5 Hz; 337.5 Hz and 1012.5 Hz; 337.5 Hz and 3037.5 Hz. Simultaneous transmissions of two electromagnetic waves without distortions by the transmitter will induce an eddy current in the metal. This current, in turn, will produce secondary electromagnetic fields which are measured by the receiver together with the primary fields. Measurement of percent change of a vertical component of the fields will give the percent response caused by the metal or the defect. The response examinations were performed by the models with various type of defect for the master curves. The materials of samples as a plate were using Aluminum, Brass, and Copper. The more of the defects is the more reduction of the eddy current response. The defect contrasts were tended to decrease when the more depth of the defect position. The magnitude and phase of the eddy currents will affect the loading on the coil thus its impedance. The defect must interrupt the surface eddy current flow to be detected. Defect lying parallel to the current path will not cause any significant interruption and may not be detected. The main factors which affect the eddy current response are metal conductivity, permeability, frequency, and geometry.

  7. Thermal equilibrium defects in anthracene probed by positron annihilation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Tachibana, Masaru; Shimizu, Mikio; Satoh, Masaaki; Kojima, Kenichi; Ishibashi, Shoji; Kawano, Takao.

    1996-01-01

    Defects in anthracene were investigated by the positron annihilation technique. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured in the temperature range between 305 K and 516 K. The lifetime of positrons annihilated from the delocalized state was determined to be 0.306 ns around room temperature. Below the melting point, the observed temperature dependence of the line shape parameter S was explained assuming the formation energy of thermal equilibrium defects was 1 eV. Above the melting point, the pick-off annihilation of ortho-positronium in open spaces was observed, where the size of these spaces was estimated to be 0.2 nm 3 . The annihilation of positrons from the self-trapped state was also discussed. (author)

  8. Thermal equilibrium defects in anthracene probed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Tachibana, Masaru; Shimizu, Mikio; Satoh, Masaaki; Kojima, Kenichi; Ishibashi, Shoji; Kawano, Takao

    1996-06-01

    Defects in anthracene were investigated by the positron annihilation technique. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured in the temperature range between 305 K and 516 K. The lifetime of positrons annihilated from the delocalized state was determined to be 0.306 ns around room temperature. Below the melting point, the observed temperature dependence of the line shape parameter S was explained assuming the formation energy of thermal equilibrium defects was 1 eV. Above the melting point, the pick-off annihilation of ortho-positronium in open spaces was observed, where the size of these spaces was estimated to be 0.2 nm{sup 3}. The annihilation of positrons from the self-trapped state was also discussed. (author)

  9. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  10. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  11. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals

    DEFF Research Database (Denmark)

    Kase, E. T.; Feng, Y. Z.; Badin, P. M.

    2015-01-01

    A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic...

  12. Genital and Urinary Tract Defects

    Science.gov (United States)

    ... conditions > Genital and urinary tract defects Genital and urinary tract defects E-mail to a friend Please fill ... and extra fluids. What problems can genital and urinary tract defects cause? Genital and urinary tract defects affect ...

  13. Structure and strain relaxation effects of defects in InxGa1−xN epilayers

    International Nuclear Information System (INIS)

    Rhode, S. L.; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L.; Moram, M. A.; Dusane, R. O.

    2014-01-01

    The formation of trench defects is observed in 160 nm-thick In x Ga 1−x N epilayers with x ≤ 0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I 1 -type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  14. Analysis of defects near the surface and the interface of semiconductors by monoenergetic positron beam

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1989-01-01

    A monoenergetic low-speed positron beam line is constructed and a study is made on defects near the surface and the interface of semiconductors by using the beam line. Sodium-22 is used as beam source. Ion implantation, though being an essential technique for semiconductor integrated circuit production, can introduce lattice defects, affecting the yield and reliability of the resultant semiconductor devices. Some observations are made on the dependence of the Doppler broadening on the depth, and the ΔS-E relationship in P + -ion implanted SiO 2 (43nm)-Si. These observations demonstrate that monoenergetic positron beam is useful to detect hole-type defects resulting from ion implantation over a very wide range of defect density. Another study is made for the detection of defects near an interface. Positrons are expected to drift when left in an electric field with a gradient. Observations made here show that positrons can be concentrated at any desired interface by introducing an electric field intensity gradient in the oxide. This process also serves for accurate measurement of the electronic structure at the interface, and the effect of ion implantation and radiations on the interface. (N.K.)

  15. Primary acalvaria: a case report

    International Nuclear Information System (INIS)

    Rios, Livia Teresa Moreira; Martins, Marilia da Gloria; Simoes, Vanda Maria Ferreira; Nunes, Marynea do Vale; Marques, Patricia Franco; Godoy, Silvia Helena Cavalcante de Souza

    2010-01-01

    Acalvaria is a rare congenital malformation of unknown pathogenesis characterized by the absence of the flat bones of the cranial vault, dura mater and associated muscles, while the central nervous system is usually preserved. The most accepted physiopathogenic theory suggests the presence of a post neurulation defect with normal placement the embryonic ectoderm. The present report describes neonatal imaging findings of primary acalvaria. (author)

  16. Primary acalvaria: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Livia Teresa Moreira, E-mail: ltlrios@terra.com.b [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Hospital Universitario. Unidade de Diagnostico por Imagem; Martins, Marilia da Gloria [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Hospital Universitario. Servico de Ginecologia e Obstetricia; Simoes, Vanda Maria Ferreira; Nunes, Marynea do Vale; Marques, Patricia Franco; Godoy, Silvia Helena Cavalcante de Souza [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Hospital Universitario. Servico de Neonatologia

    2010-07-15

    Acalvaria is a rare congenital malformation of unknown pathogenesis characterized by the absence of the flat bones of the cranial vault, dura mater and associated muscles, while the central nervous system is usually preserved. The most accepted physiopathogenic theory suggests the presence of a post neurulation defect with normal placement the embryonic ectoderm. The present report describes neonatal imaging findings of primary acalvaria. (author)

  17. Actinic imaging of native and programmed defects on a full-field mask

    Energy Technology Data Exchange (ETDEWEB)

    Mochi, I.; Goldberg, K. A.; Fontaine, B. La; Tchikoulaeva, A.; Holfeld, C.

    2010-03-12

    We describe the imaging and characterization of native defects on a full field extreme ultraviolet (EUV) mask, using several reticle and wafer inspection modes. Mask defect images recorded with the SEMA TECH Berkeley Actinic Inspection Tool (AIT), an EUV-wavelength (13.4 nm) actinic microscope, are compared with mask and printed-wafer images collected with scanning electron microscopy (SEM) and deep ultraviolet (DUV) inspection tools. We observed that defects that appear to be opaque in the SEM can be highly transparent to EUV light, and inversely, defects that are mostly transparent to the SEM can be highly opaque to EUV. The nature and composition of these defects, whether they appear on the top surface, within the multilayer coating, or on the substrate as buried bumps or pits, influences both their significance when printed, and their detectability with the available techniques. Actinic inspection quantitatively predicts the characteristics of printed defect images in ways that may not be possible with non-EUV techniques. As a quantitative example, we investigate the main structural characteristics of a buried pit defect based on EUV through-focus imaging.

  18. Effects of crystal defects on the diffuse scattering of X-rays

    International Nuclear Information System (INIS)

    Kremser, R.

    1974-01-01

    This thesis concerns with the influence of crystal defects in germanium-drifted silicium and in α=quartz on the intensity of the diffuse X-ray scattering. The experiments were performed at low and high temperatures to show the effect of the atomic thermal motion on the intensity of the diffuse maxima. The comparison of the results for pure silicium and for the germanium-drifted crystal gives information about the relation between the frequency-spectra and the defects of the drifted silicium. For α-quarts it was not possible to relate unequivocally the observed changes in the intensity to individual defects. (C.R.)

  19. [Effect of simvastatin on inducing endothelial progenitor cells homing and promoting bone defect repair].

    Science.gov (United States)

    Song, Quansheng; Wang, Lingying; Zhu, Jinglin; Han, Xiaoguang; Li, Xu; Yang, Yanlin; Sun, Yan; Song, Chunli

    2010-09-01

    To investigate the effect of simvastatin on inducing endothelial progenitor cells (EPCs) homing and promoting bone defect repair, and to explore the mechanism of local implanting simvastatin in promoting bone formation. Simvastatin (50 mg) compounded with polylactic acid (PLA, 200 mg) or only PLA (200 mg) was dissolved in acetone (1 mL) to prepare implanted materials (Simvastatin-PLA material, PLA material). EPCs were harvested from bone marrow of 2 male rabbits and cultured with M199; after identified by immunohistochemistry, the cell suspension of EPCs at the 3rd generation (2 x 10(6) cells/mL) was prepared and transplanted into 12 female rabbits through auricular veins (2 mL). After 3 days, the models of cranial defect with 15 cm diameter were made in the 12 female rabbits. And the defects were repaired with Simvastatin-PLA materials (experimental group, n=6) and PLA materials (control group, n=6), respectively. The bone repair was observed after 8 weeks of operation by gross appearance, X-ray film, and histology; gelatin-ink perfusion and HE staining were used to show the new vessels formation in the defect. Fluorescence in situ hybridization (FISH) was performed to show the EPCs homing at the defect site. All experimental animals of 2 groups survived to the end of the experiment. After 8 weeks in experimental group, new bone formation was observed in the bone defect by gross and histology, and an irregular, hyperdense shadow by X-ray film; no similar changes were observed in control group. FISH showed that the male EPC containing Y chromosome was found in the wall of new vessels in the defect of experimental group, while no male EPC containing Y chromosome was found in control group. The percentage of new bone formation in defect area was 91.63% +/- 4.07% in experimental group and 59.45% +/- 5.43% in control group, showing significant difference (P < 0.05). Simvastatin can promote bone defect repair, and its mechanism is probably associated with inducing EPCs

  20. Mitochondrial respiratory chain Complex I defects in Fanconi anemia complementation group A.

    Science.gov (United States)

    Ravera, Silvia; Vaccaro, Daniele; Cuccarolo, Paola; Columbaro, Marta; Capanni, Cristina; Bartolucci, Martina; Panfoli, Isabella; Morelli, Alessandro; Dufour, Carlo; Cappelli, Enrico; Degan, Paolo

    2013-10-01

    Fanconi anemia (FA) is a rare and complex inherited blood disorder of the child. At least 15 genes are associated with the disease. The highest frequency of mutations belongs to groups A, C and G. Genetic instability and cytokine hypersensitivity support the selection of leukemic over non-leukemic stem cells. FA cellular phenotype is characterized by alterations in red-ox state, mitochondrial functionality and energy metabolism as reported in the past however a clear picture of the altered biochemical phenotype in FA is still elusive and the final biochemical defect(s) still unknown. Here we report an analysis of the respiratory fluxes in FANCA primary fibroblasts, lymphocytes and lymphoblasts. FANCA mutants show defective respiration through Complex I, diminished ATP production and metabolic sufferance with an increased AMP/ATP ratio. Respiration in FANCC mutants is normal. Treatment with N-acetyl-cysteine (NAC) restores oxygen consumption to normal level. Defective respiration in FANCA mutants appear correlated with the FA pro-oxidative phenotype which is consistent with the altered morphology of FANCA mitochondria. Electron microscopy measures indeed show profound alterations in mitochondrial ultrastructure and shape. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Birth Defects (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Birth Defects KidsHealth / For Parents / Birth Defects What's in ... Prevented? Print en español Anomalías congénitas What Are Birth Defects? While still in the womb, some babies ...

  2. Molecular beam epitaxy of GaN(0001) utilizing NH3 and/or NH+x ions: Growth kinetics and defect structure

    International Nuclear Information System (INIS)

    Lee, N.; Powell, R.C.; Kim, Y.; Greene, J.E.

    1995-01-01

    Gas-source molecular beam epitaxy (GS-MBE), utilizing Ga and NH 3 , and reactive-ion MBE (RIMBE), incorporating both thermal NH 3 and low-energy NH + x ions, were used to grow single crystal GaN(0001) layers on Al 2 O 3 (0001) at temperatures T s between 700 and 850 degree C with deposition rates of 0.2--0.5 μm h -1 . The RIMBE experiments were carried out with incident NH + x /Ga flux ratios J NH + x /J Ga =1.9--3.2 and NH + x acceleration energies E NH + x =45--90 eV. Plan-view and cross-sectional transmission electron microscopy analyses showed that the primary defects in the GS-MBE films were threading dislocations having either pure edge or mixed edge/screw characteristics with Burgers vectors bar b=1/3 left-angle 2 bar 1 bar 10 right-angle, basal-plane stacking faults with displacement vectors bar R=1/6 left-angle 02 bar 23 right-angle, and prismatic stacking faults with bar R=1/2 left-angle bar 1101 right-angle. In the case of RIMBE films, no stacking faults or residual ion-induced defects were observed with E NH + x =45 eV and T s ≥800 degree C. However, increasing E NH + x to ≥60 eV at T s =800 degree C gave rise to the formation of residual ion-induced point-defect clusters observable by transmission electron microscopy (TEM). Increasing T s to 850 degree C with E NH + x ≥60 eV resulted in the ion-induced defects aggregating to form interstitial basal and prismatic dislocation loops, whose number densities depended upon the ion flux, with Burgers vectors 1/2 left-angle 0001 right-angle and 1/3 left-angle 2 bar 1 bar 10 right-angle, respectively. (Abstract Truncated)

  3. [Complex skull defects reconstruction with САD/САМ titanium and polyetheretherketone (PEEK) implants].

