WorldWideScience

Sample records for primary copper smelting

  1. Aspects of energy reduction by autogenous copper production in the copper smelting plant Bor

    International Nuclear Information System (INIS)

    Najdenov, Ivan; Raić, Karlo T.; Kokeza, Gordana

    2012-01-01

    This work presents a comparative analysis of the energy consumption during copper production by the “standard” procedure (roasting in a fluo–solid reactor and smelting in a reverberatory furnace) in the Smelting Plant in Bor with modern autogenous procedures. All forms of expended energy were reduced to primary energy or to the same energy form, i.e., to the energy equivalent of the process (EEP), the raw material and the process materials. In addition, the energy equivalent of the process and waste products (water vapour, thermal energy and similar) were balanced. To complete the consumption of all energy generating products in copper production, they were reduced to conditional fuel (coal equivalent = 29.3 MJ/kg). Additionally, this study suggests replacement of the existing technology by an appropriate autogenous procedure and considers the prospects for further development of mining and metallurgy in Bor. Estimates of development perspectives for copper production should be comprehensive, based on complete and relevant data, as well as on real considerations of future development in world production. -- Highlights: ► “Standard” autogenous copper production in the Smelting Plant, Bor, Serbia. ► Comparation of energy consumption in “standard” with other autogenous procedures. ► All forms of energy are reduced to energy equivalent and conditional fuel. ► Replacement of existing technology with the appropriate autogenous procedure. ► Perspectives of further development of mining and metallurgy in Bor.

  2. Recirculation of Chilean copper smelting dust with high impurities contents to the smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Fujisawa, T. [Nagoya Univ., Nagoya (Japan). EcoTopia Science Inst.; Montenegro, V. [Nagoya Univ., Nagoya (Japan). Dept. of Materials Science and Engineering

    2007-07-01

    Dust generated during the copper smelting process is generally stabilized using hydrometallurgical methods as it contains high concentrations of arsenic. In this laboratory study, dust was recirculated during the smelting process in order to recover more copper and decrease dust emissions while recovering more copper. The behaviour of impurities and their influence on matte quality was also investigated. Industrial matte, flue dust, slag, and copper concentrates from a Chilean smelter were used as test materials. Dust recirculation tests were conducted in a simulated electric furnace. Off-gases were collected in a reaction tube, and the condensed volatile matter, slag, and matte phases were analyzed for their elemental content by inductively coupled plasma atomic emission spectrometry. The distribution of arsenic (As); antimony (Sb), bismuth (Bi), lead (Pb), and zinc (Zn) were investigated by varying the amounts of dust recirculating to the smelting stage with 21 per cent of the oxygen. Results showed that distributions of all analyzed elements increased with recirculation. It was concluded that copper can be recovered using the dust recirculation technique. However, impurities may limit the efficacy of the dust recirculation process. 6 refs., 3 tabs., 4 figs.

  3. 76 FR 9409 - National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting

    Science.gov (United States)

    2011-02-17

    ... National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting; Proposed Rule #0;#0... Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting AGENCY: Environmental Protection... standards for hazardous air pollutants (NESHAP) for Primary Lead Smelting to address the results of the...

  4. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  5. Mathematical model of whole-process calculation for bottom-blowing copper smelting

    Science.gov (United States)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Li, He-song

    2017-11-01

    The distribution law of materials in smelting products is key to cost accounting and contaminant control. Regardless, the distribution law is difficult to determine quickly and accurately by mere sampling and analysis. Mathematical models for material and heat balance in bottom-blowing smelting, converting, anode furnace refining, and electrolytic refining were established based on the principles of material (element) conservation, energy conservation, and control index constraint in copper bottom-blowing smelting. Simulation of the entire process of bottom-blowing copper smelting was established using a self-developed MetCal software platform. A whole-process simulation for an enterprise in China was then conducted. Results indicated that the quantity and composition information of unknown materials, as well as heat balance information, can be quickly calculated using the model. Comparison of production data revealed that the model can basically reflect the distribution law of the materials in bottom-blowing copper smelting. This finding provides theoretical guidance for mastering the performance of the entire process.

  6. Mercury distribution characteristics in primary manganese smelting plants

    International Nuclear Information System (INIS)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-01-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1–99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. - Graphical abstract: 1. Lack of data on mercury (Hg) distribution in manganese smelters. 2. Mass distribution of Hg released from 3 plants (as normalized values) were made as follows by measurements. 3. Information of distribution of Hg in Manganese smelters would be used for emission in to air and releases to other streams for the nation and globe in UNEP mercury report. - Highlights: • The mass balance study by on-site measurement from primary manganese smelting plants was made at first time in the world. • Hg distribution and main input and release pathways of Hg from primary manganese smelting plants could be found as the first time. • Gas temperature in bag filter affects Hg behavior and speciation changes in APCDs. • National inventory of Hg emssion has been updated with new data. - Mercury distribution in manganese smelting plant was investigated as the first measurements at commercial plants in the world. National Hg release

  7. Development and Application of SKSSIM Simulation Software for the Oxygen Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-10-01

    Full Text Available The oxygen bottom blown copper smelting process (SKS process is a newly developed intense smelting process, which has been widely applied to copper production in China. A multiphase equilibrium model for the SKS process was established based on its mechanism characteristics and the principle of Gibbs energy minimization, and an efficient simulation software—SKSSIM (SKS Simulation—was developed based on the model. Industrial data from the SKS process were used to compare with the calculated data from the SKSSIM software. The calculated data on the compositions of slag and matte as well as the distribution ratios of minor elements (such as Pb, Zn, As, Sb and Bi among the slags, mattes and off-gases were in good agreement with the actual plant data. Accordingly, the SKSSIM simulation software has the potentail to be used for the prediction of smelting production and for optimizing the operating parameters of the SKS process.

  8. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  9. Effects of a reducer type on copper flash smelting slag decopperisation

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2015-01-01

    Full Text Available In the paper, results of investigations on coke dust, anthracite dust and coal flotation concentrate application in the technology of copper flash smelting slag processing are presented. The results show that the selected reducers can be used as substitutes for the conventional coke.

  10. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-08-01

    Full Text Available The control of arsenic, a toxic and carcinogenic element, is an important issue for all copper smelters. In this work, the reaction mechanism and distribution behavior of arsenic in the bottom blown copper smelting process (SKS process were investigated and compared to the flash smelting process. There are obvious differences of arsenic distribution in the SKS process and flash process, resulting from the differences of oxygen potentials, volatilizations, smelting temperatures, reaction intensities, and mass transfer processes. Under stable production conditions, the distributions of arsenic among matte, slag, and gas phases are 6%, 12%, and 82%, respectively. Less arsenic is reported in the gas phase with the flash process than with the SKS process. The main arsenic species in gas phase are AsS (g, AsO (g, and As2 (g. Arsenic exists in the slag predominantly as As2O3 (l, and in matte as As (l. High matte grade is harmful to the elimination of arsenic to gas. The changing of Fe/SiO2 has slight effects on the distributions of arsenic. In order to enhance the removal of arsenic from the SKS smelting system to the gas phase, low oxygen concentration, low ratios of oxygen/ore, and low matte grade should be chosen. In the SKS smelting process, no dust is recycled, and almost all dust is collected and further treated to eliminate arsenic and recover valuable metals by other process streams.

  11. Energy Consumption in Copper Smelting: A New Asian Horse in the Race

    Science.gov (United States)

    Coursol, P.; Mackey, P. J.; Kapusta, J. P. T.; Valencia, N. Cardona

    2015-05-01

    After a marked improvement in energy consumption in copper smelting during the past few decades, technology development has been slowing down in the Americas and in Europe. Innovation, however, is still required to further reduce energy consumption while complying with stringent environmental regulations. The bottom blowing smelting technology being developed in China shows success and promise. The general configuration of the bath smelting vessel, the design of high-pressure injectors, and the concentrate addition system are described and discussed in this article with respect to those used in other technologies. The bottom blowing technology is shown to be operating at a temperature in the range of 1160-1180°C, which is the lowest reported temperature range for a modern copper smelting process. In this article, it is suggested that top feeding of filter cake concentrate, which is also used in other technologies, has a positive effect in reducing the oxidation potential of the slag ( p(O2)) while increasing the FeS solubility in slag. This reduction in p(O2) lowers the magnetite liquidus of the slag, while the increased solubility of FeS in slag helps toward reaching very low copper levels in flotation slag tailings. The application of high-pressure injectors allows for the use of high levels of oxygen enrichment with no requirements for punching. Using a standard modeling approach from the authors' previous studies, this article discusses these aspects and compares the energy consumption of the bottom blowing technology with that of other leading flash and bath smelting technologies, namely: flash smelting, Noranda/Teniente Converter, TSL (Isasmelt [Glencore Technology Pty. Ltd., Brisbane, Queensland, Australia]/Outotec), and the Mitsubishi Process (Mitsubishi Materials Corporation, Tokyo, Japan).

  12. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    Directory of Open Access Journals (Sweden)

    Qing-qing Pan

    2018-01-01

    Full Text Available The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing flotation. However, Fe3+ ions would increase the surface potential, reduce the S2− adsorption, generate more sulfur element, and therefore inhibit the sulphidizing flotation.

  13. Distinguishing between native and smelted coppers using PIXE spectrometry: a case history from early colonial America

    International Nuclear Information System (INIS)

    Fleming, S.J.; Swann, C.P.

    2000-01-01

    During the recent excavation of a native American village at Governor's Land, in Virginia, two burials were unearthed, each of which contained a jumble of human bones, some fabric and a large number of copper tube beads. PIXE analysis of a representative group of these beads showed that about one-third of them were shaped from pieces of native copper, while the remainder were fashioned from scraps of smelted copper. Since the latter must have come from Europe, these data place the village's occupation in the decade either side of A.D. 1607, when the English first settled at nearby Jamestown

  14. Copper smelting and sediment pollution in Bronze Age China.

    Science.gov (United States)

    Zhang, S.; Dong, G.

    2017-12-01

    The emergence and diffusion of metallurgical technology had tremendous environmental consequence, however, the spatial-temporal consequences of the metallurgy during Bronze Age are not clear in China. Here, Xray fluorescence (XRF) measurement and principal component analysis (PCA) were conducted on heavy metal element (Cu, Ni, Pb, Zn, Cr and As) concentrations (HMEC) of natural and anthropogenic sediment samples systematically collected from 22 late Neolithic-Bronze Age sites in Hexi corridor to explore the potential for subcontinental-wide changes in soil geochemistry. We place this data within the context of the Cu concentrations in lacustrine sediments located near smelting and mining centers in Bronze Age China. Our results show that variation of HMEC in anthropogenic sediment in Hexi corridor is contemporaneous with the increases of the Cu concentrations in lacustrine sediment around 4000 BP. Comparative data suggests the metallurgical production diffused from the Hexi corridor to central and southwestern China around 3600 BP. We argue that sediment pollution is not an isolated phenomenon during the Bronze Age China, but rather occurred on regional scales and is closely related to the intensity of smelting activities.

  15. Statistical modeling of copper losses in the silicate slag of the sulfide concentrate smelting process

    Directory of Open Access Journals (Sweden)

    Savic Marija V.

    2015-09-01

    Full Text Available This article presents the results of the statistical modeling of copper losses in the silicate slag of the sulfide concentrates smelting process. The aim of this study was to define the correlation dependence of the degree of copper losses in the silicate slag on the following parameters of technological processes: SiO2, FeO, Fe3O4, CaO and Al2O3 content in the slag and copper content in the matte. Multiple linear regression analysis (MLRA, artificial neural networks (ANNs and adaptive network based fuzzy inference system (ANFIS were used as tools for mathematical analysis of the indicated problem. The best correlation coefficient (R2 = 0.719 of the final model was obtained using the ANFIS modeling approach.

  16. Mercury distribution characteristics in primary manganese smelting plants.

    Science.gov (United States)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-08-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1-99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. Copyright © 2017. Published by Elsevier Ltd.

  17. Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance

    Directory of Open Access Journals (Sweden)

    Olof Forsén

    2017-10-01

    Full Text Available The primary production of sulfide concentrates includes smelting to copper matte or blister copper, conversion of matte to blister copper, and refining to copper. Smelting, converting, and fire-refining can use a limited amount of secondary materials. Molten copper can effectively dissolve many metals, from valuable noble metals to harmful impurities such as bismuth. However, some of the impurity metals in copper are valuable in other applications. In this paper, we outline the main material flows in copper smelting and electrorefining and describe how minor metals can be recovered from secondary raw materials using copper as a carrier material. We will use a system integrated approach to define the factors that affect the recovery of different metals and copper quality. Metals typical in copper production are used as examples, like noble metals, As, Bi, Se, and Te, including metals in the EU critical raw materials list like PGM and Sb.

  18. Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy.

    Science.gov (United States)

    Hu, Jicheng; Zheng, Minghui; Nie, Zhiqiang; Liu, Wenbin; Liu, Guorui; Zhang, Bing; Xiao, Ke

    2013-01-01

    Secondary copper production has received much attention for its high emissions of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) reported in previous studies. These studies focused on the estimation of total PCDD/F and polychlorinated biphenyl (PCB) emissions from secondary copper smelters. However, large variations in PCDD/F and PCB emissions reported in these studies were not analyzed and discussed further. In this study, stack gas samples at different smelting stages (feeding-fusion, oxidation and deoxidization) were collected from four plants to investigate variations in PCDD/F and PCB emissions and characteristics during the secondary copper smelting process. The results indicate that PCDD/F emissions occur mainly at the feeding-fusion stage and these emissions contribute to 54-88% of the total emissions from the secondary copper smelting process. The variation in feed material and operating conditions at different smelting stages leads to the variation in PCDD/F emissions during the secondary copper smelting process. The total PCDD/F and PCB discharge (stack gas emission+fly ash discharge) is consistent with the copper scrap content in the raw material in the secondary copper smelters investigated. On a production basis of 1 ton copper, the total PCDD/F and dl-PCB discharge was 102, 24.8 and 5.88 μg TEQ t(-1) for the three plants that contained 100%, 30% and 0% copper scrap in their raw material feed, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Arsenic exposure levels in relation to different working departments in a copper mining and smelting plant

    Science.gov (United States)

    Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan

    2015-10-01

    The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.

  20. Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags

    Science.gov (United States)

    Mostaghel, Sina; Samuelsson, Caisa; Björkman, Bo

    2013-03-01

    An iron-silicate slag, from a zinc-copper smelting process, and mixtures of this slag with 5wt%, 10wt%, and 15wt% alumina addition were re-melted, semi-rapidly solidified, and characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction. The FactSage™6.2 thermodynamic package was applied to compare the stable phases at equilibrium conditions with experimental characterization. A standard European leaching test was also carried out for all samples to investigate the changes in leaching behaviour because of the addition of alumina. Results show that the commonly reported phases for slags from copper and zinc production processes (olivine, pyroxene, and spinel) are the major constituents of the current samples. A correlation can be seen between mineralogical characteristics and leaching behaviours. The sample with 10wt% alumina addition, which contains high amounts of spinels and lower amounts of the other soluble phases, shows the lowest leachabilities for most of the elements.

  1. Geochemical Study on an Abandoned Copper Smelting Plant Using Rare Earth Elements

    Science.gov (United States)

    Sun, S. H.

    2017-12-01

    The Shuei Nan Dong Copper Smelting Plant smelting is located on the northern coast of New Taipei City, Taiwan. The plant built in 1906 for but has been shut down since 1987. However, the watershed is continuing to discharge acid mine water into the sea; and, the acid mine drainage releases high amounts of sulfate, heavy metals without any treatment. In this study, the water samples were sequentially collected along the main channel and its tributaries in the watershed. The results of hydrochemical analysis show that the untreated inflow water can be characterized with low pH value of 80% of the total variance and almost all chemical components have high loadings in the PC. Therefore, the hydrochemical properties in the watershed are mainly dominated by the mixing process between main channel and the major tributary but the geochemical reactions during flow down the channel is insignificant. Rare earth elements (REE) are an excellent tracer, which can indicate sources of chemical components and geochemical reactions in water. The analysis results demonstrate two distinct REE patterns. The water with low REE can be characterized by prominent Eu positive anomaly and Ce negative anomaly, which may result from the alteration of Na-plagioclase in sandstone and oxidation reaction when contact with air, respectively. On the contrary, the water with high REE shows only minor Ce negative anomaly and insignificant Eu positive anomaly. In addition, there is an enrichment of middle REE in high-REE water, which is quite different with the REE pattern of pyrite. According to the Grawunder's study (2014), it corresponds to the complexation to sulphite during pyrite oxidation. It is worth noting that REE show no considerable fractionation along the channel and confirms the results from PCA. It can be derived that the water may not reached equilibrium condition. A simple aerated retention pool could dramatically reduce the pollutants due to coprecipitation of iron oxide and aluminum

  2. A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace

    Science.gov (United States)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun

    2018-05-01

    The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.

  3. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.

    Science.gov (United States)

    Hillman, Aubrey L; Abbott, Mark B; Yu, JunQing; Bain, Daniel J; Chiou-Peng, TzeHuey

    2015-03-17

    Geochemical measurements on well-dated sediment cores from Lake Er (Erhai) are used to determine the timing of changes in metal concentrations over 4500 years in Yunnan, a borderland region in southwestern China noted for rich mineral deposits but with inadequately documented metallurgical history. Our findings add new insight into the impacts and environmental legacy of human exploitation of metal resources in Yunnan history. We observe an increase in copper at 1500 BC resulting from atmospheric emissions associated with metallurgy. These data clarify the chronological issues related to links between the onset of Yunnan metallurgy and the advent of bronze technology in adjacent Southeast Asia, subjects that have been debated for nearly half a century. We also observe an increase from 1100 to 1300 AD in a number of heavy metals including lead, silver, zinc, and cadmium from atmospheric emissions associated with silver smelting. Culminating during the rule of the Mongols, known as the Yuan Dynasty (1271-1368 AD), these metal concentrations approach levels three to four times higher than those from industrialized mining activity occurring within the catchment today. Notably, the concentrations of lead approach levels at which harmful effects may be observed in aquatic organisms. The persistence of this lead pollution over time created an environmental legacy that likely contributes to known issues in modern day sediment quality. We demonstrate that historic metallurgical production in Yunnan can cause substantial impacts on the sediment quality of lake systems, similar to other paleolimnological findings around the globe.

  4. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    Science.gov (United States)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  5. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  6. [Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V

    2013-01-01

    The leaching process of copper and zinc from copper converter slag with sulphuric solutions of trivalent iron sulphate obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70 degrees C, an initial concentration of trivalent iron in the leaching solution of 10.1 g/L, and a solid-phase content in the suspension of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc in the solution. The possibility of the bioregeneration of trivalent iron in the solution obtained after the chemical leaching of slag by iron-oxidizingacidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.

  7. Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: Implications for emission management and human health

    Energy Technology Data Exchange (ETDEWEB)

    Csavina, Janae [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Taylor, Mark P. [Environmental Science, Faculty of Science, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia); Félix, Omar [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Rine, Kyle P. [Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@email.arizona.edu [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Betterton, Eric A., E-mail: betterton@atmo.arizona.edu [Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721 (United States)

    2014-09-15

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed. - Highlights: • Lead and copper smelting produce significant atmospheric concentrations of lead and arsenic. • Atmospheric lead and arsenic concentrations depend on particle size. • Lead isotopic analysis can be used to assess source of atmospheric contamination from smelters.

  8. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    Science.gov (United States)

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.

  9. Recirculation effect of Chilean copper smelting dust with high impurities contents on the impurity distributions during smelting process; Efecto de la recirculacion de polvo de fundicion de cobre de Chile con altos contenidos de impurezas en la distribucion de impurezas durante el proceso de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Montenegro, V.; Sano, H.; Fujisawa, T.

    2010-07-01

    Usually, dust generated during the copper smelting process by the Teniente Converter and the Flash Smelting Furnaces in Chile, contains high concentrations of copper, zinc, arsenic, antimony and other metals. In general, the dust is recirculated to the smelting process or it is directed to hydrometallurgical process for recovery and stabilization. However, in recent years the generation of dust has increased because of the degradation of the quality of the concentrate. In addition, the environmental regulations have become stricter. It is therefore desirable to understand the behavior of those elements, when the smelting process operates with recirculation of dust. In this study, the effect of dust recirculation to smelting process on the distribution among the matte, slag and gas phases was evaluated, as a function of matte grade, amount of recirculated dust, oxygen enrichment and temperature. It was found that the concentration in the matte of the impurities such as arsenic, antimony and bismuth, increased slightly with recirculation of dust. On the other hand, the concentration of lead and zinc depend of the direct recirculation of dust to the process. Additionally, it was found that high concentrations of arsenic and antimony in the dust may lead to the formation and precipitation of copper arsenates and other metals (speiss), which may generates important operational problems. (Author) 15 refs.

  10. Smelting crucibles to reduce copper minerals in the Iberian Peninsula and in southern France

    Directory of Open Access Journals (Sweden)

    Rovira, Salvador

    2002-06-01

    Full Text Available As was shown in Spain by the end of the 1980s, the use of common earthenware vessels as containers for prehistoric copper metallurgy has also been discovered in France. The authors propose in this article a synthesis of the knowledge concerning the use of this technology in Spain, its chronological and geographical frameworks and the more relevant mineralogical and metallurgical features. All this allows us to show the effectiveness and simplicity of the resources used to practice this early metallurgy. The finds in France are more modest and rarely have been analysed properly in the laboratory. However, the review of the archaeological record suggests that specific research informed by the results presented in the article would provide evidence of the impact of this technology through the Copper and Bronze Ages.

    [es] Puesta en evidencia en España a finales de la década de los ochenta, la utilización de vasijas de cerámica común como recipiente de la metalurgia del cobre prehistórico ha sido identificada también en Francia. Los autores proponen una síntesis del estado de los conocimientos sobre el uso de esta técnica en España, su encuadre geográfico y cronológico y sus principales características mineralógicas y metalúrgicas. Estas últimas permiten mostrar la eficacia y la simplicidad de los medios puestos en juego para la realización de esta metalurgia inicial. En contrapartida, en Francia los hallazgos son todavía modestos y sólo unos pocos han sido objeto de los apropiados análisis de laboratorio. No obstante, la revisión de la documentación arqueológica sugiere que investigaciones específicas orientadas por los resultados expuestos en este artículo deberían permitir en Francia, como ha sucedido en España en el curso de los últimos años, poner de manifiesto el impacto de esta técnica durante las Edades del Cobre y del Bronce. [fr] Les céramiques à réduire le minerai de cuivre dans la Péninsule Ib

  11. Uranium decontamination of common metals by smelting, a review (handbook)

    International Nuclear Information System (INIS)

    Mautz, E.W.; Briggs, G.G.; Shaw, W.E.; Cavendish, J.H.

    1975-01-01

    The published and unpublished literature relating to the smelting of common metals scrap contaminated with uranium-bearing compounds has been searched and reviewed. In general, standard smelting practice produces ingots having a low uranium content, particularly for ferrous, nickel, and copper metals or alloys. Aluminum recovered from uranium contaminated scrap shows some decontamination by smelting but the uranium content is not as low as for other metals. Due to the heterogeneous nature and origin of scrap metals contaminated with uranium, information is frequently missing as to the extent of the initial contamination and the degree of decontamination obtained. The uranium content of the final cast ingots is generally all that is available. Results are summarized below by the primary composition of the uranium contaminated scrap metal. (U.S.)

  12. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Multi-criteria analysis of soil pollution by heavy metals in the vicinity of the Copper Smelting Plant in Bor (Serbia

    Directory of Open Access Journals (Sweden)

    NEVENKA PETROVIĆ

    2011-04-01

    Full Text Available This study highlights the consequences on soil pollution of one hund­red years of manufacturing in the Copper Mining and Smelting Complex RTB-Bor (Serbia. Soil sediments were taken via a probe from the surface layer of the soil at twelve different measuring points. The measuring points were all within 20 km of the smelting plant, which included both urban and rural zones. Soil sampling was performed using a soil core sampler in such way that a core of a soil of radius 5 cm and depth of 30 cm was removed. Subsequently, the samples were analyzed for pH and heavy metal concentrations (Cu, Pb, As, Cd, Mn, Ni and Hg using different spectrometric methods. The obtained results for the heavy metal contents in the samples show high values: 2,540 mg kg-1 Cu; 230 mg kg-1 Pb; 6 mg kg-1 Cd; 530 mg kg-1 Ni; 1,300 mg kg-1 Mn; 260 mg kg-1 As and 0.3 mg kg-1 Hg. In this study, critical zones of polluted soil were iden­tified and ranked according to their metal contents by the multi-criteria deci­sion method Preference Organization Method for Enrichment Evaluation/Geo­metrical Analysis for Interactive Assistance – PROMETHEE/GAIA, which is the preferred multivariate method commonly used in chemometric studies. The ranking results clearly showed that the most polluted zones are at locations holding the vital functions of the town. Therefore, due to the high bioavail­abi­lity of heavy metals through com­plex reactions with organic species in the sediments, consequences for human health could drastically emerge if these metals enter the food chain.

  14. Multi-criteria ranking of copper concentrates according to their quality--an element of environmental management in the vicinity of copper--smelting complex in Bor, Serbia.

    Science.gov (United States)

    Nikolić, Djordje; Jovanović, Ivan; Mihajlović, Ivan; Zivković, Zivan

    2009-01-01

    The results of multi-criteria ranking of copper concentrates by their quality, according to their content of useful and harmful components, are presented in this paper. Cu, Ag and Au were taken as useful components, while Pb, Zn, As, Cd, Hg, Bi and Sb were considered as harmful with adequate weight parameters. Considering its specific role in copper metallurgy, sulfur in the concentrate was considered in two scenarios. In the first scenario S was considered as a useful and in the other one as a harmful component. The ranking is done by implementing the PROMETHEE/GAIA method with an additional implementation of the special PROMETHEE V method, using the standard limitations of the heavy metals content in the concentrate. In this way, it is possible to perform an optimization of the input charge for the copper extraction from two aspects. The first aspect covers benefits from the content of useful metals, while the second deals with the protection of the environment, considering the content of harmful components of the charge. Using multi-criteria decision making for the sake of ranking the quality of copper concentrates, as described in this paper, could be considered as a contribution to the methodology of forming the market price of this product.

  15. Prospects of utilization of electron beam irradiation technology to augment control of SO2 and other emissions from Chilean copper smelting plants

    International Nuclear Information System (INIS)

    Villanueva, L.; Ahumada, L.; Ellison, W.; Chmielewski, A.G.; Zimek, Z.

    1998-01-01

    Analysis of potential utilization of applicable SO 2 -removal process for reduced-SO 2 -strength off-gases, including electron-beam irradiation, for incrementally improving overall abatement of SO 2 /SO 3 emissions from existing copper smelting facilities in Chile has been carried out. Off-gases are characterized by SO 2 content higher than 3,000 ppm, a complex chemical composition and highly oxidizing conditions, along with cyclical and fluctuating generation, reflecting relatively severe service. Laboratory tests with simulated high-SO 2 -strength process gas were performed at Polish Institute of Nuclear Chemistry and Technology. Test work proved the technical feasibility of removing SO 2 from ultra-high SO 2 content smelter gases by E-beam irradiation with ammonia injection. A laboratory unit with flow rate of 20 Nm 3 /h equipped with electron accelerator of 800 keV beam energy was used. Influence of different parameters on SO 2 removal efficiency, like temperature, dose, ammonia stoichiometry and water vapor content, has been established. Tests covered a high SO 2 content range, 2,000 to 10,000 ppm. A generic design has been deviced to address system arrangement, performance and control requirements. It encompasses upgrading of in-plant ventilation to the extent required by health standards, together with gas cleaning system based on EB Process. The arrangement of the facilities provides for gathering and treating off-gas from selected fugitive emission sources on a continuous basis, at the same time in-drafting a minimum amount of tramp air. An introductory dry dedusting stage uses activated coke injection in conjunction with a fabric filter to efficiently treat raw gas to remove heavy metals, including arsenic, along with particulate matter. Main conclusion of the two major stages of this work, i.e. experimental tests and engineering oriented studies, is that the EB Process is a simple and appropriate, cost-effective, chemical process that would, on a site

  16. Prospects of utilization of EB irradiation technology to augment control of SO2 and other emissions from Chilean copper smelting plants

    International Nuclear Information System (INIS)

    Villanueva, L.; Ahumada, L.; Ellison, W.; Chmielewski, A.G.; Zimek, Z.

    1997-01-01

    A technical study including testing and cost analysis for commercial use of selected processes has been conducted. Analysis, affirmation and evaluation of potential utilization of applicable SO 2 -removal process for off-gases, including electron-beam irradiation, for incrementally improving abatement of SO 2 /SO 3 emissions from existing copper smelting facilities in Chile has been carried out. Off-gases are characterized by SO 2 content higher than 3,000 ppm, a complex chemical composition and highly oxidizing conditions, along with cyclical and fluctuating generation. Laboratory tests with simulated high-SO 2 -content process were performed at Institute of Nuclear Chemistry and Technology. Test work proved the technical feasibility of removing SO 2 from (ultra-high SO 2 contents) gases by E-beam irradiation with ammonia injection. A laboratory unit with flow rate of 20 Nm 3 /h equiped with electron accelerator of 800 keV beam energy was used. Influence of different parameters on SO 2 removal efficiency, like temperature, irradiation dose, ammonia stoichiometry and water vapor content, has been established. Tests covered a high SO 2 content range, 2,000 to 10,000 ppm. A generic schematic design has been devised to system arrangement, performance and control requirements. It encompasses upgrading of in-plant ventilation to the extent required by health standards, together with gas cleaning system incorporating the EB Process. The arrangement of the facilities provides for gathering and treating off-gas from selected fugitive emission sources on a continuos basis, at the same time in-drafting a minimum amount of tramp air. An introductory dry dedusting stage, when required, uses condictioned activated carbon injection in conjunction with a fabric filter to efficiently treat raw gas and remove heavy metals, including arsenic, along with particulate matter. Main conclusion of stages of this work is that the EB Process is a simple and appropriate, cost

  17. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.

    Science.gov (United States)

    Klink, C; Eisen, S; Daus, B; Heim, J; Schlömann, M; Schopf, S

    2016-06-01

    The aim of this study was to investigate the potential of bioleaching for the treatment of an environmentally hazardous waste, a blast-furnace flue dust designated Theisen sludge. Bioleaching of Theisen sludge was investigated at acidic conditions with Acidithiobacillus ferrooxidans in pure and mixed-species culture with Acidiphilium. In shaking-flask experiments, bioleaching parameters (pH, redox potential, zinc extraction from ZnS, ferrous- and ferric-iron concentration) were controlled regularly. The analysis of the dissolved metals showed that 70% zinc and 45% copper were extracted. Investigations regarding the arsenic and antimony species were performed. When iron ions were lacking, animonate (Sb(V)) and total arsenic concentration were highest in solution. The bioleaching approach was scaled up in stirred-tank bioreactors resulting in higher leaching efficiency of valuable trace elements. Concentrations of dissolved antimony were approx. 23 times, and of cobalt, germanium, and rhenium three times higher in comparison to shaking-flask experiments, when considering the difference in solid load of Theisen sludge. The extraction of base and trace metals from Theisen sludge, despite of its high content of heavy metals and organic compounds, was feasible with iron-oxidizing acidophilic bacteria. In stirred-tank bioreactors, the mixed-species culture performed better. To the best of our knowledge, this study is the first providing an appropriate biological technology for the treatment of Theisen sludge to win valuable elements. © 2016 The Society for Applied Microbiology.

  18. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  19. A guidance manual for estimating greenhouse gas emissions from fuel combustion and process-related sources for primary base metals smelting and refining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    This technical guidance manual is a useful resource for helping the metals industry compile inventories of its greenhouse gas (GHG) emissions. The guidance is consistent with Canada's national GHG accounting methodologies. It provides information to smelters and refiners of base metals on how to estimate their GHG emissions from fuel combustion and specific process-related activities. The base metals group in this manual included copper, nickel, lead, zinc, and cobalt. Fuel combustion includes all stationary combustion activities for generating heat or work, and includes waste incineration if the waste heat is used for energy. It also includes mobile fuel combustion activities such as on-site transportation of raw materials from one process to another. Guidance is provided for carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O). Process-related activities include specific industrial processes that contribute to GHG emissions. For base metal smelting, this includes CO{sub 2} emissions from use of carbonate reagents, use of reducing agents, electrode consumption, and hydrofluorocarbons (HFC) emissions from use in refrigeration systems. This document also included sections on quality assurance; aspects of uncertainty assessment; verification; and, reporting of emissions information. refs., tabs., figs.

