WorldWideScience

Sample records for primary cultured cells

  1. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  2. Immunocytochemical characterization of primary cell culture in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Luis M.M. Flórez

    Full Text Available Abstract: Immunochemistry with anti-vimentin, anti-lysozyme, anti-alpha 1 antitrypsin, anti-CD3 and anti-CD79α antibodies has been used for characterization of primary cell culture in the transmissible venereal tumor (TVT. Samples for primary cell culture and immunohistochemistry assays were taken from eight dogs with cytological and clinical diagnosis of TVT. To validate the immunochemical results in the primary cell culture of TVT, a chromosome count was performed. For the statistical analysis, the Mann-Whitney test with p<0.05 was used. TVT tissues and culture cells showed intense anti-vimentin immunoreactivity, lightly to moderate immunoreactivity for anti-lysozyme, and mild for anti-alpha-antitrypsin. No marking was achieved for CD3 and CD79α. All culture cells showed chromosomes variable number of 56 to 68. This is the first report on the use of immunocytochemical characterization in cell culture of TVT. Significant statistic difference between immunochemistry in tissue and culture cell was not established, what suggests that the use of this technique may provide greater certainty for the confirmation of tumors in the primary culture. This fact is particularly important because in vitro culture of tumor tissues has been increasingly used to provide quick access to drug efficacy and presents relevant information to identify potential response to anticancer medicine; so it is possible to understand the behavior of the tumor.

  3. Transfection in Primary Cultured Neuronal Cells.

    Science.gov (United States)

    Marwick, Katie F M; Hardingham, Giles E

    2017-01-01

    Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here, we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.

  4. Establishment of primary cell culture from the temperate symbiotic cnidarian, Anemonia viridis.

    Science.gov (United States)

    Barnay-Verdier, Stéphanie; Dall'osso, Diane; Joli, Nathalie; Olivré, Juliette; Priouzeau, Fabrice; Zamoum, Thamilla; Merle, Pierre-Laurent; Furla, Paola

    2013-10-01

    The temperate symbiotic sea anemone Anemonia viridis, a member of the Cnidaria phylum, is a relevant experimental model to investigate the molecular and cellular events involved in the preservation or in the rupture of the symbiosis between the animal cells and their symbiotic microalgae, commonly named zooxanthellae. In order to increase research tools for this model, we developed a primary culture from A. viridis animal cells. By adapting enzymatic dissociation protocols, we isolated animal host cells from a whole tentacle in regeneration state. Each plating resulted in a heterogeneous primary culture consisted of free zooxanthellae and many regular, small rounded and adherent cells (of 3-5 μm diameter). Molecular analyses conducted on primary cultures, maintained for 2 weeks, confirmed a specific signature of A. viridis cells. Further serial dilutions and micromanipulation allowed us to obtain homogenous primary cultures of the small rounded cells, corresponding to A. viridis "epithelial-like cells". The maintenance and the propagation over a 4 weeks period of primary cells provide, for in vitro cnidarian studies, a preliminary step for further investigations on cnidarian cellular pathways notably in regard to symbiosis interactions.

  5. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  6. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  7. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    Science.gov (United States)

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  9. Identification of differences in gene expression in primary cell cultures of human endometrial epithelial cells and trophoblast cells following their interaction

    DEFF Research Database (Denmark)

    Høgh, Mette; Islin, Henrik; Møller, Charlotte

    2006-01-01

    The interaction between the cell types was simulated in vitro by growing primary cell cultures of human endometrial epithelial cells and trophoblast cells together (co-culture) and separately (control cultures). Gene expression in the cell cultures was compared using the Differential Display method and confirmed...

  10. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells.

    Science.gov (United States)

    Koban, Robert; Neumann, Markus; Daugs, Aila; Bloch, Oliver; Nitsche, Andreas; Langhammer, Stefan; Ellerbrok, Heinz

    2018-02-01

    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) and FDA approved for treatment of non-small cell lung cancer. In a previous study we could show the in vitro efficacy of gefitinib for treatment of poxvirus infections in monolayer (2D) cultivated cell lines. Permanent cell lines and 2D cultures, however, are known to be rather unphysiological; therefore it is difficult to predict whether determined effective concentrations or the drug efficacy per se are transferable to the in vivo situation. 3D cell cultures, which meanwhile are widely distributed across all fields of research, are a promising tool for more predictive in vitro investigations of antiviral compounds. In this study the spreading of cowpox virus and the antiviral efficacy of gefitinib were analyzed in primary human keratinocytes (NHEK) grown in a novel 3D extracellular matrix-based cell culture model and compared to the respective monolayer culture. 3D-cultivated NHEK grew in a polarized and thus a more physiological manner with altered morphology and close cell-cell contact. Infected cultures showed a strongly elevated sensitivity towards gefitinib. EGFR phosphorylation, cell proliferation, and virus replication were significantly reduced in 3D cultures at gefitinib concentrations which were at least 100-fold lower than those in monolayer cultures and well below the level of cytotoxicity. Our newly established 3D cell culture model with primary human cells is an easy-to-handle alternative to conventional monolayer cell cultures and previously described more complex 3D cell culture systems. It can easily be adapted to other cell types and a broad spectrum of viruses for antiviral drug screening and many other aspects of virus research under more in vivo-like conditions. In consequence, it may contribute to a more targeted realization of necessary in vivo experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Science.gov (United States)

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  12. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    International Nuclear Information System (INIS)

    Cifola, Ingrid; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A

    2011-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  13. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  14. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Science.gov (United States)

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  15. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Directory of Open Access Journals (Sweden)

    Camila Bonazza

    Full Text Available Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2 and progesterone (P4 effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation. These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  16. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues.

    Science.gov (United States)

    Cifola, Ingrid; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A

    2011-06-13

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  17. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, S.; Luttge, R.

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  18. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  19. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells.

    Science.gov (United States)

    Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui

    2017-08-01

    Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti

  20. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    Science.gov (United States)

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  1. Effect of anabolics on bovine granulosa-luteal cell primary cultures.

    Directory of Open Access Journals (Sweden)

    Bartolomeo Biolatti

    2007-10-01

    Full Text Available Granulosa cell tumours are observed with increased frequency among calves slaughtered in Northern Italy. The use of illegal anabolics in breeding was taken into account as a cause of this pathology. An in vitro approach was used to detect the possible alterations of cell proliferation induced by anabolics on primary cultures of bovine granulosa-luteal cells. Cultures were treated with different concentrations of substances illegally used in cattle (17beta-estradiol, clenbuterol and boldione. Cytotoxicity was determined by means of MTT test, to exclude toxic effects induced by anabolics and to determine the highest concentration to be tested. Morphological changes were evaluated by means of routine cytology, while PCNA expression was quantified in order to estimate cell proliferation. Cytotoxic effects were revealed at the highest concentrations. The only stimulating effect on cell proliferation was detected in boldione treated cultures: after 48 h treated cells, compared to controls, showed a doubled expression of PCNA. In clenbuterol and 17beta-estradiol treated cells PCNA expression was similar to controls or even decreased. As the data suggest an alteration in cell proliferation, boldione could have a role in the early stage of pathogenesis of granulosa cell tumour in cattle.

  2. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  3. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  5. Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine

    International Nuclear Information System (INIS)

    Lobo, Nazleen C.; Gedye, Craig; Apostoli, Anthony J.; Brown, Kevin R.; Paterson, Joshua; Stickle, Natalie; Robinette, Michael; Fleshner, Neil; Hamilton, Robert J.; Kulkarni, Girish; Zlotta, Alexandre; Evans, Andrew; Finelli, Antonio; Moffat, Jason; Jewett, Michael A. S.; Ailles, Laurie

    2016-01-01

    Patients with clear cell renal cell carcinoma (ccRCC) have few therapeutic options, as ccRCC is unresponsive to chemotherapy and is highly resistant to radiation. Recently targeted therapies have extended progression-free survival, but responses are variable and no significant overall survival benefit has been achieved. Commercial ccRCC cell lines are often used as model systems to develop novel therapeutic approaches, but these do not accurately recapitulate primary ccRCC tumors at the genomic and transcriptional levels. Furthermore, ccRCC exhibits significant intertumor genetic heterogeneity, and the limited cell lines available fail to represent this aspect of ccRCC. Our objective was to generate accurate preclinical in vitro models of ccRCC using tumor tissues from ccRCC patients. ccRCC primary single cell suspensions were cultured in fetal bovine serum (FBS)-containing media or defined serum-free media. Established cultures were characterized by genomic verification of mutations present in the primary tumors, expression of renal epithelial markers, and transcriptional profiling. The apparent efficiency of primary cell culture establishment was high in both culture conditions, but genotyping revealed that the majority of cultures contained normal, not cancer cells. ccRCC characteristically shows biallelic loss of the von Hippel Lindau (VHL) gene, leading to accumulation of hypoxia-inducible factor (HIF) and expression of HIF target genes. Purification of cells based on expression of carbonic anhydrase IX (CA9), a cell surface HIF target, followed by culture in FBS enabled establishment of ccRCC cell cultures with an efficiency of >80 %. Culture in serum-free conditions selected for growth of normal renal proximal tubule epithelial cells. Transcriptional profiling of ccRCC and matched normal cell cultures identified up- and down-regulated networks in ccRCC and comparison to The Cancer Genome Atlas confirmed the clinical validity of our cell cultures. The ability

  6. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  7. Establishment of primary keratinocyte culture from horse tissue biopsates

    Directory of Open Access Journals (Sweden)

    Jernej OGOREVC

    2015-12-01

    Full Text Available Primary cell lines established from skin tissue can be used in immunological, proteomic and genomic studies as in vitro skin models. The goal of our study was to establish a primary keratinocyte cell culture from tissue biopsates of two horses. The primary keratinocyte cell culture was obtained by mechanical and enzymatic dissociation and with explant culture method. The result was a heterogeneous primary culture comprised of keratinocytes and fibroblasts. To distinguish epithelial and mesenchymal cells immunofluorescent characterisation was performed, using antibodies against cytokeratin 14 and vimentin. We successfully at attained a primary cell line of keratinocytes, which could potentially be used to study equine skin diseases, as an animal model for human diseases, and for cosmetic and therapeutic product testing.

  8. Migration assay on primary culture isolated from patient's primary breast cancer tissue

    Directory of Open Access Journals (Sweden)

    ED Yuliana

    2014-12-01

    Full Text Available Background: Migration is an essential component of breast cancer metastasis, which studyhas been concentrated on culture of established breast cancer cell lines that do not accuratelyrepresent the sophistication and heterogeneity of patient's breast cancer. An attempt toperform migration assay using Boyden Chamber Assay (BCA on primary culture originatingfrom patient's breast cancer tissue was developed to accommodate upcoming study of breastcancer migration in lndonesian patients.Methods: Pathologically proven primary breast cancer tissue samples were obtained fromCiptomangunkusumo Hospital during core (n=4 and incisional (n=3 biopsies of stage llAup to stage lllA breast cancer patients. Following biopsy, the breast cancer tissue samplesunderwent processings to isolate the cancer cells. These cancer cells were -then resuspendedwithin Dulbecco's modified Eagle's medium (DMEM ahd cultured in 12-well plate. The growthof primary culture were observed and compared between the core biopsy and the incisionalbiopsy specimens. Optimization of BCA method was later performed to investigate themigration of the breast cancer primary culture towards different experirnental conditions, whichwere control, Fetal Bovine Serum (FBS, and Stromal Derived Factor-l (SDF-1. Two differentnumber of breast cancer cells were tested for the optimization of the BCA, which were 1 x 105and3x105cells.Results: None of the culture performed on core biopsy specimens grew, while one out ofthree incisional biopsy specimens grew until confluence. The one primary culture that grewwas later assesed using BCA to assess its migration index towards different experimentalconditions. Using 1 x 10s breast cancer cells in the BCA , the result of the absorbance level ofmigrated cells showed that the migration towards SDF-1 (0.529 nearly doubled the migrationtowards controlmedium (0.239 and FBS (0.209. Meanwhile, the absorbance levelwas simiiarbetween the control medium (1.050, FBS (1 .103

  9. Effects of cortisol on the primary response of mouse spleen cell cultures to heterologous erythrocytes

    International Nuclear Information System (INIS)

    Dracott, B.N.

    1974-01-01

    Cell viability and the production of direct PFC were studied in mouse spleen cell cultures after cortisol treatment in vivo or in vitro at various times relative to primary stimulation with SRBC in vitro. Cortisol treatment in vivo reduced spleen cell numbers by 88 percent after 48 hr, but cultures of the remaining cells produced as many PFC in vitro as did cultures of equal numbers of normal spleen cells. In normal spleen cell cultures incubated with cortisol for 4 hr prior to the addition of antigen, peak responses of PFC/culture and PFC/10 6 cells occurred 24 hr later than in controls and averaged, respectively, 27 and 141 percent of control values. Minimum viable cell numbers were observed in cortisol-treated cultures after 3 days; thereafter cell numbers gradually increased. These results were not significantly altered when cultures were treated simultaneously with cortisol and antigen. The response was not suppressed if the addition of antigen preceded that of cortisol by more than 4 hr. Suppression was also considerably reduced if fetal calf serum was used when preparing cells for culture

  10. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  11. Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts.

    Science.gov (United States)

    Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar

    2002-02-01

    Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.

  12. Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells

    DEFF Research Database (Denmark)

    Ballard, S A; Williamson, M; Adler, B

    1986-01-01

    A primary culture system for the cells of mouse renal-tubular epithelium was established and used to observe the adhesion of leptospires. Virulent strains of serovars copenhageni and ballum attached themselves to epithelial cells within 3 h of infection whereas an avirulent variant of serovar cop...

  13. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  14. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.

    Science.gov (United States)

    Popova, Daria; Stonier, Adam; Pain, David; Titchener-Hooker, Nigel J; Farid, Suzanne S

    2016-07-01

    Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    Science.gov (United States)

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  16. Establishment and Characterization of Primary Cultures from Iranian Oral Squamous Cell Carcinoma Patients by Enzymatic Method and Explant Culture

    Directory of Open Access Journals (Sweden)

    Meysam Ganjibakhsh

    2017-10-01

    Full Text Available Objectives: Oral Squamous Cell Carcinoma (OSCC is the most frequent oral cancer worldwide. It is known as the eighth most common cancer in men and as the fifth most common cancer in women. Cytogenetic and biochemical studies in recent decades have emphasized the necessity of providing an appropriate tool for such researches. Cancer cell culture is a useful tool for investigations on biochemical, genetic, molecular and immunological characteristics of different cancers, including oral cancer. Here, we explain the establishment process of five primary oral cancer cells derived from an Iranian population.Materials and Methods: The specimens were obtained from five oral cancer patients. Enzymatic, explant culture and magnetic-activated cell sorting (MACS methods were used for cell isolation. After quality control tests, characterization and authentication of primary oral cancer cells were performed by short tandem repeats (STR profiling, chromosome analysis, species identification, and monitoring the growth, morphology and the expression of CD326 and CD133 markers.Results: Five primary oral cancer cells were established from an Iranian population. The flow cytometry results showed that the isolated cells were positive for CD326 and CD133 markers. Furthermore, the cells were free from mycoplasma, bacterial and fungal contamination. No misidentified or cross-contaminated cells were detected by STR analysis.Conclusions: Human primary oral cancer cells provide an extremely useful platform for studying carcinogenesis pathways of oral cancer in Iranian population. They may be helpful in explaining the ethnic differences in cancer biology and the individuality in anticancer drug response in future studies.

  17. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis.

    Science.gov (United States)

    Pifferi, Massimo; Bush, Andrew; Montemurro, Francesca; Pioggia, Giovanni; Piras, Martina; Tartarisco, Gennaro; Di Cicco, Maria; Chinellato, Iolanda; Cangiotti, Angela M; Boner, Attilio L

    2013-04-01

    Diagnosis of primary ciliary dyskinesia (PCD) sometimes requires repeated nasal brushing to exclude secondary ciliary alterations. Our aim was to evaluate whether the use of a new method of nasal epithelial cell culture can speed PCD diagnosis in doubtful cases and to identify which are the most informative parameters by means of a multilayer artificial neural network (ANN). A cross-sectional study was performed in patients with suspected PCD. All patients underwent nasal brushing for ciliary motion analysis, ultrastructural assessment and evaluation of ciliary function after ciliogenesis in culture by ANN. 151 subjects were studied. A diagnostic suspension cell culture was obtained in 117 nasal brushings. A diagnosis of PCD was made in 36 subjects (29 of whom were children). In nine out of the 36 patients the diagnosis was made only after a second brushing, because of equivocal results of both tests at first examination. In each of these subjects diagnosis of PCD was confirmed by cell culture results. Cell culture in suspension evaluated by means of ANN allows the separation of PCD from secondary ciliary dyskinesia patients after only 5 days of culture and allows diagnosis to be reached in doubtful cases, thus avoiding the necessity of a second sample.

  18. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  19. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  20. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  1. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    International Nuclear Information System (INIS)

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-01-01

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li 2 CO 3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  2. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...... induction of c-fos mRNA was observed 20-60 min after stimulation with 5 nM GRF, returning to basal levels after 2 h. Somatostatin-14 (5 nM) partially inhibited the GRF induced c-fos expression. Forskolin and phorbol 12, 13 dibutyrate induced c-fos gene in cultured primary pituitary cells with similar...

  3. The Effect of Primary Cancer Cell Culture Models on the Results of Drug Chemosensitivity Assays: The Application of Perfusion Microbioreactor System as Cell Culture Vessel

    Science.gov (United States)

    Chen, Yi-Dao; Huang, Shiang-Fu; Wang, Hung-Ming

    2015-01-01

    To precisely and faithfully perform cell-based drug chemosensitivity assays, a well-defined and biologically relevant culture condition is required. For the former, a perfusion microbioreactor system capable of providing a stable culture condition was adopted. For the latter, however, little is known about the impact of culture models on the physiology and chemosensitivity assay results of primary oral cavity cancer cells. To address the issues, experiments were performed. Results showed that minor environmental pH change could significantly affect the metabolic activity of cells, demonstrating the importance of stable culture condition for such assays. Moreover, the culture models could also significantly influence the metabolic activity and proliferation of cells. Furthermore, the choice of culture models might lead to different outcomes of chemosensitivity assays. Compared with the similar test based on tumor-level assays, the spheroid model could overestimate the drug resistance of cells to cisplatin, whereas the 2D and 3D culture models might overestimate the chemosensitivity of cells to such anticancer drug. In this study, the 3D culture models with same cell density as that in tumor samples showed comparable chemosensitivity assay results as the tumor-level assays. Overall, this study has provided some fundamental information for establishing a precise and faithful drug chemosensitivity assay. PMID:25654105

  4. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  5. Primary culture of cat intestinal epithelial cells in vitro and the cDNA library construction.

    Science.gov (United States)

    Zhao, Gui Hua; Liu, Ye; Cheng, Yun Tang; Zhao, Qing Song; Qiu, Xiao; Xu, Chao; Xiao, Ting; Zhu, Song; Liu, Gong Zhen; Yin, Kun

    2018-06-26

    Felids are the only definitive hosts of Toxoplasma gondii. To lay a foundation for screening the T. gondii-felids interaction factors, we have developed a reproducible primary culture method for cat intestinal epithelial cells (IECs). The primary IECs were isolated from a new born cat's small intestine jejunum region without food ingress, and respectively in vitro cultured by tissue cultivation and combined digestion method with collagenase XI and dispase I, then purified by trypsinization. After identification, the ds cDNA of cat IECs was synthesized for constructing pGADT7 homogenization three-frame plasmid, and transformed into the yeast Y187 for generating the cDNA library. Our results indicated that cultivation of primary cat IECs relays on combined digestion to form polarized and confluent monolayers within 3 days with typical features of normal epithelial cells. The purified cells cultured by digestion method were identified to be nature intestinal epithelial cells using immunohistochemical analysis and were able to maintain viability for at least 15 passages. The homogenizable ds cDNA, which is synthesized from the total RNA extracted from our cultured IECs, distributed among 0.5-2.0 kb, and generated satisfying three-frame cDNA library with the capacity of 1.2 × 106 and the titer of 5.2 × 107 pfu/mL. Our results established an optimal method for the culturing and passage of cat IECs model in vitro, and laid a cDNA library foundation for the subsequent interaction factors screening by yeast two-hybrid.

  6. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    Science.gov (United States)

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated

  7. Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level.

    Science.gov (United States)

    Ventura, P; Toullec, G; Fricano, C; Chapron, L; Meunier, V; Röttinger, E; Furla, P; Barnay-Verdier, S

    2018-04-01

    In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.

  8. Identification of cancer stem-like side population cells in purified primary cultured human laryngeal squamous cell carcinoma epithelia.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Wu

    Full Text Available Cancer stem-like side population (SP cells have been identified in many solid tumors; however, most of these investigations are performed using established cancer cell lines. Cancer cells in tumor tissue containing fibroblasts and many other types of cells are much more complex than any cancer cell line. Although SP cells were identified in the laryngeal squamous cell carcinoma (LSCC cell line Hep-2 in our pilot study, it is unknown whether the LSCC tissue contains SP cells. In this study, LSCC cells (LSCCs were primary cultured and purified from a surgically resected LSCC specimen derived from a well-differentiated epiglottic neoplasm of a Chinese male. This was followed by the verification of epithelium-specific characteristics, such as ultrastructure and biomarkers. A distinct SP subpopulation (4.45±1.07% was isolated by Hoechst 33342 efflux analysis from cultured LSCCs by using a flow cytometer. Cancer stem cell (CSC-associated assays, including expression of self-renewal and CSC marker genes, proliferation, differentiation, spheroid formation, chemotherapy resistance, and tumorigenicity were then conducted between SP and non-SP (NSP LSCCs. In vitro and in vivo assays revealed that SP cells manifested preferential expression of self-renewal and CSC marker genes, higher capacity for proliferation, differentiation, and spheroid formation; enhanced resistance to chemotherapy; and greater xenograft tumorigenicity in immunodeficient mice compared with NSP cells. These findings suggest that the primary cultured and purified LSCCs contain cancer stem-like SP cells, which may serve as a valuable model for CSC research in LSCC.

  9. In vitro transformation of primary cultures of neonatal BALB/c mouse epidermal cells with ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ananthaswamy, H.N.; Kripke, M.L.

    1981-01-01

    Primary epidermal cultures from neonatal BALB/c mice were used to study the carcinogenic effects of ultraviolet radiation in vitro. These cultures were irradiated once through a Falcon plastic dish cover with an FS40 sunlamp [ultraviolet B, lambda approximately 290 to 400 nm] for various lengths of time and maintained for 8 to 12 weeks without subculturing. During this period, most of the cells in the untreated control showed signs of morphological differentiation and eventually died. The cultures irradiated with ultraviolet B radiation also behaved in the same manner except that, in some dishes, small populations of surviving cells began to proliferate and developed into morphologically distinct foci. Seven long-term cell lines were derived from these ultraviolet-irradiated primary epidermal cell cultures. Six of these cell lines produced tumors when injected s.c. into normal and/or immunosuppressed syngeneic recipients. These tumorigenic cell lines lacked definitive characteristics of differentiated epidermal cells, but the cells possessed intermediate junctions, suggesting that they were of epithelial origin. Some of these in vitro-transformed cell lines appeared to be highly antigenic inasmuch as they grew preferentially in immunosuppressed BALB/c mice as compared to their growth in normal syngeneic recipients

  10. Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using cell-adhesive matrix and supplemented medium

    International Nuclear Information System (INIS)

    Baker, F.L.; Spitzer, G.; Ajani, J.A.

    1986-01-01

    The limitations of the agar suspension culture method for primary culturing of human tumor cells prompted development of a monolayer system optimized for cell adhesion and growth. This method grew 83% of fresh human tumor cell biopsy specimens, cultured and not contaminated, from a heterogeneous group of 396 tumors including lung cancer (93 of 114, 82%); melanoma (54 of 72, 75%); sarcoma (46 of 59, 78%); breast cancer (35 of 39, 90%); ovarian cancer (16 of 21, 76%); and a miscellaneous group consisting of gastrointestinal, genitourinary, mesothelioma, and unknown primaries (78 of 91, 86%). Cell growth was characterized morphologically with Papanicolaoustained coverslip cultures and cytogenetically with Giemsastained metaphase spreads. Morphological features such as nuclear pleomorphism, chromatin condensation, basophilic cytoplasm, and melanin pigmentation were routinely seen. Aneuploid metaphases were seen in 90% of evaluable cultures, with 15 of 28 showing 70% or more aneuploid metaphases. Colony-forming efficiency ranged between 0.01 and 1% of viable tumor cells, with a median efficiency of 0.2%. This culture system uses a low inoculum of 25,000 viable cells per well which permitted chemosensitivity testing of nine drugs at four doses in duplicate from 2.2 X 10(6) viable tumor cells and radiation sensitivity testing at five doses in quadruplicate from 0.6 X 10(6) cells. Cultures were analyzed for survival by computerized image analysis of crystal violet-stained cells. Drug sensitivity studies showed variability in sensitivity and in survival curve shape with exponential cell killing for cisplatin, Adriamycin, and etoposide, and shouldered survival curves for 5-fluorouracil frequently seen. Radiation sensitivity studies also showed variability in both sensitivity and survival curve shape. Many cultures showed exponential cell killing, although others had shouldered survival curves

  11. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Kinoshita, Takaaki; Uemura, Takeshi; Motohashi, Hozumi; Watanabe, Yohei; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Maruyama, Yuusuke; Tsuji, Noriko M.; Yamamoto, Masayuki; Nishihara, Shoko; Sato, Chikara

    2014-01-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM

  12. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  13. Changes in adipose tissue stromal-vascular cells in primary culture due to porcine sera

    International Nuclear Information System (INIS)

    Jewell, D.E.; Hausman, G.J.

    1986-01-01

    This study was conducted to determine the response of rat stromal-vascular cells to pig sea. Sera were collected from unselected contemporary (lean) and high backfat thickness selected (obese) pigs. Sera from obese pigs were collected either by exsanguination or cannulation. sera from lean pigs during the growing phase (45 kg) and the fattening phase (100-110 kg) were collected. Stromal-vascular cells derived rom rat inguinal tissue were cultured on either 25 cm 2 flasks, collagen-coated coverslips or petri dishes. Cell proliferation was measured by [ 3 H]-thymidine incorporation during the fourth day of culture. Coverslip cultures were used for histochemical analysis. Petri dish cultures were used for analysis of Sn-glycerol-3-phosphate dehydrogenase (GPDH) activity. All cells were plated for 24 hours in media containing 10 fetal bovine sera. Test media contained 2.5, 5.0, 10.0% sera. Sera from obese pigs increased GPDH activity and fat cell production when compared to the lean controls. The increased concentration of sera increased esterase activity and lipid as measured with oil red O. The sera from obese pigs collected at slaughter stimulated more fat cell production than obese sera collected by cannulation. These studies show there are adipogenic factors in obese pigs sera which promote fat cell development in primary cell culture

  14. [Characterization of epithelial primary culture from human conjunctiva].

    Science.gov (United States)

    Rivas, L; Blázquez, A; Muñoz-Negrete, F J; López, S; Rebolleda, G; Domínguez, F; Pérez-Esteban, A

    2014-01-01

    To evaluate primary cultures from human conjunctiva supplemented with fetal bovine serum, autologous serum, and platelet-rich autologous serum, over human amniotic membrane and lens anterior capsules. One-hundred and forty-eight human conjunctiva explants were cultured in CnT50(®) supplemented with 1, 2.5, 5 and 10% fetal bovine serum, autologous serum and platelet-rich autologous serum. Conjunctival samples were incubated at 37°C, 5% CO2 and 95% HR, for 3 weeks. The typical phenotype corresponding to conjunctival epithelial cells was present in all primary cultures. Conjunctival cultures had MUC5AC-positive secretory cells, K19-positive conjunctival cells, and MUC4-positive non-secretory conjunctival cells, but were not corneal phenotype (cytokeratin K3-negative) and fibroblasts (CD90-negative). Conjunctiva epithelial progenitor cells were preserved in all cultures; thus, a cell culture in CnT50(®) supplemented with 1 to 5% autologous serum over human amniotic membrane can provide better information of epithelial cell differentiation for the conjunctival surface reconstruction. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  15. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine

    DEFF Research Database (Denmark)

    Jeppesen, Maria; Hagel, Grith; Glenthoj, Anders

    2017-01-01

    Chemotherapy treatment of cancer remains a challenge due to the molecular and functional heterogeneity displayed by tumours originating from the same cell type. The pronounced heterogeneity makes it difficult for oncologists to devise an effective therapeutic strategy for the patient. One approac...... and combinations most commonly used for treatment of colorectal cancer. In summary, short-term spheroid culture of primary colorectal adenocarcinoma cells represents a promising in vitro model for use in personalized medicine....... for increasing treatment efficacy is to test the chemosensitivity of cancer cells obtained from the patient's tumour. 3D culture represents a promising method for modelling patient tumours in vitro. The aim of this study was therefore to evaluate how closely short-term spheroid cultures of primary colorectal...... cancer cells resemble the original tumour. Colorectal cancer cells were isolated from human tumour tissue and cultured as spheroids. Spheroid cultures were established with a high success rate and remained viable for at least 10 days. The spheroids exhibited significant growth over a period of 7 days...

  16. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Clabault, Hélène; Laurent, Laetitia; Hudon-Thibeault, Andrée-Anne; Salustiano, Eugênia Maria Assunção; Fortier, Marlène; Bienvenue-Pariseault, Josianne; Wong Yen, Philippe; Sanderson, J Thomas; Vaillancourt, Cathy

    2016-07-30

    This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.

  17. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    Science.gov (United States)

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes 5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  18. Primary Culture of Choroid Plexuses from Neonate Rats Containing Progenitor Cells Capable of Differentiation

    Directory of Open Access Journals (Sweden)

    Sheng-Li Huang

    2013-12-01

    Full Text Available Background: The choroid plexuses, which could secrete a number of neurotrophins, have recently been used in transplantation in central nervous system diseases. Aims: To study the mechanism of nerve regeneration in the central nervous system by grafting choroid plexus tissues. Study Design: Animal experimentation. Methods: The choroid plexuses from the lateral ventricles of neonatal rats were cultured in adherent culture, and immunocytochemical methods were used to analyse the progenitor cells on days 2, 6, and 10 after seeding. Results: Expression of both nestin and glial fibrillary acidic protein was observed in small cell aggregates on day 2 in primary culture. Most of the nestin-positive cells on day 6 were immunoreactive to glial fibrillary acidic protein antibody. No cells expressing nestin or glial fibrillary acidic protein were seen on day 10. Conclusion: These experimental results indicate that the choroid plexus contains a specific cell population – progenitor cells. Under in vitro experimental conditions, the progenitor cells differentiated into choroid plexus epithelial cells but did not form neurons or astrocytes.

  19. Isolation and Characterization of Current Human Coronavirus Strains in Primary Human Epithelial Cell Cultures Reveal Differences in Target Cell Tropism

    Science.gov (United States)

    Dijkman, Ronald; Jebbink, Maarten F.; Koekkoek, Sylvie M.; Deijs, Martin; Jónsdóttir, Hulda R.; Molenkamp, Richard; Ieven, Margareta; Goossens, Herman; Thiel, Volker

    2013-01-01

    The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains. PMID:23427150

  20. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    International Nuclear Information System (INIS)

    Katano, Takahito; Ootani, Akifumi; Mizoshita, Tsutomu; Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi; Toda, Shuji; Joh, Takashi

    2013-01-01

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment

  1. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Takahito [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Ootani, Akifumi [Department of Gastroenterology and GI Endoscopy Center, Shin-Kokura Hospital, Federation of National Public Service Personnel Mutual Aid Associations, 1-3-1 Kanada, Kokurakita-ku, Kitakyushu 803-0816 (Japan); Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Mizoshita, Tsutomu, E-mail: tmizoshi@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Tanida, Satoshi; Tsukamoto, Hironobu; Ozeki, Keiji; Ebi, Masahide; Mori, Yoshinori; Kataoka, Hiromi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system within the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.

  2. Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress.

    Science.gov (United States)

    Lopachev, A V; Lopacheva, O M; Abaimov, D A; Koroleva, O V; Vladychenskaya, E A; Erukhimovich, A A; Fedorova, T N

    2016-05-01

    Dipeptide carnosine (β-alanyl-L-histidine) is a natural antioxidant, but its protective effect under oxidative stress induced by neurotoxins is studied insufficiently. In this work, we show the neuroprotective effect of carnosine in primary cultures of rat cerebellar cells under oxidative stress induced by 1 mM 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH), which directly generates free radicals both in the medium and in the cells, and 20 nM rotenone, which increases the amount of intracellular reactive oxygen species (ROS). In both models, adding 2 mM carnosine to the incubation medium decreased cell death calculated using fluorescence microscopy and enhanced cell viability estimated by the MTT assay. The antioxidant effect of carnosine inside cultured cells was demonstrated using the fluorescence probe dichlorofluorescein. Carnosine reduced by half the increase in the number of ROS in neurons induced by 20 nM rotenone. Using iron-induced chemiluminescence, we showed that preincubation of primary neuronal cultures with 2 mM carnosine prevents the decrease in endogenous antioxidant potential of cells induced by 1 mM AAPH and 20 nM rotenone. Using liquid chromatography-mass spectrometry, we showed that a 10-min incubation of neuronal cultures with 2 mM carnosine leads to a 14.5-fold increase in carnosine content in cell lysates. Thus, carnosine is able to penetrate neurons and exerts an antioxidant effect. Western blot analysis revealed the presence of the peptide transporter PEPT2 in rat cerebellar cells, which suggests the possibility of carnosine transport into the cells. At the same time, Western blot analysis showed no carnosine-induced changes in the level of apoptosis regulating proteins of the Bcl-2 family and in the phosphorylation of MAP kinases, which suggests that carnosine could have minimal or no side effects on proliferation and apoptosis control systems in normal cells.

  3. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  4. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    Science.gov (United States)

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  5. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma

    Directory of Open Access Journals (Sweden)

    Gagliardi Franco

    2004-01-01

    Full Text Available Abstract Background The aim of this work was to investigate in vitro the putative role of EGR-1 in the growth of glioma cells. EGR-1 expression was examined during the early passages in vitro of 17 primary cell lines grown from 3 grade III and from 14 grade IV malignant astrocytoma explants. The explanted tumors were genetically characterized at the p53, MDM2 and INK4a/ARF loci, and fibronectin expression and growth characteristics were examined. A recombinant adenovirus overexpressing EGR-1 was tested in the primary cell lines. Results Low levels of EGR-1 protein were found in all primary cultures examined, with lower values present in grade IV tumors and in cultures carrying wild-type copies of p53 gene. The levels of EGR-1 protein were significantly correlated to the amount of intracellular fibronectin, but only in tumors carrying wild-type copies of the p53 gene (R = 0,78, p = 0.0082. Duplication time, plating efficiency, colony formation in agarose, and contact inhibition were also altered in the p53 mutated tumor cultures compared to those carrying wild-type p53. Growth arrest was achieved in both types of tumor within 1–2 weeks following infection with a recombinant adenovirus overexpressing EGR-1 but not with the control adenovirus. Conclusions Suppression of EGR-1 is a common event in gliomas and in most cases this is achieved through down-regulation of gene expression. Expression of EGR-1 by recombinant adenovirus infection almost completely abolishes the growth of tumor cells in vitro, regardless of the mutational status of the p53 gene.

  6. Effect of aging on GHRF-induced growth hormone release from anterior pituitary cells in primary culture

    International Nuclear Information System (INIS)

    Spik, K.W.; Boyd, R.L.; Sonntag, W.E.

    1991-01-01

    Five criteria were developed to validate the primary cell culture model for comparison of GRF-induced release of growth hormone in pituitary tissue from aging animals. Pituitaries from young (5-mo), middle-aged (14-mo), and old (24-mo) male Fischer 344 rats were dispersed using either trypsin/trypsin inhibitor or dispase and compared with respect to the number of pituitary cells recovered, cell viability, 3H-leucine incorporation into total protein, time course for recovery of optimal response to GRF, and the dose-relationship for GRF-induced release of growth hormone 2, 4, and 6 days after dispersal. Results indicated that direct comparison of cellular responses between tissues from young, middle-aged, and old rats in primary cell culture is confounded by variations in time for recovery of optimal responses, the effects of the enzymes used for dispersal, and the methods used to express the data

  7. Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems.

    Science.gov (United States)

    Pamies, David; Bal-Price, Anna; Chesné, Christophe; Coecke, Sandra; Dinnyes, Andras; Eskes, Chantra; Grillari, Regina; Gstraunthaler, Gerhard; Hartung, Thomas; Jennings, Paul; Leist, Marcel; Martin, Ulrich; Passier, Robert; Schwamborn, Jens C; Stacey, Glyn N; Ellinger-Ziegelbauer, Heidrun; Daneshian, Mardas

    2018-04-13

    A major reason for the current reproducibility crisis in the life sciences is the poor implementation of quality control measures and reporting standards. Improvement is needed, especially regarding increasingly complex in vitro methods. Good Cell Culture Practice (GCCP) was an effort from 1996 to 2005 to develop such minimum quality standards also applicable in academia. This paper summarizes recent key developments in in vitro cell culture and addresses the issues resulting for GCCP, e.g. the development of induced pluripotent stem cells (iPSCs) and gene-edited cells. It further deals with human stem-cell-derived models and bioengineering of organo-typic cell cultures, including organoids, organ-on-chip and human-on-chip approaches. Commercial vendors and cell banks have made human primary cells more widely available over the last decade, increasing their use, but also requiring specific guidance as to GCCP. The characterization of cell culture systems including high-content imaging and high-throughput measurement technologies increasingly combined with more complex cell and tissue cultures represent a further challenge for GCCP. The increasing use of gene editing techniques to generate and modify in vitro culture models also requires discussion of its impact on GCCP. International (often varying) legislations and market forces originating from the commercialization of cell and tissue products and technologies are further impacting on the need for the use of GCCP. This report summarizes the recommendations of the second of two workshops, held in Germany in December 2015, aiming map the challenge and organize the process or developing a revised GCCP 2.0.

  8. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan Pavel Kucera

    2015-09-01

    Full Text Available Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs. However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands.CV was significantly lower in strands composed purely of SCMs (5.5±1.5 cm/s, n=11 as compared to PCMs (34.9±2.9 cm/s, n=21 at similar refractoriness (100% SCMs: 122±25 ms, n=9; 100% PCMs: 139±67 ms, n=14. In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV.These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

  9. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    International Nuclear Information System (INIS)

    Gerlach, B.; Harder, A.H.; Slotman, B.J.; Sminia, P.; Hulsebos, T.J.M.; Leenstra, S.; Peter Vandertop, W.; Hartmann, K.A.

    2002-01-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell lines D 384 and Gli 6 were used. Cell cultures were irradiated with doses from 2 to 10 Gy. Following irradiation, cell survival was determined by clonogenic assay and survival curves were generated. The surviving fractions after 2 Gy (SF2) and 4 Gy (SF4) were used as radiosensitivity parameters. Genetic analysis included determination of the mutational and loss of heterozygosity (LOH) status of TP 53 (exons 5-8), the LOH 10- and epidermal growth factor receptor gene (EGFR) amplification status. Results: The SF2 and SF4 values ranged from 0.54 to 0.88 (mean: 0.70) and from 0.13 to 0.52 (mean: 0.32), respectively. Genetic alterations were found in the Gli 6 cell line and in two primary cell cultures. The genetic profile of Gli 6 showed LOH but no TP 53 mutation, complete LOH 10 and no EGFR amplification. The VU 15 cell culture showed TP 53 mutation but no LOH 10 or EGFR amplification, while VU 24 showed incomplete LOH 10, EGFR amplification and no TP 53 mutation. In the other four cell cultures and D 384 cell line no genetic alterations were diagnosed. Histopathological classification of glioblastoma multiforme and/or genetic alterations resulted in lower radiosensitivity. Conclusion: In this small series of early passage glioma cell cultures low radiosensitivity and alterations in cell regulatory genes were seen. Further testing of biological behavior in larger series of patient-derived material is ongoing. (orig.)

  10. Primary chondrocytes enhance cartilage tissue formation upon co-culture with expanded chondrocytes, dermal fibroblasts, 3T3 feeder cells and embryonic stem cells

    NARCIS (Netherlands)

    Hendriks, J.A.A.; Miclea, Razvan L.; Schotel, Roka; de Bruijn, Ewart; Moroni, Lorenzo; Karperien, Hermanus Bernardus Johannes; Riesle, J.U.; van Blitterswijk, Clemens

    2010-01-01

    Co-culture models have been increasingly used in tissue engineering applications to understand cell–cell interactions and consequently improve regenerative medicine strategies. Aiming at further elucidating cartilage tissue formation, we co-cultured bovine primary chondrocytes (BPCs) with human

  11. Suppression of in vitro primary immune response by L1210 cells and their culture supernatant: evidence for cytotoxic effects

    International Nuclear Information System (INIS)

    Huget, R.P.; Flad, H.D.; Opitz, H.G.