    Science.gov (United States)

    Eolchiyan, S A

    2014-01-01

    Predictable and stable functional and aesthetic result is the aim of priority for the neurosurgeon dealing with the reconstruction of large cranial bone defects and complex-formed skull defects involving cranio-orbital region. the paper presents the experience with САD/САМ titanium and polyetheretherketone (PEEK) implants for complex-formed and large skull bone defects reconstruction. Between 2005 and 2013 nine patients (5 females and 4 males) underwent cranioplasty and cranio-facial reconstruction with insertion of the customized САD/САМ titanium and PEEK implants. Computer-assisted preoperative planning was undertaken by the surgeon and the engineer together in 3 cases to provide accurate implant design. Eight patients had complex-formed and large posttraumatic defects of fronto-orbital (7 cases) and parietal (one case) regions. In two of these cases one-step reconstruction surgery for posttraumatic fronto-orbital defects combined with adjacent orbital roof (one case) and orbito-zygomatic (one case) deformities was performed. One patient underwent one-step primary cranioplasty after cranio-orbital fibrous dysplasia focus resection. Titanium implants were used in 4 cases while PEEK implants - in 5 ones. The follow-up period ranged from 6 months till 8,5 years (median 4,4 years). The accuracy of the implant intraoperative fit was perfect in all cases. Postoperative wounds healed primary and there were no any complications in the series presented. Post-op clinical assessment and CT data testified to high implants precision, good functional and aesthetic outcomes in all patients. САD/САМ titanium and PEEK implants application should allow for optimal reconstruction in the challenging patients with complex-formed and large skull bone defects providing predictable good functional and aesthetic result together with surgery morbidity and duration reduction. Computer-assisted preoperative planning should be undertaken for САD/САМ implants creation in

  4. Stringy models of modified gravity: space-time defects and structure formation

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2013-01-01

    Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only

  5. Dental enamel defects in adult coeliac disease: prevalence and correlation with symptoms and age at diagnosis.

    Science.gov (United States)

    Trotta, Lucia; Biagi, Federico; Bianchi, Paola I; Marchese, Alessandra; Vattiato, Claudia; Balduzzi, Davide; Collesano, Vittorio; Corazza, Gino R

    2013-12-01

    Coeliac disease is a condition characterized by a wide spectrum of clinical manifestations. Any organ can be affected and, among others, dental enamel defects have been described. Our aims were to study the prevalence of dental enamel defects in adults with coeliac disease and to investigate a correlation between the grade of teeth lesion and clinical parameters present at the time of diagnosis of coeliac disease. A dental examination was performed in 54 coeliac disease patients (41 F, mean age 37 ± 13 years, mean age at diagnosis 31 ± 14 years). Symptoms leading to diagnosis were diarrhoea/weight loss (32 pts.), anaemia (19 pts.), familiarity (3 pts.); none of the patients was diagnosed because of enamel defects. At the time of evaluation, they were all on a gluten-free diet. Enamel defects were classified from grade 0 to 4 according to its severity. Enamel defects were observed in 46/54 patients (85.2%): grade 1 defects were seen in 18 patients (33.3%) grade 2 in 16 (29.6%), grade 3 in 8 (14.8%), and grade 4 in 4 (7.4%). We also observed that grades 3 and 4 were more frequent in patients diagnosed with classical rather than non-classical coeliac disease (10/32 vs. 2/20). However, this was not statistically significant. This study confirms that enamel defects are common in adult coeliac disease. Observation of enamel defects is an opportunity to diagnose coeliac disease. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  6. Formation of topological defects

    International Nuclear Information System (INIS)

    Vachaspati, T.

    1991-01-01

    We consider the formation of point and line topological defects (monopoles and strings) from a general point of view by allowing the probability of formation of a defect to vary. To investigate the statistical properties of the defects at formation we give qualitative arguments that are independent of any particular model in which such defects occur. These arguments are substantiated by numerical results in the case of strings and for monopoles in two dimensions. We find that the network of strings at formation undergoes a transition at a certain critical density below which there are no infinite strings and the closed-string (loop) distribution is exponentially suppressed at large lengths. The results are contrasted with the results of statistical arguments applied to a box of strings in dynamical equilibrium. We argue that if point defects were to form with smaller probability, the distance between monopoles and antimonopoles would decrease while the monopole-to-monopole distance would increase. We find that monopoles are always paired with antimonopoles but the pairing becomes clean only when the number density of defects is small. A similar reasoning would also apply to other defects

  7. Photographic guide of selected external defect indicators and associated internal defects in sugar maple

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for sugar maple. Eleven types of external...

  8. Photographic guide of selected external defect indicators and associated internal defects in yellow-poplar

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow-poplar. Twelve types of external...

  9. Photographic guide of selected external defect indicators and associated internal defects in yellow birch

    Science.gov (United States)

    Everette D. Rast; John A. Beaton; David L. Sonderman

    1991-01-01

    To properly classify or grade logs or trees, one must be able to correctly identify defect indicators and assess the effect of the underlying defect on possible end products. This guide assists the individual in identifying the surface defect indicator and shows the progressive stages of the defect throughout its development for yellow birch. Eleven types of external...

  10. Microstructural defects modeling in the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, Maria I.; Fernandez, Julian R.; Monti, Ana M.

    2006-01-01

    In this work we have utilized computer simulation techniques to study microstructural defects, such as point defects and interfaces, in the Al-Mo alloy. Such alloy is taken as a model to study the Al(fcc)/U-Mo(bcc) interface. The EAM interatomic potential used has been fitted to the formation energy and lattice constant of the AlMo 3 intermetallic. Formation of vacancies for both components Al and Mo and anti-sites, Al Mo and Mo Al , as well as vacancy migration was studied in this structure. We found that the lowest energy defect complex that preserves stoichiometry is the antisite pair Al Mo +Mo Al , in correspondence with other intermetallics of the same structure. Our results also suggest that the structure of the Al(fcc)/Mo(bcc) interface is unstable, while that of the Al(fcc)/Al 5 Mo interface is stable, as observed experimentally. (author) [es

  11. Peer Observation of Teaching: Perceptions and Experiences of Teachers in a Primary School in Cyprus

    Science.gov (United States)

    Karagiorgi, Yiasemina

    2012-01-01

    This article examines teachers' perceptions of, and experiences with, professional development opportunities involving a school-based project on peer observation of teaching. The study aims to reveal the ways in which seven teachers in one primary school in Cyprus see themselves as agents improving their own and peers' teaching through informal…

  12. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex.

    Science.gov (United States)

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C; Fischer, Alain; Durandy, Anne

    2015-04-01

    Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Time course of transient cortical scintigraphic defects associated with acute pyelonephritis

    Energy Technology Data Exchange (ETDEWEB)

    Ditchfield, Michael R.; Summerville, Dianne; Cook, David J.; Campo, John F. de [Department of Radiology, Royal Children' s Hospital, Melbourne 3052 (Australia); Grimwood, Keith; Nolan, Terrance M. [Department of General Paediatrics, Royal Children' s Hospital, Melbourne (Australia); Department of Paediatrics, University of Melbourne, Melbourne (Australia); Powell, Harley R. [Department of Nephrology, Royal Children' s Hospital, Melbourne (Australia); Sloane, Robert [Department of General Paediatrics, Royal Children' s Hospital, Melbourne (Australia)

    2002-12-01

    Acute pyelonephritis is distinguished from renal scarring using repeat cortical scintigraphy. The defects of acute pyelonephritis resolve, while those of scars persist. To determine the duration of reversible cortical defects following acute pyelonephritis and the time interval required to differentiate infection from scars. Materials and methods. An observational prospective study of 193 children (386 kidneys) aged less than 5 years following their first proven urinary tract infection (UTI). Renal cortical scintigraphic defects were detected in 112 (29%) kidneys within 15 days of diagnosis. Of these, 95 underwent repeat renal cortical scans 2 years after the UTI, including 50 with additional scans performed within 2-6 months of infection. Of the 50 kidneys undergoing a second renal cortical scan within 2-6 months of the first UTI, 22 (44%) had persistent defects. A third scan was performed on 17 (77%) kidneys after 2 years, by which time defects had resolved in another 8 (47%) kidneys. The predictive value of defects detected within 2-6 months of UTI representing scars is 53% (95% CI 28, 77). Overall, nine (18%) kidneys with initial renal cortical abnormalities had permanent defects. In the 45 kidneys undergoing a second cortical scan more than 6 months after the UTI, 11 (24%) had persistent defects. None of the 95 kidneys undergoing serial scans developed new or larger defects. Renal scars may not be reliably diagnosed by cortical scintigraphy performed within 6 months of UTI because the inflammatory lesions may not have fully resolved. (orig.)

  14. Time course of transient cortical scintigraphic defects associated with acute pyelonephritis

    International Nuclear Information System (INIS)

    Ditchfield, Michael R.; Summerville, Dianne; Cook, David J.; Campo, John F. de; Grimwood, Keith; Nolan, Terrance M.; Powell, Harley R.; Sloane, Robert

    2002-01-01

    Acute pyelonephritis is distinguished from renal scarring using repeat cortical scintigraphy. The defects of acute pyelonephritis resolve, while those of scars persist. To determine the duration of reversible cortical defects following acute pyelonephritis and the time interval required to differentiate infection from scars. Materials and methods. An observational prospective study of 193 children (386 kidneys) aged less than 5 years following their first proven urinary tract infection (UTI). Renal cortical scintigraphic defects were detected in 112 (29%) kidneys within 15 days of diagnosis. Of these, 95 underwent repeat renal cortical scans 2 years after the UTI, including 50 with additional scans performed within 2-6 months of infection. Of the 50 kidneys undergoing a second renal cortical scan within 2-6 months of the first UTI, 22 (44%) had persistent defects. A third scan was performed on 17 (77%) kidneys after 2 years, by which time defects had resolved in another 8 (47%) kidneys. The predictive value of defects detected within 2-6 months of UTI representing scars is 53% (95% CI 28, 77). Overall, nine (18%) kidneys with initial renal cortical abnormalities had permanent defects. In the 45 kidneys undergoing a second cortical scan more than 6 months after the UTI, 11 (24%) had persistent defects. None of the 95 kidneys undergoing serial scans developed new or larger defects. Renal scars may not be reliably diagnosed by cortical scintigraphy performed within 6 months of UTI because the inflammatory lesions may not have fully resolved. (orig.)

  15. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  16. Total diffusing power of perturbed lattices and dissymmetry of reflections. Case of groups of defects

    International Nuclear Information System (INIS)

    Tournarie, Max

    1959-01-01

    The total diffusing power for a crystallite of any form containing a centrosymmetric defect has been established. The antisymmetrical part of the deformation potential only contributes very slightly to the primary dissymmetry. We then go on to study the case of a group of defects of the same type. The calculation converges sufficiently to describe the thermal agitation of an infinite crystal. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', t. 248, p. 2103-2105, sitting of April 6, 1959 [fr

  17. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  18. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  19. Electronic properties of graphene with single vacancy and Stone-Wales defects

    International Nuclear Information System (INIS)

    Zaminpayma, Esmaeil; Razavi, Mohsen Emami; Nayebi, Payman

    2017-01-01

    Highlights: • The electronic properties of graphene device with single vacancy (SV) and Stone-Wales (SW) defect have been studied. • The first principles calculations have been performed based on self-consistent charge density functional tight-binding. • The density of state, current voltage curves of pure graphene and graphene with SV and SW defects have been investigated. • Transmission spectrum of pristine graphene device and graphene with SV and SW defects has been examined. - Abstract: The first principles calculations have been performed based on self-consistent charge density functional tight-binding in order to examine the electronic properties of graphene with single vacancy (SV) and Stone-Wales (SW) defects. We have optimized structures of pristine graphene and graphene with SV and SW defects. The bond lengths, current-voltage curve and transmission probability have been calculated. We found that the bond length for relaxed graphene is 1.43 Å while for graphene with SV and SW defects the bond lengths are 1.41 Å and 1.33 Å, respectively. For the SV defect, the arrangement of atoms with three nearest neighbors indicates sp_2 bonding. While for SW defect, the arrangement of atoms suggests nearly sp bonding. From the current-voltage curve for graphene with defects we have determined that the behavior of the I–V curves is nonlinear. It is also found that the SV and SW defects cause to decrease the current compared to the pristine graphene case. Furthermore, the single vacancy defect reduces the current more than the Stone-Wales defect. Moreover, we observed that by increasing the voltage from zero to 1 V new peaks near Fermi level in the transmission probability curves have been created.

  20. Electronic properties of graphene with single vacancy and Stone-Wales defects

    Energy Technology Data Exchange (ETDEWEB)

    Zaminpayma, Esmaeil [Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Razavi, Mohsen Emami, E-mail: razavi246@gmail.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of)

    2017-08-31

    Highlights: • The electronic properties of graphene device with single vacancy (SV) and Stone-Wales (SW) defect have been studied. • The first principles calculations have been performed based on self-consistent charge density functional tight-binding. • The density of state, current voltage curves of pure graphene and graphene with SV and SW defects have been investigated. • Transmission spectrum of pristine graphene device and graphene with SV and SW defects has been examined. - Abstract: The first principles calculations have been performed based on self-consistent charge density functional tight-binding in order to examine the electronic properties of graphene with single vacancy (SV) and Stone-Wales (SW) defects. We have optimized structures of pristine graphene and graphene with SV and SW defects. The bond lengths, current-voltage curve and transmission probability have been calculated. We found that the bond length for relaxed graphene is 1.43 Å while for graphene with SV and SW defects the bond lengths are 1.41 Å and 1.33 Å, respectively. For the SV defect, the arrangement of atoms with three nearest neighbors indicates sp{sub 2} bonding. While for SW defect, the arrangement of atoms suggests nearly sp bonding. From the current-voltage curve for graphene with defects we have determined that the behavior of the I–V curves is nonlinear. It is also found that the SV and SW defects cause to decrease the current compared to the pristine graphene case. Furthermore, the single vacancy defect reduces the current more than the Stone-Wales defect. Moreover, we observed that by increasing the voltage from zero to 1 V new peaks near Fermi level in the transmission probability curves have been created.