  20. EFECTO EN LA RESISTENCIA DE LAS ESCORIAS DE FUNDICIÓN DE COBRE COMO AGREGADO FINO EN EL COMPORTAMIENTO RESISTENTE DEL HORMIGÓN EFFECT OF SMELTING COPPER SLAG AS FINE AGGREGATE ON THE RESISTANT BEHAVIOR OF CONCRETE

    Directory of Open Access Journals (Sweden)

    Patricio Cendoya

    2009-04-01

    Full Text Available Las escorias de fundición de cobre son residuos industriales provenientes de la fundición del cobre las cuales procesadas en forma de granallas y sometidas a un proceso de molienda adquieren características similares a las de un árido fino. La presente investigación estudia la influencia que tiene su incorporación en el comportamiento mecánico a flexotracción y compresión en hormigones que emplean como árido fino una combinación de arenas del río Bío-Bío con proporciones de 25%, 40% y 50% en volumen de escorias de fundición de cobre. El árido fino resultante se utiliza en la confección de hormigones dosificados para relaciones de agua cemento de 0,45 y 0,52 asociadas a resistencias especificadas a la flexotracción de 3,6 y 4,3 MPa. Se mide la trabajabilidad en el hormigón fresco, la densidad, la carga de rotura por flexotracción y la carga de rotura por compresión en el hormigón endurecido comparando los resultados con un hormigón de referencia que no contiene escorias. Los resultados señalan que la docilidad de la mezcla se incrementa debido a la textura lisa de las escorias, se produce un aumento de la densidad del hormigón endurecido y las resistencias tanto a flexotracción como compresión se incrementan en función del contenido de escorias de fundición de cobre utilizado en la mezcla.Copper slag is a by product of the copper smelting industry. We took granulated copper slag and milled it until it acquired characteristics similar to those of a fine aggregate, which was then incorporated into concrete, in combination with Bio-Bio river sand in proportions of 25%, 40% and 50% by volume of copper slag. We then examined the impact of the different combinations on the mechanical behaviour to flexotraction and compression in the resulting concrete. Our specification was to produce concrete for water-cement ratios of 0,45 and 0,52 associated to breakage resistances to flexotraction of 3.6 and 4.3 MPa, respectively. We

  1. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker.

    Science.gov (United States)

    Liu, De-Gang; Min, Xiao-Bo; Ke, Yong; Chai, Li-Yuan; Liang, Yan-Jie; Li, Yuan-Cheng; Yao, Li-Wei; Wang, Zhong-Bing

    2018-03-01

    Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.

  2. The Effect of Deposit Temperature on the Catalytic SO2-to-SO3 Conversion in a Copper Flash Smelting Heat Recovery Boiler

    Science.gov (United States)

    Lehmusto, Juho; Vainio, Emil; Laurén, Tor; Lindgren, Mari

    2018-02-01

    The aim of the work was to study the catalytic role of copper flash smelter deposit in the SO2-to-SO3 conversion. In addition, the effect of process gas temperature at 548 K to 1173 K (275 °C to 900 °C) on the amount of SO3 formed was addressed both in the absence and presence of genuine copper flash smelter deposit. The SO3 conversion rate changed as a function of process gas temperature, peaking at 1023 K (750 °C). A dramatic increase in the SO2-to-SO3 conversion was observed when process dust was present, clearly indicating that process dust catalyzes the SO2-to-SO3 conversion. Based on these results, the catalytic ability of the deposit may lead to sulfuric acid dew point corrosion.

  3. Acidic leaching of potentially toxic metals cadmium, cobalt, chromium, copper, nickel, lead, and zinc from two Zn smelting slag materials incubated in an acidic soil.

    Science.gov (United States)

    Liu, Taoze; Li, Feili; Jin, Zhisheng; Yang, Yuangen

    2018-07-01

    A column leaching study, coupled with acid deposition simulation, was conducted to investigate the leaching of potentially toxic metals (PTM) from zinc smelting slag materials (SSM) after being incubated in an acid Alfisol for 120 days at room temperature. Two SSMs (SSM-A: acidic, 10 yrs exposure with moderate high PTM concentrations versus SSM-B: alkaline, 2 yrs exposure with extremely high PTM concentrations), were used for the incubation at 0.5, 1, 2.5, 5 wt% amendment ratios in triplicate. Five leaching events were conducted at day 1, 3, 7, 14, and 28, and the leaching of PTMs mainly occurred in the first three leaching events, with the highest PTM concentrations in leachate measured from 5 wt% SSM amendments. After leaching, 2.5, 12, 5.5, 14, 11, and 9 wt% of M3 extractable Pb, Zn, Cd, Co, Cr, and Ni could be released from 5 wt% SSM-A amended soils, being respectively 25, 12, 4, 2, 2, and 2 times more than those from 5 wt% SSM-B amended soils. In the leachates, the concentrations of PTMs were mostly affected by leachant pH and were closely correlated to the concentrations of Fe, Al, Ca, Mg and P with Cd, Pb, and Zn showing the most environmental concern. Visual MINTEQ 3.1 modeling suggested metallic ions and sulfate forms as the common chemical species of PTMs in the leachates; whereas, organic bound species showed importance for Cd, Pb, Cu, and Ni, and CdCl + was observed for Cd. Aluminum hydroxy, phosphate, and sulfate minerals prevailed as the saturated minerals, followed by chloropyromorphite (Pb 5 (PO 4 ) 3 Cl) and plumbogummite (PbAl 3 (PO 4 ) 2 (OH) 5 ·H 2 O) in the leachates. This study suggested that incubation of SSMs in acidic soil for a long term can enhance the release of PTMs as the forms of metallic ions and sulfate when subjected to acid deposition leaching. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).

    Science.gov (United States)

    Antonijević, M M; Dimitrijević, M D; Milić, S M; Nujkić, M M

    2012-03-01

    In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As. This journal is © The Royal Society of Chemistry 2012

  5. Ecological factors affecting Rainbow Smelt recruitment in the main basin of Lake Huron, 1976-2010

    Science.gov (United States)

    O'Brien, Timothy P.; Taylor, William W.; Roseman, Edward F.; Madenjian, Charles P.; Riley, Stephen C.

    2014-01-01

    Rainbow Smelt Osmerus mordax are native to northeastern Atlantic and Pacific–Arctic drainages and have been widely introduced throughout North America. In the Great Lakes region, Rainbow Smelt are known predators and competitors of native fish and a primary prey species in pelagic food webs. Despite their widespread distribution, importance as a prey species, and potential to negatively interact with native fish species, there is limited information concerning stock–recruitment relationships for Rainbow Smelt. To better understand recruitment mechanisms, we evaluated potential ecological factors determining recruitment dynamics for Rainbow Smelt in Lake Huron using data from bottom trawl catches. We specifically evaluated influence of stock size, environmental factors (water temperature, lake levels, and precipitation), and salmonine predation on the production of age-0 recruits from 1976 to 2010. Rainbow Smelt recruitment was negatively related to stock size exceeding 10 kg/ha, indicating that compensatory, density-dependent mortality from cannibalism or intraspecific competition was an important factor related to the production of age-0 recruits. Recruitment was positively related to spring precipitation suggesting that the amount of stream-spawning habitat as determined by precipitation was important for the production of strong Rainbow Smelt recruitment. Additionally, density of age-0 Rainbow Smelt was positively related to Lake Trout Salvelinus namaycush abundance. However, spawning stock biomass of Rainbow Smelt, which declined substantially from 1989 to 2010, was negatively associated with Lake Trout catch per effort suggesting predation was an important factor related to the decline of age-2 and older Rainbow Smelt in Lake Huron. As such, we found that recruitment of Rainbow Smelt in Lake Huron was regulated by competition with or cannibalism by older conspecifics, spring precipitation influencing stream spawning habitats, and predation by Lake Trout on

  6. Chemical mining of primary copper ores by use of nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A E [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    Chemical mining of primary copper ores, with nuclear explosives to break the ore and in-situ hydrostatic pressure to accelerate dissolution of primary ore minerals, may be feasible. A contained nuclear explosion well below the water table would be used to provide a mass of broken ore in a flooded 'chimney'. The hydrostatic pressure in the chimney should increase the solubility of oxygen in a water-sulfuric acid system enough to allow primary copper minerals such as chalcopyrite and bornite to be dissolved in an acceptably short time. Circulation and collection would be accomplished through drill holes. This method should be especially applicable to the deep portions of porphyry copper deposits that are not economical to mine by present techniques. (author)

  7. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  8. Glutamate-Mediated Primary Somatosensory Cortex Excitability Correlated with Circulating Copper and Ceruloplasmin

    Directory of Open Access Journals (Sweden)

    Franca Tecchio

    2011-01-01

    Full Text Available Objective. To verify whether markers of metal homeostasis are related to a magnetoencephalographic index representative of glutamate-mediated excitability of the primary somatosensory cortex. The index is identified as the source strength of the earliest component (M20 of the somatosensory magnetic fields (SEFs evoked by right median nerve stimulation at wrist. Method. Thirty healthy right-handed subjects (51±22 years were enrolled in the study. A source reconstruction algorithm was applied to assess the amount of synchronously activated neurons subtending the M20 and the following SEF component (M30, which is generated by two independent contributions of gabaergic and glutamatergic transmission. Serum copper, ceruloplasmin, iron, transferrin, transferrin saturation, and zinc levels were measured. Results. Total copper and ceruloplasmin negatively correlated with the M20 source strength. Conclusion. This pilot study suggests that higher level of body copper reserve, as marked by ceruloplasmin variations, parallels lower cortical glutamatergic responsiveness.

  9. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  10. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.

  11. Primary biochemical defect in copper metabolism in mice with a recessive X-linked mutation analogous to Menkes' disease in man

    International Nuclear Information System (INIS)

    Prins, H.W.; Hamer, C.J.A. van den.

    1979-01-01

    The defect in Menkes' disease in man is identical to that in Brindled mice. The defect manifests itself in a accumulation of copper in some tissues, such as renal, intestinal (mucosa and muscle), pancreatic, osseous, muscular, and dermal. Hence a fatal copper deficiency results in other tissues (e.g., hepatic). The copper transport through the intestine is impaired and copper, which circumvents the block in the copper resorption, is irreversibly trapped in the above-mentioned, copper accumulating tissues where it is bound to a cytoplasmatic protein with molecular weight 10,000 daltons, probably the primary cytoplasmatic copper transporting protein. This protein shows a Cu-S absorption band at 250 nm, and the copper:protein ratio is increased. Such copper rich protein was found neither in the kidneys of the unaffected mica nor in the liver of the mice that do have the defect. Three models of the primary defect in Menkes' disease are proposed

  12. Efficient SN2 fluorination of primary and secondary alkyl bromides by copper(I) fluoride complexes

    KAUST Repository

    Liu, Yanpin; Chen, Chaohuang; Li, Huaifeng; Huang, Kuo-Wei; Tan, Jianwei; Weng, Zhiqiang

    2013-01-01

    Copper(I) fluoride complexes ligated by phenanthroline derivatives have been synthesized and structurally characterized by X-ray crystallography. These complexes adopt as either ionic or neutral forms in the solid state, depending on the steric bulkiness of the substituent groups on the phenanthroline ligands. These complexes react with primary and secondary alkyl bromides to produce the corresponding alkyl fluorides in modest to good yields. This new method is compatible with a variety of important functional groups such as ether, thioether, amide, nitrile, methoxyl, hydroxyl, ketone, ester, and heterocycle moieties. © 2013 American Chemical Society.

  13. Efficient SN2 fluorination of primary and secondary alkyl bromides by copper(I) fluoride complexes

    KAUST Repository

    Liu, Yanpin

    2013-11-11

    Copper(I) fluoride complexes ligated by phenanthroline derivatives have been synthesized and structurally characterized by X-ray crystallography. These complexes adopt as either ionic or neutral forms in the solid state, depending on the steric bulkiness of the substituent groups on the phenanthroline ligands. These complexes react with primary and secondary alkyl bromides to produce the corresponding alkyl fluorides in modest to good yields. This new method is compatible with a variety of important functional groups such as ether, thioether, amide, nitrile, methoxyl, hydroxyl, ketone, ester, and heterocycle moieties. © 2013 American Chemical Society.

  14. Element Distribution in the Oxygen-Rich Side-Blow Bath Smelting of a Low-Grade Bismuth-Lead Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xiao, Hui; Chen, Lin; Chen, Wei; Liu, Weifeng; Zhang, Duchao

    2018-03-01

    Oxygen-rich side-blow bath smelting (OSBS) technology offers an efficient method for processing complex bismuth-lead concentrates; however, the element distributions in the process remain unclear. This work determined the distributions of elements, i.e., bismuth, lead, silver, copper, arsenic and antimony, in an industrial-scale OSBS process. The feed, oxidized slag and final products were collected from the respective sampling points and analyzed. For the oxidative smelting process, 65% of bismuth and 76% of silver in the concentrate report to the metal alloy, whereas less lead reports to the metal ( 31%) than the oxidized slag ( 44%). Approximately 50% of copper enters the matte, while more than 63% of arsenic and antimony report to the slag. For the reductive smelting process, less than 4.5% of bismuth, lead, silver and copper in the oxidized slag enter the reduced slag, indicating high recoveries of these metal values.

  15. Interactions between hatch dates, growth rates, and mortality of Age-0 native Rainbow Smelt and nonnative Alewife in Lake Champlain

    Science.gov (United States)

    Parrish, Donna; Simonin, Paul W.; Rudstam, Lars G.; Pientka, Bernard; Sullivan, Patrick J.

    2016-01-01

    Timing of hatch in fish populations can be critical for first-year survival and, therefore, year-class strength and subsequent species interactions. We compared hatch timing, growth rates, and subsequent mortality of age-0 Rainbow Smelt Osmerus mordax and Alewife Alosa pseudoharengus, two common open-water fish species of northern North America. In our study site, Lake Champlain, Rainbow Smelt hatched (beginning May 26) almost a month earlier than Alewives (June 20). Abundance in the sampling area was highest in July for age-0 Rainbow Smelt and August for age-0 Alewives. Late-hatching individuals of both species grew faster than those hatching earlier (0.6 mm/d versus 0.4 for Rainbow Smelt; 0.7 mm/d versus 0.6 for Alewives). Mean mortality rate during the first 45 d of life was 3.4%/d for age-0 Rainbow Smelt and was 5.5%/d for age-0 Alewives. Alewife mortality rates did not differ with hatch timing but daily mortality rates of Rainbow Smelt were highest for early-hatching fish. Cannibalism is probably the primary mortality source for age-0 Rainbow Smelt in this lake. Therefore, hatching earlier may not be advantageous because the overlap of adult and age-0 Rainbow Smelt is highest earlier in the season. However, Alewives, first documented in Lake Champlain in 2003, may increase the mortality of age-0 Rainbow Smelt in the summer, which should favor selection for earlier hatching.

  16. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  17. Smelting of Scandium by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2017-09-01

    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  18. A solidification/stabilization process for wastewater treatment sludge from a primary copper smelter

    Directory of Open Access Journals (Sweden)

    Ivšić-Bajčeta Dragana

    2013-01-01

    Full Text Available Wastewater treatment sludge from primary copper smelter is characterized as hazardous waste that requires treatment prior disposal due to significant amount of heavy metals and arsenic. The aim of the presented study was to investigate the feasibility and the effectiveness of solidification/stabilization process of the sludge using fly ash and lime as binders. The effectiveness of the process was evaluated by Unconfined Compressive Strength (UCS testing, leaching tests (EN 12457-4 and Toxicity Characteristic Leaching Procedure (TCLP and Acid Neutralization Capacity (ANC test. All samples reached target UCS of 0.35 MPa. Calcium to silicon concentration ratio (cCa/cSi, determined by X-Ray Fluorescence (XRF analysis, was identified as main factor governing strength development. Inductively coupled plasma-optical emission spectrometry (ICP-OES analyses of solutions after leaching tests showed excellent stabilization of Cu, Ni, Pb and Zn (above 99 % and arsenic (above 90 % in samples with high Ca(OH2 content. Results of ANC test indicated that buffering capacity of solidified material linearly depended on Ca concentration in FA and lime. Sample with 20 % of binder heaving 50 % of FA and 50 % of lime met all requirements to be safely disposed. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  19. Fact sheet: National primary drinking water regulations for lead and copper

    International Nuclear Information System (INIS)

    1991-05-01

    The Fact Sheet contains a summary of what the regulations will do, establish, and provide; regulatory impact in regards to benefits and costs; treatment technique requirements; tap water monitoring for lead and copper; water quality monitoring (other than lead and copper); monitoring schedules, regulatory schedules for large, medium-sized, and small systems

  20. Chemical-mineralogical characterization of copper smelting flue dust

    Directory of Open Access Journals (Sweden)

    Eduardo Balladares

    2014-01-01

    Full Text Available En el procesamiento pirometalúrgico del cobre, hasta 10% de la carga alimentada a los hornos sale de estos en forma de polvo arrastrado por los gases conteniendo la mayor parte de las impurezas presentes en el mineral, así como cantidades significativas de cobre por lo que no pueden ser descartados como residuos industriales y debe tratarse para recuperar el cobre. La conceptualización de nuevos y mejores procesos requiere caracterizaciones de estos materiales más precisas. Se analizaron polvos provenientes de una caldera recuperadora de calor y de un precipitador electrostático, ambos de un horno de fusión instantánea. Las diferentes herramientas analíticas empleadas muestran que el cobre y el hierro se encuentran principalmente en fases solubles en agua tales como chalcantita. La fracción insoluble está formada mayoritariamente por hematita y magnetita, con probable presencia de delafosita. Parte del cobre detectada en la fracción insoluble se asocia al hierro en forma de espinela.

  1. Trace elements in rainwater and dry deposition around a smelting complex

    Energy Technology Data Exchange (ETDEWEB)

    Beavington, F

    1977-06-01

    A number of plastic raingauges were set up at various distances around a smelting complex (copper smelter and steelworks) in Wollongong, Australia, to determine the pattern of total atmospheric deposition (rainwater and dry deposition) of copper, zinc, lead, cadmium, iron and manganese. At the site nearest the smelter, total deposition of these metals (6N HCl soluble) in kg/ha over a period of twelve months was 30.7 copper, 8.4 zinc, 4.7 lead, 0.19 cadmium, 42.6 iron and 1.5 manganese. These levels were considerably higher than at a distant rural site where background levels were similar to those reported for the United Kingdom. The pattern of deposition of metals over Wollongong accords with levels of metals previously reported in surface soil, herbage and leaf vegetables.

  2. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  3. Energy consumption in smelting reduction (SR) processes

    International Nuclear Information System (INIS)

    Assis, Paulo Santos; Salierno, Giovanni Felice; Fang, Jue; Mankhand, Tilak R.; Assis, Carlos Frederico Campos de

    2010-01-01

    In contrast, conventional processes use coke and hematite/sinter in the blast furnace, in SR processes, other alternative fuels and iron ore sources, like charcoal and fine iron ores, can be used to produce sponge iron. The use of these alternative sources, by SR processes, can reduce environmental impacts and lower production costs. At first, the concepts of the theoretical gas utilization ratio, the smelting heat of the iron ore and the effective calorific value of coal were introduced. Then, the reason for gas utilization ratio and its performance in the shaft as a reducer in the smelting process are discussed and calculated. The relationship between coal consumption and iron ore reduction in the fluidized bed are also discussed. Finally, the influence of post-combustion on coal consumption in an iron bath furnace are calculated and discussed. (author)

  4. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of smelt aluminium on mechanical properties of steels

    International Nuclear Information System (INIS)

    Ryabov, V.R.; Dykhno, I.S.; Deev, G.F.; Karikh, V.V.

    1987-01-01

    Effect of smelt aluminium on mechanical properties of armco-iron and 12 Kh18N10T steel is studied. It is stated that in smelt aluminium and aluminium alloy contact with armco-iron the sample ductility is decreased. Corrosion effect of smelt alluminium on (18Kh15N5AM3) steel in the form of reinforced wire in aluminium-steel KAS-1A composite material is investigted. It is stated in experiment that during smelt alluminium-steel contact interaction of heterogeneous phases takes place

  6. Yunnan Smelting Group Examines an Aluminum Project for Possible Investment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Tian Yong,General Manager of Yunnan Smelt- ing Group,has gone to Zha gai NuoEr in Heilongjiang Province with a study group to conduct a full careful examination on the feasi- bility of the investment in the aluminum pro- ject.Yunnan Smelting Group is a large-scale

  7. Application of PAH concentration profiles in lake sediments as indicators for smelting activity.

    Science.gov (United States)

    Warner, Wiebke; Ruppert, Hans; Licha, Tobias

    2016-09-01

    The ability of lake sediment cores to store long-term anthropogenic pollution establishes them as natural archives. In this study, we focus on the influence of copper shale mining and smelting in the Mansfeld area of Germany, using the depth profiles of two sediment cores from Lake Süßer See. The sediment cores provide a detailed chronological deposition history of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the studied area. Theisen sludge, a fine-grained residue from copper shale smelting, reaches the lake via deflation by wind or through riverine input; it is assumed to be the main source of pollution. To achieve the comparability of absolute contaminant concentrations, we calculated the influx of contaminants based on the sedimentation rate. Compared to the natural background concentrations, PAHs are significantly more enriched than heavy metals. They are therefore more sensitive and selective for source apportionment. We suggest two diagnostic ratios of PAHs to distinguish between Theisen sludge and its leachate: the ratio fluoranthene to pyrene ~2 and the ratio of PAH with logKOW5.7 converging to an even lower value than 2.3 (the characteristic of Theisen sludge) to identify the particulate input in lake environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    International Nuclear Information System (INIS)

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-01-01

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed

  9. Thermodynamic Analysis of Oxygen-Enriched Direct Smelting of Jamesonite Concentrate

    Science.gov (United States)

    Zhang, Zhong-Tang; Dai, Xi; Zhang, Wen-Hai

    2017-12-01

    Thermodynamic analysis of oxygen-enriched direct smelting of jamesonite concentrate is reported in this article. First, the occurrence state of lead, antimony and other metallic elements in the smelting process was investigated theoretically. Then, the verification test was carried out. The results indicate that lead and antimony mainly exist in the alloy in the form of metallic lead and metallic antimony. Simultaneously, lead and antimony were also oxidized into the slag in the form of lead-antimony oxide. Iron and copper could be oxidized into the slag in the form of oxides in addition to combining with antimony in the alloy, while zinc was mainly oxidized into the slag in the form of zinc oxide. The verification test indicates that the main phases in the alloy contain metallic lead, metallic antimony and a small amount of Cu2Sb, FeSb2 intermetallic compounds, and the slag is mainly composed of kirschsteinite, fayalite and zinc oxide, in agreement with the thermodynamic analysis.

  10. Assessment of energy requirements in proven and new copper processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, C.H.; Wadsworth, M.E.

    1980-12-31

    Energy requirements are presented for thirteen pyrometallurgical and eight hydrometallurgical processes for the production of copper. Front end processing, mining, mineral processing, gas cleaning, and acid plant as well as mass balances are included. Conventional reverberatory smelting is used as a basis for comparison. Recommendations for needed process research in copper production are presented.

  11. Mapping the primary structure of copper/topaquinone-containing methylamine oxidase from Aspergillus niger.

    Science.gov (United States)

    Lenobel, R; Sebela, M; Frébort, I

    2005-01-01

    The amino acid sequence of methylamine oxidase (MeAO) from the fungus Aspergillus niger was analyzed using mass spectrometry (MS). First, MeAO was characterized by an accurate molar mass of 72.4 kDa of the monomer measured using MALDI-TOF-MS and by a pI value of 5.8 determined by isoelectric focusing. MALDI-TOF-MS revealed a clear peptide mass fingerprint after tryptic digestion, which did not provide any relevant hit when searched against a nonredundant protein database and was different from that of A. niger amine oxidase AO-I. Tandem mass spectrometry with electrospray ionization coupled to liquid chromatography allowed unambiguous reading of six peptide sequences (11-19 amino acids) and seven sequence tags (4-15 amino acids), which were used for MS BLAST homology searching. MeAO was found to be largely homologous to a hypothetical protein AN7641.2 (EMBL/GenBank protein-accession code EAA61827) from Aspergillus nidulans FGSC A4 with a theoretical molar mass of 76.46 kDa and pI 6.14, which belongs to the superfamily of copper amine oxidases. The protein AN7641.2 is only little homologous to the amine oxidase AO-I (32% identity, 49 % similarity).

  12. Mineralogy of Tailings Dump around Selebi Phikwe Nickel-Copper ...

    African Journals Online (AJOL)

    This study aimed at mineralogically characterizing the tailings dump emanating from the mining and smelting of nickel-copper (Ni-Cu) at Selebi Phikwe, Botswana, Southern Africa. Samples of tailings dump around the Selebi Phikwe Ni-Cu plant were studied using petrographic microscopy and X-ray Powder Diffraction ...

  13. Immobilization of copper flotation waste using red mud and clinoptilolite.

    Science.gov (United States)

    Coruh, Semra

    2008-10-01

    The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.

  14. Copper(I)/TEMPO Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

    Science.gov (United States)

    Hoover, Jessica M.; Steves, Janelle E.; Stahl, Shannon S.

    2012-01-01

    This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective CuI/TEMPO catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, while the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 – 26 h. PMID:22635108

  15. A Highly Practical Copper(I)/TEMPO Catalyst System for Chemoselective Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Hoover, Jessica M.; Stahl, Shannon S.

    2011-01-01

    Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O2 as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)CuI/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups. PMID:21861488

  16. Adding silver and copper to hydrogen peroxide and peracetic acid in the disinfection of an advanced primary treatment effluent.

    Science.gov (United States)

    Orta De Velásquez, M T; Yáñez-Noguez, I; Jiménez-Cisneros, B; Luna Pabello, V M

    2008-11-01

    This paper evaluates the efficacy of hydrogen peroxide (HP) and peracetic acid (PAA) in the disinfection of an Advanced Primary Treatment (APT) effluent, and how said disinfection capacities can be enhanced by combining the oxidants with copper (Cu2+) and silver (Ag). The treatment sequence consisted of APT (adding chemicals to water to remove suspended solids by coagulation and flocculation), followed by disinfection with various doses of HP, HP+Cu2+, HP+Ag, PAA and PAA+Ag. Microbiological quality was determined by monitoring concentrations of fecal coliforms (FC), pathogenic bacteria (PB) and helminth eggs (HE) throughout the sequence. The results revealed that APT effluent still contains very high levels of bacteria as the treatment only removes 1-2 log of FC and PB, but the reduction in the number of viable helminth eggs was 83%. Subsequent disinfection stages demonstrated that both HP+Cu2+ and HP+Ag have a marked disinfection capacity for bacteria (3.9 and 3.4 log-inactivation, respectively). Peracetic acid on its own was already extremely efficient at disinfecting for bacteria, and the effect was enhanced when combining PAA with silver (PAA+Ag). The best result for HE removal was achieved by combining PAA with silver (PAA+Ag) at doses of 20 + 2.0 mg l(-1), respectively. The study concluded that the PAA+Ag and HP+Ag combinations were good alternatives for APT effluent disinfection, because the disinfected effluents met the standards in NOM-001-SEMARNAT-1996, Mexico's regulation governing the microbiological quality required in treated wastewater destined for unrestricted reuse in agricultural irrigation (disinfection treatments with a primary method such as APT, therefore, offers an effective and practical way of reducing the health risks normally associated with the reuse of wastewaters.

  17. Processing of copper anodic-slimes for extraction of valuable metals.

    Science.gov (United States)

    Amer, A M

    2003-01-01

    This work focuses on processing of anodic slimes obtained from an Egyptian copper electrorefining plant. The anodic slimes are characterized by high concentrations of copper, lead, tin and silver. The proposed hydrometallurgical process consists of two leaching stages for the extraction of copper (H(2)SO(4)-O(2)) and silver (thiourea-Fe3+), and pyrometallurgical treatment of the remaining slimes for production of Pb-Sn soldering alloy. Factors affecting both the leaching and smelting stages were studied.

  18. The development of coke smelting and the industrial revolution

    OpenAIRE

    Macfarlane, Alan

    2004-01-01

    Abraham Darby and the origins of the industrial revolution in Britain. Alan Macfarlane talks to John about the reasons for the area near Birmingham becoming the epi-centre of the industrial development, and the development of coke furnaces and iron smelting.

  19. 31 CFR 101.5 - Payment of smelting costs.

    Science.gov (United States)

    2010-07-01

    ... FORFEITURE OF COUNTERFEIT GOLD COINS § 101.5 Payment of smelting costs. The petitioner shall be required to pay all reasonable costs incurred in extracting the bullion from the counterfeit coins, as shall be determined by the Assistant Secretary. Payment must be made prior to the return of the gold bullion to the...

  20. Project Update: ZVI Used for Arsenic from Lead Smelting Facility

    Science.gov (United States)

    The U.S. EPA Office of Research and Development’s National Risk Management Research Laboratory (NRMRL) is conducting long-term monitoring of a granular iron permeable reactive barrier (PRB) for remediation of ground water contaminated with arsenic from a former lead smelting faci...

  1. Copper minerals and archaeometallurgical materials from the Vinča culture sites of Belovode and Pločnik: Overview of the evidence and new data

    Directory of Open Access Journals (Sweden)

    Radivojević Miljana

    2014-01-01

    Full Text Available The Vinča culture sites of Belovode and Pločnik have been attracting scholarly attention for decades now, due to numerous discoveries indicative of copper mineral and metal use in these settlements, which are confirmed as, currently, the earliest worldwide and very likely developed independently in Eurasia.1 The authors attempt to give an overview of already published data along with new results stemming from the recently completed doctoral research of the primary author.2 All materials related to copper mineral use and pyrometallurgical activities are presented through the concept of metallurgical chaîne opératoire, following the established sequence of operations,3 which is adjusted for this specific case study and divided into three categories: copper mineral processing, (smelting debris, and the making and working of finished metal objects. The qualitative overview of available data is therefore focused mainly around the material side of the studied samples and provides an insight into the technological choices for making copper mineral ornaments and copper metal artefacts in the sites of Belovode and Pločnik. Accordingly, it provides a model for the understanding of similar material assemblages that occur in other Vinča culture sites, or beyond. [Projekat Ministarstva nauke Republike Srbije, br.177012: Society, spiritual and material culture and communications in the prehistory and early history of the Balkans

  2. Industrial activity, gas emissions and environmental urban management. Operative condition's diagnostic of smelting activities in Tandil, Argentina

    International Nuclear Information System (INIS)

    Soledad Sosa, Beatriz; Guerrero, Elsa Marcela; Banda Noriega, Roxana

    2013-01-01

    Amongst urban environmental problems, those associated to industry are of particular interest in environmental management. Tandil, a city in Argentina, owes its economic and urban growth to metalworking activity, especially to smelting. Despite the crisis in the sector, activity continues to be the axis of local economic and urban growth. The present research characterizes, in production, operative and environmental terms, local smelting industries and assesses operative conditions of gas emissions management during 2010. There were analyzed 25 industries over 30. The sample was representative of five productive processes: aluminum (Al), aluminum/iron (Al Fe), aluminum/bronze (Al Cu+Sn), aluminum/iron/bronze (Al Fe Cu+Sn), and iron (Fe). The variables analyzed were: primary fusion mater, oven used and industry size. To obtain production data we applied structured interviews, and for industry sizes we used surveys. It was possible to describe the productive prospect of the sector at a local level: for most industries the destination of their production is automotive sector. Taking into account the relation between the size and the type of industry, the aluminum smelting companies are small. Regarding iron industries, all three company sizes are present in the sample and exists a medium size industry that occupies between 51 and 230 employees. The operative conditions and their compliance with current legislation regarding control of gas emissions require to identify monitoring indicators for the melting stage that allow knowing precisely the resulting contaminants and their environmental effects.

  3. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  4. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  5. Optimization of suspension smelting technology by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lilius, K; Jokilaakso, A; Ahokainen, T; Teppo, O; Yongxiang, Yang [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    An industrial-scale flash smelting furnace and waste-heat boilers have been modelled by using commercial Computational-Fluid-Dynamics software. The work has proceeded from cold gas flow to heat transfer, combustion, and two-phase flow simulations. In the present study, the modelling task has been divided into three sub-models: (1) the concentrate burner, (2) the flash smelting furnace (reaction shaft and uptake shaft), and (3) the waste-heat boiler. For the concentrate burner, the flow of the process gas and distribution air together with the concentrate or a feed mixture was simulated. Eulerian - Eulerian approach was used for the carrier gas-phase and the dispersed particle-phase. A large parametric study was carried out by simulating a laboratory scale burner with varying turbulence intensities and then extending the simulations to the industrial scale model. For the flash smelting furnace, the simulation work concentrated on gas and gas-particle two-phase flows, as well as the development of combustion model for sulphide concentrate particles. Both Eulerian and Lagrangian approaches have been utilised in describing the particle phase and the spreading of the concentrate in the reaction shaft as well as the particle tracks have been obtained. Combustion of sulphides was first approximated with gaseous combustion by using a built-in combustion model of the software. The real oxidation reactions of the concentrate particles were then coded as a user-defined sub-routine and that was tested with industrial flash smelting cases. For the waste-heat boiler, both flow and heat transfer calculations have been carried out for an old boiler and a modified boiler SULA 2 Research Programme; 23 refs.

  6. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  7. Optimization of suspension smelting technology by computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lilius, K.; Jokilaakso, A.; Ahokainen, T.; Teppo, O.; Yang Yongxiang [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1996-12-31

    An industrial-scale flash smelting furnace and waste-heat boilers have been modelled by using commercial Computational-Fluid-Dynamics software. The work has proceeded from cold gas flow to heat transfer, combustion, and two-phase flow simulations. In the present study, the modelling task has been divided into three sub-models: (1) the concentrate burner, (2) the flash smelting furnace (reaction shaft and uptake shaft), and (3) the waste-heat boiler. For the concentrate burner, the flow of the process gas and distribution air together with the concentrate or a feed mixture was simulated. Eulerian - Eulerian approach was used for the carrier gas-phase and the dispersed particle-phase. A large parametric study was carried out by simulating a laboratory scale burner with varying turbulence intensities and then extending the simulations to the industrial scale model. For the flash smelting furnace, the simulation work concentrated on gas and gas-particle two-phase flows, as well as the development of combustion model for sulphide concentrate particles. Both Eulerian and Lagrangian approaches have been utilised in describing the particle phase and the spreading of the concentrate in the reaction shaft as well as the particle tracks have been obtained. Combustion of sulphides was first approximated with gaseous combustion by using a built-in combustion model of the software. The real oxidation reactions of the concentrate particles were then coded as a user-defined sub-routine and that was tested with industrial flash smelting cases. For the waste-heat boiler, both flow and heat transfer calculations have been carried out for an old boiler and a modified boiler SULA 2 Research Programme; 23 refs.