    1977-01-01

    L1210 cells and their culture supernatants were found to inhibit the generation of PFC in the in vitro primary immune response of spleen cells to SRBC. As few as 1 percent of L1210 cells and 1 percent of culture fluid were inhibitory. Inhibition of DNA or protein synthesis of L1210 cells did not abolish their immunosuppressive activity, excluding exhaustion of culture medium as a possible mechanism of inhibition of PFC. Heating of the supernatant completely abrogated the suppressive effect and resulted in a marked increase of PFC. Daily evaluation of cell viability in the cultures revealed that, in the presence of L1210 and supernatants, the fraction of surviving cells is markedly reduced. We conclude that a direct cytotoxic effect on splenic lymphocytes and macrophages is the predominant immunosuppressive mechanism of L1210 cells and their culture supernatants

  12. Morphology of primary human venous endothelial cell cultures before and after culture medium exchange.

    Science.gov (United States)

    Krüger-Genge, A; Fuhrmann, R; Jung, F; Franke, R P

    2015-01-01

    The evaluation of the interaction of human, venous endothelial cells (HUVEC) with body foreign materials on the cellular level cannot be performed in vivo, but is investigated in vitro under standard culture conditions. To maintain the vitality, proliferation and morphology of HUVEC seeded on body foreign substrates over days, the cell culture medium is usually exchanged every second day. It is well known, that alterations in the microenvironment of cells bear the risk of influencing cell morphology and function. In the current study the influence of cell culture medium exchange on HUVEC cytoskeletal microfilament structure and function was investigated. HUVEC in the third passage were seeded on extracellular matrix (ECM) - which was secreted from bovine corneal endothelial cells on glass- until functional confluence was reached. The experiment started 11 days after HUVEC seeding with an exchange of the cell culture medium followed by a staining of the actin microfilaments with phalloidin-rhodamin 1.5 and 5 minutes after medium exchange. The microfilaments were documented by use of an Olympus microscope (IMT-2) equipped with a UV lamp and online connected to a TV chain (Sony XC 50 ST/monochrome) implying an OPTIMAS - Image analysis system. Prostacyclin was analysed in the cell culture supernatant. 1.5 min after culture medium exchange in the functionally confluent cultures a slight disturbance of the actin microfilament structure with a broadening of the marginal filament band, a partial disconnection of cell-cell contacts and the appearance of intercellular fenestrations were observed. 5 minutes after medium exchange a redevelopment of the slightly disturbed microfilament structure with a condensation and narrowing of the marginal filament band was seen. 12 h later a further consolidation of the microfilament structure occurred. In addition, a perturbation of the cultured HUVEC occurred after cell culture medium exchange. The prostacyclin concentration in the

  13. The toxicity of uranyl nitrate on primary brain cell culture of L. Hoevenii

    International Nuclear Information System (INIS)

    Ismail Bahari; Fauziah Mohd Noor

    1995-01-01

    In Malaysia, uranium is indirectly being concentrated by mining and petroleum industries that have no relevance to its use. Concentration of uranium and the production of TENORM may give rise to radiological risk to workers and the environment. A study was conducted to determine the toxicity of a uranium compound, uranyl nitrate. For this purpose a primary brain cell culture derived from L. hoevenii was used. The nature of uranil nitrate toxicity was determined by comparing with the effects induced by mitomycin C and gamma radiation. The toxicity of these agents were measured by observing changes in Unschedule DNA Synthesis (UDS) and the induction of micronucleus. Result from the study showed that UO sub 2 sup 2+ is UDS positive and is toxic to the primary brain cells of L. hoevenii. It gives a response profile that is almost similar to that induced by gamma radiation and mitomycin C. We believed that a low concentration, UO sub 2 sup 2+ acts as a chemo toxic agent rather than as an ionising radiation. At higher concentration the toxicity of UO sub 2 sup 2+ comes from both its chemo toxic and radiation effects. Results of this study also show the ability of the primary culture to carry out repair on its DNA damaged by the UDS positive agents

  14. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Anna Maria Lustri

    Full Text Available Cholangiocarcinoma (CCA and its subtypes (mucin- and mixed-CCA arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i CX-4945, a casein kinase-2 (CK2 inhibitor that blocks TGF-β1-induced EMT; and (ii LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay.at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM. At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA. Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks foci, suggesting the active role of CK2 as

  15. Multiple pathways of sigma(1) receptor ligand uptakes into primary cultured neuronal cells.

    Science.gov (United States)

    Yamamoto, H; Karasawa, J; Sagi, N; Takahashi, S; Horikomi, K; Okuyama, S; Nukada, T; Sora, I; Yamamoto, T

    2001-08-03

    Although many antipsychotics have affinities for sigma receptors, the transportation pathway of exogenous sigma(1) receptor ligands to intracellular type-1 sigma receptors are not fully understood. In this study, sigma(1) receptor ligand uptakes were studied using primary cultured neuronal cells. [(3)H](+)-pentazocine and [(3)H](R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), used as a selective sigma(1) receptor ligands, were taken up in a time-, energy- and temperature-dependent manner, suggesting that active transport mechanisms were involved in their uptakes. sigma(1) receptor ligands taken up into primary cultured neuronal cells were not restricted to agonists, but also concerned antagonists. The uptakes of these ligands were mainly Na(+)-independent. Kinetic analysis of [(3)H](+)-pentazocine and [(3)H]MS-377 uptake showed K(m) values (microM) of 0.27 and 0.32, and V(max) values (pmol/mg protein/min) of 17.4 and 9.4, respectively. Although both ligands were incorporated, the pharmacological properties of these two ligands were different. Uptake of [(3)H](+)-pentazocine was inhibited in the range 0.4-7.1 microM by all the sigma(1) receptor ligands used, including N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine monohydrochloride (NE-100), a selective sigma(1) receptor ligand. In contrast, the inhibition of [(3)H]MS-377 uptake was potently inhibited by haloperidol, characterized by supersensitivity (IC(50), approximately 2 nM) and was inhibited by NE-100 with low sensitivity (IC(50), 4.5 microM). Moreover, kinetic analysis revealed that NE-100 inhibited [(3)H]MS-377 uptake in a noncompetitive manner, suggesting that NE-100 acted at a site different from the uptake sites of [(3)H]MS-377. These findings suggest that there are at least two uptake pathways for sigma(1) receptor ligands in primary cultured neuronal cells (i.e. a haloperidol-sensitive pathway and another, unclear, pathway). In

  16. Morphology, cell viability, karyotype, expression of surface markers and plasticity of three human primary cell line cultures before and after the cryostorage in LN2 and GN2.

    Science.gov (United States)

    Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael

    2015-02-01

    Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Connection between Proliferation Rate and Temozolomide Sensitivity of Primary Glioblastoma Cell Culture and Expression of YB-1 and LRP/MVP.

    Science.gov (United States)

    Moiseeva, N I; Susova, O Yu; Mitrofanov, A A; Panteleev, D Yu; Pavlova, G V; Pustogarov, N A; Stavrovskaya, A A; Rybalkina, E Yu

    2016-06-01

    Glioblastomas (GBL) are the most common and aggressive brain tumors. They are distinguished by high resistance to radiation and chemotherapy. To find novel approaches for GBL classification, we obtained 16 primary GBL cell cultures and tested them with real-time PCR for mRNA expression of several genes (YB-1, MGMT, MELK, MVP, MDR1, BCRP) involved in controlling cell proliferation and drug resistance. The primary GBL cultures differed in terms of proliferation rate, wherein a group of GBL cell cultures with low proliferation rate demonstrated higher resistance to temozolomide. We found that GBL primary cell cultures characterized by high proliferation rate and lower resistance to temozolomide expressed higher mRNA level of the YB-1 and MDR1 genes, whereas upregulated expression of MVP/LRP mRNA was a marker in the group of GBL with low proliferation rate and high resistance. A moderate correlation between expression of YB-1 and MELK as well as YB-1 and MDR1 was found. In the case of YB-1 and MGMT expression, no correlation was found. A significant negative correlation was revealed between mRNA expression of MVP/LRP and MELK, MDR1, and BCRP. No correlation in expression of YB-1 and MVP/LRP genes was observed. It seems that mRNA expression of YB-1 and MVP/LRP may serve as a marker for GBL cell cultures belonging to distinct groups, each of which is characterized by a unique pattern of gene activity.

  18. Exposing primary rat retina cell cultures to γ-rays: An in vitro model for evaluating radiation responses.

    Science.gov (United States)

    Gaddini, Lucia; Balduzzi, Maria; Campa, Alessandro; Esposito, Giuseppe; Malchiodi-Albedi, Fiorella; Patrono, Clarice; Matteucci, Andrea

    2018-01-01

    Retinal tissue can receive incidental γ-rays exposure during radiotherapy either of tumors of the eye and optic nerve or of head-and-neck tumors, and during medical diagnostic procedures. Healthy retina is therefore at risk of suffering radiation-related side effects and the knowledge of pathophysiological response of retinal cells to ionizing radiations could be useful to design possible strategies of prevention and management of radiotoxicity. In this study, we have exploited an in vitro model (primary rat retinal cell culture) to study an array of biological effects induced on retinal neurons by γ-rays. Most of the different cell types present in retinal tissue - either of the neuronal or glial lineages - are preserved in primary rat retinal cultures. Similar to the retina in situ, neuronal cells undergo in vitro a maturational development shown by the formation of polarized neuritic trees and operating synapses. Since 2 Gy is the incidental dose received by the healthy retina per fraction when the standard treatment is delivered to the brain, retina cell cultures have been exposed to 1 or 2 Gy of γ-rays at different level of neuronal differentiation in vitro: days in vitro (DIV)2 or DIV8. At DIV9, retinal cultures were analyzed in terms of viability, apoptosis and characterized by immunocytochemistry to identify alterations in neuronal differentiation. After irradiation at DIV2, MTT assay revealed an evident loss of cell viability and βIII-tubulin immunostaining highlighted a marked neuritic damage, indicating that survived neurons showed an impaired differentiation. Differentiated cultures (DIV8) appeared to be more resistant with respect to undifferentiated, DIV2 cultures, both in terms of cell viability and differentiation. Apoptosis evaluated with TUNEL assay showed that irradiation at both DIV2 and DIV8 induced a significant increase in the apoptotic rate. To further investigate the effects of γ-rays on retinal neurons, we evaluated the

  19. Single-cell qPCR on dispersed primary pituitary cells -an optimized protocol

    Directory of Open Access Journals (Sweden)

    Haug Trude M

    2010-11-01

    Full Text Available Abstract Background The incidence of false positives is a potential problem in single-cell PCR experiments. This paper describes an optimized protocol for single-cell qPCR measurements in primary pituitary cell cultures following patch-clamp recordings. Two different cell harvesting methods were assessed using both the GH4 prolactin producing cell line from rat, and primary cell culture from fish pituitaries. Results Harvesting whole cells followed by cell lysis and qPCR performed satisfactory on the GH4 cell line. However, harvesting of whole cells from primary pituitary cultures regularly produced false positives, probably due to RNA leakage from cells ruptured during the dispersion of the pituitary cells. To reduce RNA contamination affecting the results, we optimized the conditions by harvesting only the cytosol through a patch pipette, subsequent to electrophysiological experiments. Two important factors proved crucial for reliable harvesting. First, silanizing the patch pipette glass prevented foreign extracellular RNA from attaching to charged residues on the glass surface. Second, substituting the commonly used perforating antibiotic amphotericin B with β-escin allowed efficient cytosol harvest without loosing the giga seal. Importantly, the two harvesting protocols revealed no difference in RNA isolation efficiency. Conclusion Depending on the cell type and preparation, validation of the harvesting technique is extremely important as contaminations may give false positives. Here we present an optimized protocol allowing secure harvesting of RNA from single cells in primary pituitary cell culture following perforated whole cell patch clamp experiments.

  20. Functional characterization of apical transporters expressed in rat proximal tubular cells (PTCs) in primary culture.

    Science.gov (United States)

    Nakanishi, Takeo; Fukushi, Akimasa; Sato, Masanobu; Yoshifuji, Mayuko; Gose, Tomoka; Shirasaka, Yoshiyuki; Ohe, Kazuyo; Kobayashi, Masato; Kawai, Keiichi; Tamai, Ikumi

    2011-12-05

    Since in vitro cell culture models often show altered apical transporter expression, they are not necessarily suitable for the analysis of renal transport processes. Therefore, we aimed here to investigate the usefulness of primary-cultured rat proximal tubular cells (PTCs) for this purpose. After isolation of renal cortical cells from rat kidneys, PTCs were enriched and the gene expression and function of apical transporters were analyzed by means of microarray, RT-PCR and uptake experiments. RT-PCR confirmed that the major apical transporters were expressed in rat PTCs. Na(+)-dependent uptake of α-methyl-d-glucopyranoside (αMG), ergothioneine and carnitine by the PTCs suggests functional expression of Sglts, Octn1 and Octn2, respectively. Inhibition of pH-dependent glycylsarcosine uptake by low concentration of cephalexin, which is a β-lactam antibiotics recognized by Pepts, indicates a predominant role of high affinity type Pept2, but not low affinity type Pept1, in the PTCs. Moreover, the permeability ratio of [(14)C]αMG (apical to basolateral/basolateral to apical) across PTCs was 4.3, suggesting that Sglt-mediated reabsorptive transport is characterized. In conclusion, our results indicate that rat PTCs in primary culture are found to be a promising in vitro model to evaluate reabsorption processes mediated at least by Sglts, Pept2, Octn1 and Octn2.

  1. Characterisation of an in vitro blood-brain barrier model based on primary porcine capillary endothelial cells in monoculture or co-culture with primary rat or porcine astrocytes and pericytes

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Larsen, Annette Burkhart; Moos, Torben

    to in vivo such as efflux transporters, tight junction proteins, and high transendothelial electric resistance (TEER). Primary BCECs are isolated from a variety of mammals such as rats, mice, cattle and pigs. Often bovine and porcine BCECs are cultured in monoculture or in co-culture with rat astrocytes......In vitro blood-brain barrier (BBB) models based on primary brain capillary endothelial cells (BCECs) in monoculture or in co-culture with primary astrocytes and pericytes are often applied for studying physiology of the BBB. Primary BCECs retain many morphological and biochemical properties similar...... obtained from neonatal rats which have been shown to strengthen the barrier properties of the BCECs. In this study, brain endothelial cells (PBECs), astrocytes and pericytes are isolated from pig brains donated by the local abattoir. The brains are from 6 month old domestic pigs. The availability and high...

  2. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    -alpha downregulation is dependent on time and cell number. This effect was specific to endothelial cells and was not observed when hOBs were co-cultured with human primary chondrocytes or fibroblasts. Likewise, HUVEC-mediated suppression of PDGFR-alpha expression was only seen in hOBs and mesenchymal stem cells......Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co......-cultivation of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR...

  3. Growth-dependent modulation of casein kinase II and its substrate nucleolin in primary human cell cultures and HeLa cells

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1989-01-01

    We have previously provided evidence that casein kinase II (CKII) and its substrate nucleolin increase concomitantly during certain development stages during embryogenesis (Schneider et al., Eur. J. Biochem. 161, 733-738). We now show that during normal growth of primary cell cultures and He...

  4. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    Science.gov (United States)

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model.

    Science.gov (United States)

    Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A

    2017-02-01

    Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.

  6. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.

    Science.gov (United States)

    Lanuza, Pilar M; Vigueras, Alan; Olivan, Sara; Prats, Anne C; Costas, Santiago; Llamazares, Guillermo; Sanchez-Martinez, Diego; Ayuso, José María; Fernandez, Luis; Ochoa, Ignacio; Pardo, Julián

    2018-01-01

    Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.

  7. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  8. Gelatin for purification and proliferation of primary keratinocyte culture for use in chronic wounds and burns.

    Science.gov (United States)

    Rahsaz, Marjan; Geramizadeh, Bita; Kaviani, Maryam; Marzban, Saeed

    2015-04-01

    Human epidermal keratinocytes are currently established as a treatment for burns and wounds and have laboratory applications. Keratinocyte culture contamination by unwanted cells and inhibition of cell proliferation are barriers in primary keratinocyte culture. According to the recent literature, these cells are hard to culture. The present study was conducted to evaluate the efficacy of gelatin-coated surfaces in keratinocyte cultures. After enzymatic isolation of keratinocytes from normal epidermis by trypsin, the cells were cultured on gelatin-coated flasks in serum-free medium. Another group of cells were cultured as a control group without gelatin coating. We showed positive effects of surface coating with gelatin on the primary culture of keratinocytes. Culture of these cells on a gelatincoated surface showed better proliferation with suitable morphology. By using gelatin, adhesion of these cells to the surface was more efficient and without contamination by small round cells. Successful primary culture of keratinocytes on a gelatin-coated surface may provide better yield and optimal number of cells for research and clinical applications.

  9. Relevant principal factors affecting the reproducibility of insect primary culture.

    Science.gov (United States)

    Ogata, Norichika; Iwabuchi, Kikuo

    2017-06-01

    The primary culture of insect cells often suffers from problems with poor reproducibility in the quality of the final cell preparations. The cellular composition of the explants (cell number and cell types), surgical methods (surgical duration and surgical isolation), and physiological and genetic differences between donors may be critical factors affecting the reproducibility of culture. However, little is known about where biological variation (interindividual differences between donors) ends and technical variation (variance in replication of culture conditions) begins. In this study, we cultured larval fat bodies from the Japanese rhinoceros beetle, Allomyrina dichotoma, and evaluated, using linear mixed models, the effect of interindividual variation between donors on the reproducibility of the culture. We also performed transcriptome analysis of the hemocyte-like cells mainly seen in the cultures using RNA sequencing and ultrastructural analyses of hemocytes using a transmission electron microscope, revealing that the cultured cells have many characteristics of insect hemocytes.

  10. Interleukin-1β regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    International Nuclear Information System (INIS)

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret; Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2010-01-01

    Research highlights: → Levels of IL-1β are increased in the pig myocardium after infarction. → Cultured pig heart cells possess IL-1 receptors. → IL-1β increases cell proliferation of pig heart cells in-vitro. → IL-1β increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. → IL-1β may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1β is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1β on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1β. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1β resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1β (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1β (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1β plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One

  11. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  12. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  13. Primary cultures of astrocytes

    DEFF Research Database (Denmark)

    Lange, Sofie C; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes...... subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions...... of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system....

  14. Cystine uptake by cultured cells originating from dog proximal tubule segments

    International Nuclear Information System (INIS)

    States, B.; Reynolds, R.; Lee, J.; Segal, S.

    1990-01-01

    Large numbers of kidney epithelial cells were cultured successfully from isolated dog proximal tubule segments. Cells in primary culture and in first passage retained the cystine-dibasic amino acid co-transporter system which is found in vivo and in freshly isolated proximal tubule segments. In contrast to other cultured cells, the cystine-glutamate anti-porter was absent in primary cultures. However, this anti-porter system seemed to be developing in cells in first passage. The intracellular ratio of cysteine:reduced glutathione (CSH:GSH) was maintained at 1:36 in both primary cultures and in low passage cells. Incubation of cells in primary culture for 5 min at 37 degrees C with 0.025 mM [ 35 S]L-cystine resulted in incorporation of approximately 36 and 8.5% of the label into intracellular CSH and GSH, respectively. These cultured cells, therefore, seem to be an excellent model system for the eventual elucidation of (a) the inticacies of cystine metabolism and (b) regulation of (1) the cystine-dibasic amino acid co-transporter system and (2) the development of the cysteine-glutamate anti-porter system

  15. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  16. Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture.

    Science.gov (United States)

    Valencia, L; Bidet, M; Martial, S; Sanchez, E; Melendez, E; Tauc, M; Poujeol, C; Martin, D; Namorado, M D; Reyes, J L; Poujeol, P

    2001-05-01

    To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).

  17. Application of primary cell cultures of laryngeal carcinoma and laser scanning cytometry in the evaluation of tumor reactivity to cisplatinum.

    Directory of Open Access Journals (Sweden)

    Krzysztof Kupisz

    2008-06-01

    Full Text Available Unsatisfactory effects of treatment of laryngeal carcinoma patients stimulate the clinicians as well as researchers to develop new more effective treatment models and to find new reliable prognostic factors. The aim of the present study was the evaluation of the use of primary cell cultures of the laryngeal carcinoma and laser scanning cytometry (LSC in the assessment of tumor reactivity to cisplatinum. Nineteen primary cultures of laryngeal carcinoma cells established from fragments of laryngeal carcinoma infiltrations were cultured with or without cisplatin, stained with monoclonal antibodies against P53 and BCL-2 proteins and analyzed by LSC. Cisplatin added to the culture medium leads to the significant increase of P53 expression and decrease of BCL-2 expression. Moreover, changes of P53 and BCL-2 expressions were significantly correlated. Our findings of apoptosis regulatory mechanisms could be useful in patient qualification for the chemotherapeutic follow-up treatment.

  18. Application of primary cell cultures of laryngeal carcinoma and laser scanning cytometry in the evaluation of tumor reactivity to cisplatinum

    International Nuclear Information System (INIS)

    Klatka, J.; Trojanowski, P.; Paduch, R.; Pozarowski, P.; Rolinski, J.; Pietruszewska, W.; Kupisz, K.

    2008-01-01

    Unsatisfactory effects of treatment of laryngeal carcinoma patients stimulate the clinicians as well as researchers to develop new more effective treatment models and to find new reliable prognostic factors. The aim of the present study was the evaluation of the use of primary cell cultures of the laryngeal carcinoma and laser scanning cytometry (LSC) in the assessment of tumor reactivity to cis platinum. Nineteen primary cultures of laryngeal carcinoma cells established from fragments of laryngeal carcinoma infiltrations were cultured with or without cisplatin, stained with monoclonal antibodies against P53 and BCL-2 proteins and analyzed by LSC. Cisplatin added to the culture medium leads to the significant increase of P53 expression and decrease of BCL-2 expression. Moreover, changes of P53 and BCL-2 expressions were significantly correlated. Our findings of apoptosis regulatory mechanisms could be useful in patient qualification for the chemotherapeutic follow-up treatment. (author)

  19. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells

    Science.gov (United States)

    Sakata, Ichiro; Park, Won-Mee; Walker, Angela K.; Piper, Paul K.; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri

    2012-01-01

    The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain. PMID:22414807

  20. Use of primary cultures of Kenyon cells from bumblebee brains to assess pesticide side effects.

    Science.gov (United States)

    Wilson, Daniel E; Velarde, Rodrigo A; Fahrbach, Susan E; Mommaerts, Veerle; Smagghe, Guy

    2013-09-01

    Bumblebees are important pollinators in natural and agricultural ecosystems. The latter results in the frequent exposure of bumblebees to pesticides. We report here on a new bioassay that uses primary cultures of neurons derived from adult bumblebee workers to evaluate possible side-effects of the neonicotinoid pesticide imidacloprid. Mushroom bodies (MBs) from the brains of bumblebee workers were dissected and dissociated to produce cultures of Kenyon cells (KCs). Cultured KCs typically extend branched, dendrite-like processes called neurites, with substantial growth evident 24-48 h after culture initiation. Exposure of cultured KCs obtained from newly eclosed adult workers to 2.5 parts per billion (ppb) imidacloprid, an environmentally relevant concentration of pesticide, did not have a detectable effect on neurite outgrowth. By contrast, in cultures prepared from newly eclosed adult bumblebees, inhibitory effects of imidacloprid were evident when the medium contained 25 ppb imidacloprid, and no growth was observed at 2,500 ppb. The KCs of older workers (13-day-old nurses and foragers) appeared to be more sensitive to imidacloprid than newly eclosed adults, as strong effects on KCs obtained from older nurses and foragers were also evident at 2.5 ppb imidacloprid. In conclusion, primary cultures using KCs of bumblebee worker brains offer a tool to assess sublethal effects of neurotoxic pesticides in vitro. Such studies also have the potential to contribute to the understanding of mechanisms of plasticity in the adult bumblebee brain. © 2013 Wiley Periodicals, Inc.

  1. Pigment Cell Differentiation in Sea Urchin Blastula-Derived Primary Cell Cultures

    Science.gov (United States)

    Ageenko, Natalya V.; Kiselev, Konstantin V.; Dmitrenok, Pavel S.; Odintsova, Nelly A.

    2014-01-01

    The quinone pigments of sea urchins, specifically echinochrome and spinochromes, are known for their effective antioxidant, antibacterial, antifungal, and antitumor activities. We developed in vitro technology for inducing pigment differentiation in cell culture. The intensification of the pigment differentiation was accompanied by a simultaneous decrease in cell proliferation. The number of pigment cells was two-fold higher in the cells cultivated in the coelomic fluids of injured sea urchins than in those intact. The possible roles of the specific components of the coelomic fluids in the pigment differentiation process and the quantitative measurement of the production of naphthoquinone pigments during cultivation were examined by MALDI and electrospray ionization mass spectrometry. Echinochrome A and spinochrome E were produced by the cultivated cells of the sand dollar Scaphechinus mirabilis in all tested media, while only spinochromes were found in the cultivated cells of another sea urchin, Strongylocentrotus intermedius. The expression of genes associated with the induction of pigment differentiation was increased in cells cultivated in the presence of shikimic acid, a precursor of naphthoquinone pigments. Our results should contribute to the development of new techniques in marine biotechnology, including the generation of cell cultures producing complex bioactive compounds with therapeutic potential. PMID:24979272

  2. Variation in pestivirus growth in testicle primary cell culture is more dependent on the individual cell donor than cattle breed.

    Science.gov (United States)

    Weber, Matheus N; Bauermann, Fernando V; Gómez-Romero, Ninnet; Herring, Andy D; Canal, Cláudio W; Neill, John D; Ridpath, Julia F

    2017-03-01

    The causes of bovine respiratory disease complex (BRDC) are multifactorial and include infection with both viral and bacterial pathogens. Host factors are also involved as different breeds of cattle appear to have different susceptibilities to BRDC. Infection with bovine pestiviruses, including bovine viral diarrhea virus 1 (BVDV1), BVDV2 and 'HoBi'-like viruses, is linked to the development of BRDC. The aim of the present study was to compare the growth of different bovine pestiviruses in primary testicle cell cultures obtained from taurine, indicine and mixed taurine and indicine cattle breeds. Primary cells strains, derived from testicular tissue, were generated from three animals from each breed. Bovine pestivirus strains used were from BVDV-1a, BVDV-1b, BVDV-2a and 'HoBi'-like virus. Growth was compared by determining virus titers after one passage in primary cells. All tests were run in triplicate. Virus titers were determined by endpoint dilution and RT-qPCR. Statistical analysis was performed using one way analysis of variance (ANOVA) followed by the Tukey's Multiple Comparison Test (P˂0.05). Significant differences in virus growth did not correlate with cattle breed. However, significant differences were observed between cells derived from different individuals regardless of breed. Variation in the replication of virus in primary cell strains may reflect a genetic predisposition that favors virus replication.

  3. Differential Gene Expression of Primary Cultured Lymphatic and Blood Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Gregory M. Nelson

    2007-12-01

    Full Text Available Blood vascular endothelial cells (BECs and the developmentally related lymphatic endothelial cells (LECs create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs, cytokines, cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, the neuronal growth factor regulator-1 and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1, the poliovirus receptor-related 3 molecule that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.

  4. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  5. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?

    Science.gov (United States)

    Ledur, Pítia Flores; Onzi, Giovana Ravizzoni; Zong, Hui; Lenz, Guido

    2017-09-15

    In cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of in vivo cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells in vivo . Glioblastoma (GBM) is one of the most aggressive and heterogeneous tumor types and the GBM research field would certainly benefit from culture conditions that could maintain the original plethora of phenotype of the cells. Here, we review culture media and supplementation options for GBM cultures, the rationale behind their use, and how much those choices affect drug-screening outcomes. We provide an overview of 120 papers that use primary GBM cultures and discuss the current predominant conditions. We also show important primary research data indicating that "mis-cultured" glioma cells can acquire unnatural drug sensitivity, which would have devastating effects for clinical translations. Finally, we propose the concurrent test of four culture conditions to minimize the loss of cell coverage in culture.

  6. Accumulation of pyrethroid compounds in primary cultures of rat cortical neurons

    Science.gov (United States)

    Recent studies have demonstrated that lipophilic compounds (e.g. methylmercury, polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs)) rapidly accumulate in cells in culture to concentrations much higher than in the surrounding media. Primary cultures of neur...

  7. Cardiac Cells Beating in Culture: A Laboratory Exercise

    Science.gov (United States)

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  8. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    Kroening, Sven; Neubauer, Emily; Wullich, Bernd; Aten, Jan; Goppelt-Struebe, Margarete

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009;

  9. Growth of primary embryo cells in a microculture system.

    Science.gov (United States)

    Villa, Max; Pope, Sara; Conover, Joanne; Fan, Tai-Hsi

    2010-04-01

    We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

  10. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    Science.gov (United States)

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  11. [Donor age affects on the «behavior» and the sensibility bone marrow cells in on copper ion of the primary culture].

    Science.gov (United States)

    Bozhkov, A I; Ohiienko, S L; Kuznetsova, Yu A; Bondar', A Yu; Marchenko, V P; Gumennaya, M S

    2017-01-01

    The changes of bone marrow cells (BMC) number in the primary culture from 0 to 96 hours, the pattern (the distribution of cells) of cells morphotypes and «lifespan» (the time of cell life after isolation) of myelocytes, metamyelocytes, band and segmented neutrophils, isolated of the young (3 months) and old (20months) animals, were investigated. The number of the BMC obtained from intact old animals increased faster in primary culture, than from young animals. The Cu induced fibrosis had different influence on the rate of BMC culture growth of old and young animals. The adding of 4 mM and 8 mM CuSO4x5H2O in the BMC culture of young and old animals resulted in a dose-dependent inhibition of growth rate of young animal cells. If copper ions were added into the culture of BMC of old animals, the decreased of the BMC number was described less than for cells of young animals. The adding of 8 mM CuSO4x5H2O inhibited proliferation less, than the adding of 4 mM CuSO4x5H2O. The Cu-induced liver fibrosis had accelerated the BMC rate death of both old and young animals. However, this effect was more pronounced in young animals. It is suggested, that during the ontogenesis the BMC undergo such epigenetic changes, which change functional properties.

  12. Cell sources for in vitro human liver cell culture models

    Science.gov (United States)

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  13. Primary skeletal muscle cells cultured on gelatin bead microcarriers develop structural and biochemical features characteristic of adult skeletal muscle.

    Science.gov (United States)

    Kubis, Hans-Peter; Scheibe, Renate J; Decker, Brigitte; Hufendiek, Karsten; Hanke, Nina; Gros, Gerolf; Meissner, Joachim D

    2016-04-01

    A primary skeletal muscle cell culture, in which myoblasts derived from newborn rabbit hindlimb muscles grow on gelatin bead microcarriers in suspension and differentiate into myotubes, has been established previously. In the course of differentiation and beginning spontaneous contractions, these multinucleated myotubes do not detach from their support. Here, we describe the development of the primary myotubes with respect to their ultrastructural differentiation. Scanning electron microscopy reveals that myotubes not only grow around the surface of one carrier bead but also attach themselves to neighboring carriers, forming bridges between carriers. Transmission electron microscopy demonstrates highly ordered myofibrils, T-tubules, and sarcoplasmic reticulum. The functionality of the contractile apparatus is evidenced by contractile activity that occurs spontaneously or can be elicited by electrostimulation. Creatine kinase activity increases steadily until day 20 of culture. Regarding the expression of isoforms of myosin heavy chains (MHC), we could demonstrate that from day 16 on, no non-adult MHC isoform mRNAs are present. Instead, on day 28 the myotubes express predominantly adult fast MHCIId/x mRNA and protein. This MHC pattern resembles that of fast muscles of adult rabbits. In contrast, primary myotubes grown on matrigel-covered culture dishes express substantial amounts of non-adult MHC protein even on day 21. To conclude, primary myotubes grown on microcarriers in their later stages exhibit many features of adult skeletal muscle and characteristics of fast type II fibers. Thus, the culture represents an excellent model of adult fast skeletal muscle, for example, when investigating molecular mechanisms of fast-to-slow fiber-type transformation. © 2015 International Federation for Cell Biology.

  14. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors.

    Science.gov (United States)

    Kulchitsky, Vladimir A; Potkin, Vladimir I; Zubenko, Yuri S; Chernov, Alexander N; Talabaev, Michael V; Demidchik, Yuri E; Petkevich, Sergei K; Kazbanov, Vladimir V; Gurinovich, Tatiana A; Roeva, Margarita O; Grigoriev, Dmitry G; Kletskov, Alexei V; Kalunov, Vladimir N

    2012-01-01

    Neuroepithelial tumor cells were cultured in vitro. The biopsy material was taken from 93 children at removal of the brain tumors during neurosurgical operations. The individual features of the cells sensitivity of primary cultures in respect to protocol-approved chemotherapy drugs and changes in the Interleukin-6 (Il-6) level in the culture medium after the application of chemotherapy were established. The initial level of Il-6 exceeded 600.0 pg/ml in the cultural medium with histologically verified pilomyxoid astrocytoma cells, and ranged from 100.0 to 200.0 pg/ml in the medium at cultivation of ganglioneuroblastoma and pilocytic astrocytoma. A decrease in the Il-6 level in the medium culture of primary tumors cells was observed after the application of chemotherapeutic agents on the cells of pilomyxoid astrocytoma, astrocytomas, and pilocytic desmoplastic/nodular medulloblastoma. The production of Il-6 increased after application of cytostatic drugs on the cells of oligoastrocytomas. A decrease in Il-6 level after application of Cisplatin and Methotrexate and a 5-10 fold increase in the level of Il-6 after application of Etoposide, Carboplatin, Cytarabine, and Gemcitabine were registered in the medium with ganglioneuroblastoma. To improve the cytotoxic action of chemotherapeutic agents, the combined application of cytostatics with heterocyclic compounds was carried out. A computer modeling of ligand-protein complexes of carbamide using the Dock 6.4 and USF Chimera program packages was performed with molecular mechanics method. Special attention was drawn to the ability of several isoxazole heterocycles and isothiazolyl to inhibit the tyrosine kinase. It was proved in vitro that the joint application of chemotherapeutic agents and heterocyclic compounds could reduce the concentration of the cytostatic factor by 10 or more times, having maintained the maximum cytotoxic effect. It was assumed that the target amplification of cytotoxic action of chemotherapeutic

  15. Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures

    Directory of Open Access Journals (Sweden)

    Kumamaru Hiromi

    2012-05-01

    Full Text Available Abstract Background There is increasing interest in astrocyte biology because astrocytes have been demonstrated to play prominent roles in physiological and pathological conditions of the central nervous system, including neuroinflammation. To understand astrocyte biology, primary astrocyte cultures are most commonly used because of the direct accessibility of astrocytes in this system. However, this advantage can be hindered by microglial contamination. Although several authors have warned regarding microglial contamination in this system, complete microglial elimination has never been achieved. Methods The number and proliferative potential of contaminating microglia in primary astrocyte cultures were quantitatively assessed by immunocytologic and flow cytometric analyses. To examine the utility of clodronate for microglial elimination, primary astrocyte cultures or MG-5 cells were exposed to liposomal or free clodronate, and then immunocytologic, flow cytometric, and gene expression analyses were performed. The gene expression profiles of microglia-eliminated and microglia-contaminated cultures were compared after interleukin-6 (IL-6 stimulation. Results The percentage of contaminating microglia exceeded 15% and continued to increase because of their high proliferative activity in conventional primary astrocyte cultures. These contaminating microglia were selectively eliminated low concentration of liposomal clodronate. Although primary microglia and MG-5 cells were killed by both liposomal and free clodronate, free clodronate significantly affected the viability of astrocytes. In contrast, liposomal clodronate selectively eliminated microglia without affecting the viability, proliferation or activation of astrocytes. The efficacy of liposomal clodronate was much higher than that of previously reported methods used for decreasing microglial contamination. Furthermore, we observed rapid tumor necrosis factor-α and IL-1b gene induction in

  16. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    Directory of Open Access Journals (Sweden)

    Haiying Guo

    2018-01-01

    Full Text Available Dermal papilla (DP plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  17. DEVELOPMENT OF PRIMARY CELL CULTURE FROM TAIL EPIDERMAL TISSUE OF KOI CARP (Cyprinus carpio koi

    Directory of Open Access Journals (Sweden)

    Lila Gardenia

    2014-06-01

    Full Text Available Primary cell culture from tail epidermal tissue of koi carp (Cyprinus carpio koi was developed. Cells were grown in Leibovits-15 medium supplemented with 20% fetal bovine serum and antibiotics (Penicillin/Streptomycin and Kanamycin. Cell growth was observed in a range of incubation temperature (17oC±2oC, 22oC±2oC, 27oC±2oC, and 32oC±2oC in order to determine the optimum temperature. The cells were able to grow at a range of temperature between 17oC to 32oC with optimal growth at 22oC. Primary cells infected with koi herpes virus produced typical cytopathic effects characterized by severe vacuolation and deformation of nuclei, which is consistent with those of previous reports. Artificial injection experiment by using supernatant koi herpes virus SKBM-1 isolate revealed that it could cause 90% mortality in infected fish within two weeks. PCR test with Sph I-5 specific primers carried out with DNA template from supernatant virus, pellet cell, and gills of infected fish showed positive results in all samples (molecular weight of DNA target 290 bp. The cells were found to be susceptible to koi herpes virus and can be used for virus propagation.

  18. Regulation of primary cytotoxic T lymphocyte responses generated during mixed leukocyte culture with H-2d identical Qa-1-disparate cells

    International Nuclear Information System (INIS)

    Huston, D.P.; Tavana, G.; Rich, R.R.; Gressens, S.E.

    1986-01-01

    Cytotoxic lymphocyte (CTL) responses are not usually generated during primary mixed leukocyte culture (MLC) with H-2 identical cells. Thus NZB mice are unusual in that their spleen cells do mount CTL responses during primary MLC with H-2d identical stimulator cells; the predominant target antigen for these NZB responses is Qa-1b. Considering the numerous immunoregulatory defects in NZB mice, we postulated that these NZB anti-Qa-1 primary CTL responses were due to an abnormality in T suppressor cell activity. Cellular interactions capable of suppressing NZB anti-Qa-1 primary CTL responses were investigated by using one-way and two-way MLC with spleen cells from NZB mice and other H-2d strains. Although H-2d identical one-way MLC with the use of NZB responders resulted in substantial CTL responses, only minimal CTL responses were detected from two-way MLC with the use of NZB spleen cells plus nonirradiated spleen cells from other H-2d mice. Thus the presence of non-NZB spleen cells in the two-way H-2d identical MLC prevented the generation of NZB CTL. Noncytotoxic mechanisms were implicated in the suppression of the NZB CTL responses during two-way MLC, because only minimal CTL activity was generated when NZB spleen cells were cultured with semiallogeneic, H-2d identical (e.g., NZB X BALB) F1 spleen cells. The observed suppression could be abrogated with as little as 100 rad gamma-irradiation to the non-NZB spleen cells. The phenotype of these highly radiosensitive spleen cells was Thy-1+, Lyt-1+, Lyt-2-, L3T4+. The functional presence of these cells in the spleens of semiallogeneic, H-2d identical F1 mice indicated that their deficiency in NZB mice was a recessive trait. These data suggest that NZB mice lack an L3T4+ cell present in the spleens of normal mice that is capable of suppressing primary anti-Qa-1 CTL responses

  19. Steroid metabolism by purified adult rat Leydig cells in primary culture

    International Nuclear Information System (INIS)

    Browning, J.Y.; Tcholakian, R.K.; Kessler, M.J.; Grotjan, H.E. Jr.

    1982-01-01

    To characterize Leydig cell steroidogensis, we examined the metabolism of [3H]pregnenolone (3 beta-hydroxy-5-pregnen-20-one) to androgens in the presence and absence of human chorionic gonadotropin (hCG) as a function of culture duration. Approximately 20-30% of the (3H)pregnenolone was converted to testosterone (17 beta-hydroxy-4-androsten-3-one) by purified Leydig cells at 0, 3 and 5 days (d) of culture. Androstenedione (4-androstene-3,17-dione) and dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one) were also produced while on day 5 of culture, significant amounts of progesterone (4-pregnene-3,20-dione) were isolated. The delta 5 intermediates, 17-hydroxypregnenolone (3 beta, 17-dihydroxy-5-pregnen-20-one) and dehydroepiandrosterone (3 beta-hydroxy-5-androsten-17-one), accounted for less than 1% of substrate conversion, indicating a clear preference for Leydig cells to metabolize (3H)pregnenolone via the delta 4 pathway. On day 0 of culture, unidentified metabolites considered of predominately polar steroids while on day 5 of culture, the unidentified metabolites consisted of predominately nonpolar steroids. In the presence of hCG, (3H-pregnenolone metabolism did not differ from basal on day 0 or 3 of culture. HCG increased the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone (17-hydroxy-4-pregnene-3,20-dione) on 5d. This suggests that Leydig cells cultured for 5d have decreased C17-20 desmolase activity or that hCG acutely stimulates 3 beta-hydroxysteroid dehydrogenase and delta 5-delta 5 isomerase activities

  20. Regulation of human renin expression in chorion cell primary cultures

    International Nuclear Information System (INIS)

    Duncan, K.G.; Haidar, M.A.; Baxter, J.D.; Reudelhuber, T.L.

