WorldWideScience

Sample records for primary coolant conductivity

  1. Primary coolant recycling device for FBR type reactor

    International Nuclear Information System (INIS)

    Kanbe, Mitsuru; Tokiwai, Moriyasu

    1998-01-01

    A primary coolants (liquid sodium) recycling device comprises a plurality of recycling pumps. The recycling pumps are operated while using, as a power source, electric power generated by a thermoelectric power generation system by utilizing heat stored in the coolants. The thermoelectric power generation system comprises a thermo-electric conversion module, heat collecting heat pipes as a high temperature side heat conduction means and heat dissipating pipes as a low temperature side heat conduction means. The heat of coolants is transferred to the surface of the high temperature side of each thermo-electric conversion elements of the thermal power generation system by the heat collecting heat pipes. The heat on the low temperature side of each of the thermo-electric conversion elements is removed by the heat dissipating pipes. Accordingly, temperature difference is caused between both surfaces of the thermo-electric conversion elements. Even upon loss of a main power source due to stoppage of electricity, electric power is generated by utilizing heat of coolants, so that the recycling pumps circulate coolants to cool a reactor core continuously. (I.N.)

  2. Primary coolant circuits in FBR type reactors

    International Nuclear Information System (INIS)

    Kutani, Masushiro.

    1985-01-01

    Purpose: To eliminate the requirement of a pump for the forcive circulation of primary coolants and avoid the manufacturing difficulty of equipments. Constitution: In primary coolant circuits of an LMFBR type reactor having a recycling path forming a closed loop between a reactor core and a heat exchanger, coolants recycled through the recycling path are made of a magnetic fluid comprising liquid sodium incorporated with fine magnetic powder, and an electromagnet is disposed to the downstream of the heat exchanger. In the above-mentioned structure, since the magnetic fluid as the primary coolants losses its magnetic property when heated in the reactor core but recovers the property at a lower temperature after the completion of the heat exchange, the magnetic fluid can forcively be flown through the recycling path under the effect of the electromagnet disposed to the down stream of the heat exchanger to thereby forcively recycle the primary coolants. (Kawakami, Y.)

  3. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  4. EDF PWRs primary coolant purification strategies

    International Nuclear Information System (INIS)

    Gressier, Frederic; Mascarenhas, Darren; Taunier, Stephane; Le-Calvar, Marc; Bretelle, Jean-Luc; Ranchoux, Gilles

    2012-09-01

    In order to achieve a good physico-chemical quality of the primary coolant fluid, the primary water is continuously treated by the Chemical and Volume Control System (CVCS). This system is composed of a treatment chain containing filters and ion-exchange resins. In the EDF design, an upstream filter is placed before the resin so as to prevent it from being saturated with insoluble particles. Then, the fluid passes through several resin beds (up to 3 depending on the configuration) and again through a downstream filter that prevents resin fines dissemination into the reactor coolant. Much work has been conducted in the last 5 years on the homogenisation of products and usage on French EDF NPP primary coolant treatment, while taking into account the compromise between source term reduction, liquid and solid waste, and buying and disposal costs. Two national markets have been created, and two operational documents for chemists on site have been published: a filtration guideline and an ion-exchange resin guideline. Both documents give general information about the products used, how are they characterized and selected for national market (technical requirements, standards and tests), how they should be used and what are the change-out criteria. They are also periodically updated based on feedback from sites. The positive impact on resin and filter lifetime (extension of some, limitation of others), homogenisation of products and usage will be presented. Moreover, EDF is constantly in the process of improving the current purification methods, as well as researching the use of existing and novel technologies. In this field, recent experiments on short loading of resin during reactor shutdown has been tested on site with success. In addition, work is done on silica free filters, filter consumption and filter chemical release. An overview of these optimization methods will be given. (authors)

  5. LWR primary coolant pipe rupture test rig

    International Nuclear Information System (INIS)

    Yoshitoshi, Shyoji

    1978-01-01

    The rupture test rig for primary coolant pipes is constructed in the Japan Atomic Energy Research Institute to verify the reliability of the primary coolant pipes for both PWRs and BWRs. The planned test items consisted of reaction force test, restraint test, whip test, jet test and continuous release test. A pressure vessel of about 4 m 3 volume, a circulating pump, a pressurizer, a heater, an air cooler and the related instrumentation and control system are included in this test rig. The coolant test condition is 160 kg/cm 2 g, 325 deg C for PWR test, and 70 kg/cm 2 g, saturated water and steam for BWR test, 100 ton of test load for the ruptured pipe bore of 8B Schedule 160, and 20 lit/min. discharge during 20 h for continuous release of coolant. The maximum pit internal pressure was estimated for various pipe diameters and time under the PWR and BWR conditions. The spark rupturing device was adopted for the rupture mechanics in this test rig. The computer PANAFACOM U-300 is used for the data processing. This test rig is expected to operate in 1978 effectively for the improvement of reliability of LWR primary coolant pipes. (Nakai, Y.)

  6. Design criteria of primary coolant chemistry in SMART-P

    International Nuclear Information System (INIS)

    Choi, Byung Seon; Kim, Ah Young; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P differs significantly from commercially designed PWRs. Materials inventories used in SMART-P differ from that at PWRs. All surfaces of the primary circuit with the primary coolant are either made from or plated with stainless steel. The material of steam generator (SG) is also different from that of the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. Also, SMART-P primary coolant technology differs from that in PWRs: ammonia is used as a pH raising agent and hydrogen formed due to radiolytic processes is kept in specific range by ammonia dosing. Nevertheless, main objectives of the SMART-P primary coolant are the same as at PWRs: to assure primary system pressure boundary integrity, fuel cladding integrity and to minimize out-of-core radiation buildup. The objective of this work is to introduce the design criteria for the primary water chemistry for SMART-P from the viewpoint of the system characteristics and the chemical design concept

  7. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1986-01-01

    A review of the French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all actual leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by compliance with the criteria defined in the operating technical specifications

  8. Evaluation of primary coolant leaks and assessment of detection methods

    International Nuclear Information System (INIS)

    Cassette, P.; Giroux, C.; Roche, H.; Seveon, J.J.

    1984-11-01

    A review of French PWR situation concerning primary coolant leaks is presented, including a description of operating technical specifications, of the collecting system of primary coolant leakage into the containment and of the detection methods. It is mainly based on a compilation over three years, 1981 to 1983, of almost all occurred leaks, their natures, causes, consequences and methods used for their detection. By analysing these data it is possible to evaluate the efficiency of the primary coolant leak detection system and the problems raised by the compliance with the criteria defined in the operating technical specifications

  9. RETRAN analysis of inter-system LOCA within the primary coolant pump

    International Nuclear Information System (INIS)

    Gangadharan, A.; Pratt, G.F.

    1992-01-01

    One example of an inter-system loss of coolant accident is the failure of the tubing within the primary coolant pump (PCP) thermal barrier heat exchanger. Such a failure would result in the entry of primary coolant into the component cooling water (CCW) system. The primary coolant flowrate through the break would rapidly pressurize the CCW system when the relief valves are too small. The piping in the CCW system at Palisades has a low pressure rating. Failures in this system outside the containment boundary could lead to primary coolant release to the atmosphere. RETRAN-02 was used to perform a simulation of the break in the PCP integral heat exchanger. The model included a detailed nodalization of the Byron-Jackson primary coolant pump internals leading up to the CCW system relief valves. Preliminary studies show the need for increased relief capacity in the CCW system. A case was run using a larger relief valve. Critical flow in the system upstream of the relief valves maintains the pressures in those volumes above the CCW design pressure. The pressures downstream from the relief valves and outside containment will be at or below the design pressure. This paper presents the results of the transient analysis

  10. Upgradation of design features of primary coolant pumps of Indian 220 MWe PHWR

    International Nuclear Information System (INIS)

    Sharma, S.S.; Mhetre, S.G.; Manna, M.M.

    1994-01-01

    Evolution in the design features of Primary Coolant Pump (PCP) had started in fifties for catering to stringent specification requirements of reactor coolant systems of larger capacity reactors of various kinds. Primary coolant pumps of PWR and PHWR are employed for circulating radioactive, pressurized hot water in a circuit consisting of reactor (heat source) and steam generator (heat sink). As primary coolant pump capacity decides the station capacity, larger capacity primary coolant pumps have been evolved. Since primary coolant pump pressure containing parts are part of Primary Heat Transport system envelope, the parts are designed, manufactured, inspected and tested in accordance with the applicable system guidelines. Flywheel is mounted on the motor shaft for increasing mass moment of inertia of pump motor rotor to meet the coast down requirements of reactor cooling system under Class-IV electrical power supply failure. Due to limited accessibility of the PCP (PCP installed in shut down accessible area), quick maintenance, condition monitoring, reliable shaft seal system/bearing system aspects have been of great concern to reactor owners and pump manufacturers. In this paper upgradation of design features of RAPS, MAPS and NAPS primary coolant pumps have been covered. (author). 4 figs., 1 tab

  11. Design on Hygrometry System of Primary Coolant Circuit of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yanfei; Zhong Shuoping; Huang Xiaojin

    2014-01-01

    Helium is the primary coolant in HTR-PM. If vapor get into the helium in primary coolant circuit because of some special reasons, such as the broken of steam-generator tube, chemical reaction will take effect between the graphite in reactor core and vapor in primary coolant circuit, and the safety of the reactor operation will be influenced. So the humidity of the helium in primary coolant circuit is one key parameter of HTR-PM to be monitored in-line. Once the humidity is too high, trigger signal of turning off the reactor must be issued. The hygrometry system of HTR-PM is consisting of filter, cooler, hygrometry sensor, flow meter, and some valves and tube. Helium with temperature of 250℃ is lead into the hygrometry system from the outlet of the main helium blower. After measuring, the helium is re-injected back to the primary circuit. No helium loses in this processing, and no other pump is needed. Key factors and calculations in design on hygrometry system of HTR-PM are described. A sample instrument has been made. Results of experiments proves that this hygrometry system is suitable for monitoring the humidity of the primary coolant of HTR-PM. (author)

  12. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  13. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  14. Primary Coolant pH Control for Soluble Boron-Free PWRs

    International Nuclear Information System (INIS)

    Cheon, Yang Ho; Lee, Nam Yeong; Park, Byeong Ho; Park, Seong Chan; Kim, Eun Kee

    2015-01-01

    These should be considered when evaluating and designing the operating pH program for nuclear power plants. This paper discusses the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water system for soluble boron pressurized water reactor (PWR) plants. Finally, the objective of this work is to study primary coolant pH control for soluble boron-free PWR plants. This paper reviewed the advanced water chemistry strategies to keep pace with the recent global trends related to pH control in the primary water chemistry system for soluble boron PWR plants. The new chemistry trend for the primary coolant is towards adaption of the constant and elevated chemistry. Finally, this work studied primary coolant pH control for soluble boron-free PWR plants. The ammonia-based water chemistry related to pH control for boron-free PWR plants was discussed. The ammonia-based water chemistry is not recommended to avoid fluctuation of the pH value by ammonia radiolysis and to reduce C-14 production in reactor coolant from reaction with dissolved nitrogen. Also, the potassium-based water chemistry related to pH control for boron-free PWR plants was discussed. KOH has a potential as an alternative pH control agent for soluble boron-free PWR plants. The potassium-based water chemistry related to pH control is recommended for boron-free operation as follows

  15. Method of eliminating cruds in the primary coolants of reactors

    International Nuclear Information System (INIS)

    Tamura, Takaaki.

    1984-01-01

    Purpose: To eliminate cruds in the primary coolants by using rind of onions or peanuts. Method: Since cruds contained in the reactor primary coolants increase the radioactive exposure to reactor operators, they have been intended to remove by ion exchange resins. In this invention, rind of onions or peanuts are crushed into an adequate particle size and packed into an absorption column instead of ion exchange resins into which primary coolants are circulated. The powderous onions or peanuts rind contain glucoside such as cosmosiin and has an effect of cationic exchanger, they satisfactorily catch heavy metals such as Fe and Cu. They have an excellent filtering effect even under a high pH condition and are excellent in economical point of view. They can be decrease the volume of the absorption column, reduce their devolume after use through corrosion and easily subjected to waste procession through oxidizing combustion in liquid. (Nakamoto, H.)

  16. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  17. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    International Nuclear Information System (INIS)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years

  18. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  19. Deposition and incorporation of corrosion product to primary coolant suppressing method

    International Nuclear Information System (INIS)

    Tsuzuki, Yasuo; Hasegawa, Naoyoshi; Fujioka, Tsunaaki.

    1992-01-01

    In a PWR type nuclear power plant, the concentration of dissolved nitrogen in primary coolants is increased by controlling the nitrogen partial pressure in a volume controlling tank gas phase portion or addition of water in a primary system water supply tank containing dissolved nitrogen to a primary system. Then ammonium is formed by a reaction with hydrogen dissolved in the primary coolants in the field of radiation rays, to control the concentration of ammonium in the coolants within a range from 0.5 to 3.5 ppm, and operate the power plant. As a result, deposition and incorporation of corrosion products to the structural materials of the primary system equipments during plant operation (pH 6.8 to 8.0) are suppressed. In other words, deposition of particulate corrosion products on the surface of fuel cladding tubes and the inner surface of pipelines in the primary system main equipments is prevented and incorporation of ionic radioactive corrosion products to the oxide membranes on the inner surface of the pipelines of the primary system main equipments is suppressed, to greatly reduce the radiation dose rate of the primary system pipelines. Thus, operator's radiation exposure can be decreased upon shut down of the plant. (N.H.)

  20. IEA-R1 renewed primary coolant piping system stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was conducted in 2014. The aim of this work is to perform the stress analysis of the renewed primary piping system of the IEA-R1, taking into account the as built conditions and the pipe modifications. The nuclear research reactor IEA-R1 is a pool type reactor designed by Babcox-Willcox, which is operated by IPEN since 1957. The primary coolant system is responsible for removing the residual heat of the Reactor core. As a part of the life management, a regular inspection detected some degradation in the primary piping system. In consequence, part of the piping system was replaced. The partial renewing of the primary piping system did not imply in major piping layout modifications. However, the stress condition of the piping systems had to be reanalyzed. The structural stress analysis of the primary piping systems is now presented and the final results are discussed. (author)

  1. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  2. LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld

    International Nuclear Information System (INIS)

    Howell, S.K.

    1978-01-01

    A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report

  3. Fission product release into the primary coolant

    International Nuclear Information System (INIS)

    Apperson, C.E.

    1977-01-01

    The analytic evaluation of steady state primary coolant activity is discussed. The reported calculations account for temperature dependent fuel failure in two particle types and arbitrary radioactive decay chains. A matrix operator technique implemented in the SUVIUS code is used to solve the simultaneous equations. Results are compared with General Atomic Company's published results

  4. Evaluation of CRUDTRAN code to predict transport of corrosion products and radioactivity in the PWR primary coolant system

    International Nuclear Information System (INIS)

    Lee, C.B.

    2002-01-01

    CRUDTRAN code is to predict transport of the corrosion products and their radio-activated nuclides such as cobalt-58 and cobalt-60 in the PWR primary coolant system. In CRUDTRAN code the PWR primary circuit is divided into three principal sections such as the core, the coolant and the steam generator. The main driving force for corrosion product transport in the PWR primary coolant comes from coolant temperature change throughout the system and a subsequent change in corrosion product solubility. As the coolant temperature changes around the PWR primary circuit, saturation status of the corrosion products in the coolant also changes such that under-saturation in steam generator and super-saturation in the core. CRUDTRAN code was evaluated by comparison with the results of the in-reactor loop tests simulating the PWR primary coolant system and PWR plant data. It showed that CRUDTRAN could predict variations of cobalt-58 and cobalt-60 radioactivity with time, plant cycle and coolant chemistry in the PWR plant. (author)

  5. Impedance calculations for power cables to primary coolant pump motors

    International Nuclear Information System (INIS)

    Hegerhorst, K.B.

    1977-01-01

    The LOFT primary system motor generator sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts. The report was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of LOFT Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis

  6. Behaviour of fission products in PWR primary coolant and defected fuel rods evaluation

    International Nuclear Information System (INIS)

    Bourgeois, P.; Stora, J.P.

    1979-01-01

    The activity surveillance of the PWR primary coolant by γ spectometry gives some informations on fuel failures. The activity of different nuclides e.g. Xenons, Kryptons, Iodines, can be correlated with the number of the defected fuel rods. Therefore the precharacterization with eventually a prelocalization of the related fuel assemblies direct the sipping-test and allows a saving of time during refueling. A model is proposed to calculate the number of the defected rods from the activity measurements of the primary coolant. A semi-empirical model of the release of the fission products has been built from the activity measurements of the primary coolant in a 900 MWe PWR. This model allows to calculate the number of the defected rods and also a typical parameter of the mean damage. Fission product release is described by three stages: release from uranium dioxide, transport across the gas gap and behaviour in the primary coolant. The model of release from the oxide considers a diffusion process in the grains with trapping. The release then occurs either directly to free surfaces or with a delay due to a transit into closed porosity of the oxide. The amount released is the same for iodine and rare gas. With the gas gap transit is associated a transport time and a probability of trapping for the iodines. In the primary coolant the purification and the radioactive decay are considered. (orig.)

  7. Assessment of effects of Fort St. Vrain HTGR primary coolant on Alloy 800. Final report

    International Nuclear Information System (INIS)

    Trester, P.W.; Johnson, W.R.; Simnad, M.T.; Burnette, R.D.; Roberts, D.I.

    1982-08-01

    A comprehensive review was conducted of primary helium coolant chemistry data, based on current and past operating histories of helium-cooled, high-temperature reactors (HTGRs), including the Fort St. Vrain (FSV) HTGR. A reference observed FSV reactor coolant environment was identified. Further, a slightly drier expected FSV coolant chemistry was predicted for reactor operation at 100% of full power. The expected environment was compared with helium test environments used in the US, United Kingdom, Germany, France, and Japan. Based on a comprehensive review and analysis of mechanical property data reported for Alloy 800 tested in controlled-impurity helium environments (and in air when appropriate for comparison), an assessment was made of the effect of FSV expected helium chemistry on material properties of alloy 800, with emphasis on design properties of the Alloy 800 material utilized in the FSV steam generators

  8. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  9. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  10. Feeding and purge systems of coolant primary circuit and coolant secondary circuit control of the I sup(123) target

    International Nuclear Information System (INIS)

    Almeida, G.L. de.

    1986-01-01

    The Radiation Protection Service of IEN (Brazilian-CNEN) detected three faults in sup(123)I target cooling system during operation process for producing sup(123)I: a) non hermetic vessel containing contaminated water from primary coolant circuit; possibility of increasing radioactivity in the vessel due to accumulation of contaminators in cooling water and; situation in region used for personnels to arrange and adjust equipments in nuclear physics area, to carried out maintenance of cyclotron and target coupling in irradiation room. The primary circuit was changed by secondary circuit for target coolant circulating through coil of tank, which receive weater from secondary circuit. This solution solved the three problems simultaneously. (M.C.K.)

  11. Method of suppressing the deposition of Co-60 to primary coolant pipeways in a nuclear reactor

    International Nuclear Information System (INIS)

    Hoshi, Michio; Tachikawa, Enzo; Goto, Satoshi; Sagawa, Chiaki; Yonezawa, Chushiro.

    1987-01-01

    Purpose: To suppress the deposition of Co-60 to primary coolant pipeways in a nuclear reactor. Method: To reduce the accumulation of Co-60 by causing chemical species of extremely similar chemical property with soluble Co-60 to be present together in coolants and replacing the deposition of Co-60 to the primary coolant pipeways in a nuclear reactor with that of the coexistent chemical spacies. Ni or Zn is used as the coexistet chemical spacies of similar chemical property with Co-60. The coexistent amount is from 5 to 10 times of the soluble Co-60 in the primary coolants. Ni or Zn solution adjusted with concentration is poured into and mixed with the coolants from a water feed source by using a high pressure constant volume pump. The amount of Co-60 taken into the pipeways caused by corrosion due to high temperature coolant is reduced to about 1/5 as compared with the case of Co-60 alone if 1 ppb of soluble Co-60 is present in water and 5 ppb of soluble Ni or Zn is added and, reduced to 1/12 if the amount of Ni or Zn is 10 ppb. (Kamimura, M.)

  12. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  13. Nonlinear dynamic analysis of nuclear reactor primary coolant systems

    International Nuclear Information System (INIS)

    Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.

    1979-01-01

    The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development

  14. Evaluation of Specific Activity in the Primary Coolant of PWRs by using SAEP

    International Nuclear Information System (INIS)

    Kim, Ha Yong; Song, Jae Seung; Kim, Keung Ku; Kim, Kyo Youn

    2008-07-01

    SAEP(Specific Activity Evaluation Program) to evaluate specific activities in the primary coolant of reactors due to fission products has been developed, which can be applied to the new concept nuclear reactor such as SMART as well as commercial PWRs in existence. Specific activities in the primary coolant were evaluated by using SAEP against reactor plants which are being operated currently in South Korea, respectively. We study the possibility of being applied to the developing commercial PWRs and the new concept reactors through the comparison the results by using SAEP with the results mentioned in the FSARs. We also verify SAEP itself through this evaluation. From the evaluation results, we know that the general trend is agreed with each other from the viewpoint of order of magnitude and that SAEP correctly executes the evaluation of specific activities in the primary coolant of reactor due to fission products for several reactor types, regardless of a reactor type. Therefore, SAEP can widely be applied to the new concept nuclear reactor development phase as well as already developed PWRs

  15. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  16. New cooling system of the FRG-1 two barrier system of the primary coolant cycle

    International Nuclear Information System (INIS)

    Knop, W.; Schreiner, P.

    2003-01-01

    The GKSS research center operates the swimming pool reactor FRG-1 with a thermal power of 5 MW as national neutron source for neutron scattering experiments and sample irradiation as well. Before changing the primary coolant cycle consisted of the reactor core and the closed piping including pumps, heat exchanger and delay tank. The closed cooling circuit was located underneath the reactor pool, in the so-called radioactive cellar. This piping system served secondary coolant system. Due to the location of the primary coolant cycle below the operation pool a postulated 2-F line break and simultaneous failure of the pool slide gate valve could lead to a falling dry of the total reactor core. the new primary coolant system was built in the beginning 2002 in a partitioned cell all within the radioactive cellar, so that the reactor core remains with water with the assumed incident. Due to the new two barrier-inclusion of the primary circuit only the melting of two fuel plates (from total 252 fuel plates) has to be taken into account. This measure and the core compactness in 2000 with a neutron flux gain of a factor of 2 makes the FRG-1 ready for the next 15 years of reactor operation. (author)

  17. Additional requirements for leak-before-break application to primary coolant piping in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB Vincotte Nuclear, Brussels (Belgium)

    1997-04-01

    Leak-Before-Break (LBB) technology has not been applied in the first design of the seven Pressurized Water Reactors the Belgian utility is currently operating. The design basis of these plants required to consider the dynamic effects associated with the ruptures to be postulated in the high energy piping. The application of the LBB technology to the existing plants has been recently approved by the Belgian Safety Authorities but with a limitation to the primary coolant loop. LBB analysis has been initiated for the Doel 3 and Tihange 2 plants to allow the withdrawal of some of the reactor coolant pump snubbers at both plants and not reinstall some of the restraints after steam generator replacement at Doel 3. LBB analysis was also found beneficial to demonstrate the acceptability of the primary components and piping to the new conditions resulting from power uprating and stretch-out operation. LBB analysis has been subsequently performed on the primary coolant loop of the Tihange I plant and is currently being performed for the Doel 4 plant. Application of the LBB to the primary coolant loop is based in Belgium on the U.S. Nuclear Regulatory Commission requirements. However the Belgian Safety Authorities required some additional analyses and put some restrictions on the benefits of the LBB analysis to maintain the global safety of the plant at a sufficient level. This paper develops the main steps of the safety evaluation performed by the Belgian Safety Authorities for accepting the application of the LBB technology to existing plants and summarizes the requirements asked for in addition to the U.S. Nuclear Regulatory Commission rules.

  18. Study on B-10 consumption of PWR primary coolant during normal operation

    International Nuclear Information System (INIS)

    Liang, C.H.

    1994-01-01

    B-10 consumption under PWR primary coolant conditions has been analyzed. The result indicates its time-dependent change reacting with neutron in the normal operation. In this work, neutron energy assumed to be 4 eV; thermal neutron flux is in the range of 3 x 10 13 to 3 x 10 14 n/sec - cm 2 and the time of cycling of the primary coolant through the RCS is 8 sec. and its retention time in the core region is about 1 sec. Under this condition investigated, B-10 consumption is less than 5% at 3 x 10 13 n/sec - cm 2 thermal neutron flux, and closes to 27% at 3 x 10 14 n/sec - cm 2 by calculation at the 16th month of continuous operation. The effect of B-10 consumption on PWR primary water chemistry is also investigated. (author). 1 fig., 2 tabs., 4 refs

  19. Microstructural characterization of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.

    1986-01-01

    Atom probe field-ion microscopy, analytical electron microscopy, and optical microscopy have been used to investigate the changes that occur in the microstructure of cast CF 8 primary coolant pipe stainless steel after long term thermal aging. The cast duplex microstructure consisted of austenite with 15% delta-ferrite. Investigation of the aged material revealed that the ferrite spinodally decomposed into a fine scaled network of α and α'. A fine G-phase precipitate was also observed in the ferrite. The observed degradation in mechanical properties is probably a consequence of the spinodal decomposition in the ferrite

  20. Experiments for simulating a great leak in the primary coolant circuit of a PWR type reactor

    International Nuclear Information System (INIS)

    Liebig, E.

    1977-01-01

    A loss of coolant accident is to be simulated on a high pressure test rig. The accident is initiated by an externally induced rupture of a pair of rupture-disks installed in a coolant ejection device. Several problems of simulating leaks in the primary coolant circuit of PWR type reactors are dealt with. The selection of appropriate rupture-disks for such experiments is described

  1. Study on primary coolant system depressurization effect factor in pressurized water reactor

    International Nuclear Information System (INIS)

    Ji Duan; Cao Xuewu

    2006-01-01

    The progression of high-pressure core melting severe accident induced by very small break loss of coolant accident plus the loss of main feed water and auxiliary feed water failure is studied, and the entry condition and modes of primary cooling system depressurization during the severe accident are also estimated. The results show that the temperature below 650 degree C is preferable depressurization input temperature allowing recovery of core cooling, and the available and effective way to depressurize reactor cooling system and to arrest very small break loss of coolant accident sequences is activating pressurizer relief valves initially, then restoring the auxiliary feedwater and opening the steam generator relief valves. It can adequately reduce the primary pressure and keep the capacity loop of long-term core cooling. (authors)

  2. Primary coolant pipe rupture event in liquid metal cooled reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-08-01

    In liquid-metal cooled fast reactors (LMFR) the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). However, the primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors (Indira Gandhi Centre for Atomic Research, Kalpakkam, India, 13-17 January 2003) was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the technical meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the technical meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  3. IEA-R1 primary and secondary coolant piping systems coupled stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A.; Mattar Neto, Miguel

    2013-01-01

    The aim of this work is to perform the stress analysis of a coupled primary and secondary piping system of the IEA-R1 based on tridimensional model, taking into account the as built conditions. The nuclear research reactor IEA-R1 is a pool type reactor projected by Babcox-Willcox, which is operated by IPEN since 1957. The operation to 5 MW power limit was only possible after the conduction of life management and modernization programs in the last two decades. In these programs the components of the coolant systems, which are responsible for the water circulation into the reactor core to remove the heat generated inside it, were almost totally refurbished. The changes in the primary and secondary systems, mainly the replacement of pump and heat-exchanger, implied in piping layout modifications, and, therefore, the stress condition of the piping systems had to be reanalyzed. In this paper the structural stress assessment of the coupled primary and secondary piping systems is presented and the final results are discussed. (author)

  4. Evaluation of primary coolant pH operation methods for the domestic PWRs

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Na, Jung Won; Kim, Yong Eak; Bae, Jae Heum

    1992-01-01

    Radioactive nuclides deposited on out-of-core surface after the radiation in the core by the transport of corrosion products (CRUD) through the primary coolant system in PWR which is the major plant type in Korea, are leading sources of radiation exposure to plant maintenance personnel. Thus, the optimal chemistry operation method is required for the reduction of radiation exposure by the corrosion products. This study analysed the actual water chemistry operation data of four operating domestic PWRs. And in order to evaluate the coolant chemistry operation data, a computer code which can calculate the activity buildup in the various chemistry conditions of PWR coolant was employed. Through the analysis of comparison between the activity buildup of actual water chemistry operation mode and that of assumed Elevated Li operation mode calculated by the computer code, it was found that the out-of-core radioactivity can be reduced by diminishing the deposition of corrosion products on the core in case that the Elevated Li operation mode is applied to the coolant chemistry operation of PWR. And the higher coolant pH operation was shown to have the advantage of the reduction of out-of-core activity buildup if the integrity of system structural materials and fuel cladding is guaranteed. (Author)

  5. Technical meeting on 'Primary coolant pipe rupture event in liquid metal cooled fast reactors'. Working material

    International Nuclear Information System (INIS)

    2003-01-01

    In Liquid Metal cooled Fast Reactors (LMFR) or in accelerator driven sub-critical systems (ADS) with LMFR like sub-critical cores, the primary coolant pipes (PCP) connect the primary coolant pumps to the grid plate. A rupture in one of these pipes could cause significant loss of coolant flow to the core with severe consequences. In loop type reactors, all primary pipelines are provided with double envelopes and inter-space coolant leak monitoring systems that permit leak detection before break. Thus, the PCP rupture event can be placed in the beyond design basis event (BDBE) category. Such an arrangement is difficult to incorporate for pool type reactors, and hence it could be argued that the PCP rupture event needs to be analysed in detail as a design basis event (DBE, category 4 event). The primary coolant pipes are made of ductile austenitic stainless steel material and operate at temperatures of the cold pool and at comparatively low pressures. For such low stressed piping with negligible creep and embrittlement effects, it is of interest to discuss under what design provisions, for pool type reactors, the guillotine rupture of PCP could be placed in the BDBE category. The topical Technical Meeting (TM) on 'Primary Coolant Pipe Rupture Event in Liquid Metal Cooled Reactors' was called to enable the specialists to present the philosophy and analyses applied on this topic in the various Member States for different LMFRs. The scope of the Technical Meeting was to provide a global forum for information exchange on the philosophy applied in the various participating Member States and the analyses performed for different LMFRs with regard to the primary coolant pipe rupture event. More specifically, the objectives of the Technical Meeting were to review the safety philosophy for the PCP rupture event in pool type LMFR, to assess the structural reliability of the PCP and the probability of rupture under different conditions (with/without in-service inspection), to

  6. Characterization of primary coolant purification system samples for assay of spent ion exchanger radionuclide inventor

    International Nuclear Information System (INIS)

    Sajin Prasad, S.; Pant, Amar; Sharma, Ranjit; Pal, Sanjit

    2018-01-01

    The primary coolant system water of a research reactor contains various fission and activation products and the water is circulated continuously through ion exchange resin cartridges, to reduce the radioactive ionic impurity present in it. The coolant purification system comprises of an ion exchange cooler, two micro filters, and a battery of six ion exchanger beds, associated valves, piping and instrumentation (Heavy water System Operating manual, 2014). The spent cartridge is finally disposed off as active solid waste which contains predominantly long lived fission and activation products. The heavy water coolant is also used to cool the structural assemblies after passing through primary heat exchanger and a metallic strainer, which accumulates the fission and activation products. When there is a reduction of coolant flow through these strainers, they are removed for cleaning and decontamination. This paper describes the characterization of ion exchange resin samples and liquid effluent generated during ultra sonic decontamination of strainer. The results obtained can be used as a methodology for the assay of the spent ion exchanger cartridges radionuclide inventory, during its disposal

  7. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  8. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-01-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH(T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields

  9. Water quality control device and water quality control method for reactor primary coolant system

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Eishi; Watanabe, Atsushi.