  8. Moderate Dilution of Copper Slag by Natural Gas

    Science.gov (United States)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  9. Design requirements for a metal-smelting facility

    International Nuclear Information System (INIS)

    Williams, L.C.; Mack, J.E.

    1982-01-01

    Functional requirements for the smelting of metal scrap contaminated with low-enriched uranium in a Metal Smelting Faclity (MSF) have been determined. The process will be designed to smelt ferrous metal scrap that has accumulated at the Oak Ridge Gaseous Diffusion Plant (ORGDP) into one-ton ingots at a rate of 40 ingots per day (10,000 tons/year). Total scrap inventories at the ORGDP are currently estimated at 28,000 tons. The diffusion plant scrap is primarily contaminated with 100 to 200 ppm U at an enrichment of 0.5 to 1.5% 235 U. The scrap is considered special nuclear material (SNM) and cannot be handled by commercial smelters without specific licensing. Slagging will be performed to remove contaminants from the metal and concentrate them in the slag. Process systems will include scrap handling, size reduction, preheating and charging, melting and slagging, ingot casting and storage, and fume exhaust. The MSF has been proposed for FY 1984 line item funding

  10. Extracting phosphoric iron under laboratorial conditions smelting bog iron ores

    International Nuclear Information System (INIS)

    Török, B; Thiele, A

    2013-01-01

    In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well

  11. Directly smelted lead-tin alloys: A historical perspective

    Science.gov (United States)

    Dube, R. K.

    2010-08-01

    This paper discusses evidence related to the genesis and occurrence of mixed lead-tin ore deposit consisting of cassiterite and the secondary minerals formed from galena. These evidences belong to a very long time period ranging from pre-historic to as late as the nineteenth century a.d. This type of mixed ore deposits was smelted to prepare lead-tin alloys. The composition of the alloy depended on the composition of the starting ore mixture. A nineteenth century evidence for the production of directly smelted lead-tin alloys in southern Thailand is discussed. A unique and rather uncommon metallurgical terminology in Sanskrit language— Nāgaja—was introduced in India for the tin recovered from impure lead. This suggests that Indians developed a process for recovering tin from lead-tin alloys, which in all probability was based on the general principle of fire refining. It has been shown that in the context of India the possibility of connection between the word Nāgaja and the directly smelted lead-tin alloys cannot be ruled out.

  12. Designing of Synergistic Waste Mixtures for Multiphase Reactive Smelting

    Directory of Open Access Journals (Sweden)

    Vaso Manojlović

    2016-06-01

    Full Text Available Electric arc furnace (EAF dust, together with a mill scale and coke were smelted in a laboratory electric arc furnace. These metallurgical wastes consist of a many different phases and elements, making the reaction process complex. Thermo-chemical analysis of the reactions in metal, slag, and gas phases was done, and used for modeling of the mixture composition and energy consumption required for smelting. Modelling was performed with the software named RikiAlC. The crude ZnO, slag, and metal phase were analyzed using the atomic absorption spectrometry (AAS, the optical emission spectrometry with inductively coupled plasma (ICP-OES, the X-ray diffraction (XRD, the scanning electron microscopy (SEM equipped with energy dispersive spectrometry (EDS, and reflected and transmitted light microscopy. Also, in order to follow the behavior of this process the exhausted gases were monitored. The synergetic effects of the designed mixture may be recognized in minimizing energy consumption for the smelting process, improving the product yield efficiency, and reducing the negative environmental effects.

  13. Reassessment of the predatory effects of rainbow smelt on ciscoes in Lake Superior

    Science.gov (United States)

    Myers, Jared T.; Jones, Michael L.; Stockwell, Jason D.; Yule, Daniel L.

    2009-01-01

    Evidence from small lakes suggests that predation on larval ciscoes Coregonus artedi by nonnative rainbow smelt Osmerus mordax can lead to cisco suppression or extirpation. However, evidence from larger lakes has led to equivocal conclusions. In this study, we examine the potential predation effects of rainbow smelt in two adjacent but contrasting embayments in Lake Superior (Thunder and Black bays, Ontario). During May 2006, we sampled the ichthyoplankton, pelagic fish communities, and diet composition of rainbow smelt in both bays. Using acoustics and midwater trawling, we estimated rainbow smelt densities to be 476 ± 34/ha (mean ± SE) in Thunder Bay and 3,435 ± 460/ha in Black Bay. We used a bioenergetics model to estimate the proportion of cisco larvae consumed by rainbow smelt. Our results suggest that predation by rainbow smelt accounts for 15–52% and 37–100% of the mortality of larval ciscoes in Thunder and Black bays, respectively, depending on the predator feeding rate and the scale of predator–prey overlap. We also examined the sensitivity of past conclusions (based on 1974 field collections) to assumptions of temporal overlap between rainbow smelt and larval ciscoes and estimates of rainbow smelt abundance derived from bottom trawl samples. After adjusting these parameters to reflect current understanding, we found that the previous predation estimates may have been conservative. We conclude that rainbow smelt may have been a more important contributor to the demise and slow recovery of ciscoes in Lake Superior than previously thought.

  14. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    Science.gov (United States)

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  15. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  16. Moessbauer study of ancient iron smelting slag in Japan

    International Nuclear Information System (INIS)

    Nakanishi, A.

    2008-01-01

    For an investigation of the ancient iron manufacturing technique, a reproducing experiment was carried out by archaeologists, where ancient type of iron smelting furnace was built and iron sand with high titanium contents was used as the raw material. During the operation of furnace, a large amount of slag flowed away from the furnace. In order to investigate the possibility for the estimation about the operative condition of furnace and the raw material, 57 Fe Moessbauer spectroscopy was applied for characterizing these slags and it was found that these slags mainly consisted of ferropseudobrookite (FeTi 2 O 5 ).

  17. State of the art of smelting lead-acid battery scrap

    Energy Technology Data Exchange (ETDEWEB)

    Melin, A

    1977-02-01

    A discussion is given of the economic importance of lead recovery and of scrap recycling in the battery industry. Various possibiliies of processing battery scrap, either by direct smelting or by smelting after preparaton are discussed, and the BBU, the Stolberger, and the Tonnolli methods are compared

  18. Preparation of Inconel 740 superalloy by electron beam smelting

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); You, Qifan; Shi, Shuang; Li, Jiayan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Ye, Fei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Wei, Xin [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2016-08-15

    A novel method, namely electron beam smelting (EBS) technology was used to prepare the Inconel 740 superalloy. The microstructures, hardness and oxidation behavior were characterized and compared with the traditionally prepared Inconel 740 superalloy. The results imply that the solution treatment gives rise to the coarsening of γ′ precipitates, with further aging treatment, the γ′ precipitates with size of less than 30 nm are distributed dispersively in the matrix, leading to a decreasing of the lattice parameters and an increasing of the misfit. The γ′ precipitates result in shearing mechanism of weakly pair coupling. The EBS 740 superalloy produces better properties than that prepared in the traditional method in both precipitation strengthening effect and oxidation resistance. - Highlights: • Electron beam smelting, a new method, was used to prepare the Inconel 740 superalloy. • The EBS 740 shows higher strengthening effect than 740 made in traditional method. • The EBS 740 shows better oxidation resistance than traditional 740. • It shows application prospect of EBS technology in preparing Ni-base superalloys.

  19. Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont

    Science.gov (United States)

    Seal, Robert R.; Kiah, Richard G.; Piatak, Nadine M.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Argue, Denise M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2010-01-01

    The Ely Mine, which operated from 1821 to 1905, and its area of downstream impact constitute the Ely Copper Mine Superfund site. The site was placed on the National Priorities List in 2001. The mine comprises underground workings, foundations from historical structures, several waste-rock piles, roast beds associated with the smelting operation, and slag piles resulting from the smelting. The mine site is drained by Ely Brook, which includes several tributaries, one of which drains a series of six ponds. Ely Brook empties into Schoolhouse Brook, which flows 3.3 kilometers and joins the Ompompanoosuc River.

  20. Improved dust handling at Inco's Copper Cliff smelter

    International Nuclear Information System (INIS)

    Dutton, A.; Warner, A.E.M.; Humphris, M.J.

    1989-01-01

    The Cooper Cliff Smelter Complex comprises three major production departments - a Nickel Smelter for the processing of nickel concentrated to a low iron, nickel - copper sulphide (Bessemer) matte; a Matte Processing plant for the separation of matte sulphides and the production of market nickel oxides and refinery feeds and a Copper Smelter to process copper concentrates to blister copper. Annual production is currently -114,000 tonnes of copper as blister and -110,000 tonnes of nickel. The nickel concentrate (11-13% Ni, 2-3% Cu) is roasted in multi-hearth roasters, smelted in oxy-fuel fired reverberatory furnaces to a 30-35% CuNiCo matte and converted to Bessemer matte (75% CuNiCo) in Peirce-Smith converters. The Bessemer matte is slow cooled and crushed for subsequent separation by mineral dressing techniques in the Matte Processing plant into nickel (sulphide and metallic) concentrates and a copper (chalcocite) concentrate. Nickel sulphides are further processed in fluid bed reactors to oxide market product or refinery feedstock. The copper concentrate (29-30% Cu, 0.9% No.) is dried in fluid bed driers, smelted to a 40-50% copper matte in an Inco oxygen flash furnace and converted to blister copper in Peirce-Smith converters. The chalcocite concentrate from the matte separation stage is flash converted to a semi-blister (3-4% S, 4-5% Ni) and then finished to lighter conventionally. A schematic process flowsheet of the Smelter Complex is shown in this paper

  1. Reactivity of fly ash from copper smelters in an Oxisol: implications for smelter-polluted soil systems in the tropics

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Petráňová, Veronika; Vítková, M.; Mihaljevič, M.; Šebek, O.; Kříbek, B.

    2016-01-01

    Roč. 16, č. 1 (2016), s. 115-124 ISSN 1439-0108 Institutional support: RVO:68378297 Keywords : cobalt * copper * fly ash * leaching * Oxisol * smelting Subject RIV: DD - Geochemistry Impact factor: 2.522, year: 2016 http://link.springer.com/article/10.1007%2Fs11368-015-1174-7

  2. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  3. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  4. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years.

    Science.gov (United States)

    Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian

    2018-05-01

    This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  5. Adaptive PCA based fault diagnosis scheme in imperial smelting process.

    Science.gov (United States)

    Hu, Zhikun; Chen, Zhiwen; Gui, Weihua; Jiang, Bin

    2014-09-01

    In this paper, an adaptive fault detection scheme based on a recursive principal component analysis (PCA) is proposed to deal with the problem of false alarm due to normal process changes in real process. Our further study is also dedicated to develop a fault isolation approach based on Generalized Likelihood Ratio (GLR) test and Singular Value Decomposition (SVD) which is one of general techniques of PCA, on which the off-set and scaling fault can be easily isolated with explicit off-set fault direction and scaling fault classification. The identification of off-set and scaling fault is also applied. The complete scheme of PCA-based fault diagnosis procedure is proposed. The proposed scheme is first applied to Imperial Smelting Process, and the results show that the proposed strategies can be able to mitigate false alarms and isolate faults efficiently. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  7. [Donor age affects on the «behavior» and the sensibility bone marrow cells in on copper ion of the primary culture].

    Science.gov (United States)

    Bozhkov, A I; Ohiienko, S L; Kuznetsova, Yu A; Bondar', A Yu; Marchenko, V P; Gumennaya, M S

    2017-01-01

    The changes of bone marrow cells (BMC) number in the primary culture from 0 to 96 hours, the pattern (the distribution of cells) of cells morphotypes and «lifespan» (the time of cell life after isolation) of myelocytes, metamyelocytes, band and segmented neutrophils, isolated of the young (3 months) and old (20months) animals, were investigated. The number of the BMC obtained from intact old animals increased faster in primary culture, than from young animals. The Cu induced fibrosis had different influence on the rate of BMC culture growth of old and young animals. The adding of 4 mM and 8 mM CuSO4x5H2O in the BMC culture of young and old animals resulted in a dose-dependent inhibition of growth rate of young animal cells. If copper ions were added into the culture of BMC of old animals, the decreased of the BMC number was described less than for cells of young animals. The adding of 8 mM CuSO4x5H2O inhibited proliferation less, than the adding of 4 mM CuSO4x5H2O. The Cu-induced liver fibrosis had accelerated the BMC rate death of both old and young animals. However, this effect was more pronounced in young animals. It is suggested, that during the ontogenesis the BMC undergo such epigenetic changes, which change functional properties.

  8. Cancer incidence among copper smelting and nickel refining workers in Finland.

    Science.gov (United States)

    Pavela, Markku; Uitti, Jukka; Pukkala, Eero

    2017-01-01

    Among workers employed at a nickel refinery in Harjavalta, Finland an increased risk of lung and sinus cancer has been demonstrated in two previous studies. The current study adds 16 more years of follow-up to these studies. A total of 1,115 persons exposed to nickel and 194 non-exposed workers in the Harjavalta nickel smelter and refinery were followed up for cancer from 1967 to 2011 through the Finnish Cancer Registry. The total number of cancer cases in men was 251 (Standardized incidence ratio (SIR) 1.05) and in women 12 (SIR 1.22). In the most nickel-exposed work site (refinery), there were 14 lung cancers (SIR 2.01) and 3 sinonasal cancers (SIR 26.7, 95%). It is likely that exposure to nickel compounds is the main reason for elevated nasal cancer risk among the nickel refinery employees and may also contribute to the excess risk of lung cancer. Am. J. Ind. Med. 60:87-95, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  10. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  11. A new hardware and software developed for copper alloy analyser type XRFA-5

    International Nuclear Information System (INIS)

    Lakatos, T.; Kovacs, P.; Szadai, J.; Szekely, G.

    1991-01-01

    In the production of copper alloys a large amount of waste of unknown origin and composition is melted, and rapid analysis of the melt is important. A copper alloy analyzer based on the energy-dispersive x-ray fluorescence was developed in ATOMKI earlier for copper smelting plants in Hungary. The equipment has recently been upgraded by its connection to IBM PC/AT computer. A digital signal processor and analyzer module, a new software tool for the automatic determination of eight elements, and a stand-alone analyzer program DISIP was developed. The upgraded analyzer type XRFA-5.01 is presented briefly. (R.P.) 3 refs

  12. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Mihaljevic, Martin; Sebek, Ondrej; Molek, Michael; Grygar, Tomas; Zeman, Josef

    2006-01-01

    Stream sediments from the mining and smelting district of Pribram, Czech Republic, were studied to determine the degree, sources and dispersal of metal contamination using a combination of bulk metal and mineralogical determinations, sequential extractions and Pb isotopic analyses. The highest metal concentrations were found 3-4 km downstream from the main polymetallic mining site (9800 mg Pb kg -1 , 26 039 mg Zn kg -1 , 316.4 mg Cd kg -1 , 256.9 mg Cu kg -1 ). The calculated enrichment factors (EFs) confirmed the extreme degree of contamination by Pb, Zn and Cd (EF > 40). Lead, Zn and Cd are bound mainly to Fe oxides and hydroxides. In the most contaminated samples Pb is also present as Pb carbonates and litharge (PbO). Lead isotopic analysis indicates that the predominant source of stream sediment contamination is historic Pb-Ag mining and primary Pb smelting ( 206 Pb/ 207 Pb = 1.16), while the role of secondary smelting (car battery processing) is negligible. - Pb isotopes properly complete traditional investigations of metal sources and dispersal in contaminated stream sediments

  13. Delta smelt: Life history and decline of a once abundant species in the San Francisco Estuary

    Science.gov (United States)

    Moyle, Peter B.; Brown, Larry R.; Durand, John R; Hobbs, James A.

    2016-01-01

    This paper reviews what has been learned about Delta Smelt and its status since the publication of The State of Bay-Delta Science, 2008 (Healey et al. 2008). The Delta Smelt is endemic to the upper San Francisco Estuary. Much of its historic habitat is no longer available and remaining habitat is increasingly unable to sustain the population. As a listed species living in the central node of California’s water supply system, Delta Smelt has been the focus of a large research effort to understand causes of decline and identify ways to recover the species. Since 2008, a remarkable record of innovative research on Delta Smelt has been achieved, which is summarized here. Unfortunately, research has not prevented the smelt’s continued decline, which is the result of multiple, interacting factors. A major driver of decline is change to the Delta ecosystem from water exports, resulting in reduced outflows and high levels of entrainment in the large pumps of the South Delta. Invasions of alien species, encouraged by environmental change, have also played a contributing role in the decline. Severe drought effects have pushed Delta Smelt to record low levels in 2014–2015. The rapid decline of the species and failure of recovery efforts demonstrate an inability to manage the Delta for the “co-equal goals” of maintaining a healthy ecosystem and providing a reliable water supply for Californians. Diverse and substantial management actions are needed to preserve Delta Smelt.

  14. [Research on the method of copper converting process determination based on emission spectrum analysis].

    Science.gov (United States)

    Li, Xian-xin; Liu, Wen-qing; Zhang, Yu-jun; Si, Fu-qi; Dou, Ke; Wang, Feng-ping; Huang, Shu-hua; Fang, Wu; Wang, Wei-qiang; Huang, Yong-feng

    2012-05-01

    A method of copper converting process determination based on PbO/PbS emission spectrum analysis was described. According to the known emission spectrum of gas molecules, the existence of PbO and PbS was confirmed in the measured spectrum. Through the field experiment it was determined that the main emission spectrum of the slag stage was from PbS, and the main emission spectrum of the copper stage was from PbO. The relative changes in PbO/PbS emission spectrum provide the method of copper converting process determination. Through using the relative intensity in PbO/PbS emission spectrum the copper smelting process can be divided into two different stages, i.e., the slag stage (S phase) and the copper stage (B phase). In a complete copper smelting cycle, a receiving telescope of appropriate view angle aiming at the converter flame, after noise filtering on the PbO/PbS emission spectrum, the process determination agrees with the actual production. Both the theory and experiment prove that the method of copper converting process determination based on emission spectrum analysis is feasible.

  15. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China.

    Science.gov (United States)

    Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong

    2018-05-15

    We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Analysis of copper losses throughout weak acid effluent flows generated during off-gas treatment in the New Copper Smelter RTB Bor

    Directory of Open Access Journals (Sweden)

    Dragana Ivšić-Bajčeta

    2013-09-01

    Full Text Available The previous inadequate treatment of off-gas in RTB Bor in Serbia has resulted in serious pollution of the environment and the possibly high losses of copper through the effluent flows. The project of New Copper Smelter RTB Bor, besides the new flash smelting furnace (FSF and the reconstruction of Pierce-Smith converter (PSC, includes more effective effluent treatment. Paper presents an analysis of the new FSF and PSC off-gas treatment, determination of copper losses throughout generated wastewaters and discussion of its possible valorization. Assumptions about the solubility of metals phases present in the FSF and PSC off-gas, obtained by the treatment process simulation, were compared with the leaching results of flue dusts. Determined wastewaters characteristics indicate that the PSC flow is significantly richer in copper, mostly present in insoluble metallic/sulfide form, while the FSF flow has low concentration of copper in the form of completely soluble oxide/sulfate. The possible scenario for the copper valorization, considering arsenic and lead as limiting factors, is the separation of the FSF and PSC flows, return of the metallic/sulfide solid phase to the smelting process and recovery from the sulfate/oxide liquid phase.

  17. [CHEMICAL AIR POLLUTION OF THE OCCUPATIONAL ENVIRONMENT AS A FACTOR FOR PROFESSIONAL RISK FOR WORKERS OF MAIN OCCUPATIONS IN THE COPPER AND NICKEL METALLURGY].

    Science.gov (United States)

    Lipatov, G Ia; Adrianovskiĭ, V I; Gogoleva, O I

    2015-01-01

    There are presented the results of hygienic researches of the harmful substances content in the air of the working area ofthe copper and nickel metallurgy. Sulfur-containing gases (primarily sulfur dioxide), to the effects of which there are exposed workers of drying, smelting, converter conversion, are shown to play a leading role among professional factors.

  18. Status of rainbow smelt in the U.S. waters of Lake Ontario, 2013

    Science.gov (United States)

    Weidel, Brian C.; Connerton, Michael J.

    2014-01-01

    Rainbow Smelt Osmerus mordax are the second most abundant pelagic prey fish in Lake Ontario after Alewife Alosa psuedoharengus. The 2013, USGS/NYSDEC bottom trawl assessment indicated the abundance of Lake Ontario age-1 and older Rainbow Smelt decreased by 69% relative to 2012. Length frequency-based age analysis indicated that age-1 Rainbow Smelt constituted approximately 50% of the population, which is similar to recent trends where the proportion of age-1 has ranged from 95% to 42% of the population. While they constituted approximately half of the catch, the overall abundance index for age 1 was one of the lowest observed in the time series, potentially a result of cannibalism from the previous year class. Combined data from all bottom trawl assessments along the southern shore and eastern basin indicate the proportion of the fish community that is Rainbow Smelt has declined over the past 30 years. In 2013 the proportion of the pelagic fish catch (only pelagic species) that was Rainbow Smelt was the second lowest in the time series at 3.1%. Community diversity indices, based on bottom trawl catches, indicate that Lake Ontario fish community diversity, as assessed by bottom trawls, has sharply declined over the past 36 years and in 2013 the index was the lowest value in the time series. Much of this community diversity decline is driven by changes in the pelagic fish community and dominance of Alewife.

  19. An updated conceptual model of Delta Smelt biology: Our evolving understanding of an estuarine fish

    Science.gov (United States)

    Baxter, Randy; Brown, Larry R.; Castillo, Gonzalo; Conrad, Louise; Culberson, Steven D.; Dekar, Matthew P.; Dekar, Melissa; Feyrer, Frederick; Hunt, Thaddeus; Jones, Kristopher; Kirsch, Joseph; Mueller-Solger, Anke; Nobriga, Matthew; Slater, Steven B.; Sommer, Ted; Souza, Kelly; Erickson, Gregg; Fong, Stephanie; Gehrts, Karen; Grimaldo, Lenny; Herbold, Bruce

    2015-01-01

    The main purpose of this report is to provide an up-to-date assessment and conceptual model of factors affecting Delta Smelt (Hypomesus transpacificus) throughout its primarily annual life cycle and to demonstrate how this conceptual model can be used for scientific and management purposes. The Delta Smelt is a small estuarine fish that only occurs in the San Francisco Estuary. Once abundant, it is now rare and has been protected under the federal and California Endangered Species Acts since 1993. The Delta Smelt listing was related to a step decline in the early 1980s; however, population abundance decreased even further with the onset of the “pelagic organism decline” (POD) around 2002. A substantial, albeit short-lived, increase in abundance of all life stages in 2011 showed that the Delta Smelt population can still rebound when conditions are favorable for spawning, growth, and survival. In this report, we update previous conceptual models for Delta Smelt to reflect new data and information since the release of the last synthesis report about the POD by the Interagency Ecological Program for the San Francisco Estuary (IEP) in 2010. Specific objectives include:

  20. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  1. Smelting reduction of MgO in molten slag by liquid ferrosilicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Q.; Gao, J.; Chen, X.; Wei, X.

    2016-10-01

    The smelting reduction of magnesium oxide was researched in this paper. The effect of molten slag composition and reduction temperature on percent reduction of magnesium oxide were discussed, and kinetics of smelting reduction of magnesium oxide in molten slag was studied. The results showed that the reduction extent of magnesium oxide increased by increasing either one of the following factors: the initial mass ratio of Al{sub 2}O{sub 3}/SiO{sub 2}, the addition of CaF{sub 2}, the initial molar ratio of Si/2MgO, and reaction temperature. The overall smelting reduction was controlled by mass transfer in slag with an apparent activation energy 586 kJ mol{sup -}1. (Author)

  2. A study on the smelting of electrolytically reduced spent fuel by using surrogates

    International Nuclear Information System (INIS)

    Hur, Jin-Mok; Jeong, Myoung-Soo; Cho, Soo-Haeng; Seo, Chung-Seok; Park, Seong-Won

    2005-01-01

    A smelting as a part of the advanced spent fuel conditioning process (ACP) was studied by using surrogate materials. Residual salts including LiCl-Li 2 O were successfully separated from the metal components by an evaporation at 950degC. The melting of the metal was characterized, especially by considering the oxidation of the fine metal particles. The operation procedure of the smelting was set up as 1) removal of residual salts, 2) melting of the metal powder, and 3) a solidification of the melted mass to an ingot. (author)

  3. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    Science.gov (United States)

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  4. Notes from the Field: Acute Mercury Poisoning After Home Gold and Silver Smelting--Iowa, 2014.

    Science.gov (United States)

    Koirala, Samir; Leinenkugel, Kathy

    2015-12-18

    In March 2014, a man, aged 59 years, who lived alone and had been using different smelting techniques viewed on the Internet to recover gold and silver from computer components, was evaluated at a local emergency department for shortness of breath, tremors, anorexia, and generalized weakness. During the smelting processes, he had used hydrogen peroxide, nitric acid, muriatic acid, and sulfuric acid purchased from local stores or Internet retailers. For protection, he wore a military gas mask of unknown type. The mask was used with filter cartridges, but their effectiveness against chemical fumes was not known.

  5. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  6. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  7. Discrimination between mineralized and unmineralized alteration zones using primary geochemical haloes in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran

    Science.gov (United States)

    Parsapoor, A.; Khalili, M.; Maghami, M.

    2017-08-01

    Primary geochemical haloes were studied at the Darreh-Zar porphyry Cu-deposit, southern Iran. In terms of geochemical signatures, high K2O/Na2O enrichment, HREEs and HFSE's depletion in the potassic alteration, high (La/Sm)cn, (La/Yb)cn and (Gd/Yb)cn ratios in mineralized sericitic and potassic zones and notable depletion in the REEs content in argillic alteration is recognized. Further, Mg, Li, Sc, P enrichment and W depletion can serve to separate potassic alteration from the other altered zones, while (Eu/Eu*)cn and (Ce/Ce*)cn don't show pronounced changes in different alteration zones. The coupled positive Tl, Se, S, Rb, Co, Cs, Mo, K and negative Te, Ta, Ti, Sr, Rb, As, Bi, Ga, Hf, In, Mn, Zn and Zr anomalies can be adequately used in discriminating between the mineralized zones (potassic, chlorite-sericite and sericite alterations) and the barren (propylitic zone). The behavior of the trace elements on isocon diagrams reveal that HFSEs are depleted in mineralized altered zones and display variations in the amounts in the barren facies. Zonality index in the axial direction from drill holes 146 to 124 estimates the zonality sequence as Pb-Zn-Ag-Cu-Pb-Zn in the surface horizons. The calculated zonality in five drill holes and six levels indicates that the level of 550 m at the DH 117 in the central part of the area has the highest value (0.76) for Cu. The zonality sequence from the surface to the depth is variable and can be demonstrated as follow: DH 146: Pb-Zn-Cu-Mo-Ag; DH 137: Zn-Cu-Mo-Pb-Ag; DH 117: Ag-Zn-Pb-Mo-Cu; DH: 121: Cu-Mo-Zn-Ag-Pb; DH 136: Pb-Ag-Zn-Cu-Mo; DH 124: Zn-Mo-Cu-Pb-Ag. Available data of the enrichment factors shows different enrichment for copper and molybdenum (i.e. EF > 10), selenium and silver (i.e. EF > 5), tin and LREEs (i.e. 1 < EF < 5).

  8. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  9. Migration of diadromous and landlocked smelt populations studies by otolith geochemistry

    NARCIS (Netherlands)

    Phung, A.T.; Tulp, I.Y.M.; Baeyens, W.; Elskens, M.; Leermakers, M.; Gao, Y.

    2015-01-01

    Laser ablation inductively coupled mass spectrometry (LA-ICPMS) was used to determine Sr and Ba profiles along the growth axis of otholiths of European smelt caught in the Wadden Sea, the IJsselmeer and the Markermeer and to investigate the migration behaviour of the fish between the freshwater

  10. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    Science.gov (United States)

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  11. [Limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou].

    Science.gov (United States)

    Lin, Wen-Jie; Xiao, Tang-Fu; Ao, Zi-Qiang; Xing, Jun; Ma, Huan-Cheng; Hu, Ting-Xing

    2007-03-01

    With indigenous zinc smelting waste residue, contaminated soil and background soil as test substrates, a pot experiment was conducted to study the growth characteristics of Lolium perenne and Trifolium pretense on these substrates. The results showed that the major limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou were the salt-alkali stress and the lower contents of organic matter, total N, available N and total K. The heavy metals in waste residue had a high concentration, but their available forms only occupied a small proportion, with low toxicity to plant but having potential harmful risk. Contaminated soil had lower concentrations of heavy metals than waste residue, but its contained heavy metals were more in available form. The constraints of revegetation on contaminated soil were the toxicity of heavy metals and the low contents of available P and K. Mixing contaminated soil with zinc smelting waste residue could be one of the effective approaches for the substrate amendment in indigenous zinc smelting areas.

  12. The ground stone assemblage of a metal workers community: An unexplored dimension of Iron Age copper production at Timna

    Directory of Open Access Journals (Sweden)

    Aaron Greener

    2016-10-01

    In the framework of the renewed excavations at several of the copper smelting sites at Timna, a pioneering study was conducted in which more than 1000 ground stone tools were identified and registered. These tools include, among others, grinding stones, pounders, anvils and mortars; most were manufactured of compacted sandstone and granite, exposed in several locations in the valley. In this paper we present a typology and quantitative analysis of the ground stone tools which were used by the metal workers, and offer an interpretation of how the various types of tools were employed as part of the copper production process. This provides new insights regarding the smelting process and the conditions needed for its successful outcome.

  13. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China.

    Science.gov (United States)

    Briki, Meryem; Zhu, Yi; Gao, Yang; Shao, Mengmeng; Ding, Huaijian; Ji, Hongbing

    2017-08-19

    Mining and smelting areas in Hezhang have generated a large amount of heavy metals into the environment. For that cause, an evaluative study on human exposure to heavy metals including Co, Ni, Cu, Zn, Cr, As, Cd, Pb, Sb, Bi, Be, and Hg in hair and urine was conducted for their concentrations and correlations. Daily exposure and non-carcinogenic and carcinogenic risk were estimated. Sixty-eight scalp hair and 66 urine samples were taken from participants of different ages (6-17, 18-40, 41-60, and ≥ 65 years) living in the vicinity of an agricultural soil near mine and smelting areas. The results compared to the earlier studies showed an elevated concentration of Pb, Be, Bi, Co, Cr, Ni, Sb, and Zn in hair and urine. These heavy metals were more elevated in mining than in smelting. Considering gender differences, females were likely to be more affected than male. By investigating age differences in this area, high heavy metal concentrations in male's hair and urine existed in age of 18-40 and ≥ 66, respectively. However, females did not present homogeneous age distribution. Hair and urine showed a different distribution of heavy metals in different age and gender. In some cases, significant correlation was found between heavy metals in hair and urine (P > 0.05 and P > 0.01) in mining area. The estimated average daily intake of heavy metals in vegetables showed a great contribution compared to the soil and water. Non-carcinogenic and carcinogenic risk values of total pathways in mining and smelting areas were higher than 1 and exceeded the acceptable levels. Thus, the obtained data might be useful for further studies. They can serve as a basis of comparison and assessing the effect of simultaneous exposure from heavy metals in mining and smelting areas, and potential health risks from exposure to heavy metals in vegetables need more consideration.

  14. The mineralogical characterization of tellurium in copper anodes

    Science.gov (United States)

    Chen, T. T.; Dutrizac, J. E.

    1993-12-01

    A mineralogical study of a «normal» commercial copper anode and six tellurium-rich copper anodes from the CCR Refinery of the Noranda Copper Smelting and Refining Company was carried out to identify the tellurium carriers and their relative abundances. In all the anodes, the major tellurium carrier is the Cu2Se-Cu2Te phase which occurs as a constituent of complex inclusions at the copper grain boundaries. In tellurium-rich anodes, the molar tellurium content of the Cu2Se-Cu2Te phase can exceed that of selenium. Although >85 pct of the tellurium occurs as the Cu2Se-Cu2Te phase, minor amounts are present in Cu-Pb-As-Bi-Sb oxide, Cu-Bi-As oxide, and Cu-Te-As oxide phases which form part of the grain-boundary inclusions. About 1 pct of the tellurium content of silver-rich anodes occurs in various silver alloys, but gold tellurides were never detected. Surprising is the fact that 2 to 8 pct of the total tellurium content of the anodes occurs in solid solution in the copper-metal matrix, and presumably, this form of tellurium dissolves at the anode interface during electrorefining.

  15. Age, growth and sex composition of the American smelt Osmerus mordax(Mitchill), of western Lake Superior

    Science.gov (United States)

    Bailey, Merryll M.