    1990-01-01

    The human renin gene is expressed in the kidney, placenta, and several other sites. The release of renin or its precursor, prorenin, can be affected by several regulatory agents. In this study, primary cultures of human placental cells were used to examine the regulation of prorenin release and renin mRNA levels and of the transfected human renin promoter linked to chloramphenicol acetyltransferase reporter sequences. Treatment of the cultures with a calcium ionophore alone, calcium ionophore plus forskolin (that activates adenylate cyclase), or forskolin plus a phorbol ester increased prorenin release and renin mRNA levels 1.3 endash to 6 endash fold, but several classes of steroids did not affect prorenin secretion or renin RNA levels. These results suggest that (i) the first 584 base pairs of the renin gene 5'endash flanking DNA do not contain functional glucocorticoid or estrogen response elements, (ii) placental prorenin release and renin mRNA are regulated by calcium ion and by the combinations of cAMP with either C kinase or calcium ion, and (iii) the first 100 base pairs of the human renin 5'endash flanking DNA direct accurate initiation of transcription and can be regulated by cAMP. Thus, some control of renin release in the placenta (and by inference in other tissues) occurs via transcriptional influences on its promoter

  1. Isolation and culture of primary adult skin fibroblasts from the Asian elephant (Elephas maximus

    Directory of Open Access Journals (Sweden)

    Puntita Siengdee

    2018-01-01

    Full Text Available Background Primary cultures from Asian elephants (Elephas maximus allow scientists to obtain representative cells that have conserved most of their original characteristics, function, physiology and biochemistry. This technique has thus gained significant importance as a foundation for further cellular, cell biology and molecular research. Therefore, the aim of this study was to describe conditions for the successful establishment of primary adult fibroblasts from Asian elephant carcasses. Methods Ear tissue sample collection from Asian elephant carcasses and our recommendations are given. We describe here a simple modified protocol for successful isolation and maintenance of primary adult fibroblasts from elephant ear skin. Ear samples from each individual (five 3 × 3 cm2 pieces were brought to the laboratory within 3 h after collection, kept in transportation medium at 0–4 °C. The ear tissues were prepared by a combination of 10% collagenase type II digestion procedure together with a simple explant procedure. Primary fibroblasts were cultured at 37 °C in Dulbecco’s modified Eagle’s medium (DMEM with 20% fetal calf serum (FCS in a humidified atmosphere containing 5% CO2. After the third passage, fibroblasts were routinely trypsinized with 0.25% trypsin/EDTA and cultured in DMEM with 10% FCS at 37 °C and 5% CO2. Traditional cell counting method was used to measure cell viability and growth curve. Long-term storage of cells used freezing medium consisting of 40% FCS (v/v. Results We explored the most suitable conditions during sample collection (post-mortem storage time and sample storage temperature, which is the most important step in determining primary outgrowth. Our study successfully established and cultured primary adult skin fibroblasts obtained from post-mortem E. maximus ear skin tissues from six carcasses, with a success rate of around 83.3%. Outgrowth could be seen 4–12 days after explantation, and epithelial

  2. Effects of bone morphogenetic protein-2 on bone cells in primary culture: immunohistochemical and electronmicroscopical studies

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Prochnow, N.; Mueller, K.M. [Berufsgenossenschaftliche Kliniken Bergmannsheil, Bochum (Germany). Inst. fuer Pathologie; Wiemann, M.; Schirrmacher, K.; Bingmann, D. [Essen Univ. (Germany). Inst. fuer Physiologie; Sebald, W. [Wuerzburg Univ. (Germany). Inst. fuer Physiologische Chemie II

    2001-02-01

    Bone morphogenetic protein 2 (BMP-2), among other morphogenetic effects on non osseous tissues, promotes bone formation in vivo. Therefore, BMP-2 may accelerate the integration of osseous implants. Although the effects of BMPs on cell proliferation have been studied extensively in vivo or in cell lines, little is published about effects on bone cells in primary cultures, especially on cell differentiation. As such information is a prerequisite to understand and to control effects of BMPs on cells at the surface of implant materials, the present experiments aimed to describe effects of BMP-2 on primary cultures derived from calvarial fragments of neonatal rats. The cells were stimulated with 50 nM BMP-2 added to the nutrient medium for 3 or 6 days. Light- and electronmicroscopical studies showed that cells in the sprouting zones were larger and more often spindle shaped. Stimulated cells had more nucleoli than control cells and the endoplasmic reticulum was widened. They retained properties of typical bone cells: An immunhistochemical analysis showed that stimulated cells increased the activity of alkaline phosphatase, they secreted collagen type I and to a minor extent collagen type III. In BMP-2 treated cells the pattern of cells stained for actin, desmin and vimentin hardly changed whereas extracellular fibronectin appeared to be less cross-linked in BMP-2 treated cultures. The distribution and labeling strength of osteocalcin, a specific marker protein of bone cells did not change markedly. After exposure to BMP-2 cells tended to detach from the cover slips. Electron microscopy showed a reduced number of cell processes possibly facilitating the detachment and/or mobility. Stimulated cells contained an increased number of lamellar bodies which may reflect an increased synthesis and/or membrane turnover. Staining of non-osseous cells with anti-CD68-or anti-myeloid antibodies revealed that the small percentage of these cells regularly occurring in primary cultures

  3. Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutant

    International Nuclear Information System (INIS)

    Patel, S.C.; Suresh, S.; Weintroub, H.; Brady, R.O.; Pentchev, P.G.

    1987-01-01

    Esterification of cholesterol was investigated in primary neuroglial cultures obtained from newborn lysosomal cholesterol storage disorder (LCSD) mouse mutants. An impairment in 3 H-oleic acid incorporation into cholesteryl esters was demonstrated in cultures of homozygous LCSD brain. Primary cultures derived from other phenotypically normal pups of the carrier breeders esterified cholesterol at normal levels or at levels which were intermediary between normal and deficient indicating a phenotypic expression of the LCSD heterozygote genotype. These observations on LCSD mutant brain cells indicate that the defect in cholesterol esterification is closely related to the primary genetic defect and is expressed in neuroglial cells in culture

  4. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid.

    Directory of Open Access Journals (Sweden)

    Robert A Hirst

    Full Text Available The diagnosis of primary ciliary dyskinesia (PCD requires the analysis of ciliary function and ultrastructure. Diagnosis can be complicated by secondary effects on cilia such as damage during sampling, local inflammation or recent infection. To differentiate primary from secondary abnormalities, re-analysis of cilia following culture and re-differentiation of epithelial cells at an air-liquid interface (ALI aids the diagnosis of PCD. However changes in ciliary beat pattern of cilia following epithelial cell culture has previously been described, which has brought the robustness of this method into question. This is the first systematic study to evaluate ALI culture as an aid to diagnosis of PCD in the light of these concerns.We retrospectively studied changes associated with ALI-culture in 158 subjects referred for diagnostic testing at two PCD centres. Ciliated nasal epithelium (PCD n = 54; non-PCD n  111 was analysed by high-speed digital video microscopy and transmission electron microscopy before and after culture.Ciliary function was abnormal before and after culture in all subjects with PCD; 21 PCD subjects had a combination of static and uncoordinated twitching cilia, which became completely static following culture, a further 9 demonstrated a decreased ciliary beat frequency after culture. In subjects without PCD, secondary ciliary dyskinesia was reduced.The change to ciliary phenotype in PCD samples following cell culture does not affect the diagnosis, and in certain cases can assist the ability to identify PCD cilia.

  5. Further characterization of the adhesive-tumor-cell culture system for measuring the radiosensitivity of human tumor primary cultures

    International Nuclear Information System (INIS)

    Brock, W.A.; Bock, S.P.; Williams, M.; Baker, F.L.

    1987-01-01

    This study extends the use of the adhesive-tumor-cell culture system to include: over 100 sensitivity measurements at 2.0 Gy; tumorgenicity determinations in nude mice; and flow cytometry of the cells grown in the system. The malignant nature of the growing cells was proved by injecting cells into nude mice. Tumors resulted in 60% of the cases and the histology of each xenograft was similar to that of the human tumor. Flow cytometry was used to obtain DNA histograms of the original cell suspension and of cultures during the two week culture period in order to obtain quantitative information about the growth of aneuploid versus diploid populations. The results thus far demonstrate that 95% of aneuploid populations yield aneuploid growth; of the first 20 cases studied, only one suspension with an aneuploid peak resulted in diploid growth. Of further interest was the observation that it is not unusual for a minor aneuploid population to become the predominate growth fraction after two weeks in culture. These results demonstrate that the adhesive-tumor-cell culture system supports the growth of malignant cells, that multiple cell populations exist in cell suspensions derived from solid tumors, and that differences exist between the radiosensitivity of cells at 2.0 Gy in different histology types

  6. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  7. Optimized conditions for primary culture of pituitary cells from the Atlantic cod (Gadus morhua). The importance of osmolality, pCO₂, and pH.

    Science.gov (United States)

    Hodne, Kjetil; von Krogh, Kristine; Weltzien, Finn-Arne; Sand, Olav; Haug, Trude M

    2012-09-01

    Protocols for primary cultures of teleost cells are commonly only moderately adjusted from similar protocols for mammalian cells, the main adjustment often being of temperature. Because aquatic habitats are in general colder than mammalian body temperatures and teleosts have gills in direct contact with water, pH and buffer capacity of blood and extracellular fluid are different in fish and mammals. Plasma osmolality is generally higher in marine teleosts than in mammals. Using Atlantic cod (Gadus morhua) as a model, we have optimized these physiological parameters to maintain primary pituitary cells in culture for an extended period without loosing key properties. L-15 medium with adjusted osmolality, adapted to low pCO(2) (3.8mm Hg) and temperature (12°C), and with pH 7.85, maintained the cells in a physiologically sounder state than traditional culture medium, significantly improving cell viability compared to the initial protocol. In the optimized culture medium, resting membrane potential and response to releasing hormone were stable for at least two weeks, and the proportion of cells firing action potentials during spawning season was about seven times higher than in the original culture medium. The cells were moderately more viable when the modified medium was supplemented with newborn calf serum or artificial serum substitute. Compared to serum-free L-15 medium, expression of key genes (lhb, fshb, and gnrhr2a) was better maintained in medium containing SSR, whereas NCS tended to decrease the expression level. Although serum-free medium is adequate for many applications, serum supplement may be preferable for experiments dependent on membrane integrity. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Glioma tissue obtained by modern ultrasonic aspiration with a simple sterile suction trap for primary cell culture and pathological evaluation.

    Science.gov (United States)

    Schroeteler, Juliane; Reeker, Ralf; Suero Molina, Eric; Brokinkel, Benjamin; Holling, Markus; Grauer, Oliver M; Senner, Volker; Stummer, Walter; Ewelt, Christian

    2014-01-01

    Ultrasonic aspiration is widely used in the resection of brain tumors. Nevertheless, tumor tissue fragments obtained by ultrasonic aspiration are usually discarded. In this study, we demonstrate that these fragments are possible sources of material for histopathological study and tissue culture and compare their microscopic features and viability in tissue culture of cavitron ultrasonic surgical aspirator tissue fragments. Brain tumor tissue collected by ultrasonic aspiration (CUSA EXcel®; Integra Radionics Inc.) in a simple sterile suction trap during resection was processed for primary cell culture. Cell viability and immunohistological markers were measured by the WST-1 test, microscopy and immunofluorescent evaluation. Six gliomas are presented to demonstrate that these tissue fragments show good preservation of histological detail and tissue viability in culture. Utilization of this material may facilitate pathological interpretation by providing a more representative sample of tumor histology as well as an adequate and sterile biosource of material for tissue culture studies.

  9. Nanoscaffold's stiffness affects primary cortical cell network formation

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Wolbers, F.; Lüttge, Regina; Hassink, Gerrit Cornelis

    2014-01-01

    Networks of neurons cultured on-chip can provide insights into both normal and disease-state brain function. The ability to guide neuronal growth in specific, artificially designed patterns allows us to study how brain function follows form. Primary cortical cells cultured on nanograting scaffolds,

  10. Primary Neuron/Astrocyte Co-Culture on Polyelectrolyte Multilayer Films: A Template for Studying Astrocyte-Mediated Oxidative Stress in Neurons**

    OpenAIRE

    Kidambi, Srivatsan; Lee, Ilsoon; Chan, Christina

    2008-01-01

    We engineered patterned co-cultures of primary neurons and astrocytes on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the oxidative stress mediated by astrocytes on neuronal cells. A number of studies have explored engineering co-culture of neurons and astrocytes predominantly using cell lines rather than primary cells owing to the difficulties involved in attaching primary cells onto synthetic surfaces. To our knowledge this is the first demons...

  11. Using 3D Culture of Primary Mammary Epithelial Cells to Define Molecular Entities Required for Acinus Formation: Analyzing MAP Kinase Phosphatases.

    Science.gov (United States)

    Gajewska, Malgorzata; McNally, Sara

    2017-01-01

    Three-dimensional (3D) cell cultures on reconstituted basement membrane (rBM) enable the study of complex interactions between extracellular matrix (ECM) components and epithelial cells, which are crucial for the establishment of cell polarity and functional development of epithelia. 3D cultures of mammary epithelial cells (MECs) on Matrigel (a laminin-rich ECM derived from the Engelbreth-Holm-Swarm (EHS) murine tumor) promote interactions of MECs with the matrix via integrins, leading to formation of spherical monolayers of polarized cells surrounding a hollow lumen (acini). Acini closely resemble mammary alveoli found in the mammary gland. Thus, it is possible to study ECM-cell interactions and signalling pathways that regulate formation and maintenance of tissue-specific shape and functional differentiation of MECs in 3D under in vitro conditions. Here we present experimental protocols used to investigate the role of mitogen-activated protein kinase phosphatases (MKPs) during development of the alveoli-like structures by primary mouse mammary epithelial cells (PMMEC) cultured on Matrigel. We present detailed protocols for PMMEC isolation, and establishment of 3D cultures using an "on top" method, use of specific kinase and phosphatases inhibitors (PD98059 and pervanadate, respectively) administered at different stages of acinus development, and give examples of analyses carried out post-culture (Western blot, immunofluorescence staining, and confocal imaging).

  12. Changes in Inward Rectifier K+ Channels in Hepatic Stellate Cells During Primary Culture

    Science.gov (United States)

    Lee, Dong Hyeon; Kong, In Deok; Lee, Joong-Woo

    2008-01-01

    Purpose This study examined the expression and function of inward rectifier K+ channels in cultured rat hepatic stellate cells (HSC). Materials and Methods The expression of inward rectifier K+ channels was measured using real-time RT-PCR, and electrophysiological properties were determined using the gramicidin-perforated patch-clamp technique. Results The dominant inward rectifier K+ channel subtypes were Kir2.1 and Kir6.1. These dominant K+ channel subtypes decreased significantly during the primary culture throughout activation process. HSC can be classified into two subgroups: one with an inward-rectifying K+ current (type 1) and the other without (type 2). The inward current was blocked by Ba2+ (100 µM) and enhanced by high K+ (140 mM), more prominently in type 1 HSC. There was a correlation between the amplitude of the Ba2+-sensitive current and the membrane potential. In addition, Ba2+ (300 µM) depolarized the membrane potential. After the culture period, the amplitude of the inward current decreased and the membrane potential became depolarized. Conclusion HSC express inward rectifier K+ channels, which physiologically regulate membrane potential and decrease during the activation process. These results will potentially help determine properties of the inward rectifier K+ channels in HSC as well as their roles in the activation process. PMID:18581597

  13. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. [Primary culture of cat intestinal epithelial cell and construction of its cDNA library].

    Science.gov (United States)

    Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C

    2017-04-12

    Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.

  15. Neuroprotective effects of orientin on oxygen-glucose deprivation/reperfusion-induced cell injury in primary culture of rat cortical neurons.

    Science.gov (United States)

    Tian, Tian; Zeng, Junan; Zhao, Guangyu; Zhao, Wenjing; Gao, Songyi; Liu, Li

    2018-01-01

    Orientin (luteolin-8-C-glucoside) is a phenolic compound found abundantly in millet, juice, and peel of passion fruit and has been shown to have antioxidant properties. In the present study, we explored the effects of orientin on oxygen-glucose deprivation/reperfusion (OGD/RP)-induced cell injury in primary culture of rat cortical neurons using an in vitro model of neonatal ischemic brain injury. The reduced cell viability and elevated lactate dehydrogenase leakage were observed after OGD/RP exposure, which were then reversed by orientin (10, 20, and 30 µM) pretreatment in a dose-dependent manner. Additionally, OGD/RP treatment resulted in significant oxidative stress, accompanied by enhanced intracellular reactive oxygen species (ROS) generation, and obvious depletion in the activities of intracellular Mn-superoxide dismutase, catalase, and glutathione peroxidase antioxidases. However, these effects were dose dependently restored by orientin pretreatment. We also found that orientin pretreatment dose dependently suppressed [Ca 2+ ] i increase and mitochondrial membrane potential dissipation caused by OGD/RP in primary culture of rat cortical neurons. Western blot analysis showed that OGD/RP exposure induced a distinct decrease of Bcl-2 protein and a marked elevation of Bax, caspase-3, and cleaved caspase-3 proteins; whereas these effects were dose dependently reversed by orientin incubation. Both the caspase-3 activity and the apoptosis rate were increased under OGD/RP treatment, but was then dose dependently down-regulated by orientin (10, 20, and 30 µM) incubation. Moreover, orientin pretreatment dose dependently inhibited OGD/RP-induced phosphorylation of JNK and ERK1/2. Notably, JNK inhibitor SP600125 and ERK1/2 inhibitor PD98059 also dramatically attenuated OGD/RP-induced cell viability loss and ROS generation, and further, orientin failed to protect cortical neurons with the interference of JNK activator anisomycin or ERK1/2 activator FGF-2. Taken

  16. Neuroglial cells in long-term primary cultures from the gilthead sea bream (Sparus aurata L.: new functional in vitro model from bony fish brain

    Directory of Open Access Journals (Sweden)

    Gerardo Centoducati

    2013-01-01

    Full Text Available Neuroglia has been historically considered the “glue” of the nervous system, as the ancient Greek name suggests, being simply referred as non-neuronal cells, with supporting functions for neurons in the CNS of mammalian and lower vertebrates. All around the world, approximately 283 cell lines were obtained from fish, yet none of these was from the brain of Sparus aurata, neither in cell lines nor as primary culture. Here we describe a novel in vitro reproducible neuroglial marine model for establishing primary neuroglial cell cultures, by dissociating the whole brain of seabream juveniles. We showed that proliferating neural stem cells produced alongside three generating lineages, such as neuronal precursor cells, astroglial precursor cells and oligodendroglia precursor cells, which developed respectively neurons, astrocytes and oligodendrocytes. The radial glia, finely described by morphological studies and immunochemical antigen expression, showed a peculiar spatial distribution, giving rise simultaneously both to astrocytes and neuronal precursors within a highly proliferative assemblate. Radial glia cells were assessed by glial fibrillary acidic protein (GFAP and vimentin reactivity, astrocytes by GFAP, neurons by the neuron-specific markers for ubiquitin carboxy-terminal hydrolase 1 (UCHL1 and intermediate filament associated protein (NF, whereas myelinating oligodendrocytes were immunostained with anti-myelin basic protein (MBP and anti-O4. Our findings suggest that seabream neuroglial cells gain in 3-4 weeks of culturing proliferation, neuroglial differentiation, and oligodendrocyte maturation with myelination, thus disclosing on the possibility that mixed neuroglial cultures can accelerate the maturation of oligodendrocytes and the regeneration of CNS injury in fish.

  17. Ex vivo electroporation of retinal cells: a novel, high efficiency method for functional studies in primary retinal cultures.

    Science.gov (United States)

    Vergara, M Natalia; Gutierrez, Christian; O'Brien, David R; Canto-Soler, M Valeria

    2013-04-01

    Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22-25% of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the

  18. Generation of organotypic raft cultures from primary human keratinocytes.

    Science.gov (United States)

    Anacker, Daniel; Moody, Cary

    2012-02-22

    The development of organotypic epithelial raft cultures has provided researchers with an efficient in vitro system that faithfully recapitulates epithelial differentiation. There are many uses for this system. For instance, the ability to grow three-dimensional organotypic raft cultures of keratinocytes has been an important milestone in the study of human papillomavirus (HPV)(1). The life cycle of HPV is tightly linked to the differentiation of squamous epithelium(2). Organotypic epithelial raft cultures as demonstrated here reproduce the entire papillomavirus life cycle, including virus production(3,4,5). In addition, these raft cultures exhibit dysplastic lesions similar to those observed upon in vivo infection with HPV. Hence this system can also be used to study epithelial cell cancers, as well as the effect of drugs on epithelial cell differentiation in general. Originally developed by Asselineau and Prunieras(6) and modified by Kopan et al.(7), the organotypic epithelial raft culture system has matured into a general, relatively easy culture model, which involves the growth of cells on collagen plugs maintained at an air-liquid interface (Figure 1A). Over the course of 10-14 days, the cells stratify and differentiate, forming a full thickness epithelium that produces differentiation-specific cytokeratins. Harvested rafts can be examined histologically, as well as by standard molecular and biochemical techniques. In this article, we describe a method for the generation of raft cultures from primary human keratinocytes. The same technique can be used with established epithelial cell lines, and can easily be adapted for use with epithelial tissue from normal or diseased biopsies(8). Many viruses target either the cutaneous or mucosal epithelium as part of their replicative life cycle. Over the past several years, the feasibility of using organotypic raft cultures as a method of studying virus-host cell interactions has been shown for several herpesviruses, as

  19. Stimulation of DNA synthesis in cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Leslie, C.C.; McCormick-Shannon, K.; Robinson, P.C.; Mason, R.J.

    1985-01-01

    Restoration of the alveolar epithelium after injury is thought to be dependent on the proliferation of alveolar type II cells. To understand the factors that may be involved in promoting type II cell proliferation in vivo, we determined the effect of potential mitogens and culture substrata on DNA synthesis in rat alveolar type II cells in primary culture. Type II cells cultured in basal medium containing 10% fetal bovine serum (FBS) exhibited essentially no DNA synthesis. Factors that stimulated 3 H-thymidine incorporation included cholera toxin, epidermal growth factor, and rat serum. The greatest degree of stimulation was achieved by plating type II cells on an extracellular matrix prepared from bovine corneal endothelial cells and then by culturing the pneumocytes in medium containing rat serum, cholera toxin, insulin, and epidermal growth factor. Under conditions of stimulation of 3 H-thymidine incorporation there was an increased DNA content per culture dish but no increase in cell number. The ability of various culture conditions to promote DNA synthesis in type II cells was verified by autoradiography. Type II cells were identified by the presence of cytoplasmic inclusions, which were visualized by tannic acid staining before autoradiography. These results demonstrate the importance of soluble factors and culture substratum in stimulating DNA synthesis in rat alveolar type II cells in primary culture

  20. Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency.

    Science.gov (United States)

    Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S

    2017-01-01

    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of

  1. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  2. Sugammadex, a Neuromuscular Blockade Reversal Agent, Causes Neuronal Apoptosis in Primary Cultures

    Science.gov (United States)

    Palanca, José M.; Aguirre-Rueda, Diana; Granell, Manuel V.; Aldasoro, Martin; Garcia, Alma; Iradi, Antonio; Obrador, Elena; Mauricio, Maria Dolores; Vila, Jose; Gil-Bisquert, Anna; Valles, Soraya L.

    2013-01-01

    Sugammadex, a γ-cyclodextrin that encapsulates selectively steroidal neuromuscular blocking agents, such as rocuronium or vecuronium, has changed the face of clinical neuromuscular pharmacology. Sugammadex allows a rapid reversal of muscle paralysis. Sugammadex appears to be safe and well tolerated. Its blood-brain barrier penetration is poor (Sugammadex in neurons in primary culture. Here we show that clinically relevant sugammadex concentrations cause apoptotic/necrosis neuron death in primary cultures. Studies on the underlying mechanism revealed that sugammadex-induced activation of mitochondria-dependent apoptosis associates with depletion of neuronal cholesterol levels. Furthermore SUG increase CytC, AIF, Smac/Diablo and CASP-3 protein expression in cells in culture. Potential association of SUG-induced alteration in cholesterol homeostasis with oxidative stress and apoptosis activation occurs. Furthermore, resistance/sensitivity to oxidative stress differs between neuronal cell types. PMID:23983586

  3. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  4. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.

    Directory of Open Access Journals (Sweden)

    Martin Aldasoro

    Full Text Available Ranolazine (Rn is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M. Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.

  5. Circadian rhythms of Per2::Luc in individual primary mouse hepatocytes and cultures.

    Directory of Open Access Journals (Sweden)

    Casey J Guenthner

    Full Text Available BACKGROUND: Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. RESULTS: In this study we isolated primary hepatocytes from transgenic Per2(Luc mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2(-/- Per2(Luc cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. CONCLUSIONS: Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals.

  6. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  7. Use of primary cell cultures to measure the late effects in the skins of rhesus monkeys irradiated with protons

    Science.gov (United States)

    Cox, A. B.; Wood, D. H.; Lett, J. T.

    Previous pilot investigations of the uses of primary cell cultures to study late damage in stem cells of the skin of the New Zealand white (NZW) rabbit and the rhesus monkey /1-3/, have been extended to individual monkeys exposed to 55 MeV protons. Protons of this energy have a larger range in tissue of (~2.6 cm) than the 32 MeV protons (~0.9 cm) to which the animals in our earlier studies had been exposed. Although the primary emphases in the current studies were improvement and simplification in the techniques and logistics of transportation of biopsies to a central analytical facility, comparison of the quantitative measurements obtained thus far for survival of stem cells in the skins from animals irradiated 21 years ago reveals that the effects of both proton energies are similar.

  8. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie Voigt; Hansen, Stine Normann; Tveden-Nyborg, Pernille

    2016-01-01

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical...... of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7 pmol per 2 million cells intracellularly, but only...... the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid...

  9. Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

    Science.gov (United States)

    Barbosa de Matos, Rosan; Braga-de-Souza, Suzana; Pena Seara Pitanga, Bruno; Amaral da Silva, Victor Diógenes; Viana de Jesus, Erica Etelvina; Morales Pinheiro, Alexandre; Dias Costa, Maria de Fátima; dos Santos El-Bacha, Ramon; de Oliveira Ribeiro, Cátia Suse

    2014-01-01

    Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation. PMID:25548412

  10. Rabbit uterine epithelial cells: Co-culture with spermatozoa

    International Nuclear Information System (INIS)

    Boice, M.L.

    1988-01-01

    A primary culture of rabbit uterine epithelial cells was established and their effects on sperm function were examined in vitro. Epithelial cells were isolated from uteri of estrous rabbits and cultured on floating collagen gels in phenol red-free medium supplemented with 5% fetal bovine serum. Light microscopy and keratin staining showed that the epithelial cell population established in culture had morphological characteristics similar to that seen in the intact endometrium. Cells were cultured with 3 H-leucine and uptake of label by cells and its incorporation into cellular and secretory proteins determined. When compared to cells cultured for 24-48 h, incorporation of label into cellular protein was lower at 72-96 h, but secretion increased. Estradiol 17-β did not affect label uptake or incorporation, but did enhance proliferation of cells as judged by total DNA content of the cell population. Analysis of proteins in media by sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography suggested that epithelial and stromal cells synthesis proteins that may be secretory in nature during 72-96 h culture. Twenty-nine to thirty-one h after initiation of epithelial cultures, 1-2 x 10 6 sperm were co-incubated with cells and sperm viability, motility, loss of acrosome and fertilizing ability determined

  11. Preventive effect of piracetam and vinpocetine on hypoxia-reoxygenation induced injury in primary hippocampal culture.

    Science.gov (United States)

    Solanki, P; Prasad, D; Muthuraju, S; Sharma, A K; Singh, S B; Ilavzhagan, G

    2011-04-01

    The present study investigates the potential of Piracetam and Vinpocetine (nootropic drugs, known to possess neuroprotective properties) in preventing hypoxia-reoxygenation induced oxidative stress in primary hippocampal cell culture. The hippocampal culture was exposed to hypoxia (95% N(2), 5% CO(2)) for 3h and followed by 1h of reoxygenation (21% O(2) and 5% CO(2)) at 37 °C. The primary hippocampal cultures were supplemented with the optimum dose of Piracetam and Vinpocetine, independently, and the cultures were divided into six groups, viz. Control/Normoxia, Hypoxia, Hypoxia+Piracetam, Hypoxia+Vinpocetine, Normoxia + Piracetam and Normoxia+Vinpocetine. The cell-viability assays and biochemical oxidative stress parameters were evaluated for each of the six groups. Administration of 1mM Piracetam or 500 nM Vinpocetine significantly prevents the culture from hypoxia-reoxygenation injury when determined by Neutral Red assay, LDH release and Acetylcholine esterase activity. Results showed that Piracetam and Vinpocetine supplementation significantly prevented the fall of mitochondrial membrane potential, rise in ROS generation and reduction in antioxidant levels associated with the hypoxia-reoxygenation injury. In conclusion, the present study establishes that both Piracetam and Vinpocetine give neuroprotection against hypoxia-reoxygenation injury in primary hippocampal cell culture. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Multi-lipofection efficiently transfected genes into astrocytes in primary culture.

    Science.gov (United States)

    Wu, B Y; Liu, R Y; So, K L; Yu, A C

    2000-10-30

    This study demonstrated that liposome-mediated transfection - lipofection - is suitable for delivering genes into astrocytes. By repeatedly lipofecting the same astrocyte cultures, a process we call multi-lipofection, the transfection efficiency of the beta-galactosidase (beta-gal) gene was improved from 2.6+/-0.6 to 17. 4+/-1.1%. This is the highest efficiency ever reported in gene-transfer with Lipofectin(R) in a primary culture of mouse cerebral cortical astrocytes. Furthermore, multi-lipofection did not cause observable disturbance to astrocytes as indicated by insignificant changes in the glial fibrillary acidic protein content in the cultures. In order to demonstrate that the transfected gene achieved a physiologically relevant expression level, a plasmid containing the pEF-hsp70 protein gene was lipofected into astrocytes. This produced colonies of astrocytes showing an increased resistance to heat-induced cell death. A similar experiment was performed with the glial-derived neurotrophic factor (GDNF) gene. Control astrocytes had no detectable GDNF. In the transfected astrocytes, the GDNF protein could be identified intracellularly by immunocytochemistry. Western blot analysis revealed, as compared to astrocytes with one lipofection, a 2.9-fold increase of GDNF with four lipofections. GDNF remained detectable in astrocytes 2 weeks after four lipofections. Thus, multi-lipofection provides a mild and efficient means of delivering foreign genes into astrocytes in a primary culture, making astrocytes good candidate vehicle cells for gene/cell therapy in the CNS.

  13. Radiation transformation in differentiated human cells in culture

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.; Moriarty, M.; Malone, J.; Byrne, P.; Hennessy, T.

    1986-01-01

    A tissue culture technique is described for human thyroid tissue as an approach to studying mechanisms of human radiation carcinogenesis. Normal human tissue obtained from surgery is treated in one of two ways, depending upon size of specimen. Large pieces are completely digested in trypsin/ collagenase solution to a single cell suspension. Small pieces of tissue are plated as explants following partial digestion in trypsin/collagenase solution. Following irradiation of the primary differentiated monolayers (normally 10 days after plating), the development of transformed characteristics is monitored in the subsequent subcultures. A very high level of morphological and functional differentiation is apparent in the primary cultures. Over a period of approx. 6 months, the irradiated surviving cells continue to grow in culture, unlike the unirradiated controls which senesce after 2-3 subcultures. (UK)

  14. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    Science.gov (United States)

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial

  15. Specific binding of an immunoreactive and biologically active 125I-labeled substance P derivative to mouse mesencephalic cells in primary culture

    International Nuclear Information System (INIS)

    Beaujouan, J.C.; Torrens, Y.; Herbet, A.; Daguet, M.C.; Glowinski, J.; Prochiantz, A.

    1982-01-01

    Binding characteristics of 125 I-labeled Bolton-Hunter substance P ([ 125 I]BHSP), a radioactive analogue of substance P, were studied with mesencephalic primary cultures prepared from embryonic mouse brain. Nonspecific binding represented no more than 20% of the total binding observed on the cells. In contrast, significant specific binding--saturable, reversible, and temperature-dependent--was demonstrated. Scatchard analysis of concentration-dependent binding saturation indicates a single population of noninteracting sites with a high affinity (Kd . 169 pM). Substance P and different substance P analogues were tested for their competitive potencies with regard to [ 125 I]BHSP binding. BHSP itself, substance P, (Tyr8)-substance P, and (nor-Leu11)-substance P strongly inhibited the binding. Good inhibition was also obtained with physalaemin and eledoisin, two peptides structurally related to substance P. When substance P C-terminal fragments were tested for their ability to compete with [ 125 I]BHSP binding, a good relationship was found between competitive activity and peptide length. Regional distribution of [ 125 I]BHSP binding sites was found using primary cultures obtained from different regions of embryonic mouse brain. Mesencephalic, hypothalamic, and striatal cultures had the highest [ 125 I]BHSP binding capacities, whereas cortical, hippocampal, and cerebellar cells shared only little binding activity. Finally, when mesencephalic cells were grown under conditions impairing glial development, [ 125 I]BHSP binding was not affected, demonstrating that binding sites are located on neuronal cells

  16. Maintenance of primary cell cultures of immunocytes from Cacopsylla sp. psyllids: a new in vitrio tool for the study of pest insects

    Science.gov (United States)

    Psyllid species are major vectors of plant pathogens, such as phytoplasmas and Liberibacter bacteria, which threaten economic stability of fruit tee crops and vegetable production worldwide. Primary cell cultures of immunocytes have been developed from the three psyllid species, Cacopsylla melanone...

  17. Proteomic Characterization of Primary Mouse Hepatocytes in Collagen Monolayer and Sandwich Culture.

    Science.gov (United States)

    Orsini, Malina; Sperber, Saskia; Noor, Fozia; Hoffmann, Esther; Weber, Susanne N; Hall, Rabea A; Lammert, Frank; Heinzle, Elmar

    2018-01-01

    Dedifferentiation of primary hepatocytes in vitro makes their application in long-term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the dedifferentiation process to some extent. In this study, we compared the intracellular proteome of primary mouse hepatocytes (PMH) in conventional monolayer cultures (ML) to collagen sandwich culture (SW) after 1 day and 5 days of cultivation. Quantitative proteome analysis of PMH showed no differences between collagen SW and ML cultures after 1 day. Glycolysis and gluconeogenesis were strongly affected by long-term cultivation in both ML and SW cultures. Interestingly, culture conditions had no effect on cellular lipid metabolism. After 5 days, PMH in collagen SW and ML cultures exhibit characteristic indications of oxidative stress. However, in the SW culture the defense system against oxidative stress is significantly up-regulated to deal with this, whereas in the ML culture a down-regulation of these important enzymes takes place. Regarding the multiple effects of ROS and oxidative stress in cells, we conclude that the down-regulation of these enzymes seem to play a role in the loss of hepatic function observed in the ML cultivation. In addition, enzymes of the urea cycle were clearly down-regulated in ML culture. Proteomics confirms lack in oxidative stress defense mechanisms as the major characteristic of hepatocytes in monolayer cultures compared to sandwich cultures. J. Cell. Biochem. 119: 447-454, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The blood-brain barrier in vitro using primary culture

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart

    The brain is protected from the entry of unwanted substances by means of the blood-brain barrier (BBB) formed by the brain microvasculature. This BBB is composed of non-fenestrated brain capillary endothelial cells (BCECs) with their intermingling tight junctions. The presence of the BBB is a huge...... obstacle for the treatment of central nervous system (CNS) diseases, as many potentially CNS active drugs are unable to reach their site of action within the brain. In vitro BBB models are, therefore, being developed to investigate the BBB permeability of a drug early in its development. The first part...... of the thesis involves the establishment and characterization of an in vitro BBB models based on primary cells isolated from the rat brain. Co-culture and triple culture models with astrocytes and pericytes were found to be the superior to mono cultured BCECs with respect to many important BBB characteristics...

  19. Particle Trajectories in Rotating Wall Cell Culture Devices

    Science.gov (United States)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  20. Phthalates Are Metabolised by Primary Thyroid Cell Cultures but Have Limited Influence on Selected Thyroid Cell Functions In Vitro

    DEFF Research Database (Denmark)

    Hansen, Juliana Frohnert; Brorson, Marianne Møller; Boas, Malene

    2016-01-01

    Phthalates are plasticisers added to a wide variety of products, resulting in measurable exposure of humans. They are suspected to disrupt the thyroid axis as epidemiological studies suggest an influence on the peripheral thyroid hormone concentration. The mechanism is still unknown as only few...... in vitro studies within this area exist. The aim of the present study was to investigate the influence of three phthalate diesters (di-ethyl phthalate, di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP)) and two monoesters (mono-n-butyl phthalate and mono-(2-ethylhexyl) phthalate (MEHP......)) on the differentiated function of primary human thyroid cell cultures. Also, the kinetics of phthalate metabolism were investigated. DEHP and its monoester, MEHP, both had an inhibitory influence on 3'-5'-cyclic adenosine monophosphate secretion from the cells, and MEHP also on thyroglobulin (Tg) secretion from...

  1. Cell-type-specific and differentiation-status-dependent variations in cytotoxicity of tributyltin in cultured rat cerebral neurons and astrocytes.

    Science.gov (United States)

    Oyanagi, Koshi; Tashiro, Tomoko; Negishi, Takayuki

    2015-08-01

    Tributyltin (TBT) is an organotin used as an anti-fouling agent for fishing nets and ships and it is a widespread environmental contaminant at present. There is an increasing concern about imperceptible but serious adverse effect(s) of exposure to chemicals existing in the environment on various organs and their physiological functions, e.g. brain and mental function. Here, so as to contribute to improvement of and/or advances in in vitro cell-based assay systems for evaluating brain-targeted adverse effect of chemicals, we tried to evaluate cell-type-specific and differentiation-status-dependent variations in the cytotoxicity of TBT towards neurons and astrocytes using the four culture systems differing in the relative abundance of these two types of cells; primary neuron culture (> 95% neurons), primary neuron-astrocyte (2 : 1) mix culture, primary astrocyte culture (> 95% astrocytes), and passaged astrocyte culture (100% proliferative astrocytes). Cell viability was measured at 48 hr after exposure to TBT in serum-free medium. IC50's of TBT were 198 nM in primary neuron culture, 288 nM in primary neuron-astrocyte mix culture, 2001 nM in primary astrocyte culture, and 1989 nM in passaged astrocyte culture. Furthermore, in primary neuron-astrocyte mix culture, vulnerability of neurons cultured along with astrocytes to TBT toxicity was lower than that of neurons cultured purely in primary neuron culture. On the other hand, astrocytes in primary neuron-astrocyte mix culture were considered to be more vulnerable to TBT than those in primary or passaged astrocyte culture. The present study demonstrated variable cytotoxicity of TBT in neural cells depending on the culture condition.

  2. Pyrethroid insecticide accumulation in primary cultures of cortical neurons in vitro

    Science.gov (United States)

    Primary cultures of neurons have been widely utilized to study the actions of pyrethroids and other neurotoxicants, with the presumption that the media concentration accurately reflects the dose received by the cells. However, recent studies have demonstrated that lipophilic comp...

  3. Accumulation of silver nanoparticles by cultured primary brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Eva M; Koehler, Yvonne; Dringen, Ralf [Center for Biomolecular Interactions Bremen, University of Bremen, PO Box 330440, D-28334 Bremen (Germany); Diendorf, Joerg; Epple, Matthias, E-mail: ralf.dringen@uni-bremen.de [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Universitaetsstrasse 5-7, D-45117 Essen (Germany)

    2011-09-16

    Silver nanoparticles (AgNP) are components of various food industry products and are frequently used for medical equipment and materials. Although such particles enter the vertebrate brain, little is known on their biocompatibility for brain cells. To study the consequences of an AgNP exposure of brain cells we have treated astrocyte-rich primary cultures with polyvinylpyrrolidone (PVP)-coated AgNP. The incubation of cultured astrocytes with micromolar concentrations of AgNP for up to 24 h resulted in a time- and concentration-dependent accumulation of silver, but did not compromise the cell viability nor lower the cellular glutathione content. In contrast, the incubation of astrocytes for 4 h with identical amounts of silver as AgNO{sub 3} already severely compromised the cell viability and completely deprived the cells of glutathione. The accumulation of AgNP by astrocytes was proportional to the concentration of AgNP applied and significantly lowered by about 30% in the presence of the endocytosis inhibitors chloroquine or amiloride. Incubation at 4 {sup 0}C reduced the accumulation of AgNP by 80% compared to the values obtained for cells that had been exposed to AgNP at 37 {sup 0}C. These data demonstrate that viable cultured brain astrocytes efficiently accumulate PVP-coated AgNP in a temperature-dependent process that most likely involves endocytotic pathways.

  4. RNA synthesis in primary cultures of adult rat hepatocytes

    International Nuclear Information System (INIS)

    Fugassa, E.; Gallo, G.; Voci, A.; Cordone, A.

    1983-01-01

    The ability of hepatocyte monolayers to synthesize RNA was investigated by measuring [3H]orotic acid incorporation into RNA and the total nuclear RNA polymerase activity as a function of the time in culture. The results demonstrate that primary cultures of hepatocytes maintained in a chemically defined serum- and hormone-free medium are able to synthesize RNA actively. This ability increases within the first 2 d of culture, despite the concomitant decrease in [3H]orotic acid uptake, and decreases only after 3 d. Factors such as serum, insulin, and dexamethasone, known to improve maintenance of functional hepatocytes, markedly stimulate the uptake of labeled precursor without apparently affecting the rate of RNA synthesis by cultured cells. It is suggested that the culture of adult rat hepatocytes provides a useful experimental model for the studies of hormonal regulation of transcription in liver

  5. Culture technique of rabbit primary epidermal keratinocytes

    Directory of Open Access Journals (Sweden)

    Marini M

    2012-10-01

    Full Text Available The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS. Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent was separated from the dermis (pink, opaque, gooey with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope.

  6. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    Science.gov (United States)

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P control group compared to other three groups (P neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  8. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    NARCIS (Netherlands)

    Gerlach, Bärbel; Harder, Anna H.; Hulsebos, Theo J. M.; Leenstra, Sieger; Slotman, Berend J.; Vandertop, W. Peter; Hartmann, Karl-Axel; Sminia, Peter

    2002-01-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell

  9. Changes of muscarinic cholinergic receptors during aging process of primary cultured neutrons

    International Nuclear Information System (INIS)

    Fan Guohuang; Yi Ningyu; Xia Zongqin

    1996-01-01

    The dynamic changes of muscarinic receptor density and its reactivity during aging process in primary cultured neutrons were studied. Muscarinic receptor density was measured by 3 H-QNB binding assay, and muscarinic receptor reactivity was assessed by carbachol stimulation of cGMP formation, the latter was measured by RIA. After 2 weeks' incubation of neonatal rat brain cells, the nutrients began to rupture and the cell bodies shrank markedly showing senescent feature. The muscarinic receptor density reached peak at the 12th day in vitro (12 DIV), but the muscarinic receptor reactivity reached peak at 9 DIV and declined significantly at 12 DIV. The results demonstrated that during aging process of primary cultured neutrons, the decline of muscarinic receptor reactivity is likely prior to the decrease of receptor density

  10. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation.