    1995-01-01

    The present invention is suitable for preventing defects due to corrosion of structural materials in a primary coolant system of a BWR type reactor. Namely, a concentration measuring means measures the concentration of oxidative ingredients contained in a reactor water. A reducing electrode is disposed along a reactor water flow channel in the primary coolant system and reduces the oxidative ingredients. A reducing counter electrode is disposed along the reactor water flow channel in the primary coolant system, and electrically connected to the reducing electrode. The reactor structural materials are used as a reference electrode providing a reference potential to the reducing electrode and the reducing counter electrode. A potential control means controls the potential of the reducing electrode relative to the reference potential based on the signals from the concentration measuring means. A stable reference potential in a region where an effective oxygen concentration is stable can be obtained irrespective of the change of operation conditions by using the reactor structural materials disposed to a boiling region in the reactor core as a reference electrode. As a result, the water quality can be controlled at high accuracy. (I.S.)

  10. Reactor primary coolant system pipe rupture study. Progress report No. 33, January--June 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase 1), analytical and experimental efforts (Phase 2) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue crack growth rate studies focused on LWR primary piping materials in a simulated BWR primary coolant environment, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, (c) studies directed at quantifying weld sensitization in Type 304 stainless steel, (d) support studies to characterize the electrochemical potential behavior of a typical BWR primary water environment and (e) special tests related to simulation of fracture surfaces characteristic of IGSCC field failures

  11. Filtering device for primary coolant circuits in BWR type reactors

    International Nuclear Information System (INIS)

    Tajima, Fumio; Yamamoto, Tetsuo.

    1985-01-01

    Purpose: To obtain a filtering device with a large filtering area and requiring less space. Constitution: A condensate inlet for introducing condensates to be filtered of primary coolant circuits, a filtrate exit, a backwash water exit and a bent tube are disposed to a container, and a plurality of hollow thread membrane modules are suspended in the container. The condensates are caused to flow through the condensate inlet, filtered through the hollow thread membrane and then discharged from the filtrate exit. When the filtering treatment is proceeded to some extent, since solid contents captured in the hollow thread membranes are accumulated, a differential pressure is produced between the condensate inlet and the filtrate exit. When the differential pressure reaches a predetermined value, the backwash is conducted to discharge the liquid cleaning wastes through the backwash exit. The bent tube disposed to the container body is used for water and air draining. The hollow thread membranes are formed with porous resin such as of polyethylene. (Kawakami, Y.)

  12. A study on removal of cobalt from the primary coolant by continuous electrode-ionization with various conducting spacers

    International Nuclear Information System (INIS)

    Yeon, K.H.; Song, J.H.; Moon, S.H.

    2002-01-01

    CEDI is a hybrid separation system of electrodialysis and ion exchange processes. This system does not require chemicals to regenerate the ion exchange resin and to concentrate the wastewater. In a CEDI system, the ion exchange resin bed plays a major role in the reduction of the high electrical resistance in the dilute compartment, while the ion exchange membranes lead to depletion and concentration of the solutions in the dilute compartment and concentrate compartment, respectively. The production of high purity water in the primary coolant of a nuclear power plant was investigated using a CEDI process along with various ion-conducting spacers, such as an ion exchange resin (IX), polyurethane-coated ion exchange beads (IEPU), and an ion exchange textile (IET). The ion exchange resin was introduced into the ion-depleting compartments of an electrodialysis (ED) stack, and has been used to reduce the electrical resistance of the stack since ED cannot be applied economically to the treatment of dilute solutions due to their high electrical resistances and the development of the polarization phenomena. However, packing the resin beads in the compartment and assembling the stack is laborious work, while attaining a free flowing solution is difficult because the resin beads are driven downward by gravity in the diluted compartment. Nevertheless, a resin-packed ED stack has recently been developed by Millipore, and is now commercially available from U.S. Filter as industrial units. We set out to prepare improved ion-conducting materials suitable for use in CEDI stacks. To this end, IEPU was prepared using a blending method that produces mixtures of resin beads and powder by allophanate/biuret cross-linking. IET was prepared by the radiation grafting of styrene-fulfonic acid or trimethyl-ammonium chloride onto polypropylene non-woven fabric. (authors)

  13. Liquid metal cooled nuclear power plant with direct heat transfer from the primary coolant to the working medium

    International Nuclear Information System (INIS)

    Hahn, G.

    1974-01-01

    The cooling systems of the sodium-cooled reactor are entirely inside a containment. The heat transfer from the primary to the secondary coolant - i.e. water - is done in heat exchangers with three-layer tubes. As there is no component cooling heat exchanger, it is advantageous that the layers that are in touch with the primary coolant form part of the wall of the containment. An emergency cooling system inside the containment is also made of three-layer tubes. The tubes of the primary loops have the shape of loops, helices, and spirals surrounding the reactor tank or a biological shield. Between the tubes and the safety wall there are maintenance areas which are accessible from the outside. The three-layer construction prevents a reaction of leaked-out or evaporated sodium with the secondary coolant. (DG) [de

  14. Hard alloys testing-machine for values of PWR primary coolant circuits

    International Nuclear Information System (INIS)

    Campan, J.L.; Sauze, A.

    1980-01-01

    Testing of valve parts or material used in valve fabrication and particularly seizing conditions in friction of plane surfaces coated with hard alloys of the type stellite. The testing equipment called Marguerite is composed of a hot pressurized water loop in conditions similar to PWR primary coolant circuits (320 0 C, 150 bars) and a testing-machine with measuring instruments. Testing conditions and samples are described [fr

  15. Research on coolant radiochemistry

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, W. H.; Park, Y. J.; Im, J. K.; Jung, Y. J.; Jee, K. Y.; Choi, K. C.

    2004-04-01

    The final objective of this study is to develop the technology on the reduction of radioactive material formed in reactor coolant circuit. The contents of this study are composed of the simulation of primary cooling system, chemistry measurement technology in the high-temperature high-pressure environments, and coolant chemistry control technology. The main results are as follows; High-temperature and high-pressure loop system was designed and fabricated, which is to inducing CRUD growth condition on the surface of cladding. The high-temperature pH measurement system was established with YSZ sensing electrode and Ag/AgCl reference electrode. The performance of pH electrode was confirmed in the temperature range 200∼280 .deg. C. Coolant chemistry control technologies such as the neutron irradiation technique of boric acid solution, the evaluation on high-temperature electrochemical behavior of coolant, and the measurement of physicochemical properties of micro-particles were developed. The results of this study can be useful for the understanding of chemical phenomena occurred in reactor coolant and for the study on the reduction of radioactive material in primary coolant, which will be carried out in the next research stage

  16. Determination of primary flow by correlation of temperatures of the coolant

    International Nuclear Information System (INIS)

    Villanueva, Jose

    2003-01-01

    Correlation techniques are often used to assess primary coolant flow in nuclear reactors. Observable fluctuations of some physical or chemical coolant properties are suitable for this purpose. This work describes a development carried out at the National Atomic Energy Commission of Argentina (CNEA) to apply this technique to correlate temperature fluctuations. A laboratory test was performed. Two thermocouples were installed on a hydraulic loop. A stationary flow of water circulated by the mentioned loop, where a mechanical turbine type flowmeter was installed. Transit times given by the correlation flowmeter, for different flow values measured with the mechanical flowmeter, were registered and a calibration between them was done. A very good linear behavior was obtained in all the measured range. It was necessary to increase the fluctuation level by adding water at different temperatures at the measuring system input. (author)

  17. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  18. Radiation leakage monitoring method and device from primary to secondary coolant systems in nuclear reactor

    International Nuclear Information System (INIS)

    Tajiri, Yoshiaki; Umehara, Toshihiro; Yamada, Masataka.

    1993-01-01

    The present invention monitors radiation leaked from any one of primary cooling systems to secondary cooling systems in a plurality of steam generators. That is, radiation monitoring means each corresponding to steam each generators are disposed to the upstream of a position where main steam pipes are joined. With such a constitution, since the detection object of each of radiation monitoring means is secondary coolants before mixing with secondary coolants of other secondary loops or dilution, lowering of detection accuracy can be avoided. Except for the abnormal case, that is, a case neither of radiation leakage nor of background change, the device is adapted as a convenient measuring system only with calculation performance. Once abnormality occurs, a loop having a value exceeding a standard value is identified by a single channel analyzer function. The amount of radiation leakage from the steam generator belonging to the specified loop is monitored quantitatively by a multichannel analyzer function. According to the method of the present invention, since specific spectrum analysis is conducted upon occurrence of abnormality, presence of radiation leakage and the scale thereof can be judged rapidly. (I.S.)

  19. DETERMINATION OF THE 129I IN PRIMARY COOLANT OF PWR

    Directory of Open Access Journals (Sweden)

    KE CHON CHOI

    2013-02-01

    In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of 129I was examined, as was the effect of 3H on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous 3H presence was found with activity concentrations of 3H lower than 50 Bq/mL, and with a boron concentration of less than 2,000 μg/mL.

  20. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  1. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  2. Method of decontaminating primary coolant circuits

    International Nuclear Information System (INIS)

    Ishibashi, Masaru; Sumi, Masao.

    1981-01-01

    Purpose: To eliminate hard contaminated layers as well as soft contaminated layers without injuring substrate materials, upon decontamination of radiation contaminated portions in equipments and pipeways constituting primary coolant circuits. Constitution: High pressure water from a high pressure pump is jetted out from the nozzle of a spray gun to the radiation contaminated portions in equipments, for example, to the surface of water chamber in a vapor evaporator. High pressure pure water or aqueous boric acid is jetted out from the periphery and boric oxide particles (of about 1 - 100 μ particle size) are jetted out from the center of the nozzle of the spray gun. The particles (blasting material) jetted out together with the high pressure water impinge on the contaminated surfaces to remove the contaminated layers. Upon impingement, the high pressure water acts as the shock absorber for the blasting material and, after the impingement, it flows down to the bottom of the water chamber, and the blasting material is dissolved in the high pressure water. (Horiuchi, T.)

  3. Q-factor of coolant flow in the primary circuit of NPP with pressurised water reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Belikov, S.O.; Novikov, K.S.

    2011-01-01

    Systems of preoperational vibration dynamic monitoring in of WWER are presented. The results of measurements during commission of NPP with WWER are presented. The paper provides the result of the research, that estimation of coolant fluctuations caused by pulse perturbation of pressure in the primary circuit NPP. It is shown that results could be received at known value of a Q - factor of acoustical oscillatory system only. The research demonstrates the results of dependence of the sound speed from the mass steam content in the coolant flow thru reactor core. The worked out results can be used for identification of the reasons of abnormal growth of level of vibrations of fuel assembly, fuel rod, equipment and internals, and for forecasting the operation conditions which provide of vibration - acoustical resonances in the primary loop equipment. (author)

  4. Investigation of chloride-release of nuclear grade resin in PWR primary system coolant

    International Nuclear Information System (INIS)

    Cao Xiaoning; Li Yunde; Li Jinghong; Lin Fangliang

    1997-01-01

    A new preparation technique is developed for making the low-chloride nuclear-grade resin by commercial resin. The chloride remained in nuclear grade resin may release to PWR primary coolant. The amount of released chloride is depended on the concentration of boron, lithium, other anion impurities, and remained chloride concentration in resin

  5. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  6. Analytical and sampling problems in primary coolant circuits of PWR-type reactors

    International Nuclear Information System (INIS)

    Illy, H.

    1980-10-01

    Details of recent analytical methods on the analysis and sampling of a PWR primary coolant are given in the order as follows: sampling and preparation; analysis of the gases dissolved in the water; monitoring of radiating substances; checking of boric acid concentration which controls the reactivity. The bibliography of this work and directions for its use are published in a separate report: KFKI-80-48 (1980). (author)

  7. Grain size control method for the nozzles of AP1000 primary coolant pipes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenglong [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Sun, Yanhui [Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Yang, Bin, E-mail: byang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China); Collaborative Innovation Center of Steel Technology, University of Science & Technology Beijing, Beijing 100083 (China); Zhang, Mingxian [State Key Laboratory for Advanced Metals and Materials, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-04-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  8. Grain size control method for the nozzles of AP1000 primary coolant pipes

    International Nuclear Information System (INIS)

    Wang, Shenglong; Sun, Yanhui; Yang, Bin; Zhang, Mingxian

    2017-01-01

    Highlights: • Design a new forging technology for AP1000 primary coolant pipe. • Method combining FEM and scale-down experiments is adopted. • The grain size and distribution in simulation and experiment are consistent. • Get optimal forging parameters for production guiding. - Abstract: AP1000 primary coolant pipe is made of 316LN austenitic stainless steel. It is a large special-shaped pipe manufactured by integral forging technology. Owing to non-uniform temperature and deformation during forging, coarse grains often occur in the boss sections of the pipe especially in the nozzles’ parts. In the present study, a new forging technology was proposed to control the grain size. The finite element method was used to optimize the forging speed and friction coefficient, then the scale-down experiments were performed for comparison. The forging speed is suggested to be less than 20 mm/s, and effective lubricants should be used to decrease the friction coefficient. The errors of the grain size between the experiment and simulation are less than 20%.

  9. Influence of n,γ-field fluctuations on critical hydrogen concentration in the reactor primary coolant

    International Nuclear Information System (INIS)

    Arkhipov, O.; Kabakchi, S.

    2014-01-01

    One of the problems arising in operation of the NPP with reactors VVER/PWR are the consequences of the primary coolant radiolysis, namely, generation of the oxidizing particles intensifying the equipment corrosion rate. During operation of the reactor a decrease in concentration of oxidizing radiolysis products is provided with introduction of molecular hydrogen into the coolant. In this connection, the reliable estimation of Critical Hydrogen Concentration (CHC), sufficient for suppression of formation of oxidizing radiolysis products under specific in-pile conditions (reactor radiation dose rate, temperature, coolant chemical composition) is of practical interest. Unfortunately, the experimental data on CHC in-pile determination differ essentially from the values calculated. Critical hydrogen concentration is in the region of kinetic instability of radiation-chemical system. A slight change in hydrogen concentration leads to a sharp (by several orders) change in concentration of both short-lived (OH, HO 2 ) and stable (O 2 , H 2 O 2 ) oxidizing particles. In essence, when reaching the CHC, the radiation-chemical system changes over from one stable state to another. The paper deals with the results of the computer simulation of influence of short-term n,γ- field fluctuations on changing of the radiation-chemical system from the state with low concentration of oxidizing particles over to the state with their high concentrations. It is demonstrated that for the correct calculation of CHC in the primary coolant of VVER/PWR the non-uniformity of n,γ-field in the core shall be taken into account. (author)

  10. Experimental simulation of low rate primary coolant leaks. For the case of vessel head penetrations affected by through wall cracking

    International Nuclear Information System (INIS)

    You, D.; Feron, D.; Turluer, G.

    2002-01-01

    An experimental simulation of primary coolant leaks was carried out to determine how the composition of the leaking liquid would change. The experiment used the EVA experimental setup, specially designed for quantitatively investigating concentration phenomena driven by evaporation. The test showed that the final composition, obtained from a solution representative of the primary coolant at the beginning of the cycle, is highly concentrated and slightly acid. The experimental results are compared with those obtained using the MULTEQ software. (authors)

  11. Process and kinetics of the fundamental radiation-electrochemical reactions in the primary coolant loop of nuclear reactors

    International Nuclear Information System (INIS)

    Kozomara-Maic, S.

    1987-06-01

    In spite of the rather broad title of this report, its major part is devoted to the corrosion problems at the RA reactor, i.e. causes and consequences of the reactor shutdown in 1979 and 1982. Some problems of reactor chemistry are pointed out because they are significant for future reactor operation. The final conclusion of this report is that corrosion processes in the primary coolant circuit of the nuclear reactor are specific and that radiation effects cannot be excluded when processes and reaction kinetics are investigated. Knowledge about the kinetics of all the chemical reactions occurring in the primary coolant loop are of crucial significance for safe and economical reactor operation [sr

  12. Reverse osmosis and its use at the nuclear power plants. Purification of primary circuit coolant by the means of reverse osmosis

    International Nuclear Information System (INIS)

    Kus, Pavel; Vonkova, Katerina; Kunesova, Katerina; Bartova, Sarka; Skala, Martin; Moucha, Tomáš

    2014-01-01

    This contribution is focused on the use of membrane technologies (e.g. reverse osmosis) for the primary coolant purification at the nuclear power plants. Currently, boric acid present in the primary coolant is preconcentrated at the evaporators, but their operation is very inefficient and expensive. Therefore, reverse osmosis was proposed as one of promising methods possibly replacing evaporators. The aim of the purification process is to achieve boric acid solution of a defined concentration (40 g/l) in the retentate stream in order to recycle it and reuse it in the primary circuit. Additionally, permeate flow should consist solely of pure water. To study the efficiency of several reverse osmosis modulus in the boric acid removal form the water solutions, experimental apparatus was constructed in our laboratory. It consists of the solution reservoir, pump and reverse osmosis modulus. The arrangement of experiments was batch and the retentate flow was refluxed to the feed solution. Several modulus of commercial reverse osmosis membranes were tested. The feed solution contained various concentrations of H 3 BO 3 , KOH, LiOH and NH 3 in order to simulate real primary coolant composition. Based on the experimental results, mathematical model was developed in order to optimize experimental conditions for the best results in primary coolant purification and boric acid preconcentration. (author)

  13. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  14. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant

    International Nuclear Information System (INIS)

    Elain, L.

    2004-12-01

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag + ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH) 4 ) 2 , LiB(OH) 4 and AgB(OH) 4 in medium B(OH) 3 )), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  15. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  16. Numerical FEM Analyses of primary coolant system at NPP Temelin

    International Nuclear Information System (INIS)

    Junek, L.; Slovacek, M.; Ruzek, L.; Moulis, P.

    2003-01-01

    The main goal of this paper is to inform about the beginning and first steps of implementation of an aging management system at the Temelin NPP. The aging management system is important not only for achieving the current safety level but also for reaching operational reliability of a production unit equipment above the life time assumed by the original design, typically over 40 years. A method to locate the most prominent degradation regions is described. A global shell model of the primary coolant system including all loops and their components - reactor pressure vessel (RPV), steam generator (SG), main coolant pump (MCP), pressurizer, feed water and steam pipelines system is presented. The results of stress-strain analysis on the measured service parameters base are given. Validation of the results is very important and the method to compare the service measurement data with the numerical results is described. The global/local approach is mentioned and discussed. The effects of the complete global system on the individual components under monitoring are transformed into more accurate local spatial models. The local spatial models are used to analyze the gradual lifetime exhaustion of a facility during its service operation. Two spatial local models are presented, viz. feed water nozzle of SG and main coolant piping system T-brunch. The results of analysis of the local spatial models are processed by the neural network computing method, which is also described. The actual gradual damage of the material of the components under monitoring can be obtained based on the analyses performed and on the results from the neural network in combination with the knowledge of the real material characteristics. The procedures applied are included in the DIALIFE diagnostic system

  17. Experience in vibro-acoustic control of primary coolant circuit aggregates

    International Nuclear Information System (INIS)

    Sedov, V.K.; Adamenkov, K.A.

    1977-01-01

    Fundamental principles and possibilities of vibro-acoustic control of the primary coolant circuit in nuclear power plants for detecting failures (slack parts, penetration of foreign bodies, crack formation, etc.) are presented. As a result of pressure and flow rate fluctuations such failures give rise to characteristic changes in apmplitude and frequency of vibration and technological noise from the different aggregates with respect to a 'calibration' spectrum taken in the intact state. Nature and location of the failures may be determined by statistical analysis of the signals recorded from pressure and acceleration gauges. Certain parts of the primary circuit are controlled, especially the main circulation pumps. Additionally, neutron noise has been measured in order to control the core insertions. The method is illustrated by means of measurements performed in the units 1 to 4 of the Novovoronezh nuclear power plant during start-up operation and continuous operation. (author)

  18. Experience in vibro-acoustic control of primary coolant circuit aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, V K; Adamenkov, K A [Nuclear power plant Novo-Voronesh (USSR)

    1977-10-01

    Fundamental principles and possibilities of vibro-acoustic control of the primary coolant circuit in nuclear power plants for detecting failures (slack parts, penetration of foreign bodies, crack formation, etc.) are presented. As a result of pressure and flow rate fluctuations such failures give rise to characteristic changes in apmplitude and frequency of vibration and technological noise from the different aggregates with respect to a 'calibration' spectrum taken in the intact state. Nature and location of the failures may be determined by statistical analysis of the signals recorded from pressure and acceleration gauges. Certain parts of the primary circuit are controlled, especially the main circulation pumps. Additionally, neutron noise has been measured in order to control the core insertions. The method is illustrated by means of measurements performed in the units 1 to 4 of the Novovoronezh nuclear power plant during start-up operation and continuous operation.

  19. Primary system hydraulic characteristics after modification of reactor coolant pumps' impeller wheels at Bohunice NPP executed in 2012 and 2013

    International Nuclear Information System (INIS)

    Hermansky, Jozef; Zavodsky, Martin

    2014-01-01

    A coolant flow through the reactor is usually determined after annual outages at Slovak NPP (VVER 440) in two distinct ways. First method is determination on the basis of the secondary system parameters - measurement of thermal balances. The value achieved by this method is used as the input parameter in the Table of allowed reactor operation modes. The second method draws from the primary system parameters - measurement of primary system hydraulic characteristics. Flow nozzles used for the measurement of feed water flow behind high pressure heaters were replaced at both Bohunice Units during outages in 2008. The feed water flow behind high pressure heaters is one of the main parameters used for the determination of coolant flow through the reactor by the first method. Compared to the measurement executed during previous fuel cycles, the calculated coolant flow through the reactor decreased considerably after the change of flow nozzles. The imaginary change of coolant flow through the reactor at Unit 3 was -1,6 %; and at Unit 4 -2,6 %. This change was not proved by the parallel measurement of primary system hydraulic characteristics. Later it was found out that the original flow nozzles used for 25 years were substantially deposited (original inner diameter of the nozzles was reduced by about 0,6-0,9 mm). Therefore feed water flow measurement was untrustworthy within the recent years. On the findings stated above, Bohunice NPP has decided to increase coolant flow through the reactor by changing the reactor coolant pumps impeller wheels. The modification of impellers wheels is planned within years 2012 to 2014. During the outages in 2013 two impeller wheels were replaced at both units. Nowadays Unit 4 is operated with all 6 new impeller wheels and Unit 3 with four new impeller wheels. Modification of last two impeller wheels at Unit 3 will be performed during the outage in 2014. On account of impeller wheels modification, non-standard measurement of PS hydraulic

  20. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  1. Fuel gases generation in the primary contention during a coolant loss accident in a nuclear power plant with reactor type BWR

    International Nuclear Information System (INIS)

    Salaices, M.; Salaices, E.; Ovando, R.; Esquivias, J.

    2011-11-01

    During an accident design base of coolant loos, the hydrogen gas can accumulate inside the primary contention as a result of several generation mechanisms among those that are: 1) the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant, 2) the metals corrosion for the solutions used in the emergency cooling and dew of the contention, and 3) the radio-decomposition of the cooling solutions of post-accident emergency. In this work the contribution of each generation mechanism to the hydrogen total in the primary contention is analyzed, considering typical inventories of zirconium, zinc, aluminum and fission products in balance cycle of a reactor type BWR. In the analysis the distribution model of fission products and hydrogen production proposed in the regulator guide 1.7, Rev. 2 of the US NRC was used. The results indicate that the mechanism that more contributes to the hydrogen generation at the end of a period of 24 hours of initiate the accident is the radio-decomposition of the cooling solutions of post-accident emergency continued by the reaction metal-water involving the zirconium of the fuel cladding with the reactor coolant, and lastly the aluminum and zinc oxidation present in the primary contention. However, the reaction metal-water involving the zirconium of the fuel cladding and the reactor coolant is the mechanism that more contributes to the hydrogen generation in the first moments after the accident. This study constitutes the first part of the general analysis of the generation, transport and control of fuel gases in the primary contention during a coolant loss accident in BWRs. (Author)

  2. Major activated corrosion products cobalt, silver and antimony in the primary coolant of PWR power plants

    International Nuclear Information System (INIS)

    Xu Mingxia

    2012-01-01

    The production of the major activated corrosion products such as cobalt, silver and antimony in the primary coolant of PWR power plants and the impacts on the increase of the dose rates caused by these corrosion products during the shutdown are described in the paper. Investigating the corrosion product behavior during the operation and shutdown periods aims at detecting the appearance of these radiological pollutants in the early time and searching relevant solutions that may enable eventually to decrease the dose rate. The solutions may include: Replacing critical material in the primary system's equipment and components, which contact with primary coolant circuit to possibly limit the source term, Elaborating strictly the specific chemical and shutdown procedure to optimize the purification capacity and to minimize the over-contaminations; Improving purification techniques according to the real operation circumstance, and limiting the impacts of these pollutants. It is obvious in the real practices that implementing appropriate solution will be benefit to decrease or limit the pollutants species like cobalt, silver and antimony. (author)

  3. Primary coolant feed and bleed operating regions for the Midland Plant

    International Nuclear Information System (INIS)

    Tsai, M.S.

    1985-01-01

    Operating regions for primary coolant feed and bleed cooling are developed for the Midland Plant using core decay heat, the high-pressure injection (HPI) system capacity, and flow rate relief through the power-operated relief valve (PORV). This mode of cooling is used for accident scenarios in which the normal core cooling means of a nuclear power plant is lost because of loss of water inventory in the steam generators. The HPI flow is based on the capacities of one and two pumps. Saturated steam, saturated water, and subcooled water are considered to be possible states of the fluid being relieved through the PORV. In estimating the PORV relief rate, flow equations are derived from the Electric Power Research Institute test data obtained from the same model and size valve that is used in the Midland Plant. For easy reference by operators, the operating region is displayed on a plane of reactor coolant system pressure and temperature. The technique developed for the Midland Plant provides a convenient method for examining the feed and bleed cooling capability for a nuclear power plant that employs a pressurized water reactor system

  4. Liquid metal coolant disposal from UKAEA reactors at Dounreay

    International Nuclear Information System (INIS)

    Adam, E.R.