  1. Entanglement entropy in integrable field theories with line defects II. Non-topological defect

    Science.gov (United States)

    Jiang, Yunfeng

    2017-08-01

    This is the second part of two papers where we study the effect of integrable line defects on bipartite entanglement entropy in integrable field theories. In this paper, we consider non-topological line defects in Ising field theory. We derive an infinite series expression for the entanglement entropy and show that both the UV and IR limits of the bulk entanglement entropy are modified by the line defect. In the UV limit, we give an infinite series expression for the coefficient in front of the logarithmic divergence and the exact defect g-function. By tuning the defect to be purely transmissive and reflective, we recover correctly the entanglement entropy of the bulk and with integrable boundary respectively.

  2. Autoimmunity and primary immunodeficiency: two sides of the same coin?

    Science.gov (United States)

    Schmidt, Reinhold E; Grimbacher, Bodo; Witte, Torsten

    2017-12-19

    Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.

  3. Freestyle multiple propeller flap reconstruction (jigsaw puzzle approach) for complicated back defects.

    Science.gov (United States)

    Park, Sung Woo; Oh, Tae Suk; Eom, Jin Sup; Sun, Yoon Chi; Suh, Hyun Suk; Hong, Joon Pio

    2015-05-01

    The reconstruction of the posterior trunk remains to be a challenge as defects can be extensive, with deep dead space, and fixation devices exposed. Our goal was to achieve a tension-free closure for complex defects on the posterior trunk. From August 2006 to May 2013, 18 cases were reconstructed with multiple flaps combining perforator(s) and local skin flaps. The reconstructions were performed using freestyle approach. Starting with propeller flap(s) in single or multilobed design and sequentially in conjunction with adjacent random pattern flaps such as fitting puzzle. All defects achieved tensionless primary closure. The final appearance resembled a jigsaw puzzle-like appearance. The average size of defect was 139.6 cm(2) (range, 36-345 cm(2)). A total of 26 perforator flaps were used in addition to 19 random pattern flaps for 18 cases. In all cases, a single perforator was used for each propeller flap. The defect and the donor site all achieved tension-free closure. The reconstruction was 100% successful without flap loss. One case of late infection was noted at 12 months after surgery. Using multiple lobe designed propeller flaps in conjunction with random pattern flaps in a freestyle approach, resembling putting a jigsaw puzzle together, we can achieve a tension-free closure by distributing the tension to multiple flaps, supplying sufficient volume to obliterate dead space, and have reliable vascularity as the flaps do not need to be oversized. This can be a viable approach to reconstruct extensive defects on the posterior trunk. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. The Staff Observation Aggression Scale - Revised (SOAS-R) - adjustment and validation for emergency primary health care.

    Science.gov (United States)

    Morken, Tone; Baste, Valborg; Johnsen, Grethe E; Rypdal, Knut; Palmstierna, Tom; Johansen, Ingrid Hjulstad

    2018-05-08

    Many emergency primary health care workers experience aggressive behaviour from patients or visitors. Simple incident-reporting procedures exist for inpatient, psychiatric care, but a similar and simple incident-report for other health care settings is lacking. The aim was to adjust a pre-existing form for reporting aggressive incidents in a psychiatric inpatient setting to the emergency primary health care settings. We also wanted to assess the validity of the severity scores in emergency primary health care. The Staff Observation Scale - Revised (SOAS-R) was adjusted to create a pilot version of the Staff Observation Scale - Revised Emergency (SOAS-RE). A Visual Analogue Scale (VAS) was added to the form to judge the severity of the incident. Data for validation of the pilot version of SOAS-RE were collected from ten casualty clinics in Norway during 12 months. Variance analysis was used to test gender and age differences. Linear regression analysis was performed to evaluate the relative impact that each of the five SOAS-RE columns had on the VAS score. The association between SOAS-RE severity score and VAS severity score was calculated by the Pearson correlation coefficient. The SOAS-R was adjusted to emergency primary health care, refined and called The Staff Observation Aggression Scale - Revised Emergency (SOAS-RE). A total of 350 SOAS-RE forms were collected from the casualty clinics, but due to missing data, 291 forms were included in the analysis. SOAS-RE scores ranged from 1 to 22. The mean total severity score of SOAS-RE was 10.0 (standard deviation (SD) =4.1) and the mean VAS score was 45.4 (SD = 26.7). We found a significant correlation of 0.45 between the SOAS-RE total severity scores and the VAS severity ratings. The linear regression analysis showed that individually each of the categories, which described the incident, had a low impact on the VAS score. The SOAS-RE seems to be a useful instrument for research, incident-recording and management

  5. Visible-blind and solar-blind detection induced by defects in AlGaN high electron mobility transistors

    Science.gov (United States)

    Armstrong, Andrew M.; Klein, Brianna; Allerman, Andrew A.; Douglas, Erica A.; Baca, Albert G.; Crawford, Mary H.; Pickrell, Greg W.; Sanchez, Carlos A.

    2018-03-01

    Visible- and solar-blind detection was demonstrated using Al0.45Ga0.55N/Al0.30Ga0.70N and Al0.85Ga0.25N/Al0.70Ga0.30N high electron mobility transistors (HEMTs), respectively. Peak responsivities (S) of 3.9 × 106 A/W in the saturation mode and 6.2 × 104 A/W in the pinch-off mode were observed for the visible-blind Al0.45Ga0.55N/Al0.30Ga0.70N HEMT, and a peak S of 4.9 × 104 A/W was observed for the solar-blind Al0.85Ga0.15N/Al0.70Ga0.30N HEMT in the saturation mode. Spectrally resolved photocurrent investigation indicated that sub-bandgap absorption by defect states was the primary origin of the HEMTs' photoresponse. Defect-mediated responsivity caused slow photocurrent rise and fall times, but electrical pulsing was used to improve the bandwidth at the cost of optical gain. Operating HEMTs in this dynamic mode achieved a 25 Hz bandwidth with S = 2.9 × 105 A/W in accumulation and S = 2.0 × 104 A/W in pinch-off for visible-blind detection and S = 5.1 × 103 A/W for solar-blind detection.

  6. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  7. Early rehabilitation of facial defects using interim removable prostheses: A clinical case report

    Directory of Open Access Journals (Sweden)

    Vivekanandhan Ramkumar

    2013-01-01

    Full Text Available Surgical resection of neoplasms or malformations of the face may result in defects that are not amenable to immediate surgical reconstruction. Such defects can have a severe adverse effect on patient perceptions of body image and self-esteem. In these cases, the use of an interim removable facial prosthesis can offer a rapid alternative treatment solution. The patient may then resume social interactions more comfortably while permitting easy access to the facial defect to observe tissue healing while awaiting definitive rehabilitation. This article presents a case report describing the use of interim nasal prostheses to provide rapid patient rehabilitation of facial defects.

  8. Natural defects and defects created by ionic implantation in zinc tellurium

    International Nuclear Information System (INIS)

    Roche, J.P.; Dupuy, M.; Pfister, J.C.

    1977-01-01

    Various defects have been studied in ZnTe crystals by transmission electron microscope and by scanning electron microscope in cathodo-luminescence mode: grain boundaries, sub-grain boundaries, twins. Ionic implants of boron (100 keV - 2x10 14 and 10 15 ions cm -2 ) were made on these crystals followed by isochrone annealing (30 minutes) of zinc under partial pressure at 550, 650 and 750 0 C. The nature of the defects was determined by transmission electron microscope: these are interstitial loops (b=1/3 ) the size of which varies between 20 A (non-annealed sample) and 180A (annealed at 750 0 C). The transmission electron microscope was also used to make concentration profiles of defects depending on depth. It is found that for the same implant (2x10 14 ions.cm -2 ), the defect peak moves towards the exterior of the crystal as the annealing temperature rises (400 - 1000 and 7000 A for the three annealings). These results are explained from a model which allows for the coalescence of defects and considers the surface of the sample as being the principal source of vacancies. During the annealings, the migration of vacancies brings about the gradual annihilation of the implant defects. The adjustment of certain calculation parameters on the computer result in giving 2 eV as energy value for the formation of vacancies [fr

  9. Building and design defects observed in the residential sector and the types of damage observed in recent earthquakes in Turkey

    Science.gov (United States)

    Tolga Çöğürcü, M.

    2015-01-01

    Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Marmara earthquake had an approximate death toll of more than 20 000, and in 2011, the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-seismic steel detailing, and inappropriate structural systems including several architectural irregularities. In this study, the general characteristics of Turkish building stock and the deficiencies observed in structural systems are explained, and illustrative figures are given with reference to Turkish Earthquake Code 2007 (TEC, 2007). The poor concrete quality, lack of lateral or transverse reinforcement in beam-column joints and column confinement zones, high stirrup spacings, under-reinforced columns and over-reinforced beams are the primary causes of failures. Other deficiencies include weak column-stronger beam formations, insufficient seismic joint separations, soft story or weak story irregularities and short columns. Similar construction and design mistakes are also observed in other countries situated on active earthquake belts. Existing buildings still have these undesirable characteristics, so to prepare for future earthquakes, they must be rehabilitated.

  10. An exploratory analysis of the relationship between ambient ozone and particulate matter concentrations during early pregnancy and selected birth defects in Texas

    International Nuclear Information System (INIS)

    Vinikoor-Imler, Lisa C.; Stewart, Thomas G.; Luben, Thomas J.; Davis, J. Allen; Langlois, Peter H.

    2015-01-01

    We performed an exploratory analysis of ozone (O 3 ) and fine particulate matter (PM 2.5 ) concentrations during early pregnancy and multiple types of birth defects. Data on births were obtained from the Texas Birth Defects Registry (TBDR) and the National Birth Defects Prevention Study (NBDPS) in Texas. Air pollution concentrations were previously determined by combining modeled air pollution concentrations with air monitoring data. The analysis generated hypotheses for future, confirmatory studies; although many of the observed associations were null. The hypotheses are provided by an observed association between O 3 and craniosynostosis and inverse associations between PM 2.5 and septal and obstructive heart defects in the TBDR. Associations with PM 2.5 for septal heart defects and ventricular outflow tract obstructions were null using the NBDPS. Both the TBDR and the NBPDS had inverse associations between O 3 and septal heart defects. Further research to confirm the observed associations is warranted. - Highlights: • Air pollution concentrations combined modeled air data and air monitoring data. • No associations were observed between the majority of birth defects and PM 2.5 and O 3 . • Estimated associations between PM 2.5 and certain heart defects varied by dataset. • Results were suggestive of an inverse association between O 3 and septal heart defects. • Higher O 3 concentrations may be associated with increased odds of craniosynostosis. - Although most observed associations between ozone and fine particulate matter concentrations and birth defects were null, some were present and warrant further consideration

  11. Modeling the relationships among internal defect features and external Appalachian hardwood log defect indicators

    Science.gov (United States)

    R. Edward. Thomas

    2009-01-01

    As a hardwood tree grows and develops, surface defects such as branch stubs and wounds are overgrown. Evidence of these defects remain on the log surface for decades and in many instances for the life of the tree. As the tree grows the defect is encapsulated or grown over by new wood. During this process the appearance of the defect in the tree's bark changes. The...

  12. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    Energy Technology Data Exchange (ETDEWEB)

    Crocombette, Jean-Paul, E-mail: jpcrocombette@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, UPSay, F-91191 Gif-sur-Yvette (France); Van Brutzel, Laurent [CEA, DEN, Service de Corrosion et du Comportement des Matériaux dans leur Environnement, UPSay, F-91191 Gif-sur-Yvette (France); Simeone, David [CEA, DEN, Service de Recherches de Métallurgie Appliqué, Matériaux Fonctionnels pour l' Energie, CNRS-CEA-ECP, UPSay, F-91191 Gif-sur-Yvette (France); Luneville, Laurence [CEA, DEN, Service d' Etudes des Réacteurs et de Mathématiques Appliquées, Matériaux Fonctionnels pour l' Energie, CNRS-CEA-ECP, UPSay, F-91191 Gif-sur-Yvette (France)

    2016-06-15

    Displacement cascades have been calculated in two ordered alloys (Ni{sub 3}Al and UO{sub 2}) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  13. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    International Nuclear Information System (INIS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-01-01

    Displacement cascades have been calculated in two ordered alloys (Ni_3Al and UO_2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  14. Tuning optical properties of opal photonic crystals by structural defects engineering

    Science.gov (United States)

    di Stasio, F.; Cucini, M.; Berti, L.; Comoretto, D.; Abbotto, A.; Bellotto, L.; Manfredi, N.; Marinzi, C.

    2009-06-01

    We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 mm doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T) and photoluminescence spectroscopy (PL) Evidence of defect states were observed in T and R spectra which allow the light to propagate for selected frequencies within the pseudogap (stop band).

  15. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    Science.gov (United States)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  16. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  17. Cause of defect in the end plug welding of the JOYO fuel pin

    International Nuclear Information System (INIS)

    Ouchi, Masaru; Otani, Seiji; Onisi, Koichi; Tateisi, Yoshinori; Ikawa, Yukio.