    Science.gov (United States)

    Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P

    2012-07-01

    In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures

    Directory of Open Access Journals (Sweden)

    Floriana Rotondo

    2016-11-01

    Full Text Available Background White adipose tissue (WAT is a complex, diffuse, multifunctional organ which contains adipocytes, and a large proportion of fat, but also other cell types, active in defense, regeneration and signalling functions. Studies with adipocytes often require their isolation from WAT by breaking up the matrix of collagen fibres; however, it is unclear to what extent adipocyte number in primary cultures correlates with their number in intact WAT, since recovery and viability are often unknown. Experimental Design Epididymal WAT of four young adult rats was used to isolate adipocytes with collagenase. Careful recording of lipid content of tissue, and all fraction volumes and weights, allowed us to trace the amount of initial WAT fat remaining in the cell preparation. Functionality was estimated by incubation with glucose and measurement of glucose uptake and lactate, glycerol and NEFA excretion rates up to 48 h. Non-adipocyte cells were also recovered and their sizes (and those of adipocytes were measured. The presence of non-nucleated cells (erythrocytes was also estimated. Results Cell numbers and sizes were correlated from all fractions to intact WAT. Tracing the lipid content, the recovery of adipocytes in the final, metabolically active, preparation was in the range of 70–75%. Cells showed even higher metabolic activity in the second than in the first day of incubation. Adipocytes were 7%, erythrocytes 66% and other stromal (nucleated cells 27% of total WAT cells. However, their overall volumes were 90%, 0.05%, and 0.2% of WAT. Non-fat volume of adipocytes was 1.3% of WAT. Conclusions The methodology presented here allows for a direct quantitative reference to the original tissue of studies using isolated cells. We have also found that the “live cell mass” of adipose tissue is very small: about 13 µL/g for adipocytes and 2 µL/g stromal, plus about 1 µL/g blood (the rats were killed by exsanguination. These data translate (with

  12. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S.

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  13. Epithelialization and stromalization of porcine follicular granulosa cells during real-time proliferation - a primary cell culture approach.

    Science.gov (United States)

    Ciesiółka, S; Bryja, A; Budna, J; Kranc, W; Chachuła, A; Bukowska, D; Piotrowska, H; Porowski, L; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The process of oocyte growth and development takes place during long stages of folliculogenesis and oogenesis. This is accompanied by biochemical and morphological changes, occurring from the preantral to antral stages during ovarian follicle differentiation. It is well known that the process of follicle growth is associated with morphological modifications of theca (TCs) and granulosa cells (GCs). However, the relationship between proliferation and/or differentiation of porcine GCs during long-term in vitro culture requires further investigation. Moreover, the expression of cytokeratins and vimentin in porcine GCs, in relation to real-time cell proliferation, has yet to be explored. Utilizing confocal microscopy, we analyzed cytokeratin 18 (CK18), cytokeratin 8 + 18 + 19 (panCK), and vimentin (Vim) expression, as well as their protein distribution, within GCs isolated from slaughtered ovarian follicles. The cells were cultured for 168 h with protein expression and cell proliferation index analyzed at 24-h intervals. We found the highest expression of CK18, panCK, and Vim occurred at 120 h of in vitro culture (IVC) as compared with other experimental time intervals. All of the investigated proteins displayed cytoplasmic distribution. Analysis of real-time cell proliferation revealed an increased cell index after the first 24 h of IVC. Additionally, during each period between 24-168 h of IVC, a significant difference in the proliferation profile, expressed as the cell index, was also observed. We concluded that higher expression of vimentin at 120 h of in vitro proliferation might explain the culmination of the stromalization process associated with growth and domination of stromal cells in GC culture. Cytokeratin expression within GC cytoplasm confirms the presence of epithelial cells as well as epithelial-related GC development during IVC. Moreover, expression of both cytokeratins and vimentin during short-term culture suggests that the process of GC proliferation

  14. Methylmercury inhibits gap junctional intercellular communication in primary cultures of rat proximal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Minoru; Sumi, Yawara [Department of Chemistry, St. Marianna University School of Medicine, Kawasagi (Japan); Kujiraoka, Toru [Department of Physiology, St. Marianna University School of Medicine, Kawasagi (Japan); Hara, Masayuki [Department of Anatomy, St. Marianna University School of Medicine, Kawasagi (Japan); Nakazawa, Hirokazu [Department of Chemistry, Faculty of Sciences, Meisei University (Japan)

    1998-03-01

    Methylmercury (MeHg) causes renal injury in addition to central and peripheral neuropathy. To clarify the mechanism of nephrotoxicity by MeHg, we investigated the effect of this compound on intercellular communication through gap junction channels in primary cultures of rat renal proximal tubular cells. Twenty minutes after exposure to 30 {mu}M MeHg, gap junctional intercellular communication (GJIC), which was assessed by dye coupling, was markedly inhibited before appearance of cytotoxicity. When the medium containing MeHg was exchanged with MeHg-free medium, dye coupling recovered abruptly. However, the dye-coupling was abolished again 30 min after replacement with control medium, and the cells were damaged. Intracellular calcium concentration, [Ca{sup 2+}]{sub i}, which modulates the function of gap junctions, significantly increased following exposure of the cells to 30 {mu}M MeHg and returned to control level following replacement with MeHg-free medium. These results suggest that the inhibiting effect of MeHg on GJIC is related to the change in [Ca{sup 2+}]{sub i}, and may be involved in the pathogenesis of renal dysfunction. (orig.) With 5 figs., 23 refs.

  15. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  16. Extracellular matrix components influence DNA synthesis of rat hepatocytes in primary culture

    International Nuclear Information System (INIS)

    Sawada, N.; Tomomura, A.; Sattler, C.A.; Sattler, G.L.; Kleinman, H.K.; Pitot, H.C.

    1986-01-01

    The effects of several extracellular matrix components (EMCs) - fibronectin (Fn), laminin (Ln), type I (C-I) and type IV (C-IV) collagen - on DNA synthesis in rat hepatocytes in primary culture were examined by both quantitative scintillation spectrometry and autoradiography of [ 3 H]thymidine incorporation. Hepatocytes cultured on Fn showed the most active DNA synthesis initiated by epidermal growth factor (EGF) with decreasing levels of [ 3 H]thymidine uptake exhibited in the cell cultured on C-IV, C-I, and Ln, respectively. The decreasing level of DNA synthesis in hepatocytes cultured on Fn, C-IV, C-I, and Ln respectively was not influenced by cell density. The number of EGF receptors of hepatocytes was also not influenced by EMCs. These data suggest that EMCs modify hepatocyte DNA synthesis by means of post-EGF-receptor mechanisms which are regulated by both growth factors and cell density

  17. Radiation Gene-expression Signatures in Primary Breast Cancer Cells.

    Science.gov (United States)

    Minafra, Luigi; Bravatà, Valentina; Cammarata, Francesco P; Russo, Giorgio; Gilardi, Maria C; Forte, Giusi I

    2018-05-01

    In breast cancer (BC) care, radiation therapy (RT) is an efficient treatment to control localized tumor. Radiobiological research is needed to understand molecular differences that affect radiosensitivity of different tumor subtypes and the response variability. The aim of this study was to analyze gene expression profiling (GEP) in primary BC cells following irradiation with doses of 9 Gy and 23 Gy delivered by intraoperative electron radiation therapy (IOERT) in order to define gene signatures of response to high doses of ionizing radiation. We performed GEP by cDNA microarrays and evaluated cell survival after IOERT treatment in primary BC cell cultures. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate candidate genes. We showed, for the first time, a 4-gene and a 6-gene signature, as new molecular biomarkers, in two primary BC cell cultures after exposure at 9 Gy and 23 Gy respectively, for which we observed a significantly high survival rate. Gene signatures activated by different doses of ionizing radiation may predict response to RT and contribute to defining a personalized biological-driven treatment plan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Specificity in calcium oxalate adherence to papillary epithelial cells in culture

    International Nuclear Information System (INIS)

    Riese, R.J.; Riese, J.W.; Kleinman, J.G.; Wiessner, J.H.; Mandel, G.S.; Mandel, N.S.

    1988-01-01

    Attachment of microcystallites to cellular membranes may be an important component of the pathophysiology of many diseases including urolithiasis. This study attempts to characterize the interaction of calcium oxalate (CaOx) crystals and apatite (AP) crystals with renal papillary collecting tubule (RPCT) cells in primary culture. Primary cultures of RPCT cells showed the characteristic monolayer growth with sporadically interspersed clumped cells. Cultures were incubated with [ 14 C]CaOx crystals, and the crystals that bound were quantified by microscopy and adherent radioactivity. Per unit of cross-sectional area, 32 times more CaOx crystals were bound to the clumps than to the monolayer. CaOx adherence demonstrated concentration-dependent saturation with a β value (fraction of cell culture area binding CaOx crystals) of 0.179 and a 1/α ox value of 287 μg/cm 2 . On incubation with AP crystals, CaOx binding demonstrated concentration-dependent inhibition with a 1/α AP value of 93 μg/cm 2 . Microcystallite adherence to RPCT cells demonstrates selectivity for cellular clumps, saturation, and inhibition. These features suggest specific binding

  19. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo

    2018-05-11

    Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chromosomal instability and telomere shortening in long-term culture of hematopoietic stem cells: insights from a cell culture model of RPS14 haploinsufficiency.

    Science.gov (United States)

    Thomay, K; Schienke, A; Vajen, B; Modlich, U; Schambach, A; Hofmann, W; Schlegelberger, B; Göhring, G

    2014-01-01

    The fate of cultivated primary hematopoietic stem cells (HSCs) with respect to genetic instability and telomere attrition has not yet been described in great detail. Thus, knowledge of the genetic constitution of HSCs is important when interpreting results of HSCs in culture. While establishing a cell culture model for myelodysplastic syndrome with a deletion in 5q by performing RPS14 knockdown, we found surprising data that may be of importance for any CD34+ cell culture experiments. We performed cytogenetic analyses and telomere length measurement on transduced CD34+ cells and untransduced control cells to observe the effects of long-term culturing. Initially, CD34+ cells had a normal median telomere length of about 12 kb and showed no signs of chromosomal instability. During follow-up, the median telomere length seemed to decrease and, simultaneously, increased chromosomal instability could be observed - in modified and control cells. One culture showed a clonal monosomy 7 - independent of prior RPS14 knockdown. During further culturing, it seemed that the telomeres re-elongated, and chromosomes stabilized, while TERT expression was not elevated. In summary, irrespective of our results of RPS14 knockdown in the long-term culture of CD34+ cells, it becomes clear that cell culture artefacts inducing telomere shortening and chromosomal instability have to be taken into account and regular cytogenetic analyses should always be performed. © 2013 S. Karger AG, Basel.

  1. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  2. Somatic embryogenesis and plant regeneration from cell suspension cultures of Cucumis sativus L.

    Science.gov (United States)

    Chee, P P; Tricoli, D M

    1988-06-01

    A procedure for the regeneration of whole cucumber plants (Cucumis sativus L. cv. Poinsett 76) by embryogenesis from cell suspension cultures is described. Embryogenic callus was initiated from the primary leaves of 14-17 day old plants. Suspension cultures of embryogenic cells were grown in liquid Murashige and Skoog basal medium containing 5 uM 2,4,5-trichlorophenoxyacetic acid and 4 uM 6-benzylaminopurine. Suspension cultures were composed of a population of cells that were densely cytoplasmic and potentially embryogenic. Differentiation of embryos was enhanced by washing the suspension culture cells with MS basal medium containing 0.5% activated charcoal and twice with MS basal medium followed by liquid shake cultures in MS basal medium. Sixty to 70 percent of the embryos prewashed with activated charcoal germinated into plantlets with normal morphology. Embryos obtained from suspension cultured cells without prewashing with activated charcoal organized into plantlets with abnormal primary leaves. Morphologically normal plantlets were obtained by excising the shoot tips and transferring them to fresh medium.

  3. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  4. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion.

    Directory of Open Access Journals (Sweden)

    Gina D Kusuma

    Full Text Available Mesenchymal stem/stromal cells (MSCs exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25 human telomerase reverse transcriptase (hTERT transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs and decidua basalis (DMSCs, respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.

  5. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  7. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.

    Science.gov (United States)

    Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2011-03-01

    P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  8. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    Directory of Open Access Journals (Sweden)

    Wang YB

    2013-10-01

    Full Text Available Yanbo Wang, Xuxia Yan, Linglin Fu Marine Resources and Nutrition Biology Research Center, Food Quality and Safety Department, Zhejiang Gongshang University, Hangzhou, People's Republic of China Abstract: Nano-selenium (Se, with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. Keywords: selenium nanoparticle, intestinal epithelial cell, crucian carp, primary culture

  9. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from

  10. Cell division requirement for activation of murine leukemia virus in cell culture by irradiation

    International Nuclear Information System (INIS)

    Otten, J.A.; Quarles, J.M.; Tennant, R.W.

    1976-01-01

    Actively dividing cultures of AKR mouse cells were exposed to relatively low dose-rates of γ radiation and tested for activation of endogenous leukemia viruses. Efficient and reproducible induction of virus was obtained with actively dividing cells, but cultures deprived of serum to inhibit cell division before and during γ irradiation were not activated, even when medium with serum was added immediately after irradiation. These results show that cell division was required for virus induction but that a stable intermediate similar to the state induced by halogenated pyrimidines was not formed. In actively dividing AKR cell cultures, virus activation appeared to be proportional to the dose of γ radiation; the estimated frequency of activation was 1-8 x 10 - 5 per exposed cell and the efficiency of activation was approximately 0.012 inductions per cell per rad. Other normal primary and established mouse cell cultures tested were not activated by γ radiation. The requirement of cell division for radiation and chemical activation may reflect some common mechanism for initiation of virus expression

  11. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    International Nuclear Information System (INIS)

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stéphane

    2014-01-01

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes

  12. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    Energy Technology Data Exchange (ETDEWEB)

    Atienzar, Franck A., E-mail: franck.atienzar@ucb.com [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Novik, Eric I. [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Gerets, Helga H. [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); Parekh, Amit [H mu rel Corporation, 675 U.S. Highway 1, North Brunswick, NJ 08902 (United States); Delatour, Claude; Cardenas, Alvaro [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium); MacDonald, James [Chrysalis Pharma Consulting, LLC, 385 Route 24, Suite 1G, Chester, NJ 07930 (United States); Yarmush, Martin L. [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 (United States); Dhalluin, Stéphane [UCB Pharma SA, Non-Clinical Development, Chemin du Foriest, 1420 Braine-l' Alleud (Belgium)

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: • Importance of species differences in drug development. • Relevance of dog co-culture model for metabolism and toxicology studies. • Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  13. Aragonite precipitation by "proto-polyps" in coral cell cultures.

    Directory of Open Access Journals (Sweden)

    Tali Mass

    Full Text Available The mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid. This novel coral culturing technique enables us to study the mechanisms of biomineralization and their implications for geochemical proxies. Viable cell cultures of the hermatypic, zooxanthellate coral, Stylophora pistillata, have been maintained for 6 to 8 weeks. Using an enriched seawater medium with aragonite saturation state similar to open ocean surface waters (Ω(arag~4, the primary cell cultures assemble into "proto-polyps" which form an extracellular organic matrix (ECM and precipitate aragonite crystals. These extracellular aragonite crystals, about 10 µm in length, are formed on the external face of the proto-polyps and are identified by their distinctive elongated crystallography and X-ray diffraction pattern. The precipitation of aragonite is independent of photosynthesis by the zooxanthellae, and does not occur in control experiments lacking coral cells or when the coral cells are poisoned with sodium azide. Our results demonstrate that proto-polyps, aggregated from primary coral tissue culture, function (from a biomineralization perspective similarly to whole corals. This approach provides a novel tool for investigating the biophysical mechanism of calcification in these organisms.

  14. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    International Nuclear Information System (INIS)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-01-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time

  15. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish

    Energy Technology Data Exchange (ETDEWEB)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine, E-mail: catherine.labbe@rennes.inra.fr

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. - Highlights: • Recycled fin explants outgrow cells bearing stable mesenchymal traits. • Cell production and quality is enhanced in the recycled explant culture system. • Fresh fin primary culture is highly variable and loose epithelial traits over time.

  16. Isolation and culture of larval cells from C. elegans.

    Directory of Open Access Journals (Sweden)

    Sihui Zhang

    Full Text Available Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×10(4 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81% of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology.

  17. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  18. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells.

    Science.gov (United States)

    Ware, Brenton R; Durham, Mitchell J; Monckton, Chase P; Khetani, Salman R

    2018-03-01

    Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.

  19. STUDY OF FUTURE PRIMARY SCHOOL TEACHERS’ CULTURAL TRAINING WITHIN THE INFORMATION CULTURE OF SOCIETY

    Directory of Open Access Journals (Sweden)

    Tatiana Vinnyk

    2016-05-01

    Full Text Available The article presents the results of scientific studies and experimental approbation of pedagogical conditions of future primary school teachers’ cultural training taking into account the information culture of society. The nature and structure of the notion «future primary school teachers’ cultural training» are clarified. The indicated phenomenon is considered as the structure of four levels, the core of which is personality’s humanistic orientation, the totality of psychological-pedagogical and cultural knowledge and skills, the complex of professionally significant personal qualities. The author pointed out the criteria and related indicators of cultural proficiency, they are: value-motivational (vocational and humanistic orientation; the presence of values and professional motives; motivation for success; substantial and procedural (knowledge and skills in psycho-pedagogical disciplines; the body of knowledge regarding the content and components of cultural training, cultural skills; assessment and behavioral (the existence of communicative qualities, ability to empathy, tolerance. Levels of future primary school teachers’ cultural readiness: high, average and low are characterized. The experience of ICT using in students’ cultural training is presented. Pedagogical conditions of future primary school teachers’ cultural training in University are identified, their effectiveness is proved by experimental testing

  20. Novel approach for transient protein expression in primary cultures of human dental pulp-derived cells.

    Science.gov (United States)

    Suguro, Hisashi; Mikami, Yoshikazu; Koshi, Rieko; Ogiso, Bunnai; Watanabe, Eri; Watanabe, Nobukazu; Honda, Masaki J; Asano, Masatake; Komiyama, Kazuo

    2011-08-01

    Transfection is a powerful method for investigating variable biological functions of desired genes. However, the efficiency of transfection into primary cultures of dental pulp-derived cells (DPDC) is low. Therefore, using a recombinant vaccinia virus (vTF7-3), which contains T7 RNA polymerase, we have established a transient protein expression system in DPDCs. In this study, we used the human polymeric immunoglobulin receptor (pIgR) cDNA as a model gene. pIgR expression by the vTF7-3 expression system was confirmed by flow cytometry analysis and Western blotting. Furthermore, exogenous pIgR protein localized at the cell surface in DPDCs and formed a secretory component (SC). This suggests that exogenous pIgR protein expressed by the vTF7-3 expression system acts like endogenous pIgR protein. These results indicate the applicability of the method for cells outgrown from dental pulp tissue. In addition, as protein expression could be detected shortly after transfection (approximately 5h), this experimental system has been used intensely for experiments examining very early steps in protein exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Comparison of gene expression profile in embryonic mesencephalon and neuronal primary cultures.

    Directory of Open Access Journals (Sweden)

    Dario Greco

    Full Text Available In the mammalian central nervous system (CNS an important contingent of dopaminergic neurons are localized in the substantia nigra and in the ventral tegmental area of the ventral midbrain. They constitute an anatomically and functionally heterogeneous group of cells involved in a variety of regulatory mechanisms, from locomotion to emotional/motivational behavior. Midbrain dopaminergic neuron (mDA primary cultures represent a useful tool to study molecular mechanisms involved in their development and maintenance. Considerable information has been gathered on the mDA neurons development and maturation in vivo, as well as on the molecular features of mDA primary cultures. Here we investigated in detail the gene expression differences between the tissue of origin and ventral midbrain primary cultures enriched in mDA neurons, using microarray technique. We integrated the results based on different re-annotations of the microarray probes. By using knowledge-based gene network techniques and promoter sequence analysis, we also uncovered mechanisms that might regulate the expression of CNS genes involved in the definition of the identity of specific cell types in the ventral midbrain. We integrate bioinformatics and functional genomics, together with developmental neurobiology. Moreover, we propose guidelines for the computational analysis of microarray gene expression data. Our findings help to clarify some molecular aspects of the development and differentiation of DA neurons within the midbrain.

  2. Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts

    International Nuclear Information System (INIS)

    Seeger, J.M.; Klingman, N.

    1985-01-01

    A possible approach to the low seeding efficiency of endothelial cells into prosthetic grafts is to increase the number of cells to be seeded in cell culture and improve seeding efficiency by graft precoating with fibronectin. The effect of cell culture on cell adhesion is unknown, however, and fibronectin also binds fibrin, which may increase the thrombogenicity of the graft luminal surface. To investigate these questions, freshly harvested canine jugular vein endothelial cells from six animals and similar cells harvested from six primary and eight secondary cell cultures were labeled with 111 Indium and seeded into 5 cm, 4 mm PTFE grafts coated with fibronectin, using similar uncoated PTFE grafts as controls. Platelet accumulation and distribution on six similar coated and uncoated grafts placed in canine carotid, external jugular arterial venous shunts for 2 hr were also determined using autogenous 111 Indium-labeled platelets. Significant differences between group means were determined using the paired Student's t test. Results reveal that seeding efficiency is significantly better in all groups of coated grafts compared to uncoated grafts (P less than 0.01). Cells derived from cell culture also had significantly higher seeding efficiencies than freshly harvested cells when seeded into coated grafts (P less than 0.05) and tended to have higher seeding efficiencies than harvested cells when seeded into uncoated grafts (P = 0.53). Fibronectin coating increased mean platelet accumulation on the entire graft luminal surface, but not to a statistically significant degree (P greater than 0.1). Whether this increased seeding efficiency will improve graft endothelialization remains to be investigated

  3. Phthalates Are Metabolised by Primary Thyroid Cell Cultures but Have Limited Influence on Selected Thyroid Cell Functions In Vitro.

    Directory of Open Access Journals (Sweden)

    Juliana Frohnert Hansen

    Full Text Available Phthalates are plasticisers added to a wide variety of products, resulting in measurable exposure of humans. They are suspected to disrupt the thyroid axis as epidemiological studies suggest an influence on the peripheral thyroid hormone concentration. The mechanism is still unknown as only few in vitro studies within this area exist. The aim of the present study was to investigate the influence of three phthalate diesters (di-ethyl phthalate, di-n-butyl phthalate (DnBP, di-(2-ethylhexyl phthalate (DEHP and two monoesters (mono-n-butyl phthalate and mono-(2-ethylhexyl phthalate (MEHP on the differentiated function of primary human thyroid cell cultures. Also, the kinetics of phthalate metabolism were investigated. DEHP and its monoester, MEHP, both had an inhibitory influence on 3'-5'-cyclic adenosine monophosphate secretion from the cells, and MEHP also on thyroglobulin (Tg secretion from the cells. Results of the lactate dehydrogenase-measurements indicated that the MEHP-mediated influence was caused by cell death. No influence on gene expression of thyroid specific genes (Tg, thyroid peroxidase, sodium iodine symporter and thyroid stimulating hormone receptor by any of the investigated diesters could be demonstrated. All phthalate diesters were metabolised to the respective monoester, however with a fall in efficiency for high concentrations of the larger diesters DnBP and DEHP. In conclusion, human thyroid cells were able to metabolise phthalates but this phthalate-exposure did not appear to substantially influence selected functions of these cells.

  4. Live-Cell, Label-Free Identification of GABAergic and Non-GABAergic Neurons in Primary Cortical Cultures Using Micropatterned Surface

    Science.gov (United States)

    Kono, Sho; Kushida, Takatoshi; Hirano-Iwata, Ayumi; Niwano, Michio; Tanii, Takashi

    2016-01-01

    Excitatory and inhibitory neurons have distinct roles in cortical dynamics. Here we present a novel method for identifying inhibitory GABAergic neurons from non-GABAergic neurons, which are mostly excitatory glutamatergic neurons, in primary cortical cultures. This was achieved using an asymmetrically designed micropattern that directs an axonal process to the longest pathway. In the current work, we first modified the micropattern geometry to improve cell viability and then studied the axon length from 2 to 7 days in vitro (DIV). The cell types of neurons were evaluated retrospectively based on immunoreactivity against GAD67, a marker for inhibitory GABAergic neurons. We found that axons of non-GABAergic neurons grow significantly longer than those of GABAergic neurons in the early stages of development. The optimal threshold for identifying GABAergic and non-GABAergic neurons was evaluated to be 110 μm at 6 DIV. The method does not require any fluorescence labelling and can be carried out on live cells. The accuracy of identification was 98.2%. We confirmed that the high accuracy was due to the use of a micropattern, which standardized the development of cultured neurons. The method promises to be beneficial both for engineering neuronal networks in vitro and for basic cellular neuroscience research. PMID:27513933

  5. Neuron-specific enolase is a useful maker of neuroendocrine origin in pheochromocytoma cell culture

    International Nuclear Information System (INIS)

    Abelin, N.; Dahia, P.L.M.; Martin, R.; Kato, S.; Toledo, S.P.A.

    1994-01-01

    Neuron-specific enolase (NSE) has been used as a marker for neuroendocrine tumors either in immunocytochemical studies or in serum measurements. In this paper NSE levels were determined in cultured pheochromocytoma cells to test whether it is also a useful marker in cell culture of tumors derived from neuroendocrine system. Cultured pheochromocytoma cells came from a primary explant and were grown in RPMI supplemented with 20% fetal calf serum, 100 μg/mL ampicillin and 100 μ/mL streptomycin. NSE was measured in culture medium and cell homogenates. Samples from different pheochromocytoma cultures were analyzed and compared to normal cultured fibroblast cells derived from human skin. NSE was measured by a commercially available radioimmunoassay kit. NSE levels were higher in cell homogenates as compared to those in culture medium, reaching levels as high as 6-fold in the former in TE cell line (26.46 ng/mL and 4.39 ng/mL, respectively). Serial measurements in culture medium from TE cell line evidenced decreasing values in subsequential subcultures (from 9.24 ng/mL during primary explant to 1.7 ng/mL in the tenth subculture). In cultured normal fibroblasts, NSE levels in cultured media were definitely lower than those obtained from pheochromocytoma cultures. These preliminary data suggest that NSE may be a useful marker of neuroendocrine derived tumors, such as pheochromocytoma, in culture. Thus, the simplicity and availability of NSE radioimmunoassay provides an alternative to catecholamine measurement to better characterize pheochromocytoma cell lines in culture, with the advantage of faster result at lower costs. (author). 18 refs, 2 tabs

  6. Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.

    Science.gov (United States)

    Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana

    2018-07-01

    Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.

  7. Qualitatively Monitoring Binding and Expression of the Transcription Factors Sp1 and NFI as a Useful Tool to Evaluate the Quality of Primary Cultured Epithelial Stem Cells in Tissue Reconstruction.

    Science.gov (United States)

    Le-Bel, Gaëtan; Ghio, Sergio Cortez; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L

    2018-05-27

    Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.

  8. Primary Retinal Cultures as a Tool for Modeling Diabetic Retinopathy: An Overview

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2015-01-01

    Full Text Available Experimental models of diabetic retinopathy (DR have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight.

  9. How do culture media influence in vitro perivascular cell behavior?

    Science.gov (United States)

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  10. Isolation and Characterization of Poliovirus in Cell Culture Systems.

    Science.gov (United States)

    Thorley, Bruce R; Roberts, Jason A

    2016-01-01

    The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.

  11. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    Science.gov (United States)

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  12. Enhanced casein kinase II activity in human tumour cell cultures

    DEFF Research Database (Denmark)

    Prowald, K; Fischer, H; Issinger, O G

    1984-01-01

    Casein kinase II (CKII) activity is enhanced as much as 2-3 fold in established and 4-5-fold in transformed human cell lines when compared to that of fibroblasts and primary human tumour cell cultures where CKII activity never exceeded a basic level. The high activity of CKII in transformed cells...

  13. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    Science.gov (United States)

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  14. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  15. Count of splenic stromal precursor cells in mice and expression of cytokine genes in these cells in primary cultures during different periods after immunization of animals with S. typhimurium antigens.

    Science.gov (United States)

    Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G

    2011-06-01

    Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.

  16. Hanging Drop, A Best Three-Dimensional (3D) Culture Method for Primary Buffalo and Sheep Hepatocytes.

    Science.gov (United States)

    Shri, Meena; Agrawal, Himanshu; Rani, Payal; Singh, Dheer; Onteru, Suneel Kumar

    2017-04-26

    Livestock, having close resemblance to humans, could be a better source of primary hepatocytes than rodents. Herein, we successfully developed three-dimensional (3D) culturing system for primary sheep and buffalo hepatocytes. The 3D-structures of sheep hepatocytes were formed on the fifth-day and maintained until the tenth-day on polyHEMA-coated plates and in hanging drops with William's E media (HDW). Between the cultured and fresh cells, we observed a similar expression of GAPDH, HNF4α, ALB, CYP1A1, CK8 and CK18. Interestingly, a statistically significant increase was noted in the TAT, CPS, AFP, AAT, GSP and PCNA expression. In buffalo hepatocytes culture, 3D-like structures were formed on the third-day and maintained until the sixth-day on polyHEMA and HDW. The expression of HNF4α, GSP, CPS, AFP, AAT, PCNA and CK18 was similar between cultured and fresh cells. Further, a statistically significant increase in the TAT and CK8 expression, and a decrease in the GAPDH, CYP1A1 and ALB expression were noted. Among the culture systems, HDW maintained the liver transcript markers more or less similar to the fresh hepatocytes of the sheep and buffalo for ten and six days, respectively. Taken together, hanging drop is an efficient method for 3D culturing of primary sheep and buffalo hepatocytes.

  17. Patient safety culture in primary care

    NARCIS (Netherlands)

    Verbakel, N.J.

    2015-01-01

    Background A constructive patient safety culture is a main prerequisite for patient safety and improvement initiatives. Until now, patient safety culture (PSC) research was mainly focused on hospital care, however, it is of equal importance in primary care. Measuring PSC informs practices on their

  18. The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells.

    Science.gov (United States)

    Zou, Xiaohan; He, Yuwei; Qiao, Jinping; Zhang, Chunlei; Cao, Zhengyu

    2016-01-01

    The scorpion Buthus martensii Karsch has been used in Traditional Chinese Medicine to treat neuronal diseases such as neuropathic pain, paralysis and epilepsy for thousands of years. Studies have demonstrated that scorpion venom is the primary active component. Although scorpion venom can effectively attenuate pain in the clinic, it also produces neurotoxic response. In this study, toxicity guided purification led to identify a mammalian toxin termed BmK NT1 comprising of 65 amino acid residues and an amidated C-terminus, a mature peptide encoded by the nucleotide sequence (GenBank No. AF464898). In contract to the recombinant product of the same nucleotide sequence, BmK AGAP, which displayed analgesic and anti-tumor effect, intravenous injection (i.v.) of BmK NT1 produced acute toxicity in mice with an LD50 value of 1.36 mg/kg. In primary cultured cerebellar granule cells, BmK NT1 produced a concentration-dependent cell death with an IC50 value of 0.65 μM (0.41-1.03 μM, 95% Confidence Intervals, 95% CI) which was abolished by TTX, a voltage-gated sodium channel (VGSC) blocker. We also demonstrated that BmK NT1 produced modest sodium influx in cerebellar granule cell cultures with an EC50 value of 2.19 μM (0.76-6.40 μM, 95% CI), an effect similar to VGSC agonist, veratridine. The sodium influx response was abolished by TTX suggesting that BmK NT1-induced sodium influx is solely through activation of VGSC. Considered these data together, we demonstrated that BmK NT1 activated VGSC and produced neurotoxicity in cerebellar granule cell cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparative analysis in continuous expansion of bovine and human primary nucleus pulposus cells for tissue repair applications

    Directory of Open Access Journals (Sweden)

    DH Rosenzweig

    2017-03-01

    Full Text Available Autologous NP cell implantation is a potential therapeutic avenue for intervertebral disc (IVD degeneration. However, monolayer expansion of cells isolated from surgical samples may negatively impact matrix production by way of dedifferentiation. Previously, we have used a continuous expansion culture system to successfully preserve a chondrocyte phenotype. In this work, we hypothesised that continuous expansion culture could also preserve nucleus pulposus (NP phenotype. We confirmed that serial passaging drove NP dedifferentiation by significantly decreasing collagen type II, aggrecan and chondroadherin (CHAD gene expression, compared to freshly isolated cells. Proliferation, gene expression profile and matrix production in both culture conditions were compared using primary bovine NP cells. Both standard culture and continuous culture produced clinically relevant cell populations. However, continuous culture cells maintained significantly higher collagen type II, aggrecan and CHAD transcript expression levels. Also, continuous expansion cells generated greater amounts of proteoglycan, collagen type II and aggrecan protein deposition in pellet cultures. To our surprise, continuous expansion of human intervertebral disc cells – isolated from acute herniation tissue – produced less collagen type II, aggrecan and CHAD genes and proteins, compared to standard culture. Also, continuous culture of cells isolated from young non-degenerate tissue did not preserve gene and protein expression, compared to standard culture. These data indicated that primary bovine and human NP cells responded differently to continuous culture, where the positive effects observed for bovine cells did not translate to human cells. Therefore, caution must be exercised when choosing animal models and cell sources for pre-clinical studies.

  20. An experimental study on the change of the radiosensitivity of several tumor cell lines and primary cultured gingi cal fibrobrast

    International Nuclear Information System (INIS)

    Lee, Sam Sun; You Dong Soo

    1997-01-01

    Radiation sensitivity data was generated for two human cancer cell lines (KB, RPMI 2650) and human primary gingival fibroblast was tested three times using a viable cell number counting with a hemocytometer, MTT (3-[4,5-dimethylthiazol 2-yl]-2,5-dipheny tetrazolium bromide) assay, and LDH (Lactate dehydrogenase) assay. Single irradiation of 2, 4, 6, 10, 15, 20 Gy were applied to the tumor cell lines and the primary cultured gingical fibroblast. The two fractions of 4 Gy an d 10 Gy were separated with a 4 hour time interval. The irradiation was done with 241.5 cGy/min dose rate using 137 Cs MK cell irradiator at room temperature. The obtained results were as followed : 1. There was significantly different viable cell numbers as the amount of radiation dose on the tested cells were cell number counted with a hemocytometer, In fractions, there were more viable cells remaining. 2. Phase-contrast microscopically, radiation-induced morphologic changes were pronounced on the tumor cells, however, almost no differences on the gingival fibroblast. 3. There was significantly different absorbance at 2 Gy on RPMI 2650, 4 Gy on KB and GF in MTT assay. In fractions, the absorbance was significantly higher on KB. 4. The level of extracellular LDH activity in the experimental group was significantly higher in the 2-4 Gy than the control group. 5. The total level of extracellular and intracellular LDH activity was decreased as increased amounts of radiation dose was applied.

  1. Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata.

    Directory of Open Access Journals (Sweden)

    Matthias Mayer

    Full Text Available Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young's modulus <100 kPa PDMS-based magnetoactive elastomers (MAE as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices.

  2. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    Science.gov (United States)

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  3. Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; Caminada de Toledo, Silvia Regina; Mara de Oliveira, Daniela; Cabral, Francisco Romero; Gabriel de Souza, Jean; Boufleur, Pamela; Marti, Luciana C; Malheiros, Jackeline Moraes; Ferreira da Cruz, Edgar; Paiva, Fernando F; Malheiros, Suzana M F; de Paiva Neto, Manoel A; Tannús, Alberto; Mascarenhas de Oliveira, Sérgio; Silva, Nasjla Saba; Cappellano, Andrea Maria; Petrilli, Antonio Sérgio; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2018-04-24

    Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients ( n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

  4. A cell culture technique for human epiretinal membranes to describe cell behavior and membrane contraction in vitro.

    Science.gov (United States)

    Wertheimer, Christian; Eibl-Lindner, Kirsten H; Compera, Denise; Kueres, Alexander; Wolf, Armin; Docheva, Denitsa; Priglinger, Siegfried G; Priglinger, Claudia; Schumann, Ricarda G

    2017-11-01

    To introduce a human cell culture technique for investigating in-vitro behavior of primary epiretinal cells and membrane contraction of fibrocellular tissue surgically removed from eyes with idiopathic macular pucker. Human epiretinal membranes were harvested from ten eyes with idiopathic macular pucker during standard vitrectomy. Specimens were fixed on cell culture plastic using small entomological pins to apply horizontal stress to the tissue, and then transferred to standard cell culture conditions. Cell behavior of 400 epiretinal cells from 10 epiretinal membranes was observed in time-lapse microscopy and analyzed in terms of cell migration, cell velocity, and membrane contraction. Immunocytochemistry was performed for cell type-specific antigens. Cell specific differences in migration behavior were observed comprising two phenotypes: (PT1) epiretinal cells moving fast, less directly, with small round phenotype and (PT2) epiretinal cells moving slowly, directly, with elongated large phenotype. No mitosis, no outgrowth and no migration onto the plastic were seen. Horizontal contraction measurements showed variation between specimens. Masses of epiretinal cells with a myofibroblast-like phenotype expressed cytoplasmatic α-SMA stress fibers and correlated with cell behavior characteristics (PT2). Fast moving epiretinal cells (PT1) were identified as microglia by immunostaining. This in-vitro technique using traction application allows for culturing surgically removed epiretinal membranes from eyes with idiopathic macular pucker, demonstrating cell behavior and membrane contraction of primary human epiretinal cells. Our findings emphasize the abundance of myofibroblasts, the presence of microglia and specific differences of cell behavior in these membranes. This technique has the potential to improve the understanding of pathologies at the vitreomacular interface and might be helpful in establishing anti-fibrotic treatment strategies.

  5. Establishment of primary cultures of craniopharyngioma cells★

    Science.gov (United States)

    Liu, Hao; Liu, Liang; Liu, Zhiyong; Li, Qiang; You, Chao; Xu, Jianguo

    2012-01-01

    Craniopharynigoma samples were collected from 36 patients. Out of the 36 samples, 29 achieved successful sub-culturing, with a success rate of 80.6%. Immunohistochemistry staining showed that cytokeratin-7 was positively expressed in the cytomembrane and cytoplasm of craniopharyngioma cells at 6-8 passages, confirming that all cultured cells were squamous epithelial cells. The doubling time of craniopharyngioma cells was 3 days, as confirmed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In this study, craniopharyngioma cells cultured in vitro were established; however, establishment of immortalized craniopharyngioma cell lines requires further research. PMID:25745451

  6. Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Henkens, Tom; Papeleu, Peggy; Elaut, Greetje; Vinken, Mathieu; Rogiers, Vera; Vanhaecke, Tamara

    2007-01-01

    Histone deacetylase inhibitors (HDI) have been shown to increase differentiation-related gene expression in several tumor-derived cell lines by hyperacetylating core histones. Effects of HDI on primary cultured cells, however, have hardly been investigated. In the present study, the ability of trichostatin A (TSA), a prototype hydroxamate HDI, to counteract the loss of liver-specific functions in primary rat hepatocyte cultures has been investigated. Upon exposure to TSA, it was found that the cell viability of the cultured hepatocytes and their albumin secretion as a function of culture time were increased. TSA-treated hepatocytes also better maintained cytochrome P450 (CYP)-mediated phase I biotransformation capacity, whereas the activity of phase II glutathione S-transferases (GST) was not affected. Western blot and qRT-PCR analysis of CYP1A1, CYP2B1 and CYP3A11 protein and mRNA levels, respectively, further revealed that TSA acts at the transcriptional level. In addition, protein expression levels of the liver-enriched transcription factors (LETFs) hepatic nuclear factor 4 alpha (HNF4α) and CCAAT/enhancer binding protein alpha (C/EBPα) were accordingly increased by TSA throughout culture time. In conclusion, these findings indicate that TSA plays a major role in the preservation of the differentiated hepatic phenotype in culture. It is suggested that the effects of TSA on CYP gene expression are mediated via controlling the expression of LETFs

  7. Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    Science.gov (United States)

    Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi

    2011-01-01

    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376

  8. Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture

    Directory of Open Access Journals (Sweden)

    Ruth Olmer

    2018-05-01

    Full Text Available Summary: Endothelial cells (ECs are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. : In this article, U. Martin and colleagues show the generation of hiPSC endothelial cells in scalable cultures in up to 100 mL culture volume. The generated ECs show in vitro proliferation capacity and a high degree of chromosomal stability after in vitro expansion. The established protocol allows to generate hiPSC-derived ECs in relevant numbers for regenerative approaches. Keywords: hiPSC differentiation, endothelial cells, scalable culture

  9. Utilization of supplemental methionine sources by primary cultures of chick hepatocytes

    International Nuclear Information System (INIS)

    Dibner, J.J.

    1983-01-01

    Utilization of 2-hydroxy-4-(methylthio) butanoic acid (HMB) as a substrate for protein synthesis was studied by using primary cultures of chick liver cells. Cultures were prepared by enzymatic dissociation of livers from week old Hubbard broiler chicks and were maintained for 4 days under nonproliferative conditions. Hepatocyte differentiation was verified by using dexamethasone induction of tyrosine aminotransferase activity. Conversion of [14C]HMB to L-methionine was shown by chromatographic analysis of hepatocyte protein hydrolysate and incorporation into protein was proven by cycloheximide inhibition of synthesis. When incorporation of HMB was compared to that of DL-methionine (DLM) equimolar quantities of the two sources were found in liver cell protein. These results support, at a cellular level, the conclusion that HMB and DLM are biochemically equivalent sources of methionine for protein synthesis

  10. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    Science.gov (United States)

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCr

  11. CD154 costimulated ovine primary B cells, a cell culture system that supports productive infection by bovine leukemia virus.