    1964-01-01

    This study is based on 4,561 smelt collected in Chequamegon Bay, the Apostle Islands, the Brule River, and Superior Harbor, all in western Lake Superior. Commercial production in the Great Lakes (U.S. and Canada combined) reached a peak of nearly 16 million pounds in 1960. Production in Lake Superior has generally been small but increased during the 1950's to reach 948,000 pounds in 1960. All O-group and spring I-group smelt had scales with sufficient sculpturing to permit detection of the first annulus. Annulus formation began after 6 June in 1960. In 1961, all smelt had completed the annulus by 24 August. The body-scale relation is a straight line with an intercept of -0.9 inch on the axis of fish length. The weight of western Lake Superior smelt increased as the 2.952 power of the length. A large range of length in each age group and resulting overlap of age-groups II-VI made length a poor index of age. Female smelt grew faster than males after the second year and dominated strongly in age-groups IV-VII. Both sexes made their best annual growth in length (3.3 inches) during their second year of life; the largest weight increments (0.74 ounce, males; 0.85 ounce, females) came in the third year. Best production from a commercial pound net in 1961 occurred when the sex ratios of spawning smelt were nearest 50:50. Spawning male smelt were consistently shorter than females and the average lengths of both sexes decreased as the spawning season progressed. Shortest mature smelt of each sex were 5.0 to 5.2 inches but the males are probably the first to reach 100 percent maturity. All year-old smelt were immature. Among 2-year-old fish, 40.7 per cent of the males and 17.7 percent of the females had reached maturity. All smelt more than 2 years old were mature. Ovaries of 10 smelt contained an average of 31,338 eggs for fish 7.3 to 8.8 inches long.

  16. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  17. Critical Assessment of the Delta Smelt Population in the San Francisco Estuary, California

    Directory of Open Access Journals (Sweden)

    William A Bennett

    2005-09-01

    Full Text Available The delta smelt (Hypomesus transpacificus is a small and relatively obscure fish that has recently risen to become a major focus of environmental concern in California. It was formally abundant in the low-salinity and freshwater habitats of the northeastern San Francisco Estuary, but is now listed as threatened under the Federal and California State Endangered Species Acts. In the decade following the listings scientific understanding has increased substantially, yet several key aspects of its biology and ecological relationships within the highly urbanized estuary remain uncertain. A key area of controversy centers on impacts to delta smelt associated with exporting large volumes of freshwater from the estuary to supply California’s significant agricultural and urban water demands. The lack of appropriate data, however, impedes efforts to resolve these issues and develop sound management and restoration alternatives. Delta smelt has an unusual life history strategy relative to many fishes. Some aspects of its biology are similar to other coastal fishes, particularly salmonids. Smelts in the genus, Hypomesus, occur throughout the Pacific Rim, have variable life history strategies, and are able to adapt rapidly to local environments. By comparison, delta smelt has a tiny geographic range being confined to a thin margin of low salinity habitat in the estuary. It primarily lives only a year, has relatively low fecundity, and pelagic larvae; life history attributes that are unusual when compared with many fishes worldwide. A small proportion of delta smelt lives two years. These individuals are relatively highly fecund but are so few in number that their reproductive contribution only may be of benefit to the population after years of extremely poor spawning success and survival. Provisioning of reproductive effort by these older fish may reflect a bet-hedging tactic to insure population persistence. Overall, the population persists by maximizing

  18. 76 FR 14636 - National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting

    Science.gov (United States)

    2011-03-17

    ... 15 days to April 19, 2011. The EPA received a request for this extension from the Doe Run Company, the sole covered facility. Doe Run Company requested the extension in order to analyze data and review..., the public comment period will now end on April 19, 2011. How can I get copies of the proposed rule...

  19. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  20. Larval nematodes in stomach wall granulomas of smelt Osmerus eperlanus from the German North Sea coast

    OpenAIRE

    Obiekezie, A. I.; Lick, Roland R.; Kerstan, Susanne L.; Möller, Heino

    1992-01-01

    Occurrence of stomach wall granulomas in European smelt was studled at 6 locations along the German North Sea coast. Identification of larval nematodes inhabiting these granulomas is provided for the first time. Three species, isolated by pepsin-HC1 digestion, are involved: Hysterothylacium cf. cornutum, Cosmocephalus obvelatus and Paracuaria tridentata. 72% of all stomachs examined were affected. The ratio of number of granulomas to number of the 3 larval species free in the mesentery was 1:...

  1. The Effect Of Local Coal And Smelting Sponge Iron On Iron Content Of Pig Iron

    Science.gov (United States)

    Oediyani, Soesaptri; Juwita Sari, Pramita; Hadi P, Djoko

    2018-03-01

    The new regulation on mineral resources was announced by Ministry of Energy and Mineral resources (ESDM) of Indonesia at 2014 which it called Permen ESDM No 1/2014. Therefore, this research was conducted to add the value of local iron ores by using smelting technology. The objective of the research is to produce pig iron that meet the requirement of the new regulation of mineral resources such as 90% Fe. First, iron ores and coal mixed together with lime as a flux, then smelted in a Electric Arc Furnace at 1800°C. The process variables are (1; 1.25; 1.5; 1.75; 2.0) and the composition of coal (0.8%, 1.6%, 3.0%). The type of coal that used in this research was bituminous coal from Kalimantan and also the iron ores from Kalimantan. The products of the smelting technology are Pig iron and slag. Both pig iron and slag then analyzed by SEM-EDS to measure the iron content. The result shows that the maximum iron content on pig iron is about 95.04% meanwhile the minimum iron content on slag is about 3.66%. This result achieved at 1.6% coal and 2.0.

  2. Inverse boundary design of a radiative smelting furnace with ablative phase change phenomena

    International Nuclear Information System (INIS)

    Farzan, H.; Hosseini Sarvari, S.M.; Mansouri, S.H.

    2016-01-01

    Highlights: • The ablation phenomenon in a reverberatory smelting furnace is simulated numerically. • The results are verified by comparing with exact analytic solution. • Inverse design problem is solved to construct the desired melting rate. • The conjugate gradient method is used to solve the inverse phase change problem. - Abstract: An inverse analysis is employed to control the time rate of heaters in a 2-D smelting furnace to provide the specified radiative heat flux across the design surface to establish a desired melting rate. The design surface in the smelting furnace is the melting surface of the metal concentrate bank, and the melting process is considered to occur as an ablation phenomenon. The net radiation method is used to determine the radiation exchange between the elements of the furnace surfaces and the melting surface. The conjugate gradient method is employed to minimize the objective function, which is the sum of square residuals between the estimated and the desired heat fluxes over the design surface. It is shown that the proposed inverse technique is reliable and accurate for predicting the heater power distribution.

  3. Thallium transformation and partitioning during Pb–Zn smelting and environmental implications

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Jin; Chen, Yongheng; Xie, Xiaofan; Qi, Jianying; Lippold, Holger; Luo, Dinggui; Wang, Chunlin; Su, Longxiao; He, Lucheng; Wu, Qiwei

    2016-01-01

    Thallium (Tl) is a toxic and non-essential heavy metal. Raw Pb–Zn ores and solid smelting wastes from a large Pb–Zn smelting plant – a typical thallium (Tl) pollution source in South China, were investigated in terms of Tl distribution and fractionation. A modified IRMM (Institute for Reference Materials and Measurement, Europe) sequential extraction scheme was applied on the samples, in order to uncover the geochemical behavior and transformation of Tl during Pb–Zn smelting and to assess the potential environmental risk of Tl arising from this plant. Results showed that the Pb–Zn ore materials were relatively enriched with Tl (15.1–87.7 mg kg"−"1), while even higher accumulation existed in the electrostatic dust (3280–4050 mg kg"−"1) and acidic waste (13,300 mg kg"−"1). A comparison of Tl concentration and fraction distribution in different samples clearly demonstrated the significant role of the ore roasting in Tl transformation and mobilization, probably as a result of alteration/decomposition of related minerals followed by Tl release and subsequent deposition/co-precipitation on fine surface particles of the electrostatic dust and acidic waste. While only 10–30% of total Tl amounts was associated with the exchangeable/acid-extractable fraction of the Pb–Zn ore materials, up to 90% of total Tl was found in this fraction of the electrostatic dust and acidic waste. Taking into account the mobility and bioavailability of this fraction, these waste forms may pose significant environmental risk. - Highlights: • Geo-chemical partitioning of Tl in Pb–Zn ores and smelting wastes was investigated. • Significant differences were shown in Tl contents and chemical fractionation. • Over 100-fold enrichment of Tl was found in electrostatic dust and acidic waste. • Ore roasting played a key role in Tl transformation and mobilization. • Tl was mainly bound in the labile fraction of electrostatic dust and acidic waste. - Geo

  4. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  5. Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-01-01

    Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.

  6. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China.

    Science.gov (United States)

    Lei, Kai; Giubilato, Elisa; Critto, Andrea; Pan, Huiyun; Lin, Chunye

    2016-07-01

    Pb/Zn smelting, an important economic activity in China, has led to heavy environmental pollution. This research reviewed studies on soil Pb contamination at Pb/Zn smelting sites in China published during the period of 2000 to 2015 to clarify the total levels, spatial changes, and health risks for Pb contamination in soils at local and national scales. The results show that Pb contents in surface soils at 58 Pb/Zn smelting sites in China ranged from 7 to 312,452 mg kg(-1) with an arithmetic average, geometric average, and median of 1982, 404, and 428 mg kg(-1), respectively (n = 1011). Surface soil Pb content at these smelting sites decreased from an average of 2466 to 659 mg kg(-1), then to 463 mg kg(-1) as the distance from the smelters increased from 2000 m. With respect to variation with depth, the average soil Pb content at these sites gradually decreased from 986 mg kg(-1) at 0- to 20-cm depth to 144 mg kg(-1) at 80- to 100-cm depth. Approximately 78 % of the soil samples (n = 1011) at the 58 Pb/Zn smelting sites were classified as having high Pb pollution levels. Approximately 34.2 and 7.7 % of the soil samples (n = 1011) at the 58 Pb/Zn smelting sites might pose adverse health effects and high chronic risks to children, respectively. The Pb/Zn smelting sites in the southwest and southeast provinces of China, as well as Liaoning province, were most contaminated and thus should receive priority for remediation.

  7. Recent copper-working sites in the Khuiseb drainage, Namibia

    International Nuclear Information System (INIS)

    Kinahan, J.

    1982-01-01

    In the article radiocarbon dates are presented for the production of copper artefacts in the Khomas highlands of Namibia during the last four centuries and significant associations are also briefly described. Results from the study suggest that copper beads were widely distributed in Namibia over at least the last 400 years. The archaeological evidence of copper-working in the Khuiseb valley is in partial agreement with historical records of the eighteenth century. The scale of the industry appears to have been small, and its apparent portability suited to a nonsedentary way of life based primarily on foraging. Collectively the group of radiocarbon dates suggests that copper smelting in the Khomas highlands post-dates A.D. 1420 (Pta-2573) while the activity may have continued until as late as A.D. 1840 (Pta-2739). Most of the measurements, however, point to a date in the seventeenth century indicating that the sites are roughly contemporaneous and represent a relatively short time period of about a century

  8. The aluminum smelting process and innovative alternative technologies.

    Science.gov (United States)

    Kvande, Halvor; Drabløs, Per Arne

    2014-05-01

    The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. This article is based on a study of the extensive chemical and medical literature on primary aluminum production. At present, there are two main technological challenges for the process--to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future.

  9. The Aluminum Smelting Process and Innovative Alternative Technologies

    Science.gov (United States)

    Drabløs, Per Arne

    2014-01-01

    Objective: The industrial aluminum production process is addressed. The purpose is to give a short but comprehensive description of the electrolysis cell technology, the raw materials used, and the health and safety relevance of the process. Methods: This article is based on a study of the extensive chemical and medical literature on primary aluminum production. Results: At present, there are two main technological challenges for the process—to reduce energy consumption and to mitigate greenhouse gas emissions. A future step may be carbon dioxide gas capture and sequestration related to the electric power generation from fossil sources. Conclusions: Workers' health and safety have now become an integrated part of the aluminum business. Work-related injuries and illnesses are preventable, and the ultimate goal to eliminate accidents with lost-time injuries may hopefully be approached in the future. PMID:24806723

  10. Recent applications of PIXE spectrometry in archaeology. Pt. 1; Observations on the early development of copper metallurgy in the Old World

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, S J [MASCA, Univ. Museum, Univ. Pennsylvania, Philadelphia, PA (United States); Swann, C P [Bartol Research Inst., Univ. Delaware, Newark, DE (United States)

    1993-04-01

    The early development of copper metallurgy can be characterized by three steps of innovation: (i) Exploitation of native copper resources for simple tool-making as early as the 7th millennium B.C. in the Near East; (ii) the recovery of copper metal from minerals such as malachite, by smelting, during the 5th millennium B.C., both in the Near East and in eastern Europe; and (iii) the deliberate alloying of copper and tin, to make bronze, circa 2800 B.C. in Mesopotamia (modern Iraq). This paper reviews the technological aspects associated the first two of these steps, comparing compositional patterns (as determined by PIXE spectrometry) for the copper metallurgy of various regions including the Middle Danube basin, the Tigris basin, and the Iranian Plateau. (orig.).

  11. Electrolytic smelting of lunar rock for oxygen, iron, and silicon

    Science.gov (United States)

    Haskin, Larry A.; Colson, Russell O.; Lindstrom, David J.; Lewis, Robert H.; Semkow, Krystyna W.

    1992-01-01

    Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source.

  12. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  13. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago

    Science.gov (United States)

    Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Rehren, Th.; Schwikowski, M.

    2017-01-01

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.

  14. Ice-core evidence of earliest extensive copper metallurgy in the Andes 2700 years ago.

    Science.gov (United States)

    Eichler, A; Gramlich, G; Kellerhals, T; Tobler, L; Rehren, Th; Schwikowski, M

    2017-01-31

    The importance of metallurgy for social and economic development is indisputable. Although copper (Cu) was essential for the wealth of pre- and post-colonial societies in the Andes, the onset of extensive Cu metallurgy in South America is still debated. Comprehensive archaeological findings point to first sophisticated Cu metallurgy during the Moche culture ~200-800 AD, whereas peat-bog records from southern South America suggest earliest pollution potentially from Cu smelting as far back as ~2000 BC. Here we present a 6500-years Cu emission history for the Andean Altiplano, based on ice-core records from Illimani glacier in Bolivia, providing the first complete history of large-scale Cu smelting activities in South America. We find earliest anthropogenic Cu pollution during the Early Horizon period ~700-50 BC, and attribute the onset of intensified Cu smelting in South America to the activities of the central Andean Chiripa and Chavin cultures ~2700 years ago. This study provides for the first time substantial evidence for extensive Cu metallurgy already during these early cultures.

  15. Smelting reduction of MgO in molten slag by liquid ferrosilicon

    Directory of Open Access Journals (Sweden)

    Tang, Qifeng

    2016-06-01

    Full Text Available The smelting reduction of magnesium oxide was researched in this paper. The effect of molten slag composition and reduction temperature on percent reduction of magnesium oxide were discussed, and kinetics of smelting reduction of magnesium oxide in molten slag was studied. The results showed that the reduction extent of magnesium oxide increased by increasing either one of the following factors: the initial mass ratio of Al2O3/SiO2, the addition of CaF2, the initial molar ratio of Si/2MgO, and reaction temperature. The overall smelting reduction was controlled by mass transfer in slag with an apparent activation energy 586 kJ mol-1.En este trabajo se estudia la reducción de óxido de magnesio. La influencia de la composición de las escorias y de la temperatura de reducción sobre el porcentaje de reducción de óxido de magnesio han sido discutidas, y asimismo se ha estudiado la cinética de la reducción del óxido de magnesio en escorias fundidas. Los resultados muestran que la reducción se incrementa al aumentar alguno de los siguientes factores: la proporción de Al2O3/SiO2, la adición de CaF2, la proporción molar de Si/2MgO y la temperatura de reacción. En general la reducción fue controlada por la transferencia de masa en la escoria con una energía aparente de 586 kJ mol-1.

  16. Thallium transformation and partitioning during Pb-Zn smelting and environmental implications.

    Science.gov (United States)

    Liu, Juan; Wang, Jin; Chen, Yongheng; Xie, Xiaofan; Qi, Jianying; Lippold, Holger; Luo, Dinggui; Wang, Chunlin; Su, Longxiao; He, Lucheng; Wu, Qiwei

    2016-05-01

    Thallium (Tl) is a toxic and non-essential heavy metal. Raw Pb-Zn ores and solid smelting wastes from a large Pb-Zn smelting plant - a typical thallium (Tl) pollution source in South China, were investigated in terms of Tl distribution and fractionation. A modified IRMM (Institute for Reference Materials and Measurement, Europe) sequential extraction scheme was applied on the samples, in order to uncover the geochemical behavior and transformation of Tl during Pb-Zn smelting and to assess the potential environmental risk of Tl arising from this plant. Results showed that the Pb-Zn ore materials were relatively enriched with Tl (15.1-87.7 mg kg(-1)), while even higher accumulation existed in the electrostatic dust (3280-4050 mg kg(-1)) and acidic waste (13,300 mg kg(-1)). A comparison of Tl concentration and fraction distribution in different samples clearly demonstrated the significant role of the ore roasting in Tl transformation and mobilization, probably as a result of alteration/decomposition of related minerals followed by Tl release and subsequent deposition/co-precipitation on fine surface particles of the electrostatic dust and acidic waste. While only 10-30% of total Tl amounts was associated with the exchangeable/acid-extractable fraction of the Pb-Zn ore materials, up to 90% of total Tl was found in this fraction of the electrostatic dust and acidic waste. Taking into account the mobility and bioavailability of this fraction, these waste forms may pose significant environmental risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit

    International Nuclear Information System (INIS)

    Monna, F.; Galop, D.; Carozza, L.; Tual, M.; Beyrie, A.; Marembert, F.; Chateau, C.; Dominik, J.; Grousset, F.E.

    2004-01-01

    More than four metres of core, covering almost 5000 years of deposition, were collected in a high ash minerogenic peat deposit located in the High Aldudes valley (Basque country), an area well known for its mineral abundance, exploited from Roman Times at least. Although minerogenic peatlands are not generally considered as the best archives to reconstruct past atmospheric metal deposition history, lead isotopic geochemistry demonstrates the integrity of the Pb record at least within the three upper meters; that is to say over the last four millennia. Zn, Cd and Cu may have been widely redistributed either by biological cycling, advective groundwater movements, or diffusional processes. Anthropogenic lead input phases are clearly pinpointed by positive shifts in Pb/Sc ratios with concomitant sharp drops in 206 Pb/ 207 Pb ratios. They are often accompanied by significant declines in tree taxa, interpreted as increasing demand for wood to supply energy for local mining and/or metallurgical operations. Periods of mining and/or smelting activity are identified during Antiquity and Modern Times, and are also confirmed by textual and field evidence. Inputs from the Rio Tinto (Southern Spain), often invoked as a major lead contributor to the European atmosphere during Roman Times, were not detected here. This remote source was probably masked by local inputs. Other mining and/or smelting phases, only suspected by archaeologists, are here identified as early as the Bronze Age. Although the durations of these phases are possibly overestimated because of detrital inputs consequent to the release of lead from polluted soils over a long period of time after major pollutant inputs, the periods at which pollution peaks occur are in good agreement with archaeological knowledge and palaeo-botanical data. The combination of geochemical and palaeo-botanical techniques with field archaeology, therefore provides a powerful tool in studying the interaction of early human societies with

  18. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  19. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  20. Reduction electric smelting of ferriferrous-titanium concentrates from Gremyakha-Vyrmes deposit

    International Nuclear Information System (INIS)

    Morozov, A.A.

    2002-01-01

    Substantial composition of ilmenite and titanium-magnetite concentrates from Gremyaha-Vyrmes deposit is studied and their reducibility is examined as compared with other similar kids of raw materials. Thermal-physical properties of slag melts (such as toughness and melting ability), formed in reduction smelting of the above-mentioned concentrates for different reduction degree, are determined. These properties characterize the electric thermal transformation process of concentrates as hi-tech one. Features of chemical composition of metal, which is naturally alloyed with vanadium and is produced at the same time are noted. This metal expands the possibilities of complex used of the concentrates of this deposit [ru

  1. Fate of recovery boiler smelt nitrogen in the recovery cycle; Soodakattilan sulan typpiyhdisteitten kaeyttaeytyminen talteenottoprosessissa

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Forssen, M.; Backman, R.; Ek, P.; Hulden, S.G.; Kilpinen, P.; Kymaelaeinen, M.; Malm, H. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The purpose of this project is to study the fate of the nitrogen bound in the inorganic smelt after it enters the dissolving tank. Of special interest is to find in what form this nitrogen can be found further down in the recovery process and especially in what form it can be removed from the process. The aim is to clarify if the nitrogen can be a potential problem in the process or if it can become a potential emission. The work is divided into choosing methods for the analysis of different nitrogen species, collection and analysis of mill samples, laboratory studies and theoretical studies on nitrogen chemistry in alkaline solutions and reporting

  2. A Place to Call Home: A Synthesis of Delta Smelt Habitat in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Ted Sommer

    2013-06-01

    Full Text Available We used a combination of published literature and field survey data to synthesize the available information about habitat use by delta smelt Hypomesus transpacificus, a declining native species in the San Francisco Estuary. Delta smelt habitat ranges from San Pablo and Suisun bays to their freshwater tributaries, including the Sacramento and San Joaquin rivers. In recent years, substantial numbers of delta smelt have colonized habitat in Liberty Island, a north Delta area that flooded in 1997. The species has a more upstream distribution during spawning as opposed to juvenile rearing periods. Post-larvae and juveniles tend to have a more downstream distribution during wetter years. Delta smelt are most common in low-salinity habitat (<6 psu with high turbidities (>12 NTU and moderate temperatures (7 °C to 25 °C. They do not appear to have strong substrate preferences, but sandy shoals are important for spawning in other osmerids. The evidence to date suggests that they generally require at least some tidal flow in their habitats. Delta smelt also occur in a wide range of channel sizes, although they seem to be rarer in small channels (<15 m wide. Nonetheless, there is some evidence that open water adjacent to habitats with long water-residence times (e.g. tidal marsh, shoal, low-order channels may be favorable. Other desirable features of delta smelt habitat include high calanoid copepod densities and low levels of submerged aquatic vegetation (SAV and the toxic algae Microcystis. Although enough is known to plan for large-scale pilot habitat projects, these efforts are vulnerable to several factors, most notably climate change, which will change salinity regimes and increase the occurrence of lethal temperatures. We recommend restoration of multiple geographical regions and habitats coupled with extensive monitoring and adaptive management. An overall emphasis on ecosystem processes rather than specific habitat features is also likely to be

  3. Some aspects of copper metabolism in Brindled mice

    International Nuclear Information System (INIS)

    Prins, H.W.

    1981-01-01

    The semi-dominant X-linked mutation in Brindled mice causes a severe copper deficiency of which the hemizygous Brindled mice die between 14 and 21 days post partum. Previously, in analogy to Menkes' disease in man, the primary defect in mutated Brindled mice has been described as a block in the resorption of alimentary copper, i.e., the transport of copper from the intestinal lumen into the portal blood circulation. During this research it became clear that the impaired resorption of alimentary copper is only a part of a more general aberration of copper metabolism in epithelioid cells. Tracer techniques using 64 Cu are used for metabolism studies. (Auth.)

  4. Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: Spatial distribution and accumulation of mercury in four different ecosystems.

    Science.gov (United States)

    Árvay, Július; Demková, Lenka; Hauptvogl, Martin; Michalko, Miloslav; Bajčan, Daniel; Stanovič, Radovan; Tomáš, Ján; Hrstková, Miroslava; Trebichalský, Pavol

    2017-10-01

    Former long-term mining and smelting of pollymetallic ores in the Middle Spiš area caused a serious contamination problem of the environment with heavy metals and metalloids, especially mercury (Hg). Several studies have reported concentration of Hg in the area but this paper provides first detailed characterization of Hg contamination of different environmental components in agricultural, forest, grassland and urban ecosystems. The ecosystems are in different distances from emission sources - former mercury and copper smelting plants in NE Slovakia. Total Hg content was studied in soil/substrate samples (n = 234) and characteristic biological samples (Athyrium filix-femina (L.) Roth, Macrolepiota procera (Scop.) Singer, Boletus edulis Bull., Cyanoboletus pulverulentus (Opat.) Gelardi, Vizzini & Simonini, Triticum aestivum (L.), Poa pratensis (L.)) (n = 234) collected in the above-mentioned ecosystems. The level of contamination and environmental risks were assessed by contamination factor (C f ), index of geoaccumulation (I geo ) and potential environmental risk index (PER). To determine the level of transition of Hg from abiotic to biotic environment, bioconcentration factor (BCF) was used. To determine a health risk resulting from regular and long-term consumption of the locally available species, the results of the Hg content were compared with the Provisional Tolerable Weekly Intake (PTWI) for Hg defined by World Health Organization. The results suggest that almost 63% of the area belong to the very high risk category and 80% of the sampling sites shown very high contamination factor. Geoaccumulation index showed that almost 30% of the area is very strongly contaminated and only 8% is not contaminated with Hg. Spearman's correlation relationship confirmed that the values of PER, BCF, C f and I geo decreased with an increasing distance from the pollution source. The percentage of contribution to PTWI ranged between 5.76-69.0% for adults and 11.5-138% for

  5. Cold-rolled sheets production of stainless martensite-ageing steel smelted by vacuum arc and electroslag techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, A A; Grishkov, A I; Suslin, A P; Nesterenko, A A; Lola, V N [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-05-01

    In cooperation with a number of metallurgical works the production of a high strength sheet stainless maraging steel EHP678 (000KH11N10M2T) has been tested by rolling cylindrical ingots of vacuum arc smelting at the blooming (the mass of rough ingots was 5.1 to 6.0 t, that of cleaned ingots - 3.8 to 5.1 t) or rectangular ingots of electroslag smelting (13 t) at the slabbing. The recommended regimes of heating and deformation are much similar to those used for the steel-KH18N10T. The output of valid cold-rolled sheets proved to be rather low (0.24 t/t for the vacuum arc smelting and 0.30 t/t for the electroslag smelting) mainly due to the losses on cleaning and a considerable portion of wrong-size slabs. The data are presented on the steel-EHP678 properties after various heat treatments. For the production of wide cold-rolled sheets of the steel EHP678 it is recommended to use steelmaking procedure with electroslag smelting including open-hearth melting in arc furnaces, rolling of ingots at the slabbing with heating up to 1260-1280 deg C (hold-up of 4.5 to 5 hrs); electroslag smelting for rectangular section slabs, rolling of ingots of electroslag smelting at the slabbing with their heating up to 1250 deg C (hold-up of 5.5 to 6 hrs), rolling at the 1680-type mill with heating up to 1250-1260 deg C (hold-up of 4 to 4.5 hrs ensuring the rolling temperature after a rough group not below 1100 deg C), quenching of hot-rolled sheets heating up to 920-940 deg C (hold-up of 3 to 3.5 min/mm), shot peening of sheets for descaling (provided the respective equipment is available) with a subsequent short-time pickling in an acid solution and cold rolling with a summary deformation of 35 to 45 %. The steelmaking with the electroslag smelting is much more profitable as regards to the fine technology of number of the main procedures, convenient cooperation of the works and a considerably greater output of the final products out of one ton of the steel produced.

  6. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    OpenAIRE

    Guo, Lijie; Li, Wenchen; Yang, Xiaocong; Xu, Wenyuan

    2018-01-01

    This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS) on cemented tailing backfill (CTB) that contains lead-zinc smelting slag. CTB and cemented paste (CP) containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis a...

  7. Successional change in the Lake Superior fish community: population trends in ciscoes, rainbow smelt, and lake trout, 1958-2008

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different

  8. Assessment of primary production in a eutrophic lake from carbon and nitrogen isotope ratios of a carnivorous fish

    International Nuclear Information System (INIS)

    Yoshioka, Takahito

    1991-01-01

    The carbon and nitrogen isotope ratios of Hypomesus transpacificus (a pond smelt) in a eutrophic lake, Lake Suwa, were measured from April to September in 1986 and 1987. The differences in the isotope ratios between these two years were observed. The stable isotopes were transferred from phytoplankton to zooplankton and pond smelt, associated with organic matters. Therefore, the difference in the isotope ratios in two years seemed to reflect the differences of the proceeding of primary production. It was suggested that the carbon and nitrogen isotope ratios of animal, whose trophic level is far from primary producer, can be the qualitative indicators for assessing the primary production in a lake ecosystem. (author)

  9. Effect of solution heat treatment on the precipitation behavior and strengthening mechanisms of electron beam smelted Inconel 718 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    You, Xiaogang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Tan, Yi, E-mail: tanyi@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Shi, Shuang [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China); Yang, Jenn-Ming [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wang, Yinong [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Li, Jiayan; You, Qifan [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023 (China); Laboratory for New Energy Material Energetic Beam Metallurgical Equipment Engineering of Liaoning Province, Dalian 116024 (China)

    2017-03-24

    Inconel 718 superalloy was fabricated by electron beam smelting (EBS) technique. The effect of solution heat treatment on the precipitation behavior and mechanical properties of EBS 718 superalloys were studied, the strengthening mechanisms were analyzed and related to the mechanical properties. The results indicate that the optimized microstructures can be acquired by means of EBS, which is attributed to the rapid cooling rate of approximately 280 ℃/min. The solution heat treatment shows a great impact on the microstructures, precipitation behavior and mechanical properties of EBS 718 superalloy. The γ'' phase shows an apt to precipitate at relatively lower solution temperatures followed by aging, while the γ' precipitates are prone to precipitate at higher temperatures. When solution treated at 1150 ℃, the γ' precipitates are dispersively distributed in the matrix with size and volume fraction of 8.43 nm and 21.66%, respectively, a Vickers hardness of approximately 489 HV{sub 0.1} is observed for the aged superalloy. The precipitation strengthening effect of EBS 718 superalloy could be elucidated by considering the interaction between the dislocations and γ''/γ' precipitates. The shearing of γ' is resisted by the coherency strengthening and formation of antiphase boundary (APB), which shows equal effect as weakly coupled dislocation (WCD) model. And for γ'', the strengthening effect is much more prominent with the primary strengthening mechanism of ordering. Moreover, it is interestingly found that the strengthening mechanism of stacking fault (SF) shearing coexists with APB shearing, and SF shearing plays a major role in strengthening of EBS 718 superalloy.

  10. Investigation of the particulate derived from indigenous zinc smelting using the nuclear analytical technique

    International Nuclear Information System (INIS)

    Zhu Guanghua

    1995-12-01

    The air particulate samples at the site of indigenous zinc smelting in south of China, using an 8-stage cascade impactor have been collected. The elemental concentrations of the samples were analyzed by PIXE (Particle Induced X-ray Emission) method. As a result, the mass concentrations of more than 17 elements and their size distribution spectra were obtained. Then the data were analyzed by the absolute principal component analysis (APCA) to evaluate principal components and the percent variance explained by them. From the elemental size distribution spectra, three kinds of patterns were found that they corresponded to the tree principal components and suggested that they were from ore vapor, coal burning and soil dust. Based on the elemental size distribution spectra and a deposit model the deposited amounts for several elements in a human's lung during a day were calculated and compared with that of other places. It is shown that the air quality was heavily degraded at the site of indigenous zinc smelting. (5 refs., 3 figs., 2 tabs.)

  11. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  12. Synthesis of cobalt alloy through smelting method and its characterization as prosthesis bone implant

    International Nuclear Information System (INIS)

    Aminatun,; Putri, N.S Efinda; Indriani, Arista; Himawati, Umi; Hikmawati, Dyah; Suhariningsih

    2014-01-01

    Cobalt-based alloys are widely used as total hip and knee replacements because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility. In this work, cobalt alloys with variation of Cr (28.5; 30; 31.5; 33, and 34.5% wt) have been synthesized by smelting method began with the process of compaction, followed by smelting process using Tri Arc Melting Furnace at 200A. Continued by homogenization process at recrystallization temperature (1250° C) for 3 hours to allow the atoms diffuses and transform into γ phase. The next process is rolling process which is accompanied by heating at 1200° C for ± 15 minutes and followed by quenching. This process is repeated until the obtained thickness of ± 1 mm. The evaluated material properties included microstructure, surface morphology, and hardness value. It was shown that microstructure of cobalt alloys with variation of Cr is dominant by γ phase, thus making the entire cobalt alloys have high hardness. It was also shown from the surface morphology of entire cobalt alloys sample indicated the whole process of synthesis that had good solubility were at flat surface area. Hardness value test showed all of cobalt alloys sample had high hardness, just variation of 33% Cr be in the range of ASTMF75, it were 345,24 VHN which is potential to be applied as an implant prosthesis

  13. Smelting of high-quality boiler steel in large-load arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kablukovskij, A F; Breus, V M; Tyurin, E I; Khristich, V D; Dumchev, Ya P [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-02-01

    High-grade steel can be obtained in large-capacity furnaces if the smelting technology used takes account of the size of the aggregates, the course of the metal fusion process, interaction with slag, furnace atmosphere, reducing agents, and other process characteristics. 12Kh1MF boiler steel smelted in a 100-ton electric arc furnace by an oxidizing process with oxygen bath blow and cast by the siphon method into 6.5-ton ingots using a slag-forming mixture (240 mm diameter billets and 219 to 245 mm diameter tubes) is satisfactory with regard to macro and microstructure, oxygen and nonmetallic oxide inclusion content, and mechanical properties. The stress rupture strength of 10/sup 5/ h at 570/sup 0/C is similar to that of open-hearth steel. Sulfides larger than a 3.5 spheroid have been detected in it. The nitrogen content of the electric steel is 0.0090 to 0.0120%, which is somewhat greater than usual in open-hearth metal. Of the oxygen inclusions in the steel, spinel-alumina predominates. Large inclusions were represented mainly by brittle silicates which appeared to be of exogenous origin.