    1976-01-01

    About twelve thousand fuel pins for the JOYO core fuel were fabricated, and their end plug welding was inspected by X-ray radiography. The defect fractions were 0.2 percent for the lower end plugs and 1.8 percent for the upper, respectively. It had been known that the defect was due to ''line porosity''. In this study, the cause of the ''line porosity defect'' was investigated by the welding experiment performed on some dummy specimens of three different types; open end; closed end; and closed end with dummy pellets and a spring. The position of electrodes was varied for changing the arc gap from 0.3 mm to 1.2 mm. The experimental results are summarized in tables. The results showed that no defect was found in the open end type specimens even with the arc gap of 1.2 mm. Whereas in the other two types of specimens, the defect fraction of 60 to 75 percent was observed with the same arc gap. As for the effect of the arc gap, it was shown that 0.3 mm is the best among 0.3 mm, 0.5 mm and 1.2 mm. No defect was observed in the third type of specimens with the arc gap of 0.3 mm. In summary, it was found that the line porosity defect did not depend on the shape of the end plugs. It is considered to be dependent on both the structure of dummy fuel pins and the position of electrodes. (Aoki, K.)

  18. Exploring and Controlling Intrinsic Defect Formation in SnO2 Thin Films

    KAUST Repository

    Porte, Yoann; Maller, Robert; Faber, Hendrik; Alshareef, Husam N.; Anthopoulos, Thomas D; McLachlan, Martyn

    2015-01-01

    By investigating the influence of key growth variables on the measured structural and electrical properties of SnO2 prepared by Pulsed Laser Deposition (PLD) we demonstrate fine control of intrinsic n-type defect formation. Variation of growth temperatures shows oxygen vacancies (VO) as the dominant defect which can be compensated for by thermal oxidation at temperatures > 500°C. As a consequence films with carrier concentrations in the range 1016-1019 cm-3 can be prepared by adjusting temperature alone. By altering the background oxygen pressure (PD) we observe a change in the dominant defect - from tin interstitials (Sni) at low PD (< 50 mTorr) to VO at higher oxygen pressures with similar ranges of carrier concentrations observed. Finally we demonstrate the importance of controlling the composition target surface used for PLD by exposing a target to > 100,000 laser pulses. Here carrier concentrations > 1x1020 cm-3 are observed that are attributed to high concentrations of Sni which cannot be completely compensated for by modifying the growth parameters.

  19. Exploring and Controlling Intrinsic Defect Formation in SnO2 Thin Films

    KAUST Repository

    Porte, Yoann

    2015-12-15

    By investigating the influence of key growth variables on the measured structural and electrical properties of SnO2 prepared by Pulsed Laser Deposition (PLD) we demonstrate fine control of intrinsic n-type defect formation. Variation of growth temperatures shows oxygen vacancies (VO) as the dominant defect which can be compensated for by thermal oxidation at temperatures > 500°C. As a consequence films with carrier concentrations in the range 1016-1019 cm-3 can be prepared by adjusting temperature alone. By altering the background oxygen pressure (PD) we observe a change in the dominant defect - from tin interstitials (Sni) at low PD (< 50 mTorr) to VO at higher oxygen pressures with similar ranges of carrier concentrations observed. Finally we demonstrate the importance of controlling the composition target surface used for PLD by exposing a target to > 100,000 laser pulses. Here carrier concentrations > 1x1020 cm-3 are observed that are attributed to high concentrations of Sni which cannot be completely compensated for by modifying the growth parameters.

  20. Holographic Chern-Simons defects

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-01-01

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  1. Defects in electron irradiated vitreous SiO[sub 2] probed by positron annihiliation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro (Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science); Kawano, Takao (Tsukuba Univ., Ibaraki (Japan). Radioisotope Centre); Itoh, Hisayoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-10-10

    Defects in 3 MeV electron irradiated vitreous SiO[sub 2] (v-SiO[sub 2]) were probed by the positron annihilation technique. For unirradiated v-SiO[sub 2] specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author).

  2. A field study on root cause analysis of defects in space software

    International Nuclear Information System (INIS)

    Silva, Nuno; Cunha, João Carlos; Vieira, Marco

    2017-01-01

    Critical systems, such as space systems, are developed under strict requirements envisaging high integrity in accordance to specific standards. For such software systems, an independent assessment is put into effect (Independent Software Verification and Validation – ISVV) after the regular development lifecycle and V&V activities, aiming at finding residual faults and raising confidence in the software. However, it has been observed that there is still a significant number of defects remaining at this stage, questioning the effectiveness of the previous engineering processes. This paper presents a root cause analysis of 1070 defects found in four space software projects during ISVV, by applying an improved Orthogonal Defect Classification (ODC) taxonomy and examining the defect types, triggers and impacts, in order to identify why they reached such a later stage in the development. The paper also puts forward proposals for modifications to both the software development (to prevent defects) and the V&V activities (to better detect defects) and an assessment methodology for future works on root cause analysis. - Highlights: • Root cause analysis of space software defects by using an enhanced ODC taxonomy. • Prioritization of the root causes according to the more important defect impacts. • Identification of improvements to systems engineering and development processes. • Improvements to V&V activities as means to reduce the occurrence of defects. • Generic process to achieve the defects root causes and the corrections suggestions.

  3. Dental enamel defect diagnosis through different technology-based devices.

    Science.gov (United States)

    Kobayashi, Tatiana Yuriko; Vitor, Luciana Lourenço Ribeiro; Carrara, Cleide Felício Carvalho; Silva, Thiago Cruvinel; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira; Oliveira, Thais Marchini

    2018-06-01

    Dental enamel defects (DEDs) are faulty or deficient enamel formations of primary and permanent teeth. Changes during tooth development result in hypoplasia (a quantitative defect) and/or hypomineralisation (a qualitative defect). To compare technology-based diagnostic methods for detecting DEDs. Two-hundred and nine dental surfaces of anterior permanent teeth were selected in patients, 6-11 years of age, with cleft lip with/without cleft palate. First, a conventional clinical examination was conducted according to the modified Developmental Defects of Enamel Index (DDE Index). Dental surfaces were evaluated using an operating microscope and a fluorescence-based device. Interexaminer reproducibility was determined using the kappa test. To compare groups, McNemar's test was used. Cramer's V test was used for comparing the distribution of index codes obtained after classification of all dental surfaces. Cramer's V test revealed statistically significant differences (P < .0001) in the distribution of index codes obtained using the different methods; the coefficients were 0.365 for conventional clinical examination versus fluorescence, 0.961 for conventional clinical examination versus operating microscope and 0.358 for operating microscope versus fluorescence. The sensitivity of the operating microscope and fluorescence method was statistically significant (P = .008 and P < .0001, respectively). Otherwise, the results did not show statistically significant differences in accuracy and specificity for either the operating microscope or the fluorescence methods. This study suggests that the operating microscope performed better than the fluorescence-based device and could be an auxiliary method for the detection of DEDs. © 2017 FDI World Dental Federation.

  4. First-principles study of point defects in CePO{sub 4} monazite

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong; Zhao, Xiaofeng [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Teng, Yuancheng, E-mail: tyc239@163.com [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Bi, Beng [Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010 (China); Wang, Lili [Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, Lang; Zhang, Kuibao [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2016-12-15

    CePO{sub 4} monazite is an important radiation-resistant material that may act as a potential minor actinides waste form. Here, we present the results of the calculations for the basic radiation defect modellings in CePO{sub 4} crystals, along with the examination of their defect formation energies and effect of the defect concentrations. This study focused on building a fully-relaxed CePO{sub 4} model with the step iterative optimization from the DFT-GGA calculations using the VASP and CASTEP databases. The results show that the Frenkel defect configuration resulting from the center interstitials has a lower energy when compared to two adjacent orthophosphate centers (the saddle point position). High formation energies were found for all the types of intrinsic Frenkel and vacancy defects. The formation energies conform to the following trend (given in the decreasing order of energy): Ce Frenkel (12.41 eV) > O Frenkel (11.02 eV) > Ce vacancy (9.09 eV) > O vacancy (6.69 eV). We observed almost no effect from the defect concentrations on the defect formation energies.

  5. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    Science.gov (United States)

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  6. Prenatal detection of structural cardiac defects and presence of associated anomalies: a retrospective observational study of 1262 fetal echocardiograms.

    Science.gov (United States)

    Mone, Fionnuala; Walsh, Colin; Mulcahy, Cecelia; McMahon, Colin J; Farrell, Sinead; MacTiernan, Aoife; Segurado, Ricardo; Mahony, Rhona; Higgins, Shane; Carroll, Stephen; McParland, Peter; McAuliffe, Fionnuala M

    2015-06-01

    The aim of this study is to document the detection of fetal congenital heart defect (CHD) in relation to the following: (1) indication for referral, (2) chromosomal and (3) extracardiac abnormalities. All fetal echocardiograms performed in our institution from 2007 to 2011 were reviewed retrospectively. Indication for referral, cardiac diagnosis based on the World Health Organization International Classification of Diseases tenth revision criteria and the presence of chromosomal and extracardiac defects were recorded. Of 1262 echocardiograms, 287 (22.7%) had CHD. Abnormal anatomy scan in pregnancies originally considered to be at low risk of CHD was the best indicator for detecting CHD (91.2% of positive cardiac diagnoses), compared with other indications of family history (5.6%) or maternal medical disorder (3.1%). Congenital anomalies of the cardiac septa comprised the largest category (n = 89), within which atrioventricular septal defects were the most common anomaly (n = 36). Invasive prenatal testing was performed for 126 of 287 cases, of which 44% (n = 55) had a chromosomal abnormality. Of 232 fetuses without chromosomal abnormalities, 31% had an extracardiac defect (n = 76). Most CHDs occur in pregnancies regarded to be at low risk, highlighting the importance of a routine midtrimester fetal anatomy scan. Frequent association of fetal CHD and chromosomal and extracardiac pathology emphasises the importance of thorough evaluation of any fetus with CHD. © 2015 John Wiley & Sons, Ltd.

  7. Interventions for visual field defects in patients with stroke.

    Science.gov (United States)

    Pollock, Alex; Hazelton, Christine; Henderson, Clair A; Angilley, Jayne; Dhillon, Baljean; Langhorne, Peter; Livingstone, Katrina; Munro, Frank A; Orr, Heather; Rowe, Fiona J; Shahani, Uma

    2011-10-05

    Visual field defects are estimated to affect 20% to 57% of people who have had a stroke. Visual field defects can affect functional ability in activities of daily living (commonly affecting mobility, reading and driving), quality of life, ability to participate in rehabilitation, and depression, anxiety and social isolation following stroke. There are many interventions for visual field defects, which are proposed to work by restoring the visual field (restitution); compensating for the visual field defect by changing behaviour or activity (compensation); substituting for the visual field defect by using a device or extraneous modification (substitution); or ensuring appropriate diagnosis, referral and treatment prescription through standardised assessment or screening, or both. To determine the effects of interventions for people with visual field defects after stroke. We searched the Cochrane Stroke Group Trials Register (February 2011), the Cochrane Eyes and Vision Group Trials Register (December 2009) and nine electronic bibliographic databases including CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to December 2009), EMBASE (1980 to December 2009), CINAHL (1982 to December 2009), AMED (1985 to December 2009), and PsycINFO (1967 to December 2009). We also searched reference lists and trials registers, handsearched journals and conference proceedings and contacted experts. Randomised trials in adults after stroke, where the intervention was specifically targeted at improving the visual field defect or improving the ability of the participant to cope with the visual field loss. The primary outcome was functional ability in activities of daily living and secondary outcomes included functional ability in extended activities of daily living, reading ability, visual field measures, balance, falls, depression and anxiety, discharge destination or residence after stroke, quality of life and social isolation, visual scanning, adverse events and death. Two

  8. Laparoscopic omentoplasty to support anastomotic urethroplasty in complex and redo pelvic fracture urethral defects.

    Science.gov (United States)

    Kulkarni, Sanjay B; Barbagli, Guido; Joshi, Pankaj M; Hunter, Craig; Shahrour, Walid; Kulkarni, Jyotsna; Sansalone, Salvatore; Lazzeri, Massimo

    2015-05-01

    To test the hypothesis that a new surgical technique using elaborated perineal anastomotic urethroplasty combined with laparoscopic omentoplasty for patients with complex and prior failed pelvic fracture urethral defect repair was feasible, safe, and effective. We performed a prospective, observational, stage 2a study to observe treatment outcomes of combined perineal and laparoscopic approach for urethroplasty in patients with pelvic fracture urethral defect at a single center in Pune, India, between January 2012 and February 2013. Complex and redo patients with pelvic fracture urethral defect occurring after pelvic fracture urethral injury were included in the study. Anterior urethral strictures were excluded. The primary study outcome was the success rate of the surgical technique, and the secondary outcome was to evaluate feasibility and safety of the procedure. The clinical outcome was considered a failure when any postoperative instrumentation was needed. Fifteen male patients with a median age of 19 years were included in the study. Seven patients were adolescents (12-18 years) and 8 patients (53.3%) were adults (19-49 years). The mean number of prior urethroplasties was 1.8 (range, 1-3). All patients underwent elaborated bulbomembranous anastomosis using a perineal approach with inferior pubectomy combined with laparoscopic mobilization of the omentum into the perineum to envelope the anastomosis and to fill the perineal dead space. Of 15 patients, 14 (93.3%) were successful and 1 (6.6%) failed. One adolescent boy 14 years old developed a recurrent stricture 2 months after the procedure and was managed using internal urethrotomy. Median follow-up was 18 months (range, 13-24 months). Combining a laparoscopic omentoplasty to a membranobulbar anastomosis for complex and redo pelvic fracture urethral injury is successful, feasible, safe, and with minimal additional morbidity to the patient. The technique has the advantage of a perineal incision and the ability

  9. Radiation defects in electron-irradiated InP crystals

    International Nuclear Information System (INIS)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P.

    1982-01-01

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed. (author)

  10. Radiation defects in electron-irradiated InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P. (AN Ukrainskoj SSR, Kiev. Inst. Yadernykh Issledovanij)

    1982-06-16

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed.