    Science.gov (United States)

    Van den Broeke, A; Cleuter, Y; Beskorwayne, T; Kerkhofs, P; Szynal, M; Bagnis, C; Burny, A; Griebel, P

    2001-02-01

    Bovine leukemia virus (BLV) is closely associated with the development of B-cell leukemia and lymphoma in cattle. BLV infection has also been studied extensively in an in vivo ovine model that provides a unique system for studying B-cell leukemogenesis. There is no evidence that BLV can directly infect ovine B cells in vitro, and there are no direct data regarding the oncogenic potential of the viral Tax transactivator in B cells. Therefore, we developed ovine B-cell culture systems to study the interaction between BLV and its natural target, the B cell. In this study, we used murine CD154 (CD40 ligand) and gamma-chain-common cytokines to support the growth of B cells isolated from ovine lymphoid tissues. Integrated provirus, extrachromosomal forms, and viral transcripts were detected in BLV-exposed populations of immature, rapidly dividing surface immunoglobulin M-positive B cells from sheep ileal Peyer's patches and also in activated mature B cells isolated from blood. Conclusive evidence of direct B-cell infection by BLV was obtained through the use of cloned B cells derived from sheep jejunal Peyer's patches. Finally, inoculation of sheep with BLV-infected cultures proved that infectious virus was shed from in vitro-infected B cells. Collectively, these data confirm that a variety of ovine B-cell populations can support productive infection by BLV. The development of ovine B-cell cultures permissive for BLV infection provides a controlled system for investigating B-cell leukemogenic processes and the pathogenesis of BLV infection.

  12. A novel porcine cell culture based protocol for the propagation of hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Walter Chingwaru

    2016-08-01

    Full Text Available Objective: To present a comprehensive protocol for the processing of hepatitis E virus (HEV infected samples and propagation of the virus in primary cell cultures. Methods: Hepatitis E was extracted from porcine liver and faecal samples following standard protocols. The virus was then allowed to attach in the presence of trypsin to primary cells that included porcine and bovine intestinal epithelial cells and macrophages over a period of up to 3 h. The virus was propagated by rotational passaging through the cell cultures. Propagation was confirmed by immunoblotting. Results: We developed a comprehensive protocol to propagate HEV in porcine cell model that includes (i rotational culturing of the virus between porcine cell types, (ii pre-incubation of infected cells for 210 min, (iii use of a semi-complete cell culture medium supplemented with trypsin (0.33 µg/mL and (iv the use of simple immunoblot technique to detect the amplified virus based on the open reading frame 2/3. Conclusions: This protocol opens doors towards systematic analysis of the mechanisms that underlie the pathogenesis of HEV in vitro. Using our protocol, one can complete the propagation process within 6 to 9 d.

  13. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    International Nuclear Information System (INIS)

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji; Nakagata, Naomi; Taga, Tetsuya

    2007-01-01

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45 low c-Kit + cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45 low c-Kit - cells that showed a granulocyte morphology; CD45 high c-Kit low/- that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45 low c-Kit + cells from the AGM culture had the abilities to reproduce CD45 low c-Kit + cells and differentiate into CD45 low c-Kit - and CD45 high c-Kit low/- cells, whereas CD45 low c-Kit - and CD45 high c-Kit low/- did not produce CD45 low c-Kit + cells. Furthermore, CD45 low c-Kit + cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45 low c-Kit + cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells

  14. Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Pontes, Helena; Sousa, Carla; Silva, Renata; Fernandes, Eduarda; Carmo, Helena; Remiao, Fernando; Carvalho, Felix; Bastos, Maria Lourdes

    2008-01-01

    Ethanol is frequently consumed along with 3,4-methylenedioxymethamphetamine (MDMA; ecstasy). Since both compounds are hepatotoxic and are metabolized in the liver, an increased deleterious interaction resulting from the concomitant use of these two drugs seems plausible. Another important feature of MDMA-induced toxicity is hyperthermia, an effect known to be potentiated after continuous exposure to ethanol. Considering the potential deleterious interaction, the aim of the present study was to evaluate the hepatotoxic effects of ethanol and MDMA mixtures to primary cultured rat hepatocytes and to elucidate the mechanism(s) underlying this interaction. For this purpose, the toxicity induced by MDMA to primary cultured rat hepatocytes in absence or in presence of ethanol was evaluated, under normothermic (36.5 deg. C) and hyperthermic (40.5 deg. C) conditions. While MDMA and ethanol, by themselves, had discrete effects on the analysed parameters, which were slightly aggravated under hyperthermia, the simultaneous incubation of MDMA and ethanol for 24 h, resulted in high cell death ratios accompanied by a significant disturbance of cellular redox status and decreased energy levels. Evaluation of apoptotic/necrotic features provided clear evidences that the cell death occurs preferentially through a necrotic pathway. All the evaluated parameters were dramatically aggravated when cells were incubated under hyperthermia. In conclusion, co-exposure of hepatocytes to ethanol and MDMA definitely results in a synergism of the hepatotoxic effects, through a disruption of the cellular redox status and enhanced cell death by a necrotic pathway in a temperature-dependent extent

  15. Dose Optimization of Calcusol™ and Calcium Oxalate Monohydrate (COM on Primary Renal Epithelial Cells Cultures of Mice ( Mus musculus

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2014-05-01

    Full Text Available Kidney stones are one of the urologic diseases that have plagued mankind for centuries. The main constituents of stones in the kidney are calcium oxalate monohydrate (COM crystals. Nowadays, there are varieties of drugs and treatments that can be made to minimize the grievances due to kidney stone disease. The treatment can be done either by using chemicals or traditional medicine. Calcusol™ is one of the popular herbal products that have been used by Indonesian people in curing the kidney stone disease. The main constituent that was contained in Calcusol™ is an extract of the tempuyung leaves (Sonchus arvensis L., which is expected could cure the kidney stone disease. This study used primary cultured renal epithelial cells of mice to determine the optimal dose of Calcusol™ and the optimal dose of COM. The primary Kidney epithelial cell were treated with Calcusol™ and COM at various doses. The analysis of the cell death either by necrosis or apoptosis pathways was analyzed by flow cytometric analysis. The results that were obtained is the percentage of cell death that is then analyzed by using a complete randomized design (CRD One Way Anova. Based on the results that were obtained, it is known that the optimal dose of Calcusol™ in vitro were ranging from 75 ppm to 100 ppm, whereas the optimal dose of COM suggested for 500 ppm.

  16. Comparative Analysis of Osteogenic/Chondrogenic Differentiation Potential in Primary Limb Bud-Derived and C3H10T1/2 Cell Line-Based Mouse Micromass Cultures

    Directory of Open Access Journals (Sweden)

    Róza Zákány

    2013-08-01

    Full Text Available Murine micromass models have been extensively applied to study chondrogenesis and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide a detailed comparative analysis of the differentiation potential of micromass cultures established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb bud-derived chondroprogenitor cells, using micromass cultures from untransfected C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at similar temporal sequence, while notable lubricin expression was only detected in primary cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected in both models, along with matrix calcification. Although the adipogenic lineage-specific marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2 were also expressed in these models, reflecting on the presence of various mesenchymal lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into consideration for the interpretation of data obtained by using these models.

  17. Changes in responsiveness of rat tracheal epithelial cells to growth factors during preneoplastic transformation in cell culture

    International Nuclear Information System (INIS)

    Thomassen, D.G.

    1988-01-01

    Preneoplastic rat tracheal epithelial (RTE) cell lines require fewer growth factors for clonal proliferation in culture than normal cells. Serum-free media missing various combinations of growth factors (e.g., cholera toxin, serum albumin, epidermal growth factor, hydrocortisone) required for proliferation of normal, but not preneoplastic, RTE cells can be used to select for carcinogen-induced preneoplastic variants having an increased proliferative potential in culture. These results suggest that reductions in growth factor requirements are primary events in the carcinogenic process. (author)

  18. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  19. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  20. Bacterial Cellulose Shifts Transcriptome and Proteome of Cultured Endothelial Cells Towards Native Differentiation.

    Science.gov (United States)

    Feil, Gerhard; Horres, Ralf; Schulte, Julia; Mack, Andreas F; Petzoldt, Svenja; Arnold, Caroline; Meng, Chen; Jost, Lukas; Boxleitner, Jochen; Kiessling-Wolf, Nicole; Serbest, Ender; Helm, Dominic; Kuster, Bernhard; Hartmann, Isabel; Korff, Thomas; Hahne, Hannes

    2017-09-01

    Preserving the native phenotype of primary cells in vitro is a complex challenge. Recently, hydrogel-based cellular matrices have evolved as alternatives to conventional cell culture techniques. We developed a bacterial cellulose-based aqueous gel-like biomaterial, dubbed Xellulin, which mimics a cellular microenvironment and seems to maintain the native phenotype of cultured and primary cells. When applied to human umbilical vein endothelial cells (HUVEC), it allowed the continuous cultivation of cell monolayers for more than one year without degradation or dedifferentiation. To investigate the impact of Xellulin on the endothelial cell phenotype in detail, we applied quantitative transcriptomics and proteomics and compared the molecular makeup of native HUVEC, HUVEC on collagen-coated Xellulin and collagen-coated cell culture plastic (polystyrene).Statistical analysis of 12,475 transcripts and 7831 proteins unveiled massive quantitative differences of the compared transcriptomes and proteomes. K -means clustering followed by network analysis showed that HUVEC on plastic upregulate transcripts and proteins controlling proliferation, cell cycle and protein biosynthesis. In contrast, HUVEC on Xellulin maintained, by and large, the expression levels of genes supporting their native biological functions and signaling networks such as integrin, receptor tyrosine kinase MAP/ERK and PI3K signaling pathways, while decreasing the expression of proliferation associated proteins. Moreover, CD34-an endothelial cell differentiation marker usually lost early during cell culture - was re-expressed within 2 weeks on Xellulin but not on plastic. And HUVEC on Xellulin showed a significantly stronger functional responsiveness to a prototypic pro-inflammatory stimulus than HUVEC on plastic.Taken together, this is one of the most comprehensive transcriptomic and proteomic studies of native and propagated HUVEC, which underscores the importance of the morphology of the cellular

  1. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  2. Inefficiency in macromolecular transport of SCS-based microcapsules affects viability of primary human mesenchymal stem cells but not of immortalized cells

    DEFF Research Database (Denmark)

    Sanz-Nogués, Clara; Horan, Jason; Thompson, Kerry

    2015-01-01

    mesenchymal stem cells (hMSCs). Human MSCs are of interest in regenerative medicine applications due to pro-angiogenic, anti-inflammatory and immunomodulatory properties, which result from paracrine effects of this cell type. In the present work we have encapsulated primary hMSCs and hMSC-TERT immortalized...... nutrients and had a more detrimental effect on the viability of primary cell cultures compared to cell lines and immortalized cells. This article is protected by copyright. All rights reserved....

  3. A meta-ethnography of organisational culture in primary care medical practice.

    Science.gov (United States)

    Grant, Suzanne; Guthrie, Bruce; Entwistle, Vikki; Williams, Brian

    2014-01-01

    Over the past decade, there has been growing international interest in shaping local organisational cultures in primary healthcare. However, the contextual relevance of extant culture assessment instruments to the primary care context has been questioned. The aim of this paper is to derive a new contextually appropriate understanding of the key dimensions of primary care medical practice organisational culture and their inter-relationship through a synthesis of published qualitative research. A systematic search of six electronic databases followed by a synthesis using techniques of meta-ethnography involving translation and re-interpretation. A total of 16 papers were included in the meta-ethnography from the UK, the USA, Canada, Australia and New Zealand that fell into two related groups: those focused on practice organisational characteristics and narratives of practice individuality; and those focused on sub-practice variation across professional, managerial and administrative lines. It was found that primary care organisational culture was characterised by four key dimensions, i.e. responsiveness, team hierarchy, care philosophy and communication. These dimensions are multi-level and inter-professional in nature, spanning both practice and sub-practice levels. The research contributes to organisational culture theory development. The four new cultural dimensions provide a synthesized conceptual framework for researchers to evaluate and understand primary care cultural and sub-cultural levels. The synthesised cultural dimensions present a framework for practitioners to understand and change organisational culture in primary care teams. The research uses an innovative research methodology to synthesise the existing qualitative research and is one of the first to develop systematically a qualitative conceptual framing of primary care organisational culture.

  4. Fluorescent light irradiation and its mutagenic potential in cultured mammalian cells

    International Nuclear Information System (INIS)

    Pant, K.; Thilager, A.

    1994-01-01

    The photobiological effect of light is characterized by its energy emission at different wave lengths. Therefore by studying the energy emission spectra at different light sources and their photobiological activities, one can relate wavelength range(s) of the spectrum to a particular photobiological effect. We studied the potential of light irradiation from standard fluorescent bulbs (Sylvania 34WT-12) used in offices and laboratories to induce unscheduled DNA Synthesis (UDS) and mutations in cultured mammalian cells. The energy emission spectrum of the bulbs was determined at every 10 nanometers from 300nM to 700nM. The Chinese hamster ovary (CHO) cells were used to study the induction of mutations at the Hypoxanthine Guanine Phosphoribosyl Transferase (HGPRT) locus. Primary rat hepatocyte cultures were used to study the effect of light irradiation on UDS. The CHO cells were cultured in tissue culture flasks in minimum light conditions (.02mw/cm 2 ) and exposed to light irradiations with durations from 0 to 40 minutes. The cultures were maintained in darkness during the expression period and evaluated for HGPRT mutant frequencies. Similarly, the primary rat hepatocyte cultures were cultured on cover slips under minimal light conditions except for light irradiation and evaluated for UDS using 3H-thymidine labelled auto-radiography. The results of the study indicate that irradiation from fluorescent lights caused a slight elevation in the HGPRT mutant frequency in CHO cells. However a significant increase in UDS was not observed even at the maximum light irradiation dose. These results were compared to data obtained from similar experiments conducted with fluorescent bulbs with different energy emission spectra

  5. Methods Development for the Isolation and Culture of Primary Corneal Endothelial Cells

    Science.gov (United States)

    2017-02-01

    a cell population particularly suitable for low serum propagation, provided that appropriate growth factors are available. A low serum medium...of MGK. 15. SUBJECT TERMS Cornea, chemical warfare agent, corneal endothelial cell, endothelium, growth , isolation, mouse, rabbit, porcine, in...with corneal SM exposure.2 A primary requirement in achieving this goal is to develop methods that enable the isolation of a pure CEC population and

  6. Metabolism of Mannose in Cultured Primary Rat Neurons.

    Science.gov (United States)

    Rastedt, Wiebke; Blumrich, Eva-Maria; Dringen, Ralf

    2017-08-01

    Glucose is the main peripheral substrate for energy production in the brain. However, as other hexoses are present in blood and cerebrospinal fluid, we have investigated whether neurons have the potential to metabolize, in addition to glucose, also the hexoses mannose, fructose or galactose. Incubation of primary cerebellar granule neurons in the absence of glucose caused severe cell toxicity within 24 h, which could not be prevented by application of galactose or fructose, while the cells remained viable during incubation in the presence of either mannose or glucose. In addition, cultured neurons produced substantial and almost identical amounts of lactate after exposure to either glucose or mannose, while lactate production was low in the presence of fructose and hardly detectable during incubations without hexoses or with galactose as carbon source. Determination of the K M values of hexokinase in lysates of cultured neurons for the hexoses revealed values in the micromolar range for mannose (32 ± 2 µM) and glucose (59 ± 10 µM) and in the millimolar range for fructose (4.4 ± 2.3 mM), demonstrating that mannose is efficiently phosphorylated by neuronal hexokinase. Finally, cultured neurons contained reasonable specific activity of the enzyme phosphomannose isomerase, which is required for isomerization of the hexokinase product mannose-6-phosphate into the glycolysis intermediate fructose-6-phosphate. These data demonstrate that cultured cerebellar granule neurons have the potential and express the required enzymes to efficiently metabolize mannose, while galactose and fructose serve at best poorly as extracellular carbon sources for neurons.

  7. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  8. Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.

    Science.gov (United States)

    Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael

    2016-01-01

    To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.

  9. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  10. Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model.

    Science.gov (United States)

    Krawczyk, Krzysztof M; Matak, Damian; Szymanski, Lukasz; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2018-04-01

    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco's Modified Eagle's Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability.

  11. Stabilization of gene expression and cell morphology after explant recycling during fin explant culture in goldfish.

    Science.gov (United States)

    Chenais, Nathalie; Lareyre, Jean-Jacques; Le Bail, Pierre-Yves; Labbe, Catherine

    2015-07-01

    The development of fin primary cell cultures for in vitro cellular and physiological studies is hampered by slow cell outgrowth, low proliferation rate, poor viability, and sparse cell characterization. Here, we investigated whether the recycling of fresh explants after a first conventional culture could improve physiological stability and sustainability of the culture. The recycled explants were able to give a supplementary cell culture showing faster outgrowth, cleaner cell layers and higher net cell production. The cells exhibited a highly stabilized profile for marker gene expression including a low cytokeratin 49 (epithelial marker) and a high collagen 1a1 (mesenchymal marker) expression. Added to the cell spindle-shaped morphology, motility behavior, and actin organization, this suggests that the cells bore stable mesenchymal characteristics. This contrast with the time-evolving expression pattern observed in the control fresh explants during the first 2 weeks of culture: a sharp decrease in cytokeratin 49 expression was concomitant with a gradual increase in col1a1. We surmise that such loss of epithelial features for the benefit of mesenchymal ones was triggered by an epithelial to mesenchymal transition (EMT) process or by way of a progressive population replacement process. Overall, our findings provide a comprehensive characterization of this new primary culture model bearing mesenchymal features and whose stability over culture time makes those cells good candidates for cell reprogramming prior to nuclear transfer, in a context of fish genome preservation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ethanol-induced swelling in neonatal rat primary astrocyte cultures.

    Science.gov (United States)

    Aschner, M; Allen, J W; Mutkus, L A; Cao, C

    2001-05-11

    We tested the hypothesis that astrocytes swell in response to ethanol (EtOH) exposure. The experimental approach consisted of an electrical impedance method designed to measure cell volume. In chronic experiments, EtOH (100 mM) was added to the culture media for 1, 3, or 7 days. The cells were subsequently exposed for 15 min to isotonic buffer (122 mM NaCl) also containing 100 mM EtOH. Subsequently, the cells were washed and exposed to hypotonic buffer (112 mM NaCl) containing 100 mM mannitol. Chronic exposure to EtOH led to a marked increase in cell volume compared with control cells. Specific anion cotransport blockers, such as SITS, DIDS, furosemide, or bumetanide, when simultaneously added with EtOH to hyponatremic buffer, failed to reverse the EtOH-induced effect on swelling. In acute experiments, confluent neonatal rat primary astrocyte cultures were exposed to isotonic media (122 mM NaCl) for 15 min, followed by 45-min exposure to hypotonic media (112 mM NaCl, mimicking in vivo hyponatremic conditions associated with EtOH withdrawal) in the presence of 0-100 mM EtOH. This exposure led to a concentration-dependent increase in cell volume. Combined, these studies suggest that astrocytes exposed to EtOH accumulate compensatory organic solutes to maintain cell volume, and that in response to hyponatremia and EtOH withdrawal their volume increases to a greater extent than in cells exposed to hyponatremia alone. Furthermore, the changes associated with EtOH are osmotic in nature, and they are not reversed by anion cotransport blockers.

  13. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  14. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.

    Science.gov (United States)

    Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian

    2018-05-01

    Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL

  15. Localization of Alkaline Phosphatase and Cathepsin D during Cell Restoration after Colchicine Treatment in Primary Cultures of Fetal Rat Hepatocytes

    International Nuclear Information System (INIS)

    Chida, Kohsuke; Taguchi, Meiko

    2011-01-01

    Localization of alkaline phosphatase (ALP) and cathepsin D (CAPD) in primary cultures of fetal rat hepatocytes was examined using double immunofluorescent staining in order to investigate the relationship between lysosome movement and the fate of ALP during cell restoration after microtubule disruption by colchicine. At 3 hr and 24 hr after colchicine treatment, numerous coarse dots containing ALP were observed throughout the cytoplasm, and some of these showed colocalization with CAPD. At 48 hr and 72 hr after colchicine treatment, although most of the dots containing ALP in the cytoplasm disappeared, dots containing CAPD remained. The present results suggest that the denatured ALP proteins remaining in the cytoplasm of hepatocytes during cell restoration after colchicine treatment are digested by lysosomes

  16. Effect of D-valine and cytosine arabinoside on [3H]thymidine incorporation in rat and rabbit epididymal epithelial cell cultures

    International Nuclear Information System (INIS)

    Orgebin-Crist, M.C.; Jonas-Davies, J.; Storey, P.; Olson, G.E.

    1984-01-01

    Epithelial cell enriched primary cultures were established from the rat and the rabbit epididymis. Epithelial cell aggregates, obtained after pronase digestion of minced epididymis, attached to the culture dish and after 72 h in vitro spread out to form discrete patches of cells. These cells have an epithelioid morphology and form a monolayer of closely apposed polygonal cells where DNA synthesis, as judged by [ 3 H]thymidine uptake, is very low. In L-valine medium the nonepithelial cell contamination was no more than 10% in rat and rabbit epididymal primary cultures. The labeling index of rat epididymal cells cultured in D-valine medium was significantly lower than that of cells cultured in L-valine medium. In contrast, the labeling index of rabbit epididymal cells cultured in D-valine medium was significantly higher than that of cells cultured in L-valine medium. Cytosine arabinoside decreased the number of labeled cells in both L-valine and D-valine cultures. From these results, it appears that D-valine is a selective agent for rat epididymal epithelial cells, but not for rabbit epithelial cells, and that cytosine arabinoside is a simple and effective means to control the proliferation of fibroblast-like cells in both rat and rabbit epididymal cell cultures

  17. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.; Norenberg, M.D.

    1988-01-01

    The effect of ATP and other purines on 45 Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45 Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45 Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45 Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45 Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  18. Characteristics of human infant primary fibroblast cultures from Achilles tendons removed post-mortem

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2014-01-01

    Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After...... established from post-mortem tissue are renewable sources of biological material; they can be the foundation for genetic, metabolic and other functional studies and thus constitute a valuable tool for molecular and pathophysiological investigations in biomedical and forensic sciences....

  19. Insulin-like growth factor-II receptors in cultured rat hepatocytes: regulation by cell density

    International Nuclear Information System (INIS)

    Scott, C.D.; Baxter, R.C.

    1987-01-01

    Insulin-like growth factor-II (IGF-II) receptors in primary cultures of adult rat hepatocytes were characterized and their regulation by cell density examined. In hepatocytes cultured at 5 X 10(5) cells per 3.8 cm2 plate [ 125 I]IGF-II bound to specific, high affinity receptors (Ka = 4.4 +/- 0.5 X 10(9) l/mol). Less than 1% cross-reactivity by IGF-I and no cross-reactivity by insulin were observed. IGF-II binding increased when cells were permeabilized with 0.01% digitonin, suggesting the presence of an intracellular receptor pool. Determined by Scatchard analysis and by polyacrylamide gel electrophoresis after affinity labeling, the higher binding was due solely to an increase in binding sites present on 220 kDa type II IGF receptors. In hepatocytes cultured at low densities, the number of cell surface receptors increased markedly, from 10-20,000 receptors per cell at a culture density of 6 X 10(5) cells/well to 70-80,000 receptors per cell at 0.38 X 10(5) cells/well. The increase was not due simply to the exposure of receptors from the intracellular pool, as a density-related increase in receptors was also seen in cells permeabilized with digitonin. There was no evidence that IGF binding proteins, either secreted by hepatocytes or present in fetal calf serum, had any effect on the measurement of receptor concentration or affinity. We conclude that rat hepatocytes in primary culture contain specific IGF-II receptors and that both cell surface and intracellular receptors are regulated by cell density

  20. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    Science.gov (United States)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-01-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation. PMID:24346024

  1. Cell Culture Assay for Human Noroviruses [response

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  2. Inhibition of release of inflammatory mediators in primary and cultured cells by a Chinese herbal medicine formula for allergic rhinitis

    Directory of Open Access Journals (Sweden)

    McPhee Sarah

    2007-02-01

    Full Text Available Abstract Background We demonstrated that a Chinese herbal formula, which we refer to as RCM-101, developed from a traditional Chinese medicine formula, reduced nasal and non-nasal symptoms of seasonal allergic rhinitis (SAR. The present study in primary and cultured cells was undertaken to investigate the effects of RCM-101 on the production/release of inflammatory mediators known to be involved in SAR. Methods Compound 48/80-induced histamine release was studied in rat peritoneal mast cells. Production of leukotriene B4 induced by the calcium ionophore A23187 was studied in porcine neutrophils using an HPLC assay and lipopolysaccharide-stimulated prostaglandin E2 production was studied in murine macrophage (Raw 264.7 cells by immune-enzyme assay. Expression of cyclooxygenase-1 (COX-1 and cyclooxygenase-2 (COX-2 was determined in Raw 264.7 cells, using western blotting techniques. Results RCM-101 (1–100 μg/mL produced concentration-dependent inhibition of compound 48/80-induced histamine release from rat peritoneal mast cells and of lipopolysaccharide-stimulated prostaglandin E2 release from Raw 264.7 cells. Over the range 1 – 10 μg/mL, it inhibited A23187-induced leukotriene B4 production in porcine neutrophils. In addition, RCM-101 (100 μg/mL inhibited the expression of COX-2 protein but did not affect that of COX-1. Conclusion The findings indicate that RCM-101 inhibits the release and/or synthesis of histamine, leukotriene B4 and prostaglandin E2 in cultured cells. These interactions of RCM-101 with multiple inflammatory mediators are likely to be related to its ability to reduce symptoms of allergic rhinitis.

  3. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  4. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about...... cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components...

  5. The effects of low-level ionising radiation on primary explant cultures of rainbow trout Pronephros

    International Nuclear Information System (INIS)

    Olwell, P.; Ni Shuilleabhain, S.; Mothersill, C.; Seymour, C.; Cottell, D.C.; Lyng, F.M.

    2004-01-01

    It has long been known that the haematopoietic tissue of mammals is one of the most radiosensitive tissues. In vitro studies on prawn have also shown that low doses of radiation has an extremely deleterious effect on cells cultured from this animal's blood forming tissues. This raises the question on the relative effects of radiation between animals from different species. One of the most important aquatic animals, from both an economic and ecologic point of view, is the fish. With this in mind, primary cultures of the blood forming tissues of rainbow trout were exposed to radiation followed by a morphological comparison between control and irradiated cultures. The cultured cells were characterised as macrophages following incubation with non-specific fluorescent beads and human apoptotic PMN. The cells demonstrated both specific and non-specific phagocytosis, by consuming the non-indigenous bodies, and were classified as phagocytic leucocytes. These cells were found in two morphological forms, stretched and rounded. It was shown that there was a commensurate increase in the number of stretched cells following application of radiation. Radiation was also shown to cause a dose-dependent increase in the amounts of apoptosis and necrosis in cells over time. The phagocytic efficacy of the irradiated leucocytes compared to controls was also investigated. (author)

  6. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    Science.gov (United States)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  7. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  8. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer

    OpenAIRE

    Vancha, Ajith R; Govindaraju, Suman; Parsa, Kishore VL; Jasti, Madhuri; González-García, Maribel; Ballestero, Rafael P

    2004-01-01

    Abstract Background Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines. Results Polyethyleneimine compared favorably to traditional attachment factors suc...

  9. Response of cultured human airway epithelial cells to X-rays and energetic α-particles

    International Nuclear Information System (INIS)

    Yang, T.C.; Holley, W.R.; Curtis, S.B.; Gruenert, D.C.; California Univ., San Francisco, CA

    1990-01-01

    Radon and its progeny, which emit α-particles during decay, may play an important role in inducing human lung cancer. To gain a better understanding of the biological effects of α-particles in human lung we studied the response of cultured human airway epithelial cells to X-rays and monoenergetic helium ions. Experimental results indicated that the radiation response of primary cultures was similar to that for airway epithelial cells that were transformed with a plasmid containing an origin-defective SV40 virus. The RBE for cell inactivation determined by the ratio of D 0 for X-rays to that for 8 MeV helium ions was 1.8-2.2. The cross-section for helium ions, calculated from the D 0 value, was about 24 μm 2 for cells of the primary culture. This cross-section is significantly smaller than the average geometric nuclear area (∼ 180 μm 2 ), suggesting that an average of 7.5 α-particles (8 MeV helium ions) per cell nucleus are needed to induce a lethal lesion. (author)

  10. Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma.

    Science.gov (United States)

    Palmini, Gaia; Zonefrati, Roberto; Mavilia, Carmelo; Aldinucci, Alessandra; Luzi, Ettore; Marini, Francesca; Franchi, Alessandro; Capanna, Rodolfo; Tanini, Annalisa; Brandi, Maria Luisa

    2016-10-14

    The current improvements in therapy against osteosarcoma (OS) have prolonged the lives of cancer patients, but the survival rate of five years remains poor when metastasis has occurred. The Cancer Stem Cell (CSC) theory holds that there is a subset of tumor cells within the tumor that have stem-like characteristics, including the capacity to maintain the tumor and to resist multidrug chemotherapy. Therefore, a better understanding of OS biology and pathogenesis is needed in order to advance the development of targeted therapies to eradicate this particular subset and to reduce morbidity and mortality among patients. Isolating CSCs, establishing cell cultures of CSCs, and studying their biology are important steps to improving our understanding of OS biology and pathogenesis. The establishment of human-derived OS-CSCs from biopsies of OS has been made possible using several methods, including the capacity to create 3-dimensional stem cell cultures under nonadherent conditions. Under these conditions, CSCs are able to create spherical floating colonies formed by daughter stem cells; these colonies are termed "cellular spheres". Here, we describe a method to establish CSC cultures from primary cell cultures of conventional OS obtained from OS biopsies. We clearly describe the several passages required to isolate and characterize CSCs.

  11. Sensitivity to radiation of human normal, hyperthyroid, and neoplastic thyroid epithelial cells in primary culture

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Kopecky, K.J.; Nakamura, Nori; Jones, M.P.; Ito, Toshio; Clifton, K.H.

    1986-09-01

    Samples of thyroid tissue removed surgically from 63 patients were cultured in vitro and X-irradiated to investigate the radiosensitivities of various types of thyroid epithelial cells. A total of 76 samples were obtained, including neoplastic cells from patients with papillary carcinoma (PC) or follicular adenoma (FA), cells from hyperthyroidism (HY) patients, and normal cells from the surgical margins of PC and FA patients. Culturing of the cells was performed in a manner which has been shown to yield a predominance of epithelial cells. Results of colony formation assays indicated that cells from HY and FA patients were the least radiosensitive: when adjusted to the overall geometric mean plating efficiency of 5.5 %, the average mean lethal dose D 0 was 97.6 cGy for HY cells, and 96.7 cGy and 94.3 cGy, respectively, for neoplastic and normal cells from FA patients. Cells from PC patients were more radiosensitive, normal cells having an adjusted average D 0 of 85.0 cGy and PC cells a significantly (p = .001) lower average D 0 of 74.4 cGy. After allowing for this variation by cell type, in vitro radiosensitivity was not significantly related to age at surgery (p = .82) or sex (p = .10). These results suggest that malignant thyroid cells may be especially radiosensitive. (author)

  12. Cytocidal activities of topoisomerase 1 inhibitors and 5-azacytidine against pheochromocytoma/paraganglioma cells in primary human tumor cultures and mouse cell lines.

    Directory of Open Access Journals (Sweden)

    James F Powers

    Full Text Available There is currently no effective treatment for metastatic pheochromocytomas and paragangliomas. A deficiency in current chemotherapy regimens is that the metastases usually grow very slowly. Drugs that target dividing tumor cells have therefore had limited success. To improve treatment, new strategies and valid experimental models are required for pre-clinical testing. However, development of models has itself been hampered by the absence of human pheochromocytoma/paraganglioma cell lines for cultures or xenografts. Topoisomerase 1 (TOP1 inhibitors are drugs that interfere with mechanisms that maintain DNA integrity during transcription in both quiescent and dividing cells. We used primary cultures of representative human tumors to establish the cytotoxicity of camptothecin, a prototypical TOP1 inhibitor, against non-dividing pheochromocytoma/paraganglioma cells, and then employed a mouse pheochromocytoma model (MPC to show that efficacy of low concentrations of camptothecin and other TOP1 inhibitors is increased by intermittent coadministration of sub-toxic concentrations of 5-azacytidine, a DNA methylation inhibitor that modulates transcription. We then tested the same drugs against a clonal MPC derivative that expresses CMV reporter-driven luciferase and GFP, intended for in vivo drug testing. Unexpectedly, luciferase expression, bioluminescence and GFP expression were paradoxically increased by both camptothecin and SN38, the active metabolite of irinotecan, thereby masking cell death. Expression of chromogranin A, a marker for neuroendocrine secretory granules, was not increased, indicating that the drug effects on levels of luciferase and GFP are specific to the GFP-luciferase construct rather than generalized cellular responses. Our findings provide proof of principle for use of TOP1 inhibitors against pheochromocytoma/paraganglioma and suggest novel strategies for enhancing efficacy and reducing toxicity by optimizing the combination and

  13. 5-Fluorouracil-induced apoptosis in cultured oral cancer cells.

    Science.gov (United States)

    Tong, D; Poot, M; Hu, D; Oda, D

    2000-03-01

    Chemotherapy is commonly used to treat advanced oral squamous cell carcinoma (SCC) and is known to kill cancer cells through apoptosis. Our hypothesis states that 5-fluorouracil (5FU) also kills cultured oral epithelial cells through programmed cell death or apoptosis. Cultured oral cancer cells were exposed to an optimum dose of 20 mg/ml of 5FU. Cells were analyzed for changes in cell cycle distribution and induction of cell death including apoptosis. Normal control, human papilloma virus-immortalized (PP), ATCC SCC cell line (CA1) and two primary oral SCC cell lines (CA3 and -4) were studied. Inhibition of apoptosis by a pan-caspase inhibitor was used. SYTO 11 flow cytometry showed increased apoptosis in all 5FU-treated cell cultures compared to untreated controls. The results show biological variation in apoptotic response. CA1 had the lowest apoptotic rate of the cancer cell lines at 1.5%. Next lowest was CA3, followed by CA4 and PP. In addition, alteration in the G1 and S phase fractions were found. Untreated CA1 showed 28% G1, 53% S compared to 43% G1, and 40% S of treated. We investigated the pathway of apoptosis using the pan-caspase inhibitor IDN-1529 by methylthiazolyl diphenyl tetrazolium bromide (MTT) colorimetric analysis. Results showed mild inhibition of cell death when cells were incubated with 50 microM IDN-1529 for 24 h. This suggests a probable caspase-dependent apoptotic pathway. In conclusion, our data suggest that 5FU induces oral cancer cell death through apoptosis and that biological variation exists between normal and cancer cells and between different types of cancer cells themselves. Our data indicate that cultures of a useful in vitro model for chemosensitivity assays are possible. Our results also suggest a caspase-dependent pathway for chemocytotoxicity in oral SCC.

  14. Different apoptotic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture.

    Science.gov (United States)

    Vetrugno, Carla; Muscella, Antonella; Fanizzi, Francesco Paolo; Cossa, Luca Giulio; Migoni, Danilo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2014-11-01

    The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 μmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin. © 2014 The British Pharmacological Society.

  15. Different apoptotic effects of [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture

    Science.gov (United States)

    Vetrugno, Carla; Muscella, Antonella; Fanizzi, Francesco Paolo; Cossa, Luca Giulio; Migoni, Danilo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2014-01-01

    Background and Purpose The aim of this study was to determine whether [platinum (Pt)(O,O′-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. Experimental Approach We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. Key Results Cancer cells were more sensitive to [Pt(O,O′-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L−1) than normal cells (IC50 = 116.9 ± 8.8 μmol·L−1). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L−1 for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O′-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O′-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O′-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O′-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O′-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O′-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. Conclusions and Implications [Pt(O,O′-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin. PMID:24990093

  16. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Directory of Open Access Journals (Sweden)

    Corneo Gianmarco

    2007-07-01

    Full Text Available Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34+ cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR. We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture. Results Overall recovery of CD34+ cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34+ cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34+ cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34+ cell selection, and up to 2.3 logs after culture and ΔNGFR selection. Conclusion We conclude that ex-vivo culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.

  17. Radiosensitivity of primary tumour cultures as a determinant of curability of human head and neck cancers

    International Nuclear Information System (INIS)

    Peters, L.J.; Tofilon, P.J.; Goepfert, H.; Brock, W.A.

    1989-01-01

    Between November 1985 and November 1987, 31 patients with squamous cell carcinomas of the head and neck who were treated on protocol by surgery and post-operative radiotherapy at the University of Texas M. D. Anderson Cancer Center had radiosensitivity measurements made on primary cultures of the surgical specimens using the Adhesive Tumour Cell Culture System. The parameter of cell survival at 2 Gy (S 2 ) was correlated with the clinical outcome independently of pathological risk factors. All five recurrences have been in patients with S 2 values >0.3 (p = 0.08). Evidence of significant intratumoral heterogeneity of cellular radiosensitivity in vitro was demonstrated in one of four cultures tested. Mathematical modelling suggests that in the absence of marked heterogeneity, the S 2 parameter is likely to be more robust than other radiobiologically based assays in predicting clinical treatment outcome. (author)

  18. Induction of genetic instability in ρ53 in primary cultures of normal human urothelium exposed low-dose of gamma radiation

    International Nuclear Information System (INIS)

    Colucci, S.; Mothersill, C.; Seymour, C.; Harney, J.; Gamble, S.; Arrand, J.

    1997-01-01

    We have previously shown that primary explant cultures of human urothelium exposed to low doses of gamma radiation subsequently exhibit a high level of stable P53 but it was not clear from those studies whether this protein stabilisation occurred through epigenetic events or as a result of mutation. In these experiments, primary urothelium cultures from five different patients were exposed to 0.5 and 5 Gy γ- radiation from a 60 Cobalt source and allowed to grow for 7- 10 division cycles to allow development of any radiation-induced, non lethal changes in the urothelial cells. C-myc, Bcl-2, and stable P53 protein expression was found to be elevated in cultures following both radiation doses. Following 0.5 Gy exposure, the cultures also developed multiple distinct 'foci' of rapidly-dividing cells which strongly over-expressed P53. These grew on a background of morphologically normal cells. When such foci were selectively analysed for their p53 mutation status by PCR-SSCPE, there was evidence that they contained cells which had developed changes to thr p53 gene post-irradiation. These changes appeared to occur more frequently in focal cells than in cells of normal morphological appearance in the same culture. DNA sequence analysis of the p53 gene in 0.5 Gy-induced foci displayed frame shift mutations in some cases. These results may have mechanistic importance given the controversy regarding low-dose radiation effects and p53-related genomic instability. (authors)

  19. Accurate and reproducible measurements of RhoA activation in small samples of primary cells.

    Science.gov (United States)

    Nini, Lylia; Dagnino, Lina

    2010-03-01

    Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Effects of putrescine, cadaverine, spermine, spermidine and beta-phenylethylamine on cultured bovine mammary epithelial cells

    DEFF Research Database (Denmark)

    Fusi, Eleonora; Baldi, Antonella; Cheli, Federica

    2008-01-01

    (0-50 mM in BME-UV1 and 0-4 mM in primary bovine organoids) in the appropriate saline solution for the cell culture considered. In order to determine the activity of each compound tritiated thymidine incorporation was used. At low concentrations, all amines induced cell proliferation in both cultures....... In BME-UV1, spermine significantly inhibited cell proliferation (Pcultured in the presence of all amines...

  1. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  2. Effects of vitamin D metabolites on cellular Ca2+ and on Ca transport in primary cultures of bone cells.

    Science.gov (United States)

    Eilam, Y; Szydel, N; Harell, A

    1980-09-01

    Both 1,25-dihydroxycholecalciferol (1,25(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25(OH)2D3) exerted direct effects on Ca2+ transport and accumulation in primary cultures of bone cells. The following changes were recorded. (1) A significant decrease in the amount of intracellular exchangeable Ca2+. (2) A marked increase in the rate constants of efflux from the 'slow'-turnover intracellular Ca pool. (3) A marked increase in the 'initial rate' of Ca influx into the cells. Thus, vitamin D metabolites caused an increase in the turnover of Ca2+ in bone cells and altered the steady-stae level of intracellular exchangeable Ca2+. Whereas the changes in the rate of efflux were abolished in the presence of inhibitors of protein synthesis, the increase in the rate of influx was not sensitive to these inhibitors. It is suggested that the changes in the two fluxes were mediated by different mechanisms and that the changes in influx were due to a direct effect of vitamin D metabolites on the cellular membranes.

  3. Characterization of cryopreserved primary human corneal endothelial cells cultured in human serum-supplemented media

    Directory of Open Access Journals (Sweden)

    Lucas Monferrari Monteiro Vianna

    2016-02-01

    Full Text Available ABSTRACT Purpose: To compare cryopreserved human corneal endothelial cells (HCECs grown in human serum-supplemented media (HS-SM with cryopreserved HCECs grown in fetal bovine serum-supplemented media (FBS-SM. Methods: Three pairs of human corneas from donors aged 8, 28, and 31 years were obtained from the eye bank. From each pair, one cornea was used to start a HCEC culture using HS-SM; the other cornea was grown in FBS-SM. On reaching confluence, the six cell populations were frozen using 10% dimethyl sulfoxidecontaining medium. Thawed cells grown in HS-SM were compared with those grown in FBS-SM with respect to morphology, growth curves, immunohistochemistry, real time-reverse transcriptase polymerase chain reaction (RT-PCR for endothelial cell markers, and detachment time. Results: No difference in morphology was observed for cells grown in the two media before or after cryopreservation. By growth curves, cell counts after thawing were similar in both media, with a slight trend toward higher cell counts in FBS-SM. Cells grown in both the media demonstrated a similar expression of endothelial cell markers when assessed by immunohistochemistry, although HCEC marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM as assessed by RT-PCR. With FBS-SM, there was a tendency of longer detachment time and lower cell passages. Conclusions: HS-SM was similar to FBS-SM for cryopreservation of cultured HCECs as assessed by analysis of cell morphology, proliferation, and protein expression, although marker gene expression was higher in cells grown in HS-SM than in those grown in FBS-SM. Detachment time was longer with FBS-SM and in lower passages.