    1997-01-01

    As part of the United Kingdom's Fast Reactor Development programme two reactors were built and operated at Dounreay in the North of Scotland. DFR (Dounreay Fast Reactor) was operated from 1959-1977 and PFR (Prototype Fast Reactor) was operated from 1974-1994. Both reactors are currently undergoing Stage 1 Decommissioning and are installing plant to dispose of the bulk coolant (DFR ∼ 60 tonne; PFR ∼ 1500 tonne). The coolant (NaK) remaining at DFR is mainly in the primary circuit which contains in excess of 500 TBq of Cs137. Disposal of 40 tonnes of secondary coolant has already been carried out. The paper will describe the processes used to dispose of this secondary circuit coolant and how it is intended the remaining primary circuit coolant will be handled. The programme to process the primary coolant will also be described which involves the conversion of the liquid metal to caustic and its decontamination. No PFR coolant Na has been disposed off to date. The paper will describe the current decommissioning programme activities relating to liquid metal disposal and treatment describing the materials to be disposed of and the issue of decontamination of the effluents. (author)

  5. HANARO secondary coolant management

    International Nuclear Information System (INIS)

    Kim, Seon Duk.

    1998-02-01

    In this report, the basic theory for management of water quality, environmental factors influencing to the coolant, chemicals and its usage for quality control of coolant are mentioned, and water balance including the loss rate by evaporation (34.3 m 3 /hr), discharge rate (12.665 m 3 /hr), concentration ratio and feed rate (54.1 m 3 /hr) are calculated at 20 MW operation. Also, the analysis data of HANSU Limited for HANARO secondary coolant (feed water and circulating coolant) - turbidity, pH, conductivity, M-alkalinity, Ca-hardness, chloride ion, total iron ion, phosphoric ion and conversion rate are reviewed. It is confirmed that the feed water has good quality and the circulating coolant has been maintained within the control specification in general, but some items exceeded the control specification occasionally. Therefore it is judged that more regular discharge of coolant is needed. (author). 6 refs., 17 tabs., 18 figs

  6. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant

    International Nuclear Information System (INIS)

    Kole, Madhusree; Dey, T K

    2010-01-01

    Various suspensions containing Al 2 O 3 nanoparticles ( 2 O 3 nanoparticles as well as temperature between 10 and 80 0 C. The prepared nanofluid, containing only 0.035 volume fraction of Al 2 O 3 nanoparticles, displays a fairly higher thermal conductivity than the base fluid and a maximum enhancement (k nf /k bf ) of ∼10.41% is observed at room temperature. The thermal conductivity enhancement of the Al 2 O 3 nanofluid based on engine coolant is proportional to the volume fraction of Al 2 O 3 . The volume fraction and temperature dependence of the thermal conductivity of the studied nanofluids present excellent correspondence with the model proposed by Prasher et al (2005 Phys. Rev. Lett. 94 025901), which takes into account the role of translational Brownian motion, interparticle potential and convection in fluid arising from Brownian movement of nanoparticles for thermal energy transfer in nanofluids. Viscosity data demonstrate transition from Newtonian characteristics for the base fluid to non-Newtonian behaviour with increasing content of Al 2 O 3 in the base fluid (coolant). The data also show that the viscosity increases with an increase in concentration and decreases with an increase in temperature. An empirical correlation of the type log(μ nf ) = A exp(-BT) explains the observed temperature dependence of the measured viscosity of Al 2 O 3 nanofluid based on car engine coolant. We further confirm that Al 2 O 3 nanoparticle concentration dependence of the viscosity of nanofluids is very well predicted on the basis of a recently reported theoretical model (Masoumi et al 2009 J. Phys. D: Appl. Phys. 42 055501), which considers Brownian motion of nanoparticles in the nanofluid.

  7. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    International Nuclear Information System (INIS)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S.

    2017-01-01

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  8. Verification results of methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Saunin, Yuri V.; Dobrotvorski, Alexander N.; Semenikhin, Alexander V.; Korolev, Alexander S. [JSC ' ' Atomtechenergo' ' , Novovoronezh (Russian Federation). Novovoronezh Filial ' ' Novovoronezhatomtechenergo' ' ; Ryasny, Sergei I. [JSC ' ' Atomtechenergo' ' , Moscow (Russian Federation)

    2017-09-15

    The JSC ''Atomtechenergo'' experts have developed a new methodology for determining the weighted mean coolant temperature in the primary circuit hot legs of WWER-1000 reactor plants. The necessity for developing the new methodology was determined by the need to decrease the calculation error of the weighted mean coolant temperature in the hot legs because of the coolant temperature stratification. The methodology development was based on the findings of experimental and calculating research executed by the authors. The methodology verification was fulfilled through comparison of calculation results obtained with and without the methodology use in various operational states and modes of several WWER-1000 power units. The obtained verification results have confirmed that the use of the new methodology provides objective error decrease in determining the weighted mean coolant temperature in the primary circuit hot legs. The decrease value depends on the stratification character which is various for different objects and conditions.

  9. Device for extracting steam or gas from the primary coolant line leading from a reactor pressure vessel to a straight through boiler or from the top primary boiler chamber of a water-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schatz, K.

    1982-01-01

    In such a nuclear reactor, a steam or gas cushion can form when the primary system is refilled, which can cause blocking of the natural circulation or filling of the system in the area of the hot primary coolant pipe or in the top primary boiler chamber. In order to remove such a steam or gas cushion, a ventilation pipe starting from the bend of the primary coolant line is connected to the feed pipe for introducing water into the primary system. The feed pipe is designed on the principle of the vacuum pump in the area of the opening of the ventilation pipe. There is a sub-pressure in the ventilation pipe, which makes it possible to extract the steam or gas. After mixing in the area of the opening, the steam condenses or is distributed with the gas in the primary coolant. (orig.) [de

  10. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M.; Villegas, Marina; Fernandez, Alberto N.; Allemandi, Walter; Manera, Raul; Rosales, Hugo

    2000-01-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  11. Application of liquid chromatography techniques to the measurement of soluble transition metals in PWR primary coolant

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Brown, G.R.

    1987-01-01

    Two chromatographic techniques have been developed, and evaluated for the on-line analysis of soluble transition metals, particularly cobalt, in PWR primary coolant. Automatic operation and control, together with data processing and storage has been achieved by interfacing a Dionex ion chromatograph to a microprocessor control system. An absolute detection limit of 0.1 ng cobalt has been obtained which, with on-line sample preconcentration (100 ml), has enabled measurements to be made down to part-per-trillion levels (0.001 ppb). Application of the techniques to PWR coolant analysis was demonstrated by a programme of work on the Half Megawatt Loop at Winfrith. During this work some aspects of the behaviour of soluble metal species have been studied in both de-oxygenated and hydrogenated conditions. The effects of changes in coolant chemistry, operating temperature, and sample line flowrates on circulating impurity levels are reported, together with the dramatic effects observed when part of the circuit pipework was replaced with new stainless steel tubing. (author)

  12. Recent bibliography on analytical and sampling problems of a PWR primary coolant Pt. 1

    International Nuclear Information System (INIS)

    Illy, H.

    1981-12-01

    The first bibliography on analytical and sampling problems of a PWR primary coolant (KFKI Report-1980-48) was published in 1980 and it covered the literature published in the previous 8-10 years. The present supplement reviews the subsequent literature up till December 1981. It also includes some references overlooked in the first volume. The serial numbers are continued from the first bibliography. (author)

  13. Recent bibliography on analytical and sampling problems of a PWR primary coolant Suppl. 4

    International Nuclear Information System (INIS)

    Illy, H.

    1986-09-01

    The 4th supplement of a bibliographical series comprising the analytical and sampling problems of the primary coolant of PWR type reactors covers the literature from 1985 up to July 1986 (220 items). References are listed according to the following topics: boric acid; chloride, chlorine; general; hydrogen isotopes; iodine; iodide; noble gases; oxygen; other elements; radiation monitoring; reactor safety; sampling; water chemistry. (V.N.)

  14. Primary system boron dilution analysis

    International Nuclear Information System (INIS)

    Crump, R.J.; Naretto, C.J.; Borgen, R.A.; Rockhold, H.C.

    1978-01-01

    The results are presented for an analysis conducted to determine the potential paths through which nonborated water or water with insufficient boron concentration might enter the LOFT primary coolant piping system or reactor vessel to cause dilution of the borated primary coolant water. No attempt was made in the course of this analysis to identify possible design modifications nor to suggest changes in administrative procedures or controls

  15. TMI-2 [Three Mile Island Unit 2] primary coolant mass flowrate data report

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-12-01

    This is a report on the preparation of data from the TMI-2 primary coolant mass flowrate meters for inclusion into the TMI Data Base. The sources of the as-recorded data are discussed, and a description of the instrument is given. An explanation is given of how corrections were made to the as-recorded data and how the uncertainties were calculated. The identifiers attached to each data set in the TMI Data Base are given

  16. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 3: nonseismic stress analysis. Final report

    International Nuclear Information System (INIS)

    Chan, A.L.; Curtis, D.J.; Rybicki, E.F.; Lu, S.C.

    1981-08-01

    This volume describes the analyses used to evaluate stresses due to loads other than seismic excitations in the primary coolant loop piping of a selected four-loop pressurized water reactor nuclear power station. The results of the analyses are used as input to a simulation procedure for predicting the probability of pipe fracture in the primary coolant system. Sources of stresses considered in the analyses are pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, and mechanical vibrations. Pressure and thermal transients arising from plant operations are best estimates and are based on actual plant operation records supplemented by specified plant design conditions. Stresses due to dead weight and thermal expansion are computed from a three-dimensional finite element model that uses a combination of pipe, truss, and beam elements to represent the reactor coolant loop piping, reactor pressure vessel, reactor coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients are obtained by closed-form solutions. Calculations of residual stresses account for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation are estimated by a dynamic analysis using existing measurements of pump vibrations

  17. Analysis Of Primary Coolant Suction Side Pressure In The Delay Chamber Of The RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto

    2000-01-01

    Delay chamber is a tank to delay flow that located in the primary cooling suction side of RSG-GAS. A void occurred when operation reactor caused by too high the delta P at inlet suction pump. The condition may be avoided by using one line mode of the cooling flow. The analysis show that void volume in the delay chamber is occurred because the coolant negative pressure lowers the saturation pressure should be avoided though decreasing the delta P until about 0.1 bar at about 45 exp 0 C. Solution suggested are to use bypass flow from the spent fuel to the delay chamber. Coolant temperature can be also decreased by decreasing the power level of the reactor as well as improving the heat exchanger and cooling tower performances

  18. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  19. Device for preventing coolant outflow in a reactor

    International Nuclear Information System (INIS)

    Nemoto, Kiyomitsu; Mochizuki, Keiichi.

    1975-01-01

    Object: To prevent outflow of coolant from a reactor vessel even in an occurrence of leaking trouble at a low position in a primary cooling system or the like in the reactor vessel. Structure: An inlet at the foremost end of a coolant inlet pipe inserted into a reactor vessel is arranged at a level lower than a core, and a check valve is positioned at a level higher than the core in a rising portion of the inlet. In normal condition, the check valve is pushed up by discharge pressure of a main circulating pump and remains closed, and hence, producing no flow loss of coolant, sodium. However, when a trouble such as rupture occurs at the lower position in the primary cooling system, the attractive force for allowing the coolant to back-flow outside the reactor vessel and the load force of the coolant within the reactor vessel cause the check valve to actuate, as a consequence of which a liquid level of the coolant downwardly moves to the position of the check valve to intake the cover gases into a gas intake, thereby cutting off a flow passage of the coolant to stop outflow thereof. (Kamimura, M.)

  20. Fact and fiction in ECP measurement and control in boiling water reactor primary coolant circuits

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2005-01-01

    A review is presented of various electrochemical potentials, including the electrochemical corrosion potential (ECP), that are used in the mitigation of stress corrosion cracking in the primary coolant circuits of boiling water reactors (BWRs). Attention is paid to carefully defining each potential in terms of fundamental electrochemical concepts, so as to counter the confusion that has arisen due to the misuse of previously accepted terminology. A brief discussion is also included of reference electrodes and it is shown on the basis of experimental data that the use of a platinum redox sensor as a reference electrode in the monitoring of ECP in BWR primary coolant circuits is inappropriate and should be discouraged. If platinum is used as a reference electrode, because of extenuating circumstances (e.g., potential measurements in high dose regions in a reactor core), the onus must be placed on the user to demonstrate quantitatively that the electrode behaves as an equilibrium electrode under the specified conditions and/or that its potential is invariant with changes in the independent variables of the system. Preferably, a means should also be demonstrated of transferring the measured potential to the standard hydrogen electrode (SHE) scale. (orig.)

  1. Estimation of activity in primary coolant heat exchanger of Apsara reactor after 50 years of reactor operation

    International Nuclear Information System (INIS)

    Prasad, S.K.; Anilkumar, S.; Vajpayee, L.K.; Belhe, M.S.; Yadav, R.K.B.; Deolekar, S.S.

    2012-01-01

    The primary coolant heat exchanger of Apsara Reactor was in operation for 53 years and as a part of partial decommissioning of Apsara Primary Coolant Heat Exchanger (PHEx) was decommissioned and disposed off as active waste. The long lived component deposited in the SS tubes inside the heat exchanger was assessed by taking the scrape samples and in situ gamma spectrometry technique employing NaI(Tl) detector. The data obtained by experimental measurements were validated by Monte Carlo simulation method. From the present studies, it was shown that 137 Cs and 144 Ce as the major isotopes deposited on the SS tube of heat exchanger. In this paper the authors describes the details of the methodology adopted for the assessment of radioactivity content and the results obtained. This give a reliable method to estimate the activity disposed for waste management accounting purpose in a long and heavy reactor component. The upper bound of total activity in PHEx 39.0μCi. (author)

  2. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  3. Experiment data report for LOFT large-break loss-of-coolant experiment L2-5

    International Nuclear Information System (INIS)

    Bayless, P.D.; Divine, J.M.

    1982-08-01

    Selected pertinent and uninterpreted data from the third nuclear large break loss-of-coolant experiment (Experiment L2-5) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)] commercial PWR operations. Experiment L2-5 simulated a double-ended offset shear of a cold leg in the primary coolant system. The primary coolant pumps were tripped within 1 s after the break initiation, simulating a loss of site power. Consistent with the loss of power, the starting of the high- and low-pressure injection systems was delayed. The peak fuel rod cladding temperature achieved was 1078 +- 13 K. The emergency core cooling system re-covered the core and quenched the cladding. No evidence of core damage was detected

  4. On-line real time gamma analysis of primary coolant

    International Nuclear Information System (INIS)

    Kalechstein, W.; Kupca, S.; Lipsett, J.J.

    1985-10-01

    The evolution of failed fuel monitoring at CANDU power stations is briefly summarized and the design of the latest system for failed fuel detection at a multi-unit power station is described. At each reactor, the system employs a germanium spectrometer combined with a novel spectrum analyzer that simultaneously accumulates the gamma-ray spectrum of the coolant and provides the control room with the concentration of radioisotope activity in the coolant for the gaseous fission products Xe-133, Xe-135, Kr-88 and I-131 in real time and with statistical precision independent of count rate. A gross gamma monitor is included to provide independent information on the level of radioactivity in the coolant and extend the measurement range at very high count rates. A central computer system archives spectra received from all four spectrum analyzers and provides both the activity concentrations and the release rates of specified isotopes. Compared with previous systems the current design offers improvements in that the activity concentrations are updated much more frequently, improved tools are provided for long term surveillance of the heat transport system and the monitor is more reliable and less costly

  5. The application of transition metal ion chromatography to the determination of elemental and radiochemical species in PWR primary coolant

    International Nuclear Information System (INIS)

    Bridle, D.A.; Brown, G.R.; Johnson, P.A.V.

    1992-01-01

    The accurate determination of both elemental and radiochemical transition metal corrosion products, particularly cobalt and nickel, in PWR coolants is necessary if the transport mechanisms and their role in the development of out-of-core radiation fields are to be fully understood. AEA Technology, Winfrith, has collaborated for several years with a number of PWR utilities in Europe, developing advanced sampling and analytical techniques for the determination of both soluble and insoluble corrosion products in primary coolant. The design and installation of continuously flowing isokinetic capillary modifications to the existing sampling systems has been shown to be an effective method of providing a low, but representative, sample flow from high pressure systems for on-line determination of corrosion product species. Transition metal ion chromatography coupled with gamma-spectrometry has been used to determine both insoluble and soluble elemental and radiochemical species in reactor coolant, with particular attention being given to the determination of soluble elemental cobalt at levels as low as 1 ng per kg. Soluble species were determined directly following their concentration from up to 1 litre of coolant. Insoluble species collected on 0.45 micron filter membranes, following filtration of up to 1500 litres of coolant, were solubilised by fusion with potassium hydrogen sulphate before the application of ion chromatography. In each case the eluant from the chromatographic column was collected and the radionuclides determined by gamma-spectrometry

  6. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  7. Investigation of circulating temperature fluctuations of the primary coolant in order to develop an enhanced MTC estimator for VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Sandor; Lipcsei, Sandor [Hungarian Academy of Sciences, Budapest (Hungary). Centre for Energy Research - MTA

    2017-09-15

    Our aim was to develop a method based on noise diagnostics for the estimation of the moderator temperature coefficient of reactivity (MTC) for the Paks VVER-440 units in normal operation. The method requires determining core average neutron flux and temperature fluctuations. The circulation period of the primary coolant, transfer properties of the steam generators, as well as the source and the propagation of the temperature perturbations and the proportions of the perturbation components were investigated in order to estimate the feedback caused by the circulation of the primary coolant. Finally, after developing the new MTC estimator, determining its frequency range and optimal parameters, trends were produced based on an overall evaluation of measurements made with standard instrumentation during a one-year-long period at Paks NPP.

  8. Mathematical model of the reactor coolant pump

    International Nuclear Information System (INIS)

    Kozuh, M.

    1989-01-01

    The mathematical model of reactor coolant pump is described in this paper. It is based on correlations for centrifugal reactor coolant pumps. This code is one of the elements needed for the simulation of the whole NPP primary system. In subroutine developed according to this model we tried in every possible detail to incorporate plant specific data for Krsko NPP. (author)

  9. The empirical intensity of PWR primary coolant pumps failure and repair

    International Nuclear Information System (INIS)

    Milivojevicj, S.; Riznicj, J.

    1988-01-01

    The wealth of operating experience concerning PWR type and nuclear reactors that has been regularly monitored and systematically processes since 1971, enabled an analysis of the PWR primary coolant pumps operation. Failure intensity α and repair intensity μ of the pump during its working life were calculated, as these values are necessary in order to determine the reliability and availability of the pump as the basis for analyzing its effect on the safety and efficiency of the nuclear power plant. The trend of failure intensity α follows the theoretically expected changes in α over time, and this is around 10 -5 in the majority of life-time. Repair intensity μ indicates a slow rise during life-time, i.e. its faster return to operation. (author).7 refs.; 5 figs

  10. Recent bibliography on analytical and sampling problems of a PWR primary coolant Suppl. 3

    International Nuclear Information System (INIS)

    Illy, H.

    1985-03-01

    The present supplement to the bibliography on analytical and sampling problems of PWR primary coolant covers the literature published in 1984 and includes some references overlooked in the previous volumes dealing with the publications of the last 10 years. References are devided into topics characterized by the following headlines: boric acid; chloride; chlorine; carbon dioxide; general; gas analysis; hydrogen isotopes; iodine; iodide; nitrogen; noble gases and radium; ammonia; ammonium; oxygen; other elements; radiation monitoring; reactor safety; sampling; water chemistry. Under a given subject bibliographical information is listed in alphabetical order of the authors. (V.N.)

  11. Stainless steel corrosion in conditions simulating WWER-1000 primary coolant. Corrosion behaviour in mixed core

    International Nuclear Information System (INIS)

    Krasnorutskij, V.S.; Petel'guzov, I.A.; Gritsina, V.M.; Zuek, V.A.; Tret'yakov, M.V.; Rud', R.A.; Svichkar', N.V.; Slabospitskaya, E.A.; Ishchenko, N.I.

    2011-01-01

    Research into corrosion kinetics of austenitic stainless steels (06Cr18Ni10Ti, 08Cr18Ni10Ti, 12Cr18Ni10Ti) in medium which corresponds to composition and parameters of WWER-1000 primary coolant with different pH values in autoclave out-pile conditions during 14000 hours is given. Surface of oxide films on stainless steels is investigated. Visual inspection of Westinghouse and TVEL fuel was carried out after 4 cycles in WWER-1000 primary water chemistry conditions at South Ukraine NPP. Westinghouse and TVEL fuel cladding materials possess high corrosion resistance. Blushing of weldments was observed. No visual corrosion defects or deposits were observed on fuel rods.

  12. Radionuclide analyses taken during primary coolant decontamination at Three Mile Island indicate general circulation

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.; Hitz, C.G.; Malinauskas, A.P.

    1983-01-01

    Radionuclide concentration data taken during decontamination of the primary reactor coolant system at Three Mile Island by a feed-and-bleed process have provided information on future defueling operations. Analysis of the radiocesium concentrations in samples taken at the letdown point indicates general circulation within the primary system, including the reactor vessel and both steam generators. A standard dilution model with parameters consistent with engineering estimates (volume, flow rate, etc.) accurately predicts the radiocesium decontamination rates. Unlike cesium, the behavior of other principal soluble radionuclides ( 90 Sr and 3 H) cannot be readily described by dilution theory. A significant appearance rate is observed for 90 Sr suggesting a chemical solubility mechanism. The use of processed water containing high 3 H for makeup causes uncertainty in the interpretation of the 3 H analysis

  13. Method for investigation of various iodine species in the primary coolant of the nuclear power plant in Paks

    International Nuclear Information System (INIS)

    Volent, G.; Gimesi, O.; Solymosi, J.

    1996-01-01

    Iodine isotopes formed in the course of fission in nuclear reactors may be present in the primary coolant in different oxidation states, i.e., in different chemical forms. It is important to know the chemical forms and their proportions in order to asses the environmental effect of the emitted iodine and the performance of air filters used in the primary circuit for binding iodine, species, since both depend on the chemical forms in which it is present. Volatile components were separated from water samples taken separately from each block of the nuclear power station by purging with inert gas, then the aerosol, iodine vapour and alkyl iodides were selectively bound on the filter system of the 'KOMBI' sampler. I 3 - , I - , IO - , IO 3 - and IO 4 - left in the aqueous phase after purging were separated by consecutive physical and chemical procedures (extraction, isotope exchange, reduction). The results of the investigations have shown that the water technology used in the Nuclear Power Plant in Paks is appropriate with respect to the radioiodine balance. Iodine was found to be predominant species, and no volatile iodine species were found to be present in the primary coolant. Volatile iodine species sometimes appearing in emissions may be formed from leaching waters due to secondary effects. (author)

  14. Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition

    International Nuclear Information System (INIS)

    Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi

    1998-01-01

    The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2

  15. Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Dionne, B.

    2011-01-01

    To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D

  16. Thermodynamic data for selected gas impurities in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.C.

    1976-12-01

    The literature of thermodynamic data for selected fission-product species is reviewed and supplemented in support of complex chemical equilibrium calculations applied to fission-product distributions in the primary coolant of high-temperature gas-cooled reactors. Thermodynamic functions and heats and free energies of formation are calculated and tabulated to 3000 0 K for CsI (s,l,g), Cs 2 I 2 (g), CH 3 I(g), COI 2 (g), and CsH(g). 79 references

  17. Coolant rate distribution in horizontal steam generator under natural circulation

    International Nuclear Information System (INIS)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A.

    1997-01-01

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered

  18. Multirods burst tests under loss-of-coolant conditions

    International Nuclear Information System (INIS)

    Kawasaki, S.; Uetsuka, H.; Furuta, T.

    1983-01-01

    In order to know the upper limit of coolant flow area restriction in a fuel assembly under loss-of-coolant accidents in LWRs, burst tests of fuel bundles were performed. Each bundle consisted of 49 rods(7x7 rods), and bursts were conducted in flowing steam. In some cases, 4 rods were replaced by control rods with guide tubes in a bundle. After the burst, the ballooning behavior of each rod and the degree of coolant flow area restriction in the bundle were measured. Ballooning behavior of rods and degree of coolant flow channel restriction in bundles with control rods were not different from those without control rods. The upper limit of coolant flow channel restriction under loss-of-coolant conditions was estimated to be about 80%. (author)

  19. Predicted Variations of Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Liu, Hong-Ming; Lee, Min

    2012-09-01

    In response to the demand over a higher efficiency for a nuclear power plant, various types of Generation IV nuclear reactors have been proposed. One of the new generation reactors adopts supercritical light water as the reactor coolant. While current in-service light water reactors (LWRs) bear an average thermal efficiency of 33%, the thermal efficiency of a supercritical water reactor (SCWR) could generally reach more than 44%. For LWRs, the coolants are oxidizing due to the presence of hydrogen peroxide and oxygen, and the degradation of structural materials has mainly resulted from stress corrosion cracking. Since oxygen is completely soluble in supercritical water, similar or even worse degradation phenomena are expected to appear in the structural and core components of an SCWR. To ensure proper designs of the structural components and suitable selections of the materials to meet the requirements of operation safety, it would be of great importance for the design engineers of an SCWR to be fully aware of the state of water chemistry in the primary coolant circuit (PCC). Since SCWRs are still in the stage of conceptual design and no practical data are available, a computer model was therefore developed for analyzing water chemistry variation and corrosion behavior of metallic materials in the PCC of a conceptual SCWR. In this study, a U.S. designed SCWR with a rated thermal power of 3575 MW and a coolant flow rate of 1843 kg/s was selected for investigating the variations in redox species concentration in the PCC. Our analyses indicated that the [H 2 ] and [H 2 O 2 ] at the core channel were higher than those at the other regions in the PCC of this SCWR. Due to the self-decomposition of H 2 O 2 , the core channel exhibited a lower [O 2 ] than the upper plenum. Because the middle water rod region was in parallel with the core channel region with relatively high dose rates, the [H 2 ] and [H 2 O 2 ] in this region were higher than those in the other regions

  20. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  1. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  2. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  3. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A.; Leontieva, V.; Mitrioukhin, A. [St. Petersburg State Technical Univ. (Russian Federation)

    1997-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  4. Coolant rate distribution in horizontal steam generator under natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Blagovechtchenski, A; Leontieva, V; Mitrioukhin, A [St. Petersburg State Technical Univ. (Russian Federation)

    1998-12-31

    In the presentation the major factors determining the conditions of NCC (Natural Coolant Circulation) in the primary circuit and in particular conditions of coolant rate distribution on the horizontal tubes of PGV-1000 in NPP with VVER-1000 under NCC are considered. 5 refs.

  5. The 10B(n,α)7Li reaction in PWR coolants: calculations of the effect on coolant pH and on decreases in 10B isotopic fractions

    International Nuclear Information System (INIS)

    Polley, M.V.

    1988-07-01

    Boron is used as a chemical shim in PWRs for reactivity control and is added in the form of boric acid to the primary coolant. The 10 B(n,α) 7 Li reaction leads to a continuous increase in 7 Li in the primary coolant and to a continuous decrease in 10 B the isotope of boron responsible for control of reactivity. The rate of increase in coolant pH due to 7 Li production is calculated for the Sizewell 'B' PWR to enable judgements to be made on the frequency of sampling and removal of lithium required to maintain the pH of the primary coolant within the desired limits. Calculations are contrasted for the cases of natural boron and 100% 10 B chemical shims, for both a normal cycle and an extended 18 month cycle. Calculations of 10 B depletion over 30 years of operation as a function of the quantity of boron discharged to waste are also presented. 10 B isotopic fractions are calculated for the reactor coolant (RC), boric acid tanks (BATs) and refuelling water storage tank (RWST) assuming rapid mixing of BAT and RC boron for tritium control and other reasons. Such predictions enable assessments of the reactor physics implications of 10 B consumption to be made. (author)

  6. Thermal-hydraulic model of the primary coolant circuits for the full-scale training facility with WWER-1000

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Zhukavin, A.P.; Pryakhin, V.N.

    1992-01-01

    The mathematical model realized in the full-scale educational facility for NPP operator training is described. The RETACT computational complex providing real time process simulation for all regimes including the maximum credible accident is used for calculation of thermohydraulic parameters of the primary coolant circuits and steam generator under stationary and transient conditions. The two-velocity two-temperature model of one-dimensional steam-water flow containing uncondensed gases is realized in the program

  7. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  8. Measurement data of cesium 137 yields in primary coolant of an in-pile water loop in fission products release experiment

    International Nuclear Information System (INIS)

    Ishiwatari, Nasumi; Nagai, Hitoshi; Takeda, Tsuneo

    1979-03-01

    Series of fuel rods (UO 2 pellets sheathed with stainless steel) having an artificial pinhole were irradiated in the in-pile test section of water loop JMTR OWL-1. Presented are the results of measurements of cesium 137 yields in primary coolant of OWL-1 from 1975 to 1978. (author)

  9. Continuous analysis of radioiodine isotopes in the primary coolant of NPP Paks, Hungary

    International Nuclear Information System (INIS)

    Erdoes, E.; Soos, J.; Vincze, A.; Zsille, O.; Gujgiczer, A.; Solymosi, J.; Pinter, T.