  11. Point defects in GaAs and other semiconductors

    International Nuclear Information System (INIS)

    Ehrhart, P.; Karsten, K.; Pillukat, A.

    1993-01-01

    In order to understand the properties of intrinsic point defects and their interactions at high defect concentrations GaAs wafers were irradiated at 4.5 K with 3 MeV electrons up to a dose of 4 · 10 19 e - /cm 2 . The irradiated samples were investigated by X-ray Diffraction and optical absorption spectroscopy. The defect production increases linearly with irradiation dose and characteristic differences are observed for the two sublattices. The Ga-Frenkel pairs are strongly correlated and are characterized by much larger lattice relaxations (V rel = 2--3 atomic volumes) as compared to the As-Frenkel pairs (V rel ∼1 at. vol.). The dominating annealing stage around 300 K is attributed to the mobility of the Ga interstitial atoms whereas the As-interstitial atoms can recombine with their vacancies only around 500 K. These results are compared to those for InP, ZnSe and Ge. Implications for the understanding of the damage after ion irradiation and implantation are discussed

  12. Defect structures in YBa2Cu3O/sub 7-x/ produced by electron irradiation

    International Nuclear Information System (INIS)

    Kirk, M.A.; Baker, M.C.; Liu, J.Z.; Lam, D.J.; Weber, H.W.

    1987-12-01

    Defect structures in YBa 2 Cu 3 O/sub 7-x/ produced by electron irradiation at 300 0 K were investigated by transmission electron microscopy. Threshold energies for the production of visible defects were determined to be 152 keV and 131 keV (+- 7 keV) in directions near the a and b (b > a) axes (both perpendicular to c, the long axis in the orthorhombic structure), respectively. During above threshold irradiations in an electron flux of 3 x 10 18 cm -2 s -1 , extended defects were observed to form and grow to sizes of 10 to 50 nm over 1000 s in material thicknesses 20 to 200 nm. Such low electron threshold energies suggest oxygen atom displacements with recoil energies near 20 eV. The observation of movement of twin boundaries during irradiation just above threshold suggests movement of the basal plane oxygen atoms by direct displacement or defect migration processes. Crystals irradiated above threshold were observed after about 24 hours to have transformed to a structure heavily faulted on planes perpendicular to the c axis. 3 refs., 3 figs

  13. Raman study of the effect of LED light on grafted bone defects

    Science.gov (United States)

    Soares, Luiz G. G. P.; Aciole, Jouber M. S.; Aciole, Gilbeth T. S.; Barbosa, Artur F. S.; Silveira-Júnior, Landulfo; Pinheiro, Antônio L. B.

    2013-03-01

    Benefits of the isolated or combined use light and biomaterials on bone healing have been suggested. Our group has used several models to assess the effects of laser on bone. A Raman spectral analysis on surgical bone defects grafted or not with Hydroxyapatite (HA), treated or not with LED was carried out. 40 rats were divided into 4 groups. On Group I the defect was filled with the clot. On Group II, the defect was filled with the HA. On groups III the defect was filled with Clot and further irradiated with LED and on group IV the defects was filled with the HA and further irradiated with LED. LED (λ850 +/- 10nm, 150mW, A= 0.5cm2, 68s, 20 J/cm2 per session, 140 J/cm2 per treatment) was applied at 48 h intervals during 15 days. Specimens were taken after 15 and 30 days after surgery and kept on liquid nitrogen, and underwent Raman analysis. For this, the peak of hydroxyapatite (~960 cm-1) was used as marker of bone mineralization. Significant difference was observed at both times (p<0.05). When the biomaterial was used higher peaks were observed. Association with LED further improved the intensity. Conclusion: It is concluded that LED light improved the effect of the HA.

  14. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  15. Point defects in solids

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The principal properties of point defects are studied: thermodynamics, electronic structure, interactions with etended defects, production by irradiation. Some measuring methods are presented: atomic diffusion, spectroscopic methods, diffuse scattering of neutron and X rays, positron annihilation, molecular dynamics. Then points defects in various materials are investigated: ionic crystals, oxides, semiconductor materials, metals, intermetallic compounds, carbides, nitrides [fr

  16. Nanometre-scale 3D defects in Cr2AlC thin films.

    Science.gov (United States)

    Chen, Y T; Music, D; Shang, L; Mayer, J; Schneider, J M

    2017-04-20

    MAX-phase Cr 2 AlC containing thin films were synthesized by magnetron sputtering in an industrial system. Nanometre-scale 3D defects are observed near the boundary between regions of Cr 2 AlC and of the disordered solid solution (CrAl) x C y . Shrinkage of the Cr-Cr interplanar distance and elongation of the Cr-Al distance in the vicinity of the defects are detected using transmission electron microscopy. The here observed deformation surrounding the defects was described using density functional theory by comparing the DOS of bulk Cr 2 AlC with the DOS of a strained and unstrained Cr 2 AlC(0001) surface. From the partial density of states analysis, it can be learned that Cr-C bonds are stronger than Cr-Al bonds in bulk Cr 2 AlC. Upon Cr 2 AlC(0001) surface formation, both bonds are weakened. While the Cr-C bonds recover their bulk strength as Cr 2 AlC(0001) is strained, the Cr-Al bonds experience only a partial recovery, still being weaker than their bulk counterparts. Hence, the strain induced bond strengthening in Cr 2 AlC(0001) is larger for Cr d - C p bonds than for Cr d - Al p bonds. The here observed changes in bonding due to the formation of a strained surface are consistent with the experimentally observed elongation of the Cr-Al distance in the vicinity of nm-scale 3D defects in Cr 2 AlC thin films.

  17. Incidence of dizziness and vertigo in Japanese primary care clinic patients with lifestyle-related diseases: an observational study.

    Science.gov (United States)

    Wada, Masaoki; Takeshima, Taro; Nakamura, Yosikazu; Nagasaka, Shoichiro; Kamesaki, Toyomi; Oki, Hiroshi; Kajii, Eiji

    2015-01-01

    Dizziness and vertigo are highly prevalent symptoms among patients presenting at primary care clinics, and peripheral vestibular disorder (PVD) is their most frequent cause. However, the incidence of PVD has not been well documented. This study aimed to investigate the incidence of dizziness, vertigo, and PVD among patients presenting at a primary care clinic. This was an observational study. Between November 2011 and March 2013, we observed 393 patients, all at least 20 years old, who had been treated for chronic diseases such as hypertension, dyslipidemia, and diabetes mellitus for at least 6 months at a primary clinic (Oki Clinic) in Japan. The main outcome of interest was new incidence of dizziness, vertigo, and PVD events. During the 1-year follow-up period, the otorhinolaryngologist diagnosed and reported new PVD events. The mean age of the 393 participants at entry was 65.5 years. Of the study participants, 12.7%, 82.4%, and 92.6% had diabetes mellitus, hypertension, and dyslipidemia, respectively. We followed up all the participants (100%). During the 662.5 person-years of follow-up, 121 cases of dizziness or vertigo (dizziness/vertigo) and 76 cases of PVD were observed. The incidence of dizziness/vertigo and PVD was 194.7 (95% confidence interval: 161.6-232.6) per 1,000 person-years and 115.7 (95% confidence interval: 92.2-142.6) per 1,000 person-years, respectively. There were 61 cases of acute peripheral vestibulopathy, 12 of benign paroxysmal positional vertigo, and three of Meniere's disease among the 76 PVD patients. We reported the incidence of dizziness/vertigo among Japanese primary care clinic patients, which was higher than that usually observed in the general population. Furthermore, we described the incidence of PVD and found that it was a major cause of dizziness/vertigo.

  18. Incidence of dizziness and vertigo in Japanese primary care clinic patients with lifestyle-related diseases: an observational study

    Science.gov (United States)

    Wada, Masaoki; Takeshima, Taro; Nakamura, Yosikazu; Nagasaka, Shoichiro; Kamesaki, Toyomi; Oki, Hiroshi; Kajii, Eiji

    2015-01-01

    Objective Dizziness and vertigo are highly prevalent symptoms among patients presenting at primary care clinics, and peripheral vestibular disorder (PVD) is their most frequent cause. However, the incidence of PVD has not been well documented. This study aimed to investigate the incidence of dizziness, vertigo, and PVD among patients presenting at a primary care clinic. Design This was an observational study. Setting and participants Between November 2011 and March 2013, we observed 393 patients, all at least 20 years old, who had been treated for chronic diseases such as hypertension, dyslipidemia, and diabetes mellitus for at least 6 months at a primary clinic (Oki Clinic) in Japan. Outcome The main outcome of interest was new incidence of dizziness, vertigo, and PVD events. During the 1-year follow-up period, the otorhinolaryngologist diagnosed and reported new PVD events. Results The mean age of the 393 participants at entry was 65.5 years. Of the study participants, 12.7%, 82.4%, and 92.6% had diabetes mellitus, hypertension, and dyslipidemia, respectively. We followed up all the participants (100%). During the 662.5 person-years of follow-up, 121 cases of dizziness or vertigo (dizziness/vertigo) and 76 cases of PVD were observed. The incidence of dizziness/vertigo and PVD was 194.7 (95% confidence interval: 161.6–232.6) per 1,000 person-years and 115.7 (95% confidence interval: 92.2–142.6) per 1,000 person-years, respectively. There were 61 cases of acute peripheral vestibulopathy, 12 of benign paroxysmal positional vertigo, and three of Meniere’s disease among the 76 PVD patients. Conclusion We reported the incidence of dizziness/vertigo among Japanese primary care clinic patients, which was higher than that usually observed in the general population. Furthermore, we described the incidence of PVD and found that it was a major cause of dizziness/vertigo. PMID:25931828

  19. Defect detection using transient thermography

    International Nuclear Information System (INIS)

    Mohd Zaki Umar; Ibrahim Ahmad; Ab Razak Hamzah; Wan Saffiey Wan Abdullah

    2008-08-01

    An experimental research had been carried out to study the potential of transient thermography in detecting sub-surface defect of non-metal material. In this research, eight pieces of bakelite material were used as samples. Each samples had a sub-surface defect in the circular shape with different diameters and depths. Experiment was conducted using one-sided Pulsed Thermal technique. Heating of samples were done using 30 kWatt adjustable quartz lamp while infra red (IR) images of samples were recorded using THV 550 IR camera. These IR images were then analysed with ThermofitTMPro software to obtain the Maximum Absolute Differential Temperature Signal value, ΔΤ m ax and the time of its appearance, τ m ax (ΔΤ). Result showed that all defects were able to be detected even for the smallest and deepest defect (diameter = 5 mm and depth = 4 mm). However the highest value of Differential Temperature Signal (ΔΤ m ax), were obtained at defect with the largest diameter, 20 mm and at the shallowest depth, 1 mm. As a conclusion, the sensitivity of the pulsed thermography technique to detect sub-surface defects of bakelite material is proportionately related with the size of defect diameter if the defects are at the same depth. On the contrary, the sensitivity of the pulsed thermography technique inversely related with the depth of defect if the defects have similar diameter size. (Author)

  20. Defect study of Zn-doped p-type gallium antimonide using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ling, C. C.; Fung, S.; Beling, C. D.; Huimin, Weng

    2001-01-01

    Defects in p-type Zn-doped liquid-encapsulated Czochralski--grown GaSb were studied by the positron lifetime technique. The lifetime measurements were performed on the as-grown sample at temperature varying from 15 K to 297 K. A positron trapping center having a characteristic lifetime of 317 ps was identified as the neutral V Ga -related defect. Its concentration in the as-grown sample was found to be in the range of 10 17 --10 18 cm -3 . At an annealing temperature of 300 o C, the V Ga -related defect began annealing out and a new defect capable of trapping positrons was formed. This newly formed defect, having a lifetime value of 379 ps, is attributed to a vacancy--Zn-defect complex. This defect started annealing out at a temperature of 580 o C. A positron shallow trap having binding energy and concentration of 75 meV and 10 18 cm -3 , respectively, was also observed in the as-grown sample. This shallow trap is attributed to positrons forming hydrogenlike Rydberg states with the ionized dopant acceptor Zn

  1. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  2. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Zobelli, A.

    2007-10-01

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  3. The association between primary open-angle glaucoma and fall: an observational study

    Directory of Open Access Journals (Sweden)

    Tanabe S

    2012-03-01

    the better visual field (odds ratios 0.75; 95% confidence intervals: 0.57 to 0.99; P = 0.036 was a significant risk factor for injurious falls in subjects with POAG.Conclusions: POAG was significantly associated with injurious falls.Keywords: primary open-angle glaucoma, fall, visual field defect, injury

  4. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    Science.gov (United States)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Nearly 2 million women in the United States alone are at risk for an alcohol-exposed pregnancy, including more than 600,000 who binge drink. Even low levels of prenatal alcohol exposure (PAE) can lead to a variety of birth defects, including craniofacial and neurodevelopmental defects, as well as increased risk of miscarriages and stillbirths. Studies have also shown an interaction between drinking while pregnant and an increase in congenital heart defects (CHD), including atrioventricular septal defects and other malformations. We have previously established a quail model of PAE, modeling a single binge drinking episode in the third week of a woman's pregnancy. Using optical coherence tomography (OCT), we quantified intraventricular septum thickness, great vessel diameters, and atrioventricular valve volumes. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septum, and aortic vessels. We previously showed that supplementation with the methyl donor betaine reduced gross defects, improved survival rates, and prevented cardiac defects. Here we show that these preventative effects are also observed with folate (another methyl donor) supplementation. Folate also appears to normalize retrograde flow levels which are elevated by ethanol exposure. Finally, preliminary findings have shown that glutathione, a crucial antioxidant, is noticeably effective at improving survival rates and minimizing gross defects in ethanol-exposed embryos. Current investigations will examine the impact of glutathione supplementation on PAE-related CHDs.