  4. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer.

    Science.gov (United States)

    Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V

    2013-06-01

    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.

  5. Transcriptomal profiling of bovine ovarian granulosa and theca interna cells in primary culture in comparison with their in vivo counterparts.

    Directory of Open Access Journals (Sweden)

    Nicholas Hatzirodos

    Full Text Available In vitro culture of ovarian granulosa cells and theca cells has been very important for our understanding of their function and regulation. One of the most eagerly sought attributes of cell culture is the use of chemically-defined conditions. However, even under such in vitro conditions cell behaviour could differ from the in vivo situation because of differences in oxygen tension, nutrients, adhesion matrix and other factors. To examine this further we compared the transcriptomes of both granulosa cells and cells from the theca interna that were cultured in what are arguably the best in vitro conditions for maintaining the 'follicular' phenotypes of both tissue types, as displayed by their respective freshly-isolated counterparts. The array data analysed are from recently published data and use the same sizes of bovine follicles (small antral 3-6 mm and the same Affymetrix arrays. We conducted analysis using Partek, Ingenuity Pathway Analysis and GOEAST. Principal Component Analysis (PCA and hierarchical clustering clearly separated the in vivo from the in vitro groups for both cells types and transcriptomes were more homogeneous upon culture. In both cell cultures behaviours associated with cell adhesion, migration and interaction with matrix or substrate were more abundant. However, the pathways involved generally differed between the two cell types. With the thecal cultures a gene expression signature of an immune response was more abundant, probably by leukocytes amongst the cells cultured from the theca interna. These results indicate differences between in vivo and in vitro that should be considered when interpreting in vitro data.

  6. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  7. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  8. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system.

    Science.gov (United States)

    Zhang, Jinhui; Chen, Songlin; Cai, Jing; Hou, Zhiqiang; Wang, Xiaohan; Kachelmeier, Allan; Shi, Xiaorui

    2017-03-01

    The vestibular blood-labyrinth barrier (BLB) is comprised of perivascular-resident macrophage-like melanocytes (PVM/Ms) and pericytes (PCs), in addition to endothelial cells (ECs) and basement membrane (BM), and bears strong resemblance to the cochlear BLB in the stria vascularis. Over the past few decades, in vitro cell-based models have been widely used in blood-brain barrier (BBB) and blood-retina barrier (BRB) research, and have proved to be powerful tools for studying cell-cell interactions in their respective organs. Study of both the vestibular and strial BLB has been limited by the unavailability of primary culture cells from these barriers. To better understand how barrier component cells interact in the vestibular system to control BLB function, we developed a novel culture medium-based method for obtaining EC, PC, and PVM/M primary cells from tiny explants of the semicircular canal, sacculus, utriculus, and ampullae tissue of young mouse ears at post-natal age 8-12 d. Each phenotype is grown in a specific culture medium which selectively supports the phenotype in a mixed population of vestibular cell types. The unwanted phenotypes do not survive passaging. The protocol does not require additional equipment or special enzyme treatment. The harvesting process takes less than 2 h. Primary cell types are generated within 7-10 d. The primary culture ECs, PCs, and PVM/M shave consistent phenotypes more than 90% pure after two passages (∼ 3 weeks). The highly purified primary cell lines can be used for studying cell-cell interactions, barrier permeability, and angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer.

    Science.gov (United States)

    Vancha, Ajith R; Govindaraju, Suman; Parsa, Kishore V L; Jasti, Madhuri; González-García, Maribel; Ballestero, Rafael P

    2004-10-15

    Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines. Polyethyleneimine compared favorably to traditional attachment factors such as collagen and polylysine. PC-12 and HEK-293 cells plated on dishes coated with polyethyleneimine showed a homogeneous distribution of cells in the plate, demonstrating strong cell adhesion that survived washing procedures. The polymer could also be used to enhance the adherence and allow axonal outgrowth from zebrafish retinal explants. The effects of this coating agent on the transfection of loosely attaching cell lines were studied. Pre-coating with polyethyleneimine had the effect of enhancing the transfection yield in procedures using lipofection reagents. Polyethyleneimine is an effective attachment factor for weakly anchoring cell lines and primary cells. Its use in lipofection protocols makes the procedures more reliable and increases the yield of expressed products with commonly used cell lines such as PC-12 and HEK-293 cells.

  10. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  11. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    International Nuclear Information System (INIS)

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S.; Li, S.A.; Li, J.J.

    1989-01-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17β-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17β-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17β-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17β-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17β-estradiol, [ 3 H]thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney

  12. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb

    International Nuclear Information System (INIS)

    Currie, D.N.; Dutton, G.R.

    1980-01-01

    Uptake of [ 3 H]GABA into cell cultures of rat cerebellum and olfactory bulb was studied by autoradiography, using β-alanine and aminocyclohexane carboxylic acid to distinguish neuronal-specific and glial-specific uptake. Neurons and astrocytes were also labelled by tetanus toxin and anti-GFAP respectively. This combination of markers allowed identification and quantification of several cell types. Cerebellar cultures were found to contain 77% granule neurons, 7.5% inhibitory neurons (probably stellate and basket cells) and 15% astrocytes. Olfactory bulb cultures were over 50% in small neurons which accumulated GABA, the olfactory bulb granule neuron being GABAergic in vivo. (Auth.)

  13. Primary cell culture of LHRH neurones from embryonic olfactory placode in the sheep (Ovis aries).

    Science.gov (United States)

    Duittoz, A H; Batailler, M; Caldani, M

    1997-09-01

    The aim of this study was to establish an in vitro model of ovine luteinizing hormone-releasing hormone (LHRH) neurones. Olfactory placodes from 26 day-old sheep embryos (E26) were used for explant culture. Cultures were maintained successfully up to 35 days, but were usually used at 17 days for immunocytochemistry. LHRH and neuronal markers such as neurofilament (NF) were detected by immunocytochemistry within and/or outside the explant. Three main types of LHRH positive cells are described: (1) neuroblastic LHRH and NF immunoreactive cells with round cell body and very short neurites found mainly within the explant, (2) migrating LHRH bipolar neurones with an fusiform cell body, found outside the explant, (3) network LHRH neuron, bipolar or multipolar with long neurites connecting other LHRH neurons. Cell morphology was very similar to that which has been described in the adult sheep brain. These results strongly suggest that LHRH neurones in the sheep originate from the olfactory placode. This mode may represent a useful tool to study LHRH neurones directly in the sheep.

  14. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    Science.gov (United States)

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  15. Radionuclide toxicity in cultured mammalian cells: elucidation of the primary site of radiation damage

    International Nuclear Information System (INIS)

    Warters, R.L.; Hofer, K.G.; Harris, C.R.; Smith, J.M.

    1978-01-01

    Synchronized suspension cultures of Chinese hamster ovary cells (CHO) were labeled with various doses of 3 H-thymidine or 125 I-iododeoxyuridine to evaluate the cytocidal effects of intranuclear radionuclide decay. Damage produced by radionuclide decay outside the cell nucleus was studied on cells exposed to 125 I labeled, monovalent concanavalin A. After labeling, the cells were resynchronized in G 1 -phase and incubated for 36 h at 4 0 C to permit dose accumulation. Cell lethality was evaluated by the standard colony assay. Based on radionuclide incorporation data, cellular dimensions, and subcellular radionuclide distributions, the cumulative dose to whole cells, cell nuclei, and cellular cytoplasm was calculated from the known decay properties of 3 H and 125 I. (Auth.)

  16. Resveratrol protects primary cortical neuron cultures from transient oxygen-glucose deprivation by inhibiting MMP-9.

    Science.gov (United States)

    Gao, Dakuan; Huang, Tao; Jiang, Xiaofan; Hu, Shijie; Zhang, Lei; Fei, Zhou

    2014-06-01

    It was recently shown that resveratrol exerts neuroprotective effects against cerebral ischemia in mice. The aim of the present study was to further confirm these effects in in vitro primary cortical neuron cultures with transient oxygen-glucose deprivation (OGD), and to investigate whether these effects are due to the inhibition of matrix metalloproteinase-9 (MMP-9) and of cell apoptosis. Neuronal primary cultures of cerebral cortex were prepared from BALB/c mice embryos (13-15 days). Cells from 14- to 16-day cultures were subjected to OGD for 3 h, followed by 21 h of reoxygenation to simulate transient ischemia. Different doses of resveratrol were added into the culture medium during the simulation of transient ischemia. The effect of the extracellular signal-regulated kinase (ERK) inhibitor U0126 was studied by adding U0126 (5 µg/µl, 4 µl) into the culture medium during transient ischemia; as a control, we used treatment of cells with 50 µM of resveratrol. Cell viability was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Cell apoptosis was assessed by flow cytometry. The effects of resveratrol on the expression of MMP-9 were analyzed by western blotting and reverse transcription-polymerase chain reaction (RT-PCR), while the levels of ERK, phosphorylated (p)-ERK, cleaved caspase-3, Bax and Bcl-2 were measured by western blotting. The results of the MTT assay showed that cell viability is significantly reduced by transient OGD. OGD induced cell apoptosis, the expression of Bax and the activation of caspase-3 and ERK, inhibited the expression of Bcl-2 and increased the expression of MMP-9, while these effects were reversed by treatment with resveratrol. The therapeutic efficacy of resveratrol was shown to be dose-dependent, with the most suitable dose range determined at 50-100 µM. Treatment with U0126 inhibited MMP-9 and Bax expression and caspase-3 activation, while it further promoted the

  17. Methylmercury disrupts the balance between phosphorylated and non-phosphorylated cofilin in primary cultures of mice cerebellar granule cells A proteomic study

    International Nuclear Information System (INIS)

    Vendrell, Iolanda; Carrascal, Montserrat; Campos, Francisco; Abian, Joaquin; Sunol, Cristina

    2010-01-01

    Methylmercury is an environmental contaminant that is particularly toxic to the developing central nervous system; cerebellar granule neurons are especially vulnerable. Here, primary cultures of cerebellar granule cells (CGCs) were continuously exposed to methylmercury for up to 16 days in vitro (div). LC50 values were 508 ± 199, 345 ± 47, and 243 ± 45 nM after exposure for 6, 11, and 16 div, respectively. Proteins from cultured mouse CGCs were separated by 2DE. Seventy-one protein spots were identified by MALDI-TOF PMF and MALDI-TOF/TOF sequencing. Prolonged exposure to a subcytotoxic concentration of methylmercury significantly increased non-phosphorylated cofilin both in cell protein extracts (1.4-fold; p < 0.01) and in mitochondrial-enriched fractions (1.7-fold; p < 0.01). The decrease in P-cofilin induced by methylmercury was concentration-dependent and occurred after different exposure times. The percentage of P-cofilin relative to total cofilin significantly decreased to 49 ± 13% vs. control cells after exposure to 300 nM methylmercury for 5 div. The balance between the phosphorylated and non-phosphorylated form of cofilin regulates actin dynamics and facilitates actin filament turnover. Filamentous actin dynamics and reorganization are responsible of neuron shape change, migration, polarity formation, regulation of synaptic structures and function, and cell apoptosis. An alteration of the complex regulation of the cofilin phosphorylation/dephosphorylation pathway could be envisaged as an underlying mechanism compatible with reported signs of methylmercury-induced neurotoxicity.

  18. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Directory of Open Access Journals (Sweden)

    Anita Muraglia

    2017-11-01

    Full Text Available Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i an heparin-free human platelet lysate (PL devoid of serum or plasma components (v-PL and (ii an heparin-free human serum derived from plasma devoid of PL components (Pl-s and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment, but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79 regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype.

  19. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht

    2013-01-01

    summarize selected methods in analyzing ciliary function in directional cell migration, including immunofluorescence microscopy, scratch assay, and chemotaxis assay by micropipette addition of PDGFRα ligands to cultures of fibroblasts. These methods should be useful not only in studying cell migration....... In particular, platelet-derived growth factor receptor alpha (PDGFRα) is compartmentalized to the primary cilium to activate signaling pathways that regulate reorganization of the cytoskeleton required for lamellipodium formation and directional migration in the presence of a specific ligand gradient. We...

  20. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines.

    Science.gov (United States)

    Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong

    2014-03-01

    To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p adhesives showed mild to moderate cytotoxicity to primary HOKs (p  0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  1. Engraftment Outcomes after HPC Co-Culture with Mesenchymal Stromal Cells and Osteoblasts

    Directory of Open Access Journals (Sweden)

    Matthew M. Cook

    2013-09-01

    Full Text Available Haematopoietic stem cell (HSC transplantation is an established cell-based therapy for a number of haematological diseases. To enhance this therapy, there is considerable interest in expanding HSCs in artificial niches prior to transplantation. This study compared murine HSC expansion supported through co-culture on monolayers of either undifferentiated mesenchymal stromal cells (MSCs or osteoblasts. Sorted Lineage− Sca-1+ c-kit+ (LSK haematopoietic stem/progenitor cells (HPC demonstrated proliferative capacity on both stromal monolayers with the greatest expansion of LSK shown in cultures supported by osteoblast monolayers. After transplantation, both types of bulk-expanded cultures were capable of engrafting and repopulating lethally irradiated primary and secondary murine recipients. LSKs co-cultured on MSCs showed comparable, but not superior, reconstitution ability to that of freshly isolated LSKs. Surprisingly, however, osteoblast co-cultured LSKs showed significantly poorer haematopoietic reconstitution compared to LSKs co-cultured on MSCs, likely due to a delay in short-term reconstitution. We demonstrated that stromal monolayers can be used to maintain, but not expand, functional HSCs without a need for additional haematopoietic growth factors. We also demonstrated that despite apparently superior in vitro performance, co-injection of bulk cultures of osteoblasts and LSKs in vivo was detrimental to recipient survival and should be avoided in translation to clinical practice.

  2. Culture-bound syndromes in Hispanic primary care patients.

    Science.gov (United States)

    Bayles, Bryan P; Katerndahl, David A

    2009-01-01

    We sought to document Hispanic primary care patients' knowledge and experience of five culture-bound syndromes (CBS), as well as the basic socio-cultural correlates of these disorders. A convenience sample of 100 adult Hispanic patients presenting in an urban South Texas primary care clinic was recruited to complete a brief cross-sectional survey, presented in an oral format. Interviews sought information concerning five culture-bound syndromes--susto, empacho, nervios, mal de ojo, and ataques de nervios. Additional demographic, socio-economic, and acculturation data was collected. Descriptive and bivariate statistics (chi square, Fisher's) were used to assess relationships among variables and experience with each CBS. A multivariate logistic analysis was conducted to determine the possible contributions of age, gender, acculturation, and education to the personal experience of a culture-bound syndrome. Results indicate that 77% of respondents had knowledge of all five syndromes, with 42% reporting having personally experienced at least one CBS. Nervios was the most commonly suffered disorder, being reported by 30 respondents. This was followed, in declining order ofprevalence, by susto, mal de ojo, empacho, and ataques de nervios. Multivariate logistic regression analysis found that higher education beyond high school was associated with a slightly decreased likelihood of reporting having suffered from any culture-bound syndrome. While co-occurrence among these disorders occurred, the patterns of predictors suggest that the co-occurrence is not a reflection of mislabeling of one common syndrome. Knowledge of and experience with culture-bound syndromes is common among Hispanic primary care patients in South Texas. Healthcare providers ought to consider discussing these illnesses in a non-judgmental manner with patients who present with symptoms that are consistent with these syndromes. Future studies, with larger sample sizes, are warranted to elucidate the nature

  3. A biocompatible micro cell culture chamber (mu CCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, Anders Michael

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  4. A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Petronis, Sarunas; Jørgensen, A M

    2006-01-01

    culture chip compared to cell culture flasks. The cell culture chip could without further modification support cell growth of two other cell lines. Light coming from the microscope lamp during optical recordings of the cells was the only external factor identified, that could have a negative effect...... on cell survival. Low grade light exposure was however compatible with optical recordings as well as cell viability. These results strongly indicate that a cell culture chip could be constructed that allowed for on-line optical recording of cellular events without affecting the cell culturing condition...

  5. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Di Yu

    Full Text Available Recombinant adenovirus serotype 5 (Ad5 vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR on the surface of target cell for efficient transduction, which limits it's utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.

  6. Culturing of primary rat neurons and glia on ultra-thin parylene-C

    International Nuclear Information System (INIS)

    Unsworth, C.P.; Delivopoulos, E.; Murray, A.F.

    2010-01-01

    Full text: In this article, we will describe how we have successfully cultured dissociated embryonic cortical neurons and glia from the postnatal rat hippocampus on extremely thin layers (up to 10 nm) of Parylene-C on a silicon dioxide substrate. Silicon wafers were oxidised, deposited with the biomaterial, Parylene-C, photo-lithographically patterned and plasma etched to produce chips that consisted of lines of Paryl ene-C with varying widths, thickness and lengths. The chips produced were then immersed in Horse Serum and plated with the cells. Ratios of Neurons; Glia; Cell Body were measured on, adjacent to and away from the Parylene-C. Our initial results show how these ratios remained roughly constant for ultra-thin Parylene-C thicknesses of 10 nm as compared to a benchmark thickness of 100 nm (where such cells are known to grow well). Thus, our findings demonstrate that it is possible to culture primary rat neurons and glia to practically cell membrane thicknesses of Parylene-C. Being able to culture cells on such ultra thin levels of Parylene-C will open up the possibility to develop Multi-Electrode Arrays (MEA) that can capacitively couple embedded electrodes through the parylene to the cells on its surface. Thus, providing a neat, insulated passive electrode. Only the ultra-thin thicknesses of Parylene demonstrated here would allow for the rea isation of such a technology. Hence, the outcome of this work, will be of great interest to the Neuroengineering and the Multi-Electrode Array (MEA) community, as an alternative material for the fabric tion of passive electrodes, used in capacitive coupling mode.

  7. Plant cell tissue culture: A potential source of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Scott, C.D.; Dougall, D.K.

    1987-08-01

    Higher plants produce many industrially important products. Among these are drugs and medicinal chemicals, essential oils and flavors, vegetable oils and fats, fine and specialty chemicals, and even some commodity chemicals. Although, currently, whole-plant extraction is the primary means of harvesting these materials, the advent of plant cell tissue culture could be a much more effective method of producing many types of phytochemicals. The use of immobilized plant cells in an advanced bioreactor configuration with excretion of the product into the reactor medium may represent the most straightforward way of commercializing such techniques for lower-value chemicals. Important research and development opportunities in this area include screening for plant cultures for nonmedical, lower-value chemicals; understanding and controlling plant cell physiology and biochemistry; optimizing effective immobilization methods; developing more efficient bioreactor concepts; and perfecting product extraction and purification techniques. 62 refs., 2 figs.

  8. Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.

    Science.gov (United States)

    Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi

    2018-01-01

    It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.

  9. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Paula G Franco

    Full Text Available Neural Stem and Progenitor Cells (NSC/NPC are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  10. Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells

    Science.gov (United States)

    2012-01-01

    Introduction The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs. Methods Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR. Results Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of

  11. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  12. Establishment of feline intestinal epithelial cell cultures for the propagation and study of feline enteric coronaviruses

    Science.gov (United States)

    2013-01-01

    Feline infectious peritonitis (FIP) is the most feared infectious cause of death in cats, induced by feline infectious peritonitis virus (FIPV). This coronavirus is a virulent mutant of the harmless, ubiquitous feline enteric coronavirus (FECV). To date, feline coronavirus (FCoV) research has been hampered by the lack of susceptible cell lines for the propagation of serotype I FCoVs. In this study, long-term feline intestinal epithelial cell cultures were established from primary ileocytes and colonocytes by simian virus 40 (SV40) T-antigen- and human Telomerase Reverse Transcriptase (hTERT)-induced immortalization. Subsequently, these cultures were evaluated for their usability in FCoV research. Firstly, the replication capacity of the serotype II strains WSU 79–1683 and WSU 79–1146 was studied in the continuous cultures as was done for the primary cultures. In accordance with the results obtained in primary cultures, FCoV WSU 79–1683 still replicated significantly more efficient compared to FCoV WSU 79–1146 in both continuous cultures. In addition, the cultures were inoculated with faecal suspensions from healthy cats and with faecal or tissue suspensions from FIP cats. The cultures were susceptible to infection with different serotype I enteric strains and two of these strains were further propagated. No infection was seen in cultures inoculated with FIPV tissue homogenates. In conclusion, a new reliable model for FCoV investigation and growth of enteric field strains was established. In contrast to FIPV strains, FECVs showed a clear tropism for intestinal epithelial cells, giving an explanation for the observation that FECV is the main pathotype circulating among cats. PMID:23964891

  13. Enhancing Access to Primary Cultural Heritage Materials of India

    Science.gov (United States)

    Scharf, Peter M.; Hyman, Malcolm

    This chapter is about enhancing access to primary cultural heritage materials of India housed in academic libraries by integrating them with machine-readable texts, lexical resources, and linguistic software in a digital library. Integrating primary cultural materials with a digital library can enable broad use of Indic collections for research and education. For the purposes of illustrating this procedure, we outline here the development of a prototype using the collections of Sanskrit manuscripts in the libraries at Brown University and the University of Pennsylvania and integrating them with The Sanskrit Library. The result is extendable to collections of Indic materials throughout the world and can serve as a model for digitization projects of cultural materials in other major culture-bearing languages such as Greek, Latin, Arabic, Persian, and Chinese.

  14. Recovery from radiation-induced damage in primary cultures of human epithelial thyroid cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Enno, Masumi; Takeichi, Nobuo.

    1985-01-01

    Human thyroid epithelial tissues from 23 individuals were obtained from surgical tissue, and cultured in vitro. Dose response survival curves showed thyroid cells, when compared to mammary epithelial and skin fibroblast cells of human origin, to be only slightly more radiosensitive to X-rays. Cell survival curves from the cell strains showed wide variability in radiation sensitivity. Of the 23 cell strains tested, 21 strains displayed significant shoulders (nonzero quasi-threshold (D q ) values and extrapolation number (n) values greater than 1) at low dose exposures. The ability of human cells to recover from radiation damage was further studied by dose fractionation. Two cell strains were given a total X-ray dose of 304 cGy in two equal fractions separated by varying time intervals. Maximal cell survival was observed when the time interval exceeded two hours. When the two cell strains were exposed to 152 cGy of X-rays followed four hours later by second graded doses, cell survival was enhanced as compared to survival after single dose exposures. However, no benefit of dose splitting was observed when cells were exposed to low second doses. These results support previous studies showing that human cells are capable of repair but require relatively large doses to elicit a repair response. (author)

  15. Recovery from radiation-induced damage in primary cultures of human epithelial thyroid cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Enno, Masumi; Takeichi, Nobuo.

    1985-09-01

    Human thyroid epithelial tissue from 23 individuals was obtained from surgical tissue, and cultured in vitro. Dose-response survival curves showed thyroid cells, when compared to mammary epithelial and skin fibroblast cells of human origin, to be only slightly more radiosensitive to X rays. Cell survival curves from the cell strains showed wide variability in radiation sensitivity. Of the 23 cell strains tested, 21 strains displayed significant shoulders (nonzero quasi-threshold (Dsub(q)) values and extrapolation number (n) values greater than 1)* at low dose exposures. The ability of human cells to recover from radiation damage was further studied by dose fractionation. Two cell strains were given a total X-ray dose of 304 cGy in two equal fractions separated by varying time intervals. Maximal cell survival was observed when the time interval exceeded two hours. When the two cell strains were exposed to 152 cGy of X rays followed four hours later by second graded doses, cell survival was enhanced as compared to survival after single dose exposures. However, no benefit of dose splitting was observed when cells were exposed to low second doses. These results support previous studies showing that human cells are capable of repair but require relatively large doses to elicit a repair response. (author)

  16. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    Science.gov (United States)

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. © 2015 Society for Laboratory Automation and Screening.

  17. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer

    Directory of Open Access Journals (Sweden)

    González-García Maribel

    2004-10-01

    Full Text Available Abstract Background Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines. Results Polyethyleneimine compared favorably to traditional attachment factors such as collagen and polylysine. PC-12 and HEK-293 cells plated on dishes coated with polyethyleneimine showed a homogeneous distribution of cells in the plate, demonstrating strong cell adhesion that survived washing procedures. The polymer could also be used to enhance the adherence and allow axonal outgrowth from zebrafish retinal explants. The effects of this coating agent on the transfection of loosely attaching cell lines were studied. Pre-coating with polyethyleneimine had the effect of enhancing the transfection yield in procedures using lipofection reagents. Conclusion Polyethyleneimine is an effective attachment factor for weakly anchoring cell lines and primary cells. Its use in lipofection protocols makes the procedures more reliable and increases the yield of expressed products with commonly used cell lines such as PC-12 and HEK-293 cells.

  18. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  19. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  20. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  1. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery

    DEFF Research Database (Denmark)

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain

    2008-01-01

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC d...

  2. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  3. 9 CFR 101.6 - Cell cultures.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  4. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.

    Science.gov (United States)

    Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric

    2017-08-14

    Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  5. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment.

    Science.gov (United States)

    Lee, Ji Yoon; Han, A-Reum; Lee, Sung-Eun; Min, Woo-Sung; Kim, Hee-Je

    2016-05-01

    Podoplanin+ cells are indispensable in the tumor microenvironment. Increasing evidence suggests that podoplanin may support the growth and metastasis of solid tumors; however, to the best of our knowledge no studies have determined whether or not podoplanin serves a supportive role in acute myeloid leukemia (AML). The effects of co‑culture with podoplanin+ cells on the cellular activities of the leukemic cells, such as apoptosis and cell proliferation, in addition to the expression of podoplanin in leukemic cells, were investigated. Due to the fact that genetic abnormalities are the primary cause of leukemogenesis, the overexpression of the fibromyalgia‑like tyrosine kinase‑3 gene in colony forming units was also examined following cell sorting. Podoplanin+ cells were found to play a protective role against apoptosis in leukemic cells and to promote cell proliferation. Tumor‑associated antigens, including Wilms' tumor gene 1 and survivin, were increased when leukemic cells were co‑cultured with podoplanin+ cells. In combination, the present results also suggest that podoplanin+ cells can function as stromal cells for blast cell retention in the AML tumor microenvironment.

  6. Examining School Culture in Flemish and Chinese Primary Schools

    Science.gov (United States)

    Zhu, Chang; Devos, Geert; Tondeur, Jo

    2014-01-01

    The aim of this research is to gain understanding about school culture characteristics of primary schools in the Flemish and Chinese context. The study was carried out in Flanders (Belgium) and China, involving a total of 44 Flemish schools and 40 Chinese schools. The School Culture Scales were used to measure five school culture dimensions with…

  7. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  8. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  9. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides

    International Nuclear Information System (INIS)

    Hogberg, Helena T.; Kinsner-Ovaskainen, Agnieszka; Hartung, Thomas; Coecke, Sandra; Bal-Price, Anna K.

    2009-01-01

    The major advantage of primary neuronal cultures for developmental neurotoxicity (DNT) testing is their ability to replicate the crucial stages of neurodevelopment. In our studies using primary culture of cerebellar granule cells (CGCs) we have evaluated whether the gene expression relevant to the most critical developmental processes such as neuronal differentiation (NF-68 and NF-200) and functional maturation (NMDA and GABA A receptors), proliferation and differentiation of astrocytes (GFAP and S100β) as well as the presence of neural precursor cells (nestin and Sox10) could be used as an endpoint for in vitro DNT. The expression of these genes was assessed after exposure to various pesticides (paraquat parathion, dichlorvos, pentachlorophenol and cycloheximide) that could induce developmental neurotoxicity through different mechanisms. All studied pesticides significantly modified the expression of selected genes, related to the different stages of neuronal and/or glial cell development and maturation. The most significant changes were observed after exposure to paraquat and parathion (i.e. down-regulation of mRNA expression of NF-68 and NF-200, NMDA and GABA A receptors). Similarly, dichlorvos affected mainly neurons (decreased mRNA expression of NF-68 and GABA A receptors) whereas cycloheximide had an effect on neurons and astrocytes, as significant decreases in the mRNA expression of both neurofilaments (NF-68 and NF-200) and the astrocyte marker (S100β) were observed. Our results suggest that toxicity induced by pesticides that target multiple pathways of neurodevelopment can be identified by studying expression of genes that are involved in different stages of cell development and maturation, and that gene expression could be used as a sensitive endpoint for initial screening to identify the compounds with the potential to cause developmental neurotoxicity

  10. The fabrication and cell culture of three-dimensional rolled scaffolds with complex micro-architectures

    International Nuclear Information System (INIS)

    Liu Yaxiong; Li Xiao; Qu Xiaoli; Zhu Lin; He Jiankang; Zhao Qian; Wu Wanquan; Li Dichen

    2012-01-01

    Cell cultures for tissue engineering are traditionally prepared on two-dimensional or three-dimensional scaffolds with simple pores; however, this limits mass transportation, which is necessary for cell viability and function. In this paper, an innovative method is proposed for fabricating porous scaffolds with designed complex micro-architectures. Channels devised by computer-aided design were used to simulate features of blood vessels in native rat liver. Rapid prototyping and microreplication were used to produce a negative polydimethylsiloxane mold, and then a planar porous scaffold with predefined microchannel parameters was obtained by freeze-drying a silk fibroin/gelatin solution of an optimized concentration. After seeding with rat primary hepatocytes, the planar scaffold was rolled up to build spatial channels. By reconstructing the three-dimensional channel model in the scaffold in the form of micro-computed topography data and observing the cross-sections of the scroll, we confirmed that the bent channels were still interconnected, with restricted deviations. A comparison of the primary hepatocyte culture in the scaffolds with and without the devised channels proved that our design influenced cell organization and improved cell survival and proliferation. This method can be used for the construction of complex tissues for implantation and for culturing cells in vitro for biological tests and observations.

  11. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  12. Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System.

    Science.gov (United States)

    Hui, Chin Wai; Zhang, Yang; Herrup, Karl

    2016-01-01

    Chronic inflammation is associated with activated microglia and reactive astrocytes and plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's. Both in vivo and in vitro studies have demonstrated that inflammatory cytokine responses to immune challenges contribute to neuronal death during neurodegeneration. In order to investigate the role of glial cells in this phenomenon, we developed a modified method to remove the non-neuronal cells in primary cultures of E16.5 mouse cortex. We modified previously reported methods as we found that a brief treatment with the thymidine analog, 5-fluorodeoxyuridine (FdU), is sufficient to substantially deplete dividing non-neuronal cells in primary cultures. Cell cycle and glial markers confirm the loss of ~99% of all microglia, astrocytes and oligodendrocyte precursor cells (OPCs). More importantly, under this milder treatment, the neurons suffered neither cell loss nor any morphological defects up to 2.5 weeks later; both pre- and post-synaptic markers were retained. Further, neurons in FdU-treated cultures remained responsive to excitotoxicity induced by glutamate application. The immunobiology of the FdU culture, however, was significantly changed. Compared with mixed culture, the protein levels of NFκB p65 and the gene expression of several cytokine receptors were altered. Individual cytokines or conditioned medium from β-amyloid-stimulated THP-1 cells that were, potent neurotoxins in normal, mixed cultures, were virtually inactive in the absence of glial cells. The results highlight the importance of our glial-depleted culture system and identifies and offer unexpected insights into the complexity of -brain neuroinflammation.

  13. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures

    NARCIS (Netherlands)

    Lokhorst, H. M.; Lamme, T.; de Smet, M.; Klein, S.; de Weger, R. A.; van Oers, R.; Bloem, A. C.

    1994-01-01

    Long-term bone marrow cultures (LTBMC) from patients with multiple myeloma (MM) and normal donors were analyzed for immunophenotype and cytokine production. Both LTBMC adherent cells from myeloma and normal donor origin expressed CD10, CD13, the adhesion molecules CD44, CD54, vascular cell adhesion

  14. Human primary erythroid cells as a more sensitive alternative in vitro hematological model for nanotoxicity studies: Toxicological effects of silver nanoparticles.

    Science.gov (United States)

    Rujanapun, Narawadee; Aueviriyavit, Sasitorn; Boonrungsiman, Suwimon; Rosena, Apiwan; Phummiratch, Duangkamol; Riolueang, Suchada; Chalaow, Nipon; Viprakasit, Vip; Maniratanachote, Rawiwan

    2015-12-01

    Although immortalized cells established from cancerous cells have been widely used for studies in nanotoxicology studies, the reliability of the results derived from immortalized cells has been questioned because of their different characteristics from normal cells. In the present study, human primary erythroid cells in liquid culture were used as an in vitro hematological cell model for investigation of the nanotoxicity of silver nanoparticles (AgNPs) and comparing the results to the immortalized hematological cell lines HL60 and K562. The AgNPs caused significant cytotoxic effects in the primary erythroid cells, as shown by the decreased cell viability and induction of intracellular ROS generation and apoptosis, whereas they showed much lower cytotoxic and apoptotic effects in HL60 and K562 cells and did not induced ROS generation in these cell lines. Scanning electron microcopy revealed an interaction of AgNPs to the cell membrane in both primary erythroid and immortalized cells. In addition, AgNPs induced hemolysis in the primary erythroid cells in a dose-dependent manner, and transmission electron microcopy analysis revealed that AgNPs damaged the erythroid cell membrane. Taken together, these results suggest that human primary erythroid cells in liquid culture are a more sensitive alternative in vitro hematological model for nanotoxicology studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Subcellular imaging of freeze-fractured cell cultures by TOF-SIMS and Laser-SNMS

    International Nuclear Information System (INIS)

    Fartmann, M.; Dambach, S.; Kriegeskotte, C.; Lipinsky, D.; Wiesmann, H.P.; Wittig, A.; Sauerwein, W.; Arlinghaus, H.F.

    2003-01-01

    We have examined atomic and molecular distributions in freeze-fractured freeze-dried primary osteoblasts and cancer cells using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and non-resonant laser secondary neutral mass spectrometry (NR-Laser-SNMS). A pulsed Ga primary ion beam with a diameter of approximately 200 nm was employed to bombard the sample. Ion-induced electron-images were used to identify individual cells. High resolution elemental and molecular images were obtained from cell cultures. From these data the K/Na ratio was determined. It shows a higher K-concentration inside individual cells demonstrating that the chemical and structural integrity of living cells were preserved by the applied preparation technique. Consecutive presputtering of the sample with different primary ion dose densities was used to move the analysis plane toward the inside of the cell. It can be concluded that TOF-SIMS and Laser-SNMS are well suited for imaging trace element and molecule concentrations in biological samples

  16. Predicting Organizational Commitment from Organizational Culture in Turkish Primary Schools

    Science.gov (United States)

    Ipek, Cemalettin

    2010-01-01

    This study aims to describe organizational culture and commitment and to predict organizational commitment from organizational culture in Turkish primary schools. Organizational Culture Scale (Ipek "1999") and Organizational Commitment Scale (Balay "2000") were used in the data gathering process. The data were collected from…

  17. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    Science.gov (United States)

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  18. Selection of reference genes for expression studies with fish myogenic cell cultures

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-08-01

    Full Text Available Abstract Background Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.. The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Results Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1α, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. Conclusion The geometric average of any three of Hprt1, Ef1α, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  19. Selection of reference genes for expression studies with fish myogenic cell cultures.

    Science.gov (United States)

    Bower, Neil I; Johnston, Ian A

    2009-08-10

    Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1alpha, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. The geometric average of any three of Hprt1, Ef1alpha, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.

  20. Proliferation Rates of Bovine Primary Muscle Cells Relate to Liveweight and Carcase Weight in Cattle

    Science.gov (United States)

    Coles, Chantal A.; Wadeson, Jenny; Leyton, Carolina P.; Siddell, Jason P.; Greenwood, Paul L.; White, Jason D.; McDonagh, Matthew B.

    2015-01-01

    Muscling in cattle is largely influenced by genetic background, ultimately affecting beef yield and is of major interest to the beef industry. This investigation aimed to determine whether primary skeletal muscle cells isolated from different breeds of cattle with a varying genetic potential for muscling differ in their myogenic proliferative capacity. Primary skeletal muscle cells were isolated and cultured from the Longissimus muscle (LM) of 6 month old Angus, Hereford and Wagyu X Angus cattle. Cells were assessed for rate of proliferation and gene expression of PAX7, MYOD, MYF5, and MYOG. Proliferation rates were found to differ between breeds of cattle whereby myoblasts from Angus cattle were found to proliferate at a greater rate than those of Hereford and Wagyu X Angus during early stages of growth (5–20 hours in culture) in vitro (P cattle (P cattle (P cattle. PMID:25875203

  1. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cell Monitoring and Manipulation Systems (CMMSs based on Glass Cell-Culture Chips (GC3s

    Directory of Open Access Journals (Sweden)

    Sebastian M. Buehler

    2016-06-01

    Full Text Available We developed different types of glass cell-culture chips (GC3s for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs. The cell-doubling times of primary murine embryonic neuronal cells (PNCs were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs. During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2 to −2.35 nA (21% O2. It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.

  3. Immunophenotype of hematopoietic stem cells from placental/umbilical cord blood after culture

    Directory of Open Access Journals (Sweden)

    P. Pranke

    2005-12-01

    Full Text Available Identification and enumeration of human hematopoietic stem cells remain problematic, since in vitro and in vivo stem cell assays have different outcomes. We determined if the altered expression of adhesion molecules during stem cell expansion could be a reason for the discrepancy. CD34+CD38- and CD34+CD38+ cells from umbilical cord blood were analyzed before and after culture with thrombopoietin (TPO, FLT-3 ligand (FL and kit ligand (KL; or stem cell factor in different combinations: TPO + FL + KL, TPO + FL and TPO, at concentrations of 50 ng/mL each. Cells were immunophenotyped by four-color fluorescence using antibodies against CD11c, CD31, CD49e, CD61, CD62L, CD117, and HLA-DR. Low-density cord blood contained 1.4 ± 0.9% CD34+ cells, 2.6 ± 2.1% of which were CD38-negative. CD34+ cells were isolated using immuno-magnetic beads and cultured for up to 7 days. The TPO + FL + KL combination presented the best condition for maintenance of stem cells. The total cell number increased 4.3 ± 1.8-fold, but the number of viable CD34+ cells decreased by 46 ± 25%. On the other hand, the fraction of CD34+CD38- cells became 52.0 ± 29% of all CD34+ cells. The absolute number of CD34+CD38- cells was expanded on average 15 ± 12-fold when CD34+ cells were cultured with TPO + FL + KL for 7 days. The expression of CD62L, HLA-DR and CD117 was modulated after culture, particularly with TPO + FL + KL, explaining differences between the adhesion and engraftment of primary and cultured candidate stem cells. We conclude that culture of CD34+ cells with TPO + FL + KL results in a significant increase in the number of candidate stem cells with the CD34+CD38- phenotype.

  4. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    Science.gov (United States)

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  5. Use of 5-Bromodeoxyuridine and irradiation for the estimation of the myoblast and myocyte content of primary rat heart cell cultures

    International Nuclear Information System (INIS)

    Masse, M.J.O.; Harary, I.

    1980-01-01

    A method for killing dividing cells was adapted for the elimination of dividing heart muscle cells (myoblasts) in cultures. We have used this method to demonstrate their presence and to estimate their number as well as the number of nondividing heart muscle cells (myocytes) in the neo-natal rat heart. Cells were cultivated in BUdR (5-bromodeoxyuridine) 10 -4 M for 3 days and then irradiated with long uv light. The selective elimination of dividing cells led to a loss of myosin Ca 2+ -activated ATPase in the cultures. The percent of ATPase left after irradiation was 32% of the control in cultures derived from 1-day postnatal rats and 48% in cultures from 4-day postnatal rats. This reflects an in vivo shift of myoblasts to myocytes in the muscle cell population as the rat ages

  6. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

    Science.gov (United States)

    Popovic, A; Wiggins, T; Davids, L M

    2015-08-01

    Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (phuman skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and

  7. The Effect of Spaceflight on Bone Cell Cultures

    Science.gov (United States)

    Landis, William J.

    1999-01-01

    Understanding the response of bone to mechanical loading (unloading) is extremely important in defining the means of adaptation of the body to a variety of environmental conditions such as during heightened physical activity or in extended explorations of space or the sea floor. The mechanisms of the adaptive response of bone are not well defined, but undoubtedly they involve changes occurring at the cellular level of bone structure. This proposal has intended to examine the hypothesis that the loading (unloading) response of bone is mediated by specific cells through modifications of their activity cytoskeletal elements, and/or elaboration of their extracellular matrices. For this purpose, this laboratory has utilized the results of a number of previous studies defining molecular biological, biochemical, morphological, and ultrastructural events of the reproducible mineralization of a primary bone cell (osteoblast) culture system under normal loading (1G gravity level). These data and the culture system then were examined following the use of the cultures in two NASA shuttle flights, STS-59 and STS-63. The cells collected from each of the flights were compared to respective synchronous ground (1G) control cells examined as the flight samples were simultaneously analyzed and to other control cells maintained at 1G until the time of shuttle launch, at which point they were terminated and studied (defined as basal cells). Each of the cell cultures was assayed in terms of metabolic markers- gene expression; synthesis and secretion of collagen and non-collagenous proteins, including certain cytoskeletal components; assembly of collagen into macrostructural arrays- formation of mineral; and interaction of collagen and mineral crystals during calcification of the cultures. The work has utilized a combination of biochemical techniques (radiolabeling, electrophoresis, fluorography, Western and Northern Blotting, and light microscopic immunofluorescence) and structural

  8. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    Science.gov (United States)

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  9. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  10. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    Science.gov (United States)

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  11. Identification of XMRV infection-associated microRNAs in four cell types in culture.