  14. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  15. Two-Dimensional Physical and CFD Modelling of Large Gas Bubble Behaviour in Bath Smelting Furnaces

    Directory of Open Access Journals (Sweden)

    Yuhua Pan

    2010-09-01

    Full Text Available The behaviour of large gas bubbles in a liquid bath and the mechanisms of splash generation due to gas bubble rupture in high-intensity bath smelting furnaces were investigated by means of physical and mathematical (CFD modelling techniques. In the physical modelling work, a two-dimensional Perspex model of the pilot plant furnace at CSIRO Process Science and Engineering was established in the laboratory. An aqueous glycerol solution was used to simulate liquid slag. Air was injected via a submerged lance into the liquid bath and the bubble behaviour and the resultant splashing phenomena were observed and recorded with a high-speed video camera. In the mathematical modelling work, a two-dimensional CFD model was developed to simulate the free surface flows due to motion and deformation of large gas bubbles in the liquid bath and rupture of the bubbles at the bath free surface. It was concluded from these modelling investigations that the splashes generated in high-intensity bath smelting furnaces are mainly caused by the rupture of fast rising large gas bubbles. The acceleration of the bubbles into the preceding bubbles and the rupture of the coalescent bubbles at the bath surface contribute significantly to splash generation.

  16. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    Science.gov (United States)

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  17. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay.

    Science.gov (United States)

    Hu, Huiping; Deng, Qiufeng; Li, Chao; Xie, Yue; Dong, Zeqin; Zhang, Wei

    2014-04-30

    Novel lightweight bricks have been produced by sintering mixes of zinc smelting slag and clay. A two-stage sintered process has been proposed to recovery of Zn and Pb and reutilization of the zinc smelting slag. In the first stage of the process, called reduction and volatilization procedure, zinc and lead were reduced by the carbon contained in the zinc smelting slag and volatilized into the dust, and the dust can be used as a secondary zinc resource. In the second stage of the process, called oxidation sintering procedure, a lightweight brick was produced. Samples containing up to 60 wt.% zinc smelting slag and 40 wt.% kaolin clay were reduced at 1050°C for 6h, and then sintered at 1050°C for 4h. The recoveries of Zn and Pb from the brick are 94.5 ± 0.6% and 97.6 ± 0.2%, respectively. Low bulk density (1.42 g cm(-3)) and relatively high compressive strength (2 2MPa) sintered bricks were produced, and the leaching toxicity of the sintered bricks was below the regulatory thresholds of Chinese National Standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Karyotype and chromosomal characteristics of Ag-NOR sites and 5S rDNA in European smelt, Osmerus eperlanus

    Czech Academy of Sciences Publication Activity Database

    Ocalewicz, K.; Hliwa, P.; Krol, J.; Rábová, Marie; Stabinski, R.; Ráb, Petr

    2007-01-01

    Roč. 131, - (2007), s. 29-35 ISSN 0016-6707 R&D Projects: GA AV ČR IAA6045405; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : chromosome banding * cytotaxonomy of smelt * fish cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.396, year: 2007

  19. Diet, Prey Selection, and Body Condition of Age-0 Delta Smelt, Hypomesus transpacificus, in the Upper San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Steven B. Slater

    2014-09-01

    Full Text Available Steven B. Slater and Randall D. Baxterdoi: http://dx.doi.org/10.15447/sfews.2014v12iss3art1The Delta Smelt, an endangered fish, has suffered a long-term decline in abundance, believed to result from, in part, to changes in the pelagic food web of the upper San Francisco Estuary. To investigate the current role of food as a factor in Delta Smelt well-being, we developed reference criteria for gut fullness and body condition based on allometric growth. We then examined monthly diet, prey selectivity, and gut fullness of larvae and juvenile Delta Smelt collected April through September in 2005 and 2006 for evidence of feeding difficulties leading to reduced body condition. Calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi remained major food items during spring and from early summer through fall, respectively. Other much larger copepods and macroinvertebrates contributed in lesser numbers to the diet of older juvenile fish from mid-summer through fall. In fall, juvenile Delta Smelt periodically relied heavily on very small prey and prey potentially associated with demersal habitat, suggesting typical pelagic food items were in short supply. We found a strong positive selection for E. affinis and P. forbesi, neutral to negative selection for evasive calanoid Sinocalanus doerrii, and neutral to negative selection for the small cyclopoid copepod Limnoithona tetraspina and copepod nauplii, which were consumed only when extremely numerous in the environment. Feeding incidence was significantly higher in 2006, but among successfully feeding fish we found no between year difference in gut fullness. However, we did detect differences in fullness across months in both years. We found no difference in body condition of Delta Smelt between years yet our sample sizes were low in September when Delta Smelt reverted to feeding on very small organisms and fullness declined, so the longer-term effect remains unknown. Our findings suggest that: Delta

  20. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  1. Diagnostic Accuracy of 64Copper Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Primary Lymph Node Staging of Intermediate- to High-risk Prostate Cancer: Our Preliminary Experience.

    Science.gov (United States)

    Cantiello, Francesco; Gangemi, Vincenzo; Cascini, Giuseppe Lucio; Calabria, Ferdinando; Moschini, Marco; Ferro, Matteo; Musi, Gennaro; Butticè, Salvatore; Salonia, Andrea; Briganti, Alberto; Damiano, Rocco

    2017-08-01

    To assess the diagnostic accuracy of 64 Copper prostate-specific membrane antigen ( 64 Cu-PSMA) positron emission tomography/computed tomography (PET/CT) in the primary lymph node (LN) staging of a selected cohort of intermediate- to high-risk prostate cancer (PCa) patients. An observational prospective study was performed in 23 patients with intermediate- to high-risk PCa, who underwent 64 Cu-PSMA PET/CT for local and lymph nodal staging before laparoscopic radical prostatectomy with an extended pelvic LN dissection. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for LN status of 64 Cu-PSMA PET/CT were calculated using the final pathological findings as reference. Furthermore, we evaluated the correlation of intraprostatic tumor extent and grading with 64 Cu-PSMA intraprostatic distribution. Pathological analysis of LN involvement in 413 LNs harvested from our study cohort identified a total of 22 LN metastases in 8 (5%) of the 23 (35%) PCa patients. Imaging-based LN staging in a per-patient analysis showed that 64 Cu-PSMA PET/CT was positive in 7 of 8 LN-positive patients (22%) with a sensitivity of 87.5%, specificity of 100%, PPV of 100%, and NPV of 93.7%, considering the maximum standardized uptake value (SUV max ) at 4 hours as our reference. Receiver operating characteristic curve was characterized by an area under the curve of 0.938. A significant positive association was observed between SUV max at 4 hours with Gleason score, index, and cumulative tumor volume. In our intermediate- to high-risk PCa patients study cohort, we showed the high diagnostic accuracy of 64 Cu-PSMA PET/CT for primary LN staging before radical prostatectomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  3. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, E.I.B. [School of Human and Environmental Sciences, University of Reading (United Kingdom)]. E-mail: edith.chopin@univ-reims.fr; Alloway, B.J. [School of Human and Environmental Sciences, University of Reading (United Kingdom)

    2007-02-15

    Trace elements may present an environmental hazard in the vicinity of mining and smelting activities. However, the factors controlling trace element distribution in soils around ancient and modern mining and smelting areas are not always clear. Tharsis, Riotinto and Huelva are located in the Iberian Pyrite Belt in SW Spain. Tharsis and Riotinto mines have been exploited since 2500 B.C., with intensive smelting taking place. Huelva, established in 1970 and using the Flash Furnace Outokumpu process, is currently one of the largest smelter in the world. Pyrite and chalcopyrite ore have been intensively smelted for Cu. However, unusually for smelters and mines of a similar size, the elevated trace element concentrations in soils were found to be restricted to the immediate vicinity of the mines and smelters, being found up to a maximum of 2 km from the mines and smelters at Tharsis, Riotinto and Huelva. Trace element partitioning (over 2/3 of trace elements found in the residual immobile fraction of soils at Tharsis) and soil particles examination by SEM-EDX showed that trace elements were not adsorbed onto soil particles, but were included within the matrix of large trace element-rich Fe silicate slag particles (i.e. 1 mm o at least 1 wt.% As, Cu and Zn, and 2 wt.% Pb). Slag particle large size (1 mm o) was found to control the geographically restricted trace element distribution in soils at Tharsis, Riotinto and Huelva, since large heavy particles could not have been transported long distances. Distribution and partitioning indicated that impacts to the environment as a result of mining and smelting should remain minimal in the region.

  4. Riders on the storm: selective tidal movements facilitate the spawning migration of threatened delta smelt in the San Francisco Estuary

    Science.gov (United States)

    Bennett, W.A.; Burau, Jon R.

    2015-01-01

    Migration strategies in estuarine fishes typically include behavioral adaptations for reducing energetic costs and mortality during travel to optimize reproductive success. The influence of tidal currents and water turbidity on individual movement behavior were investigated during the spawning migration of the threatened delta smelt, Hypomesus transpacificus, in the northern San Francisco Estuary, California, USA. Water current velocities and turbidity levels were measured concurrently with delta smelt occurrence at sites in the lower Sacramento River and San Joaquin River as turbidity increased due to first-flush winter rainstorms in January and December 2010. The presence/absence of fish at the shoal-channel interface and near the shoreline was quantified hourly over complete tidal cycles. Delta smelt were caught consistently at the shoal-channel interface during flood tides and near the shoreline during ebb tides in the turbid Sacramento River, but were rare in the clearer San Joaquin River. The apparent selective tidal movements by delta smelt would facilitate either maintaining position or moving upriver on flood tides, and minimizing advection down-estuary on ebb tides. These movements also may reflect responses to lateral gradients in water turbidity created by temporal lags in tidal velocities between the near-shore and mid-channel habitats. This migration strategy can minimize the energy spent swimming against strong river and tidal currents, as well as predation risks by remaining in turbid water. Selection pressure on individuals to remain in turbid water may underlie population-level observations suggesting that turbidity is a key habitat feature and cue initiating the delta smelt spawning migration.

  5. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  6. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about......, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently...

  7. How Will Copper Contamination Constrain Future Global Steel Recycling?

    OpenAIRE

    Daehn, Katrin; Cabrera Serrenho, Andre; Allwood, Julian Mark

    2017-01-01

    Copper in steel causes metallurgical problems, but is pervasive in end-of-life scrap and cannot currently be removed commercially once in the melt. Contamination can be managed to an extent by globally trading scrap for use in tolerant applications and dilution with primary iron sources. However, the viability of long-term strategies can only be evaluated with a complete characterization of copper in the global steel system and this is presented in this paper. The copper concentration of flow...

  8. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  9. 75 FR 8807 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Science.gov (United States)

    2010-02-26

    ... Perchloroethylene Dry X X X X Cleaning. N Hard and Decorative X X X X Chromium Electroplating and Chromium Anodizing... Furniture X X X X Manufacturing Operations. KK Printing and Publishing X X X X Industry. LL Primary Aluminum... Primary Copper Smelting X X X RRR Secondary Aluminum X X X Production. TTT Primary Lead Smelting.. X X X...

  10. Lance for fuel and oxygen injection into smelting or refining furnace

    Science.gov (United States)

    Schlichting, Mark R.

    1994-01-01

    A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.

  11. Selenium and Other Trace Element Mobility in Waste Products and Weathered Sediments at Parys Mountain Copper Mine, Anglesey, UK

    Directory of Open Access Journals (Sweden)

    Liam A. Bullock

    2017-11-01

    Full Text Available The Parys Mountain copper mining district (Anglesey, North Wales hosts exposed pyritic bedrock, solid mine waste spoil heaps, and acid drainage (ochre sediment deposits. Both natural and waste deposits show elevated trace element concentrations, including selenium (Se, at abundances of both economic and environmental consideration. Elevated concentrations of semi-metals such as Se in waste smelts highlight the potential for economic reserves in this and similar base metal mining sites. Selenium is sourced from the pyritic bedrock and concentrations are retained in red weathering smelt soils, but lost in bedrock-weathered soils and clays. Selenium correlates with Te, Au, Bi, Cd, Hg, Pb, S, and Sb across bedrock and weathered deposits. Man-made mine waste deposits show enrichment of As, Bi, Cu, Sb, and Te, with Fe oxide-rich smelt materials containing high Pb, up to 1.5 wt %, and Au contents, up to 1.2 ppm. The trace elements As, Co, Cu, and Pb are retained from bedrock to all sediments, including high Cu content in Fe oxide-rich ochre sediments. The high abundance and mobility of trace elements in sediments and waters should be considered as potential pollutants to the area, and also as a source for economic reserves of previously extracted and new strategic commodities.

  12. The copper losses in the slags from the El Teniente process

    International Nuclear Information System (INIS)

    Imris, I.; Rebolledo, S.; Sanchez, M.; Castro, G.; Achurra, G.; Hernandez, F.

    2000-01-01

    The current El Teniente Pyrometallurgical Process for copper concentrate was commissioned at Caletones Smelter during the period 1988 - 1991 following an intensive research and development program that led to several improvements to the original process developed during the seventies. The Caletones Smelter production capacity is 370,000 tons of cast copper annually related to a concentrate smelting capacity of 1,250,000 tons per year. Several industrial applications of the process, in Chile and abroad, have shown its capability to treat copper concentrates in a wide range of chemical and mineralogical compositions. The main operational parameters that determine the performance of the process are oxygen enriched air flow rate, degree of oxygen enrichment, moisture content of the solid materials processed, molten material levels inside the vessel, frequency of molten materials tapping, bath temperature and copper losses in slags. The copper losses in the slags from the El Teniente Pyrometallurgical Process, predicted by calculation from thermodynamic data, have been compared with those determined by microscopic examination and quantitative electron microprobe analysis of the slag samples and by flotation tests of finely ground slag. (author)

  13. Pollution level and inhalation exposure of ambient aerosol fluoride as affected by polymetallic rare earth mining and smelting in Baotou, north China

    Science.gov (United States)

    Zhong, Buqing; Wang, Lingqing; Liang, Tao; Xing, Baoshan

    2017-10-01

    Airborne fluoride associated with total suspended particles (TSP) and respirable particulate (PM10) in the rare earth mining and smelting areas were analyzed during August 2012 and March 2013. In March, average concentrations of fluoride bound to TSP in the mining and smelting areas were 0.598 ± 0.626 μg/m3 and 3.615 ± 4.267 μg/m3, respectively, whereas that in August were 0.699 ± 0.801 μg/m3 and 1.917 ± 2.233 μg/m3, respectively. TSP samples were classified into four categories by different sampling periods and locations using Kohonen's self-organizing map, which demonstrates that high airborne fluoride concentrations in March in the smelting area were probably attributed to industrial emissions from smelting activities and wind-blown dust from tailings pond, influenced by meteorologic parameters such as temperature, relative humidity, precipitation and wind speed. The mean daily amount of fluoride inhaled in the mining and smelting areas were estimated to be in the range of 2.77-57.61 μg/day and 3.39-64.32 μg/day, respectively. These results indicate the high potential exposure level of fluoride inhaled for local residents in the polymetallic mining and smelting areas.

  14. EAF smelting trials of waste-carbon briquettes at Avesta Works of Outokumpu Stainless AB for recycling oily mill scale sludge from stainless steel production

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qixing; Bjoerkman, Bo [Div. of Process Metallurgy, Lulea Univ. of Tech., Lulea (Sweden); Holmberg, Nils [Raw Materials Handling, Avesta Works, Outokumpu Stainless AB, Avesta (Sweden)

    2009-06-15

    The EAF steel plant of Avesta Works, Outokumpu Stainless AB, has been used to perform smelting reduction trials of briquettes consisting of oily mill scale sludge, carbon and other wastes. A total of 7 briquette smelting trials were performed. The heats were processed smoothly smelting 3 t of briquettes or 3.4 mass-% of metal charges. The quantities of FeSi powder and O{sub 2} gas injected and electric energy supplied were increased to smelt briquettes of 6 t. No impacts were found on the analyses of the crude stainless steel tapped from the EAF during the trials. The results of the briquette smelting have been evaluated by referring to the data from the reference heats and results from earlier laboratory tests. The recovery of Cr, Ni and Fe elements from the briquettes was nearly complete and was found to occur mainly through carbon reduction. The slag masses were not increased in three trials as compared with the reference heats. There were moderate increases in the slag masses in four trial heats. The increases were, nevertheless, lower by 52-69% than the slag masses generated by Si-reduction of the briquette oxides. Afterwards, by referring results from the present trials, waste-carbon briquettes amounting to 1-3 t were smelted very smoothly in many of the EAF heats at Avesta Works to recycle the oily mill scale sludge and other wastes from stainless steel production. (orig.)

  15. Toxic metal levels in children residing in a smelting craft village in Vietnam: a pilot biomonitoring study.

    Science.gov (United States)

    Sanders, Alison P; Miller, Sloane K; Nguyen, Viet; Kotch, Jonathan B; Fry, Rebecca C

    2014-02-04

    In Vietnam, environmental pollution caused by small-scale domestic smelting of automobile batteries into lead ingot is a growing concern. The village of Nghia Lo is a smelting craft village located roughly 25 km southeast of Hanoi in the Red River Delta. Despite the concern of toxic metal exposure in the village, biomonitoring among susceptible populations, such as children, has not been previously conducted. The aim of this study was to determine the body burden of toxic metals in children residing in a smelting craft village. Twenty children from Nghia Lo, Vietnam, ages 18 months to four years were selected for capillary whole blood and toenail biomonitoring. Whole blood lead levels (BLLs) were measured using a portable lead analyzer, and toenail levels of arsenic, cadmium, chromium, lead, manganese, and mercury were analyzed with inductively coupled plasma-mass spectrometry. The findings show that all of the 20 children had detectable BLLs, and every child had levels that exceeded the Centers for Disease Control and Prevention guideline level of 5 μg/dL. Eighty percent of tested subjects had BLLs higher than 10 μg/dL. Five children (25%) had BLLs greater than 45 μg/dL, the level of recommended medical intervention. In addition to blood lead, all of the children had detectable levels of arsenic, cadmium, chromium, lead, manganese, and mercury in toenail samples. Notably, average toenail lead, manganese, and mercury levels were 157 μg/g, 7.41 μg/g, and 2.63 μg/g respectively, well above levels previously reported in children. Significant Spearman's rank correlations showed that there were relationships between blood and toenail lead levels (r = 0.65, p craft villages in Vietnam are co-exposed to toxic metals. There is an urgent need for mitigation to control metal exposure related to domestic smelting.

  16. Patterns of recruitment of the sand smelt (Atherina presbyter on rocky intertidal habitats

    Directory of Open Access Journals (Sweden)

    Frederico Almada

    2015-11-01

    Full Text Available The Portuguese coast is located in a biogeographical transition zone between temperate and subtropical waters making it especially vulnerable to the effects of climate change. Several fish species struggle to cope with these annual changing conditions, particularly species that strongly depend on intertidal habitats which are expected to endure higher ecological fluctuations. Sand smelt young recruits and larvae were collected at the west coast of Portugal in the intertidal by hand-netting, and in the subtidal with light traps and scuba diving with plankton nets attached to scooters (Parede/Avencas: 38º 41’ N, 9º 21’W and Arrábida: 38º 28’ N, 8º 59’W, respectively. Due to the morphological similarities with other congeneric species young specimens were regularly collected and identified through genetic analysis. All samples were assigned to the same species: A. presbyter. Results showed that A. presbyter is one of the most abundant non-resident fish species in these rocky coastal areas, representing 49% (n=93.958 of the total number of individuals sighted in the intertidal from 2009-2015, but only 0.55% of the total number of individuals sampled in the subtidal (n=176 with both methods from 2011-2013. Distribution patterns showed that recruits (TL 0.8-6.8 cm concentrated within the intertidal area between March and December. Younger cohorts (TL 0.8-1.2 cm are captured almost exclusively in these areas including confined intertidal channels and large pools between March and August, suggesting that reproduction and spawning can occur for a period of 6 months. Inter-annual seasonal variations from 2009 to 2015 showed irregular water temperature profiles, especially in 2011 and 2012, which may dramatically affect the reproductive success of this species, not only reducing the number of recruits but also shortening the recruitment period from 10 to 5 months. Globally, 46% of the coastlines have experienced a significant decrease in the

  17. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento–San Joaquin Delta, California

    Science.gov (United States)

    Brown, Larry R.; Bennett, William A.; Wagner, R. Wayne; Morgan-King, Tara; Knowles, Noah; Feyrer, Frederick; Schoellhamer, David H.; Stacey, Mark T.; Dettinger, Mike

    2013-01-01

    Changes in the position of the low salinity zone, a habitat suitability index, turbidity, and water temperature modeled from four 100-year scenarios of climate change were evaluated for possible effects on delta smelt Hypomesus transpacificus, which is endemic to the Sacramento–San Joaquin Delta. The persistence of delta smelt in much of its current habitat into the next century appears uncertain. By mid-century, the position of the low salinity zone in the fall and the habitat suitability index converged on values only observed during the worst droughts of the baseline period (1969–2000). Projected higher water temperatures would render waters historically inhabited by delta smelt near the confluence of the Sacramento and San Joaquin rivers largely uninhabitable. However, the scenarios of climate change are based on assumptions that require caution in the interpretation of the results. Projections like these provide managers with a useful tool for anticipating long-term challenges to managing fish populations and possibly adapting water management to ameliorate those challenges.

  18. Effect of smelting method on the austenite grain size and properties of heat-resisting pearlitic steel

    International Nuclear Information System (INIS)

    Balakhovskaya, M.B.; Khusainova, N.A.; Davlyatova, L.N.

    1975-01-01

    Influence of smelting method on austenite grain size and properties of refractory perlite steel were studied. An opportunity was found to increase the steel refractoriness without deteriorating its other properties. The steel 12Kh1MF of electric or common open-hearth smelting was used. The dependence of kinetics of austenite grain growth on the smelting method was studied in the temperature range 950 deg - 1200 deg C with 1 hour exposure. The grain size of austenite in steel is supposedly determined by aluminium nitrides and vanadium carbides. In tests of normalized (kept for 20 minutes at 950-980 deg C) and tempered (kept for 3 hours at 730 deg C) transverse (tangential) pipe cross-section samples the electric steel had higher impact viscosity than the open-hearth metal. At working temperatures (540 deg -580 deg C) the difference in viscosity has its minimum. Viscosity of both steels 12Kh1MF begins to sharply decrease from 20 deg C. However, electric steel has rather high viscosity even at - 40 deg C, while the open-hearth one becomes brittle as early as at - 20 deg C. Long-term strength tests at 580 deg C under stresses 10-14 kG/mm 2 show that the coarse-grain steel is more refractory, i.e. time till fracture of open-hearth steel samples is twice as long as that of electric steel samples

  19. Effect of smelting method on the austenite grain size and properties of heat-resisting pearlitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Balakhovskaya, M B; Khusainova, N A; Davlyatova, L N [Vsesoyuznyj Nauchno-Issledovatel' skij Teplotekhnicheskij Inst., Moscow (USSR)

    1975-12-01

    Influence of smelting method on austenite grain size and properties of refractory perlite steel were studied. An opportunity was found to increase the steel refractoriness without deteriorating its other properties. The steel 12Kh1MF of electric or common open-hearth smelting was used. The dependence of kinetics of austenite grain growth on the smelting method was studied in the temperature range 950 deg - 1200 deg C with 1 hour exposure. The grain size of austenite in steel is supposedly determined by aluminium nitrides and vanadium carbides. In tests of normalized (kept for 20 minutes at 950-980 deg C) and tempered (kept for 3 hours at 730 deg C) transverse (tangential) pipe cross-section samples the electric steel had higher impact viscosity than the open-hearth metal. At working temperatures (540 deg -580 deg C) the difference in viscosity has its minimum. Viscosity of both steels 12Kh1MF begins to sharply decrease from 20 deg C. However, electric steel has rather high viscosity even at /sup -/40 deg C, while the open-hearth one becomes brittle as early as at /sup -/20 deg C. Long-term strength tests at 580 deg C under stresses 10-14 kG/mm/sup 2/ show that the coarse-grain steel is more refractory, i.e. time till fracture of open-hearth steel samples is twice as long as that of electric steel samples.

  20. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China.

    Science.gov (United States)

    Wang, Lingqing; Zhong, Buqing; Liang, Tao; Xing, Baoshan; Zhu, Yifang

    2016-12-01

    Exposure to radionuclide thorium (Th) has generated widespread public concerns, mainly because of its radiological effects on human health. Activity levels of airborne 232 Th in total suspended particulate (TSP) were measured in the vicinity of the largest rare earth mine in China in August 2012 and March 2013. The mean activity concentrations of 232 Th in TSP ranged from 820μBqm -3 in a mining area in August 2012 to 39,720μBqm -3 in a smelting area in March 2013, much higher than the world reference of 0.5μBqm -3 . Multistatistical analysis and Kohonen's self-organizing maps suggested that 232 Th in TSP was mainly derived from rare earth mining and smelting practices. In addition, personal inhalation exposures to 232 Th associated with respirable particulate (PM 10 ) were also measured among local dwellers via personal monitoring. The mean dose values for different age groups in the smelting and mining areas ranged from 97.86 to 417μSvyear - 1 and from 101.03 to 430.83μSvyear -1 , respectively. These results indicate that people living in the study areas are exposed to high levels of widespread 232 Th. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    Directory of Open Access Journals (Sweden)

    Lijie Guo

    2018-01-01

    Full Text Available This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS on cemented tailing backfill (CTB that contains lead-zinc smelting slag. CTB and cemented paste (CP containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis and thermal gravity analysis were performed on the studied CP samples, whereas the electrical conductivity of CTB was monitored. The results reveal that SS has a significant positive effect on cementitious activity of binder mixed by cement and lead-zinc smelting slag. This activation leads to the acceleration of binder hydration process, the formation of more cement hydration products in the CTBs, and the refinement of their pore structure, which is favorable for the strength development of CTB.

  2. Study on Apparent Kinetic Prediction Model of the Smelting Reduction Based on the Time-Series

    Directory of Open Access Journals (Sweden)

    Guo-feng Fan

    2012-01-01

    Full Text Available A series of direct smelting reduction experiment has been carried out with high phosphorous iron ore of the different bases by thermogravimetric analyzer. The derivative thermogravimetric (DTG data have been obtained from the experiments. One-step forward local weighted linear (LWL method , one of the most suitable ways of predicting chaotic time-series methods which focus on the errors, is used to predict DTG. In the meanwhile, empirical mode decomposition-autoregressive (EMD-AR, a data mining technique in signal processing, is also used to predict DTG. The results show that (1 EMD-AR(4 is the most appropriate and its error is smaller than the former; (2 root mean square error (RMSE has decreased about two-thirds; (3 standardized root mean square error (NMSE has decreased in an order of magnitude. Finally in this paper, EMD-AR method has been improved by golden section weighting; its error would be smaller than before. Therefore, the improved EMD-AR model is a promising alternative for apparent reaction rate (DTG. The analytical results have been an important reference in the field of industrial control.

  3. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.

    Science.gov (United States)

    Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi

    2014-07-01

    A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.

  4. Questions about the reliability of recovery boilers of steel smelting units

    Energy Technology Data Exchange (ETDEWEB)

    Sazykin, Yu K; Mukhametzyanov, N K

    1979-01-01

    Because the main reason for failure of recovery boilers is contamination of the heating surfaces, the operational conditions of individual elements of boiler units, equipped with vibrational and pulsed cleaning are analyzed and the reliability of the cleaning systems in use today is evaluated. The recovery boilers from open hearth furnaces and two bath steel smelting units from the Magnitogorsk Metallurgic Combine were selected as the subjects of the study. It is established that the boiler heating surface cleaning system has a quite large number of failures. The vibrational cleaning readiness factor is rated at 0.9323 and that of the pulsed cleaning system, 0.9698. For the KU-100 recovery boilers with a mean productivity of 18-20 t/h, the losses caused by failures during operation with vibration and pulsed cleaning were 3,200 and 1,700 rubles per year, respectively. With reconstruction of the boilers, which is associated with an increase in their reliability, the vibration cleaning of the heating surface was replaced by pulsed cleaning.

  5. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    Science.gov (United States)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  6. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.

    Science.gov (United States)

    Rola, Kaja; Osyczka, Piotr; Kafel, Alina

    2016-02-01

    Lichens appear to be essential and effective colonisers of bare substrates including the extremely contaminated wastes of slag dumps. This study examines the metal accumulation capacity of epilithic lichens growing directly on the surface of artificial slag sinters. Four species representing different growth forms, i.e., crustose Candelariella aurella, Lecanora muralis, and Lecidea fuscoatra and fruticose Stereocaulon nanodes, were selected to evaluate the relationships between zinc, lead, cadmium, and nickel contents in their thalli and host substrates. Bioaccumulation factors of examined crustose lichens showed their propensity to hyperaccumulate heavy metals. Contrarily, concentrations of metals in fruticose thalli of S. nanodes were, as a rule, lower than in the corresponding substrates. This indicates that the growth form of thalli and degree of thallus adhesion to the substrate has a significant impact on metal concentrations in lichens colonising post-smelting wastes. Nonlinear regression models described by power functions show that at greater levels of Pb concentration in the substrate, the ability of C. aurella, L. muralis and L. fuscoatra to accumulate the metal experiences a relative decrease, whereas hyperbolic function describes a similar trend in relation to Ni content in S. nanodes. This phenomenon may be an important attribute of lichens that facilitates their colonisation of the surface of slag wastes.

  7. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  8. Effect of physicochemical form on copper availability to aquatic organisms

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1983-11-01

    Copper concentration and speciation were determined in influent and effluent waters collected from eight power stations that used copper alloys in their cooling systems. Quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from an open- to closed-cycle operation. Copper sensitivity of selected ecologically and economically important aquatic organisms was also evaluted. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH were also assessed. The toxic response to copper differed with the species and life stage of the animal and with the chemical form of copper in the water

  9. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  10. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  11. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  12. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  13. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  14. Lead toxicosis in tundra swans near a mining and smelting complex in northern Idaho

    Science.gov (United States)

    Blus, L.J.; Henny, C.J.; Hoffman, D.J.; Grove, R.A.

    1991-01-01

    Die-offs of waterfowl have occurred in the Coeur d`Alene River system in northern Idaho since at least the early 1900`s. We investigated causes of mortality and lead and cadmium contamination of 46 tundra swans (Cygnus columbianus) from 1987 to 1989; an additional 22 swans found dead in 1990 were not examined. We necropsied 43 of the 46 birds found from 1987 to 1989; 38 of these were from the Coeur d`Alene River system, which has been contaminated with mining and smelting wastes for a century, and the other 5 were from a nearby, relatively uncontaminated area. Of the 36 livers of swans from the contaminated area that were analyzed, 32 contained lethal levels of lead (6 to 40 micrograms/g, wet weight) and all birds exhibited several symptoms of lead poisoning, notably enlarged gall bladders containing viscous, darkgreen bile. Only 13% of the lead-poisoned birds (10% when data were included from other studies of swans in the area) contained shot, compared to 95% of lead-poisoning swans in studies outside northern Idaho. Lead concentrations in blood samples from 16 apparently healthy swans (0.5 to 2.3 micrograms/g, and 4 leadpoisoned birds found moribund (1.3 to 9.6 micrograms/g) indicating that tundra swans accumulated high levels of lead from ingestion of sediment that contained up to 8,700 micrograms/g of lead and plants that contained up to 400 micrograms/g. The swans spend only a few weeks in the area staging during the spring migration. The five tundra swans from the uncontaminated area had low levels of lead and essentially no symptoms of lead poisoning.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    Science.gov (United States)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  16. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  17. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  18. Can Silicon-Smelting Contribute to the Low O/Si Ratio on the Surface of Mercury?

    Science.gov (United States)

    McCubbin, F. M.; Vander Kaaden, K. E.; Hogancamp, J.; Archer, P. D., Jr.; Boyce, J. W.

    2018-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft collected data that provided important insights into the structure, chemical makeup, and compositional diversity of Mercury. Among the many discoveries about Mercury made by MESSENGER, several surprising compositional characteristics of the surface were observed. These discoveries include elevated sulfur abundances (up to 4 wt.%), elevated abundances of graphitic carbon (0-4.1 wt.% across the surface with an additional 1-3 wt.% graphite above the global average in low reflectance materials), low iron abundances (less than 2 wt.%), and low oxygen abundances (O/Si weight ratio of 1.20+/-0.1). These exotic characteristics likely have important implications for the thermochemical evolution of Mercury and point to a planet that formed under highly reducing conditions. In the present study, we focus specifically on the low O/Si ratio of Mercury, which is anomalous compared to all other planetary materials. A recent study that considered the geochemical implications of the low O/Si ratio reported that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. They further postulated that the origin of the metal is best explained by a combination of space weathering and graphite-induced smelting that was facilitated by interaction of graphite with boninitic and komatiitic parental liquids. The goal of the present study is to assess the plausibility of smelting on Mercury through experiments run at the conditions that McCubbin et al. indicated would be favorable for Si-smelting.