  5. The App-Runx1 region is critical for birth defects and electrocardiographic dysfunctions observed in a Down syndrome mouse model.

    Directory of Open Access Journals (Sweden)

    Matthieu Raveau

    2012-05-01

    Full Text Available Down syndrome (DS leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1. In addition cardiac connexins (Cx40, Cx43 and sodium channel sub-units (Scn5a, Scn1b, Scn10a were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people.

  6. Prevention of dental anomalies in children by prosthetics defects hard tooth tissues and dentitions: the need to possibilities

    Directory of Open Access Journals (Sweden)

    Suetenkov D.Ye.

    2011-03-01

    Full Text Available This article presents the possibility of restore the function and anatomy of the tooth and replacement of defects of dentition by prosthesis in children under the removable bite as a method of prevention of dentoalveolar anomalies. Identified the need for prosthetic treatment of children and the willingness of dentists as primary health care professional to address the problems identified. A clinical analysis of complex treatment of defects in the teeth with fixed restorations

  7. Ductile failure of pipes with defects under combined pressure and bending

    International Nuclear Information System (INIS)

    Darlaston, B.J.L.; Harrison, R.P.

    1977-01-01

    The main part of the experimental programme was carried out on 3.5'' diam. pipes with a wall thickness of 0.064''. Various lengths of defect were assessed but only two depths, 0.044'' and 0.060''. Some full penetration defect tests were carried out under bending loading. The defects were 0.012'' wide and nominally flat bottomed. The tensile properties of the pipes were determined by taking specimens from each of the tubes. The pipes were exposed to pressure only test, bending only test and combined bending and pressure test. The results are given in tables. The observations led to the postulation of a design rule relating to the effect of defect in pipes under combined internal pressure and bending. It applies only to ductile situations in which the mode of failure is by a collapse mechanism: If the failure of a pipe containing an axial defect occurs by plastic collapse then provided the bending moment does not exceed half that for collapse due to bending alone, it will have a negligible effect on the failure pressure. (J.B.)

  8. Risk of central nervous system defects in offspring of women with and without mental illness.

    Science.gov (United States)

    Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie

    2018-02-22

    We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.

  9. Linking source region and ocean wave parameters with the observed primary microseismic noise

    Science.gov (United States)

    Juretzek, C.; Hadziioannou, C.

    2017-12-01

    In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.

  10. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  11. Cycles of cooperation and defection in imperfect learning

    International Nuclear Information System (INIS)

    Galla, Tobias

    2011-01-01

    We investigate a model of learning the iterated prisoner's dilemma game. Players have the choice between three strategies: always defect (ALLD), always cooperate (ALLC) and tit-for-tat (TFT). The only strict Nash equilibrium in this situation is ALLD. When players learn to play this game convergence to the equilibrium is not guaranteed, for example we find cooperative behaviour if players discount observations in the distant past. When agents use small samples of observed moves to estimate their opponent's strategy the learning process is stochastic, and sustained oscillations between cooperation and defection can emerge. These cycles are similar to those found in stochastic evolutionary processes, but the origin of the noise sustaining the oscillations is different and lies in the imperfect sampling of the opponent's strategy. Based on a systematic expansion technique, we are able to predict the properties of these learning cycles, providing an analytical tool with which the outcome of more general stochastic adaptation processes can be characterised

  12. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines

    NARCIS (Netherlands)

    Graveland, J; vanderWal, R

    On poor soils in the Netherlands an increasing number of great tits, Parus major, and of other forest passerines produce eggs with defective shells and have low reproductive success as a result of calcium deficiency. A similar increase in eggshell defects has been observed in Germany and Sweden.

  13. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines

    NARCIS (Netherlands)

    Graveland, J.; Van der Wal, R.

    1996-01-01

    On poor soils in the Netherlands an increasing number of great tits, Parus major, and of other forest passerines produce eggs with defective shells and have low reproductive success as a result of calcium deficiency. A similar increase in eggshell defects has been observed in Germany and Sweden.

  14. Incidence of dizziness and vertigo in Japanese primary care clinic patients with lifestyle-related diseases: an observational study

    Directory of Open Access Journals (Sweden)

    Wada M

    2015-04-01

    Full Text Available Masaoki Wada,1,2 Taro Takeshima,1 Yosikazu Nakamura,3 Shoichiro Nagasaka,4 Toyomi Kamesaki,1 Hiroshi Oki,2 Eiji Kajii1 1Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, Tochigi, Japan; 2Oki Clinic, Ibaraki, Japan; 3Department of Public Health, Jichi Medical University, Tochigi, Japan; 4Department of Internal Medicine, Division of Endocrinology and Metabolism, Jichi Medical University, Tochigi, Japan Objective: Dizziness and vertigo are highly prevalent symptoms among patients presenting at primary care clinics, and peripheral vestibular disorder (PVD is their most frequent cause. However, the incidence of PVD has not been well documented. This study aimed to investigate the incidence of dizziness, vertigo, and PVD among patients presenting at a primary care clinic. Design: This was an observational study. Setting and participants: Between November 2011 and March 2013, we observed 393 patients, all at least 20 years old, who had been treated for chronic diseases such as hypertension, dyslipidemia, and diabetes mellitus for at least 6 months at a primary clinic (Oki Clinic in Japan. Outcome: The main outcome of interest was new incidence of dizziness, vertigo, and PVD events. During the 1-year follow-up period, the otorhinolaryngologist diagnosed and reported new PVD events. Results: The mean age of the 393 participants at entry was 65.5 years. Of the study participants, 12.7%, 82.4%, and 92.6% had diabetes mellitus, hypertension, and dyslipidemia, respectively. We followed up all the participants (100%. During the 662.5 person-years of follow-up, 121 cases of dizziness or vertigo (dizziness/vertigo and 76 cases of PVD were observed. The incidence of dizziness/vertigo and PVD was 194.7 (95% confidence interval: 161.6–232.6 per 1,000 person-years and 115.7 (95% confidence interval: 92.2–142.6 per 1,000 person-years, respectively. There were 61 cases of acute peripheral vestibulopathy, 12 of

  15. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    Science.gov (United States)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  16. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  17. The reverse sural artery fasciomusculocutaneous flap for small lower-limb defects: the use of the gastrocnemius muscle cuff as a plug for small bony defects following debridement of infected/necrotic bone.

    Science.gov (United States)

    Al-Qattan, M M

    2007-09-01

    The reverse sural artery fasciomusculocutaneous flap is a modification of the original fasciocutaneous flap in which a midline gastrocnemius muscle cuff around the buried sural pedicle is included in the flap. This modification was done to improve the blood supply of the distal part of the flap, which is harvested from the upper leg. The aim of this paper is to demonstrate that there is another important advantage of the modified flap: the use of the muscle cuff as a "plug" for small lower limb defects following debridement of infected/necrotic bone. A total of 10 male adult patients with small complex lower-limb defects with underlying bone pathology were treated with the modified flap using the muscle component to fill up the small bony defects. The bony pathology included necrotic exposed bone without evidence of osteomyelitis or wound infection (n = 1), an underlying neglected tibial fracture with wound infection (n = 4), and a sinus at the heel with underlying calcaneal osteomyelitis (n = 5). Primary wound healing of the flap into the defect was noted in all patients. No recurrence of calcaneal osteomyelitis was seen and all tibial fractures united following appropriate orthopedic fixation. It was concluded that the reverse sural artery fasciomusculocutaneous flap is well suited for small complex lower-limb defects with underlying bone pathology.

  18. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  19. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect.

    Directory of Open Access Journals (Sweden)

    Guido Veit

    2016-05-01

    Full Text Available The most common cystic fibrosis (CF causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del, results in functional expression defect of the CF transmembrane conductance regulator (CFTR at the apical plasma membrane (PM of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER. Deletion of phenylalanine 670 (ΔF670 in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.

  20. Laterality defects in the national birth defects prevention study 1998-2007 birth prevalence and descriptive epidemiology

    Science.gov (United States)

    Little is known epidemiologically about laterality defects. Using data from the National Birth Defects Prevention Study (NBDPS), a large multi-site case-control study of birth defects, we analyzed prevalence and selected characteristics in children born with laterality defects born from 1998 to 2007...

  1. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  2. Imaging atomic-level random walk of a point defect in graphene

    Science.gov (United States)

    Kotakoski, Jani; Mangler, Clemens; Meyer, Jannik C.

    2014-05-01

    Deviations from the perfect atomic arrangements in crystals play an important role in affecting their properties. Similarly, diffusion of such deviations is behind many microstructural changes in solids. However, observation of point defect diffusion is hindered both by the difficulties related to direct imaging of non-periodic structures and by the timescales involved in the diffusion process. Here, instead of imaging thermal diffusion, we stimulate and follow the migration of a divacancy through graphene lattice using a scanning transmission electron microscope operated at 60 kV. The beam-activated process happens on a timescale that allows us to capture a significant part of the structural transformations and trajectory of the defect. The low voltage combined with ultra-high vacuum conditions ensure that the defect remains stable over long image sequences, which allows us for the first time to directly follow the diffusion of a point defect in a crystalline material.

  3. Development of eddy current sensor for detecting defect on ferromagnetic material

    International Nuclear Information System (INIS)

    Choi, Duck Su; Lee, Hyang Beom

    2002-01-01

    In this paper, the eddy current sensor is developed for observing the ability of detecting defect on ferromagnetic material with variation of frequency and velocity. In order to research the characteristics on eddy current sensor. The circuit which is designed for processing detected voltage is developed and differential frequency is used for eddy current sensor to detect defect with variation of frequency. The ability of eddy current sensor to detect defects is studied with variation of velocity adjusted by rotating the circular plate. This study shows that the ability of eddy current sensor for detecting defect is increased and decreased by frequency. This fact means that the sensor has its best ability at a certain frequency. And the ability of eddy current sensor by velocity is decreased by increased velocity. Therefore, the eddy current sensor has to be developed with consideration of its operation velocity and frequency.

  4. Defect formation by pristine indenter at the initial stage of nanoindentation

    International Nuclear Information System (INIS)

    Chen, I-Hsien; Hsiao, Chun-I; Behera, Rakesh K.; Hsu, Wen-Dung

    2013-01-01

    Nano-indentation is a sophisticated method to characterize mechanical properties of materials. This method samples a very small amount of material during each indentation. Therefore, this method is extremely useful to measure mechanical properties of nano-materials. The measurements using nanoindentation is very sensitive to the surface topology of the indenter and the indenting surfaces. The mechanisms involved in the entire process of nanoindentation require an atomic level understanding of the interplay between the indenter and the substrate. In this paper, we have used atomistic simulation methods with empirical potentials to investigate the effect of various types of pristine indenter on the defect nucleation and growth. Using molecular dynamics simulations, we have predicted the load-depth curve for conical, vickers, and sperical tip. The results are analyzed based on the coherency between the indenter tip and substrate surface for a fixed depth of 20 Å. The depth of defect nucleation and growth is observed to be dependent on the tip geometry. A tip with larger apex angle nucleates defects at a shallower depth. However, the type of defect generated is dependent on the crystalline orientation of the tip and substrate. For coherent systems, prismatic loops were generated, which released into the substrate along the close-packed directions with continued indentation. For incoherent systems, pyramidal shaped dislocation junctions formed in the FCC systems and disordered atomic clusters formed in the BCC systems. These defect nucleation and growth process provide the atomistic mechanisms responsible for the observed load-depth response during nanoindentation

  5. A possible casual relationship between defective fibrinolysis and pulmonary hypertension

    International Nuclear Information System (INIS)

    Franz, R.C.; Ziady, F.; Hugo, N.

    1979-01-01

    Pulmonary hypertension may be associated with multiple thrombi in the pulmonary arteries or with diffuse microembolization from a cryptic source. A 27-year-old man without any of the recognized clinical risk factors for venous thrombo-embolic disease presented with repeated attacks of chest pain and dyspnoea. Haemodynamic studies were compatible with the diagnosis of primary pulmonary hypertension. Despite intensive study there was no evidence of peripheral venous thrombosis. A 125 I isotope study was done. Plasma fibrinolytic profile showed unequivocal evidence of low spontaneous plasma fibrinolytic activity. The plasminogen activator activity of the venous wall was also markedly reduced. From these findings it would seem that a defective fibrinolytic defence mechanism may be an important predisposing factor in the pathogenesis of 'primary' pulmonary hypertension

  6. Limb-body wall defect: experience of a reference service of fetal medicine from Southern Brazil.

    Science.gov (United States)

    Gazolla, Ana C; da Cunha, André C; Telles, Jorge A B; Betat, Rosilene da S; Romano, Mayara A; Marshall, Isabel; Gobatto, Amanda M; de H Bicca, Anna M; Arcolini, Camila P; Dal Pai, Thaís K V; Vieira, Luciane R; Targa, Luciano V; Betineli, Ildo; Zen, Paulo R G; Rosa, Rafael F M

    2014-10-01

    Limb-body wall defect is a rare condition characterized by a combination of large and complex defects of the ventral thorax and abdominal wall with craniofacial and limb anomalies. The aim of this study was to describe the experience of our fetal medicine service, a reference from Southern Brazil, with prenatally diagnosed patients with a limb-body wall defect in a 3 years period. Only patients who fulfilled the criteria suggested by Hunter et al. (2011) were included in the study. Clinical data and results of radiological and cytogenetic evaluation were collected from their medical records. Our sample was composed of 8 patients. Many of their mothers were younger than 25 years (50%) and in their first pregnancy (62.5%). It is noteworthy that one patient was referred due to suspected anencephaly and another due to a twin pregnancy with an embryonic sac. Craniofacial defects were verified in three patients (37.5%), thoracic/abdominal abnormalities in 6 (75%) and limb defects in eight (100%). Congenital heart defects were observed in five patients (62.5%). One of them presented a previously undescribed complex heart defect. The results disclosed that complementary exams, such as MRI and echocardiography, are important to better define the observed defects. Some of them, such as congenital heart defects, may be more common than previously reported. This definition is essential for the proper management of the pregnancy and genetic counseling of the family. The birth of these children must be planned with caution and for the prognosis a long survival possibility, despite unlikely and rare, must be considered. © 2014 Wiley Periodicals, Inc.