    1998-01-01

    The radioiodine analyser has been installed at the Paks-3 reactor unit. The analyser is based on an efficient and simple method of radioiodine separation: the iodine compound is converted to elementary iodine quantitatively by oxidation with potassium iodate in acid medium. Owing to its volatility, iodine is evaporated quantitatively from the primary coolant (desorption) using air flow. The air is bubbled through a solution of a reducer, and iodine is absorbed in a form which is ready for measurement. A simple NaI(Tl) detector is used for the measurement of gamma spectra. The system is controlled and data are processed by a computer. The analyser displays activity concentration data of the five iodine isotopes periodically every 15 minutes. (M.D.)

  10. Reactor Primary Coolant System Pipe Rupture Study. Progress report No. 32, July--December 1974

    International Nuclear Information System (INIS)

    1975-03-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase I), analytical and experimental efforts (Phase II) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue studies focused on Elastic/Plastic ASME Code Design Rules, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, and (c) studies directed at quantifying weld sensitization in T-304 stainless steel. (auth)

  11. Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)

    International Nuclear Information System (INIS)

    Leong, K.Y.; Saidur, R.; Kazi, S.N.; Mamun, A.H.

    2010-01-01

    Water and ethylene glycol as conventional coolants have been widely used in an automotive car radiator for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, 'nanofluids' have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the application of ethylene glycol based copper nanofluids in an automotive cooling system. Relevant input data, nanofluid properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nanofluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the basefluid) compared to ethylene glycol (i.e. basefluid) alone. It is observed that, about 3.8% of heat transfer enhancement could be achieved with the addition of 2% copper particles in a basefluid at the Reynolds number of 6000 and 5000 for air and coolant respectively. In addition, the reduction of air frontal area was estimated.

  12. Loss-of-coolant accident analysis of the Savannah River new production reactor design

    International Nuclear Information System (INIS)

    Maloney, K.J.; Pryor, R.J.

    1990-11-01

    This document contains the loss-of-coolant accident analysis of the representative design for the Savannah River heavy water new production reactor. Included in this document are descriptions of the primary system, reactor vessel, and loss-of-coolant accident computer input models, the results of the cold leg and hot leg loss-of-coolant accident analyses, and the results of sensitivity calculations for the cold leg loss-of-coolant accident. 5 refs., 50 figs., 4 tabs

  13. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant

    International Nuclear Information System (INIS)

    Monteiro, Iara Arraes

    1999-02-01

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  14. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  15. Effect of high-temperature filtration on impurity composition in the primary circuit coolant of power units with WWER-1000 reactors

    International Nuclear Information System (INIS)

    Efimov, A.A.; Moskvin, L.N.; Gusev, B.A.; Leont'ev, G.G.; Nekrest'yanov, S.N.

    1992-01-01

    The effects of high-temperature filtration on changes in dispersive, chemical, radioisotope and phase compositions of impurities in primary circuit coolant of NPP with the WWER-1000 reactor are studied. Special filters are used for the studies. The data obtained confirm the applicability of high-temperature filtration for purification of WWER reactor water and steam separators at NPPs with RBMK reactors

  16. Fusion-reactor blanket and coolant material compatibility

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Keough, R.F.

    1981-01-01

    Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials

  17. Research on Coolant Radiochemistry

    International Nuclear Information System (INIS)

    Ha, Yeong Keong; Kim, W. H.; Yeon, J. W.; Jung, Y. J.; Choi, K. C.; Choi, K. S.; Park, Y. J.; Cho, Y. H.

    2007-06-01

    The final objective of this study is to develop a method for reducing radioactive materials formed in the reactor coolant circuit. This second stage research was categorized into the following three subgroups: the development of the estimation technique of microscopic chemical variation at high temperatures and pressures, the fundamental study on the thermodynamics at high temperatures and pressures, and the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD. First, in the development of the estimation technique of microscopic chemical change at high temperatures and pressures, the technique for measuring coolant chemistry such as pH, conductivity and Eh was developed to be appropriate for the high temperature and pressure condition. The coolant chemistry measuring system including the self-devised high temperature pH sensor can be applied to the field of nuclear reactor and contribute on a large scale in the automation of the coolant chemistry control and the establishment of the real-time on-line measuring technique. Secondly, the dissociation constant of water and the solubility of metal oxides were measured in the fundamental study on the thermodynamics at high temperatures and pressures. Finally, in the study on the deposition of metal oxides and the determination of the main factors responsible for the growth of CRUD, the careful investigation of the deposition phenomena of micro particles on the cladding surface showed that subcooled boiling and the dissolved hydrogen are the main factors responsible for the growth of CRUD. In addition, the basis was provided for the construction of a new particle behavior model in the reactor coolant circuit

  18. Computer programmes of the Power Research Institute for the analysis of processes in the primary coolant circuit and in the containment of a WWER plant in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Misak, J.

    1976-01-01

    A brief description is given of computer programmes for the analysis of loss-of-coolant accidents (LOCA) in WWER type reactors. The LENKA programme is intended for the thermal and hydraulic analysis of the consequences of such accidents in the primary coolant circuit. The SICHTA programme is intended for the detailed calculation of the time dependence of the axial and radial distribution of heat in fuel rods from steady-state to the flooding of the core. CHEMLOC is intended for the analysis of the heat history of the core and the extent of chemical reactions in LOCA when the emergency core cooling system is not operating. The TRACO I is intended for the analysis of the initial stage of the transient process in a full-pressure containment after LOCA (the computation of the time and spatial dependences of pressures and temperatures). TRACO III is intended for the computation of the long-term time dependence of pressure and temperature in the full-pressure containment after LOCA. (B.S.)

  19. Structural evaluation of IEA-R1 primary system pump nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel, E-mail: gfainer@ipen.br, E-mail: afaloppa@ipen.br, E-mail: calberto@ipen.br, E-mail: mmattar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The IEA-R1 pumps of the primary coolant system may be required to withstand design and operational conditions. IEA-R1 nuclear research reactor is an open pool type reactor operated by IPEN since 1957. The reactor can be operated up to 5MW heating power since it was upgraded in a modernization program conducted by IPEN. The primary coolant system is composed by the piping system, decay tank, two heat pumps and two heat exchangers. In the latest arrangement upgrade of the primary system, conducted in 2014 as part of an aging management program, a partial replacement of the coolant piping and total replacement of piping and pump supports were done. As consequence, reviewed loads in the pump nozzles were obtained demanding a new evaluation of them. The aim of this report is to present the structural evaluation of the pump nozzles, considering the new loads coming from the new piping layout, according to: API 610 code verification, Supplier loads and structural analysis applying finite element method, by using the ANSYS computer program, regarding ASME VIII Div 1 & 2 recommendations. (author)

  20. Structural evaluation of IEA-R1 primary system pump nozzles

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2017-01-01

    The IEA-R1 pumps of the primary coolant system may be required to withstand design and operational conditions. IEA-R1 nuclear research reactor is an open pool type reactor operated by IPEN since 1957. The reactor can be operated up to 5MW heating power since it was upgraded in a modernization program conducted by IPEN. The primary coolant system is composed by the piping system, decay tank, two heat pumps and two heat exchangers. In the latest arrangement upgrade of the primary system, conducted in 2014 as part of an aging management program, a partial replacement of the coolant piping and total replacement of piping and pump supports were done. As consequence, reviewed loads in the pump nozzles were obtained demanding a new evaluation of them. The aim of this report is to present the structural evaluation of the pump nozzles, considering the new loads coming from the new piping layout, according to: API 610 code verification, Supplier loads and structural analysis applying finite element method, by using the ANSYS computer program, regarding ASME VIII Div 1 & 2 recommendations. (author)

  1. Responses to Small Break Loss of Coolant Accidents for SMART

    International Nuclear Information System (INIS)

    Bae, Kyoo Hwan; Kim, Hee C.; Chang, Moon H.; Zee, Sung Q.; Kim, Si-Hwan; Lee, Un-Chul

    2004-01-01

    The SMART NSSS adopts the design characteristics of containing most of the primary circuit components, such as the reactor core, main coolant pumps (MCPs), steam generators (SGs), and N 2 gas pressurizer (PZR) in a single leak-tight Reactor Pressure Vessel (RPV) with a relatively large ratio of the primary coolant inventory to the core power compared to the conventional loop-type PWR. Due to these design characteristics, the SMART can fundamentally eliminate the possibility of Large Break Loss of Coolant Accidents (LBLOCAs), improve the natural circulation capability, and assure a sufficient time to mitigate the possibility of core uncover. Also, SMART adopts inherent safety improving features and passive engineered safety systems such as the substantially large negative moderator temperature coefficients, passive residual heat removal system, emergency core cooling system, and a steel-made leak-tight Safeguard Vessel (SV) housing the RPV. This paper presents the results of the safety analyses using a MARS/SMR code for the instantaneous guillotine ruptures of the major pipelines penetrating the RPV. The analysis results, employing conservative initial/boundary conditions and assumptions, show that the safety systems of the SMART basic design adequately remove the core decay heat without causing core uncover for all the cases of the Small Break Loss of Coolant Accidents (SBLOCAs). The sensitivity study results with variable SV conditions show that the reduced SV net free volume can shorten the time for reaching the thermal and mechanical equilibrium condition between the RPV and SV. Under these boundary conditions, the primary system inventory loss can be minimized and the core remains covered for a longer period of time without any makeup of the coolant. (authors)

  2. Applied model of through-wall crack of coolant vessels of WWER-type reactors

    International Nuclear Information System (INIS)

    Petrosyan, V.; Hovakimyan, T.; Vardanyan, M.; Khachatryan, A.; Minasyan, K.

    2010-01-01

    We propose an applied-model of Through-Wall Crack (TWC) for WWER-type units primary vessels. The model allows to simulate the main morphological parameters of real TWC, i.e. length, area of inlet and outlet openings, channel depth and small and large size unevenness of the crack surface. The model can be used for developing and improving the coolant-leak detectors for the primary circuit vessels of WWER-units. Also, it can be used for research of the coolant two-phase leakage phenomenon through narrow cracks/channels and thermo-physical processes in heat-insulation layer of the Main Coolant Piping (MCP) during the leak

  3. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  4. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  5. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    Energy Technology Data Exchange (ETDEWEB)

    Lister, D. [University of New Brunswick, Fredericton, NB (Canada). Dept. of Chemical Engineering; Lang, L.C. [Atomic Energy of Canada Ltd., Chalk River Lab., ON (Canada)

    2002-07-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  6. A mechanistic model for predicting flow-assisted and general corrosion of carbon steel in reactor primary coolants

    International Nuclear Information System (INIS)

    Lister, D.

    2002-01-01

    Flow-assisted corrosion (FAC) of carbon steel in high-temperature lithiated water can be described with a model that invokes dissolution of the protective oxide film and erosion of oxide particles that are loosened as a result. General corrosion under coolant conditions where oxide is not dissolved is described as well. In the model, the electrochemistry of magnetite dissolution and precipitation and the effect of particle size on solubility move the dependence on film thickness of the diffusion processes (and therefore the corrosion rate) away from reciprocal. Particle erosion under dissolving conditions is treated stochastically and depends upon the fluid shear stress at the surface. The corrosion rate dependence on coolant flow under FAC conditions then becomes somewhat less than that arising purely from fluid shear (proportional to the velocity squared). Under non-dissolving conditions, particle erosion occurs infrequently and general corrosion is almost unaffected by flow For application to a CANDU primary circuit and its feeders, the model was bench-marked against the outlet feeder S08 removed from the Point Lepreau reactor, which furnished one value of film thickness and one of corrosion rate for a computed average coolant velocity. Several constants and parameters in the model had to be assumed or were optimised, since values for them were not available. These uncertainties are no doubt responsible for the rather high values of potential that evolved as steps in the computation. The model predicts film thickness development and corrosion rate for the whole range of coolant velocities in outlet feeders very well. In particular, the detailed modelling of FAC in the complex geometry of one outlet feeder (F11) is in good agreement with measurements. When the particle erosion computations are inserted in the balance equations for the circuit, realistic values of crud level are obtained. The model also predicts low corrosion rates and thick oxide films for inlet

  7. Development of Hplc Techniques for the Analysis of Trace Metal Species in the Primary Coolant of a Pressurised Water Reactor.

    Science.gov (United States)

    Barron, Keiron Robert Philip

    Available from UMI in association with The British Library. The need to monitor corrosion products in the primary circuit of a pressurised water reactor (PWR), at a concentration of 10pg ml^{-1} is discussed. A review of trace and ultra-trace metal analysis, relevant to the specific requirements imposed by primary coolant chemistry, indicated that high performance liquid chromatography (HPLC), coupled with preconcentration of sample was an ideal technique. A HPLC system was developed to determine trace metal species in simulated PWR primary coolant. In order to achieve the desired detection limit an on-line preconcentration system had to be developed. Separations were performed on Aminex A9 and Benson BC-X10 analytical columns. Detection was by post column reaction with Eriochrome Black T and Calmagite Linear calibrations of 2.5-100ng of cobalt (the main species of interest), were achieved using up to 200ml samples. The detection limit for a 200ml sample was 10pg ml^{-1}. In order to achieve the desired aim of on-line collection of species at 300^circ C, the use of inorganic ion-exchangers is essential. A novel application, utilising the attractive features of the inorganic ion-exchangers titanium dioxide, zirconium dioxide, zirconium arsenophosphate and pore controlled glass beads, was developed for the preconcentration of trace metal species at temperature and pressure. The performance of these exchangers, at ambient and 300^ circC was assessed by their inclusion in the developed analytical system and by the use of radioisotopes. The particular emphasis during the development has been upon accuracy, reproducibility of recovery, stability of reagents and system contamination, studied by the use of radioisotopes and response to post column reagents. This study in conjunction with work carried out at Winfrith, resulted in a monitoring system that could follow changes in coolant chemistry, on deposition and release of metal species in simulated PWR water loops. On

  8. Coolant voiding analysis following SGTR for an HLMC reactor

    International Nuclear Information System (INIS)

    Farmer, M.T.; Spencer, B.W.; Sienicki, J.J.

    2000-01-01

    Concepts are under development at Argonne National Laboratory for a small, modular, proliferation-resistant nuclear power steam supply system. Of primary interest here is the simplified system design, featuring steam generators that are directly immersed in the lead-bismuth eutectic (LBE) coolant of the primary system. To support the safety case for this design approach, model development and analysis of transient coolant voiding during a postulated guillotine-type steam generator tube rupture event has been carried out. For the current design, the blowdown will occur from the steam generator shell into the ruptured 12.7-mm-inside-diameter tube through which the LBE coolant passes. The steam will expand biaxially in the tube, with a portion of the flow vented upward to eventually expand into the cover-gas region, while the balance of the flow is vented downward as a jet into the surrounding downward-flowing LBE. Coolant freezing is not an issue in this case because of high feedwater temperature in relation to the freezing point of the LBE. The specific objectives of the current work are to (a) determine the penetration behavior of the steam jet into the lower cold-leg region, (b) characterize the resultant void behavior in terms of coherent bubble versus breakup into a size distribution of small bubbles, and (c) characterize the motion of the bubbles with regard to rise to the cover-gas region (via the liner-to-coolant vessel gap) versus downward transport with the flowing LBE and subsequent upflow through the core to the cover-gas region

  9. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  10. Conducting water chemistry of the secondary coolant circuit of VVER-based nuclear power plant units constructed without using copper containing alloys

    Science.gov (United States)

    Tyapkov, V. F.

    2014-07-01

    The secondary coolant circuit water chemistry with metering amines began to be put in use in Russia in 2005, and all nuclear power plant units equipped with VVER-1000 reactors have been shifted to operate with this water chemistry for the past seven years. Owing to the use of water chemistry with metering amines, the amount of products from corrosion of structural materials entering into the volume of steam generators has been reduced, and the flow-accelerated corrosion rate of pipelines and equipment has been slowed down. The article presents data on conducting water chemistry in nuclear power plant units with VVER-1000 reactors for the secondary coolant system equipment made without using copper-containing alloys. Statistical data are presented on conducting ammonia-morpholine and ammonia-ethanolamine water chemistries in new-generation operating power units with VVER-1000 reactors with an increased level of pH. The values of cooling water leaks in turbine condensers the tube system of which is made of stainless steel or titanium alloy are given.

  11. Reverse osmosis for the recovery of boric acid from the primary coolant at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bártová, Šárka, E-mail: sarka.bartova@cvrez.cz [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Kůs, Pavel [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); Skala, Martin [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic); University of Chemical Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28 (Czech Republic); Vonková, Kateřina [Research Centre Řež Ltd., Husinec-Řež 130, 250 68 Řež (Czech Republic)

    2016-04-15

    Highlights: • RO membranes tested for boric acid recovery from primary coolant of nuclear power plants. • Scanning electron microscopy was used for the characterization of the membranes. • Lab scale experiments performed under various operation conditions. • We proposed configuration of and operation conditions for RO unit in nuclear power plant. - Abstract: At nuclear power plants (NPP), evaporators are used for the treatment of primary coolant and other liquid radioactive waste containing H{sub 3}BO{sub 3}. Because the operation of evaporators is expensive, a number of more cost-effective alternatives has been considered, one of which is reverse osmosis. We tested reverse osmosis modules from several manufactures on a batch laboratory apparatus. SEM images of the tested membranes were taken to distinguish the differences between the membranes. Water permeability through membranes was evaluated from the experiments with pure water. The experiments were performed with feed solutions containing various concentrations of H{sub 3}BO{sub 3} in a range commonly occurring in radioactive waste. The pH of the feed solutions ranged from 5.2 to 11.2. Our results confirmed that the pH of the feed solution plays the most important role in membrane separation efficiency of H{sub 3}BO{sub 3}. Certain modifications to the pH of the feed solution were needed to enable the tested membranes to concentrate the H{sub 3}BO{sub 3} in the retentate stream, separate from the pure water in the permeate stream. On this basis, we propose the configuration of and operational conditions for a reverse osmosis unit at NPP.

  12. The effect of coolant quantity on local fuel–coolant interactions in a molten pool

    International Nuclear Information System (INIS)

    Cheng, Songbai; Matsuba, Ken-ichi; Isozaki, Mikio; Kamiyama, Kenji; Suzuki, Tohru; Tobita, Yoshiharu

    2015-01-01

    Highlights: • We investigate local fuel–coolant interactions in a molten pool. • As water volume increases, limited pressurization and mechanical energy observed. • Only a part of water is evaporated and responsible for the pressurization. - Abstract: Studies on local fuel–coolant interactions (FCI) in a molten pool are important for severe accident analyses of sodium-cooled fast reactors (SFRs). Motivated by providing some evidence for understanding this interaction, in this study several experimental tests, with comparatively larger difference in coolant volumes, were conducted by delivering a given quantity of water into a simulated molten fuel pool (formed with a low-melting-point alloy). Interaction characteristics including the pressure-buildup as well as mechanical energy release and its conversion efficiency are evaluated and compared. It is found that as water quantity increases, a limited pressure-buildup and the resultant mechanical energy release are observable. The performed analyses also suggest that only a part of water is probably vaporized during local FCIs and responsible for the pressurization and mechanical energy release, especially for those cases with much larger water volumes

  13. Triboengineering problems of lead coolant in innovative fast reactors

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Novozhilova, O.O.; Shumilkov, A.I.; Lvov, A.V.; Bokova, T.A.; Makhov, K.A.

    2013-01-01

    Graphical abstract: Models of experimental sites for research of processes tribology in heavy liquid metal coolant. -- Highlights: • The contact a pair of heavy liquid metal coolant for reactors on fast neutrons. • The hydrostatic bearings main circulation pumps. • Oxide coating and degree of wear of friction surfaces in heavy liquid metal coolant. -- Abstract: So far, there are plenty of works dedicated to studying the phenomenon of friction. However, there are none dedicated to functioning of contact pairs in heavy liquid-metal coolants for fast neutron, reactor installations (Kogaev and Drozdov, 1991; Modern Tribology, 2008; Drozdov et al., 1986). At the Nizhny Novgorod State Technical University, such research is conducted in respect to friction, bearings of main circulating pumps, interaction of sheaths of neutron absorber rods with their covers, of the reactor control and safety system, refueling systems, and interaction of coolant flows with, channel borders. As a result of experimental studies, the characteristic of friction pairs in the heavy, liquid metal coolant shows the presence dependences of oxide film on structural materials of the wear. The inapplicability of existing calculation methods for assessing the performance of the bearing nodes, in the heavy liquid metal coolant is shown

  14. Corrosion particles in the primary coolant of VVER-440 reactors

    International Nuclear Information System (INIS)

    Vajda, N.; Molnar, Z.; Macsik, Z.; Szeles, E.; Hargittai, P.; Csordas, A.; Pinter, T.; Pinter, T.

    2010-01-01

    Corrosion and activity build-up processes are of major concern in ageing and life-extension of nuclear power reactors. Researches to study the migration of radioactive corrosion particles have been initiated at Paks Nuclear Power Plant (NPP), Hungary in order to better understand the corrosion of the primary circuit surfaces, the transport and activation of the particles of corrosion origin and their deposition on in-core and out-of-core surfaces. Radioactive corrosion particles were collected from the primary coolant and the steam generator surfaces of the 4 reactor units and subjected to detailed microanalytical and radioanalytical investigations. Scanning electron microscopy and energy dispersive X-ray microanalysis (SEM-EDX) were used to study the morphology and the composition of the matrix elements in the particles and the deposited corrosion layers. Particles identified by SEM-EDX were re-located under optical microscope by means of a coordinate transformation algorithm and were separated with a micromanipulator for further studies. Activities of γ emitting radionuclides were determined by high resolution γ spectrometry, and those of β decaying isotopes were measured by liquid scintillation (LS) spectrometry after radiochemical processing. High sensitivity of the nuclear measuring techniques allowed us to determine the low activity concentrations of the long-lived radionuclides, i.e. 60 Co, 54 Mn, 63 Ni, 55 Fe in the individual particles. Finally, high resolution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) was applied to determine the ultralow concentrations of Co, Fe, Ni in the same particles. Specific activities of 60 Co/Co, 54 Mn/Fe, 55 Fe/Fe and 63 Ni/Ni were derived from the measured activity and concentration data. Specific activities of the radioactive corrosion products reveal the history of activity buildup processes in the particle. Typically, Fe-Cr-Ni oxide particles formed as a result of corrosion of the steel

  15. Refurbishment of primary coolant pump stuffing boxes for RAPS-1,2

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Shirolkar, K.M.; Ahmad, S.N.

    2006-01-01

    Primary coolant pumps (PCPs) are the most critical equipment in PHWR and stuffing box is one of the critical parts of the PCP. The stuffing box houses the mechanical seals, radial bearings, throttle bushings and stationary part of wearing ring. During overhauling of PCPs it was observed that the cracks are developing on the inside face of the stuffing box and at the bolt holes where the lower bearing housing is fixed. Since consequence of failure of stuffing box will be a break in primary system boundary a detailed investigation was carried out to find out cause of failure. An immediate procurement of these from OEM (Original Equipment Manufacturer) was not feasible and indigenous procurement of such a large and precision-machined PCP component would have called for extensive development work. Under the circumstances, the only immediate option left was to repair and re-use these failed stuffing boxes. However, repair of these stuffing boxes was considered to be very difficult job as weld repair could cause distortion and any other option was not found suitable. Since the industry was not geared up to produce such components, a decision to carry out a heavy weld build up after removing the cracks up to root, was taken after considering various other options. Major weld repair and subsequent machining was carried out successfully on four stuffing boxes and subsequently these have been put in to service. The paper covers the investigations done, various options considered, how the weld repairs were carried out and the salient features of the indigenous development taken up. (author)

  16. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  17. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  18. Linear titration plot for the determination of boron in the primary coolant of a pressurized water reactor

    International Nuclear Information System (INIS)

    Midgley, D.; Gatford, C.

    1992-01-01

    A linear titration plot method has been devised for the determination of boron as boric acid in partly neutralized solution, such as occurs in the primary coolant of pressurized water reactors. The total boron and the alkali in the sample are determined simultaneously. Although it is not essential to add mannitol in this method, it is more accurate when the solution is saturated with mannitol. Comparisons are made with other modes of titration: Gran plots, first and second differential potentiometric titrations and indicator titrations. None of these gives the total boron directly in partly neutralized solutions. (author)

  19. Review on research of small break loss of coolant accident

    International Nuclear Information System (INIS)

    Bo Jinhai; Wang Fei

    1998-01-01

    The Small Break Loss of Coolant Accident (SBLOCA) and its research art-of -work are reviewed. A typical SBLOCA process in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) and the influence of break size, break location and reactor coolant pump on the process are described. The existing papers are classified in two categories: experimental and numerical modeling, with the primary experimental apparatuses in the world listed and the research works on SBLOCA summarized

  20. Behaviour of radiation fields in the Spanish PWR by the changes in coolant chemistry and primary system materials

    International Nuclear Information System (INIS)

    Llovet, R.; Fernandez Lillo, E.

    1995-01-01

    The Spanish PWR Owners Group established a program to evaluate the behavior of ex-core radiation fields and discriminate the effects of changes in coolant chemistry and primary system materials. Data from Vandellos, Asco, Almaraz and Trillo NPPs were analyzed Vandellos 2 was chosen as the lead plant and its data were thoroughly studied. The dose-rates evolution could be explained at each plant as a consequence of this sucessful program.Actions derived from the developed knowledge on this field have produced the stabilization or even reduction of radiation fields at these plants

  1. Conceptual design of the integral test loop (I): Reactor coolant system and secondary system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Lee, Seong Je; Kwon, Tae Soon; Moon, Sang Ki [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    This report describes the conceptual design of the primary coolant system and the secondary system of the Integral Test Loop (ITL) which simulates overall thermal hydraulic phenomena of the primary system of a nuclear power plant during postulated accidents or transients. The design basis for the primary coolant system and secondary system is as follows ; Reference plant: Korean Standard Nuclear Plant (KSNP), Height ratio : 1/1, Volume ratio : 1/200, Power scale : Max. 15% of the scaled nominal power, Temperature, Pressure : Real plant conditions. The primary coolant system includes a reactor vessel, which contains a core simulator, a steam generator, a reactor coolant pump simulator, a pressurizer and piping, which consists of two hot legs, four cold legs and four intermediate legs. The secondary system consists of s steam discharge system, a feedwater supply system and a steam condensing system. This conceptual design report describes general configuration of the reference plant, and major function and operation of each system of the plant. Also described is the design philosophy of each component and system of the ITL, and specified are the design criteria and technical specifications of each component and system of the ITL in the report. 17 refs., 43 figs., 51 tabs. (Author)

  2. Determination of primary flow by correlation of temperatures of the coolant; Medicion de caudal primario por correlacion de temperaturas del refrigerante

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Jose [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Centro Atomico Ezeiza

    2003-07-01

    Correlation techniques are often used to assess primary coolant flow in nuclear reactors. Observable fluctuations of some physical or chemical coolant properties are suitable for this purpose. This work describes a development carried out at the National Atomic Energy Commission of Argentina (CNEA) to apply this technique to correlate temperature fluctuations. A laboratory test was performed. Two thermocouples were installed on a hydraulic loop. A stationary flow of water circulated by the mentioned loop, where a mechanical turbine type flowmeter was installed. Transit times given by the correlation flowmeter, for different flow values measured with the mechanical flowmeter, were registered and a calibration between them was done. A very good linear behavior was obtained in all the measured range. It was necessary to increase the fluctuation level by adding water at different temperatures at the measuring system input. (author)

  3. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  4. Stress Analysis of Fuel Rod under Axial Coolant Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)

    2010-05-15

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  5. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok

    2010-01-01

    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  6. Monitoring of coolant temperature stratification on piping components in WWER-440 NPPs

    International Nuclear Information System (INIS)

    Hudcovsky, S.; Slanina, M.; Badiar, S.

    2001-01-01

    The presentation deals with the aims of non-standard temperature measurements installed on primary and secondary circuit in WWER-440 NPPs, explains reasons of coolant temperature stratification on the piping components. It describes methods of the measurements on pipings, range of installation of the temperature measurements in EBO and EMO units and illustrates results of measurements of coolant temperature stratification. (Authors)

  7. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2005-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate buffer concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. The remediation steps include changes in the coolant chemistry specification, development of a suite of new antimicrobial additives, and development of devices for the removal of nickel and phosphate ions from the coolant. This paper presents an overview of the anomalies, their known and suspected system effects, their causes, and the actions being taken to remediate the coolant.