    Directory of Open Access Journals (Sweden)

    Ketha V K Mohan

    Full Text Available INTRODUCTION: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC and chronic fatigue syndrome (CFS in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA, which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS: Two prostate cell lines (LNCaP and DU145 and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs. miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.

  12. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  13. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C-cells

  14. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    International Nuclear Information System (INIS)

    Yu, Hui; Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2016-01-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin"+ cells decreased whilst the percentage of GFAP"+ cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  15. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China); Chen, Xin-Lin; Liu, Yong [Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi’an Jiaotong University, No 96, Yan Ta Xi Road, Xi’an 710061, Shaanxi (China); Gao, Ya, E-mail: ygao@mail.xjtu.edu.cn [Department of Pediatric Surgery, the Second Affiliated Hospital, Xi’an Jiaotong University, No 157, Xi Wu Road, Xi’an 710004, Shaanxi (China)

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin{sup +} cells decreased whilst the percentage of GFAP{sup +} cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. - Highlights: • Differences were identified between primary and daughter ENCCs. • Daughter ENCCs had reduced proliferation, migration and differentiation. • Daughter ENCCs also had increased apoptosis. • These altered characteristics warrant further investigation.

  16. Assessment of patient safety culture in primary care setting, Al-Mukala, Yemen.

    Science.gov (United States)

    Webair, Hana H; Al-Assani, Salwa S; Al-Haddad, Reema H; Al-Shaeeb, Wafa H; Bin Selm, Manal A; Alyamani, Abdulla S

    2015-10-13

    Patient safety culture in primary care is the first step to achieve high quality health care. This study aims to provide a baseline assessment of patient safety culture in primary care settings in Al-Mukala, Yemen as a first published study from a least developed country. A survey was conducted in primary healthcare centres and units in Al-Mukala District, Yemen. A comprehensive sample from the available 16 centres was included. An Arabic version of the Medical Office Survey on Patient Safety Culture was distributed to all health workers (110). Participants were physicians, nurses and administrative staff. The response rate from the participating centres was 71 %. (N = 78). The percent positive responses of the items is equal to the percentage of participants who answered positively. Composite scores were calculated by averaging the percent positive response on the items within a dimension. Positive safety culture was defined as 60 % or more positive responses on items or dimensions. Patient safety culture was perceived to be generally positive with the exception of the dimensions of 'Communication openness', 'Work pressure and pace' and 'Patient care tracking/follow-up', as the percent positive response of these dimensions were 58, 57, and 52 % respectively. Overall, positive rating on quality and patient safety were low (49 and 46 % respectively). Although patient safety culture in Al-Mukala primary care setting is generally positive, patient safety and quality rating were fairly low. Implementation of a safety and quality management system in Al-Mukala primary care setting are paramount. Further research is needed to confirm the applicability of the Medical Office Survey on Patient Safety Culture (MOSPSC) for Al-Mukala primary care.

  17. Diesel exhaust alters the response of cultured primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD) to non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Zarcone, Maria C; van Schadewijk, Annemarie; Duistermaat, Evert; Hiemstra, Pieter S; Kooter, Ingeborg M

    2017-01-28

    Exacerbations constitute a major cause of morbidity and mortality in patients suffering from chronic obstructive pulmonary disease (COPD). Both bacterial infections, such as those with non-typeable Haemophilus influenzae (NTHi), and exposures to diesel engine emissions are known to contribute to exacerbations in COPD patients. However, the effect of diesel exhaust (DE) exposure on the epithelial response to microbial stimulation is incompletely understood, and possible differences in the response to DE of epithelial cells from COPD patients and controls have not been studied. Primary bronchial epithelial cells (PBEC) were obtained from age-matched COPD patients (n = 7) and controls (n = 5). PBEC were cultured at the air-liquid interface (ALI) to achieve mucociliary differentiation. ALI-PBECs were apically exposed for 1 h to a stream of freshly generated whole DE or air. Exposure was followed by 3 h incubation in presence or absence of UV-inactivated NTHi before analysis of epithelial gene expression. DE alone induced an increase in markers of oxidative stress (HMOX1, 50-100-fold) and of the integrated stress response (CHOP, 1.5-2-fold and GADD34, 1.5-fold) in cells from both COPD patients and controls. Exposure of COPD cultures to DE followed by NTHi caused an additive increase in GADD34 expression (up to 3-fold). Importantly, DE caused an inhibition of the NTHi-induced expression of the antimicrobial peptide S100A7, and of the chaperone protein HSP5A/BiP. Our findings show that DE exposure of differentiated primary airway epithelial cells causes activation of the gene expression of HMOX1 and markers of integrated stress response to a similar extent in cells from COPD donors and controls. Furthermore, DE further increased the NTHi-induced expression of GADD34, indicating a possible enhancement of the integrated stress response. DE reduced the NTHi-induced expression of S100A7. These data suggest that DE exposure may cause adverse health effects in part by

  18. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chiblak, Sara; Tang, Zili [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Campos, Benito; Gal, Zoltan; Unterberg, Andreas [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Debus, Jürgen [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Herold-Mende, Christel [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Abdollahi, Amir, E-mail: a.amir@dkfz.de [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany)

    2016-05-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133{sup +} cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  19. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    International Nuclear Information System (INIS)

    Chiblak, Sara; Tang, Zili; Campos, Benito; Gal, Zoltan; Unterberg, Andreas; Debus, Jürgen; Herold-Mende, Christel; Abdollahi, Amir

    2016-01-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133"+ cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  20. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Ji Xiaoqin; Ji Jiang; Chen Yongbing; Shan Fang; Lu Xueguan

    2014-01-01

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A 549 and H 1299 cells, and the effects of CAF on the radiosensitivity of A 549 and H 1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A 549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H 1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF 2 ) of A 549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF 2 of H 1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A 549 cells and H 1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  1. Different Influences of Lipofection and Electrotransfection on In Vitro Gene Delivery to Primary Cultured Cortex Neurons.

    Science.gov (United States)

    Zhang, Xui-Si; Huang, Jing; Zhan, Cong-Qing; Chen, Jing; Li, Tao; Kaye, Alan D; Wu, Sheng-Xi; Xiao, Lan

    2016-03-01

    Many pain states are linked to central nervous system (CNS) diseases involving the dysfunction of dendritic arborization, making restoration a promising therapeutic strategy. Transfection of primary cortex neurons offers the possibility to study mechanisms which are important for the restoration of proper arborization. Its progress is, however, limited at present due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of currently used techniques, 2 non-viral transfection methods, lipofection and gene electrotransfer (GET), were compared. This is a comparison study performed on cultured cells. The transfection efficiency and neuronal viability, as well as the neuronal dendritic arborization after lipofection or GET, were compared. Primary cultured cortex neurons were transfected with the pEGFP-N1 plasmid, either using Lipofectamine 2000 (2, 3, or 4µL) or with electroporation, with our previously optimized protocol (200V/25 ms). Transfection efficiency and cell viability were inversely proportional for lipofection. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection. Although GET offered higher transfection efficiency, it could not induce complex dendritic arborization, which made it unsuitable for in vitro gene transfer into cortex neurons. Limitations include species variability and translational applicability for CNS diseases and pain states related to potential toxicity. Based on these findings, lipofection might be advantageous for in vitro application to primary cultured cortex neurons. Pain states, stress mediated pathogenesis, and certain CNS diseases might potentially utilize this important technique in the future as a therapeutic modality.

  2. Arsenic exposure induces the Warburg effect in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  3. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-01-01

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  4. Principles of cancer cell culture.

    Science.gov (United States)

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory.

  5. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  6. MLL-ENL cooperates with SCF to transform primary avian multipotent cells.

    Science.gov (United States)

    Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M

    2002-08-15

    The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.

  7. A cultural congruence test for primary school students

    Directory of Open Access Journals (Sweden)

    Bayanova L. F.

    2016-12-01

    Full Text Available The study presented in this article relies on the principles of the cultural-historical theory, which defines cultural impact as the main driving force behind psychological development. Based on the assumption that culture is a set of normative situations, the study identifies rules that are typical for primary school students in big Russian cities. These rules are grouped into what we refer to as factors of cultural compliance, which ultimately can be seen as indicators of pupils’ cultural congruence. In specifying the cultural congruence of primary school students, we take into account not only the rules of school life but also the whole range of stable rules for children 7- to 10-years-old. Researchers at the Psychology Institute of the Higher University of the Chinese Academy of Science (Wang, Zhu, & Shi, 2011 call such rules usual or contextually usual. We include rules that govern the behavior of children who have cultural differences, so in this article we are talking about the rules that are typical for children of this age in Russia. The goal of the study was to develop a test to diagnose the level of cultural congruence. The test was exposed to psychometric evaluation for validity, reliability, and discriminatory power. Factor analysis by means of varimax rotation provided for calibration of the rules by consolidating them into factors. These factors underpin the test and include the categories social interaction, academic competence, regulation, obedience, self-service, and self-control. In accordance with the principles employed in psychology, the factors confirm the construct validity of the test in relation to children’s development when they are between 7 and 10 years old. The study confirms that learning is the main activity at this age by introducing a factor that brings together rules inherent in normative situations in the education process. The social setting for psychological development, viewed as a specific

  8. Cellular responses in primary epidermal cultures from oncorhynchus mykiss following the combined exposure of ionising radiation and a heavy metal

    International Nuclear Information System (INIS)

    Lyng, F.M.; Ni Shuilleabhain, S.; Davoren, M.

    2004-01-01

    Mechanisms of toxicant action on biological systems are difficult to identify when more than one contaminant is involved due to potential synergistic and antagonistic effects. There is a general paucity of research into the effect of radiation exposure in tandem with common environmental contaminants due to the inherent difficulties involved. In vitro cell cultures are particularly suited to the study of toxic mechanisms due to their proximity to toxic modes of action and the absence of the multiple defence mechanisms present in intact organisms. Primary cell cultures are particularly beneficial in this area of research as they still maintain many of their tissue specific functions. The objective of this study was to distinguish different mechanisms of cell death (growth arrest, apoptosis, primary and secondary necrosis and proliferation), following combination exposure to ionising radiation and a heavy metal (ZnCl 2 ). The model system employed was a primary cell culture of rainbow trout (Oncorhynchus mykiss) epidermal tissue which has been previously used to study the effects of various environmental agents in this laboratory. Apoptosis and necrosis were quantified morphologically while proliferation was assessed immuno-cyto-chemically using an anti PCNA (proliferating cell nuclear antigen) antibody. While radiation doses up to and including 10 Gy had no effect on growth, exposure to ZnCl 2 produced a significant dose dependent reduction in growth (10, 50, 75, 100 and 200 ppm ZnCl 2 ). Preliminary results indicate no significant effect on growth following a combined exposure of 5 Gy + 50 ppm ZnCl 2 . These results may have important implications for understanding the mechanisms underlying cellular responses to multiple contaminant exposures. (author)

  9. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  10. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  11. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    Science.gov (United States)

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  12. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  13. Effect of amniotic fluid on the in vitro culture of human corneal endothelial cells.

    Science.gov (United States)

    Feizi, Sepehr; Soheili, Zahra-Soheila; Bagheri, Abouzar; Balagholi, Sahar; Mohammadian, Azam; Rezaei-Kanavi, Mozhgan; Ahmadieh, Hamid; Samiei, Shahram; Negahban, Kambiz

    2014-05-01

    The present study was designed to evaluate the effects of human amniotic fluid (HAF) on the growth of human corneal endothelial cells (HCECs) and to establish an in vitro method for expanding HCECs. HCECs were cultured in DMEM-F12 supplemented with 20% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using either FBS- or HAF-containing media. Cell proliferation and cell death ELISA assays were performed to determine the effect of HAF on cell growth and viability. The identity of the cells cultured in 20% HAF was determined using immunocytochemistry (ICC) and real-time reverse transcription polymerase chain reaction (RT-PCR) techniques to evaluate the expression of factors that are characteristic of HCECs, including Ki-67, Vimentin, Na+/K+-ATPase and ZO-1. HCEC primary cultures were successfully established using 20% HAF-containing medium, and these cultures demonstrated rapid cell proliferation according to the cell proliferation and death ELISA assay results. The ICC and real time RT-PCR results indicated that there was a higher expression of Na+/K+-ATPase and ZO-1 in the 20% HAF cell cultures compared with the control (20% FBS) (P < 0.05). The 20% HAF-containing medium exhibited a greater stimulatory effect on HCEC growth and could represent a potential enriched supplement for HCEC regeneration studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Traditional and Modern Cell Culture in Virus Diagnosis.

    Science.gov (United States)

    Hematian, Ali; Sadeghifard, Nourkhoda; Mohebi, Reza; Taherikalani, Morovat; Nasrolahi, Abbas; Amraei, Mansour; Ghafourian, Sobhan

    2016-04-01

    Cell cultures are developed from tissue samples and then disaggregated by mechanical, chemical, and enzymatic methods to extract cells suitable for isolation of viruses. With the recent advances in technology, cell culture is considered a gold standard for virus isolation. This paper reviews the evolution of cell culture methods and demonstrates why cell culture is a preferred method for identification of viruses. In addition, the advantages and disadvantages of both traditional and modern cell culture methods for diagnosis of each type of virus are discussed. Detection of viruses by the novel cell culture methods is considered more accurate and sensitive. However, there is a need to include some more accurate methods such as molecular methods in cell culture for precise identification of viruses.

  15. In vitro long-term development of cultured inner ear stem cells of newborn rat.

    Science.gov (United States)

    Carricondo, Francisco; Iglesias, Mari Cruz; Rodríguez, Fernando; Poch-Broto, Joaquin; Gil-Loyzaga, Pablo

    2010-10-01

    The adult mammalian auditory receptor lacks any ability to repair and/or regenerate after injury. However, the late developing cochlea still contains some stem-cell-like elements that might be used to regenerate damaged neurons and/or cells of the organ of Corti. Before their use in any application, stem cell numbers need to be amplified because they are usually rare in late developing and adult tissues. The numerous re-explant cultures required for the progressive amplification process can result in a spontaneous differentiation process. This aspect has been implicated in the tumorigenicity of stem cells when transplanted into a tissue. The aim of this study has been to determine whether cochlear stem cells can proliferate and differentiate spontaneously in long-term cultures without the addition of any factor that might influence these processes. Cochlear stem cells, which express nestin protein, were cultured in monolayers and fed with DMEM containing 5% FBS. They quickly organized themselves into typical spheres exhibiting a high proliferation rate, self-renewal property, and differentiation ability. Secondary cultures of these stem cell spheres spontaneously differentiated into neuroectodermal-like cells. The expression of nestin, glial-fibrillary-acidic protein, vimentin, and neurofilaments was evaluated to identify early differentiation. Nestin expression appeared in primary and secondary cultures. Other markers were also identified in differentiating cells. Further research might demonstrate the spontaneous differentiation of cochlear stem cells and their teratogenic probability when they are used for transplantation.

  16. Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology.

    Science.gov (United States)

    Napoli, Alessandro; Obeid, Iyad

    2016-03-01

    Electrical activity in embryonic brain tissue has typically been studied using Micro Electrode Array (MEA) technology to make dozens of simultaneous recordings from dissociated neuronal cultures, brain stem cell progenitors, or brain slices from fetal rodents. Although these rodent neuronal primary culture electrical properties are mostly investigated, it has not been yet established to what extent the electrical characteristics of rodent brain neuronal cultures can be generalized to those of humans. A direct comparison of spontaneous spiking activity between rodent and human primary neurons grown under the same in vitro conditions using MEA technology has never been carried out before and will be described in the present study. Human and rodent dissociated fetal brain neuronal cultures were established in-vitro by culturing on a glass grid of 60 planar microelectrodes neurons under identical conditions. Three different cultures of human neurons were produced from tissue sourced from a single aborted fetus (at 16-18 gestational weeks) and these were compared with seven different cultures of embryonic rat neurons (at 18 gestational days) originally isolated from a single rat. The results show that the human and rodent cultures behaved significantly differently. Whereas the rodent cultures demonstrated robust spontaneous activation and network activity after only 10 days, the human cultures required nearly 40 days to achieve a substantially weaker level of electrical function. These results suggest that rat neuron preparations may yield inferences that do not necessarily transfer to humans. © 2015 Wiley Periodicals, Inc.

  17. IL-10 release by bovine epithelial cells cultured with Trichomonas vaginalis and Tritrichomonas foetus

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2013-02-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic protists of the human and bovine urogenital tracts, respectively. Several studies have described the cytotoxic effects of trichomonads on urogenital tract epithelial cells. However, little is known about the host cell response against trichomonads. The aim of this study was to determine whether T. foetus and T. vaginalis stimulated the release of the cytokine interleukin (IL-10 from cultured bovine epithelial cells. To characterise the inflammatory response induced by these parasites, primary cultures of bovine oviduct epithelial cells were exposed to either T. vaginalis or T. foetus. Within 12 h after parasite challenge, supernatants were collected and cytokine production was analysed. Large amounts of IL-10 were detected in the supernatants of cultures that had been stimulated with T. foetus. Interestingly, T. vaginalis induced only a small increase in the release of IL-10 upon exposure to the same bovine cells. Thus, the inflammatory response of the host cell is species-specific. Only T. foetus and not T. vaginalis induced the release of IL-10 by bovine oviduct epithelial cells.

  18. A genetically modified protein-based hydrogel for 3D culture of AD293 cells.

    Directory of Open Access Journals (Sweden)

    Xiao Du

    Full Text Available Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1 by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol having their arm ends capped with maleimide residues (4-armed-PEG-Mal to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence 'GRGDSP' to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery.

  19. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  20. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  1. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    Science.gov (United States)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  2. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  3. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  4. The expression of xenobiotic-metabolizing enzymes in human prostate and in prostate epithelial cells (PECs) derived from primary cultures.

    Science.gov (United States)

    Al-Buheissi, S Z; Cole, K J; Hewer, A; Kumar, V; Bryan, R L; Hudson, D L; Patel, H R; Nathan, S; Miller, R A; Phillips, D H

    2006-06-01

    Dietary heterocyclic amines (HCAs) are carcinogenic in rodent prostate requiring activation by enzymes such as cytochrome P450 (CYP) and N-acetyltransferase (NAT). We investigated by Western blotting and immunohistochemistry the expression of CYP1A1, CYP1A2, and NAT1 in human prostate and in prostate epithelial cells (PECs) derived from primary cultures and tested their ability to activate the dietary carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and its N-hydroxy metabolite (N-OH-IQ) to DNA-damaging moieties. Western blotting identified CYP1A1, CYP1A2, and NAT1. Immunohistochemistry localized NAT1 to the cytoplasm of PECs. Inter-individual variation was observed in the expression levels of CYP1A1, 1A2, and NAT1 (11, 75, and 35-fold, respectively). PECs expressed CYP1A1 and NAT1 but not CYP1A2. When incubated with IQ or N-OH-IQ, PECs formed DNA adducts indicating their ability to metabolically activate these compounds. Prostate cells possess the capacity to activate dietary carcinogens. PECs may provide a useful model system to study their role in prostate carcinogenesis.

  5. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Yuan Xie

    2015-10-01

    Full Text Available Glioblastoma (GBM is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs. To meet the present shortage of relevant GBM cell (GC lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  6. Thyroid Stimulating Immunoglobulin Bioassay Using Cultured Human Thyroid Cells; A Simplified Micromethod

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Chung, June Key; Cho, Bo Youn; Koh, Chang Soon; Lee, Moon Ho; Ahn, Il Min; Ahn, Hee Kwon

    1985-01-01

    The activation of adenylate cyclase of human thymocytes in primary cell culture and the release of c-AMP into the medium are used to detect b-TSH and TSAb in sera of patients with autoimmune thyroid disease. Sera of patients are used directly as a part of cell culture without immunoglobulin precipitation. In the above TSI bioassay, TSAb pooled serum show c-AMP concentration between that of 1 mU/ml and 10 mU/ml b-TSH but normal control pooled serum doesn't show any detectable c-AMP response. Ninety five percent of untreated Graves' patients shows TSAb activity above normal range, 20% of Hashimoto's and 363/0 of euthyroid Graves' patients show detectable TSAb activity.

  7. Cytotoxic effect of ciprofloxacin in primary culture of rat astrocytes and protection by Vitamin E

    International Nuclear Information System (INIS)

    Guerbay, Aylin; Gonthier, Brigitte; Barret, Luc; Favier, Alain; Hincal, Filiz

    2007-01-01

    The aim of this study was to investigate the possible cytotoxic and oxidative stress inducing effects of ciprofloxacin (CPFX) on primary cultures of rat astrocytes. The cultured cells were incubated with various concentrations of CPFX (0.5-300 mg/l), and cytotoxicity was determined by neutral red (NR) and MTT assays. Survival profile of cells was biphasic in NR assay: CPFX did not cause any alteration at any concentration for 7 h, whereas ≤50 mg/l concentrations induced significant cell proliferation in incubation periods of 24, 48, 72, and 96 h. However, cell proliferation gradually decreased at higher concentrations, and 200 and 300 mg/l of CPFX exposure was found to be significantly (p < 0.05) cytotoxic at all time periods. With MTT assay, no alteration was noted for incubation period of 7 h, as observed with NR assay. But, cell viability decreased with ∼≥50 mg/l CPFX exposure in all other time periods. Cell proliferation was only seen in 24 h of incubation with 0.5 and 5 mg/l CPFX. Vitamin E pretreatment of cell cultures were found to be providing complete protection against cytotoxicity of 300 mg/l CPFX in 96 h incubation when measured with both NR and MTT assays. The SOD pretreatment was partially protective with NR assay, but no protection was noted when measured with MTT. A significant enhancement of lipid peroxidation was observed with the cytotoxic concentration of the drug, but total glutathione content and catalase activity of cells did not change. The data obtained in this study suggest that, in accordance with our previous results with fibroblast cells, CPFX-induced cytotoxicity is related to oxidative stress. And the biphasic effect of CPFX possibly resulted from the complex dose-dependent relationships between reactive oxygen species, cell proliferation, and cell viability

  8. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  9. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells.

    Science.gov (United States)

    Sheng, P; Cerruti, C; Ali, S; Cadet, J L

    1996-10-31

    METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.

  10. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  11. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-01

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  12. Effect of hepatocyte growth factor on radiation response of HeLa, V79, CHO and primary cultured parenchymal hepatocyte in vitro

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Nose, Takayuki; Murayama, Shigeyuki; Teshima, Teruki; Ozeki, Syuji; Koizumi, Masahiko; Inoue, Toshihiko.

    1996-01-01

    Hepatocyte growth factor (HGF) is a multipotent cytokine enhancing regeneration of injured organs as liver, kidney and lung after injury. HGF enhances proliferation of various type of cells, inhibits proliferation of carcinoma cells, enhances motility of epithelial cells. We examined three cell lines (CHO, HeLa, V79) and primary cultured normal rat parenchymal hepatocytes to determine the effect of HGF on radiation response. HGF diminished survival of CHO and V79 cells determined by colony formation assay, whereas no significant change of survival was found in HeLa cells. No synergistic changes of survival were found when these three cell lines were irradiated with the addition of HGF. Thus, HGF did not enhance the radiation effect. We also analyzed the impact of irradiation with HGF on primary cultured normal rat parenchymal hepatocytes. At first, the release of glutamic-oxaloacetic amino-transaminase (GOT) in the supernatant was estimated. Irradiation (40 Gy) with or without HGF did not change GOT release in acute phase by 4 days after irradiation compared with the unirradiated control. Second, the DNA synthesis of rat parenchymal hepatocytes was analyzed using radioactive iodine-labeled deoxyuridine incorporation. HGF counteracted the suppression of DNA synthesis induced by irradiation. Thus, HGF may act as a mitogen even for irradiation-damaged normal cells. (author)

  13. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  14. The influence of 60Co gamma rays to cell reproduction (An experiment using low dose levels on vero and primary monkey kidney cells)

    International Nuclear Information System (INIS)

    Danusupadmo, C.J. Sugiarto

    1985-01-01

    Vero and primary monkey kidney cells in culture were gamma irradiated with doses of 0, 0.4 and 0.8 Gy at a dose-rate of 1.30-1.45x10 3 Gy/hour. At harvest time 3 days post irradiation, 0.4 Gy proved to be able to lower the number of vero cells in such a degree that it became significantly different from the control, whereas 0.8 Gy could not suppress the number of primary cells to a level that differed significantly from its control. At harvest time of 7 days post irradiation, 0.4 Gy was found effective in lowering both vero and primary cells so that the number of the harvested cells were significantly different from the controls. At harvest time of 3 days post irradiation, 0.8 Gy caused both cell types reached levels that were not significantly different from 0.4 Gy, but at 7 days post irradiation the number of vero cells was very significantly different from that of 0.4 Gy, while the number of primary cells remained equal to that of 0.4 Gy. This phenomenon showed that irradiation could cause greater injurious effect at more advanced post irradiation times, while the more proliferative vero cells proved to be more susceptible to irradiation than primary cells, but at the same time more potential in performing repair. (author)

  15. A hanging drop culture method to study terminal erythroid differentiation.

    Science.gov (United States)

    Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak

    2005-10-01

    To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.

  16. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs.

    Directory of Open Access Journals (Sweden)

    Stefan Stich

    Full Text Available Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC including changes in their immunogenic properties after 3-dimensional (3D-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS, a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have

  17. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane

    Energy Technology Data Exchange (ETDEWEB)

    BARCELLOS-HOFF, M. H; AGGELER, J.; RAM, T. G; BISSELL, M. J

    1989-02-01

    An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrixensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar

  18. Proliferation and mineralization ability of dental pulp cells derived from primary and permanent teeth

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2011-04-01

    Full Text Available The aims of this study were to compare the proliferation and mineralization ability of CFU-F selected dental pulp cellsderived from primary and permanent teeth. Those cells were isolated by enzyme digestion and analyzed for their colonyformingcapacity. The cell proliferation was measured by the MTT assay on day 1, day 7, and day14. Alizarin Red S stainingwas used to detect mineralized nodule formation of the cells on day 7, 14, 21, and 28. Proliferation of CFU-F selected pulpcells from primary teeth was significantly higher than that of CFU-F selected pulp cells from permanent teeth in all periods ofthe experiment. Upon cultured cells in mineralization inducing media, the mineralized nodules appeared as early as day 14 inCFU-F selected pulp cells from primary teeth and MG-63, whereas those of CFU-F selected pulp cells from permanent teethcan be found at day 21. On day 21 and day 28, the mineralized nodules of the CFU-F selected pulp cells from the primaryteeth group were more than those in the CFU-F selected pulp cells from the permanent teeth group. Mineralized noduleformation in the CFU-F selected pulp cells from the permanent teeth group appeared later and were less than those ofCFU-F selected pulp cells from primary teeth. However, mineralized nodules in CFU-F selected pulp cells from the permanentteeth group increased very fast after their appearance. Those results suggest that CFU-F selected pulp cells from primaryteeth had a higher proliferation rate and mineralization rate when compared to CFU-F selected pulp cells from permanentteeth.

  19. Newly-derived neuroblastoma cell lines propagated in serum-free media recapitulate the genotype and phenotype of primary neuroblastoma tumours.

    Science.gov (United States)

    Bate-Eya, Laurel T; Ebus, Marli E; Koster, Jan; den Hartog, Ilona J M; Zwijnenburg, Danny A; Schild, Linda; van der Ploeg, Ida; Dolman, M Emmy M; Caron, Huib N; Versteeg, Rogier; Molenaar, Jan J

    2014-02-01

    Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Adult fast myosin pattern and Ca2+-induced slow myosin pattern in primary skeletal muscle culture

    Science.gov (United States)

    Kubis, Hans-Peter; Haller, Ernst-August; Wetzel, Petra; Gros, Gerolf

    1997-01-01

    A primary muscle cell culture derived from newborn rabbit muscle and growing on microcarriers in suspension was established. When cultured for several weeks, the myotubes in this model develop the completely adult pattern of fast myosin light and heavy chains. When Ca2+ ionophore is added to the culture medium on day 11, raising intracellular [Ca2+] about 10-fold, the myotubes develop to exhibit properties of an adult slow muscle by day 30, expressing slow myosin light as well as heavy chains, elevated citrate synthase, and reduced lactate dehydrogenase. The remarkable plasticity of these myotubes becomes apparent, when 8 days after withdrawal of the ionophore a marked slow-to-fast transition, as judged from the expression of isomyosins and metabolic enzymes, occurs. PMID:9108130

  1. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie [Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2 (Ireland); Smith, Anthony J. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom); Fleming, Garry J.P. [Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin (Ireland); Cooper, Paul R. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom)

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  2. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    International Nuclear Information System (INIS)

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-01-01

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2

  3. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  4. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  5. Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alice L Yu

    Full Text Available The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE induces cell loss, cellular senescence, and extracellular matrix (ECM synthesis in primary human retinal pigment epithelial (RPE cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J, connective tissue growth factor (CTGF, fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3-4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.

  6. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri.

    Science.gov (United States)

    Miessen, Katrin; Einspanier, Ralf; Schoen, Jennifer

    2012-03-19

    Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  7. Cell culture experiments planned for the space bioreactor

    Science.gov (United States)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  8. Advances in cell culture: anchorage dependence

    Science.gov (United States)

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  9. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  10. Mitochondrial activity assessed by cytofluorescence after in-vitro-irradiation of primary rat brain cultures

    International Nuclear Information System (INIS)

    Cervos-Navarro, J.; Hamdorf, G.

    1993-01-01

    Mitochondria play a key role in cell homeostasis and are the first cell organells affected by ionizing irradiation, as it was proved by previous electron microscopic investigations. In order to observe functional parameters of mitochondria after low-dose irradiation, primary rat brain cultures (prepared from 15-day-old rat fetuses) were irradiated from a 60 Co-source with 0.5 and 1 Gy at the age of 2 or 7 days in vitro (div). Cytofluorescence measurement was made by a Cytofluor trademark2350 using Rhodamine 123. This fluorescent dye is positively charged and accumulates specifically in the mitochondria of living cells without cytotoxic effect. Since its retention depends on the negative membrane potential as well as the proton gradient that exists across the inner mitochondrial membrane, Rhodamine 123 accumulation reflects the status of mitochondrial activity as a whole. After irradiation with 0.5 and 1 Gy on day 2 in culture there was a decrease in Rhodamine uptake in the irradiated cultures during the first week after the irradiation insult which reached minimum values after 3 days. Rhodamine uptake increased during the following period and finally reached the values of the control cultures. In the second experiment with irradiated cultures on day 7 and the same doses of 0.5 and 1 Gy the accumulation of Rhodamine decreased only initially then increased tremendously. After both doses values of Rhodamine-accumulation were higher than the control level. The results demonstrated that irradiation caused a change in mitochondrial activity depending on the time of irradiation. The dramatic increase over the control levels after irradiation on day 7 in vitro is attributed to the fact that at this time synapses have already developed. Deficiency of mitochondrial activity as well as hyperactivity and the consequent change in energy production may lead to changes in neuronal metabolism including an increase in production of free radicals

  11. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  12. Glucosamine exposure reduces proteoglycan synthesis in primary human endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Trine M. Reine

    2016-09-01

    Full Text Available Purpose: Glucosamine (GlcN supplements are promoted for medical reasons, for example, for patients with arthritis and other joint-related diseases. Oral intake of GlcN is followed by uptake in the intestine, transport in the circulation and thereafter delivery to chondrocytes. Here, it is postulated to have an effect on synthesis and turnover of extracellular matrix constituents expressed by these cells. Following uptake in the intestine, serum levels are transiently increased, and the endothelium is exposed to increased levels of GlcN. We investigated the possible effects of GlcN on synthesis of proteoglycans (PGs, an important matrix component, in primary human endothelial cells. Methods: Primary human endothelial cells were cultured in vitro in medium with 5 mM glucose and 0–10 mM GlcN. PGs were recovered and analysed by western blotting, or by SDS-PAGE, gel chromatography or ion-exchange chromatography of 35S-PGs after 35S-sulphate labelling of the cells. Results: The synthesis and secretion of 35S-PGs from cultured endothelial cells were reduced in a dose- and time-dependent manner after exposure to GlcN. PGs are substituted with sulphated glycosaminoglycan (GAG chains, vital for PG function. The reduction in 35S-PGs was not related to an effect on GAG chain length, number or sulphation, but rather to the total expression of PGs. Conclusion: Exposure of endothelial cells to GlcN leads to a general decrease in 35S-PG synthesis. These results suggest that exposure to high levels of GlcN can lead to decreased matrix synthesis, contrary to what has been claimed by supporters of such supplements.

  13. PDGF activates K-Cl cotransport through phosphoinositide 3-kinase and protein phosphatase-1 in primary cultures of vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2005-07-15

    K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1.

  14. New Gene Markers for Metabolic Processes and Homeostasis in Porcine Buccal Pouch Mucosa during Cells Long Term-Cultivation—A Primary Culture Approach

    Directory of Open Access Journals (Sweden)

    Marta Dyszkiewicz-Konwińska

    2018-03-01

    Full Text Available The oral mucosal tissue is a compound structure composed of morphologically and physiologically different cell types. The morphological modification involves genetically determined lifespan, which may be recognized as the balance between cell survival and apoptosis. Although the biochemical processes and pathways in oral mucosa, with special regards to drug transport, delivery, and metabolism, are well known, the cellular physiological homeostasis in this tissue requires further investigation. The porcine buccal pouch mucosal cells (BPMCs collected from 20 pubertal crossbred Landrace gilts, were used in this study. Immediately after recovery, the oral mucosa was separated micro-surgically, and treated enzymatically. The dispersed cells were transferred into primary in vitro culture systems for a long-term cultivation of 30 days. After each step of in vitro culture (IVC, the cells were collected for isolation of total RNA at 24 h, 7, 15, and 30 days of IVC. While the expression was analyzed for days 7, 15, and 30, the 24th hour was used as a reference for outcome calibration. The gene expression profile was determined using Affymetrix microarray assays and necessary procedures. In results, we observed significant up-regulation of SCARB1, PTGS2, DUSP5, ITGB3, PLK2, CCL2, TGFB1, CCL8, RFC4, LYN, ETS1, REL, LIF, SPP1, and FGER1G genes, belonging to two ontological groups, namely “positive regulation of metabolic process”, and “regulation of homeostatic process” at 7 day of IVC as compared to down-regulation at days 15 and 30. These findings suggest that the metabolic processes and homeostatic regulations are much more intense in porcine mucosal cells at day 7 of IVC. Moreover, the increased expression of marker genes, for both of these ontological groups, may suggest the existence of not only “morphological lifespan” during tissue keratinization, but also “physiological checkpoint” dedicated to metabolic processes in oral mucosa

  15. U-shape suppressive effect of phenol red on the epileptiform burst activity via activation of estrogen receptors in primary hippocampal culture.

    Directory of Open Access Journals (Sweden)

    Xu Liu

    Full Text Available Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.

  16. Generation of HIV-1 primary isolates representative of plasma variants using the U87.CD4 cell line

    NARCIS (Netherlands)

    Heeregrave, Edwin J.; Ampofo, William K.; Tetteh, John K. A.; Ofori, Michael; Ofori, Sampson B.; Shah, Akram S.; Pollakis, Georgios; Paxton, William A.

    2010-01-01

    In order to obtain HIV-1 primary isolates in settings with limited access to donor PBMCs, a culture method was developed where patient PBMCs infected with HIV-1 were cultured together with U87.CD4 cells. Using this non-laborious method, it is possible to harvest virus solely on the basis of syncytia

  17. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    Science.gov (United States)

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  18. Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation.

    Science.gov (United States)

    Thorlin, Thorleif; Rouquette, Jean-Michel; Hamnerius, Yngve; Hansson, Elisabeth; Persson, Mikael; Björklund, Ulrika; Rosengren, Lars; Rönnbäck, Lars; Persson, Mikael

    2006-08-01

    The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be

  19. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    Science.gov (United States)

    Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat

    2011-12-01

    A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.

  20. A Low Ethanol Dose Affects all Types of Cells in Mixed Long-Term Embryonic Cultures of the Cerebellum

    DEFF Research Database (Denmark)

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi

    2010-01-01

    of this ethanol dose, cultures were exposed for 30 days. After this period, virtually no neurons or myelinating oligodendrocytes were present in the ethanol-treated cultures. In conclusion, chronic exposure to ethanol, even at small doses, dramatically and persistently affects normal development........ We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative...... to control. By 11 days, a reduction in the number of viable cells was observed without an accompanying change in caspase-3 activity (marker of apoptotic cell death), suggesting changes in cell proliferation. As the proportion of nestin-positive cells was higher in the ethanol-treated cultures after 5 days...

  1. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  2. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  3. The evolution of chicken stem cell culture methods.

    Science.gov (United States)

    Farzaneh, M; Attari, F; Mozdziak, P E; Khoshnam, S E

    2017-12-01

    1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.

  4. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  5. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures.

    Science.gov (United States)

    Davari, Maliheh; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Sanie-Jahromi, Fateme; Ghaderi, Shima; Kanavi, Mozhgan Rezaei; Samiei, Shahram; Akrami, Hassan; Haghighi, Massoud; Javidi-Azad, Fahimeh

    2013-01-01

    Retinal pigment epithelial (RPE) cells are capable of differentiating into retinal neurons when induced by the appropriate growth factors. Amniotic fluid contains a variety of growth factors that are crucial for the development of a fetus. In this study, the effects of human amniotic fluid (HAF) on primary RPE cell cultures were evaluated. RPE cells were isolated from the globes of postnatal human cadavers. The isolated cells were plated and grown in DMEM/F12 with 10% fetal bovine serum. To confirm the RPE identity of the cultured cells, they were immunocytochemically examined for the presence of the RPE cell-specific marker RPE65. RPE cultures obtained from passages 2-7 were treated with HAF and examined morphologically for 1 month. To determine whether retinal neurons or progenitors developed in the treated cultures, specific markers for bipolar (protein kinase C isomer α, PKCα), amacrine (cellular retinoic acid-binding protein I, CRABPI), and neural progenitor (NESTIN) cells were sought, and the amount of mRNA was quantified using real-time PCR. Treating RPE cells with HAF led to a significant decrease in the number of RPE65-positive cells, while PKCα- and CRABPI-positive cells were detected in the cultures. Compared with the fetal bovine serum-treated cultures, the levels of mRNAs quantitatively increased by 2-, 20- and 22-fold for NESTIN, PKCα, and CRABPI, respectively. The RPE cultures treated with HAF established spheres containing both pigmented and nonpigmented cells, which expressed neural progenitor markers such as NESTIN. This study showed that HAF can induce RPE cells to transdifferentiate into retinal neurons and progenitor cells, and that it provides a potential source for cell-based therapies to treat retinal diseases.

  6. Neurogenic and neurotrophic effects of BDNF peptides in mouse hippocampal primary neuronal cell cultures.

    Directory of Open Access Journals (Sweden)

    Maria del Carmen Cardenas-Aguayo

    Full Text Available The level of brain-derived neurotrophic factor (BDNF, a member of the neurotrophin family, is down regulated in Alzheimer's disease (AD, Parkinson's disease (PD, depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5 corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18 primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706 of the TrkB receptor, which could be blocked by the Trk's inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H(2O(2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated.

  7. Establishment and culture optimization of a new type of pituitary immortalized cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kokubu, Yuko [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Asashima, Makoto [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577 (Japan); Kurisaki, Akira, E-mail: akikuri@hotmail.com [Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki 305-8562 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562 (Japan)

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  8. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.

    1984-01-01

    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  9. Cultural democracy: the way forward for primary care of hard to reach New Zealanders.

    Science.gov (United States)

    Finau, Sitaleki A; Finau, Eseta

    2007-09-01

    The use of cultural democracy, the freedom to practice one's culture without fear, as a framework for primary care service provision is essential for improved health service in a multi cultural society like New Zealand. It is an effective approach to attaining health equity for all. Many successful health ventures are ethnic specific and have gone past cultural competency to the practice of cultural democracy. That is, the services are freely taking on the realities of clients without and malice from those of other ethnicities. In New Zealand the scientific health service to improve the health of a multi cultural society are available but there is a need to improve access and utilization by hard to reach New Zealanders. This paper discusses cultural democracy and provide example of how successful health ventures that had embraced cultural democracy were implemented. It suggests that cultural democracy will provide the intellectual impetus and robust philosophy for moving from equality to equity in health service access and utilization. This paper would provide a way forward to improved primary care utilization, efficiency, effectiveness and equitable access especially for the hard to reach populations. use the realities of Pacificans in New Zealand illustrate the use of cultural democracy, and thus equity to address the "inverse care law" of New Zealand. The desire is for primary care providers to take cognizance and use cultural democracy and equity as the basis for the design and practice of primary health care for the hard to reach New Zealanders.

  10. T cell-B cell interactions in primary immunodeficiencies.

    Science.gov (United States)

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  11. Cultural activities in primary school students' spare time

    Directory of Open Access Journals (Sweden)

    Mikanović Brane

    2014-01-01

    Full Text Available Culture is a form of creative expression of a human being through which he reshapes the world, acts on it adding it value and creating new, cultural values. A human being is able to create a product of culture only when he is free and able to express himself. A contemporary man can incorporate various cultural activities into his spare time. They are especially important when they concern children and young people: regardless of whether they are used in institutional settings or in spare time. The authors conducted an empirical research of students' assumptions and beliefs concerning cultural activities in their free time. The sample comprised 233 fifth grade students. The findings show that in their spare time fifth graders: engage in various cultural activities; that students who live in urban areas attend more cultural events; that students have the opportunity to engage in extra-curricular activities in the area of culture - join cultural and artistic groups and associations and engage in various creative pursuits at different levels of participation (as consumers, full participants; and that students' attitudes concerning the influence of parents and teachers on the selection of cultural activities to be pursued do not vary greatly by gender, location or school achievement. Cultural activities do play a significant part in the free time of primary school students. This is why it is important that guidance provided in school and in spare time should be brought in greaer harmony.