  7. Structure and strain relaxation effects of defects in In{sub x}Ga{sub 1–x}N epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: sr583@cam.ac.uk; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-09-14

    The formation of trench defects is observed in 160 nm-thick In{sub x}Ga{sub 1–x}N epilayers with x≤0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I₁-type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  8. Carbon nanotube as NEMS sensor - effect of chirality and stone-wales defect intend

    International Nuclear Information System (INIS)

    Gayathri, V; Geetha, R

    2006-01-01

    Having nanosize and unique electrical properties, carbon nanotubes (CNTs) attract lot of interest among scientific community all over the world. One of the recent observations is its role as nanosensors. Obviously the nanosize and high strength of CNT are most preferred parameter for technical and electromechanical field in the industrial point of view. The defects in CNT structure have a vital role in determining their electrical and mechanical properties. Our earlier study indicates an effective role played by the topological defects like pentagon and octagon on the electromechanical properties of these nanostructures. Here our aim is to look in to the effect of Stone-wales defect and chirality on this property of nanotubes deformed under applied pressure. Among the three kinds of tubes considered for this study, we observed that armchair (5, 5) tube is more suitable for sensor applications

  9. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sellaiyan, S.; Uedono, A. [University of Tsukuba, Division of Applied Physics, Tsukuba, Ibaraki (Japan); Sivaji, K.; Janet Priscilla, S. [University of Madras, Department of Nuclear Physics, Chennai (India); Sivasankari, J. [Anna University, Department of Physics, Chennai (India); Selvalakshmi, T. [National Institute of Technology, Nanomaterials Laboratory, Department of Physics, Tiruchirappalli (India)

    2016-10-15

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F{sub 2} {sup 2+} and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F{sub 2} {sup 2+} to F{sup +} and this F{sup +} is converted into F centers at 416 nm. (orig.)

  10. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Science.gov (United States)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  11. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-01-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F_2 "2"+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F_2 "2"+ to F"+ and this F"+ is converted into F centers at 416 nm. (orig.)

  12. Maternal and perinatal aspects of birth defects: a case-control study

    Directory of Open Access Journals (Sweden)

    Geiza Cesar Nhoncanse

    2014-03-01

    Full Text Available Objective: To assess the prevalence of congenital defects and to investigate their maternal and perinatal associated aspects by reviewing Birth Certificates. Methods: Among all born alive infants from January 2003 to December 2007 in Maternidade da Santa Casa de Misericórdia of São Carlos, Southeast Brazil (12,199 infants, cases were identified as the newborns whose Birth Certificates registered any congenital defect. The same sex neonate born immediately after the case was chosen as a control. In total, 13 variables were analyzed: six were maternal related, three represented labor and delivery conditions and four were linked to fetal status. The chi-square and Fisher's exact tests were used to compare the variables, being significant p<0.05. Results: The prevalence of congenital defects was 0.38% and the association of two or more defects represented 32% of all cases. The number of mothers whose education level was equal or less than eight years was significantly higher among the group with birth defects (p=0.047. A higher frequency of prematurity (p<0.001 and cesarean delivery (p=0.004 was observed among children with birth defects. This group also showed lower birth weight and Apgar scores in the 1st and the 5th minute (p<0.001. Conclusions: The prevalence of congenital defect of 0.38% is possibly due to underreporting. The defects notified in the Birth Certificates were only the most visible ones, regardless of their severity. There is a need of adequate epidemiological monitoring of birth defects in order to create and expand prevention and treatment programs.

  13. Preoperative Botulinum toxin A enabling defect closure and laparoscopic repair of complex ventral hernia.

    Science.gov (United States)

    Rodriguez-Acevedo, Omar; Elstner, Kristen E; Jacombs, Anita S W; Read, John W; Martins, Rodrigo Tomazini; Arduini, Fernando; Wehrhahm, Michael; Craft, Colette; Cosman, Peter H; Dardano, Anthony N; Ibrahim, Nabeel

    2018-02-01

    Operative management of complex ventral hernia still remains a significant challenge for surgeons. Closure of large defects in the unprepared abdomen has serious pathophysiological consequences due to chronic contraction and retraction of the lateral abdominal wall muscles. We report outcomes of 56 consecutive patients who had preoperative Botulinum toxin A (BTA) abdominal wall relaxation facilitating closure and repair. This was a prospective observational study of 56 patients who underwent ultrasound-guided BTA into the lateral abdominal oblique muscles prior to elective ventral hernia repair between November 2012 and January 2017. Serial non-contrast abdominal CT imaging was performed to evaluate changes in lateral oblique muscle length and thickness. All hernias were repaired laparoscopically, or laparoscopic-open-laparoscopic (LOL) using intraperitoneal onlay mesh. 56 patients received BTA injections at predetermined sites to the lateral oblique muscles, which were well tolerated. Mean patient age was 59.7 years, and mean BMI was 30.9 kg/m 2 (range 21.8-54.0). Maximum defect size was 24 × 27 cm. A subset of 18 patients underwent preoperative pneumoperitoneum as an adjunct procedure. A comparison of pre-BTA to post-BTA imaging demonstrated an increase in mean lateral abdominal wall length from 16.1 cm to 20.1 cm per side, a mean gain of 4.0 cm/side (range 1.0-11.7 cm/side) (p LOL primary closure was achieved in all cases, with no clinical evidence of raised intra-abdominal pressures. One patient presented with a new fascial defect 26 months post-operative. Preoperative BTA to the lateral abdominal wall muscles is a safe and effective technique for the preparation of patients prior to operative management of complex ventral hernias. BTA temporary flaccid paralysis relaxes, elongates and thins the chronically contracted abdominal musculature. This in turn reduces lateral traction forces facilitating laparoscopic repair and fascial closure of large

  14. Point defects in nickel

    International Nuclear Information System (INIS)

    Peretto, P.

    1969-01-01

    The defects in electron irradiated nickel (20 deg. K) or neutron irradiated nickel (28 deg. K) are studied by simultaneous analysis using the magnetic after-effect, electron microscopy and electrical resistivity recovery. We use zone refined nickel (99.999 per cent) which, for some experiments, is alloyed with a small amount of iron (for example 0.1 per cent Fe). The temperature dependant electrical recovery may be divided in four stages. The sub-stages I B (31 deg. K), I C (42 deg. K), I D (from to 57 deg. K) and I E (62 deg. K) of stage I are due to the disappearance of single interstitials into vacancies. The interstitial defect has a split configuration with a migration energy of about 0.15 eV. In the close pair which disappears in stage I B the interstitial is found to be in a 3. neighbour position whilst in stage I D it is near the direction from the vacancy. In stage I E there is no longer any interaction between the interstitial and the vacancy. The stage II is due to more complicated interstitial defects: di-interstitials for stage II B (84 deg. K) and larger and larger interstitial loops for the following sub-stages. The loops may be seen by electron microscopy. Impurities can play the role of nucleation centers for the loops. Stages III A (370 deg. K) and III B (376 deg. K) are due to two types of di-vacancies. During stage IV (410 deg. K) the single vacancies migrate. Vacancy type loops and interstitial type loops grow concurrently and disappear at about 800 deg. K as observed by electron microscopy. (author) [fr

  15. Correlation of damage threshold and surface geometry of nodular defects in HR coatings as determined by in-situ atomic force microscopy

    International Nuclear Information System (INIS)

    Staggs, M.C.; Kozlowski, M.R.; Siekhaus, W.J.; Balooch, M.

    1992-10-01

    Atomic force microscopy (AFM) was used to determine in-situ the correlation between the surface dimensions of defects in dielectric multilayer optical coatings and their susceptibility to damage by pulsed laser illumination. The primary surface defects studied were μm-scale domes associated with the classic nodule defect. The optical film studied was a highly reflective dielectric multilayer consisting of pairs of alternating HfO 2 and SiO 2 layers of quarter wave thickness at 1.06 μm. Nodule defect height and width dimensions were measured prior to laser illumination on two different samples. Correlation between these dimensions supported a simple model for the defect geometry. Defects with high nodule heights (> 0.6 μm) were found to be most susceptible to laser damage over a range of fluences between 0-35 J/cm 2 (1.06 μm, 10 ns, and 1/e 2 diam. of 1.3 mm). Crater defects, formed by nodules ejected from the coating prior to illumination, were also studied. None of the crater defects damaged when illuminated over the same range of fluences that the nodule defects were subjected to

  16. Influence of irradiation on defects creation in pin diode structure

    International Nuclear Information System (INIS)

    Sopko, V.; Dammer, J.; Sopko, B.; Chren, D.

    2012-01-01

    In this paper the manufacture of type S1 PIN diodes and radiation defect induce by fast neutrons were studied. A shift from VV"- to VV (neutral) is observed in neutron irradiated diodes. From the results obtained, an explanation that clearly offers itself is that the nature of the defects produced by irradiation of material exhibiting N type conductivity is different from those for type P material. Given that the experiments were conducted with the same material, i.e., the dopant present in the material remained unchanged, it can be stated that simply by changing the type of conductivity with increasing dose, a different kind of defects is produced, having different activation energies in the forbidden band. All these results are consistent with the ongoing RD 50 experiments at CERN.

  17. Discrimination of defects in III-V semiconductors by positron lifetime distribution

    CERN Document Server

    Chen, Z Q; Wang, S J

    2000-01-01

    In this paper, the numerical Laplace inversion technique and maximum entropy method are utilized to extract continuous positron lifetime distribution in semiconductors. The result is used to discriminate the native vacancy-type defects in as-grown GaAs and In P with different conduction type. Direct evidence of shallow positron traps were also observed in ion-implanted p-In P. It is demonstrated that the lifetime distribution can give us more detailed information on the native defects.

  18. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  19. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    Science.gov (United States)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  20. Birth prevalence of neural tube defects and orofacial clefts in India: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Komal Preet Allagh

    Full Text Available In the last two decades, India has witnessed a substantial decrease in infant mortality attributed to infectious disease and malnutrition. However, the mortality attributed to birth defects remains constant. Studies on the prevalence of birth defects such as neural tube defects and orofacial clefts in India have reported inconsistent results. Therefore, we conducted a systematic review of observational studies to document the birth prevalence of neural tube defects and orofacial clefts.A comprehensive literature search for observational studies was conducted in MEDLINE and EMBASE databases using key MeSH terms (neural tube defects OR cleft lip OR cleft palate AND Prevalence AND India. Two reviewers independently reviewed the retrieved studies, and studies satisfying the eligibility were included. The quality of included studies was assessed using selected criteria from STROBE statement.The overall pooled birth prevalence (random effect of neural tube defects in India is 4.5 per 1000 total births (95% CI 4.2 to 4.9. The overall pooled birth prevalence (random effect of orofacial clefts is 1.3 per 1000 total births (95% CI 1.1 to 1.5. Subgroup analyses were performed by region, time period, consanguinity, and gender of newborn.The overall prevalence of neural tube defects from India is high compared to other regions of the world, while that of orofacial clefts is similar to other countries. The majority of studies included in the review were hospital based. The quality of these studies ranged from low to moderate. Further well-designed, high quality community-based observational studies are needed to accurately estimate the burden of neural tube defects and orofacial clefts in India.

  1. Long-term outcome of Tunisian children with primary ciliary ...

    African Journals Online (AJOL)

    Background: Primary ciliary dyskinesia (PCD) is rare. Its diagnosis requires experienced specialists and expensive infrastructure. Its prognosis is variable. Objective: To study the long-term outcome of PCD in Tunisian children with ciliary ultra-structure defects detected by electron microscope. Methods: Covering a period of ...

  2. Helium bubbles aggravated defects production in self-irradiated copper

    Science.gov (United States)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  3. 48 CFR 1615.407-1 - Rate reduction for defective pricing or defective cost or pricing data.

    Science.gov (United States)

    2010-10-01

    ... defective pricing or defective cost or pricing data. 1615.407-1 Section 1615.407-1 Federal Acquisition... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1615.407-1 Rate reduction for defective pricing or defective cost or pricing data. The clause set forth in section 1652.215-70...

  4. 48 CFR 1652.215-70 - Rate Reduction for Defective Pricing or Defective Cost or Pricing Data.

    Science.gov (United States)

    2010-10-01

    ... Defective Pricing or Defective Cost or Pricing Data. 1652.215-70 Section 1652.215-70 Federal Acquisition... CLAUSES AND FORMS CONTRACT CLAUSES Texts of FEHBP Clauses 1652.215-70 Rate Reduction for Defective Pricing or Defective Cost or Pricing Data. As prescribed in 1615.407-1, the following clause shall be...