  8. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  9. The corrosion products in the coolant circuits of pressurized water nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1983-01-01

    The characteristics of the corrosion products formed in the primary and secondary coolant circuits of light-water pressurized reactors are reviewed. The problem induced by the pollution of coolants and metallic surface are examined. Then, the recommendations to follow to minimize the disturbing effects of this pollution by the corrosion products are indicated [fr

  10. SMART core power control method by coolant temperature variation

    International Nuclear Information System (INIS)

    Lee, Chung Chan; Cho, Byung Oh

    2001-08-01

    SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded

  11. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  12. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    International Nuclear Information System (INIS)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-01-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications

  13. BR-5 primary circuit decontamination

    International Nuclear Information System (INIS)

    Efimov, I.A.; Nikulin, M.P.; Smirnov-Averin, A.P.; Tymosh, B.S.; Shereshkov, V.S.

    1976-01-01

    Results and methodology of steam-water and acid decontamination of the primary coolant circuit SBR-5 reactor in 1971 are discussed. Regeneration process in a cold trap of the primary coolant circuit is discussed

  14. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  15. Fission Product Releases from a Core into a Coolant of a Prismatic 350-MWth HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A prismatic 350-MW{sub th} high temperature reactor (HTR) is a means to generate electricity and process heat for hydrogen production. The HTR will be operated for an extended fuel burnup of more than 150 GWd/MTU. Korea Atomic Energy Research Institute (KAERI) is performing a point design for the HTR which is a pre-conceptual design for the analysis and assessment of engineering feasibility of the reactor. In a prismatic HTR, metallic and gaseous fission products (FPs) are produced in the fuel, moved through fuel materials, and released into a primary coolant. The FPs released into the coolant are deposited on the various helium-wetted surfaces in the primary circuit, or they are sorbed on particulate matters in the primary coolant. The deposited or sorbed FPs are released into the environment through the leakage or venting of the primary coolant. It is necessary to rigorously estimate such radioactivity releases into the environment for securing the health and safety of the occupational personnel and the public. This study treats the FP releases from a core into a coolant of a prismatic 350-MW{sub th} HTR. These results can be utilized as input data for the estimation of FP migration from a coolant into the environment. The analysis of fission product release within a prismatic 350-MW{sub th} HTR has been done. It was assumed that the HTR was operated at constant temperature and power for 1500 EFPDs. - The final burnup is 152 GWd/tHM at packing fraction of 25 %, and the final fast fluence is about 8 X 10{sup 21} n/cm{sup 2}, E{sub n} > 0.1 MeV. - The temperatures at the compact center and at the center of a kernel located at the compact center are 884 and 893 .deg. C, respectively, when the packing fraction is 25 % and the coolant temperature is 850 .deg. C. - Xenon is the most radioactive fission product in a coolant of a prismatic HTR when there are broken TRISOs and fuel component contaminated with heavy metals. For metallic fission products, the radioactivity

  16. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

    International Nuclear Information System (INIS)

    Bongartz, K.

    1983-07-01

    A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

  17. Radiolysis of the VVER-1000 reactor coolant: An experimental study and mathematical modeling

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kabakchi, S.A.

    1995-01-01

    Variations in the composition of the coolant for the primary circuit of a VVER-1000 reactor of the Kalinin nuclear power plant upon transition from power-level operation to shutdown was studied experimentally. The data obtained were used for verification of the MORAVA-H2 program developed earlier for simulation of the coolant state in pressurized-water power reactors

  18. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, H.

    2001-01-01

    JAPC purchased RETRAN, a program for transient thermal hydraulic analysis of complex fluid flow system, from the U.S. Electric Power Research Institute in 1992. Since then, JAPC has been utilizing RETRAN to evaluate safety margins of actual plant operation, in coping with troubles (investigating trouble causes and establishing countermeasures), and supporting reactor operation (reviewing operational procedures etc.). In this paper, a result of plant analysis performed on a CVCS reactor primary coolant leakage incident which occurred at JAPC's Tsuruga-2 plant (4-loop PWR, 3423 MWt, 1160 MW) on July 12 of 1999 and, based on the result, we made a plan to modify our operational procedure for reactor primary coolant leakage events in order to make earlier plant shutdown and this reduced primary coolant leakage. (author)

  19. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  20. Fuel coolant interaction experiment by direct electrical heating method

    International Nuclear Information System (INIS)

    Takeda, Tsuneo; Hirano, Kenmei

    1979-01-01

    In the PCM (Power Cooling Mismatch) experiments, the FCI (Fuel Coolant Interaction) test is one of necessary tests in order to predict various phenomena that occur during PCM in the core. A direct electrical heating method is used for the FCI tests for fuel pellet temperature of over 1000 0 C. Therefore, preheating is required before initiating the direct electrical heating. The fuel pin used in the FCI tests is typical LWR fuel element, which is surrounded by coolant water. It is undersirable to heat up the coolant water during preheating of the fuel pin. Therefore, a zirconia (ZrO 2 ) pellet which is similar to a UO 2 pellet in physical and chemical properties is used. Electric property (electric conductivity) of ZrO 2 is particularly suitable for direct electrical heating as in the case of UO 2 . In this experiment, ZrO 2 pellet (melting point 2500 0 C) melting was achieved by use of both preheating and direct electrical heating. Temperature changes of coolant and fuel surface, as well as the pressure change of coolant water, were measured. The molten fuel interacted with the coolant and generated shock waves. A portion of this molten fuel fragmented into small particles during this interaction. The peak pressure of the observed shock wave was about 35 bars. The damaged fuel pin was photographed after disassembly. This report shows the measured coolant pressure changes and the coolant temperature changes, as well as photographs of damaged fuel pin and fuel fragments. (author)

  1. Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Burnette, R.D.; Baldwin, N.L.

    1980-11-01

    The chemical impurities in the primary coolants of the Peach Bottom and Fort St. Vrain reactors are discussed. The impurity mixtures in the two plants were quite different because the sources of the impurities were different. In the Peach Bottom reactor, the impurities were dominated by H 2 and CH 4 , which are decomposition products of oil. In the Fort St. Vrain reactor, there were high levels of CO, CO 2 , and H 2 O. Although oil ingress at Peach Bottom created carbon deposits on virtually all surfaces, its effect on reactor operation was negligible. Slow outgassing of water from the thermal insulation at Fort St. Vrain caused delays in reactor startup. The overall graphite oxidation in both plants was negligible

  2. Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Burnette, R.D.; Baldwin, N.L.

    1981-01-01

    The chemical impurities in the primary coolants of the Peach Bottom and Fort St. Vrain reactors are discussed. The impurity mixtures in the two plants were quite different because the sources of the impurities were different. In the Peach Bottom reactor, the impurities were dominated by H 2 and CH 4 , which are decomposition products of oil. In the Fort St. Vrain reactor, there were high levels of CO, CO 2 , and H 2 O. Although oil ingress at Peach Bottom created carbon deposits on virtually all surfaces, its effect on reactor operation was negligible. Slow outgassing of water from the thermal insulation at Fort St. Vrain caused delays in reactor startup. The overall graphite oxidation in both plants was negligible. (author)

  3. Application of the complex equilibrium code QUIL to cesium-impurity equilibria in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.D.; Lunsford, J.L.; Stark, W.A. Jr.

    1976-05-01

    An equilibrium analysis has been made of the fission-product cesium in the primary coolant loop of the high-temperature gas-cooled reactor (HTGR). The species distributions that result at equilibrium have been calculated for various conditions of reactor operation. The cesium species considered were the monomer, dimer, oxides, hydroxides, and the hydride. The effect of cesium sorption isotherms on graphite also was included in the analysis. During normal reactor operations, the abundant species of cesium were calculated to be elemental cesium, Cs, and the monomeric hydroxide, CsOH. Under most conditions of steam ingress, the abundant species was calculated to be CsOH. Cesium adsorbed onto graphite was stable under all steam-ingress conditions considered. Thermal transients above 1500 0 K were required for equilibrium transport of cesium from the core to the coolant. The analysis was carried out using the complex equilibrium code QUIL, designed and written with special emphasis on features that make it applicable to the fission-product problem

  4. Structural analysis of the as-built IEA-R1 primary coolant piping system using a complete three dimensional model

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Martins, Lucas B.; Marcolin, Gabriel; Mattar Neto, Miguel

    2011-01-01

    IEA-R1 is an open pool type research reactor, moderated by light water and upgraded from 2 MW to 5 MW of operating power level. Heat generated in the reactor core is removed by a coolant system divided in two circuits, primary and secondary, composed by pumps, piping, heat exchangers, cooling tower, and some other auxiliary components. The 5 MW operating power level is now possible due to a modernization program started in 1996. As a part of the modernization program, ageing assessment studies recommend the replacement of one of the two heat exchangers in the circuit. To manage this replacement, modifications in the layout of the primary and secondary piping and supporting systems were performed, based on preliminary stress analysis study. Then, the aim of this work is to present the final stress analysis of the primary circuit. To reach this and taking the modifications of the primary into account, a 3D model of the whole circuit, in the as-built condition, was made. Stress results and discussions are shown. (author)

  5. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  6. Secondary coolant purification system

    International Nuclear Information System (INIS)

    Stiteler, F.Z.; Donohue, J.P.

    1978-01-01

    The present invention combines the attributes of volatile chemical addition, continuous blowdown, and full flow condensate demineralization. During normal plant operation (defined as no primary to secondary leakage) condensate from the condenser is pumped through a full flow condensate demineralizer system by the condensate pumps. Volatile chemical additions are made. Dissolved and suspended solids are removed in the condensate polishers by ion exchange and/or filtration. At the same time a continuous blowdown of approximately 1 percent of the main steaming rate of the steam generators is maintained. Radiation detectors monitor the secondary coolant. If these monitors indicate no primary to secondary leakage, the blowdown is cooled and returned directly to the condensate pump discharge. If one of the radiation monitors should indicate a primary to secondary leak, when the temperature of the effluent exiting from the blowdown heat exchanger is compatible with the resin specifications of the ion exchangers, the bypass valve causes the blowdown flow to pass through the blowdown ion exchangers

  7. Some experimental justifications of constructions of nuclear reactors with the use of solid coolant

    International Nuclear Information System (INIS)

    Deniskin, V.; Nalivaev, V.; Fedik, I.; Vishnevski, U.; Dmitriev, A.

    2003-01-01

    Full text: The work that has been conducted so far justifies a possibility of constructing a reactor with a non-traditional coolant to develop radically new reactors and their cycles with perfect architecture. A solid coolant, for example, the carbon-based one, allows to design the primary circuit of nuclear reactor without excess pressure. Such coolant withstands temperatures up to ∼4000 deg. K without a collapse. The analysis of theory and experiments produced requirements to be met by a solid coolant used in the primary circuit of nuclear reactor. One of the most important requirements is the arrangements for a continuous and homogeneous gravity flow of the coolant through all core sections taking into account the dust caused by wear and some amount of fractured particles. Therefore, the idea is that the mass of particles should resemble a liquid to a certain extend. The particles should be sphere like with average diameter from 0.5 to 2.0 mm and nonsphericity rate not more than 10%. 'Angle of repose' of particles to the horizon can be utilised as a validity criterion of particles which should not exceed 25 deg. The heat transfer coefficient should be increased up to the practical maximum value. In 1996 - 1997 the system of experimental facilities were built in the Scientific and Research Institute 'Luch' to prove the possibility to reliably cool a nuclear reactor with a flow of solid particles and to obtain a minimum set of data for the conceptual design of such reactor with solid coolant. The facility allows the research of the flow stability, heat mass transfer in the core, lifetime wearing of particles of the solid coolant. In 1994-1999 5 batches of particles of different size were fabricated in accordance to different technologies. Four batches were graphite-based and one was aluminium oxide-based (Al 2 O 3 ). The purpose was to verify how the heat transfer coefficient was changing as the particle size varied. The average diameter of graphite particles

  8. ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project -2006 Update

    Science.gov (United States)

    Morrison, Russell H.; Holt, Mike

    2006-01-01

    The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered. This paper presents a status of the coolant stability over the past year as well as results from destructive analyses of hardware removed from the on-orbit system and the current approach to coolant remediation.

  9. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  10. Composition and concentration of soluble and particulate matter in the coolant of the reactor primary cooling system of the Embalse nuclear power plant; Composicion y concentracion del material soluble y particulado en el refrigerante del SPTC de la central nuclear Embalse

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, Mauricio; Garcia Rodenas, Luis; La Gamma, Ana M; Villegas, Marina [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Quimica; Fernandez, Alberto N; Allemandi, Walter; Manera, Raul; Rosales, Hugo [Nucleoelectrica Argentina SA (NASA), Embalse (Argentina). Central Nuclear Embalse

    2000-07-01

    Nuclear power plants type PWR and PHWR (pressurized water reactor and pressurized heavy water reactor) have three coolant circuits which only exchange energy among them. The primary circuit, whose coolant extracts the reactor energy, the secondary circuit or water-steam cycle and the tertiary circuit which could be lake, river or sea water. The chemistry of the primary and secondary coolants is carefully controlled with the aim of minimizing the corrosion of structural materials. However, very low rates of corrosion are inevitable and one of the consequences of the corrosion processes is the presence of soluble and particulate matter in the coolant from where several problems associated with mass transfer arisen. In this way radioactive nuclides are transported out of the core to the steam generators, hydraulic resistance increases and heat transfer capability degrades. In the present paper some alternative techniques are proposed for the quantification of both, the particulate and soluble matter present in the coolant and their correspondent composition. Some results are also included and discussed. (author)

  11. Correlating activity incorporation with properties of oxide films formed on material samples exposed to BWR and PWR coolants in Finnish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P. [VTT Industrial Systems, Espoo (Finland); Buddas, T.; Halin, M.; Kvarnstroem, R.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant, Loviisa (Finland); Helin, M.; Muttilainen, E.; Reinvall, A. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    2002-07-01

    The extent of activity incorporation on primary circuit surfaces in nuclear power plants is connected to the chemical composition of the coolant, to the corrosion behaviour of the material surfaces and to the structure and properties of oxide films formed on circuit surfaces due to corrosion. Possible changes in operational conditions may induce changes in the structure of the oxide films and thus in the rate of activity incorporation. To predict these changes, experimental correlations between water chemistry, oxide films and activity incorporation, as well as mechanistic understanding of the related phenomena need to be established. In order to do this, flow-through cells with material samples and facilities for high-temperature water chemistry monitoring have been installed at Olkiluoto unit 1 (BWR) and Loviisa unit 1 (PWR) in spring 2000. The cells are being used for two major purposes: To observe the changes in the structure and activity levels of oxide films formed on material samples exposed to the primary coolant. Correlating these observations with the abundant chemical and radiochemical data on coolant composition, dose rates etc. collected routinely by the plant, as well as with high-temperature water chemistry monitoring data such as the corrosion potentials of relevant material samples, the redox potential and the high-temperature conductivity of the primary coolant. We describe in this paper the scope of the work, give examples of the observations made and summarize the results on oxide films that have been obtained during one full fuel cycle at both plants. (authors)

  12. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  13. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1983-01-01

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN

  14. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  15. Procedure to determine the optimal parameters of the main primary coolant pump after compacting the FRG-1 reactor. Pt. 2. Partial structures of the procedure

    International Nuclear Information System (INIS)

    Pihowicz, W.

    1999-01-01

    On the basis of an extensive physical and technical analysis the partial structures of the procedure had been developed. They represent a logical linkage of determination elements in the form of decision and result units. The developed partial structures enable to determine the physical parameters, which characterize the primary circuit together with the compact core as well as the main primary coolant pump coming into question after compacting the core. The report also contains a discussions and a comparison of the partial structures. (orig.) [de

  16. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    Reference is made to coolant channels for pressurised water and boiling water reactors and the arrangement described aims to improve heat transfer between the fuel rods and the coolant. Baffle means extending axially within the channel are provided and disposed relative to the fuel rods so as to restrict flow oscillations occurring within the coolant from being propagated transversely to the axis of the channel. (UK)

  17. Coolant system decontamination

    International Nuclear Information System (INIS)

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P.

    1981-01-01

    An improved method for decontaminating the coolant system of water cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution. (author)

  18. A comparative neutronic analysis of KALIMER breeder core using Na or Pb-Bi coolant

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic study has been conducted on KALIMER breeder core according to the replacement of sodium coolant by Pb-Bi coolant. Since the atomic weight of Pb and Bi is about 9 times heavier than that of Na, the energy loss by neutron colliding with Pb-Bi nucleus will be very small. Therefore, the reactor with Pb-Bi coolant will have a harder neutron spectrum than that with Na coolant. Consequently, the breeding ratio and burnup reactivity swing is expected to be enhanced. In addition, when Pb-Bi coolant is voided, a negative coolant void coefficient can be obtained by the net effects of smaller spectrum hardening and large neutron leakage. As a result, the breeding ratio was increased from 1.18 to 1.23 and burnup reactivity swing was reduced from 631 pcm to 150 pcm. When the coolant in the whole region of active core is voided, the coolant void coefficient was found to be -539 and -264 pcm at BOEC and EOEC, respectively. In the local voided case, the smaller coolant void coefficient was obtained than that of Na coolant. Accordingly, the use of Pb-Bi coolant in KALIMER gives an advantage of higher breeding ratio, smaller burnup reactivity swing and negative coolant void coefficient without any significant degradation of nuclear performance

  19. Recent results from the MIT in-core experiments on coolant chemistry

    International Nuclear Information System (INIS)

    Harling, O.K.; Kohse, G.E.; Cabello, E.C.; Bernard, J.A.

    1993-01-01

    This paper reports results from an ongoing series of in-core experiments that have been conducted at the 5-MW(thermal) MIT Research Reactor (MITR-II) for optimizing coolant chemistries in light water reactors. Four experiments are in progress, including a pressurized coolant chemistry loop (PCCL), a boiling coolant chemistry loop (BCCL), a facility for the study of irradiation-assisted stress-corrosion cracking, and one for the evaluation of in situ sensors for the monitoring of crack propagation in metal (SENSOR). The first two have now been fully operational for several years. The latter two are scheduled to begin regular operation later this year

  20. Qualification test of a main coolant pump for SMART pilot

    International Nuclear Information System (INIS)

    Park, Sang Jin; Yoon, Eui Soo; Oh, Hyong Woo

    2006-01-01

    SMART Pilot is a multipurpose small capacity integral type reactor. Main Coolant Pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of 310 .deg. C and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present work, a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and life-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP

  1. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  2. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  3. The solid coolant and prospects of its use in innovative reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.M.; Deniskin, V.P.

    2010-01-01

    The progress of nuclear power demands consideration and development of innovative projects of the reactors having the increased level of safety due to their immanent properties allowing to provide high parameters. One of interesting and perspective offers is the use of a solid substance as a coolant. Use of the solid coolant of a nuclear reactor core has significant advantages among which an opportunity of movement of the coolant in the core under action of gravities and absence of necessity to have superfluous pressure in the jacket, that in turn means small metal consumption of construction, decrease in risk of emergency and its consequences. Cooling of the core with the help of solid substance is possible at performance of the certain conditions connected to features of the solid coolant. The major requirements are: the uniform continuous movement and minimal fluctuation of its density on every site of the core; high mechanical durability and wear resistance of particles; as well as good parameters of heat exchange, i.e. high heat conductivity and thermal capacity of the coolant material at the core operating conditions

  4. Nuclear reactor coolant and cover gas system

    International Nuclear Information System (INIS)

    George, J.A.; Redding, A.H.; Tower, S.N.

    1976-01-01

    A core cooling system is disclosed for a nuclear reactor of the type utilizing a liquid coolant with a cover gas above free surfaces of the coolant. The disclosed system provides for a large inventory of reactor coolant and a balanced low pressure cover gas arrangement. A flow restricting device disposed within a reactor vessel achieves a pressure of the cover gas in the reactor vessel lower than the pressure of the reactor coolant in the vessel. The low gas pressure is maintained over all free surfaces of the coolant in the cooling system including a coolant reservoir tank. Reactor coolant stored in the reservoir tank allows for the large reactor coolant inventory provided by the invention

  5. Radiolytic reactions in the coolant of helium cooled reactors

    International Nuclear Information System (INIS)

    Tingey, G.L.; Morgan, W.C.

    1975-01-01

    The success of helium cooled reactors is dependent upon the ability to prevent significant reaction between the coolant and the other components in the reactor primary circuit. Since the thermal reaction of graphite with oxidizing gases is rapid at temperatures of interest, the thermal reactions are limited primarily by the concentration of impurity gases in the helium coolant. On the other hand, the rates of radiolytic reactions in helium are shown to be independent of reactive gas concentration until that concentration reaches a very low level. Calculated steady-state concentrations of reactive species in the reactor coolant and core burnoff rates are presented for current U. S. designed, helium cooled reactors. Since precise base data are not currently available for radiolytic rates of some reactions and thermal reaction rate data are often variable, the accuracy of the predicted gas composition is being compared with the actual gas compositions measured during startup tests of the Fort Saint Vrain high temperature gas-cooled reactor. The current status of these confirmatory tests is discussed. 12 references

  6. Comparative design study of FR plants with various coolants. 1. Studies on Na coolant FR, Pb-Bi coolant FR, gas coolant FR

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Shimakawa, Yoshio; Hori, Toru; Kawasaki, Nobuchika; Enuma, Yasuhiro; Kida, Masanori; Kasai, Shigeo; Ichimiya, Masakazu

    2001-01-01

    In Phase I of the Feasibility Studies on the Commercialized Fast Reactor (FR) Cycle System, plant designs on FR were performed with various coolants. This report describes the plant designs on FR with sodium, lead-bismuth, CO 2 gas and He gas coolants. A construction cost of 0.2 million yen/kWe was set up as a design goal. The result is as follows: The sodium reactor has a capability to obtain the goal, and lead-bismuth and gas reactors may satisfy the goal with further improvements. (author)

  7. Coolant inlet device for nuclear reactors

    International Nuclear Information System (INIS)

    Ando, Hiroshi; Abe, Yasuhiro; Iwabuchi, Toshihiko; Yamamoto, Kenji.

    1969-01-01

    Herein disclosed is a coolant inlet device for liquid-metal cooled reactors which employs a coolant distributor serving also as a supporting means for the reactor core. The distributor is mounted within the reactor vessel so as to slide horizontally on supporting lugs, and is further slidably connected via a junction pipe to a coolant inlet conduit protruding through the floor of the vessel. The distributor is adapted to uniformly disperse the highly pressured coolant over the reactor core so as to reduce the stresses sustained by the reactor vessel as well as the supporting lugs. Moreover, the slidable nature of the distributor allows thermal shock and excessive coolant pressures to be prevented or alleviated, factors which posed major difficulties in conventional coolant inlet devices. (Owens, K. J.)

  8. Design and fabrication of magnetic coolant filter

    Science.gov (United States)

    Prashanth, B. N.

    2017-07-01

    Now a day's use of coolants in industry has become dominant because of high production demands. Coolants not only help in speeding up the production but also provide many advantages in the metal working operation. As the consumption of coolants is very high a system is badly in need, so as to recirculate the used coolant. Also the amount of hazardous waste generated by industrial plants has become an increasingly costly problem for the manufactures and an additional stress on the environment. Since the purchase and disposal of the spent cutting fluids is becoming increasingly expensive, fluid recycling is a viable option for minimizing the cost. Separation of metallic chips from the coolants by using magnetic coolant separation has proven a good management and maintenance of the cutting fluid. By removing the metallic chips, the coolant life is greatly extended, increases the machining quality and reduces downtime. Above being the case, a magnetic coolant filter is developed which utilizes high energy permanent magnets to develop a dense magnetic field along a narrow flow path into which the contaminated coolant is directed. The ferromagnetic particles captured and aligned by the dense magnetic field, from the efficient filter medium. This enables the unit to remove ferromagnetic particles from the coolant. Magnetic coolant filters use the principle of magnetic separation to purify the used coolant. The developed magnetic coolant separation has the capability of purifying 40 litres per minute of coolant with the size of the contaminants ranging from 1 µm to 30 µm. The filter will be helpful in saving the production cost as the cost associated with the proposed design is well justified by the cost savings in production. The magnetic field produced by permanent magnets will be throughout the area underneath the reservoir. This produces magnetic field 30mm above the coolant reservoir. Very fine particles are arrested without slip. The magnetic material used will not

  9. Primary coolant pipe rupture study AT(49-24)-0202

    International Nuclear Information System (INIS)

    Hale, D.A.; Clarke, W.L. Jr.

    1977-01-01

    Fatigue crack growth rate tests were conducted on 304 stainless steel and 516 carbon steel in a simulated BWR primary water environment. A study was carried out to determine the feasibility of measuring sensitization in type 304 SS by use of an Electrochemical Potentiokinetic Reactivation (EPR) technique, develop correlations between degree of sensitization (as measured electrochemically) and the intergranular stress corrosion cracking (IGSCC) resistance of type 304 SS, and provide technical data for evaluating the degree of sensitization and IGSCC susceptibility of welded components. 27 figures, 8 tables

  10. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    International Nuclear Information System (INIS)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  11. Calculation of activity concentration and dose rates from online radioactivity measurement in primary coolant channel of TAPS-III and IV

    International Nuclear Information System (INIS)

    Chaudhury, Sanhita; Agarwal, Chhavi; Goswami, A.; Mhatre, Amol; Chaturvedi, T.P.; Tawde, N.; Gathibandhe, Manohar; Dash, S.C.

    2011-05-01

    Radioactivity measurement using CdZnTe detector and dose measurement using teletector were done at several locations of primary heat transport (PHT) system of the Tarapur Atomic Power Station-III and IV reactor during shut down as well as operating condition of the reactors. The detector efficiency for the required counting geometry was simulated using MCNP code. Using this simulated efficiency and the experimental count rate (cps), the activity concentrations (Bq/mL) of different radionuclides in coolant water were calculated. The dose rates for the counted locations were also simulated using Monte Carlo code and it matched well with the experimentally obtained dose rate. (author)

  12. Simplified model of a PWR primary coolant circuit

    International Nuclear Information System (INIS)

    Souza, A.L. de; Faya, A.J.G.

    1988-01-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analysed by a nodal model. Average and hot channels are treated so that the bulk response of the core and DNBR can be evaluated. A Homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  13. Organic coolant for ARIES-III

    International Nuclear Information System (INIS)

    Sze, D.K.; Sviatoslavsky, I.; Sawan, M.; Gierszewski, P.; Hollies, R.; Sharafat, S.; Herring, S.

    1991-04-01

    ARIES-III is a D-He 3 reactor design study. It is found that the organic coolant is well suited for the D-He 3 reactor. This paper discusses the unique features of the D-He 3 reactor, and the reason that the organic coolant is compatible with those features. The problems associated with the organic coolant are also discussed. 8 refs., 2 figs., 6 tabs

  14. Development of a reactor-coolant-pump monitoring and diagnostic system. Semi-annual progress report, December 1981-May 1982

    International Nuclear Information System (INIS)

    Morris, D.J.; Gabler, H.C.

    1982-10-01

    Reactor coolant (RC) pump seal failures have resulted in excessive leakage of primary coolant into reactor containment buildings. In some cases, high levels of airborne activity and surface contamination following these failures have necessitated extensive cleanup efforts and personnel radiation exposure. Unpredictable pump seal performance has also caused forced outages and frequent maintenance. The quality of operating data has been insufficient to allow proper evaluation of theoretical RC pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables. This report describes system software and hardware development, testing, and installation work performed during the period of December 1981 through May 1982. Also described herein is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  15. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  16. Influence of steam generator tube ruptures during semiscale loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Larson, T.K.

    1978-01-01

    Examination of the U-tubes in the steam generators of some large commercial pressurized water reactors (PWR) has revealed the existence of leakage and in some cases structural weakening of the tubes. This structural weakening enhances the possibility of tubes rupturing during a hypothesized loss-of-coolant accident (LOCA). Considerable interest has been shown in the analysis of tube ruptures concurrent with a hypothesized LOCA since the presence of tube ruptures has the potential to influence the system thermal-hydraulic response and could foreseeably result in a more severe core thermal behavior than might otherwise occur. To experimentally investigate the influence of steam generator tube ruptures on the thermal-hydraulic response of PWR type system, a series of experiments was conducted in the Semiscale Mod-1 system by EG and G Idaho, Inc., for the U.S. Nuclear Regulatory Commission and the Department of Energy. The primary objective of the experiments was to obtain data which could be used to evaluate the influence of the simulated tube ruptures on the system and core thermal-hydraulic response for a range of tube ruptures that was expected to provide the potential for high cladding temperatures in the Semiscale facility. The experiments were conducted assuming a variety in the number of tubes ruptured during large break loss-of-coolant conditions. The number of experiments conducted permitted determination of the range of tube ruptures for which high peak cladding temperatures could result in the Semiscale Mod-1 system. The paper contains a description of the Semiscale Mod-1 system and a discussion of the steam generator tube rupture tests conducted. The experimental results from the test series and the thermal-hydraulic phenomena found to influence the core thermal response during the experiments are discussed

  17. Coolant Design System for Liquid Propellant Aerospike Engines

    Science.gov (United States)

    McConnell, Miranda; Branam, Richard

    2015-11-01

    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  18. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1976-06-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The report describes the analytical model used for the program. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The user is required to input the description of the discharge of coolant, the boiling of residual water by reactor decay heat, the superheating of steam passing through the core, and metal-water reactions. The reactor building is separated into liquid and vapor regions. Each region is in thermal equilibrium itself, but the two may not be in thermal equilibrium; the liquid and gaseous regions may have different temperatures. The reactor building is represented as consisting of several heat-conducting structures whose thermal behavior can be described by the one-dimensional multi-region heat conduction equation. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc

  19. Measurement of actinides in samples from effluent air, primary coolant and effluent water of nuclear power stations in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.; Rosner, G.