  19. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  20. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  1. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  2. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  3. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  4. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  5. Comparative growth models of big-scale sand smelt (Atherina boyeri Risso, 1810 sampled from Hirfanll Dam Lake, Klrsehir, Ankara, Turkey

    Directory of Open Access Journals (Sweden)

    S. Benzer

    2017-06-01

    Full Text Available In this current publication the growth characteristics of big-scale sand smelt data were compared for population dynamics within artificial neural networks and length-weight relationships models. This study aims to describe the optimal decision of the growth model of big-scale sand smelt by artificial neural networks and length-weight relationships models at Hirfanll Dam Lake, Klrsehir, Turkey. There were a total of 1449 samples collected from Hirfanll Dam Lake between May 2015 and May 2016. Both model results were compared with each other and the results were also evaluated with MAPE (mean absolute percentage error, MSE (mean squared error and r2 (coefficient correlation data as a performance criterion. The results of the current study show that artificial neural networks is a superior estimation tool compared to length-weight relationships models of big-scale sand smelt in Hirfanll Dam Lake.

  6. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  7. Low Hepatic Tissue Copper in Pediatric Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Mendoza, Michael; Caltharp, Shelley; Song, Ming; Collin, Lindsay; Konomi, Juna V; McClain, Craig J; Vos, Miriam B

    2017-07-01

    Animal models and studies in adults have demonstrated that copper restriction increases severity of liver injury in nonalcoholic fatty liver disease (NAFLD). This has not been studied in children. We aimed to determine if lower tissue copper is associated with increased NAFLD severity in children. This was a retrospective study of pediatric patients who had a liver biopsy including a hepatic copper quantitation. The primary outcome compared hepatic copper concentration in NAFLD versus non-NAFLD. Secondary outcomes compared hepatic copper levels against steatosis, fibrosis, lobular inflammation, balloon degeneration, and NAFLD activity score (NAS). The study analysis included 150 pediatric subjects (102 with NAFLD and 48 non-NAFLD). After adjusting for age, body mass index z score, gamma glutamyl transferase, alanine aminotransferase, and total bilirubin, NAFLD subjects had lower levels of hepatic copper than non-NAFLD (P = 0.005). In addition, tissue copper concentration decreased as steatosis severity increased (P steatosis alone. Further studies are needed to explore the relationship between copper levels and NAFLD progression.

  8. Dynamic variation of histone H3 trimethyl Lys4 (H3K4me3) and heterochromatin protein 1 (HP1) with employment length in nickel smelting workers.

    Science.gov (United States)

    Zhao, Yanhong; Cheng, Ning; Dai, Min; Pu, Hongquan; Zheng, Tongzhang; Li, Haiyan; He, Jie; Bai, Yana

    2017-07-01

    To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers. Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels. H3K4me3 was statistically significantly different (p exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.

  9. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    International Nuclear Information System (INIS)

    Silva, Cátia S.E.; Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana; Oliveira, Ana P.; Gonçalves, Emanuel J.; Faria, Ana M.

    2016-01-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO_2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO_2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO_2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO_2 levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U_c_r_i_t), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO_2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO_2 treatment and smaller larvae in medium pCO_2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO_2 treatment may indicate that at higher pCO_2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO_2 levels on organisms. - Highlights: • Exposure to high pCO_2

  10. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cátia S.E. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana [MARE — Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria (Portugal); Oliveira, Ana P. [IPMA — Instituto Português do Mar e da Atmosfera, Algés (Portugal); Gonçalves, Emanuel J. [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal); Faria, Ana M., E-mail: afaria@ispa.pt [MARE — Marine and Environmental Sciences Centre, ISPA − Instituto Universitário (Portugal)

    2016-09-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO{sub 2}. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO{sub 2}, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO{sub 2} on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO{sub 2} levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U{sub crit}), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO{sub 2} leads to higher energetic costs and morphometric changes, with larger larvae in high pCO{sub 2} treatment and smaller larvae in medium pCO{sub 2} treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO{sub 2} treatment may indicate that at higher pCO{sub 2} levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO{sub 2} levels on

  11. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions

    International Nuclear Information System (INIS)

    Bi Xiangyang; Feng Xinbin; Yang Yuangen; Li Xiangdong; Shin, Grace P.Y.; Li Feili; Qiu Guangle; Li Guanghui; Liu Taoze; Fu Zhiyou

    2009-01-01

    Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake. - The sources and pathways of Pb and Cd accumulated in maize were assessed using Pb isotopes and Pb/Cd ratios

  13. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria.

    Science.gov (United States)

    Wang, Jia; Huang, Qifei; Li, Ting; Xin, Baoping; Chen, Shi; Guo, Xingming; Liu, Changhao; Li, Yuping

    2015-08-15

    A few studies have focused on release of valuable/toxic metals from Pb/Zn smelting slag by heterotrophic bioleaching using expensive yeast extract as an energy source. The high leaching cost greatly limits the practical potential of the method. In this work, autotrophic bioleaching using cheap sulfur or/and pyrite as energy matter was firstly applied to tackle the smelting slag and the bioleaching mechanisms were explained. The results indicated autotrophic bioleaching can solubilize valuable/toxic metals from slag, yielding maximum extraction efficiencies of 90% for Zn, 86% for Cd and 71% for In, although the extraction efficiencies of Pb, As and Ag were poor. The bioleaching performance of Zn, Cd and Pb was independent of leaching system, and leaching mechanism was acid dissolution. A maximum efficiency of 25% for As was achieved by acid dissolution in sulfursulfur oxidizing bacteria (S-SOB), but the formation of FeAsO4 reduced extraction efficiency in mixed energy source - mixed culture (MS-MC). Combined works of acid dissolution and Fe(3+) oxidation in MS-MC was responsible for the highest extraction efficiency of 71% for In. Ag was present in the slag as refractory AgPb4(AsO4)3 and AgFe2S3, so extraction did not occur. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bi Xiangyang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Key Laboratory of Biogeology and Environmental Geology, Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Feng Xinbin [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)], E-mail: fengxinbin@vip.skleg.cn; Yang Yuangen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Li Xiangdong; Shin, Grace P.Y. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Li Feili [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Qiu Guangle; Li Guanghui; Liu Taoze; Fu Zhiyou [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2009-03-15

    Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake. - The sources and pathways of Pb and Cd accumulated in maize were assessed using Pb isotopes and Pb/Cd ratios.

  15. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    Science.gov (United States)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  16. Calibration equations for energy-dispersive XRF determination of copper, iron and lead in copper ore slurries

    International Nuclear Information System (INIS)

    Lakosz, M.

    1976-01-01

    Calibration equations for the X-ray fluorescence analysis determination of copper, iron and lead in copper ore slurries have been derived and tested. The measurement of Ksub(α) lines of copper and iron and Lsub(α) line of lead excited by rays from 238 Pu source have been used. Si/Li detector coupled to multichannel analyzer and minicomputer have been applied in measurements. The matrix and density effect have been eliminated by additional measurement of back-scattered primary radiation. (author)

  17. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  18. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  19. Crystal structures of E. coli laccase CueO at different copper concentrations

    International Nuclear Information System (INIS)

    Li Xu; Wei Zhiyi; Zhang Min; Peng Xiaohui; Yu Guangzhe; Teng Maikun; Gong Weimin

    2007-01-01

    CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra α-helix from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper

  20. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  1. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  2. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  3. Non-stationary recruitment dynamics of rainbow smelt: the influence of environmental variables and variation in size structure and length-at-maturation

    Science.gov (United States)

    Feiner, Zachary S.; Bunnell, David B.; Hook, Tomas O.; Madenjian, Charles P.; Warner, David M.; Collingsworth, Paris D.

    2015-01-01

    Fish stock-recruitment dynamics may be difficult to elucidate because of nonstationary relationships resulting from shifting environmental conditions and fluctuations in important vital rates such as individual growth or maturation. The Great Lakes have experienced environmental stressors that may have changed population demographics and stock-recruitment relationships while causing the declines of several prey fish species, including rainbow smelt (Osmerus mordax). We investigated changes in the size and maturation of rainbow smelt in Lake Michigan and Lake Huron and recruitment dynamics of the Lake Michigan stock over the past four decades. Mean lengths and length-at-maturation of rainbow smelt generally declined over time in both lakes. To evaluate recruitment, we used both a Ricker model and a Kalman filter-random walk (KF-RW) model which incorporated nonstationarity in stock productivity by allowing the productivity term to vary over time. The KF-RW model explained nearly four times more variation in recruitment than the Ricker model, indicating the productivity of the Lake Michigan stock has increased. By accounting for this nonstationarity, we were able identify significant variations in stock productivity, evaluate its importance to rainbow smelt recruitment, and speculate on potential environmental causes for the shift. Our results suggest that investigating mechanisms driving nonstationary shifts in stock-recruit relationships can provide valuable insights into temporal variation in fish population dynamics.

  4. MATH MODELING OF CAST FINE-GRAINED CONCRETE WITH INDUSTRIAL WASTES OF COPPER PRODUCTION

    Directory of Open Access Journals (Sweden)

    Tsybakin Sergey Valerievich

    2017-10-01

    Full Text Available Subject: applying mineral microfillers on the basis of technogenic wastes of non-ferrous metallurgy in the technology of cast and self-compacting concrete. The results of experiments of scientists from Russia, Kazakhstan, Poland and India show that copper smelting granulated slag can be used when grinding construction cements as a mineral additive up to 30 % without significantly reducing activity of the cements. However, there are no results of a comprehensive study of influence of the slag on plastic concrete mixtures. Research objectives: establishment of mathematical relationship of the influence of copper slag on the compressive strength and density of concrete after 28 days of hardening in normal conditions using the method of mathematical design of experiments; statistical processing of the results and verification of adequacy of the developed model. Materials and methods: mathematical experimental design was carried out as a full 4-factor experiment using rotatable central composite design. The mathematical model is selected in the form of a polynomial of the second degree using four factors of the response function. Results: 4-factor mathematical model of concrete strength and density after curing is created, regression equation is derived for dependence of the 28-days strength function and density on concentration of the cement stone, true water-cement ratio, dosage of fine copper slag and superplasticizer on the basis of ether polycarboxylates. Statistical processing of the results of mathematical design of experiments is carried out, estimate of adequacy of the constructed mathematical model is obtained. Conclusions: it is established that introduction of copper smelting slag in the range of 30…50 % by weight of cement positively affects the strength of concrete when used together with the superplasticizer. Increasing the dosage of superplasticizer in excess of 0.16 % of the dry component leads to a decrease in the strength of cast

  5. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  6. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  7. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    Science.gov (United States)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  8. A Covered Cod-End and Tow-Path Evaluation of Midwater Trawl Gear Efficiency for Catching Delta Smelt (Hypomesus transpacificus

    Directory of Open Access Journals (Sweden)

    Lara Mitchell

    2017-12-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss4art3For nearly 50 years, the California Department of Fish and Wildlife has used a midwater trawl to intensively monitor fish populations in the San Francisco Estuary during the fall, sampling over 100 locations each month. The data collected have been useful for calculating indices of fish abundance and for detecting and documenting the decline of the endangered fish species delta smelt (Hypomesus transpacificus. However, efforts to calculate estimates of absolute abundance have been hampered by the lack of information on gear efficiency, in particular questions about contact selectivity and the effect of tow method on catches. To answer these questions we conducted a study that used a covered cod end on a net towed either near the surface, referred to as a surface tow, or throughout the water column, referred to as an oblique tow. A contact selectivity model was fit to estimate the probability that a delta smelt that has come into contact with the net is retained in the cod end of the net conditional on its body length. Full retention of delta smelt was found to occur around 60 mm fork length. Delta smelt catch densities for the surface tows were an order of magnitude greater than densities in the oblique tows, suggesting a surface orientation at the sub-adult life stage. These results represent an important step in being able to calculate absolute abundance estimates of the delta smelt population size using decades’ worth of monitoring data.

  9. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  10. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  11. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  12. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  13. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  14. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  15. Rapid Microwave Digestion Procedures for the Elemental Analysis of Alloy and Slag Samples of Smelted Ocean Bed Polymetallic Nodules

    Directory of Open Access Journals (Sweden)

    Kumari Smita

    2013-01-01

    Full Text Available The use of microwave digester for digestion of alloy and slag samples of smelted ocean bed polymetallic nodules has permitted the complete digestion of samples, thereby replacing the tedious classical methods of digestion of samples. The digestion procedure includes two acid-closed digestions of samples in a microwave oven. Owing to the hazardous nature of perchloric acid, it was not used in developed digestion procedure. Digested sample solutions were analyzed for concentrations of various radicals and the effectiveness of the developed digestion methodology was tested using certified reference materials. It was found that the developed method is giving results comparable with that obtained from conventionally digested samples. In this digestion procedure, time required for digestion of samples was reduced to about 1 hour only from 8-9 hours of conventional digestion.

  16. Study of the ancient iron-smelting sites at Pantaki, Tsauni and Samaru-west, Nigeria, using neutron activation analysis

    International Nuclear Information System (INIS)

    Oladipupo, M.D.; OIadipo, M.O.A.; Mallam, S.P.; Akpa, T.C.

    2010-01-01

    Neutron activation analysis was used to obtain concentrations of some elements in samples of potsherds and furnaces obtained from Pantaki, Tsauni and Samaru-west ancient iron-smelting sites. Using WARD method, cluster analysis of the elements was carried out to establish the relationship between the archaeological samples in term of similarity in elemental concentrations. It was found that there is some level of similarity among the potsherd samples from the three sites. Also, most of furnace samples display some similarity. It was established that there was cultural linkage between the iron-smelters at the different sites. The similarity between the samples lead to a conclusion that pot makers and furnace makers could have existed, who obtained clays from common sources, made and sold the products to users in different communities.

  17. Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb2+

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available The composite cementitious materials were prepared with lead-zinc tailings, lead-zinc smelting slag, and cement clinker. The effect of material ratio on the mechanical properties, the phase analysis, and microstructures were investigated. The effect of the pH and stripping time on the leaching amount of lead ion was discussed. The results show that the additive amount of the tailings should be minimized for the cementitious materials meeting the strength requirements, controlled within 10%. The leaching amount of cementitious materials remains low in a larger range of pH, which can effectively reduce the leaching of heavy metal lead. The leaching kinetics of lead ions in the three kinds of samples could be better described by the pseudo-second-model.

  18. The Effect of Copper

    African Journals Online (AJOL)

    environment, where fishes are found, stuns them ... of earthen ponds are springing up near cocoa ... farm, which posses toxicological risk to farmed ... Veg. oil. 1.0. 1.0. 1.0. 1.0. 1.0. Copper sulphate 0. 1.0. 2.5. 5.0. 7.5. Total ..... Cellulase Production by Wild Strains of Aspergillus Niger, ... Mangrove Area of Lagos, Nigeria.

  19. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  20. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  1. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  2. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    Science.gov (United States)

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  3. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  4. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  5. Physicochemical characterization of copper slag and alternatives of friendly environmental management

    Directory of Open Access Journals (Sweden)

    Sánchez M.

    2013-01-01

    Full Text Available Copper slags are usually considered a waste and characterized only by the final copper content. Large and increasing quantities are being produced and disposed of by stockpiling near the metallurgical plants. This paper stresses the importance of physico-chemical characterization when considering uses for slags and the possibility of recovering the valuable metals still remaining in this phase. The purpose of this work is to support and encourage a change in the classical perception of slag from a ‘waste’ to a ‘resource’; promote the development of new technologies for treatment to recover residual values and encourage a search for new uses; with the ultimate objective of eliminating slag stockpiles thereby diminishing the environmental impact of smelting operations. Some of the results of experimental laboratory work done by the authors and examples of commercial applications will be shown. A promising future for valorization and utilization of slags is expected and will provide an example when considering the use of all the other large quantities of wastes generated by the mining industry.

  6. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  7. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  8. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  9. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  10. ORIGINAL ARTICLE PICTORIAL INTERLUDE The copper-beaten ...

    African Journals Online (AJOL)

    Variations and abnormalities of skull appearance and shape are often related to a primary maldevelopment of the brain.1 The copper-beaten skull appearance is typically associated with craniosynostosis, which is the premature fusion of the cranial bone sutures (Fig. 2).2 Severe craniosynostosis and reduced cranial ...

  11. Contamination of the O2 soil horizon by zinc smelting and its effect on woodlouse survival

    Science.gov (United States)

    Beyer, W.N.; Miller, G.W.; Cromartie, E.J.

    1984-01-01

    Samples of litter from the 02 horizon of Dekalb soil (loamyskeletal, mixed, mesic Typic Dystrochrept) were collected from 18 ridgetop sites on a transect that ran by two Zn smelters in Palmerton, Pa. Metal concentrations increased by regular gradations from a minimum at a site 105 km west of the smelters (67 mg/kg Zn, 0.85 mg/kg Cd, 150 mg/kg Pb, 11 mg/kg Cu) to a maximum 1.2 km east of the smelters (35,000 mg/kg Zn, 1300 mg/kg Cd, 3200 mg/kg Pb, 280 mg/kg Cu), and then decreased until they reached an eastern minimum at the easternmost site, 19 km from the smelters. An increase in the P concentrations near the smelters showed that the emissions were disrupting nutrient flow through the ecosystem. An increase in the pH near the smelters was attributed to the high concentrations of Zn. The log of the distance of the sites from the smelters was significantly correlated (r = - 0.80, p Zinc, cadmium, lead, copper, and sulfur were experimentally added, alone or in combination, to 02 litter collected far from any known source of metal emissions. The highest concentration of Zn added (20,000 mg/kg) was toxic enough to account for the mortality observed in the earlier test. A lower concentration of Zn (5000 mg/kg) as well as the concentration of Cd (500 mg/kg) tested also significantly (p < 0.05) increased the mortality of woodlice.

  12. Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-06-01

    Full Text Available Pumping at the water export facilities in the southern Sacramento-San Joaquin Delta kills fish at and near the associated fish-salvage facilities. Correlative analyses of salvage counts with population indices have failed to provide quantitative estimates of the magnitude of this mortality. I estimated the proportional losses of Sacramento River Chinook salmon (Oncorhynchus tshawytscha and delta smelt (Hypomesus transpacificus to place these losses in a population context. The estimate for salmon was based on recoveries of tagged smolts released in the upper Sacramento River basin, and recovered at the fish-salvage facilities in the south Delta and in a trawling program in the western Delta. The proportion of fish salvaged increased with export flow, with a mean value around 10% at the highest export flows recorded. Mortality was around 10% if pre-salvage losses were about 80%, but this value is nearly unconstrained. Losses of adult delta smelt in winter and young delta smelt in spring were estimated from salvage data (adults corrected for estimated pre-salvage survival, or from trawl data in the southern Delta (young. These losses were divided by population size and accumulated over the respective seasons. Losses of adult delta smelt were 1–50% (median 15% although the highest value may have been biased upward. Daily losses of larvae and juveniles were 0–8%, and seasonal losses accumulated were 0–25% (median 13%. The effect of these losses on population abundance was obscured by subsequent 50-fold variability in survival from summer to fall.

  13. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  14. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  15. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching

    Science.gov (United States)

    Zhou, Yingying; Deng, Renjian

    2017-01-01

    We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149–420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small. PMID:28804669

  16. Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context

    Science.gov (United States)

    Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques

    2013-12-01

    Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.

  17. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Magiera, Tadeusz, E-mail: tadeusz.magiera@ipis.zabrze.pl [Institute of Environmental Engineering, Polish Academy of Sciences, Skłodowskiej-Curie 34, Zabrze (Poland); Mendakiewicz, Maria; Szuszkiewicz, Marcin [Institute of Environmental Engineering, Polish Academy of Sciences, Skłodowskiej-Curie 34, Zabrze (Poland); Jabłońska, Mariola [Department of Geochemistry, Mineralogy and Petrology, Faculty of Earth Sciences, University of Silesia, Sosnowiec (Poland); Chróst, Leszek [Laboratory for Ecological Research, Ekopomiar, Gliwice (Poland)

    2016-10-01

    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25 cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas. - Highlights: • Due to ferrimagnetic properties of historical slags magnetic prospection is an efficient tool for they localization.

  18. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland

    International Nuclear Information System (INIS)

    Magiera, Tadeusz; Mendakiewicz, Maria; Szuszkiewicz, Marcin; Jabłońska, Mariola; Chróst, Leszek

    2016-01-01

    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25 cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas. - Highlights: • Due to ferrimagnetic properties of historical slags magnetic prospection is an efficient tool for they localization.

  19. Cd, Pb, and Zn mobility and (bio)availability in contaminated soils from a former smelting site amended with biochar.

    Science.gov (United States)

    Lomaglio, Tonia; Hattab-Hambli, Nour; Miard, Florie; Lebrun, Manhattan; Nandillon, Romain; Trupiano, Dalila; Scippa, Gabriella Stefania; Gauthier, Arnaud; Motelica-Heino, Mikael; Bourgerie, Sylvain; Morabito, Domenico

    2017-07-20

    Biochar is a potential candidate for the remediation of metal(loid)-contaminated soils. However, the mechanisms of contaminant-biochar retention and release depend on the amount of soil contaminants and physicochemical characteristics, as well as the durability of the biochar contaminant complex, which may be related to the pyrolysis process parameters. The objective of the present study was to evaluate, in a former contaminated smelting site, the impact of two doses of wood biochar (2 and 5% w/w) on metal immobilization and/or phytoavailability and their effectiveness in promoting plant growth in mesocosm experiments. Different soil mixtures were investigated. The main physicochemical parameters and the Cd, Pb, and Zn contents were determined in soil and in soil pore water. Additionally, the growth, dry weight, and metal concentrations were analyzed in the different dwarf bean plant (Phaseolus vulgaris L.) organs tested. Results showed that the addition of biochar at two doses (2 and 5%) improved soil conditions by increasing soil pH, electrical conductivity, and water holding capacity. Furthermore, the application of biochar (5%) to metal-contaminated soil reduced Cd, Pb, and Zn mobility and availability, and hence their accumulation in the different P. vulgaris L. organs. In conclusion, the data clearly demonstrated that biochar application can be effectively used for Cd, Pb, and Zn immobilization, thereby reducing their bioavailability and phytotoxicity.

  20. Material and energy flows in rotary kiln-electric furnace smelting of ferronickel alloy with energy saving

    International Nuclear Information System (INIS)

    Liu, Peng; Li, Baokuan; Cheung, Sherman C.P.; Wu, Wenyuan

    2016-01-01

    Highlights: • Establish the synergy relationship of material and energy in key RKEF processes. • Develop an analysis model to study energy saving with internal cycling of energy. • Analyze material and energy flow parameters and assess its associated synergy effect. • A methodology to evaluate the synergy and design indices of RKEF processes. - Abstract: An energy saving strategy with two energy saving measures has been proposed for reducing energy loss in the rotary kiln-electric furnace (RKEF) for the smelting of ferronickel alloy. One of the measures is to recover the waste heat of exhaust gas from the rotary kiln for preheating and dehydrating the wet laterite ores in the rotary dryer. Another measure is to recycle the furnace gas from the electric furnace into the rotary kiln as fuel. Based on the mass conservation and energy conservation laws, an analysis model of material and energy flows has been developed to understand the potential energy saving with the internal cycling of material and energy in the RKEF process. The analysis model not only considers the energy efficiency but also assess the synergy degree of system. Furthermore, the model also predicts the ratio of raw materials and the energy flow distribution to investigate residual heat and energy and analyze the effects of nickel content on energy flow. Finally, the evaluation methodology of synergy and the technic indices are also presented. Through the investigation of the synergy effect, the performance of the RKEF process can be evaluated and quantified for performance optimization in future.

  1. [Evaluation and source analysis of the mercury pollution in soils and vegetables around a large-scale zinc smelting plant].

    Science.gov (United States)

    Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai

    2013-02-01

    The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content

  2. Lead in residential soil and dust in a mining and smelting district in northern Armenia: a pilot study

    International Nuclear Information System (INIS)

    Petrosyan, Varduhi; Orlova, Anna; Dunlap, Charles E.; Babayan, Emil; Farfel, Mark; Braun, Margrit von

    2004-01-01

    This pilot study of sources of lead exposure in residential settings was conducted in a mining and smelting district in northern Armenia. Samples of exterior soil and dust and interior house dust were collected in and around apartment buildings in Alaverdi where the country's largest polymetallic smelter is located, and in nearby mining towns of Aghtala and Shamlugh. The NITON XL-723 Multi-Element XRF analyzer was used for lead testing. Lead levels in samples from Alaverdi were higher than those in Shamlugh and Aghtala. In all three towns, the highest lead levels were found in loose exterior dust samples, and lead concentrations in yard soil were higher than those in garden soil. Many soil samples (34%) and the majority of loose dust samples (77%) in Alaverdi exceeded the US Environmental Protection Agency standard of 400 mg/kg for bare soil in children's play areas. In addition, 36% of floor dust samples from apartments in Alaverdi exceeded the US Environmental Protection Agency standard of 40 μg/ft 2 for lead loading in residential floor dust. The Armenian Ministry of Health and other interested agencies are being informed about the findings of the study so that they can consider and develop educational and preventive programs including blood lead screening among sensitive populations

  3. Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells

    Science.gov (United States)

    Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan

    2016-04-01

    In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.

  4. Geostatistical approach for assessing soil volumes requiring remediation: validation using lead-polluted soils underlying a former smelting works.

    Science.gov (United States)

    Demougeot-Renard, Helene; De Fouquet, Chantal

    2004-10-01

    Assessing the volume of soil requiring remediation and the accuracy of this assessment constitutes an essential step in polluted site management. If this remediation volume is not properly assessed, misclassification may lead both to environmental risks (polluted soils may not be remediated) and financial risks (unexpected discovery of polluted soils may generate additional remediation costs). To minimize such risks, this paper proposes a geostatistical methodology based on stochastic simulations that allows the remediation volume and the uncertainty to be assessed using investigation data. The methodology thoroughly reproduces the conditions in which the soils are classified and extracted at the remediation stage. The validity of the approach is tested by applying it on the data collected during the investigation phase of a former lead smelting works and by comparing the results with the volume that has actually been remediated. This real remediated volume was composed of all the remediation units that were classified as polluted after systematic sampling and analysis during clean-up stage. The volume estimated from the 75 samples collected during site investigation slightly overestimates (5.3% relative error) the remediated volume deduced from 212 remediation units. Furthermore, the real volume falls within the range of uncertainty predicted using the proposed methodology.

  5. Determination of the main parameters of the cyclone separator of the flue gas produced during the smelting of secondary aluminum

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav

    2016-06-01

    One way how is possible to separate the solid particulate pollutants from the flue gas is use the cyclone separators. The cyclone separators are very frequently used separators due to the simplicity of their design and their low operating costs. Separation of pollutants in the form of solids is carried out using three types of forces: inertia force, centrifugal force, gravity force. The main advantage is that cyclone consist of the parts which are resistant to wear and have long life time, e.g. various rotating and sliding parts. Mostly are used as pre-separators, because they have low efficiency in the separation of small particles. Their function is to separate larger particles from the flue gases which are subsequently cleaned in the other device which is capable of removing particles smaller than 1 µm, which is limiting size of particle separation. The article will deal with the issue of calculating the basic dimensions and main parameters of the cyclone separator from flue gas produced during the smelting of secondary aluminum.

  6. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  7. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  8. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  9. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  10. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  11. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  12. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  13. How Will Copper Contamination Constrain Future Global Steel Recycling?

    Science.gov (United States)

    Daehn, Katrin E; Cabrera Serrenho, André; Allwood, Julian M

    2017-06-06

    Copper in steel causes metallurgical problems, but is pervasive in end-of-life scrap and cannot currently be removed commercially once in the melt. Contamination can be managed to an extent by globally trading scrap for use in tolerant applications and dilution with primary iron sources. However, the viability of long-term strategies can only be evaluated with a complete characterization of copper in the global steel system and this is presented in this paper. The copper concentration of flows along the 2008 steel supply chain is estimated from a survey of literature data and compared with estimates of the maximum concentration that can be tolerated in steel products. Estimates of final steel demand and scrap supply by sector are taken from a global stock-saturation model to determine when the amount of copper in the steel cycle will exceed that which can be tolerated. Best estimates show that quantities of copper arising from conventional scrap preparation can be managed in the global steel system until 2050 assuming perfectly coordinated trade and extensive dilution, but this strategy will become increasingly impractical. Technical and policy interventions along the supply chain are presented to close product loops before this global constraint.

  14. FY 2000 report on the research cooperation project 'research cooperation diagnosis survey.' Research cooperation in technology to improve the environmental response type industrial use water circulation utilization (Thailand) Nos. 1 and 2. and research cooperation in technology to recover the harmless metal in smoke/ash in smelting works (Chile); 2000 nendo kenkyu kyoryoku jigyo 'kenkyu kyoryoku shindan chosa' hokokusho. Kankyo taiogata kogyoyosui junkan riyo kojo gijutsu ni kansuru kenkyu kyoryoku (Tai) 1 kaime 2 kaime, seirenjo enbai no mugaika kinzoku kaishu gijutsu ni kansuru kenkyu kyoryoku (Chiri)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In Chile, for the purpose of coping with problems on the ground subsidence and water shortage caused by pumping up the industrial use ground water, survey was conducted of the research cooperation in reutilization of the industrial waste water retreated for the food industry and the fiber industry. As a result, as a MOU plan, the establishment of the regenerative utilization technology was proposed of the treated water after the activated sludge treatment in food plants and after the Lagoon treatment in the fiber/dyeing industry. In Chile, relating to the harmless metal recovery technology to recover valuable metals such as copper, lead, zinc and silver included in the smoke/ash containing arsenic in copper smelting works at low cost by reducing environmental loads, conducted were survey for research cooperation and discussion on the making of a draft of the basic agreement. The project includes the high grade leaching separation, simplification/non-slagging of the lead/silver residue melting process, optimization of the copper separation/recovery method, fixation/weight-reduction of the leached arsenic, optimization of the zinc recovery method, optimization of the final waste water treating process, study of the design/construction/operation of the pilot plant, etc. (NEDO)

  15. FY 2000 report on the research cooperation project 'research cooperation diagnosis survey.' Research cooperation in technology to improve the environmental response type industrial use water circulation utilization (Thailand) Nos. 1 and 2. and research cooperation in technology to recover the harmless metal in smoke/ash in smelting works (Chile); 2000 nendo kenkyu kyoryoku jigyo 'kenkyu kyoryoku shindan chosa' hokokusho. Kankyo taiogata kogyoyosui junkan riyo kojo gijutsu ni kansuru kenkyu kyoryoku (Tai) 1 kaime 2 kaime, seirenjo enbai no mugaika kinzoku kaishu gijutsu ni kansuru kenkyu kyoryoku (Chiri)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In Chile, for the purpose of coping with problems on the ground subsidence and water shortage caused by pumping up the industrial use ground water, survey was conducted of the research cooperation in reutilization of the industrial waste water retreated for the food industry and the fiber industry. As a result, as a MOU plan, the establishment of the regenerative utilization technology was proposed of the treated water after the activated sludge treatment in food plants and after the Lagoon treatment in the fiber/dyeing industry. In Chile, relating to the harmless metal recovery technology to recover valuable metals such as copper, lead, zinc and silver included in the smoke/ash containing arsenic in copper smelting works at low cost by reducing environmental loads, conducted were survey for research cooperation and discussion on the making of a draft of the basic agreement. The project includes the high grade leaching separation, simplification/non-slagging of the lead/silver residue melting process, optimization of the copper separation/recovery method, fixation/weight-reduction of the leached arsenic, optimization of the zinc recovery method, optimization of the final waste water treating process, study of the design/construction/operation of the pilot plant, etc. (NEDO)

  16. Hypoxia induces copper stable isotope fractionation in hepatocellular carcinoma, in a HIF-independent manner.

    Science.gov (United States)

    Bondanese, Victor P; Lamboux, Aline; Simon, Melanie; Lafont, Jérôme E; Albalat, Emmanuelle; Pichat, Sylvain; Vanacker, Jean-Marc; Telouk, Philippe; Balter, Vincent; Oger, Philippe; Albarède, Francis

    2016-11-09

    Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, with increasing incidence worldwide. The unrestrained proliferation of tumour cells leads to tumour hypoxia which in turn promotes cancer aggressiveness. While changes in the concentration of copper (Cu) have long been observed upon cancerization, we have recently reported that the isotopic composition of copper is also altered in several types of cancer. In particular, we showed that in hepatocellular carcinoma, tumour tissue contains heavier copper compared to the surrounding parenchyma. However, the reasons behind such isotopic signature remained elusive. Here we show that hypoxia causes heavy copper enrichment in several human cell lines. We also demonstrate that this effect of hypoxia is pH, HIF-1 and -2 independent. Our data identify a previously unrecognized cellular process associated with hypoxia, and suggests that in vivo tumour hypoxia determines copper isotope fractionation in HCC and other solid cancers.