  12. X-ray induction of immortalization in primary rat embryo cells associated with and without tumorigenicity

    International Nuclear Information System (INIS)

    Sierra, E.; Oberley, L.W.; Guernsey, D.L.

    1985-01-01

    Cultures of primary rat embryo fibroblasts were irradiated with X-rays (3 Gy). After 14 days the majority of colonies in both irradiated and control plates had senesced. Surviving clones were ring isolated from irradiated and control plates and grown in culture. A phase of rapid proliferation after isolation was observed, followed by a decline (crisis) leading to senescence. Several clones from the irradiated plates were able to recover from this crisis and gave rise to continuous cell lines, while all colonies from control plates senesced. Three types of cells have been identified among the irradiated survivors: (1) immortal fully transformed, capable of growth in soft agar (Aga/sup +/) and tumor formation, (2) immortal normal, not able to grow in soft agar (Aga/sup -/) and nontumorigenic, and (3) immortal Aga/sup -/ cells which progressed to malignancy (Aga/sup +/, tumorigenicity) after further sub-culture. These data support the suggestion that X-rays can induce immortalization of mammalian cells in the absence of tumorigenicity, in addition to (and separate from) the fully tumorigenetic state

  13. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Gridelli, Bruno; Gerlach, Jörg C

    Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.

  14. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  15. Characterization of cell cultures derived from Lutzomyia spinicrassa (Diptera: Psychodidae) and their susceptibility to infection with Leishmania (Viannia) braziliensis.

    Science.gov (United States)

    Zapata Lesmes, Angela Cristina; Cárdenas Castro, Estrella; Bello, Felio

    2005-12-01

    The sand fly Lutzomyia spinicrassa (Morales, Osorno-Mesa, Osorno & de Hoyos, 1969) is a vector of Leishmania (Viannia) braziliensis, an etiological agent of cutaneous leishmaniasis in Colombia. The present article describes, for the first time, the morphological, karyotypical, and isozymatic characteristics of cell cultures derived from L. Spinicrassa embryonic tissues as well as the interaction of L. Braziliensis with these cell cultures. L. Spinicrassa embryonated eggs and neonate larvae were taken for tissue explants. These were seeded in Grace, L-15, Grace/L-15, MM/VP12, and MK/VP12 culture media. The pH range in these media was 6.7 to 6.9 and the cultures were incubated at 28 degrees C. The MHOM/CO/86/CL250 strain of L. Braziliensis was used for experimental infection of cell cultures of L. Spinicrassa. Cell growth was achieved in L-15 medium and a confluent monolayer was obtained 180 days after the embryonated eggs were explanted. The cell morphology of the primary cell cultures was initially heterogeneous, but in the confluent monolayer of these cell cultures and in the subcultures the predominant cell types were later fibroblast-like and epithelial-like. Cultured cells were predominantly diploid (2n=8); however, significant percentages of aneuploids were also recorded. The cell culture isozyme patterns of L. Spinicrassa coincided with pupae samples from the same species. Promastigote forms of L. Braziliensis could invade cells and transform into amastigote-like forms inside them. The characteristics of cell cultures derived from L. Spinicrassa embryonic tissues were determined. These cultures emerge as a new model to study the life-cycle of L. Braziliensis.

  16. Establishment and characterization of a differentiated epithelial cell culture model derived from the porcine cervix uteri

    Directory of Open Access Journals (Sweden)

    Miessen Katrin

    2012-03-01

    Full Text Available Abstract Background Cervical uterine epithelial cells maintain a physiological and pathogen-free milieu in the female mammalian reproductive tract and are involved in sperm-epithelium interaction. Easily accessible, differentiated model systems of the cervical epithelium are not yet available to elucidate the underlying molecular mechanisms within these highly specialized cells. Therefore, the aim of the study was to establish a cell culture of the porcine cervical epithelium representing in vivo-like properties of the tissue. Results We tested different isolation methods and culture conditions and validated purity of the cultured cells by immunohistochemistry against keratins. We could reproducibly culture pure epithelial cells from cervical tissue explants. Based on a morphology score and the WST-1 Proliferation Assay, we optimized the growth medium composition. Primary porcine cervical cells performed best in conditioned Ham's F-12, containing 10% FCS, EGF and insulin. After cultivation in an air-liquid interface for three weeks, the cells showed a discontinuously multilayered phenotype. Finally, differentiation was validated via immunohistochemistry against beta catenin. Mucopolysaccharide production could be shown via alcian blue staining. Conclusions We provide the first suitable protocol to establish a differentiated porcine epithelial model of the cervix uteri, based on easily accessible cells using slaughterhouse material.

  17. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  18. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.

    Science.gov (United States)

    Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew

    2015-12-01

    The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Good Cell Culture Practice for stem cells and stem-cell-derived models.

    Science.gov (United States)

    Pamies, David; Bal-Price, Anna; Simeonov, Anton; Tagle, Danilo; Allen, Dave; Gerhold, David; Yin, Dezhong; Pistollato, Francesca; Inutsuka, Takashi; Sullivan, Kristie; Stacey, Glyn; Salem, Harry; Leist, Marcel; Daneshian, Mardas; Vemuri, Mohan C; McFarland, Richard; Coecke, Sandra; Fitzpatrick, Suzanne C; Lakshmipathy, Uma; Mack, Amanda; Wang, Wen Bo; Yamazaki, Daiju; Sekino, Yuko; Kanda, Yasunari; Smirnova, Lena; Hartung, Thomas

    2017-01-01

    The first guidance on Good Cell Culture Practice (GCCP) dates back to 2005. This document expands this to include aspects of quality assurance for in vitro cell culture focusing on the increasingly diverse cell types and culture formats used in research, product development, testing and manufacture of biotechnology products and cell-based medicines. It provides a set of basic principles of best practice that can be used in training new personnel, reviewing and improving local procedures, and helping to assure standard practices and conditions for the comparison of data between laboratories and experimentation performed at different times. This includes recommendations for the documentation and reporting of culture conditions. It is intended as guidance to facilitate the generation of reliable data from cell culture systems, and is not intended to conflict with local or higher level legislation or regulatory requirements. It may not be possible to meet all recommendations in this guidance for practical, legal or other reasons. However, when it is necessary to divert from the principles of GCCP, the risk of decreasing the quality of work and the safety of laboratory staff should be addressed and any conclusions or alternative approaches justified. This workshop report is considered a first step toward a revised GCCP 2.0.

  20. Measurement tools and process indicators of patient safety culture in primary care. A mixed methods study by the LINNEAUS collaboration on patient safety in primary care

    Science.gov (United States)

    Parker, Dianne; Wensing, Michel; Esmail, Aneez; Valderas, Jose M

    2015-01-01

    ABSTRACT Background: There is little guidance available to healthcare practitioners about what tools they might use to assess the patient safety culture. Objective: To identify useful tools for assessing patient safety culture in primary care organizations in Europe; to identify those aspects of performance that should be assessed when investigating the relationship between safety culture and performance in primary care. Methods: Two consensus-based studies were carried out, in which subject matter experts and primary healthcare professionals from several EU states rated (a) the applicability to their healthcare system of several existing safety culture assessment tools and (b) the appropriateness and usefulness of a range of potential indicators of a positive patient safety culture to primary care settings. The safety culture tools were field-tested in four countries to ascertain any challenges and issues arising when used in primary care. Results: The two existing tools that received the most favourable ratings were the Manchester patient safety framework (MaPsAF primary care version) and the Agency for healthcare research and quality survey (medical office version). Several potential safety culture process indicators were identified. The one that emerged as offering the best combination of appropriateness and usefulness related to the collection of data on adverse patient events. Conclusion: Two tools, one quantitative and one qualitative, were identified as applicable and useful in assessing patient safety culture in primary care settings in Europe. Safety culture indicators in primary care should focus on the processes rather than the outcomes of care. PMID:26339832

  1. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  2. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    Science.gov (United States)

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  3. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    Science.gov (United States)

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  4. The Risk Evaluation of Tungsten Oxide Nanoparticles in Cultured Rat Liver Cells for Its Safe Applications in Nanotechnology

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-08-01

    Full Text Available Tungsten (VI oxide (WO3 nanoparticles (NPs are used for many industrial purposes in everyday life. However, their effects on human health have not been sufficiently evaluated. Therefore, the present study was designed to investigate the toxicity potentials of various concentrations (0 to 1000 ppm of WO3NPs (<100 nm particle size in cultured primary rat hepatocytes. The results of cell viability assay showed that the higher concentrations of dispersed WO3 NPs (300, 500 and 1000 ppm caused significant (p<0.05 decreases of cell viability. Also, dose dependent negative alterations were observed in oxidative status and antioxidant capacity levels after the application of WO3 in cultured rat primary hepatocytes. The results of genotoxicity tests revealed that these NPs did not cause significant increases of micronucleated hepatocytes (MNHEPs but increased 8-oxo-2-deoxyguanosine (8-OH-dG levels as compared to the control culture.

  5. Liver Cell Culture Devices

    NARCIS (Netherlands)

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver

  6. Primary clear cell sarcoma of bone

    International Nuclear Information System (INIS)

    Choi, J.H.; Gu, M.J.; Kim, M.J.; Bae, Y.K.; Choi, W.H.; Shin, D.S.; Cho, K.H.

    2003-01-01

    Clear cell sarcoma is a rare soft tissue sarcoma of young adults with melanocytic differentiation. It occurs predominantly in the soft tissue of extremities, typically involving tendons and aponeuroses. Primary clear cell sarcoma of bone is extremely rare. We report a case of primary clear cell sarcoma of the right first metatarsal in a 48-year-old woman and provide a literature review of the entity. (orig.)

  7. Exploring Culture in Locally Published English Textbooks for Primary Education in Turkey

    Science.gov (United States)

    Kirkgöz, Yasemin; Agçam, Reyhan

    2011-01-01

    Since language and culture are closely interwoven, the integration of culture into textbooks used for teaching English as a second/foreign language has become a widely accepted phenomenon. This study investigates the cultural elements in locally published English textbooks used for Turkish primary schools following two major curriculum innovations…

  8. Bystander-mediated genomic instability after high LET radiation in murine primary haemopoietic stem cells

    International Nuclear Information System (INIS)

    Bowler, Deborah A.; Moore, Stephen R.; Macdonald, Denise A.; Smyth, Sharon H.; Clapham, Peter; Kadhim, Munira A.

    2006-01-01

    Communication between irradiated and unirradiated (bystander) cells can result in responses in unirradiated cells that are similar to responses in their irradiated counterparts. The purpose of the current experiment was to test the hypothesis that bystander responses will be similarly induced in primary murine stem cells under different cell culture conditions. The experimental systems used here, co-culture and media transfer, are similar in that they both restrict communication between irradiated and bystander cells to media borne factors, but are distinct in that with the media transfer technique, cells can only communicate after irradiation, and with co-culture, cells can communication before, during and after irradiation. In this set of parallel experiments, cell type, biological endpoint, and radiation quality and dose, were kept constant. In both experimental systems, clonogenic survival was significantly decreased in all groups, whether irradiated or bystander, suggesting a substantial contribution of bystander effects (BE) to cell killing. Genomic instability (GI) was induced under all radiation and bystander conditions in both experiments, including a situation where unirradiated cells were incubated with media that had been conditioned for 24 h with irradiated cells. The appearance of delayed aberrations (genomic instability) 10-13 population doublings after irradiation was similar to the level of initial chromosomal damage, suggesting that the bystander factor is able to induce chromosomal alterations soon after irradiation. Whether these early alterations are related to those observed at later timepoints remains unknown. These results suggest that genomic instability may be significantly induced in a bystander cell population whether or not cells communicate during irradiation

  9. Characterization of glucocerebrosidase in peripheral blood cells and cultured blastoid cells

    NARCIS (Netherlands)

    Aerts, J. M.; Heikoop, J.; van Weely, S.; Donker-Koopman, W. E.; Barranger, J. A.; Tager, J. M.; Schram, A. W.

    1988-01-01

    We have characterized glucocerebrosidase in various cell types of peripheral blood of control subjects and in cultured human blastoid cells. The intracellular level of glucocerebrosidase in cultured blastoid cells (10-30 nmol substrate hydrolyzed/h.mg protein) resembles closely values observed for

  10. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  11. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.

    Science.gov (United States)

    Campbell, Jessica K; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2006-02-08

    This work describes the development and utilization of a plant cell culture production approach to biosynthesize and radiolabel phytoene and phytofluene for prostate cancer cell culture studies. The herbicide norflurazon was added to established cell suspension cultures of tomato (Lycopersicon esculentum cv. VFNT cherry), to induce the biosynthesis and accumulation of the lycopene precursors, phytoene and phytofluene, in their natural isomeric forms (15-cis-phytoene and two cis-phytofluene isomers). Norflurazon concentrations, solvent carrier type and concentration, and duration of culture exposure to norflurazon were screened to optimize phytoene and phytofluene synthesis. Maximum yields of both phytoene and phytofluene were achieved after 7 days of treatment with 0.03 mg norflurazon/40 mL fresh medium, provided in 0.07% solvent carrier. Introduction of 14C-sucrose to the tomato cell culture medium enabled the production of 14C-labeled phytoene for subsequent prostate tumor cell uptake studies. In DU 145 prostate tumor cells, it was determined that 15-cis-phytoene and an oxidized product of phytoene were taken up and partially metabolized by the cells. The ability to biosynthesize, radiolabel, and isolate these carotenoids from tomato cell cultures is a novel, valuable methodology for further in vitro and in vivo investigations into the roles of phytoene and phytofluene in cancer chemoprevention.

  12. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    Science.gov (United States)

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  14. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  15. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    Science.gov (United States)

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of

  16. Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures

    Directory of Open Access Journals (Sweden)

    Terro F

    2011-06-01

    Full Text Available Abstract Background Inflammation may be involved in the pathogenesis of Alzheimer's disease (AD. There has been little success with anti-inflammatory drugs in AD, while the promise of anti-inflammatory treatment is more evident in experimental models. A new anti-inflammatory strategy requires a better understanding of molecular mechanisms. Among the plethora of signaling pathways activated by β-amyloid (Aβ peptides, the nuclear factor-kappa B (NF-κB pathway could be an interesting target. In virus-infected cells, double-stranded RNA-dependent protein kinase (PKR controls the NF-κB signaling pathway. It is well-known that PKR is activated in AD. This led us to study the effect of a specific inhibitor of PKR on the Aβ42-induced inflammatory response in primary mixed murine co-cultures, allowing interactions between neurons, astrocytes and microglia. Methods Primary mixed murine co-cultures were prepared in three steps: a primary culture of astrocytes and microglia for 14 days, then a primary culture of neurons and astrocytes which were cultured with microglia purified from the first culture. Before exposure to Aβ neurotoxicity (72 h, co-cultures were treated with compound C16, a specific inhibitor of PKR. Levels of tumor necrosis factor-α (TNFα, interleukin (IL-1β, and IL-6 were assessed by ELISA. Levels of PT451-PKR and activation of IκB, NF-κB and caspase-3 were assessed by western blotting. Apoptosis was also followed using annexin V-FITC immunostaining kit. Subcellular distribution of PT451-PKR was assessed by confocal immunofluorescence and morphological structure of cells by scanning electron microscopy. Data were analysed using one-way ANOVA followed by a Newman-Keuls' post hoc test Results In these co-cultures, PKR inhibition prevented Aβ42-induced activation of IκB and NF-κB, strongly decreased production and release of tumor necrosis factor (TNFα and interleukin (IL-1β, and limited apoptosis. Conclusion In spite of the

  17. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.

    Science.gov (United States)

    Sepúlveda-Ramírez, Silvia P; Toledo-Jacobo, Leslie; Henson, John H; Shuster, Charles B

    2018-05-15

    In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.

    Science.gov (United States)

    Liu, Yuehong; Li, Shufeng

    2015-01-01

    Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.

  19. Mutation in cultured mammalian cells

    International Nuclear Information System (INIS)

    Nakamura, N.; Okada, S.

    1982-01-01

    Mammalian cell cultures were exposed to gamma-rays at various dose rates. Dose-rate effects were observed in cultured somatic cells of the mouse for cell killing and mutations resistant to 6-thioguanine (TGsup(r)) and to methotrexate (MTXsup(r)). Linear quadratic model may be applied to cell killing and TGsup(r) mutations in some cases but can not explain the whole data. Results at low doses with far low dose-rate were not predictable from data at high doses with acute or chronic irradiation. Radioprotective effects of dimethyl sulfoxide were seen only after acute exposure but not after chronic one, suggesting that damages by indirect action of radiations may be potentially reparable by cells. TGsup(r) mutations seem to contain gross structural changes whereas MTXsup(r) ones may have smaller alterations. (Namekawa, K.)

  20. Cell-free DNA in a three-dimensional spheroid cell culture model

    DEFF Research Database (Denmark)

    Aucamp, Janine; Calitz, Carlemi; Bronkhorst, Abel J.

    2017-01-01

    Background Investigating the biological functions of cell-free DNA (cfDNA) is limited by the interference of vast numbers of putative sources and causes of DNA release into circulation. Utilization of three-dimensional (3D) spheroid cell cultures, models with characteristics closer to the in vivo...... cultures can serve as effective, simplified in vivo-simulating “closed-circuit” models since putative sources of cfDNA are limited to only the targeted cells. In addition, cfDNA can also serve as an alternative or auxiliary marker for tracking spheroid growth, development and culture stability. Biological...... significance 3D cell cultures can be used to translate “closed-circuit” in vitro model research into data that is relevant for in vivo studies and clinical applications. In turn, the utilization of cfDNA during 3D culture research can optimize sample collection without affecting the stability of the growth...

  1. Gene expression changes induced by estrogen and selective estrogen receptor modulators in primary-cultured human endometrial cells: signals that distinguish the human carcinogen tamoxifen

    International Nuclear Information System (INIS)

    Pole, Jessica C.M.; Gold, Leslie I.; Orton, Terry; Huby, Russell; Carmichael, Paul L.

    2005-01-01

    Tamoxifen has long been the endocrine treatment of choice for women with breast cancer and is now employed for prophylactic use in women at high risk from breast cancer. Other selective estrogen receptor modulators (SERMs), such as raloxifene, mimic some of tamoxifen's beneficial effects and, like tamoxifen, exhibit a complex mixture of organ-specific estrogen agonist and antagonistic properties. However, accompanying the positive effects of tamoxifen has been the emergence of evidence for an increased risk of endometrial cancer associated with its use. A more complete understanding of the mechanism(s) of SERM carcinogenicity and endometrial effects is therefore required. We have sought to compare and characterise the transcript profile of tamoxifen, raloxifene and the agonist estradiol in human endometrial cells. Using primary cultures of human endometria, to best emulate the in vivo responses in a manageable in vitro system, we have shown 230 significant changes in gene expression for epithelial cultures and 83 in stromal cultures, either specific to 17β-estradiol, tamoxifen or raloxifene, or changed across more than one of the treatments. Considering the transcriptome as a whole, the endometrial responses to raloxifene or tamoxifen were more similar than either drug was to 17β-estradiol. Treatment of endometrial cultures with tamoxifen resulted in the largest number of gene changes relative to control cultures and a high proportion of genes associated with regulation of gene transcription, cell-cycle control and signal transduction. Tamoxifen-specific changes that might point towards mechanisms for its proliferative response in the endometrium included changes in retinoblastoma and c-myc binding proteins, the APCL, dihydrofolate reductase (DHFR) and E2F1 genes and other transcription factors. Tamoxifen was also found to give rise to the highest number of gene expression changes common to those that characterise malignant endometria. It is anticipated that this

  2. Cell culture techniques in honey bee research

    Science.gov (United States)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  3. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  4. Nurses' perceptions of workplace culture in primary health care in Finland.

    Science.gov (United States)

    Hahtela, N; Paavilainen, E; McCormack, B; Helminen, M; Slater, P; Suominen, T

    2015-12-01

    This study aimed to describe nurses' perceptions of workplace culture, especially in regard to stress levels, job satisfaction and the practice environment in primary health care. Health care is facing many challenges related to its attractiveness as a place of employment and the maintenance of a sufficient workforce supply. Previous studies report increasing rates of nurse job dissatisfaction and intentions to leave their current positions both in Finland and also globally. Improving workplace culture is thus vital in meeting the challenges related to recruitment and retention. A cross-sectional descriptive design was used to describe nurses' perceptions of workplace culture. Data were collected by questionnaire from 22 units in nine primary healthcare organizations in Finland, and analysed using descriptive and inferential statistics. Most of the respondents indicated that they were not certain whether their workplace culture was either positive or negative. Profession, age and work shift characteristics had an effect on the respondents' perceptions of workplace culture. Younger licensed practical and registered nurses assessed their workplace culture more positively, whereas older registered nurses and those working rotating rosters viewed workplace culture more negatively. The findings suggest that both unit and demographic characteristics affect workplace culture. This survey highlights that a positive workplace culture is one of the key factors in retaining and recruiting nurses, and provides an essential evidence that may be considered by other healthcare organizations. Nurse managers and healthcare leaders need to address workload management and take into account the related variables that affect a unit's workplace culture. © 2015 International Council of Nurses.

  5. Association between expression of cumulus expansion markers and real-time proliferation of porcine follicular granulosa cells in a primary cell culture model.

    Science.gov (United States)

    Ciesiółka, S; Budna, J; Bryja, A; Kranc, W; Chachuła, A; Dyszkiewicz-Konwińska, M; Piotrowska, H; Bukowska, D; Antosik, P; Bruska, M; Brüssow, K P; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    Folliculogenesis is a compound process that involves both ovarian follicle growth and oocyte development, which is tightly attached to the follicular wall. During this process, cells that form the follicle structure undergo substantial morphological and molecular modifications that finally lead to differentiation and specialization of ovarian follicular cells. The differentiation of ovarian cells encompasses formation of follicle, which is composed of theca (TCs), mural granulosa (GCs), and cumulus cells (CCs). It was previously hypothesized that GCs and CCs represent undifferentiated and highly specialized follicular cells, respectively, which may have similar primordial cell origins. In this study, we investigated the expression pattern of cumulus expansion markers such as COX2, HAS2, PTX3, and TSG6 in porcine GCs during short-term, in vitro culture. We hypothesized that these genes may display an important function in GCs in relation to cellular real-time proliferation. The expression pattern of COX2, HAS2, PTX3, and TSG6 was evaluated after using RT-qPCR in relation to confocal microscopy observations of protein expression and distribution during real-time proliferation of porcine follicular GCs. The COX2 and HAS2 mRNAs were highly expressed after 120 h of in vitro culture (IVC), whereas PTX3 and TSG6 mRNAs were increased during the first 24-48 h of IVC (P less than 0.001, P less than 0.01). Conversely, all of the encoded proteins were highly expressed after 144-168 h of IVC as compared to other culture periods (P less than 0.001, P less than 0.01). When analyzing the realtime proliferation of GCs in vitro, we observed a logarithmic increase of cell proliferation between 0 h and 120 h of IVC. However, after 120-168 h of IVC, the cells reached the lag phase of proliferation. Since it is well accepted that porcine GCs undergo luteinization shortly after 24-48 h of IVC, the expression pattern of investigated genes indicated that Cox2 and Has2 are independent from

  6. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    International Nuclear Information System (INIS)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous β-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in 35 SO 4 -labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed

  7. Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, D.K.; Minami, S. (Washington State Univ., Pullman (USA))

    1990-01-01

    To characterize the effect of ethanol on the hypothalamic {beta}-endorphin-containing neurons, rat fetal hypothalamic neurons were maintained in primary culture, and the secretion of {beta}-endorphin ({beta}-EP) was determined after ethanol challenges. Constant exposure to ethanol at doses of 6-50 mM produced a dose-dependent increase in basal secretion of {beta}-EP from these cultured cells. These doses of ethanol did not produce any significant effect on cell viability, DNA or protein content. The stimulated secretion of {beta}-EP following constant ethanol exposure is short-lasting. However, intermittent ethanol exposures maintained the ethanol stimulatory action on {beta}-EP secretion for a longer time. The magnitude of the {beta}-EP response to 50 mM ethanol is similar to that of the {beta}-EP response to 56 mM of potassium. Ethanol-stimulated {beta}-EP secretion required extracellular calcium and was blocked by a calcium channel blocker; a sodium channel blocker did not affect ethanol-stimulated secretion. These results suggest that the neuron culture system is a useful model for studying the cellular mechanisms involved in the ethanol-regulated hypothalamic opioid secretion.

  8. Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions

    NARCIS (Netherlands)

    Hiemstra, P.S.; Grootaers, G.G.; Does, A.M. van der; Krul, C.A.M.; Kooter, I.M.

    2018-01-01

    The epithelium that covers the conducting airways and alveoli is a primary target for inhaled toxic substances, and therefore a focus in inhalation toxicology. The increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the

  9. Microfluidic engineered high cell density three-dimensional neural cultures

    Science.gov (United States)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities =104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p 90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  10. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available Lung cancer (LC with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC, large cell carcinoma (LCC, squamous cell carcinoma (SCC and adenocarcinoma (AC. We identified a small population of cells strongly positive for CD44 (CD44(high and a main population which was either weakly positive or negative for CD44 (CD44(low/-. Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44(highCD90(+ sub-population. Moreover, these CD44(highCD90(+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44(highCD90(+ population a good candidate for the lung CSCs. Both CD44(highCD90(+ and CD44(highCD90(- cells in the PLCCL derived from SCC formed spheroids, whereas the CD44(low/- cells were lacking this potential. These results indicate that CD44(highCD90(+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44(high sub-population.

  11. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    Science.gov (United States)

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  12. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  13. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Directory of Open Access Journals (Sweden)

    Louiza Bohn Thomsen

    Full Text Available In vitro blood-brain barrier (BBB models based on primary brain endothelial cells (BECs cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP and breast cancer related protein (BCRP, and the transferrin receptor.

  14. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts

    DEFF Research Database (Denmark)

    Hejbøl, Eva Kildall; Sellathurai, Jeeva; Nair, Prabha Damodaran

    2017-01-01

    Scaffolds are materials used for delivery of cells for regeneration of tissues. They support three-dimensional organization and improve cell survival. For the repair of small skeletal muscles, injections of small volumes of cells are attractive, and injectable scaffolds for delivery of cells offer...... a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed......, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid...

  15. Cell Culture as an Alternative in Education.

    Science.gov (United States)

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  16. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  17. Correlation of clinical data with fallopian tube specimen immune cells and tissue culture capacity.

    Science.gov (United States)

    Ramraj, Satish Kumar; Smith, Katie M; Janakiram, Naveena B; Toal, Coralee; Raman, Ankita; Benbrook, Doris Mangiaracina

    2018-06-01

    Human fallopian tube fimbria secretory epithelial cells (hFTSECs) are considered an origin of ovarian cancer and methods for their culture from fallopian tube specimens have been reported. Our objective was to determine whether characteristics of the donors or surgeries were associated with the capacities of fimbria specimens to generate hFTSEC cultures or their immune profiles. There were no surgical complications attributable to fallopian tube removal. Attempts to establish primary hFTSEC cultures were successful in 37 of 55 specimens (67%). Success rates did not differ significantly between specimens grouped by patient or surgery characteristics. Established cultures could be revived after cryopreservation and none became contaminated with microorganisms. Two cultures evaluated for long term growth senesced between passages 10 and 15. M1 macrophages were the predominant cell type, while all other immune cells were present at much lower percentages. IL-10 and TGF-β exhibited opposing trends with M1 and M2 macrophages. Plasma IL-10 levels exhibited significant positive correlation with patient age. In conclusion, fallopian tube fimbria specimens exhibit a pro-inflammatory phenotype and can be used to provide a source of hFTSECs that can be cultured for a limited time regardless of the donor patient age or race, or the type of surgery performed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Fujiwara, Daisuke; Kato, Kazunori; Nohara, Shigeo; Iwanuma, Yoshimi; Kajiyama, Yoshiaki

    2013-01-01

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present in esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9 expression

  19. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Adamchik, Y; Frantseva, M V; Weisspapir, M; Carlen, P L; Perez Velazquez, J L

    2000-04-01

    Organotypic brain slice cultures have been used in a variety of studies on neurodegenerative processes [K.M. Abdel-Hamid, M. Tymianski, Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins, J. Neurosci. 17, 1997, pp. 3538-3553; D.W. Newell, A. Barth, V. Papermaster, A.T. Malouf, Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures, J. Neurosci. 15, 1995, pp. 7702-7711; J.L. Perez Velazquez, M.V. Frantseva, P.L. Carlen, In vitro ischemia promotes glutamate mediated free radical generation and intracellular calcium accumulation in pyramidal neurons of cultured hippocampal slices, J. Neurosci. 23, 1997, pp. 9085-9094; L. Stoppini, L.A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37, 1991, pp. 173-182; R.C. Tasker, J.T. Coyle, J.J. Vornov, The regional vulnerability to hypoglycemia induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK 801, J. Neurosci. 12, 1992, pp. 4298-4308.]. We describe two methods to induce traumatic cell damage in hippocampal organotypic cultures. Primary trauma injury was achieved by rolling a stainless steel cylinder (0.9 g) on the organotypic slices. Secondary injury was followed after dropping a weight (0.137 g) on a localised area of the organotypic slice, from a height of 2 mm. The time course and extent of cell death were determined by measuring the fluorescence of the viability indicator propidium iodide (PI) at several time points after the injury. The initial localised impact damage spread 24 and 67 h after injury, cell death being 25% and 54%, respectively, when slices were kept at 37 degrees C. To validate these methods as models to assess neuroprotective strategies, similar insults were applied to slices at relatively low temperatures (30

  20. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis

    International Nuclear Information System (INIS)

    Frame, Fiona M.; Savoie, Huguette; Bryden, Francesca; Giuntini, Francesca; Mann, Vincent M.; Simms, Matthew S.; Boyle, Ross W.; Maitland, Norman J.

    2015-01-01

    In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer

  1. Three-dimensional organoid culture reveals involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells.

    Science.gov (United States)

    Yoshida, Takahiro; Sopko, Nikolai A; Kates, Max; Liu, Xiaopu; Joice, Gregory; McConkey, David J; Bivalacqua, Trinity J

    2018-02-16

    There has been increasing awareness of the importance of three-dimensional culture of cancer cells. Tumor cells growing as multicellular spheroids in three-dimensional culture, alternatively called organoids, are widely believed to more closely mimic solid tumors in situ . Previous studies concluded that the Wnt/β-catenin pathway is required for regeneration of the normal urothelium after injury and that β-catenin is upregulated in human bladder cancers, but no clear evidence has been advanced to support the idea that the Wnt/β-catenin pathway is directly involved in deregulated proliferation and the other malignant characteristics of bladder cancer cells. Here we report that the Wnt/β-catenin pathway activator, CHIR99021, promoted proliferation of established human bladder cancer cell lines when they were grown in organoid culture but not when they were grown in conventional adherent cultures. CHIR99021 activated Wnt/β-catenin pathway in bladder cancer cell lines in organoid culture. CHIR99021 also stimulated proliferation and the Wnt/b-catenin pathway in primary human bladder cancer organoids. RNAi-mediated knockdown of β-catenin blocked growth of organoids. The effects of CHIR99021 were associated with decreased expression of the urothelial terminal differentiation marker, cytokeratin 20. Our data suggest that the Wnt/β-catenin pathway is required for the proliferation of bladder cancer cells in three-dimensional organoid culture and provide a concrete example of why organoid culture is important for cancer research.

  2. Study on the toxic effects induced by different arsenicals in primary cultured rat astroglia

    International Nuclear Information System (INIS)

    Jin Yaping; Sun Guifan; Li Xin; Li Gexin; Lu Chunwei; Qu Long

    2004-01-01

    Arsenic toxicity is a global health problem affecting millions of people. The objectives of this study were to determine if the toxic effects on primary cultured rat astroglia would be induced by different arsenicals. Based on alamarBlue assay and the single cell gel electrophoresis (SCGE, comet assay), the cell viability and DNA damage in the cells exposed to different arsenicals were evaluated. Treatment of astroglia with methylated arsenicals, that is, pentavalent monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), resulted in no obvious changes in cell viability and DNA damage at micromolar concentrations. However, treatment of astroglia with inorganic arsenicals, that is, arsenite and arsenate, caused decreased cell viability and increased DNA damage at micromolar levels, and showing a dose-related decrease in mean alamarBlue reduced rate and a dose-related increase in mean comet length. Our study is therefore highly suggestive for a link between inorganic exposure and cellular toxicity or DNA damage. Based on the results of this study, the toxic effects induced by arsenite were stronger than those induced by arsenate

  3. PECULIARITIES OF SECONDARY METABOLITES BIOSYNTHESIS IN PLANT CELL CULTURES

    Directory of Open Access Journals (Sweden)

    A.M. NOSOV

    2014-06-01

    Full Text Available metabolites formation in plant cell cultures of Panax spp., (ginsenosides; Dioscorea deltoidea (steroid glycosides; Ajuga reptans, Serratula coronata, Rhaponticum carthamoides (ecdisteroids; Polyscias spp., (triterpene glycosides, Taxus spp. (taxoids, Stevia rebaudiana (diterpene steviol-glycosides, Stephania glabra (alkaloids. They are some regular trends of secondary metabolites synthesis in the plant cell culture:It can be noted the stable synthesis of the compound promoting cell proliferation. Indeed, cell cultures of Dioscorea deltoidea were demonstrated to accumulate only furostanol glycosides, which promoted cell division. Furostanol glycoside content of Dioscorea strain DM-0.5 was up to 6 - 12% by dry biomass.Panax ginseng and P. japonicus plant cell cultures synthesize as minimum seven triterpene glycosides (ginsenosides, the productivity of these compounds was up to 6.0 - 8.0% on dry biomass.By contrast, the detectable synthesis of diterpene steviol-glycosides in cultivated cells of Stevia rebaudiana initiated in the mixotrophic cultures during chloroplast formation only.Despite these differences, or mainly due to them, plant cell cultures have become an attractive source of phytochemicals in alternative to collecting wild plants. It provides a guideline to bioreactor-based production of isoprenoids using undifferentiated plant cell cultures

  4. Multiweek cell culture project for use in upper-level biology laboratories.

    Science.gov (United States)

    Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D

    2012-06-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.

  5. Substrate utilisation by plant-cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M W

    1982-01-01

    Plant cell cultures have been grown on a wide range of carbon sources in addition to the traditional ones of sucrose and glucose. Biomass yields and growth rates vary greatly between the different carbon sources and there is a variation in response between different cell cultures to individual carbon sources. Some attempts have been made to grow cell cultures on 'waste' and related carbon sources, such as lactose, maltose, starch, molasses and milk whey. Only maltose was found to support growth to anything near the levels observed with glucose and sucrose. In the case of molasses carbon source cell growth was either non-existent or only just measurable. All the data point to glucose as being the most suitable carbon source, principally on the grounds of biomass yield and growth rate. It should be noted, however, that other carbon sources do appear to have a major (positive) influence on natural product synthesis. Uptake into the cell is an important aspect of carbohydrate utilisation. There is strong evidence that from disaccharides upwards, major degradation to smaller units occurs before uptake. In some cases the necessary enzymes appear to be excreted into the culture broth, in others they may be located within the cell wall; invertase that hydrolyses sucrose is a good example. Once the products of carbohydrate degradation and mobilisation enter the cell they may suffer one of two fates, oxidation or utilisation for biosynthesis. The precise split between these two varies depending on such factors as cell growth rate, cell size, nutrient broth composition and carbohydrate status of the cells. In general rapidly growing cells have a high rate of oxidation, whereas cells growing more slowly tend to be more directed towards biosynthesis. Carbohydrate utilisation is a key area of study, underpinning as it does both biomass yield and natural product synthesis. (Refs. 13).

  6. Problems of culture of written expression in primary school

    Directory of Open Access Journals (Sweden)

    Zlatić Marina V.

    2014-01-01

    Full Text Available This paper investigates the issue of the culture of written expression in primary school students. Starting from the fact that teaching practices increasingly points to the fact that knowledge of rules of writing in primary school students presents the weakest link in teaching Serbian language, we sought to describe the problem, point to the possible causes, propose measures and illustrate all this on concrete examples of students' essays. Our microinvestigation showed that primary school students display considerably poorer mastery of rules of writing than previously thought, to the extent that it presents a serious obstacle in language teaching as well as in other areas of educational process.

  7. Biona-C Cell Culture pH Monitoring System

    Science.gov (United States)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  8. Eyewitness Culture and History: Primary Written Sources. The Iconoclast.

    Science.gov (United States)

    McMurtry, John

    1995-01-01

    Asserts that contemporary history and historiography is "official" history that ignores the daily struggles of people for their continued survival. Argues that, while public illiteracy has nearly disappeared, individuals are ignorant of the wealth of primary-source materials of other cultures' histories. (CFR)

  9. Interspecies differences in metabolism of arsenic by cultured primary hepatocytes

    International Nuclear Information System (INIS)

    Drobna, Zuzana; Walton, Felecia S.; Harmon, Anne W.; Thomas, David J.; Styblo, Miroslav

    2010-01-01

    Biomethylation is the major pathway for the metabolism of inorganic arsenic (iAs) in many mammalian species, including the human. However, significant interspecies differences have been reported in the rate of in vivo metabolism of iAs and in yields of iAs metabolites found in urine. Liver is considered the primary site for the methylation of iAs and arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in this pathway. Thus, the As3mt-catalyzed methylation of iAs in the liver determines in part the rate and the pattern of iAs metabolism in various species. We examined kinetics and concentration-response patterns for iAs methylation by cultured primary hepatocytes derived from human, rat, mice, dog, rabbit, and rhesus monkey. Hepatocytes were exposed to [ 73 As]arsenite (iAs III ; 0.3, 0.9, 3.0, 9.0 or 30 nmol As/mg protein) for 24 h and radiolabeled metabolites were analyzed in cells and culture media. Hepatocytes from all six species methylated iAs III to methylarsenic (MAs) and dimethylarsenic (DMAs). Notably, dog, rat and monkey hepatocytes were considerably more efficient methylators of iAs III than mouse, rabbit or human hepatocytes. The low efficiency of mouse, rabbit and human hepatocytes to methylate iAs III was associated with inhibition of DMAs production by moderate concentrations of iAs III and with retention of iAs and MAs in cells. No significant correlations were found between the rate of iAs methylation and the thioredoxin reductase activity or glutathione concentration, two factors that modulate the activity of recombinant As3mt. No associations between the rates of iAs methylation and As3mt protein structures were found for the six species examined. Immunoblot analyses indicate that the superior arsenic methylation capacities of dog, rat and monkey hepatocytes examined in this study may be associated with a higher As3mt expression. However, factors other than As3mt expression may also contribute to the interspecies differences

  10. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning

    International Nuclear Information System (INIS)

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-01-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO_2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different "1"3"7Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662 keV photons greater than 80%. LIBIS complies with high safety standards. - Highlights: • A gamma irradiation facility for chronic exposures of cells was set up at the Istituto Superiore di Sanità. • The dose rate uniformity and the percentage of primary 662 keV photons on the sample are greater than 92% and 80%, respectively. • The GEANT4 code was used to design the facility. • Good agreement between simulation and experimental dose rate measurements has been obtained. • The facility will allow to safely investigate different issues about low dose rate effects on cultured cells.

  11. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  12. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    Science.gov (United States)

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  13. Protein biosynthesis in cultured human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  14. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System.

    Science.gov (United States)

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells.

  15. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system.

    Science.gov (United States)

    Chon, Brian H; Lee, Esther J; Jing, Liufang; Setton, Lori A; Chen, Jun

    2013-10-02

    Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) - originating from the Wharton's jelly - remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system. HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture. Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin-rich culture system (prior study

  16. 21 CFR 864.2280 - Cultured animal and human cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in vitro cultivated cell lines from the tissue of humans or other animals which are used in various diagnostic...

  17. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  18. Physically disconnected non-diffusible cell-to-cell communication between neuroblastoma SH-SY5Y and DRG primary sensory neurons.

    Science.gov (United States)

    Chaban, Victor V; Cho, Taehoon; Reid, Christopher B; Norris, Keith C

    2013-01-01

    Cell-cell communication occurs via a variety of mechanisms, including long distances (hormonal), short distances (paracrine and synaptic) or direct coupling via gap junctions, antigen presentation, or ligand-receptor interactions. We evaluated the possibility of neuro-hormonal independent, non-diffusible, physically disconnected pathways for cell-cell communication using dorsal root ganglion (DRG) neurons. We assessed intracellular calcium ([Ca(2+)]) in primary culture DRG neurons that express ATP-sensitive P2X3, capsaicinsensitive TRPV1 receptors modulated by estradiol. Physically disconnected (dish-in-dish system; inner chamber enclosed) mouse DRG were cultured for 12 hours near: a) media alone (control 1), b) mouse DRG (control 2), c) human neuroblastoma SHSY-5Y cells (cancer intervention), or d) mouse DRG treated with KCl (apoptosis intervention). Chemosensitive receptors [Ca(2+)](i) signaling did not differ between control 1 and 2. ATP (10 μM) and capsaicin (100nM) increased [Ca(2+)](i) transients to 425.86 + 49.5 nM, and 399.21 ± 44.5 nM, respectively. 17β-estradiol (100 nM) exposure reduced ATP (171.17 ± 48.9 nM) and capsaicin (175.01±34.8 nM) [Ca(2+)](i) transients. The presence of cancer cells reduced ATP- and capsaicin-induced [Ca(2+)](i) by >50% (pcommunication.

  19. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    Science.gov (United States)

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  20. Differential marker expression by cultures rich in mesenchymal stem cells

    Science.gov (United States)

    2013-01-01

    Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471