    1977-01-01

    Since the middle of 1973 the alpha radioactivity of a number of aerosol filters from the stack monitoring systems of some nuclear power stations, of water effluent samples from all german nuclear power stations and of samples from the primary coolant water of one nuclear power reactor was measured. Essentially, the following procedures of sample preparation for alpha spectrometry of the samples in large area gridded ionization chambers were used; cold ashing of the aerosol samples in 'excited' oxygen, coprecipitation of the alpha emitters from the effluent water samples with iron hydroxide and subsequent cold ashing of the precipitate, and evaporation of the samples from the primary cycle on stainless steel plates. The following transuranium nuclides, or some of them, were found in the samples of the primary coolant and in several aerosol filter samples: Pu-239/240, Pu-238 and/or Am-241, Cm-242 and Cm-244. Cm-242 contributes most to the alpha radioactivity in fresh samples. In the effluent water samples Cm-242, Pu-239/240 and Pu-238 and/or Am-241 were identified in some cases, in one case also Cm-244. Detection limits of the procedures used for the analysis of the above stated transuranium nuclides were in the order of 0,1 fCi per m 3 for the aerosol samples and of 0.2 pCi per 1 for the liquid samples. For the effluent air and water samples in most cases specific activities near the detection limit or somewhat higher were found. On the basis of the measurements, an estimation of the annual actinides releases from nuclear power stations in the Federal Republic of Germany is given

  20. Loss-of-coolant accident analyses of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Chen, N.C.J.; Yoder, G.L.; Wendel, M.W.

    1991-01-01

    Currently in the conceptual design stage, the Advanced Neutron Source Reactor (ANSR) will operate at a high heat flux, a high mass flux, an a high degree of coolant subcooling. Loss-of-coolant accident (LOCA) analyses using RELAP5 have been performed as part of an early evaluation of ANSR safety issues. This paper discusses the RELAP5 ANSR conceptual design system model and preliminary LOCA simulation results. Some previous studies were conducted for the preconceptual design. 12 refs., 7 figs

  1. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    Science.gov (United States)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  2. Control rod drive mechanism stator loss of coolant test

    International Nuclear Information System (INIS)

    Besel, L.; Ibatuan, R.

    1977-04-01

    This report documents the stator loss of coolant test conducted at HEDL on the lead unit Control Rod Drive Mechanism (CRDM) in February, 1977. The purpose of the test was to demonstrate scram capability of the CRDM with an uncooled stator and to obtain a time versus temperature curve of an uncooled stator under power. Brief descriptions of the test, hardware used, and results obtained are presented in the report. The test demonstrated that the CRDM could be successfully scrammed with no anomalies in both the two-phase and three-phase stator winding hold conditions after the respective equilibrium stator temperatures had been obtained with no stator coolant

  3. Experimental interaction of magma and “dirty” coolants

    Science.gov (United States)

    Schipper, C. Ian; White, James D. L.; Zimanowski, Bernd; Büttner, Ralf; Sonder, Ingo; Schmid, Andrea

    2011-03-01

    The presence of water at volcanic vents can have dramatic effects on fragmentation and eruption dynamics, but little is known about how the presence of particulate matter in external water will further alter eruptions. Volcanic edifices are inherently “dirty” places, where particulate matter of multiple origins and grainsizes typically abounds. We present the results of experiments designed to simulate non-explosive interactions between molten basalt and various “coolants,” ranging from homogeneous suspensions of 0 to 30 mass% bentonite clay in pure water, to heterogeneous and/or stratified suspensions including bentonite, sand, synthetic glass beads and/or naturally-sorted pumice. Four types of data are used to characterise the interactions: (1) visual/video observations; (2) grainsize and morphology of resulting particles; (3) heat-transfer data from a network of eight thermocouples; and (4) acoustic data from three force sensors. In homogeneous coolants with ~20% sediment, heat transfer is by forced convection and conduction, and thermal granulation is less efficient, resulting in fewer blocky particles, larger grainsizes, and weaker acoustic signals. Many particles are droplet-shaped or/and “vesicular,” containing bubbles filled with coolant. Both of these particle types indicate significant hydrodynamic magma-coolant mingling, and many of them are rewelded into compound particles. The addition of coarse material to heterogeneous suspensions further slows heat transfer thus reducing thermal granulation, and variable interlocking of large particles prevents efficient hydrodynamic mingling. This results primarily in rewelded melt piles and inefficient distribution of melt and heat throughout the coolant volume. Our results indicate that even modest concentrations of sediment in water will significantly limit heat transfer during non-explosive magma-water interactions. At high concentrations, the dramatic reduction in cooling efficiency and increase in

  4. Coolant monitoring systems for PWR reactors

    International Nuclear Information System (INIS)

    Luzhnov, A.M.; Morozov, V.V.; Tsypin, S.G.

    1987-01-01

    The ways of improving information capacity of existing monitoring systems and the necessity of designing new ones for coolant monitoring are reviewed. A wide research program on development of coolant monitoring systems in PWR reactors is analyzed. The possible applications of in-core and out-of-core detectors for coolant monitoring are demonstrated

  5. Method for removing cesium from aqueous liquid, method for purifying the reactor coolant in boiling water and pressurized water reactors and a mixed ion exchanged resin bed, useful in said purification

    International Nuclear Information System (INIS)

    Otte, J.N.A.; Liebmann, D.

    1989-01-01

    The invention relates to a method for removing cesium from an aqueous liquid, and to a resin bed containing a mixture of an anion exchange resin and cation exchange resin useful in said purification. In a preferred embodiment, the present invention is a method for purifying the reactor coolant of a presurized water or boiling water reactor. Said method, which is particularly advantageously employed in purifying the reactor coolant in the primary circuit of a pressurized reactor, comprises contacting at least a portion of the reactor coolant with a strong base anion exchange resin and the strong acid cation exchange resin derived from a highly cross-linked, macroporous copolymer of a monovinylidene aromatic and a cross-linking monomer copolymerizable therewith. Although the reactor coolant can sequentially be contacted with one resin type and thereafter with the second resin type, the contact is preferably conducted using a resin bed comprising a mixture of the cation and anion exchange resins. 1 fig., refs

  6. Organic coolant in Winnipeg riverbed sediments

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Acres, O.E.

    1979-03-01

    Between January and May 1977 a prolonged leak of organic coolant occurred from the Whiteshell Nuclear Research Establishment's nuclear reactor, and a minimum of 1450 kg of coolant entered the Winnipeg River and was deposited on the riverbed. The level of radioactivity associated with this coolant was low, contributing less than 0.2 μGy (0.02 mrad) a year to the natural background gamma radiation field from the riverbed. The concentration of coolant in the water samples never exceeded 0.02 mg/L, the lower limit of detection. The mortality of crayfish, held in cages where the riverbed was covered with the largest deposits of coolant, was not significantly different from that in the control cages upstream of the outfall. No evidence of fish kill was found. (author)

  7. Trends and experiences in reactor coolant pump motors

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A review of the requirements and features of these motors is given as background along with a discussion of trends and experiences. Included are a discussion of thrust bearings and a review of safety related requirements and design features. Primary coolant pump motors are vertical induction motors for pumps that circulate huge quantities of water through the reactor core to carry the heat generated there to steam generator heat exchangers. 4 refs

  8. Contribution to the optimization of the chemical and radiochemical purification of pressurized water nuclear power plants primary coolant; Contribution a l'optimisation de la purification chimique et radiochimique du fluide primaire des centrales nucleaires a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Elain, L

    2004-12-15

    The primary coolant of pressurised water reactors is permanently purified thanks to a device, composed of filters and the demineralizers furnished with ion exchange resins (IER), located in the chemical and volume control system (CVCS). The study of the retention mechanisms of the radio-contaminants by the IER implies, initially, to know the speciation of the primary coolant percolant through the demineralizers. Calculations of theoretical speciation of the primary coolant were carried out on the basis of known composition of the primary coolant and thanks to the use of an adapted chemical speciation code. A complementary study, dedicated to silver behaviour, considered badly extracted, suggests metallic aggregates existence generated by the radiolytic reduction of the Ag{sup +} ions. An analysis of the purification curves of the elements Ni, Fe, Co, Cr, Mn, Sb and their principal radionuclides, relating to the cold shutdown of Fessenheim 1-cycle 20 and Tricastin 2-cycle 21, was carried out, in the light of a model based on the concept of a coupling well term - source term. Then, a thermodynamic modelling of ion exchange phenomena in column was established. The formation of the permutation front and the enrichment zones planned was validated by frontal analysis experiments of synthetic fluids (mixtures of Ni(B(OH){sub 4}){sub 2}, LiB(OH){sub 4} and AgB(OH){sub 4} in medium B(OH){sub 3})), and of real fluid during the putting into service of the device mini-CVCS at the time of Tricastin 2 cold shutdown. New tools are thus proposed, opening the way with an optimised management of demineralizers and a more complete interpretation of the available experience feedback. (author)

  9. A comparative neutronic analysis of 150MWe TRU burner according to the coolant alteration

    International Nuclear Information System (INIS)

    Yoo, J. W.; Kim, S. J.; Kim, Y. I.

    2000-01-01

    A comparative neutronic analysis has been conducted for the small TRU burner according to their coolant material. The use of Pb-Bi coolant gave a low burnup reactivity swing and negative or less positive coolant void coefficient with harder neutron spectrum. By a lower burnup reactivity swing and higher conversion ratio of Pb-Bi cooled core, the total amount of TRU consumption was found to be small compared with Na cooled core despite of the higher MA consumption ratio of Pb-Bi cooled core. However, Pb-Bi cooled reactor have a lager margin in the coolant void coefficient, so that a variable MA composition can be loaded in the core. Accordingly, even though the Pb-Bi cooled TRU burner has not effectiveness on TRU burning in the same geometry and material condition, a flexible MA loading is envisaged to result in 10 times larger MA burning amount, still preserving a low coolant void worth

  10. An investigation of core liquid level depression in small break loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Schultz, R.R.; Watkins, J.C.; Motley, F.E.; Stumpf, H.; Chen, Y.S.

    1991-08-01

    Core liquid level depression can result in partial core dryout and heatup early in a small break loss-of-coolant accident (SBLOCA) transient. Such behavior occurs when steam, trapped in the upper regions of the reactor primary system (between the loop seal and the core inventory), moves coolant out of the core region and uncovers the rod upper elevations. The net result is core liquid level depression. Core liquid level depression and subsequent core heatups are investigated using subscale data from the ROSA-IV Program's 1/48-scale Large Scale Test Facility (LSTF) and the 1/1705-scale Semiscale facility. Both facilities are Westinghouse-type, four-loop, pressurized water reactor simulators. The depression phenomena and factors which influence the minimum core level are described and illustrated using examples from the data. Analyses of the subject experiments, conducted using the TRAC-PF1/MOD1 (Version 12.7) thermal-hydraulic code, are also described and summarized. Finally, the response of a typical Westinghouse four-loop plant (RESAR-3S) was calculated to qualitatively study coal liquid level depression in a full-scale system. 31 refs., 37 figs., 6 tabs

  11. Validation of Computational Fluid Dynamics Calculation Using Rossendorf Coolant Mixing Model Flow Measurements in Primary Loop of Coolant in a Pressurized Water Reactor Model

    Directory of Open Access Journals (Sweden)

    Istvan Farkas

    2016-08-01

    Full Text Available The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively with experimental results.

  12. Creep properties of base metal and welded joint of Hastelloy XR produced for High-Temperature Engineering Test Reactor in simulated primary coolant helium

    International Nuclear Information System (INIS)

    Kurata, Yuji; Tsuji, Hirokazu; Shindo, Masami; Suzuki, Tomio; Tanabe, Tatsuhiko; Mutoh, Isao; Hiraga, Kenjiro

    1999-01-01

    Creep tests of base metal, weld metal and welded joint of Hastelloy XR, which had the same chemical composition as Hastelloy XR produced for an intermediate heat exchanger of the High-Temperature Engineering Test Reactor, were conducted in simulated primary coolant helium. The weld metal and welded joint showed almost equal to or longer rupture time than the base metal of Hastelloy XR at 850 and 900degC, although they gave shorter rupture time at 950degC under low stress and at 1,000degC. The welded joint of Hastelloy XR ruptured at the base metal region at 850 and 900degC. On the other hand, it ruptured at the weld metal region at 950 and 1,000degC. The steady-state creep rate of weld metal of Hastelloy XR was lower than that of base metal at 850, 900 and 950degC. The creep rupture strengths of base metal, weld metal and welded joint of Hastelloy XR obtained in this study were confirmed to be much higher than the design allowable creep-rupture stress (S R ) of the Design Allowable Limits below 950degC. (author)

  13. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  14. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  15. Cooling Performance Analysis of ThePrimary Cooling System ReactorTRIGA-2000Bandung

    Science.gov (United States)

    Irianto, I. D.; Dibyo, S.; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The conversion of reactor fuel type will affect the heat transfer process resulting from the reactor core to the cooling system. This conversion resulted in changes to the cooling system performance and parameters of operation and design of key components of the reactor coolant system, especially the primary cooling system. The calculation of the operating parameters of the primary cooling system of the reactor TRIGA 2000 Bandung is done using ChemCad Package 6.1.4. The calculation of the operating parameters of the cooling system is based on mass and energy balance in each coolant flow path and unit components. Output calculation is the temperature, pressure and flow rate of the coolant used in the cooling process. The results of a simulation of the performance of the primary cooling system indicate that if the primary cooling system operates with a single pump or coolant mass flow rate of 60 kg/s, it will obtain the reactor inlet and outlet temperature respectively 32.2 °C and 40.2 °C. But if it operates with two pumps with a capacity of 75% or coolant mass flow rate of 90 kg/s, the obtained reactor inlet, and outlet temperature respectively 32.9 °C and 38.2 °C. Both models are qualified as a primary coolant for the primary coolant temperature is still below the permitted limit is 49.0 °C.

  16. Safety analysis of increase in heat removal from reactor coolant system with inadvertent operation of passive residual heat removal at no load conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ge; Cao, Xuewu [School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

  17. Detection of primary coolant leaks in NPP

    International Nuclear Information System (INIS)

    Slavov, S.; Bakalov, I.; Vassilev, H.

    2001-01-01

    The thermo-hydraulic analyses of the SG box behaviour of Kozloduy NPP units 3 and 4 in case of small primary circuit leaks and during normal operation of the existing ventilation systems in order to determine the detectable leakages from the primary circuit by analysing different parameters used for the purposes of 'Leak before break' concept, performed by ENPRO Consult Ltd. are presented. The following methods for leak detection: measurement of relative air humidity in SG box (can be used for detection of leaks with flow rate 3.78 l/min within one hour at ambient parameters - temperature 40 0 - 60 0 C and relative humidity form 30% to 60%); measurement of water level in SG box sumps (can not be used for reliable detection of small primary circuit leakages with flow rate about 3.78 l/min); measurement of gaseous radioactivity in SG box( can be used as a general global indication for detection of small leakages from the primary circuit); measurement of condensate flow after the air coolers of P-1 venting system (can be used for primary circuit leak detection) are considered. For determination of the confinement behaviour, a model used with computer code MELCOR has been developed by ENPRO Consult Ltd. A brief summary based on the capabilities of the different methods of leak detection, from the point of view of the applicability of a particular method is given. For both Units 3 and 4 of Kozloduy NPP a qualified complex system for small leak detection is planned to be constructed. Such a system has to unite the following systems: acoustic system for leak detection 'ALUS'; system for control of the tightness of the main primary circuit pipelines by monitoring the local humidity; system for primary circuit leakage detection by measuring condensate run-off in collecting tank after ventilation system P-1 air coolers

  18. RELAP5 simulation of a large break Loss of Coolant Accident (LOCA) in the hot leg of the primary system in Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Sabundjian, Gaiane

    2004-01-01

    The objective of this work is to present the simulation of a large break loss of coolant accident - LBLOCA in the hot leg of the primary loop in Angra 2, with RELAP5/MOD3.2.2g code. This accident is described in the Final Safety Report Analysis of Angra 2 - FSAR and consists basically of the hot leg total break, in loop 20 of the plant. The area considered for the rupture is 4480 cm 2 , which corresponds to 100% of the pipe flow area. Besides, this work also has the objective of verifying the efficiency of the emergency core coolant system - ECCS in case of accidents and transients. The thermal-hydraulic processes inherent to the accident phenomenology, such as hot leg vaporization and consequently core vaporization causing an inappropriate flow distribution in the reactor core, can lead to a reduction in the liquid level, until the ECCS is capable to reflood it

  19. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Elina Syrjaelahti; Anitta Haemaelaeinen [VTT Processes, P.O.Box 1604, FIN-02044 VTT (Finland)

    2005-07-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  20. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    International Nuclear Information System (INIS)

    Elina Syrjaelahti; Anitta Haemaelaeinen

    2005-01-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  1. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  2. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  3. Cleaning of aluminum after machining with coolants

    International Nuclear Information System (INIS)

    Roop, B.

    1992-01-01

    An x-ray photoemission spectroscopic study was undertaken to compare the cleaning of the Advanced Photon Source (APS) aluminum extrusion storage ring vacuum chambers after machining with and without water soluble coolants. While there was significant contamination left by the coolants, the cleaning process was capable of removing the residue. The variation of the surface and near surface composition of samples machined either dry or with coolants was negligible after cleaning. The use of such coolants in the machining process is therefore recommended

  4. Transient heat transfer phenomena of the liquid metal layer cooled by overlying R113 coolant

    International Nuclear Information System (INIS)

    Cho, J. S.; Seo, K. R.; Jung, C. H.; Park, R. J.; Kim, S. B.

    1999-01-01

    To understand the fundamental relationship of the natural convection heat transfer in the molten metal pool and the boiling mechanism of the overlying coolant, experiments were performed for the transient heat transfer of the liquid metal pool with overlying R113 coolant with boiling. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. The metal pool is heated from the bottom surface and the coolant is injected onto the molten metal pool. Tests were conducted by changing the bottom surface boundary condition. The bottom heating condition was varied from 8kW to 14kW. As a result the boiling mechanism of the R113 coolant is changed from the nuclear boiling to film boiling. The Nusselt number and the Rayleigh number in the molten metal pool region obtained as functions of time. Analysis was made for the relationship between the heat flux and the temperature difference of the metal layer surface temperature and the boiling coolant bulk temperature

  5. Effect of parameter variation of reactor coolant pump on loss of coolant accident consequence

    International Nuclear Information System (INIS)

    Dang Gaojian; Huang Daishun; Gao Yingxian; He Xiaoqiang

    2015-01-01

    In this paper, the analyses were carried out on Ling'ao nuclear power station phase II to study the consequence of the loss of coolant accident when the homologous characteristic curves and free volumes of the reactor coolant pump changed. Two different pumps used in the analysis were 100D (employed on Ling'ao nuclear power station phase II) and ANDRITZ. The thermal characteristics in the large break LOCA accident were analyzed using CATHRE GB and CONPATE4, and the reactor coolant system hydraulics load during blow-clown phase of LOCA accident was analyzed using ATHIS and FORCET. The calculated results show that the homologous characteristic curves have great effect on the thermal characteristics of reactor core during the reflood phase of the large break LOCA accident. The maximum cladding surface temperatures are quite different when the pump's homologous characteristic curves change. On the other hand, the pump's free volume changing results in the variation of the LOCA rarefaction wave propagation, and therefore, the reactor coolant system hydraulic load in LOCA accident would be different. (authors)

  6. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  7. Correlation of analysis with high level vibration test results for primary coolant piping

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1992-01-01

    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results

  8. Coolant make-up device for BWR type reactor

    International Nuclear Information System (INIS)

    Sasagawa, Hiroshi.

    1994-01-01

    In a coolant make-up device, an opening of a pressure equalizing pipeline in a pressure vessel is disposed in coolants above a reactor core and below a usual fluctuation range of a reactor vessel water level. Further, a float check valve is disposed to the pressure equalizing pipeline for preventing coolants in the pressure vessel flowing into the pipeline. If the water level in the pressure vessel is lowered than the setting position for the float check valve, the float drops by its own weight to open the opening of the pressure equalizing pipeline. Then, steams in the pressure vessel are flown into the pipeline, to equalize the pressure between a coolant storage tank and the pressure vessel of the reactor. Coolants in the coolant storage tank is injected to the pressure vessel by way of the water injection pipeline due to the difference of the pressure head between the water level in the coolants storage tank and the water level in the pressure vessel. If the coolants are lowered than the setting position for the float check value, the float check valve does not close unless the water level is recovered to the setting position for the float valve and, accordingly, the coolant make-up is continued. (N.H.)

  9. Application of damage function analysis to reactor coolant circuits

    International Nuclear Information System (INIS)

    MacDonald, D.D.

    2002-01-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  10. Application of damage function analysis to reactor coolant circuits

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, D.D. [Center for Electrochemical Science and Technology, Pennsylvania State Univ., University Park, PA (United States)

    2002-07-01

    The application of deterministic models for simulating stress corrosion cracking phenomena in Boiling Water Reactor primary coolant circuits is described. The first generation code, DAMAGE-PREDICTOR, has been used to model the radiolysis of the coolant, to estimate the electrochemical corrosion potential (ECP), and to calculate the crack growth rate (CGR) at fixed state points during reactor operation in about a dozen plants worldwide. This code has been validated in ''double-blind'' comparisons between the calculated and measured hydrogen concentration, oxygen concentration, and ECP in the recirculation system of the Leibstadt BWR in Switzerland, as well as through less formal comparisons with data from other plants. Second generation codes have now been developed, including REMAIN for simulating BWRs with internal coolant pumps and the ALERT series for modeling reactors with external pumps. One of this series, ALERT, yields the integrated damage function (IDF), which is the crack length versus time, on a component-by-component basis for a specified future operating scenario. This code therefore allows one to explore proposed future operating protocols, with the objective of identifying those that are most cost-effective and which minimizes the risk of failure of components in the coolant circuit by stress corrosion cracking. The application of this code is illustrated by exploring the benefits of partial hydrogen water chemistry (HWC) for an actual reactor, in which hydrogen is added to the feedwater over only limited periods during operation. The simulations show that the benefits, in terms of reduction in the IDFs for various components, are sensitive to when HWC was initiated in the plant life and to the length of time over which it is applied. (author)

  11. Reactor coolant cleanup device

    International Nuclear Information System (INIS)

    Igarashi, Noboru.

    1986-01-01

    Purpose: To enable to introduce reactor water at high temperature and high pressure as it is, as well as effectively adsorb to eliminate cobalt in reactor water. Constitution: The coolant cleanup device comprises a vessel main body inserted to coolant pipeway circuits in a water cooled reactor power plant and filters contained within the vessel main body. The filters are prepared by coating and baking powder of metal oxides such as manganese ferrite having a function capable of adsorbing cobalt in the coolants onto the surface of supports made of metals or ceramics resistant to strong acids and alkalies in the form of three-dimensional network structure, for example, zircaloy-2, SUS 303 and the zirconia (baking) to form a basic filter elements. The basic filter elements are charged in plurality to the vessel main body. (Kawaiami, Y.)

  12. Distribution and behavior of tritium in the Coolant-Salt Technology Facility

    International Nuclear Information System (INIS)

    Mays, G.T.; Smith, A.N.; Engel, J.R.

    1977-04-01

    A 1000-MW(e) Molten-Salt Breeder Reactor (MSBR) is expected to produce 2420 Ci/day of tritium. As much as 60 percent of the tritium produced may be transported to the reactor steam system (assuming no retention by the secondary coolant salt), where it would be released to the environment. Such a release rate would be unacceptable. Experiments were conducted in an engineering-scale facility--the Coolant-Salt Technology Facility (CSTF)--to examine the potential of sodium fluoroborate, the proposed coolant salt for an MSBR, for sequestering tritium. The salt was believed to contain chemical species capable of trapping tritium. A series of 5 experiments--3 transient and 2 steady-state experiments--was conducted from July of 1975 through June of 1976 where tritium was added to the CSTF. The CSTF circulated sodium fluoroborate at temperatures and pressures typical of MSBR operating conditions. Results from the experiments indicated that over 90 percent of tritium added at steady-state conditions was trapped by sodium fluoroborate and appeared in the off-gas system in a chemically combined (water-soluble) form and that a total of approximately 98 percent of the tritium added at steady-state conditions was removed through the off-gas system overall

  13. Requirements of coolants in nuclear reactors

    International Nuclear Information System (INIS)

    Abass, O. A. M.

    2014-11-01

    This study discussed the purposes and types of coolants in nuclear reactors to generate electricity. The major systems and components associated with nuclear reactors are cooling system. There are two major cooling systems utilized to convert the heat generated in the fuel into electrical power. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it s converted into electricity after passing through the low pressure turbine. There are various coolants used in nuclear reactors-light water, heavy water and liquid metal. The two major types of water-cooled reactors are pressurized water reactors (PWR) and boiling water reactors (BWR) but pressurized water reactors are more in the world. Also discusses this study the reactors and impact of the major nuclear accidents, in the April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product operators, and in the March 2011 at the Fukushima nuclear power plant in Japan was the product of earthquake of magnitude 9.0, the accidents caused the largest uncontrolled radioactive release into the environment.(Author)

  14. Coolant cleanup method in a nuclear reactor

    International Nuclear Information System (INIS)

    Kubota, Masayoshi; Nishimura, Shigeoki; Takahashi, Sankichi; Izumi, Kenkichi; Motojima, Kenji.

    1983-01-01

    Purpose : To effectively adsorb to remove low molecular weight organic substances from iron exchange resins for use in the removal of various radioactive nucleides contained in reactor coolants. Method : Reactor coolants are recycled by a main recyling pump in a nuclear reactor and a portion of the coolants is cooled and, thereafter, purified in a coolant desalter. While on the other hand, high pressure steams generated from the reactor are passed through a turbine, cooled in a condensator, eliminated with claddings or the likes by the passage through a filtration desalter using powderous ion exchange resins and then further passed through a desalter (filled with granular ion exchange resins). For instance, an adsorption and removing device for organic substances (resulted through the decomposition of ion exchange resins) precoated with activated carbon powder or filled with granular activated carbon is disposed at the downstream for each of the desalters. In this way, the organic substances in the coolants are eliminated to prevent the reduction in the desalting performance of the ion exchange resins caused by the formation of complexes between organic substances and cobalt in the coolants, etc. In this way, the coolant cleanup performance is increased and the amount of wasted ion exchange resins can be decreased. (Horiuchi, T.)

  15. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  16. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun [Seoul National University, Seoul (Korea, Republic of); Paark, Rae Joon; Kim, Sang Baik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Ad a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 deg C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleigh number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer. 10 refs., 4 figs., 1 tab. (Author)

  17. Natural convection heat transfer characteristics of the molten metal pool with solidification by boiling coolant

    International Nuclear Information System (INIS)

    Cho, Jae Seon; Suh, Kune Yull; Chung, Chang Hyun; Park, Rae Joon; Kim, Sang Baik

    1997-01-01

    This paper presents results of experimental studies on the heat transfer and solidifcation of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232 .deg. C. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation between the Nusselt number and the Rayleight number in the molten metal pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer

  18. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  19. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  20. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  1. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  2. Limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.

    1985-01-01

    The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass

  3. Fuel cladding interaction with water coolant in power reactors

    International Nuclear Information System (INIS)

    1985-11-01

    Water coolant chemistry and corrosion processes are important factors in reliable operation of NPP's, as at elevated temperatures water is aggressive towards structural materials. Water regimes for commercial Pressurized Water Reactors and Boiling Water Reactors were developed and proved to be satisfactory. Nevertheless, studies of operation experience continue and an amount of new Research and Development work is being conducted for further improvements of technology and better understanding of the physicochemical nature of those processes. In this report information is presented on the IAEA programme on fuel element cladding interaction with water coolant. Some results of this survey and recommendations made by the group of consultants who participated in this work are given as well as recommendations for continuation of this study. Separate abstracts were prepared for 6 papers of this report

  4. Analysis of thermo-hydraulic behavior of coolant during discharge of pressurized high-temperature water

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Sobajima, Makoto; Sasaki, Shinobu; Onishi, Nobuaki; Shiba, Masayoshi

    1978-01-01

    The present report describes results of the analysis of the LOFT semiscale experiment No. 1011 using remodeled RELAP-3 code, performed at the Idaho National Engineering Laboratory to simulate a postulated loss-of-coolant accident in a pressurized water reactor. It was clarified through the analysis that coolant behavior during blowdown was influenced variously by the system components in the primary loop, comparing with coolant discharge from a pressure vessel. Good agreement was obtained between experimental and analytical results when phase separation was assumed in upper plenum and downcomer, since experimental data indicated existence of liquid level in those parts. It was also found that the use of the Wilson's equation to calculate bubble rise velocity and the use of discharge coefficient as the function of fluid quality at break location to calculate discharge flow rate resulted in good agreement with experimental data. (auth.)