  17. Delta smelt habitat in the San Francisco Estuary: A reply to Manly, Fullerton, Hendrix, and Burnham’s “Comments on Feyrer et al. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish"

    Science.gov (United States)

    Feyrer, Frederick V.; Newman, Ken B.; Nobriga, Matthew; Sommer, Ted

    2016-01-01

    Manly et al. (2015) commented on the approach we (Feyrer et al. 2011) used to calculate an index of the abiotic habitat of delta smelt Hypomesus transpacificus. The delta smelt is an annual fish species endemic to the San Francisco Estuary (SFE) in California, USA. Conserving the delta smelt population while providing reliability to California’s water supply with water diverted from the SFE ecosystem is a major management and policy issue. Feyrer et al. (2011) evaluated historic and projected future abiotic habitat conditions for delta smelt. Manly et al. (2015) specifically commented regarding the following: (1) use of an independent abundance estimate, (2) spatial bias in the habitat index, and (3) application of the habitat index to future climate change projections. Here, we provide our reply to these three topics. While we agree that some of the concepts raised by Manly et al. (2015) have the potential to improve habitat assessments and their application to climate change scenarios as knowledge is gained, we note that the Feyrer et al. (2011) delta smelt habitat index is essentially identical to one reconstructed using Manly et al.’s (2015) preferred approach (their model 8), as shown here in Fig. 1.

  18. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions.

    Science.gov (United States)

    Kapusta, Paweł; Sobczyk, Łukasz

    2015-12-01

    We studied enchytraeid communities in several habitats polluted by heavy metals from Zn-Pb mining and smelting activities. We sampled 41 sites that differed in the type of substratum (carbonate rock, metal-rich carbonate mining waste, siliceous sand) and land management (planting Scots pine, topsoiling, leaving to natural succession), and the distance from the smelter. Our main aims were to determine which pollution variables and natural factors most influenced enchytraeid species composition, richness and density, and examine what was the effect of planting Scots pine (reclamation) on enchytraeid communities. The soils harboured on average 1 to 5 enchytraeid species and 700 to 18,300 individuals per square metre, depending on the habitat. These figures were generally lower than those reported from unpolluted regions. Redundancy and multiple regression analyses confirmed the negative impact of heavy metal pollution on both enchytraeid community structure and abundance. Among pollution variables, the distance from the smelter best explained the variation in enchytraeid communities. The concentrations of heavy metals in the soil had less (e.g. total Pb and exchangeable Zn) or negligible (water-soluble forms) explanatory power. Natural soil properties were nearly irrelevant for enchytraeids, except for soil pH, which determined the species composition. Plant species richness was an important explanatory variable, as it positively affected most parameters of enchytraeid community. The results of two-by-two factorial comparisons (planting Scots pine vs. natural succession; carbonate mining waste vs. siliceous sand) suggest that reclamation can improve soil quality for biota, since it increased the diversity and abundance of enchytraeids; this effect was not dependent on the type of substratum. In conclusion, enchytraeids responded negatively to heavy metal pollution and their response was consistent and clear. These animals can be used as indicators of metal toxicity

  19. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  20. The copper deposits of Michigan

    Science.gov (United States)

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  1. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  2. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  3. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  4. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  5. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  6. Conservation of Native Fishes of the San Francisco Estuary: Considerations for Artificial Propagation of Chinook Salmon, Delta Smelt, and Green Sturgeon

    Directory of Open Access Journals (Sweden)

    Joshua A. Israel

    2011-04-01

    Full Text Available Many native fishes in the San Francisco Estuary and its watersheds have reached all-time low abundances. Some of these declining species (e.g., Chinook salmon Oncorhynchus tschawytscha have been under artificial propagation for decades. For others (e.g., delta smelt, Hypomesus transpacificus, and green sturgeon, Acipenser medirostris, this management option is just beginning to be discussed and implemented. Propagation strategies, in which organisms spend some portion of their lives in captivity, pose well-documented genetic and ecological threats to natural populations. Negative impacts of propagation have been documented for all Central Valley Chinook salmon runs, but limited efforts have been made to adapt hatchery operations to minimize the genetic and ecological threats caused by propagated fishes. A delta smelt propagation program is undergoing intensive design and review for operations and monitoring. However, if limiting factors facing this species in its estuarine habitat are not effectively addressed, captive propagation may not be a useful conservation approach, regardless of how carefully the propagation activity is designed or monitored. Scientifically defensible, ecologically based restoration programs that include monitoring and research aimed at quantifying natural population vital rates should be fully implemented before there is any attempt to supplement natural populations of delta smelt. Green sturgeon are also likely to face risks from artificial propagation if a large–scale program is implemented before this species’ limiting factors are better understood. In each of these cases, restoring habitats, and reducing loss from human actions, are likely to be the best strategy for rebuilding and supporting self–sustaining populations.

  7. Chemicals in effluent waters from nuclear power stations: the distribution, fate, and effects of copper

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1984-04-01

    This report provides a summary of research performed to determine the physicochemical forms and fate of copper in effluents from power stations adjacent to aquatic ecosystems with water that differs in salinity, pH, and concentrations of organic and inorganic constituents. In addition, research performed to evaluate responses of selected ecologically and economically important marine and freshwater organisms to increased concentrations of soluble copper is reviewed. The same parameters were measured and the same analytical techniques were used throughout the study. Copper concentration and speciation, in influent and effluent waters collected from eight power stations using copper alloys in their cooling systems, showed that the quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species except when low pH water was circulated. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from open-cycle to closed-cycle operation. The toxic response to copper differed with the species and life stage of the organism and with the chemical form of copper in the water. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH and on a population exposed to increased soluble copper in the laboratory were also assessed. 105 references, 15 figures, 11 tables

  8. Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection.

    Science.gov (United States)

    Ladomersky, Erik; Khan, Aslam; Shanbhag, Vinit; Cavet, Jennifer S; Chan, Jefferson; Weisman, Gary A; Petris, Michael J

    2017-09-01

    Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7a LysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7a LysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7a LysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7a LysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection. Copyright © 2017 American Society for Microbiology.

  9. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  10. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  11. Non destructive examination of primary wall small scale mock-up DS-1F

    International Nuclear Information System (INIS)

    Jeskanen, H.; Lahdenperae, K.; Kauppinen, P.; Taehtinen, S.

    1998-06-01

    Ultrasonic examination of primary wall small scale mock up DS-1F before thermal testing showed no major defects on studied interfaces. However, some small indications were found on copper to copper and copper to steel interfaces and surface roughness of the outer surface of copper layer gave clear indications on ultrasonic images. After thermal test a curved 50 mm long crack along the Y- direction in the middle of the heated surface of the mock up and a 220 mm long crack along the copper to copper interface on the side surface of the mock up were detected. Small cracks, less than 60-80 μm in depth, were observed on copper surface. After thermal test the corresponding ultrasonic examination showed a strong effect on ultrasonic attenuation properties and on leaky Rayleigh waves on outer surface of copper layer. A major indication was found on copper to copper interface. About 50% of the copper to copper interface was delaminated. However, some small indications found already before thermal test were also found after thermal test and they were not grown in size. No indications were observed on copper to stainless steel interfaces. Additionally, major indications were found on stainless steel tube to copper interfaces. Tubes No. 1 and 2 were almost completely whereas tube No. 3 only partly separated from copper. No indications were found on stainless steel tube to copper interface on tube No. 4. Eddy current measurements showed no volumetric or crack like flaws in the stainless steel tubes, however, delamination of the copper to copper interface along the tubes No. 1, 2 and 3 was observed. (orig.)

  12. Environmental-geochemical characteristics of Cu in the soil and water in copper-rich deposit area of southeastern Hubei Province, along the middle Yangtze River, Central China

    International Nuclear Information System (INIS)

    Zhang Ling; Wang Lu; Yin Kedong; Lv Ying; Zhang Derong

    2009-01-01

    In this study, the natural Cu background concentration and Cu natural and anthropogenic contamination in soil, water and crop were investigated systematically in Huangshi area. The results show that regional geology is the dominant factor controlling the natural Cu background concentration in soil and water, and that pH is important to control the vertical distribution of Cu in soil under the same geographical and climatic conditions. The mineralization of rock bodies causes the natural Cu increase in soil and water, whereas, a large number of mining-smelting plants and chemical works are the main sources of Cu anthropogenic contamination. Cu in naturally and anthropogenically polluted soil displays differences in total and available contents, vertical distribution patterns and physico-chemical properties, the same happens in water. - Consider the rock-soil-water-crop as a system to study the geochemical activities and environmental pollution of copper.

  13. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.

    Science.gov (United States)

    Shi, Jianwu; Deng, Hao; Bai, Zhipeng; Kong, Shaofei; Wang, Xiuyan; Hao, Jiming; Han, Xinyu; Ning, Ping

    2015-05-15

    107 kinds of C₂-C₁₂ volatile organic compound (VOC) mass concentrations and profiles for four types of coal-fired stationary sources in Liaoning Province were studied by a dilution sampling system and GC-MS analysis method, which are of significant importance with regard to VOC emissions in northeast of China. The results showed that there were some differences among these VOC source profiles. The total mass concentrations of analyzed 107 VOC species varied from 10,917 to 19,652 μg m(-3). Halogenated hydrocarbons exhibited higher mass percentages for the VOC source profiles of iron smelt (48.8%) and coke production plant (37.7%). Aromatic hydrocarbons were the most abundant in heating station plant (69.1%). Ketones, alcohols and acetates held 45.0% of total VOCs in thermal power plant. For non-methane hydrocarbons (NMHCs), which are demanded for photochemical assessment in the USA, toluene and n-hexane were the most abundant species in the iron smelt, coke production and thermal power plant, with the mass percentages of 64.8%, 52.7% and 38.6%, respectively. Trimethylbenzene, n-propylbenzene and o,m-ethyltoluene approximately accounted for 70.0% in heating station plant. NMHCs emitted from coke production, iron smelt, heating station and power plant listed above presented different chemical reactivities. The average OH loss rate of NMHCs from heating station, was 4 to 5.6 times higher than that of NMHCs from iron smelt, coke production and power plant, which implies that VOCs emitted from heating station in northeast of China should be controlled firstly to avoid photochemical ozone pollution and protect human health. There are significant variations in the ratios of benzene/toluene and m, p-xylene/ethylbenzene of these coal-fired source profiles. The representativeness of the coal-fired sources studied and the VOC samples collected should be more closely examined. The accuracy of VOC source profiles related to coal-fired processes is highly dependent on

  14. Post-depositional redistribution of trace metals in reservoir sediments of a mining/smelting-impacted watershed (the Lot River, SW France)

    International Nuclear Information System (INIS)

    Audry, Stephane; Grosbois, Cecile; Bril, Hubert; Schaefer, Joerg; Kierczak, Jakub; Blanc, Gerard

    2010-01-01

    Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM-EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water-sediment interface of (i) dissolved SO 4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major

  15. Tissue distribution and excretion of copper-67 intraperitoneally administered to rats fed fructose or starch

    International Nuclear Information System (INIS)

    Holbrook, J.; Fields, M.; Smith, J.C. Jr.; Reiser, S.

    1986-01-01

    It has been suggested that impaired gut absorption of copper is the cause of the exacerbated copper deficiency signs in rats fed fructose when compared to rats fed starch. The present study was designed to examine how rats fed fructose or starch diets, either copper-deficient or supplemented, distributed and excreted 67 Cu when the isotope was administered i.p. Intraperitoneal administration was chosen in an effort to circumvent primary gut absorption as a factor in the metabolism of 67 Cu. After 7 wk of dietary treatment, rats received an i.p. injection of 67 Cu and were placed in metabolic cages for 4 d. Regardless of dietary carbohydrate, copper-deficient rats retained similar levels of radioactivity in various tissues and excreted similar amounts of 67 Cu in feces and urine. This similarity in copper metabolism in copper-deficient rats fed either fructose or starch when the gut was circumvented for isotope administration suggests that the gut could be responsible, at least in part, for the exacerbated signs associated with the copper deficiency in rats fed fructose. The possibility is discussed that alterations in metabolism may increase the requirement for copper when fructose is the main dietary carbohydrate

  16. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge

    International Nuclear Information System (INIS)

    Muntean, Alex; Wagner, Moritz; Meyer, Jörg; Seipenbusch, Martin

    2016-01-01

    The generation of copper, nickel, and copper-nickel alloy nanoparticles by spark discharge was studied, using different bespoke alloy feedstocks. Roughly spherical particles with a primary particle Feret diameter of 2–10 nm were produced and collected in agglomerate form. The copper-to-nickel ratios determined by Inductively coupled plasma mass spectrometry (ICP-MS), and therefore averaged over a large number of particles, matched the nominal copper content quite well. Further investigations showed that the electrode compositions influenced the evaporation rate and the primary particle size. The evaporation rate decreased with increasing copper content, which was found to be in good accordance with the Llewellyn-Jones model. However, the particle diameter was increasing with an increasing copper content, caused by a decrease in melting temperature due to the lower melting point of copper. Furthermore, the alloy compositions on the nanoscale were investigated via EDX. The nanoparticles exhibited almost the same composition as the used alloy feedstock, with a deviation of less than 7 percentage points. Therefore, no segregation could be detected, indicating the presence of a true alloy even on the nanoscale.

  17. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  18. NID Copper Sample Analysis

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Zhu, Zihua

    2011-01-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76 Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76 Ge. The DEMONSTRATOR will utilize 76 Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  19. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  20. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    Science.gov (United States)

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  1. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  2. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  3. A refined ecological risk assessment for California red-legged frog, Delta smelt, and California tiger salamander exposed to malathion.

    Science.gov (United States)

    Clemow, Yvonne H; Manning, Gillian E; Breton, Roger L; Winchell, Michael F; Padilla, Lauren; Rodney, Sara I; Hanzas, John P; Estes, Tammara L; Budreski, Katherine; Toth, Brent N; Hill, Katie L; Priest, Colleen D; Teed, R Scott; Knopper, Loren D; Moore, Dwayne Rj; Stone, Christopher T; Whatling, Paul

    2018-03-01

    The California red-legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening-level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening-level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report "Assessing Risks to Endangered and Threatened Species from Pesticides." Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst-case scenarios in California. Refined effects analyses involved developing concentration-response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface-water monitoring data, and incident reports were considered in a weight-of-evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224-239. © 2017 The Authors. Integrated Environmental Assessment and

  4. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  5. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  6. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia, E-mail: cxzhang@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Qiao Qingqing [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Piper, John D.A. [Geomagnetism Laboratory, Department of Earth and Ocean Science, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Huang, Baochun [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China)

    2011-10-15

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: > Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. > HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. > A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. > The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  7. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  8. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    International Nuclear Information System (INIS)

    Zhang Chunxia; Qiao Qingqing; Piper, John D.A.; Huang, Baochun

    2011-01-01

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: → Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. → HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. → A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. → The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  9. Mixing Phenomena in a Bottom Blown Copper Smelter: A Water Model Study

    Science.gov (United States)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Akbar Rhamdhani, M.; Nguyen, Anh; Zhao, Baojun

    2015-03-01

    The first commercial bottom blown oxygen copper smelting furnace has been installed and operated at Dongying Fangyuan Nonferrous Metals since 2008. Significant advantages have been demonstrated in this technology mainly due to its bottom blown oxygen-enriched gas. In this study, a scaled-down 1:12 model was set up to simulate the flow behavior for understanding the mixing phenomena in the furnace. A single lance was used in the present study for gas blowing to establish a reliable research technique and quantitative characterisation of the mixing behavior. Operating parameters such as horizontal distance from the blowing lance, detector depth, bath height, and gas flow rate were adjusted to investigate the mixing time under different conditions. It was found that when the horizontal distance between the lance and detector is within an effective stirring range, the mixing time decreases slightly with increasing the horizontal distance. Outside this range, the mixing time was found to increase with increasing the horizontal distance and it is more significant on the surface. The mixing time always decreases with increasing gas flow rate and bath height. An empirical relationship of mixing time as functions of gas flow rate and bath height has been established first time for the horizontal bottom blowing furnace.

  10. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  11. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  12. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  13. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  14. Figurines in Pietrele: Copper Age ideology

    Directory of Open Access Journals (Sweden)

    Svend Hansen

    2011-12-01

    Full Text Available Major trends in figurine production of the copper age settlement of Pietrele (Romania are discussed. The bone figurines are seen as an ideological innovation of the Early Copper Age system in the Eastern Balkans.

  15. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  16. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  17. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  18. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  19. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  20. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  1. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  2. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  3. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi......-quantitatively and also accounts for the stored energy of cold-work. An interesting feature of the model is that it shows very clearly that, although dislocation pile-ups may exist, the flow stress of the composite is entirely due to the resistance to dislocation motion in the tangles of forest dislocations....

  4. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  5. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  6. Long term energy-related environmental issues of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, S. [University of Chile, Santiago (Chile). Dept. of Mechanical Engineering; Maldonado, P.; Barrios, A.; Jaques, I. [University of Chile, Santiago (Chile). Energy Research Program

    2002-02-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO{sub 2}/ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO{sub 2}/t of refined copper content (56% lower than in 1994). CO{sub 2} emissions have been estimated considering both fuel and electricity process requirements. (author)

  7. Long term energy-related environmental issues of copper production

    International Nuclear Information System (INIS)

    Alvarado, S.; Maldonado, P.; Barrios, A.; Jaques, I.

    2002-01-01

    Primary copper production is a major activity in the mining sector of several countries. However, it is highly energy-intensive and poses important environmental hazards. In the case of Chile, the world's largest copper producer (40% of world total), we examine its energy consumption and energy-related environmental implications over a time horizon of 25 years. Concerning the latter, we focus on greenhouse-gas (GHG) emissions, one of the most debated environmental issues. This paper follows up our previous report in which the current situation was analyzed and a particular technical option for improving the energy efficiency and concurrently reducing GHG emissions was discussed. Estimated reference or base (BS) and mitigation (MS) scenarios are developed for the period ending in 2020. The former assesses the energy demand projected in accordance with production forecasts and specific energy consumption patterns (assuming that energy efficiency measures are adopted 'spontaneously') with their resultant GHG emissions, while the latter assumes induced actions intended to reduce emissions by adopting an aggressive policy of efficient energy use. For the year 2020, the main results are: (i) BS, 1214 t of CO 2 /ton of refined copper content (49% lower than in 1994); (ii) MS, 1037 t of CO 2 /t of refined copper content (56% lower than in 1994). CO 2 emissions have been estimated considering both fuel and electricity process requirements. (author)

  8. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  9. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  10. The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper

    Directory of Open Access Journals (Sweden)

    Walid Mohamed

    2016-03-01

    Full Text Available The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc and micrograined (MG copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper.

  11. Copper nanoparticles in zeolite Y

    NARCIS (Netherlands)

    Seidel, A.; Loos, J.; Boddenberg, B.

    1999-01-01

    CuCl has been dispersed in the supercages of a Y-type zeolite by heating a mechanical salt/host mixture in vacuo. The occluded salt was subsequently reduced to copper metal in a hydrogen atmosphere. Virtually complete reduction of the salt is achieved at 460°C. Under the same conditions,

  12. Effects of copper on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, L

    1971-01-01

    The author deals with the effects of copper on mitosis. He found that a Cu concentration of 1 mg per liter is very toxic and strongly inhibits the course of mitosis in Vicia fabia. The effects of 0.5 mg and 0.25 mg Cu concentrations per liter were similar but a much weaker character.

  13. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Unknown

    anticancer drug famotidine has been shown as a better catalyst than CuCl2 for sulfite ... Effect of addition of bis-chelate copper(II) complexes (dpq, •; phen, ; ..... Reproduction, Development & Genetics for their help in the DNA cleavage studies ...

  14. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  15. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  16. Lab Tracker and Copper Calculator

    Science.gov (United States)

    ... have to do with factors of asymmetric neurologic development, such as being right or left-handed. The copper is often seen most prominently in the basal ganglia, the area deep within the brain that coordinates movements. The face of the giant ...

  17. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  18. COPPER CORROSION AND SOLUBILITY RESEARCH

    Science.gov (United States)

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  19. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  20. Direct and indirect effects of copper-contaminated sediments on the functions of model freshwater ecosystems.

    Science.gov (United States)

    Gardham, Stephanie; Chariton, Anthony A; Hose, Grant C

    2015-01-01

    Copper is acutely toxic to, and directly affects, primary producers and decomposers, which are key players in essential processes such as the nutrient cycle in freshwater ecosystems. Even though the indirect effects of metals (for example effects due to changes in species interactions) may be more common than direct effects, little is known about the indirect effects of copper on primary producers and decomposers. The effects of copper on phytoplankton, macrophytes, periphyton and organic matter decomposition in an outdoor lentic mesocosm facility were assessed, and links between the responses examined. Copper directly decreased macrophyte growth, subsurface organic matter decomposition, and the potential for high phytoplankton Chlorophyll a concentrations. However, periphyton cover and organic matter decomposition on the surface of the sediment were stimulated by the presence of copper. These latter responses were attributed to indirect effects, due to a reduction in grazing pressure from snails, particularly Physa acuta, in the higher copper-contaminated mesocosms. This permitted the growth of periphyton and other heterotrophs, ultimately increasing decomposition at the sediment surface. The present study demonstrates the pronounced influence indirect effects may have on ecological function, findings that may not be observed in traditional laboratory studies (which utilize single species or simplistic communities).

  1. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  2. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  3. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  4. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  5. Adsorption of copper onto char derived macro alga, Undaria pinnatifida

    International Nuclear Information System (INIS)

    Cho, Hye Jung; Ko, Jeong Huy; Heo, Hyeon Su; Park, Hye Jin; BAe, Yoon Ju; Kim, Jung Hwan; Park, Young-Kwon

    2010-01-01

    Full text: A release of heavy metals into the environment by industrial activities raises much environmental problems because they tend to remain indefinitely, circulating and eventually accumulating throughout the food chain. Copper is essential to human life and health but, like all heavy metals, is potentially toxic as well. The excessive intakes of copper result in its accumulation in the liver and produce gastrointestinal problems, kidney damage, anemia, and continued inhalation of copper-containing sprays is linked with an increase in lung cancer among exposed people. Consequently, we need to eliminate the copper in drinking water. Also, growth rates of marine macro algae far exceed those of terrestrial biomass, without water limitations, so annual primary production rates are higher for the major marine macro algae than for most terrestrial biomass. According to these reasons, we try to use the macro alga, Undaria pinnatifida. Adsorption of heavy metals is one of the possible technologies involved in the removal of toxic metals from industrial waste streams and mining waste water using low-cost adsorbents. In recent years, many low-cost adsorbents such as seaweeds, activated carbon, etc. have been investigated, but the char by macro alga, Undaria pinnatifida, have not proven to be the most effective and promising substrates. The aim of this study is to remove copper from its aqueous solution by Undaria pinnatifida char for various parameters like pH, contact time, and Cu(II) concentration. The adsorption capacity of Cu(II) by Undaria pinnatifida char was investigated as a function of pH, contact time, and Cu(II) concentration at room temperature. And it was verified using equilibrium studies. (author)

  6. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  7. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  8. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  9. Structure and diversity of ground mesofauna inUlmus and Populus consortia in the industrial areas of mining and smelting complex of krivyi rig basin

    Directory of Open Access Journals (Sweden)

    V. V. Kachinskaya

    2010-05-01

    Full Text Available The structure and biological diversity of ground mesofauna on a consortium level of organisation of ecosystems are considered. Indicators of structural organisation and biodiversity of ground mesofauna were analised in Ulmus and Populus consortia in the conditions of industrial territories of mining and smelting complex of Krivyi Rig Basin. It is established that taxonomical structure of ground mesofauna is characterised by insignificant number and quantity of taxonomical groups. Prevalence of hortobionts and herpetobionts in morpho-ecological structure of the community testifies to their attachment to consortium’s determinants and influence of steppe climate on its structure. Dominance of phytophages and polyphages in trophic structure is caused by a combination of consortium determinants specificity and «a zone source» of the fauna formations. The structural organisation of ground mesofauna in consortia of Ulmus and Populus in the conditions of industrial sites is characterised by simplified taxonomical structure with low biodiversity at all levels.

  10. The effect of smelting time and composition of palm kernel shell charcoal reductant toward extractive Pomalaa nickel laterite ore in mini electric arc furnace

    Science.gov (United States)

    Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono

    2018-04-01

    Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.

  11. Determination of the elemental composition of aerosol samples in the working environment of a secondary lead smelting company in Nigeria using EDXRF technique

    International Nuclear Information System (INIS)

    Obiajunwa, E.I.; Johnson-Fatokun, F.O.; Olaniyi, H.B.; Olowole, A.F.

    2002-01-01

    Energy dispersive X-ray fluorescence technique was employed to determine the concentrations of elements in aerosol samples collected in the working environment of a secondary lead smelting company in Nigeria. Sampling was done using Whatman-41 cellulose filters mounted in Negretti air samplers at 10 locations within the factory. The concentrations of eight elements (K, Ca, Ti, Mn, Fe, Cu, Zn and Pb) were determined. The TSP values ranged from 70 to 7963 μg/m 3 and the concentration of Pb was found to be between 2.98 and 538.47 μg/m 3 . The high Pb concentration is a danger signal to the health of the factory workers

  12. Standardization of the process of smelting for sands with self-forgeling resins in the Military Industry Santa Bárbara Factory

    Directory of Open Access Journals (Sweden)

    Lina Consuelo Carvajal-Fernández

    2014-12-01

    Full Text Available This article describes the standardization of the smelting process for sands with self-forgeling resins in the Military Industry Santa Barbara Factory. The molding process was studied in the Smelter for six months, to set standards for workforce and raw materials, so that would allow truthfully evaluate the costs per kilogram of casting. 41 pieces of civil and military sectors throughout the development of the project were worked. Finally both standards were evaluated, labor as raw material for different parts, with results was evidenced improved process, essentially in workforce, while in raw material standards did not show significantly change, in this case is corroborated that existing ones are applicable to the process

  13. Amenorrhea - primary

    Science.gov (United States)

    ... of periods - primary Images Primary amenorrhea Normal uterine anatomy (cut section) Absence of menstruation (amenorrhea) References Bulun SE. The physiology and pathology of the female reproductive axis. In: ...

  14. A Review of Evidence for Corrosion of Copper by water

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Michael J. (Monitor Scientific LLC (United Kingdom)); Bennett, David G. (TerraSalus Limited (United Kingdom)); Saario, Timo (VTT Materials and Building (Finland))

    2009-09-15

    The planned spent nuclear fuel repository in Sweden relies on a copper cast iron canister as the primary engineered barrier. The corrosion behaviour of copper in the expected environment needs to be thoroughly understood as a basis for the post-closure safety analysis. It has been shown that corrosion may indeed be the primary canister degradation process during the utilised assessment period of 1 million years (this period is the longest time for which risk calculations will be needed according guidelines issued by the Swedish Radiation Safety Authority). Previous analysis work has been based on that copper is corroded during the initial oxic environment as well as by sulphide in groundwater once reducing conditions have been restored. The quantitative analyses of these processes consider upper-bound amounts of atmospheric oxidation as well as representative sulphide concentrations coupled with the transport limitation of the bentonite buffer and of the surrounding bedrock. A group of researchers at the Royal Institute of Technology (KTH), Stockholm, Sweden suggest, based on published experimental results, that disposed canisters will also be corroded by water itself under hydrogen evolution. The purpose of the project is to evaluate the findings of the KTH research group based on an assessment of their experimental methods and chemical analysis work, thermodynamic models, and a discussion of reaction mechanisms as well as comparison with the analogue behaviour of native copper. As a background, the authors also provide a brief overview of other corrosion processes and safety assessment significance. The authors conclude that the KTH researchers have not convincingly demonstrated that copper will indeed be corroded by pure water and that it is in any case very unlikely that this process will be dominant under the reducing chemical conditions that are expected in the repository environment. How-ever, the authors do not completely rule out that copper may corrode

  15. Effect of Calcium Oxide on the Crushing Strength, Reduction, and Smelting Performance of High-Chromium Vanadium–Titanium Magnetite Pellets

    Directory of Open Access Journals (Sweden)

    Gongjin Cheng

    2017-05-01

    Full Text Available The effect of calcium oxide on the crushing strength, reduction, and smelting performance of high-chromium vanadium–titanium magnetite pellets (HCVTMP was studied in this work. The main characterization methods of an electronic universal testing machine (EUTM, X-ray fluorescent (XRF, inductively-coupled plasma-atomic emission spectroscopy (ICP-AES, X-ray diffraction (XRD, and scanning electron microscope-energy disperse spectroscopy (SEM-EDS were employed. The crushing strength was affected by the mineral phases generated during oxidative baking and the subsequently-formed pellet microstructures owing to CaO addition. The reduction and smelting properties of HCVTMP with different CaO additives were measured and characterized with different softening-melting-dripping indices. Although HCVTMP showed the highest crushing strength with CaO addition of ca. 2 wt %, more CaO addition may be needed to achieve high permeability of the furnace burdens and a good separation condition of the slag and melted iron. In the formation process of the slag and melted iron, it can be determined that CaO could have a relationship with the transformation behavior of Cr, V, and Ti to some extent, with respect to the predominant chemical composition analysis of ICP-AES and XRF. With the microscopic examination, the restraining formation of Ti(C,N and the promoting formation of CaTiO3 are in accordance with the improved melting-dripping indices, including the decrease of the maximum external static load and gas permeability, and the increase of the melting-dripping zone and dripping difficulty.

  16. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  17. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  18. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  19. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  20. Copper disinfection ban causes storm.

    Science.gov (United States)

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK.

  1. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  2. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  3. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  4. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  5. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.; John, E.K.; Barnhart, A.J.

    1990-01-01

    Several isotopes of gallium and copper exhibit nuclear properties that make them attractive for applications in nuclear medicine, most notably Ga-67, Ga-68, Cu-67 and Cu-62. Of these, gamma-emitting Ga-67 has historically found the greatest clinical use, based on the observation that tracer gallium(III) citrate rapidly produces Ga-67 transferrin upon intravenous injection and then slowly affords selective Ga-67 localization in sites of abscess and certain tumors. Copper-67 has received attention as a potential label for tissue-selective monoclonal antibodies, since its associated γ-photons can be used for external imaging and its β - -emissions could be used for radiation therapy. Positron-emitting gallium-68 and copper-62, being available from parent/daughter generator systems, have attracted interest as potential labels for radiopharmaceuticals used in positron emission tomography (PET) because they could reduce the dependence of this imaging technology on hospital-based cyclotrons. The 10 min. half-life of Cu-62 is particularly well-suited to the time frame of PET studies of tissue perfusion, an application for which Cu(II)-bis(thiosemicarbazone) derivatives appear promising. The 68 min. half-life of Ga-68 makes it appropriate for PET studies over longer imaging time spans

  6. 77 FR 41075 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Science.gov (United States)

    2012-07-12

    ... Decorative Chromium Electroplating and Chromium Anodizing Tanks. O Ethylene Oxide X X X X X Sterilization... Operations. KK Printing and X X X X X Publishing Industry. LL Primary Aluminum X X X Reduction Plants. MM... X X Production. QQQ Primary Copper X X X X Smelting. RRR Secondary X X X X Aluminum Production. TTT...

  7. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  8. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  9. Copper Bioleaching in China: Review and Prospect

    OpenAIRE

    Shenghua Yin; Leiming Wang; Eugie Kabwe; Xun Chen; Rongfu Yan; Kai An; Lei Zhang; Aixiang Wu

    2018-01-01

    The commercial application of copper bioleaching, an environmentally-friendly approach for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s. As the world’s second-largest economic entity and the largest developing country, China has the largest demand for metal resources, significantly advancing the theory and industrial technology of copper bioleaching. This paper reviews the exploration and application of copper bioleaching in China. Two typical b...

  10. World Copper Market Outlook: 2003-2014

    OpenAIRE

    Florela Stoian

    2015-01-01

    This paper presents synthetically the copper market outlook (demand, supply, and prices) during 2003-2014, highlighting the impact of economic crisis of 2008-2009 on the world copper market. During the crisis, the decline in demand caused increases in excess supply of metal, as the supply has followed an upward trend, contributing to the imbalances of the copper market and putting pressure on stock prices at LME London Metal Exchange.

  11. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  12. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  13. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite

    Science.gov (United States)

    Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2013-07-01

    Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 × 105Scm-1) as copper (5.8 × 105Scm-1), but with a 100-times higher ampacity (6 × 108Acm-2). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (~2.0eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.

  14. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    Science.gov (United States)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  15. The effects of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury smelting region of Canada

    Science.gov (United States)

    T. C. Hutchinson

    1976-01-01

    Sulphur dioxide emissions have occurred on a gigantic scale at Sudbury from nickel-copper smelters. Soil erosion has followed the destruction of large areas of forest. Rainfall has been found highly acidic, frequently less than pH 3.0 in 1971. Metal accumulation in the soils (to distances of 50 km) have occurred for nickel and copper. The combination of heavy metal...

  16. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  17. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  18. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  19. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  20. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  1. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  2. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando; Lazreg, Faï ma; Minenkov, Yury; Cavallo, Luigi; Cazin, Catherine S. J.

    2015-01-01

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  3. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems.