  5. Effect of closure of the mesenteric defect during laparoscopic gastric bypass and prevention of internal hernia

    DEFF Research Database (Denmark)

    Kristensen, Sara Danshøj; Naver, Lars; Jess, Per

    2014-01-01

    INTRODUCTION: The aim of this study is to evaluate the benefits and disadvantages of closing the mesenteric defects during gastric bypass to avoid internal herniation (IH). MATERIAL AND METHODS: The study is performed as a single-centre, randomised, controlled, blinded trial. Patients are randomly...... assigned to either conventional laparoscopic Roux-en-Y gastric bypass (LRYGB) without closing the mesenteric defects (n = 250) or RYGB with closing of the defects with hernia clips (n = 250). Follow-up is conducted at six months, one year, two years and five years after RYGB. The primary endpoint......: The study was registered with the Danish Data Protection Agency (SN-10-2012) and The Central Denmark Regional Committees on Biomedical Research Ethics (1-01-83-0209-12, SJ-284). The study is registered with clinicaltrials.gov: NCT01595230....

  6. Acousto-defect interaction in irradiated and non-irradiated silicon n+-p structures

    Science.gov (United States)

    Olikh, O. Ya.; Gorb, A. M.; Chupryna, R. G.; Pristay-Fenenkov, O. V.

    2018-04-01

    The influence of ultrasound on current-voltage characteristics of non-irradiated silicon n+-p structures as well as silicon structures exposed to reactor neutrons or 60Co gamma radiation has been investigated experimentally. It has been found that the ultrasound loading of the n+-p structure leads to the reversible change of shunt resistance, carrier lifetime, and ideality factor. Specifically, considerable acoustically induced alteration of the ideality factor and the space charge region lifetime was observed in the irradiated samples. The experimental results were described by using the models of coupled defect level recombination, Shockley-Read-Hall recombination, and dislocation-induced impedance. The experimentally observed phenomena are associated with the increase in the distance between coupled defects as well as the extension of the carrier capture coefficient of complex point defects and dislocations. It has been shown that divacancies and vacancy-interstitial oxygen pairs are effectively modified by ultrasound in contrast to interstitial carbon-interstitial oxygen complexes.

  7. Point defects in platinum

    International Nuclear Information System (INIS)

    Piercy, G.R.

    1960-01-01

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600 o C, or reactor irradiation at 50 o C. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  8. Dechanneling measurements of defect depth profiles and effective cross-channel distribution of misaligned atoms in ion irradiated gold

    International Nuclear Information System (INIS)

    Pronko, P.P.

    1975-01-01

    Defect depth profiles for self ion and He + irradiated gold are obtained from single and multiple scatter dechanneling analysis in single crystal gold films. Quantitative defect densities are obtained through use of atomic scattering cross sections. Integral damage profiles are extracted from the dechanneling spectra and subsequently differentiated to yield the volume concentration of defects as a function of depth. Results from the self ion irradiations suggest that incident ions produce defect distributions across depths much greater than predicted by random stopping theory. This is in agreement with TEM observations of others. Comparison of the experimental profiles is made with theoretical vacancy distributions predicted by defect diffusion in a radiation environment. Similarities are observed for the low fluence irradiations suggesting that profile characteristics may be controlled by rapid migration and loss of interstitials to the film surfaces during irradiation. Information on the across-channel distribution of misaligned atoms in the damaged films is obtained with the steady increase of transverse energy model applied to the dechanneling spectra. A predominance of slight misalignment is observed with no contribution to dechanneling coming from atoms displaced significantly close to the center of the channels. This is in keeping with what is expected for crystal distortions caused by the strain fields associated with vacancy cluster defects

  9. Dechanneling measurements of defect depth profiles and effective cross-channel distribution of misaligned atoms in ion-irradiated gold

    International Nuclear Information System (INIS)

    Pronko, P.P.

    1976-01-01

    Defect depth profiles for self-ion and He + irradiated gold are obtained from single and multiple scatter dechanneling analysis in single-crystal gold films. Quantitative defect densities are obtained through use of atomic-scattering cross sections. Integral damage profiles are extracted from the dechanneling spectra and subsequently differentiated to yield the volume concentration of defects as a function of depth. Results from the self-ion irradiations suggest that incident ions produce defect distributions across depths much greater than predicted by random stopping theory. This is in agreement with TEM observations of others. Comparison of the experimental profiles is made with theoretical vacancy distributions predicted by defect diffusion in a radiation environment. Similarities are observed for the low-fluence irradiations, suggesting that profile characteristics may be controlled by rapid migration and loss of interstitials to the film surfaces during irradiation. Information on the across-channel distribution of misaligned atoms in the damaged films is obtained with the steady increase of transverse energy model. A predominance of slight misalignment is observed with no contribution to dechanneling coming from atoms displaced significantly close to the center of the channels. This is in keeping with what is expected for crystal distortions caused by the strain fields associated with vacancy cluster defects. (Auth.)

  10. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique

    Science.gov (United States)

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-01-01

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112

  11. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    International Nuclear Information System (INIS)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.; Vaidyanathan, V.; Skromme, B.J.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis

  12. Development of an autoclave with zirconia crystal windows for in-situ observation of sample surface under primary water conditions of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    Elucidating the mechanism for primary water stress corrosion cracking (PWSCC) is important for improving the reliability of structural materials in the primary system of pressurized water reactors (PWR). For this purpose, visualization of corrosion material surface in the primary coolant environment is effective, but it was impossible because of lack of suitable window material. Yttria stabilized zirconia was newly selected as a candidate for in-situ window material in the primary coolant environment of PWR. Its sufficient corrosion resistance was proved by measuring the transmissivity of light after being immersed in the primary coolant environment. A new autoclave with two windows of yttria-stabilized zirconia was developed. The corrosion material surfaces of Alloy600 and SUS304 in the primary coolant environment were clearly observed with this autoclave. Observations of cracks generated on the surface of SUS304 specimen, suggest that its generation time depends on temperature. (author)

  13. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    Science.gov (United States)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  14. Automatic inspection of surface defects in die castings after machining

    Directory of Open Access Journals (Sweden)

    S. J. Świłło

    2011-07-01

    Full Text Available A new camera based machine vision system for the automatic inspection of surface defects in aluminum die casting was developed by the authors. The problem of surface defects in aluminum die casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. The casting surfaces are the most highly loaded regions of materials and components. Mechanical and thermal loads as well as corrosion or irradiation attacks are directed primarily at the surface of the castings. Depending on part design and processing techniques, castings may develop surface discontinuities such as cracks or tears, inclusions due to chemical reactions or foreign material in the molten metal, and pores that greatly influence the material ability to withstand these loads. Surface defects may act as a stress concentrator initiating a fracture point. If a pressure is applied in this area, the casting can fracture. The human visual system is well adapted to perform in areas of variety and change; the visual inspection processes, on the other hand, require observing the same type of image repeatedly to detect anomalies. Slow, expensive, erratic inspection usually is the result. Computer based visual inspection provides a viable alternative to human inspectors. Developed by authors machine vision system uses an image processing algorithm based on modified Laplacian of Gaussian edge detection method to detect defects with different sizes and shapes. The defect inspection algorithm consists of three parameters. One is a parameter of defects sensitivity, the second parameter is a threshold level and the third parameter is to identify the detected defects size and shape. The machine vision system has been successfully tested for the different types of defects on the surface of castings.

  15. Primary antiphospholipid syndrome presenting with homonymous quadrantanopsia.

    Science.gov (United States)

    Yang, Hee Kyung; Moon, Ki Won; Ji, Min Jung; Han, Sang Beom; Hwang, Jeong-Min

    2018-06-01

    To report a case of primary antiphospholipid syndrome presenting with isolated homonymous superior quadrantanopsia. A 50-year-old Korean man presented with subjective visual disturbance for 1 month. Visual field testing showed a right homonymous superior quadrantanopsia. Brain magnetic resonance imaging (MRI) revealed an old infarct in his left occipital lobe and multiple lesions in other areas of the brain. Laboratory tests showed a marked increase in serum anti-β2 glycoprotein I antibody, which remained elevated after 12 weeks. He was diagnosed with primary antiphospholipid syndrome and started anticoagulation therapy. This is the first case report of primary antiphospholipid syndrome presenting with isolated homonymous quadrantanopsia. Antiphospholipid syndrome should be considered as a differential diagnosis in patients with homonymous visual field defects accompanying multiple cerebral infarcts.

  16. Reconstruction of radial bone defect in rat by calcium silicate biomaterials.

    Science.gov (United States)

    Oryan, Ahmad; Alidadi, Soodeh

    2018-05-15

    Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Evaluation of condyle defects using different reconstruction protocols of cone-beam computed tomography

    International Nuclear Information System (INIS)

    Bastos, Luana Costa; Campos, Paulo Sergio Flores; Ramos-Perez, Flavia Maria de Moraes; Pontual, Andrea dos Anjos; Almeida, Solange Maria

    2013-01-01

    This study was conducted to investigate how well cone-beam computed tomography (CBCT) can detect simulated cavitary defects in condyles, and to test the influence of the reconstruction protocols. Defects were created with spherical diamond burs (numbers 1013, 1016, 3017) in superior and / or posterior surfaces of twenty condyles. The condyles were scanned, and cross-sectional reconstructions were performed with nine different protocols, based on slice thickness (0.2, 0.6, 1.0 mm) and on the filters (original image, Sharpen Mild, S9) used. Two observers evaluated the defects, determining their presence and location. Statistical analysis was carried out using simple Kappa coefficient and McNemar’s test to check inter- and intra-rater reliability. The chi-square test was used to compare the rater accuracy. Analysis of variance (Tukey's test) assessed the effect of the protocols used. Kappa values for inter- and intra-rater reliability demonstrate almost perfect agreement. The proportion of correct answers was significantly higher than that of errors for cavitary defects on both condyle surfaces (p < 0.01). Only in identifying the defects located on the posterior surface was it possible to observe the influence of the 1.0 mm protocol thickness and no filter, which showed a significantly lower value. Based on the results of the current study, the technique used was valid for identifying the existence of cavities in the condyle surface. However, the protocol of a 1.0 mm-thick slice and no filter proved to be the worst method for identifying the defects on the posterior surface. (author)

  18. Evaluation of condyle defects using different reconstruction protocols of cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Luana Costa; Campos, Paulo Sergio Flores, E-mail: bastosluana@ymail.com [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Odontologia. Dept. de Radiologia Oral e Maxilofacial; Ramos-Perez, Flavia Maria de Moraes [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Fac. de Odontologia. Dept. de Clinica e Odontologia Preventiva; Pontual, Andrea dos Anjos [Universidade Federal de Pernambuco (UFPE), Camaragibe, PE (Brazil). Fac. de Odontologia. Dept. de Radiologia Oral; Almeida, Solange Maria [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Radiologia Oral

    2013-11-15

    This study was conducted to investigate how well cone-beam computed tomography (CBCT) can detect simulated cavitary defects in condyles, and to test the influence of the reconstruction protocols. Defects were created with spherical diamond burs (numbers 1013, 1016, 3017) in superior and / or posterior surfaces of twenty condyles. The condyles were scanned, and cross-sectional reconstructions were performed with nine different protocols, based on slice thickness (0.2, 0.6, 1.0 mm) and on the filters (original image, Sharpen Mild, S9) used. Two observers evaluated the defects, determining their presence and location. Statistical analysis was carried out using simple Kappa coefficient and McNemar’s test to check inter- and intra-rater reliability. The chi-square test was used to compare the rater accuracy. Analysis of variance (Tukey's test) assessed the effect of the protocols used. Kappa values for inter- and intra-rater reliability demonstrate almost perfect agreement. The proportion of correct answers was significantly higher than that of errors for cavitary defects on both condyle surfaces (p < 0.01). Only in identifying the defects located on the posterior surface was it possible to observe the influence of the 1.0 mm protocol thickness and no filter, which showed a significantly lower value. Based on the results of the current study, the technique used was valid for identifying the existence of cavities in the condyle surface. However, the protocol of a 1.0 mm-thick slice and no filter proved to be the worst method for identifying the defects on the posterior surface. (author)

  19. Defect states in microcrystalline silicon probed by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Merdzhanova, T.; Carius, R.; Klein, S.; Finger, F.; Dimova-Malinovska, D.

    2006-01-01

    Photoluminescence (PL) spectroscopy is used to investigate defects and localized band tail states within the band gap of hydrogenated microcrystalline silicon (μc-Si:H) prepared by plasma enhanced chemical vapor deposition (PECVD) and hot wire chemical vapor deposition (HWCVD). The effect of the substrate temperature (T S ), which influences mainly the defect density, and silane concentration (SC), as Key parameter to control the microstructure of the material were varied. In high quality μc-Si:H films (T S = 185-200 deg. C) a PL band ('μc'-Si-band) is observed at ∼ 0.9-1.05 eV which is attributed to radiative recombination via localized band tail states in the microcrystalline phase. In μc-Si:H films prepared at higher T S (> 300 deg. C), an additional PL band at ∼ 0.7 eV with a width of ∼ 0.17 eV is found for both PECVD and HWCVD material. This band maintains its position at ∼ 0.7 eV with increasing SC in contrast to the observed shift of the 'μc'-Si-band to higher energies. Studies of the temperature dependences of the PL peak energy and intensity for the two bands show: (i) the PL band at 0.7 eV remains unaffected upon increasing temperature, while the 'μc'-Si-band shifts to lower energies (ii) a much weaker quenching for the 0.7 eV band compared to the 'μc'-Si-band. It was also found that the PL band at 0.7 eV exhibits a slightly stronger temperature dependence of the PL intensity compared to 'defect' band at 0.9 eV in a-Si:H suggesting similar recombination transition via deeper trap states. Due to a similar PL properties of the emission band previously observed in Czochralski-grown silicon (Cz-Si), the 0.7 eV band in μc-Si:H is assigned tentatively to defect-related transitions in the crystalline phase

  20. Congenital Heart Defects and CCHD

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Congenital heart defects and ... in congenital heart defects. You have a family history of congenital heart ... syndrome or VCF. After birth Your baby may be tested for CCHD as ...