  5. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    Science.gov (United States)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  6. Corrosion products in the coolant circuits of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Darras, R.

    1984-01-01

    The characteristics of corrosion products formed in the primary and secondary circuits of pressurized light water nuclear power plants are first briefly recalled. The problem set by the pollution of coolants and metallic surfaces is then examined. Finally, the measures of precaution to take and the possible solutions to minimize the disturbing effects of this pollution by corrosion products are presented [fr

  7. Estimation of aluminum and argon activation sources in the HANARO coolant

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul; Kim, Myong Seop

    2010-01-01

    The activation products of aluminum and argon are key radionuclides for operational and environmental radiological safety during the normal operation of open-tank-in-pool type research reactors using aluminum-clad fuels. Their activities measured in the primary coolant and pool surface water of HANARO have been consistent. We estimated their sources from the measured activities and then compared these values with their production rates obtained by a core calculation. For each aluminum activation product, an equivalent aluminum thickness (EAT) in which its production rate is identical to its release rate into the coolant is determined. For the argon activation calculation, the saturated argon concentration in the water at the temperature of the pool surface is assumed. The EATs are 5680, 266 and 1.2 nm, respectively, for Na-24, Mg-27 and Al-28, which are much larger than the flight lengths of the respective recoil nuclides. These values coincide with the water solubility levels and with the half-lives. The EAT for Na-24 is similar to the average oxide layer thickness (OLT) of fuel cladding as well; hence, the majority of them in the oxide layer may be released to the coolant. However, while the average OLT clearly increases with the fuel burn-up during an operation cycle, its effect on the pool-top radiation is not distinguishable. The source of Ar-41 is in good agreement with the calculated reaction rate of Ar-40 dissolved in the coolant

  8. Effects of Coolant Temperature Changes on Reactivity for Various Coolants in a Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    The purpose of this study is to perform an investigation into the relative merit of various salts and salt compounds being considered for use as coolants in the liquid salt cooled very high temperature reactor platform (LS-VHTR). Most of the non-nuclear properties necessary to evaluate these salts are known, but the neutronic characteristics important to reactor core design are still in need of a more extensive examination. This report provides a two-fold approach to further this investigation. First, a list of qualifying salts is assembled based upon acceptable non-nuclear properties. Second, the effect on system reactivity for a secondary system transient or an off-normal or accident condition is examined for each of these salt choices. The specific incident to be investigated is an increase in primary coolant temperature beyond normal operating parameters. In order to perform the relative merit comparison of each candidate salt, the System Temperature Coefficient of Reactivity is calculated for each candidate salt at various state points throughout the core burn history. (author)

  9. Integral nuclear power reactor with natural coolant circulation. Investigation of passive RHR system

    International Nuclear Information System (INIS)

    Samoilov, O.B.; Kuul, V.S.; Malamud, V.A.; Tarasov, G.I.

    1996-01-01

    The development of a small power (up to 240 MWe) integral PWR for nuclear co-generation power plants has been carried out. The distinctive features of this advanced reactor are: primary circuit arrangement in a single pressure vessel; natural coolant circulation; passive safety systems with self-activated control devices; use of a second (guard) vessel housing the reactor; favourable conditions for the most severe accident management. A passive steam condensing channel has been developed which is activated by the direct action of the primary circuit pressure without an automatic controlling action or manual intervention for emergency cooling of an integral reactor with an in-built pressurizer. In an emergency situation as pressure rises in the reactor a self-activated device blows out non-condensable gases from the condenser tube bundle and returns them in the steam-condensing mode of the operation with the returing primary coolant condensate into the reactor. The thermo-physical test facility is constructed and the experimental development of the steam-condensing channels is performed aiming at the verification of mathematical models for these channels operation in integral reactors both at loss-of-heat removal and LOCA accidents. (orig.)

  10. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    Science.gov (United States)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  11. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  12. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    Science.gov (United States)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  13. Experimental and numerical study of hydrodynamics of flow-accelerated corrosion in CANDU primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Supa-Amornkul, S

    2006-07-01

    In CANDU-6 reactors, the pressurised high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310{sup o}C with up to 0.30 steam voidage, turns through 90{sup o} as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations reported excessive corrosion of their outlet feeder pipes, especially over the first metre, which consists of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion (FAC). Local shear stress, which is believed to be one of the important factors contributing to FAC, was approximated in the studies with standard empirical correlations. In order to understand the hydrodynamics of the coolant in the outlet feeders, flow-visualisation studies were done at AECL and UNB. At AECL, the observations were confined to a transparent simulation of an outlet feeder bend but at UNB a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting was fabricated. The feeder consisted of a 54 mm (inside diameter) acrylic pipe with a 73{sup o} bend, connected to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outside diameter, and an outer pipe, 150 mm inside diameter, both 1.907 m long. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 0.019 m{sup 3}/s and the volume fraction of air varied from 0.05 to 0.56. In characterizing the flow in the UNB study, particular attention was paid to the patterns at the inside of the bend, where a CFD (computational fluid dynamics) code

  14. Experimental and numerical study of hydrodynamics of flow-accelerated corrosion in CANDU primary coolant

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.

    2006-01-01

    In CANDU-6 reactors, the pressurised high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310 o C with up to 0.30 steam voidage, turns through 90 o as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations reported excessive corrosion of their outlet feeder pipes, especially over the first metre, which consists of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion (FAC). Local shear stress, which is believed to be one of the important factors contributing to FAC, was approximated in the studies with standard empirical correlations. In order to understand the hydrodynamics of the coolant in the outlet feeders, flow-visualisation studies were done at AECL and UNB. At AECL, the observations were confined to a transparent simulation of an outlet feeder bend but at UNB a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting was fabricated. The feeder consisted of a 54 mm (inside diameter) acrylic pipe with a 73 o bend, connected to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outside diameter, and an outer pipe, 150 mm inside diameter, both 1.907 m long. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 0.019 m 3 /s and the volume fraction of air varied from 0.05 to 0.56. In characterizing the flow in the UNB study, particular attention was paid to the patterns at the inside of the bend, where a CFD (computational fluid dynamics) code - Fluent 6.1- had

  15. Generic study on the relation between contamination if primary coolants and occupational radiation exposure in nuclear power plants with PWR. Final report; Generische Studie zum Zusammenhang zwischen Kontamination von Primaerkreislaufmedien und beruflicher Strahlenexposition bei Kernkraftwerken mit Druckwasserreaktor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, Andreas; Bruhn, Gerd; Schneider, Sebastian [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany); Strub, Erik [Koeln Univ. (Germany)

    2016-01-15

    A generic model for the primary cooling system contamination in pressurized water reactors and the resulting radiological consequences has been developed. The functional capability was demonstrated by means of three examples concerning manipulation procedures during revision outages. Activities at the main reactor coolant pumps were studied and the influence of the coolant contamination on the resulting dose rates and collective doses were calculated. The effect of a Co-90 hot spot in a more remote area on the radiation exposure during the specific action at the reactor pumps was considered.

  16. Reactor coolant pump transportation incident

    International Nuclear Information System (INIS)

    Noce, D.

    1992-01-01

    This paper reports on an incident, which occurred on August 27, 1991, in which a Reactor Coolant Pump motor en route from Surry Power Station to Westinghouse repair facilities struck the overpass at the junction of Interstate 64 and Jefferson Avenue in Newport News, Virginia. The transport container that housed the reactor coolant pump motor failed to clear the overpass. The force of the impact dislodged the container and motor from the truck bed, and it landed on the acceleration land and road shoulder. Upon impact, the container broke open and exposed the reactor coolant pump motor. Incidental radioactively contaminated water that remained in the motor coolers drained onto the road, contaminating the aggregate as well as the underlying gravel

  17. Influence of coolant pH on corrosion of 6061 aluminum under reactor heat transfer conditions

    International Nuclear Information System (INIS)

    Pawel, S.J.; Felde, D.K.; Pawel, R.E.

    1995-10-01

    To support the design of the Advanced Neutron Source (ANS), an experimental program was conducted wherein aluminum alloy specimens were exposed at high heat fluxes to high-velocity aqueous coolants in a corrosion test loop. The aluminum alloys selected for exposure were candidate fuel cladding materials, and the loop system was constructed to emulate the primary coolant system for the proposed ANS reactor. One major result of this program has been the generation of an experimental database defining oxide film growth on 6061 aluminum alloy cladding. Additionally, a data correlation was developed from the database to permit the prediction of film growth for any reasonable thermal-hydraulic excursion. This capability was utilized effectively during the conceptual design stages of the reactor. During the course of this research, it became clear that the kinetics of film growth on the aluminum alloy specimens were sensitively dependent on the chemistry of the aqueous coolant and that relatively small deviations from the intended pH 5 operational level resulted in unexpectedly large changes in the corrosion behavior. Examination of the kinetic influences and the details of the film morphology suggested that a mechanism involving mass transport from other parts of the test loop was involved. Such a mechanism would also be expected to be active in the operating reactor. This report emphasizes the results of experiments that best illustrate the influence of the nonthermal-hydraulic parameters on film growth and presents data to show that comparatively small variations in pH near 5.0 invoke a sensitive response. Simply, for operation in the temperature and heat flux range appropriate for the ANS studies, coolant pH levels from 4.5 to 4.9 produced significantly less film growth than those from pH 5.1 to 6. A mechanism for this behavior based on the concept of treating the entire loop as an active corrosion system is presented

  18. Upper internals of PWR with coolant flow separator

    International Nuclear Information System (INIS)

    Chevereau, G.; Heuze, A.

    1989-01-01

    The upper internals for a PWR has a collecting volume for the coolant merging from the core and an apparatus for separating the flow of coolant. This apparatus has a guide for the control rods, a lower plate perforated to allow the coolant through from the core, an upper plate also perforated to allow the coolant through to the collecting volume and a peripheral binding ring joining the two plates. Each guide comprises an envelope without holes and joined perceptibly tight to the plates [fr

  19. Experiments on simulation of coolant mixing in fuel assembly head and core exit channel of WWER-440 reactor

    International Nuclear Information System (INIS)

    Kobzar, L.L; Oleksyuk, D.A.

    2006-01-01

    RRC 'Kurchatov Institute' has performed coolant mixing investigation in a head of a full-size simulator of WWER-440 fuel assembly. The experiments were focused on obtaining the data important for investigating the trends in temperature difference between the value registered by a ICIS thermocouple and the value of average temperature. The completed experiments ensure representative of configuration simulation by reproducing every construction peculiar feature of flow part of fuel assembly in the domain between the lower spacing grid and thermocouple location, and also by slightly modified fuel assembly regular elements (or analogues thereof). For the purpose of effectiveness of coolant mixing assessment within the head cross section of FA simulator, we measured coolant temperature distribution both in the place where coolant flow leaves the rod bundle simulator (in 39 data points along the cross section) and in the cross section location of regular ICIS thermocouple simulator (30 data points). The testing was conducted with pressure of (90 - 95) bar, mass coolant flow rates up to 2000 kg/(m 2 .s), temperature of coolant heating in 'hot' parts of the bundle up to 35.. and differences between coolant temperature extremes measured in rod bundle simulator outlet up to 20... Temperature fields were registered in 63 conditions that differ in coolant flow and inlet coolant temperature, electrical heating rate of FA simulator, and radial coolant distribution. In certain registered conditions we simulated coolant leakage to the space between the fuel assemblies. The received test data may be important both for investigation of dependencies between the coolant temperature in regular thermocouple location or average outlet temperature in assembly head, and for validation of CFD codes or subchannel codes (Authors)

  20. Coolant processing device for nuclear reactor

    International Nuclear Information System (INIS)

    Kizawa, Hideo; Funakoshi, Toshio; Izumoji, Yoshiaki

    1981-01-01

    Purpose: To reduce an entire facility cost by concentrating and isolating tritium accumulated in coolants, removing the tritium out of the system, and returning hydrogen gas generated at a reactor accident to a recombiner in a closed loop by the switching of a valve. Constitution: Coolant from a reactor cooling system processed by a chemical volume control system facility (CVCS) and coolant drain from various devices processed by a liquid waste disposing system facility (LWDS) are fed to a tritium isolating facility, in which they are isolated into concentrated tritium water and dilute tritium water. The concentrated tritium water is removed out of the system and stored. The dilute tritium water is reused as supply water for coolant. If an accident occurs to cause hydrogen to be generated, a closed loop is formed between the containment vessel and the recombiner, the hydrogen is recombined with oxygen in the air of the closed loop to be thus returned to water. (Kamimura, M.)

  1. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  2. Fatigue management considering LWR coolant environments

    International Nuclear Information System (INIS)

    Park, Heung Bae; Jin, Tae eun

    2000-01-01

    Design fatigue curve for structural material in the ASME Boiler and Pressure Vessel Code do not explicitly address the effects of reactor coolant environments on fatigue life. Environmentally assisted cracking (EAC) of low-alloy steels in light water reactor (LWR) coolant environments has been a concern ever since the early 1970's. And, recent fatigue test data indicate a significant decrease in fatigue lives of carbon steels, low-alloy steels and austenitic stainless steels in LWR coolant environments. For these reasons, fatigue of major components has been identified as a technical issue remaining to be resolved for life management and license renewal of nuclear power plants. In the present paper, results of recent investigations by many organizations are reviewed to provide technical justification to support the development of utility approach regarding the management of fatigue considering LWR coolant environments for the purpose of life management and license renewal of nuclear power plants. (author)

  3. Development of lead-bismuth coolant technology for nuclear device

    International Nuclear Information System (INIS)

    Kamata, Kin-ya; Kitano, Teruaki; Ono, Mikinori

    2004-01-01

    Liquid lead-bismuth is a promising material as a future fast reactor coolant or an intensive neutron source material for accelerator driven transmutation system (ADS). To develop nuclear plants and their installations using lead-bismuth coolant for practical use, both coolant technologies, inhabitation process of steels and quality control of coolant, and total operation system for liquid lead-bismuth plants are required. Based on the experience of liquid metal coolant, Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed the liquid lead-bismuth forced circulation loop and has acquired various engineering data on main components including economizer. As a result of tis operation, MES has developed key technologies of lead-bismuth coolant such as controlling of oxygen content in lead-bismuth and a purification of lead-bismuth coolant. MES participated in the national project, ''The Development of Accelerator Driven Transmutation System'', together with JAERI (Japan Atomic Energy Research Institute) and started corrosion test for beam window of ADS. (author)

  4. Tendency of nuclear pumps for PWR primary system

    International Nuclear Information System (INIS)

    Shibata, Takeshi

    1976-01-01

    At present, large PWR power stations of more than 1,000 MW are successively constructed, and the pumps used there have become large. The progress and tendency of the technical development of main pumps in primary system are described. The increase of the capacity of power stations is accomplished by increasing the circulating coolant quantity per loop or the number of loops. Same standard primary coolant pumps are employed in the plants from 500 to 1,100 MW. The type of primary coolant pumps changed from canned type to shaft seal type, and the advantages of the shaft seal type are cheap production cost, high efficiency, and the easy utilization of inertia force. The bearings and shaft seals are thermally insulated from primary coolant. As for auxiliary pumps, reciprocating filling-up pumps and centrifugal high pressure injection pumps are used for 500 MW plants, but only centrifugal pumps are used for both purposes in 800 MW plants, and in 1,100 MW plants, the pumps of both types for separate purposes and centrifugal pumps for combined purposes are installed. Horizontal or vertical pumps of same type are used as containment vessel-spraying pumps and excess heat-eliminating pumps. The type of boric acid pumps changed from canned type to mechanical seal type. (Kako, I.)

  5. Coolant degassing device for PWR type reactors

    International Nuclear Information System (INIS)

    Kita, Kaoru; Takezawa, Kazuaki; Minemoto, Masaki.

    1982-01-01

    Purpose: To efficiently decrease the rare gas concentration in primary coolants, as well as shorten the degassing time required for the periodical inspection in the waste gas processing system of a PWR type reactor. Constitution: Usual degassing method by supplying hydrogen or nitrogen to a volume control tank is replaced with a method of utilizing a degassing tower (method of flowing down processing liquid into the filled tower from above while uprising streams from the bottom of the tower thereby degassing the gases dissolved in the liquid into the steams). The degassing tower is combined with a hydrogen separator or hydrogen recombiner to constitute a waste gas processing system. (Ikeda, J.)

  6. System and method for determining coolant level and flow velocity in a nuclear reactor

    Science.gov (United States)

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  7. Method of charging instruments into liquid metal coolant

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi

    1980-01-01

    Purpose: To alleviate the thermal shock of a reactor charging machine when charging the machine into liquid metal coolant after the machine is preheated in cover gas. Method: When a reactor fueling machine reaches at the lowermost portion the position immediately above liquid metal coolant surface level, the machine is stopped moving down. The reactor fueling machine is heated at the lowermost portion by thermal radiation from the surface of the liquid metal coolant. After the machine is thus preheated in cover gas, it is again steadily moved down by a winch and charged into the liquid metal coolant. Therefore, the thermal shock of the machine becomes low when charging the machine into the liquid metal coolant to eliminate the damage and deformation at the machine. (Yoshihara, H.)

  8. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  9. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    International Nuclear Information System (INIS)

    Solyany, V.I.; Bibilashvili, Yu.K.; Sukhanov, G.I.; Pimenov, Yu.V.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-01-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness. (author)

  10. Some aspects of influence of coolant water chemistry on reliability of WWER and RBMK type fuels

    Energy Technology Data Exchange (ETDEWEB)

    Solyany, V I; Bibilashvili, Yu K; Sukhanov, G I; Pimenov, Yu V [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Neorganicheskikh Materialov, Moscow (USSR); Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow)

    1983-12-01

    In WWER and RBMK reactors now in operation a good quality of primary coolant is achieved and the required corrosion resistance of structural materials and normal irradiation conditions are ensured. Data on commercial fuel operation and clad material (Zr 1% Nb alloy) condition are briefly generalized. Some results of reactor investigations of corrosion behaviour of commercial Zr 1% Nb alloy under the condition of WWER and RBMK coolant are discussed and compared. It is established that the chemical effect of coolant on fuel cladding does not in itself limit its serviceability at design burn-ups but due to the possible processes of crud formation, corrosion (total and local), fretting-corrosion and hydriding it can influence the fuel reliability. This influence is qualitatively assessed through a rise in the clad temperature, a reduction of material plasticity and clad thickness.

  11. Reactor auxiliary cooling facility and coolant supplying method therefor

    International Nuclear Information System (INIS)

    Ando, Koji; Kinoshita, Shoichiro.

    1996-01-01

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  12. Reactor auxiliary cooling facility and coolant supplying method therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1996-06-07

    A reactor auxiliary cooling facility of the present invention comprises a coolant recycling line for recycling coolants by way of a reactor auxiliary coolant pump and a cooling load, a gravitational surge tank for supplying coolants to the coolant recycling line and a supplemental water supplying line for supplying a supply the supplemental water to the tank. Then, a pressurization-type supply water surge tank is disposed for operating the coolant recycling line upon performing an initial system performance test in parallel with the gravitational surge tank. With such a constitution, the period of time required from the start of the installation of reactor auxiliary cooling facilities to the completion of the system performance test can be shortened at a reduced cost without enlarging the scale of the facility. (T.M.)

  13. Coolant clean up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tajima, Fumio; Iwami, Hiroshi.

    1981-01-01

    Purpose: To decrease the amount of main steams and improve the plant heat efficiency by the use of condensated water as coolants for not-regenerative heat exchangers in a coolant clean up system of a nuclear reactor. Constitution: In a coolant clean up system of a nuclear reactor, a portion of condensates is transferred to the shell of a non-regenerative heat exchanger by way of a condensate pump for non-regenerative heat exchanger through a branched pipeway provided to the outlet of a condensate desalter for using the condensates as the coolants for the shell of the heat exchanger and the condensates are then returned to the inlet of a feedwater heater after the heat exchange. The branched flow rate of the condensates is controlled by the flow rate control valve mounted in the pipeway. Condensates passed through the heat exchanger and the condensates not passed through the heat exchanger are mixed and heated in a heater and then fed to the nuclear reactor. In a case where no feedwater is necessary to the nuclear reactor such as upon shutdown of the reactor, the condensates are returned by way of feedwater bypass pipeway to the condensator. By the use of the condensates as the coolants for the heat exchanger, the main steam loss can be decreased and the thermal load for the auxiliary coolant facility can be reduced. (Kawakami, Y.)

  14. Model for cobalt 60/58 deposition on primary coolant piping in a boiling water reactor

    International Nuclear Information System (INIS)

    Dehollander, W.R.

    1979-01-01

    A first principles model for deposition of radioactive metals into the corrosion films of primary coolant piping is proposed. It is shown that the predominant mechanism is the inclusion of the radioactive species such as Cobalt 60 into the spinel structure of the corrosion film during the act of active corrosion. This deposition can occupy only a defined fraction of the available plus 2 valence sites of the spinel. For cobalt ions, this ratio is roughly 4.6 x 10 -3 of the total iron sites. Since no distinction is made between Cobalt 60, Cobalt 58, and Cobalt 59 in this process, the radioactivity associated with this inclusion is a function of the ratio of the radioactive species to the nonradioactive species in the water causing the corrosion of the pipe metal. The other controlling parameter is the corrosion rate of the pipe material. This can be a function of time, for example, and it shown that freshly descaled metal when exposed to the cobalt containing water can incorporate as much as 10 x 10 -3 cobalt ions per iron atom in the initial corrosion period. This has implications for the problem of decontaminating nuclear reactor piping. Equations and selected observations are presented without reference to any specifically identified reactor or utility, so as to protect any proprietary interest

  15. Spatial distribution of nanoparticles in PWR nanofluid coolant subjected to local nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mirghaffari, Reza; Jahanfarnia, Gholamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2016-12-15

    Nanofluids have shown to be promising as an alternative for a PWR reactor coolant or as a safety system coolant to cover the core in the event of a loss of coolant accident. The nanoparticles distribution and neutronic parameters are intensively affected by the local boiling of nanofluid coolant. The main goal of this study was the physical-mathematical modeling of the nanoparticles distribution in the nucleate boiling of nanofluids within the viscous sublayer. Nanoparticles concentration, especially near the heat transfer surfaces, plays a significant role in the enhancement of thermal conductivity of nanofluids and prediction of CHF, Hide Out and Return phenomena. By solving the equation of convection-diffusion for the liquid phase near the heating surface and the bulk stream, the effect of heat flux on the distribution of nanoparticles was studied. The steady state mass conservation equations for liquids, vapors and nanoparticles were written for the flow boiling within the viscous sublayer adjacent the fuel cladding surface. The derived differential equations were discretized by the finite difference method and were solved numerically. It was found out that by increasing the surface heat flux, the concentration of nanoparticles increased.

  16. Single failure effects of reactor coolant system large bore hydraulic snubbers for Korean Standard Nuclear Power Plant

    International Nuclear Information System (INIS)

    Choi, T.S.; Park, S.H.; Sung, K.K.; Kim, T.W.; Jheon, J.H.

    1996-01-01

    A potential snubber single failure is one of the safety significances identified in General Safety Issue 113 for Large Bore Hydraulic Snubber (LBHS) dynamic qualification. This paper investigates dynamic structural effects of single failures of the steam generator and reactor coolant pump snubbers in Korean Standard Nuclear Power Plant by performing the time history dynamic analyses for the reactor coolant system under seismic and postulated pipe break events. The seismic input motions considered are the synthesized ground time histories conforming to SRP 3.7.1, and he postulated pipe break input loadings result from steam generator main seam line and feedwater line pipe breaks which govern pipe breaks remaining after applying LBB to the main coolant line and primary side ranch lines equal to and greater than 12 inch nominal pipe size

  17. Continuous surveillance of reactor coolant circuit integrity

    International Nuclear Information System (INIS)

    1986-01-01

    Continuous surveillance is important to assuring the integrity of a reactor coolant circuit. It can give pre-warning of structural degradation and indicate where off-line inspection should be focussed. These proceedings describe the state of development of several techniques which may be used. These involve measuring structural vibration, core neutron noise, acoustic emission from cracks, coolant leakage, or operating parameters such as coolant temperature and pressure. Twenty three papers have been abstracted and indexed separately for inclusion in the data base

  18. Effect of ionite decomposition products on the reactor coolant pH in a boiling-water reactor

    International Nuclear Information System (INIS)

    Bredikhin, V.Ya.; Moskvin, L.N.

    1982-01-01

    The effect of products resulting from thermal radiolysis of ionites on water-chemical regime of NPP with RBMK is considered basing on investigations conducted in a boiling type experimental reactor. Data are presented on dynamics of changes in the specific electric conductivity and pH of the coolant following destruction of ion exchange groups and ionite matrix under the effect of reactor radiation. The authors draw a conclusion that radiation destruction of ionito fine disperse suspension or high-molecular soluble compounds in the reactor are, probably, one of the main reasons for variations in pH values of the coolant at NPP in non-correction water chemical regime

  19. In-operation diagnostic system for reactor coolant pump

    International Nuclear Information System (INIS)

    Sugiyama, Mitsunobu; Hasegawa, Ichiro; Kitahara, Hiromichi; Shimamura, Kazuo; Yasuda, Chiaki; Ikeda, Yasuhiro; Kida, Yasuo.

    1996-01-01

    A reactor coolant pump (RCP) is one of the most important rotating machines in the primary loop nuclear power plants. To improve the reliability and of nuclear power plants, a new diagnostic system that enables early detection of RCP faults has been developed. This system is based on continuous monitoring of vibration and other process data. Vibration is an important indicator of mechanical faults providing information on physical phenomena such as changes in dynamic characteristics and excitation forces changes that signal failure or incipient failure. This new system features comparative vibration analysis and simulation to anticipate equipment failure. (author)

  20. Simulation of isothermal multi-phase fuel-coolant interaction using MPS method with GPU acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gou, W.; Zhang, S.; Zheng, Y. [Zhejiang Univ., Hangzhou (China). Center for Engineering and Scientific Computation

    2016-07-15

    The energetic fuel-coolant interaction (FCI) has been one of the primary safety concerns in nuclear power plants. Graphical processing unit (GPU) implementation of the moving particle semi-implicit (MPS) method is presented and used to simulate the fuel coolant interaction problem. The governing equations are discretized with the particle interaction model of MPS. Detailed implementation on single-GPU is introduced. The three-dimensional broken dam is simulated to verify the developed GPU acceleration MPS method. The proposed GPU acceleration algorithm and developed code are then used to simulate the FCI problem. As a summary of results, the developed GPU-MPS method showed a good agreement with the experimental observation and theoretical prediction.

  1. Integral forged pump casing for the primary coolant circuit of a nuclear reactor: Development in design, forging technology, and material

    International Nuclear Information System (INIS)

    Austel, W.; Korbe, H.

    1986-01-01

    Developments in the forging of large casings for primary circuit coolant pumps for light water reactors in Germany are demonstrated beginning with the multiple forging fabricated version and ending with the integral forged type. This version is the result of the joint efforts of the pump manufacturer and the forgemaster after a cost-gain evaluation and represents an optimum solution in view of its functional and economical performance and also considering the high requirements for mechanical-technological properties, including homogeneity of the material. The development from 22 NiMoCr 3 7/A 508 Class 2 to 20 MnMoNi 5 5/A 508 Class 3 and their optimization will be demonstrated. This development is based mainly on minimizing the sulfur content and on vacuum carbon deoxidation (VCD), which results in a reduction of the A-segregations, in improving fracture toughness and isotropy, and in the desired fine-grain structure

  2. Decontamination of main coolant pumps

    International Nuclear Information System (INIS)

    Roofthooft, R.

    1988-01-01

    Last year a number of main coolant pumps in Belgian nuclear power plants were decontaminated. A new method has been developed to reduce the time taken for decontamination and the volume of waste to be treated. The method comprises two phases: Oxidation with permanganate in nitric acid and dissolution in oxalic acid. The decontamination of main coolant pumps can now be achieved in less than one day. The decontamination factors attained range between 15 and 150. (orig.) [de

  3. Proposed model for fuel-coolant mixing during a core-melt accident

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1983-01-01

    If complete failure of normal and emergency coolant flow occurs in a light water reactor, fission product decay heat would eventually cause melting of the reactor fuel and cladding. The core melt may then slump into the lower plenum and later into the reactor cavity and contact residual liquid water. A model is proposed to describe the fuel-coolant mixing process upon contact. The model is compared to intermediate scale experiments being conducted at Sandia. The modelling of this mixing process will aid in understanding three important processes: (1) fuel debris sizes upon quenching in water, (2) the hydrogen source term during fuel quench, and (3) the rate of steam production. Additional observations of Sandia data indicate that the steam explosion is affected by this mixing process

  4. Cooling Characteristics of the V-1650-7 Engine. II - Effect of Coolant Conditions on Cylinder Temperatures and Heat Rejection at Several Engine Powers

    Science.gov (United States)

    Povolny, John H.; Bogdan, Louis J.; Chelko, Louis J.