    Science.gov (United States)

    Zhang, Hong; Andrews, Susan A

    2012-05-15

    This study investigated the effect of copper corrosion products, including Cu(II), Cu(2)O, CuO and Cu(2)(OH)(2)CO(3), on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu(2)O, CuO, Cu(2)(OH)(2)CO(3)] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Substrate considerations for graphene synthesis on thin copper films

    International Nuclear Information System (INIS)

    Howsare, Casey A; Robinson, Joshua A; Weng Xiaojun; Bojan, Vince; Snyder, David

    2012-01-01

    Chemical vapor deposition on copper substrates is a primary technique for synthesis of high quality graphene films over large areas. While well-developed processes are in place for catalytic growth of graphene on bulk copper substrates, chemical vapor deposition of graphene on thin films could provide a means for simplified device processing through the elimination of the layer transfer process. Recently, it was demonstrated that transfer-free growth and processing is possible on SiO 2 . However, the Cu/SiO 2 /Si material system must be stable at high temperatures for high quality transfer-free graphene. This study identifies the presence of interdiffusion at the Cu/SiO 2 interface and investigates the influence of metal (Ni, Cr, W) and insulating (Si 3 N 4 , Al 2 O 3 , HfO 2 ) diffusion barrier layers on Cu–SiO 2 interdiffusion, as well as graphene structural quality. Regardless of barrier choice, we find the presence of Cu diffusion into the silicon substrate as well as the presence of Cu–Si–O domains on the surface of the copper film. As a result, we investigate the choice of a sapphire substrate and present evidence that it is a robust substrate for synthesis and processing of high quality, transfer-free graphene. (paper)

  5. Experimental investigation of thermal emittance components of copper photocathode

    Directory of Open Access Journals (Sweden)

    H. J. Qian

    2012-04-01

    Full Text Available With progress of photoinjector technology, thermal emittance has become the primary limitation of electron beam brightness. Extensive efforts have been devoted to study thermal emittance, but experiment results differ between research groups and few can be well interpreted. Besides the ambiguity of photoemission mechanism, variations of cathode surface conditions during cathode preparation, such as work function, field enhancement factor, and surface roughness, will cause thermal emittance differences. In this paper, we report an experimental study of electric field dependence of copper cathode quantum efficiency (QE and thermal emittance in a radio frequency (rf gun, through which in situ cathode surface parameters and thermal emittance contributions from photon energy, Schottky effect, and surface roughness are extracted. It is found the QE of a copper cathode illuminated by a 266 nm UV laser increased substantially to 1.5×10^{-4} after cathode cleaning during rf conditioning, and a copper work function of 4.16 eV, which is much lower than nominal value (4.65 eV, was measured. Experimental results also show a thermal emittance growth as much as 0.92  mm mrad/mm at 50  MV/m due to the cathode surface roughness effect, which is consistent with cathode surface morphology measurements.

  6. Copper oxide--copper sulfate water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S. E.; Schreiber, J. D.; Dafler, J. R.

    1978-08-01

    A hybrid copper oxide--copper sulfate thermochemical water-splitting cycle, IGT's H-5, has been demonstrated in the laboratory with recycled materials. The optimum configuration and operating conditions for the electrolytic hydrogen-producing step have not yet been defined. With cooperative funding (A.G.A./G.R.I./DOE) a conceptual flowsheet was developed for this cycle and a load-line efficiency of about 37% calculated. This figure is the result of a single iteration on the original base case flow sheet and compares well with the values calculated for other processes at this stage of development. An iterative optimization of process conditions would improve efficiency. The data required to perform an economic analysis are not yet available and the electrolysis step must be more fully defined. An attractive process efficiency, relatively few corrosive materials, and few gas-phase separations are attributes of Cycle H-5 that lead us to believe hydrogen costs (to be developed during future analyses) would be improved significantly over similar processes analyzed to date.

  7. Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China: Levels and contamination in topsoils

    International Nuclear Information System (INIS)

    Yin Xuebin; Yao Chunxia; Song Jing; Li Zhibo; Zhang Changbo; Qian Wei; Bi De; Li Chenxi; Teng Ying; Wu Longhua; Wan Hongdong; Luo Yongming

    2009-01-01

    In the present study, we aim to investigate the extent of soil contamination by Hg, particularly by anthropogenic Hg, and tentatively estimate the total Hg (Hg T ) accumulation in topsoils (0-15 cm) in Fuyang, Zhejiang Province-a secondary Cu smelter of China. The results show that the levels of soil Hg in the vicinity of the smelters have been substantially elevated following local smelting activities. The spatial distribution of soil Hg in this area reveals a rapid decrease as the distance from the smelter reaches 1.5 km, which is probably due to the quick deposition process of particulate Hg and reactive gaseous Hg emitted from the smelters. The total accumulation of Hg T in the topsoils of the study area of 10.9 km 2 is approximately 365-561 kg and of which 346-543 kg might be contributed by anthropogenic emission alone with an annual emission of 17.3-27.2 kg Hg to the topsoils. - Secondary copper smelters in Fuyang release a considerable amount of mercury into topsoils.

  8. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  9. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  10. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  11. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  12. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  13. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  14. The copper metallome in prokaryotic cells

    DEFF Research Database (Denmark)

    Rensing, Christopher Günther T; Alwathnani, Hend A.; McDevitt, Sylvia F.

    2016-01-01

    and protozoans also utilize heavy metals such as copper and zinc in the killing of phagocytized bacteria. It seems, therefore, not surprising that many bacteria including pathogens harbor additional copper resistance determinants. However, the occurrence of these resistance determinants is more widespread than...

  15. Copper laser diagnostics and kinetics support

    International Nuclear Information System (INIS)

    1981-12-01

    In the effort MSNW participated with the LINL copper-Vapor Laser Program by providing a useful plasma diagnostic for interpretation of Copper-vapor laser kinetics. MSNW developed and delivered a pulsed interferometric diagnostic package to LLNL. Moreover MSNW provided personal services at the request and direction of LLL in the implementation of the diagnostic and interpretation of the data

  16. Photocleavage of DNA by copper (II) complexes

    Indian Academy of Sciences (India)

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino ...

  17. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  18. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  19. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4...

  20. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver...

  1. Particle size distributions, size concentration relationships, and adherence to hands of selected geologic media derived from mining, smelting, and quarrying activities

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, Carolyn; Shirai, Jeffry; Kissel, John, E-mail: jkissel@uw.edu

    2011-09-15

    Hand-to-mouth activity, especially in children, is a potentially significant pathway of exposure to soil contaminants. Hand-mouthing behavior is of particular concern in areas impacted by mining, smelting, and quarrying activities as these activities may lead to elevated levels of heavy metals in soil. In order to estimate potential exposures to contaminated geologic media attributable to hand-to-mouth contact, it is useful to characterize adherence of those media to skin, as contaminant concentrations in adhered media may differ greatly from unfractionated, whole media concentrations. Such an investigation has been undertaken to aid estimation of exposures to arsenic, cadmium, lead, and zinc in nine different geologic media collected in the Pacific Northwest region of the United States. After establishing the particle size distribution of each medium (fractions < 63 {mu}m, 63-150 {mu}m, 150-250 {mu}m, and 250 {mu}m-2 mm were determined) and target elemental concentrations within each particle size fraction, an active handling protocol involving six volunteers was conducted. Wet media always adhered to a greater extent than dry media and adhered media generally had higher elemental concentrations than bulk media. Regression analyses suggest smaller particle fractions may have higher elemental concentrations. Results of application of a maximum likelihood estimation technique generally indicate that handling of dry media leads to preferential adherence of smaller particle sizes, while handling of wet media does not. Because adhered material can differ greatly in particle size distribution from that found in bulk material, use of bulk concentrations in exposure calculations may lead to poor estimation of actual exposures. Since lead has historically been a metal of particular concern, EPA's Integrated Exposure Uptake Biokinetic (IEUBK) Model was used to examine the potential consequences of evaluating ingestion of the selected media assuming concentrations in

  2. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.

    Science.gov (United States)

    Hong, Chang Oh; Gutierrez, Jessie; Yun, Sung Wook; Lee, Yong Bok; Yu, Chan; Kim, Pil Joo

    2009-02-01

    The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.

  3. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  4. Microbial leaching of low grade copper ores

    International Nuclear Information System (INIS)

    Rauf, A.; Ashfaq, M.

    1991-01-01

    Biotechnology is regarded as one of the most promising and revolutionary solution to various problems which are generally faced in the extraction of metals from their ores such as high energy, capital costs and environmental pollution. The paper deals with the study of low grade copper ores for their beneficiation and extraction of copper. The ores used were chalcopyrite and oxidized copper ores. Microorganisms play a vital role in the solubilization of valuable contents from ores such as copper and other metals. Studies have been conducted on the indigenous copper ores by using thiobacillus ferro oxidans and thiobacillus thio oxidans. For comparison purpose some experiments have also been conducted by chemical leaching. The results of bacterial leaching are encouraging. (author)

  5. Modification of polycrystalline copper by proton irradiation

    International Nuclear Information System (INIS)

    Garcia S, F.; Cabral P, A.; Saniger B, J.M.; Banuelos, J.G.; Barragan V, A.

    1997-01-01

    Polished copper samples were irradiated with proton beams of 300 and 700 keV at room temperature and at -150 Centigrade. In this work the obtained results are reported when such copper irradiated samples are analysed with Sem, Tem, AFM. The Sem micrographs showed evident changes in surface of these copper samples, therefore an EDAX microanalysis was done for its characterization. additionally, the Tem micrographs showed heaps formation until 200 nm. Its electron diffraction spectra indicated that these heaps consist of a copper compound. Finally with AFM were observed changes in coloration of the irradiated sample surface, as well as changes in texture and rugosity of them. These results show in general that irradiation process with protons which is known as an innocuo process produces changes in the copper properties. (Author)

  6. Engineering kinetic barriers in copper metallization

    International Nuclear Information System (INIS)

    Huang Hanchen; Wei, H.L.; Woo, C.H.; Zhang, X.X.

    2002-01-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusion--a direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality

  7. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  8. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  9. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.

    Science.gov (United States)

    Buss, Wolfram; Kammann, Claudia; Koyro, Hans-Werner

    2012-01-01

    Mining, smelting, land applications of sewage sludge, the use of fungicides containing copper (Cu), and other human activities have led to widespread soil enrichment and contamination with Cu and potentially toxic conditions. Biochar (BC) can adsorb several substances, ranging from herbicides to plant-inhibiting allelochemicals. However, the range of potential beneficial effects on early-stage plant growth with regard to heavy metal toxicity is largely unexplored. We investigated the ameliorating properties of a forestry-residue BC under Cu toxicity conditions on early plant growth. Young quinoa plants () were grown in the greenhouse in the presence of 0, 2, and 4% BC application (w/w) added to a sandy soil with 0, 50, or 200 μg g Cu supplied. The plants without BC showed severe stress symptoms and reduced growth shortly after Cu application of 50 μg g and died at 200 μg Cu g. Increasing BC concentrations in the growth medium significantly increased the plant performance without Cu toxicity or under Cu stress. At the 4% BC application rate, the plants with 200 μg g Cu almost reached the same biomass as in the control treatment. In the presence of BC, less Cu entered the plant tissues, which had reduced Cu concentrations in the order roots, shoots, leaves. The amelioration effect also was reflected in the plant-soil system CO gas exchange, which showed clear signs of improvement with BC presence. The most likely ameliorating mechanisms were adsorption of Cu to negatively charged BC surfaces and an improvement of the water supply. Overall, BC seems to be a beneficial amendment with the potential to ameliorate Cu toxicity in sandy soils. Further research with a broad spectrum of different soil types, BCs, and crop plants is required. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.

    2002-10-01

    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  11. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  12. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  13. Primary fibromyalgia

    DEFF Research Database (Denmark)

    Jacobsen, S; Jensen, L T; Foldager, M

    1990-01-01

    Serum concentrations of procollagen type III aminoterminal peptide have previously been reported to be low in some patients with primary fibromyalgia and the aim of this study was to determine if such patients differ clinically from primary fibromyalgia patients with normal levels of procollagen...... type III aminoterminal peptide. Subjective symptoms, tender points and dynamic muscle strength in 45 women with primary fibromyalgia were related to serum concentrations of procollagen type III aminoterminal peptide. Patients with low serum concentrations of procollagen type III aminoterminal peptide...... concentrations of procollagen type III aminoterminal peptide of primary fibromyalgia patients are connected to the disease impact....

  14. The utility of Pinus sylvestris L. in dendrochemical investigations: Pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK

    International Nuclear Information System (INIS)

    Lageard, J.G.A.; Howell, J.A.; Rothwell, J.J.; Drew, I.B.

    2008-01-01

    This research investigates atmospheric pollution from an isolated and increasingly productive lead-smelting site by examining the dendrochemistry of Pinus sylvestris growing in the local environment and at control sites. Tree increment cores and soil in the rooting environment were analysed for lead content. Inter-site comparisons of lead-in-soil suggest that contamination of the soil may be a less important pathway for lead inclusion within wood than pathways via bark or needles. Levels of lead-in-wood (up to 38 mg kg -1 ) are at the upper end of those previously reported. There is evidence of radial translocation of lead towards the heartwood and variability in intra-site dendrochemical records. Mean site lead-in-wood records can however be related to a well-documented pollution chronology and also suggest the importance of local topography in the dispersal and deposition of particulate lead. This study demonstrates that P. sylvestris can be used to estimate the scale and timing of past pollution episodes in similar environmental contexts to those investigated at Darley Dale, where precisely dated pollution chronologies are lacking. - Mean site dendrochemical records for Pinus sylvestris can be used to estimate the general scale and timing of atmospheric pollution episodes

  15. Joint study on smelting reduction. ; Results of elementary study and future studies. Yoyu kangen kyodo kenkyu; Yoso kenkyu no seika to kongo no torikume

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    The paper outlines results of elementary study on the coal direct-use iron-making process and how to tackle with it in future. In the process coal and iron ores are used directly without prior treatments like coking and briquetting. The process is composed of three elements: smelting reducing furnace, preliminary reduction fluidized bed, gas reforming furnace. Making mathematical models as a means of study of the process, material balance and heat balance are calculated. Operational unit requirements are estimated, changing them in the range of 20-60% of the post combustion based on three fundamental processes each of which is composed of one or a combination of the three elements. The total cost is also trially calculated, estimating fixed cost including installation cost, etc. With no big differences in the iron-melting cost excluding by-products in each process, the cost may be reduced by 5-10% of that in the blast furnace process. The elementary study has continued almost satisfactorily and attained the expected target, though there still remain some problems. In 1990 the study started of a pilot plant with a 500t/day capacity. 12 figs.

  16. The utility of Pinus sylvestris L. in dendrochemical investigations: pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK.

    Science.gov (United States)

    Lageard, J G A; Howell, J A; Rothwell, J J; Drew, I B

    2008-05-01

    This research investigates atmospheric pollution from an isolated and increasingly productive lead-smelting site by examining the dendrochemistry of Pinus sylvestris growing in the local environment and at control sites. Tree increment cores and soil in the rooting environment were analysed for lead content. Inter-site comparisons of lead-in-soil suggest that contamination of the soil may be a less important pathway for lead inclusion within wood than pathways via bark or needles. Levels of lead-in-wood (up to 38mgkg(-1)) are at the upper end of those previously reported. There is evidence of radial translocation of lead towards the heartwood and variability in intra-site dendrochemical records. Mean site lead-in-wood records can however be related to a well-documented pollution chronology and also suggest the importance of local topography in the dispersal and deposition of particulate lead. This study demonstrates that P. sylvestris can be used to estimate the scale and timing of past pollution episodes in similar environmental contexts to those investigated at Darley Dale, where precisely dated pollution chronologies are lacking.

  17. Polycyclic aromatic hydrocarbons in ambient air, surface soil and wheat grain near a large steel-smelting manufacturer in northern China.

    Science.gov (United States)

    Liu, Weijian; Wang, Yilong; Chen, Yuanchen; Tao, Shu; Liu, Wenxin

    2017-07-01

    The total concentrations and component profiles of polycyclic aromatic hydrocarbons (PAHs) in ambient air, surface soil and wheat grain collected from wheat fields near a large steel-smelting manufacturer in Northern China were determined. Based on the specific isomeric ratios of paired species in ambient air, principle component analysis and multivariate linear regression, the main emission source of local PAHs was identified as a mixture of industrial and domestic coal combustion, biomass burning and traffic exhaust. The total organic carbon (TOC) fraction was considerably correlated with the total and individual PAH concentrations in surface soil. The total concentrations of PAHs in wheat grain were relatively low, with dominant low molecular weight constituents, and the compositional profile was more similar to that in ambient air than in topsoil. Combined with more significant results from partial correlation and linear regression models, the contribution from air PAHs to grain PAHs may be greater than that from soil PAHs. Copyright © 2016. Published by Elsevier B.V.

  18. Lead, Zn, and Cd in slags, stream sediments, and soils in an abandoned Zn smelting region, southwest of China, and Pb and S isotopes as source tracers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuangen; Li, Sun; Bi, Xiangyang; Wu, Pan; Liu, Taozhe; Li, Feili; Liu, Congqiang [Chinese Academy of Sciences, Guiyang City (China). Inst. of Geochemistry

    2010-12-15

    Smelting activity produced tons of slags with large quantities of highly toxic metals, resulting in contamination in adjacent soils and sediments as well. This study investigated the fractionation and sources of metals Pb, Zn, and Cd in polluted soils and sediments in a region with once prosperous Zn smelting activities in southwestern China. Soils with varying land uses were of a special concern due to their connection to the food chain. Obtained data would offer a valuable reference to the development of land-use management strategy in this region. In total, 130 soils and 22 stream sediments were sampled in the studied region. After air-dried and passed through a 2 mm sieve, soils and sediments were subjected to a three-step sequential extraction for the fractionation of Pb, Zn, and Cd. Besides, 66 slags were sampled, and acid-digested for the determination of total Pb, Zn, and Cd. Soils/sediments with extremely high Pb, Zn, and Cd concentrations were selected for observation and analysis using a scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. Stable lead and sulphur isotope techniques were applied for source tracing of metals in soils and sediments. Data were pooled for analysis of variance together with a post-hoc multiple comparison procedure. High concentrations of Pb ({proportional_to}46,219 mg kg{sup -1} with medians of 846 mg kg{sup -1} in soil, 7,415 mg kg{sup -1} in sediment, and 8,543 mg kg{sup -1} in slag), Zn ({proportional_to}57, 178 mg kg{sup -1} with medians of 1,085 mg kg{sup -1} in soil, 15,678 mg kg{sup -1} in sediment, and 14,548 mg kg{sup -1} in slag), and Cd ({proportional_to}312 mg kg{sup -1} with medians of 29.6 mg kg{sup -1} in soil, 47.1 mg kg{sup -1} in sediment, and 47.9 mg kg{sup -1} in slag) were measured. Soils with no cultivation had greater concentrations of Pb (16,686 mg kg{sup -1} in median), Zn (13,587 mg kg{sup -1} in median), and Cd (44.1 mg kg{sup -1} in median) than those with cultivation. Al

  19. The use of lichens in post-smelting dumps reclamation - preliminary results of experimental cultivation of selected species on slag substrate

    Science.gov (United States)

    Rola, Kaja; Osyczka, Piotr

    2017-11-01

    Conventional reclamation interventions of post-smelting slag dumps being undertaken so far either failed or produced poor results. Certain lichens, especially of the genus Cladonia, are known as effective colonisers of bare ground in anthropogenic habitats. The paper presents preliminary results of the experiment aimed at the evaluation of lichen usefulness in reclamation interventions. The cultivation in vivo involving transplantation of lichens directly on slag substrate was established in 2015. Five species, i.e. Cladonia rei, C. cariosa, C. pyxidata, C. subulata, C. macilenta, were transplanted into 32 cuvettes filled with sterilised slag substrate. The sample weight of 2 and 6 g were used and half of cuvettes were regularly supplied with 2% malt solution. The first important symptoms at the present stage of the experiment are as follow: the growth of thalli has appeared only in the case of first three species; C. rei shows the most effective development; cuvettes with 6 g sample weight are characterized by higher coverage of fresh lichen thalli; lichen biomass are visually higher in cuvettes treated with malt solution. The results give us reason to believe that lichens could be successfully used as an alternative element during planning of slag dumps reclamation in the future.

  20. Lead Contamination and Source Characterization in Soils Around a Lead-Zinc Smelting Plant in a Near-Urban Environment in Baoji, China.

    Science.gov (United States)

    Deng, Wenbo; Li, Xuxiang; An, Zhisheng; Yang, Liu

    2016-11-01

    Economic reforms in China since 1978 have promoted nationwide socioeconomic advancement but led to a considerable amount of environmental pollution. The distribution and sources of Pb in a typical peri-urban industrial part of Baoji, China, were assessed by determining the Pb contents and isotopic compositions in 52 topsoil samples from the study area. The topsoil samples were polluted averagely with 40.88 mg Pb kg -1 , was 1.86 times higher than the Pb content of local background soil (22.04 mg kg -1 ). Pb isotopic compositions were determined by analyzing samples prepared using total digestion and acid extraction methods. Radiogenic isotopes contributed more to the Pb concentrations in the acid extracts than in the total digests. This was shown by the 207/206 Pb and 208/206 Pb ratios, which were 0.845-0.88 and 2.088-2.128, respectively, in the acid extracts and 0.841-0.875 and 2.086-2.125, respectively, in the total digests. This indicates that anthropogenic sources of Pb could be identified more sensitively in acid extracts than in total digests. The Pb isotope ratios showed that burning coal and smelting ore are the predominant anthropogenic sources of Pb in the study area, i.e., a lead-zinc smelter and a coking plant are major sources of Pb in the study area.

  1. The use of lichens in post-smelting dumps reclamation – preliminary results of experimental cultivation of selected species on slag substrate

    Directory of Open Access Journals (Sweden)

    Rola Kaja

    2017-01-01

    Full Text Available Conventional reclamation interventions of post-smelting slag dumps being undertaken so far either failed or produced poor results. Certain lichens, especially of the genus Cladonia, are known as effective colonisers of bare ground in anthropogenic habitats. The paper presents preliminary results of the experiment aimed at the evaluation of lichen usefulness in reclamation interventions. The cultivation in vivo involving transplantation of lichens directly on slag substrate was established in 2015. Five species, i.e. Cladonia rei, C. cariosa, C. pyxidata, C. subulata, C. macilenta, were transplanted into 32 cuvettes filled with sterilised slag substrate. The sample weight of 2 and 6 g were used and half of cuvettes were regularly supplied with 2% malt solution. The first important symptoms at the present stage of the experiment are as follow: the growth of thalli has appeared only in the case of first three species; C. rei shows the most effective development; cuvettes with 6 g sample weight are characterized by higher coverage of fresh lichen thalli; lichen biomass are visually higher in cuvettes treated with malt solution. The results give us reason to believe that lichens could be successfully used as an alternative element during planning of slag dumps reclamation in the future.

  2. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  3. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  4. A radiation hard dipole magnet coils using aluminum clad copper conductors

    International Nuclear Information System (INIS)

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm 2 , no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs

  5. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  6. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  7. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  8. Potential for improved extraction of tellurium as a byproduct of current copper mining processes

    Science.gov (United States)

    Hayes, S. M.; Spaleta, K. J.; Skidmore, A. E.

    2016-12-01

    Tellurium (Te) is classified as a critical element due to its increasing use in high technology applications, low average crustal abundance (3 μg kg-1), and primary source as a byproduct of copper extraction. Although Te can be readily recovered from copper processing, previous studies have estimated a 4 percent extraction efficiency, and few studies have addressed Te behavior during the entire copper extraction process. The goals of the present study are to perform a mass balance examining Te behavior during copper extraction and to connect these observations with mineralogy of Te-bearing phases which are essential first steps in devising ways to optimize Te recovery. Our preliminary mass balance results indicate that less than 3 percent of Te present in copper ore is recovered, with particularly high losses during initial concentration of copper ore minerals by flotation. Tellurium is present in the ore in telluride minerals (e.g., Bi-Te-S phases, altaite, and Ag-S-Se-Te phases identified using electron microprobe) with limited substitution into sulfide minerals (possibly 10 mg kg-1 Te in bulk pyrite and chalcopyrite). This work has also identified Te accumulation in solid-phase intermediate extraction products that could be further processed to recover Te, including smelter dusts (158 mg kg-1) and pressed anode slimes (2.7 percent by mass). In both the smelter dusts and anode slimes, X-ray absorption spectroscopy indicates that about two thirds of the Te is present as reduced tellurides. In anode slimes, electron microscopy shows that the remaining Te is present in an oxidized form in a complex Te-bearing oxidate phase also containing Pb, Cu, Ag, As, Sb, and S. These results clearly indicate that more efficient, increased recovery of Te may be possible, likely at minimal expense from operating copper processing operations, thereby providing more Te for manufacturing of products such as inexpensive high-efficiency solar panels.

  9. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  10. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  11. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false [Phthalocyaninato(2-)] copper. 74.3045 Section 74...-)] copper. (a) Identity. The color additive is [phthalocyaninato(2-)] copper (CAS Reg. No. 147-14-8) having... [phthalocyaninato(2-)] copper shall conform to the following specifications and shall be free from impurities other...

  12. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  13. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  14. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  15. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  16. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  17. Misled about lead: an assessment of online public health education material from Australia's lead mining and smelting towns.

    Science.gov (United States)

    Sullivan, Marianne; Green, Donna

    2016-01-06

    This study assesses the accuracy and comprehensiveness of online public health education materials from the three Australian cities with active lead mines and or smelters: Broken Hill, Mount Isa and Port Pirie. Qualitative content analysis of online Australian material with comparison to international best practice where possible. All materials provided incomplete information about the health effects of lead and pathways of exposure compared to best practice materials. Inconsistent strategies to reduce exposure to lead were identified among the Australian cities, and some evidence-based best practices were not included. The materials normalised environmental lead and neglected to identify that there is no safe level of lead, or that primary prevention is the best strategy for protecting children's health. Health education materials need to clearly state health risks from lead across developmental stages and for sensitive populations, integrate a primary prevention perspective, and provide comprehensive evidence-based recommendations for reducing lead exposure in and around the home. Families who rely on information provided by these online public education materials are likely to be inadequately informed about the importance of protecting their children from exposure to lead and strategies for doing so.

  18. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...

  19. Copper Promoted Synthesis of Diaryl Ethers

    OpenAIRE

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2004-01-01

    An efficient protocol using copper based reagents for the coupling of aryl halides with phenols to generate diaryl ethers is described. Acopper( I) complex, [ Cu( CH3CN) (4)] ClO4, or the readily available copper( II) source, CuCO3 . Cu( OH) (2) . H2O ( in combination with potassium phosphate), can be used. Aryl halides and phenols with different steric and electronic demands have been used to assess the efficiency of the procedure. The latter source of copper gives better yields under all co...

  20. Present status and prospect of copper radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chen Huawei; Li Hongfeng; Liu Boli

    1996-01-01

    In the past decade most of the efforts of copper radiopharmaceuticals research has been focused on bis(thiosemicarbazonato) copper complexes for use in myocardial and brain imaging agents. In the present work, the analogs of bis(thiosemicarbazone) is studied in labeling antibodies and tumors. The retention mechanism of Cu-PTSM is investigated. Other kinds of ligands, BAT (N 2 S 2 ) for example, can be used to prepare neutral copper complexes in order to obtain brain radiopharmaceuticals in future. (60 refs.)

  1. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  2. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  3. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  4. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  5. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  6. Lesions of Copper Toxicosis in Captive Marine Invertebrates With Comparisons to Normal Histology.

    Science.gov (United States)

    LaDouceur, E E B; Wynne, J; Garner, M M; Nyaoke, A; Keel, M K

    2016-05-01

    Despite increasing concern for coral reef ecosystem health within the last decade, there is scant literature concerning the histopathology of diseases affecting the major constituents of coral reef ecosystems, particularly marine invertebrates. This study describes histologic findings in 6 species of marine invertebrates (California sea hare [Aplysia californica], purple sea urchin [Strongylocentrotus purpuratus], sunburst anemone [Anthopleura sola], knobby star [Pisaster giganteus], bat star [Asterina miniata], and brittle star [Ophiopteris papillosa]) with spontaneous copper toxicosis, 4 purple sea urchins with experimentally induced copper toxicosis, and 1 unexposed control of each species listed. The primary lesions in the California sea hare with copper toxicosis were branchial and nephridial necrosis. Affected echinoderms shared several histologic lesions, including epidermal necrosis and ulceration and increased numbers of coelomocytes within the water-vascular system. The sunburst anemone with copper toxicosis had necrosis of both epidermis and gastrodermis, as well as expulsion of zooxanthellae from the gastrodermis. In addition to the lesions attributed to copper toxicosis, our results describe normal microscopic features of these animals that may be useful for histopathologic assessment of marine invertebrates. © The Author(s) 2015.

  7. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft

    OpenAIRE

    Sidebottom, A.; Belur, J.; Bowers, K.; Tompson, L.; Johnson, S. D.

    2011-01-01

    Recently, against a backdrop of general reductions in acquisitive crime, increases have been observed in the frequency of metal theft offences. This is generally attributed to increases in metal prices in response to global demand exceeding supply. The main objective of this article was to examine the relationship between the price of copper and levels of copper theft, focusing specifically on copper cable theft from the British railway network. Results indicated a significant positive correl...

  8. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    OpenAIRE

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  9. Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polycheate, Eudistylia vancouveri

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Roesijadi, G.

    1983-01-01

    Chemically injured branchial pinnae of copper-treated polychaetes, Eudistylia vancouveri, regenerated while still exposed to copper. The first observations of pinna regeneration coincided with the apparent induction of a low molecular weight (approx.5000 daltons) copper-binding protein. This protein may play a role in the detoxification of copper and subsequent tissue regeneration. 7 references, 5 figures.

  10. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  11. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  12. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  13. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  14. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  15. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  16. Primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Parulekar, A.H.

    Photosynthetic production in the oceans in relation to light, nutrients and mixing processes is discussed. Primary productivity in the estuarine region is reported to be high in comparison to coastal and oceanic waters. Upwelling phenomenon...

  17. Primary Hyperparathyroidism

    Science.gov (United States)

    ... Neoplasia Type 1 Thyroid Disease & Pregnancy Primary Hyperparathyroidism Prolactinoma National Hormone and Pituitary Program (NHPP): Information for ... qualified health care provider nearby. Eating, Diet, and Nutrition Eating, diet, and nutrition have not been shown ...

  18. Primary Myelofibrosis

    Science.gov (United States)

    ... attack is higher. Patients also have an increased risk of acute myeloid leukemia or primary myelofibrosis . Symptoms of polycythemia vera include headaches and a feeling of fullness below the ribs on the left ...

  19. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  20. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  1. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  2. Copper content in blood of Uzbek population

    International Nuclear Information System (INIS)

    Mikhol'skaya, I.N.; Agzamova, S.S.; Kutyakova, T.Yu.; Osinskaya, N.S.

    1990-01-01

    The content of copper in blood of Uzbekistan population, depending on place of residence, sex and age was studied to solve certain medicobiological problems. The method of neutron activation with radiochemcial isolation was employed for the analysis. According to the data obtained average content of copper for the points in the republic selected for men and women of different age groups were calculated. 5 refs

  3. Radiation environmental impact assessment of copper exploitation

    International Nuclear Information System (INIS)

    Fan Guang; Wen Zhijian

    2010-01-01

    The radiation environmental impact of mineral exploitation on the surrounding environment has become a public concern. This paper presents the radiation environmental impact assessment of copper exploitation. Based on the project description and detailed investigations of surrounding environment, systematic radiation environmental impacts have been identified. The environmental impacts are assessed during both construction and operation phase. The environmental protection measures have also been proposed. The related conclusion and measures can play an active role in copper exploitation and environmental protection. (authors)

  4. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  5. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  6. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  7. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  9. Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation

    International Nuclear Information System (INIS)

    Dang Fei; Zhong Huan; Wang Wenxiong

    2009-01-01

    The uptake kinetics and regulation of copper in a marine predatory fish, the black sea bream Acanthopagrus schlegeli after acclimation to waterborne Cu were examined, using radiotracer techniques. The dissolved Cu uptake followed a linear pattern during the time of exposure, and the calculated uptake rate constant was 6.24 L kg -1 day -1 . The efflux rate constant was 0.091 day -1 following dietary uptake of Cu, and the dietary assimilation efficiency (AE) of Cu varied between 1.7% and 10.9% after the fish were fed with three types of prey (oysters, clams and brine shrimp). After the fish were acclimated at a nominal concentration of 50 μg Cu L -1 for 14 days, the Cu uptake rate and efflux rate constant did not change significantly, but the Cu body concentrations and metallothionein (MT) concentrations in fish tissues increased significantly. Subcellular Cu distributions were also modified. Significant MT induction was observed in response to increased Cu tissue concentrations, indicating that MT rather than the uptake kinetics may play a primary role in Cu regulation during waterborne Cu acclimation in this marine fish. Moreover, the high Cu efflux may also be important in Cu regulation during long-term exposure. Our modeling calculations indicated that dietary uptake was likely to be the main route for Cu bioaccumulation in the fish, and the relative contribution of waterborne and dietary uptake depended on the bioconcentration factor (BCF) of the prey and ingestion rate of fish.

  10. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  11. Vitrification of copper flotation waste

    Energy Technology Data Exchange (ETDEWEB)

    Karamanov, Alexander [Institute of Physical Chemistry, Bulgarian Academy of Science, G. Bonchev Str. Block 11, 1113 Sofia (Bulgaria)]. E-mail: karama@ing.univaq.it; Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy)

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  12. The Copper Balance of Cities

    Science.gov (United States)

    Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H

    2014-01-01

    Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460

  13. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  14. Vitrification of copper flotation waste

    International Nuclear Information System (INIS)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-01-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit

  15. Method for providing uranium with a protective copper coating

    Science.gov (United States)

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  16. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  17. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  18. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  19. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  20. Utilization of Copper Alloys for Marine Applications

    Science.gov (United States)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of