    1947-01-01

    An investigation has been conducted on a V-1650-7 engine to determine the cylinder temperatures and the coolant and oil heat rejections over a range of coolant flows (50 to 200 gal/min) and oil inlet temperatures (160 to 2150 F) for two values of coolant outlet temperature (250 deg and 275 F) at each of four power conditions ranging from approximately 1100 to 2000 brake horsepower. Data were obtained for several values of block-outlet pressure at each of the two coolant outlet temperatures. A mixture of 30 percent by volume of ethylene glycol and 70-percent water was used as the coolant. The effect of varying coolant flow, coolant outlet temperature, and coolant outlet pressure over the ranges investigated on cylinder-head temperatures was small (0 deg to 25 F) whereas the effect of increasing the engine power condition from ll00 to 2000 brake horsepower was large (maximum head-temperature increase, 110 F).

  5. Identification of flow patterns by neutron noise analysis during actual coolant boiling in thin rectangular channels

    International Nuclear Information System (INIS)

    Kozma, R.; van Dam, H.; Hoogenboom, J.E.

    1992-01-01

    The primary objective of this paper is to introduce results of coolant boiling experiments in a simulated materials test reactor-type fuel assembly with plate fuel in an actual reactor environment. The experiments have been performed in the Hoger Onderwijs Reactor (HOR) research reactor at the Interfaculty Reactor Institute, Delft, The Netherlands. In the analysis, noise signals of self-powered neutron detectors located in the neighborhood of the boiling region and thermocouple in the channel wall and in the coolant are used. Flow patterns in the boiling coolant have been identified by means of analysis of probability density functions and power spectral densities of neutron noise. It is shown that boiling has an oscillating character due to partial channel blockage caused by steam slugs generated periodically between the plates. The observed phenomenon can serve as a basis for a boiling detection method in reactors with plate-type fuels

  6. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  7. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  8. Evaluation of alternate secondary (and tertiary) coolants for the molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Kelmers, A.D.; Baes, C.F.; Bettis, E.S.; Brynestad, J.; Cantor, S.; Engel, J.R.; Grimes, W.R.; McCoy, H.E.; Meyer, A.S.

    1976-04-01

    The three most promising coolant selections for an MSBR have been identified and evaluated in detail from the many coolants considered for application either as a secondary coolant in 1000-MW(e) MSBR configurations using only one coolant, or as secondary and tertiary coolants in an MSBR dual coolant configuration employing two different coolants. These are, as single secondary coolants: (1) a ternary sodium--lithium--beryllium fluoride melt; (2) the sodium fluoroborate--sodium fluoride eutectic melt, the present reference design secondary coolant. In the case of the dual coolant configuration, the preferred system is molten lithium--beryllium fluoride (Li 2 BeF 4 ) as the secondary coolant and helium gas as the tertiary coolant

  9. Analysis of multidimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1991-01-01

    The presence of parallel enclosed channels in a boiling water reactor (BWR) provides opportunities for multiple flow regimes in cocurrent and countercurrent flow under loss-of-coolant accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the steam sector test facility (SSFT), which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests an integral transients with vessel vlowdown and refill were performed. The presence of multidimensional and parallel-channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  10. Effect of tungsten-187 in primary coolant on dose rate build-up in Vandellos 2

    International Nuclear Information System (INIS)

    Fernandez Lillo, E.; Llovet, R.; Boronat, M.

    1994-01-01

    The present work proposes a relationship between the Cobalt-60 piping deposited activity and the relatively high levels of Tungsten-187 in the coolant of Vandellos 2. The conclusions of this work can be applicable to other plants, since it proposes a tool to estimate and quantify the contribution of stellite to the generation of Cobalt-60 and the radiation dose build-up. (authors). 7 figs., 6 refs

  11. An evaluation of selection criteria on primary water chemistry parameters for SMART

    International Nuclear Information System (INIS)

    Choi, B. S.; Kim, S. H.; Yun, J. H.; Bae, Y. Y.; Gee, S. G.

    2003-01-01

    The selection criteria on the primary water chemistry of SMART by comparing the chemical design features with those of the current operating PWRs is analyzed. The most essential differences in water chemistry between the PWRs and SMART reactor is characterized by the presence of boron in water. SMART is boron free reactor, and the ammonia is used as a pH reagent. In SMART reactor hydrogen gas is not added to the primary coolant, but is normally generated from the radiolysis of ammonia of the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are steady state concentrations, which depend on the decomposition/combination rate of ammonia. Ammonia chemistry in SMART reactor has many advantages in that no hydrogen gas injection is needed to control the dissolved oxygen in primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of ammonia decomposition

  12. Detection of stress corrosion cracks in reactor pressure vessel and primary coolant system anchor studs

    International Nuclear Information System (INIS)

    Light, G.M.; Joshi, N.R.

    1987-01-01

    Under Electric Power Research Institute (EPRI) contract No. 2179-2, southwest Research Institute is continuing work on the use of the cylindrically guided wave technique (CGWT) for inspecting stud bolts. Also being evaluated is the application of the CGWT to the inspection of reactor coolant pump shafts. Data have been collected for stud bolts ranging from 16 to 112 inches (40.6 to 285 cm) in length, and from 1 to 4.5 inches (2.54 to 11.4 cm) in diameter. For each bolt size, tests were conducted to determine the smallest detectable notch, the effect of thread noise, and the amount of detectable simulated corrosion. The ratio of reflected longitudinal signals to mode-converted signals was analyzed with respect to bolt diameter, bolt length, and frequency parameters. The results of these test showed the following: (1) The minimum detectable notch in the threaded region was approximately 0.05 inch (1.3 mm) for all stud bolts evaluated. (2) Thread noise could easily be detected, but the level of noise was below the minimum detectable notch signal. (3) For carbon steel, optimum transducer frequency was 5 MHz, using a transducer whose face had an impedance that matched the steel surface. (4) Simulated corrosion of 15% reduced diameter could be detected

  13. Components of the primary circuit of LWRs

    International Nuclear Information System (INIS)

    1980-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  14. Requalification of the LOFT reactor following a loss of coolant experiment (Level I)

    International Nuclear Information System (INIS)

    Cannon, J.W.

    1979-01-01

    During a Loss of Coolant Experiment (LOCE), the LOFT reactor experiences an acceleration of 10 G's and fuel cladding temperature changes at a rate of 1100 0 K/sec. These unparalleled conditions present a unique startup problem to the LOFT program: How can the integrity of the fuel be confirmed so as to minimize operation if damage has occurred. The Level I Requalification Program is designed to accomplish this. It is a progressive series of tests, designed to detect damage at the earliest possible time, and thus preclude or minimize operation if damage exists. First, fuel specialists examine the LOCE data for possible damaging conditions and the results of primary coolant sample analysis for signs of failed fuel. Second, the requalification program proceeds to a series of mechanical and physics tests

  15. On natural circulation in High Temperature Gas-Cooled Reactors and pebble bed reactors for different flow regimes and various coolant gases

    International Nuclear Information System (INIS)

    Melesed'Hospital, G.

    1983-01-01

    The use of CO 2 or N 2 (heavy gas) instead of helium during natural circulation leads to improved performance in both High Temperature Gas-Cooled Reactors (HTGR) and in Pebble Bed Reactors (PBR). For instance, the coolant temperature rise corresponding to a coolant pressure level and a rate of afterheat removal could be only 18% with CO 2 as compared to He, for laminar flow in HTGR; this value would be 40% in PBR. There is less difference between HTGR and PBR for turbulent flows; CO 2 is found to be always better than N 2 . These types of results derived from relationships between coolant properties, coolant flow, temperature rise, pressure, afterheat levels and core geometry, are obtained for HTGR and PBR for various flow regimes, both within the core and in the primary loop

  16. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S; Ghosh, J K [Bhabha Atomic Research Centre, Bombay (India). Radiometallurgy Div.; Patel, R J [Bhabha Atomic Research Centre, Mumbai (India). Refuelling Technology Division

    1994-12-31

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs.

  17. On line monitoring of temperatures of coolant channels by thermal imaging in a laboratory set-up fabricated for the detection of leakage of coolants

    International Nuclear Information System (INIS)

    Mukherjee, S.; Ghosh, J.K.; Patel, R.J.

    1994-01-01

    Leakage from coolant channels in Pressurised Heavy Water Reactors (PHWR) increases the temperatures of the faulty channels. Measurement of temperatures of the coolant channels is, therefore, one way to detect the leaking channel. Thermal imaging technique offers a unique means for this detection providing a fast, non-contact, on-line measurement. An experiment was carried out for the detection of leakage of coolants through the seal plugs of the coolant channels in PHWR using an experimental setup under the simulated conditions of temperature and pressure of the coolant channels inside the reactor and using an infrared imaging system. The experimental details and the observations have been presented. 7 figs

  18. Analysis of small break loss of coolant accident for Chinese CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of); Cilier, Anthonie [North-West University, Mahikeng (South Africa); Poc, Li-chi Cliff [Micro-Simulation Technology, Montville (United States)

    2016-05-15

    This research analyses the small break loss of coolant accident (LOCA) on a Chinese CPR1000 type reactor. LOCA accident is used as benchmark for the PCTRAN/CPR1000 code by comparing the effects and results to the Manshaan FSAR accident analysis. LOCA is a design basis accident in which a guillotine break is postulated to occur in one of the cold legs of a pressurized water reactor (PWR). Consequently, the primary system pressure would drop and almost all the reactor coolant would be discharged into the reactor containment. The drop in pressure would activate the reactor protection system and the reactor would trip. The simulation of a 3-inch small break loss of coolant accident using the PCTRAN/CPR1000 has revealed this code's effectiveness as well as weaknesses in specific simulation applications. The code has the ability to run at 16 times real time and produce very accurate results. The results are consistently producing the same trends as licensed codes used in Safety Assessment Reports. It is however able to produce these results in a fraction of the time and also provides a whole plant simulation coupling the various thermal, hydraulic, chemical and neutronic systems together with a plant specific control system.

  19. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level

  20. Apparatus for controlling coolant level in a liquid-metal-cooled nuclear reactor

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    A liquid-metal-cooled fast-breeder reactor which has a thermal liner spaced inwardly of the pressure vessel and includes means for passing bypass coolant through the annulus between the thermal liner and the pressure vessel to insulate the pressure vessel from hot outlet coolant includes control ports in the thermal liner a short distance below the normal operating coolant level in the reactor and an overflow nozzle in the pressure vessel below the control ports connected to an overflow line including a portion at an elevation such that overflow coolant flow is established when the coolant level in the reactor is above the top of the coolant ports. When no makeup coolant is added, bypass flow is inwardly through the control ports and there is no overflow; when makeup coolant is being added, coolant flow through the overflow line will maintain the coolant level.

  1. Simulation of fuel dispersion in the MYRRHA-FASTEF primary coolant with CFD and SIMMER-IV

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, Sophia, E-mail: sophia.buckingham@vki.ac.be [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Eboli, Marica [University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Moreau, Vincent [CRS4, Science and Technology Park Polaris – Piscina Manna, 09010 Pula (Italy); Van Tichelen, Katrien [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2015-12-15

    Highlights: • A comparison between CFD and system codes applied to long-term dispersion of fuel particles inside the MYRRHA reactor is proposed. • Important accumulations at the free-surface level are to be expected. • The risk of core blockage should not be neglected. • Numerical approach and modeling assumptions have a strong influence on the simulation results and accuracy. - Abstract: The objective of this work is to assess the behavior of fuel redistribution in heavy liquid metal nuclear systems under fuel pin failure conditions. Two different modeling approaches are considered using Computational Fluid Dynamics (CFD) codes and a system code, applied to the MYRRHA facility primary coolant loop version 1.4. Two different CFD models are constructed: the first is a single-phase steady model prepared in ANSYS Fluent, while the second is a two-phase model based on the volume of fluid (VOF) method in STARCCM+ to capture the upper free-surface dynamics. Both use a Lagrangian tracking approach with oneway coupling to follow the particles throughout the reactor. The system code SIMMER-IV is used for the third model, without neutronic coupling. Although limited regarding the fluid dynamic aspects compared to the CFD codes, comparisons of particle distributions highlight strong similarities despite quantitative discrepancies in the size of fuel accumulations. These disparities should be taken into account while performing the safety analysis of nuclear systems and developing strategies for accident mitigation.

  2. A device for monitoring the coolant in a nuclear reactor tank

    International Nuclear Information System (INIS)

    Smith, R.D.

    1984-01-01

    The invention deals with a gamma thermometer where the gamma absorber (stainless steel) is in heat conducting connection with an external casing located in the coolant in a reactor tank. A heat sink for the gamma absorber heated by gamma irradiation from reactor fuel is thereby established. The most sensitive joint in the thermocouple of the gamma thermometer is mounted vertically above the other joint. A differential voltage with a certain polarity will be generated between the two joints during uniform cooling of the external casing. If the coolant falls to a level under the most sensitive joint, the resulting polarity change can be utilized for the activation of alarm systems. The same gamma thermometer may simultaneously be used as a sensor for measurement of local power distribution

  3. Coolant cleanup system for BWR type reactor

    International Nuclear Information System (INIS)

    Kinoshita, Shoichiro; Araki, Hidefumi.

    1993-01-01

    The cleanup system of the present invention removes impurity ions and floating materials accumulated in a reactor during evaporation of coolants in the nuclear reactor. That is, coolants pass pipelines from a pressure vessel using pressure difference between a high pressure in the pressure vessel and a low pressure at the upstream of a condensate filtration/desalting device of a condensate/feed water system as a driving source, during which cations and floating materials are removed in a high temperature filtration/desalting device and coolants flow into the condensate/feedwater system. Impurities containing anions are removed here by the condensates filtration/desalting device. Then, they return to the pressure vessel while pressurized and heated by a condensate pump, a feed water pump and a feed water heater. At least pumps, a heat exchanger for heating, a filtration/desalting device for removing anions and pipelines connecting them used exclusively for the coolant cleanup system are no more necessary. (I.S.)

  4. Analysis of LOFT loss-of-coolant experiments L2-2, L2-3, and L3-0

    International Nuclear Information System (INIS)

    Leach, L.P.; Linebarger, J.H.

    1979-01-01

    A summary of results from Loss-of-Coolant Experiments (LOCE) L2-2, L2-3, and L3-0, conducted in the Loss-of-Fluid Test (LOFT) facility, and conclusions from posttest analyses of the experimental data are presented. LOCEs L2-2 and L2-3 were nuclear large break experiments and were dominated by a core-wide fuel rod cladding rewet, which limited the maximum fuel temperature. Analytical models only conservatively predicted the measured fuel rod temperatures and will require improvements to provide best estimate predictions in this area. Analysis of a large commercial pressurized water reactor (PWR) indicates that the cladding rewet observed in LOFT is also likely to occur in a large PWR, and that, therefore, safety analysis calculations of large loss-of-coolant accidents (LOCA) are more conservative than previously thought. LOCE L3-0 was an isothermal small break (top of pressurizer) experiment and illustrated that the pressurizer fills after the primary system fluid saturates someplace other than the pressurizer itself, that the indicated pressurizer level is higher than the actual level, and that additional model development and assessment work is necessary in order to predict small LOCAs as accurately as large LOCAs

  5. The experimental definition of the acoustic standing wave series shapes, formed in the coolant of the primary circuit of VVER-440 type reactor

    International Nuclear Information System (INIS)

    Bulavin, V.V.; Pavelko, V.I.

    1995-01-01

    On the basis of pressure fluctuation measurements in some primary circuit loops at 2 nd Unit of Kola NPP with VVER-440 type reactors, the shapes of acoustic standing waves (ASW) were determined at frequencies corresponding to four minimal oscillation eigenfrequencies in the primary circuit coolant. On identification of the ASW modes and properties, experimental results based on six circulating loops in symmetric arrangement allowed determination of the three-dimensional space structure of the wave nodes and antinodes inside and outside of the reactor vessel (RV). As part of this analysis, the geometric features of the primary circuit that caused the formation of these standing waves were identified. Differences in each ASW shape were shown to cause different individual effects on the neutron field in the reactor core and on fuel assembly vibration. This has been partially confirmed by ex-core neutron ionization chamber noise analysis. One type of ASW, possessing an antinode inside the RV, can be used for measurement of the pressure coefficient of reactivity. However, this must be done with care to avoid the potential for incorrect results in some cases. The results presented in this paper can be readily extended to other VVER type reactors with both odd and even number of loops. (author)

  6. Real-time reactor coolant system pressure/temperature limit system

    International Nuclear Information System (INIS)

    Newton, D.G.; Schemmel, R.R.; Van Scooter, W.E. Jr.

    1991-01-01

    This patent describes an system, used in controlling the operating of a nuclear reactor coolant system, which automatically calculates and displays allowable reactor coolant system pressure/temperature limits within the nuclear reactor coolant system based upon real-time inputs. It comprises: means for producing signals representative of real-time operating parameters of the nuclear reactor cooling system; means for developing pressure and temperature limits relating the real-time operating parameters of the nuclear reactor coolant system, for normal and emergency operation thereof; means for processing the signals representative of real-time operating parameters of the nuclear reactor coolant system to perform calculations of a best estimate of signals, check manual inputs against permissible valves and test data acquisition hardware for validity and over/under range; and means for comparing the representative signals with limits for the real-time operating parameters to produce a signal for a real-time display of the pressure and temperature limits and of the real-time operating parameters use an operator in controlling the operation of the nuclear reactor coolant system

  7. Dynamic Analysis of Coolant Channel and Its Internals of Indian 540 MWe PHWR Reactor

    Directory of Open Access Journals (Sweden)

    A. Rama Rao

    2008-04-01

    Full Text Available The horizontal coolant channel is one of the important parts of primary heat transport system in PHWR type of reactors. There are in all 392 channels in the core of Indian 540 MWe reactor. Each channel houses 13 natural uranium fuel bundles and shielding and sealing plugs one each on either side of the channel. The heavy water coolant flows through the coolant channel and carries the nuclear heat to outside the core for steam generation and power production in the turbo-generator. India has commissioned one 540 MWe PHWR reactor in September 2005 and another similar unit will be going into operation very shortly. For a complete dynamic study of the channel and its internals under the influence of high coolant flow, experimental and modeling studies have been carried out. A good correlation has been achieved between the results of experimental and analytical models. The operating life of a typical coolant channel typically ranges from 10 to 15 full-power years. Towards the end of its operating life, its health monitoring becomes an important activity. Vibration diagnosis plays an important role as a tool for life management of coolant. Through the study of dynamic characteristics of the coolant channel under simulated loading condition, an attempt has been made to develop a diagnostics to monitor the health of the coolant channel over its operating life. A study has been also carried out to characterize the fuel vibration under different flow condition.

  8. Appropriate zinc addition management into PWR primary coolant after the plant long-term maintenance

    International Nuclear Information System (INIS)

    Hirose, Atsushi; Matsui, Ryo; Imamura, Haruki; Takahashi, Akira; Shimizu, Yuichi; Kogawa, Noritaka; Nagamine, Kunitaka

    2014-01-01

    Zinc addition into the PWR primary coolant is known as an effective method to reduce the radioactivity build up. The reduction effect has been confirmed by actual plant experience of the Genkai Nuclear Power Plant Unit 1 to 4 and the Sendai Nuclear Power Plant Unit 1 to 2 which are operated by Kyushu Electric Power Co. in Japan. Zinc addition is suspended at shut-down, and is resumed after heat up or arrival at full power. In usual maintenance, the period when zinc addition is not applied is short; thus it is considered that suspension of zinc addition does not have practical influence on the corrosion and the radioactivity buildup in the oxide layer of surface for the primary equipment and piping. On the other hand, in case the maintenance period is much longer, the new oxide which does not contain zinc has grown, and then the structure of the oxide layer may be changed. Therefore, it is considered that zinc addition suspension in long-term period has possibilities to deteriorate the dose reduction effect. In order to verify the effect of long-term suspension of zinc addition upon oxide layer, the lab experiment was carried out using TT690 alloy which is the constitution material of the steam generator tubes under the conditions of long-term and the subsequent resuming operations. After the experiment, the specimens were analyzed by IMA and chemical analysis. These measurement results suggest the difference of the oxide layer is little or none between long-term suspension of zinc addition and short-term suspension of zinc suspension. Hence it is considered that influence of long-term maintenance on the oxide layer is small. Furthermore, in this study, in order to evaluate the influence of the suspension of zinc addition in the operation period, specimens of oxide film formed with zinc were carried out the corrosion test in the simulated RCS condition without zinc. These measurement results indicate the effect of reduction of the activity build up will become less

  9. Decontamination of primary cooling system

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake.

    1985-01-01

    Purpose: To effectively eliminate radioactivity accumulated in pipeways, equipments, etc in primary coolant circuits of BWR type power plants by utilizing ion displacement reactions. Method: The reactor pressure vessel is connected with a feedwater pipeway, steam pipeway and a recycling pipeway. The recycling pipeway is disposed with a recycling pump. A recycling by-pass line is branched from the recycling pipeway and disposed with a recycling system heat exchanger and chemical injection point. Water is filled in the primary coolant and heated 280 0 C. Then, while maintaining water at that temperature, non-radioactive cobalt ions are injected and circulated within the system, by which radioactivity accumulated in pipeways, equipments or the likes can effectively be removed. (Horiuchi, T.)

  10. A concern about the crack propagation rate of PWSCC which obtained from the investigation on primary coolant leakage portion of the reactor vessel head in Ohi 3

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Fukumura, Takuya

    2010-01-01

    There will be some concern about the content presented in the paper entitled 'Primary Coolant Leakage Path Research of Reactor Vessel Head Penetration' published in INSS JOURNAL of 2008, which may lead to misunderstanding about the PWSCC crack propagation rate, that is, the rate written in the paper seems to be faster than those reported by the previous studies. It is considered that such misunderstanding will be due to a sentence in the abstract of the paper. Therefore, we will revise a part of the abstract and explain about the outline of the paper again. (author)

  11. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO 2 fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm 3 /s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO 2 fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%

  12. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  13. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  14. The propagation of pressure pulsations in the primary circuit of power plant A1

    International Nuclear Information System (INIS)

    Pecinka, L.

    1976-01-01

    A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)

  15. Zero waste machine coolant management strategy at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Carlson, B.; Algarra, F.; Wilburn, D.

    1998-01-01

    Machine coolants are used in machining equipment including lathes, grinders, saws and drills. The purpose of coolants is to wash away machinery debris in the form of metal fines, lubricate, and disperse heat between the part and the machine tool. An effective coolant prolongs tool life and protects against part rejection, commonly due to scoring or scorching. Traditionally, coolants have a very short effective life in the machine, often times being disposed of as frequently as once per week. The cause of coolant degradation is primarily due to the effects of bacteria, which thrive in the organic rich coolant environment. Bacteria in this environment reproduce at a logarithmic rate, destroying the coolant desirable aspects and causing potential worker health risks associated with the use of biocides to control the bacteria. The strategy described in this paper has effectively controlled bacterial activity without the use of biocides, avoided disposal of a hazardous waste, and has extended coolant life indefinitely. The Machine Coolant Management Strategy employed a combination of filtration, heavy lubricating oil removal, and aeration, which maintained the coolant peak performance without the use of biocides. In FY96, the Laboratory generated and disposed of 19,880 kg of coolants from 9 separate sites at a cost of $145K. The single largest generator was the main machine shop producing an average 14,000 kg annually. However, in FY97, the waste generation for the main machine shop dropped to 4,000 kg after the implementation of the zero waste strategy. It is expected that this value will be further reduced in FY98

  16. Primary teachers conducting inquiry projects : effects on attitudes towards teaching science and conducting inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte; van Hest, Erna G.W.C.M.; Poortman, Cindy Louise

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers’ attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of

  17. Analysis of multi-dimensional and countercurrent effects in a BWR loss-of-coolant accident

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Dix, G.E.; Alamgir, M.

    1989-01-01

    The presence of parallel enclosed channels in a BWR provides opportunities for multiple flow regimes in co-current and countercurrent flow under Loss-of-Coolant Accident (LOCA) conditions. To address and understand these phenomena, an integrated experimental and analytical study has been conducted. The primary experimental facility was the Steam Sector Test Facility (SSTF) which simulated a full scale 30deg sector of a BWR/6 reactor vessel. Both steady-state separate effects tests and integral transients with vessel blowdown and refill were performed. The present of multi-dimensional and parallel channel effects was found to be very beneficial to BWR LOCA performance. The best estimate TRAC-BWR computer code was extended as part of this study by incorporation of a phenomenological upper plenum mixing model. TRAC-BWR was applied to the analysis of these full scale experiments. Excellent predictions of phenomena and experimental trends were achieved. (orig.)

  18. Components of the LWR primary circuit. Pt. 2

    International Nuclear Information System (INIS)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 0 C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  19. The Analysis of Applying Different Coolants for Cooling Systems in the Office Building

    Directory of Open Access Journals (Sweden)

    Rasa Kanapienytė

    2011-12-01

    Full Text Available The paper analyzes air conditioning systems of different coolants on the basis of an example of a typical office building. Depending on the type of a coolant fan coil unit, active chilled beams, variable refrigerant volumes and air cooling systems were designed. The article suggests hydraulic and aerodynamic calculations and evaluates initial investments, energy expenditures and operating costs of the compared systems. Considering economic calculations, the pay-back time of the systems was assessed and the sensitivity analysis of electricity prices was carried out. The results of the conducted investigation show the most appropriate analysed system for office buildings taking into account the efficient use of electricity and initial investments.Article in Lithuanian

  20. Fuel-coolant interactions: preliminary experiments on the effect of gases dissolved in the 'coolant'

    International Nuclear Information System (INIS)

    Asher, R.C.; Davies, D.; Jones, P.G.

    1976-12-01

    A simple apparatus has been used to study fuel-coolant interactions under reasonably well controlled conditions. Preliminary experiments have used water as the 'coolant' and molten tin at 800 0 C as the 'fuel' and have investigated how the violence of the interaction is affected by dissolving gases (oxygen, nitrogen, carbon dioxide and nitrous oxide) in the water. It was found that saturating the water with carbon dioxide or nitrous oxide completely suppresses the violent interaction. Experiments in which the concentrations of these gases were varied showed that a certain critical concentration was needed; below this concentration the dissolved gas has no significant effect but above it the suppression is

  1. Fast Flux Test Facility primary sodium valves

    International Nuclear Information System (INIS)

    Rabe, G.B.; Ezra, B.C.

    1977-01-01

    The design and development of the valves used in the primary sodium coolant loop of the Fast Flux Test Facility is described. One tilting-disk check valve is used in the cold leg of the coolant loop. It is designed to limit flow reversal in the loop while maintaining a low pressure drop during forward flow. Two isolation valves are used in each coolant loop--one in the cold leg and one in the hot leg. They are of the motor-operated swinging-gate type. The design, analysis, and testing programs undertaken to develop and qualify these valves are described

  2. Nuclear reactor of pressurized liquid coolant type

    International Nuclear Information System (INIS)

    Costes, D.

    1976-01-01

    The reactor comprises a vertical concrete pressure vessel, a bell-housing having an open lower end and disposed coaxially with the interior of the pressure vessel so as to delimit therewith a space filled with gas under pressure for the thermal insulation of the internal vessel wall, a pressurizing device for putting the coolant under pressure within the bell-housing and comprising a volume of control gas in contact with a large free surface of coolant in order that an appreciable variation in volume of liquid displaced within the coolant circuit inside the bell-housing should correspond to a small variation in pressure of the control gas. 9 claims, 3 drawing figures

  3. MABEL-1. A code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1978-06-01

    The MABEL-1 code has been written to investigate the deformation, of fuel pin cladding and its effects on fuel pin temperature transients during a loss-of-coolant accident. The code considers a single fuel pin with heated fuel concentric within the cladding. The fuel pin temperature distribution is evaluated using a one-dimensional conduction model with heat transfer to the coolant represented by an input set of heat transfer coefficients. The cladding deformation is calculated using the code CANSWEL, which assumes all strain to be elastic or creep and models the creep under a multi-axial stress system by a spring/dashpot combination undergoing alternate relaxation and elastic strain. (author)

  4. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  5. Numerical investigation of the coolant mixing during fast deboration transients for VVER-440 type reactors

    International Nuclear Information System (INIS)

    Hoehne, T.; Rhode, U.

    2000-01-01

    The VVER-440 (440 MW) V-230 was considered for analyzing the flow field and mixing processes. The V-230 has no elliptical sieve plate in the lower plenum. Previously, the 3D flow distribution in the downcomer and the lower plenum of the VVER-440 reactor have been calculated by means of the CFD code CFX-4 for operational conditions. The CFX-calculations were compared with the experimental data and the analytical mixing model. In this paper, CFD calculations for the start-up of the first main coolant pump in a VVER-440 type reactor are reported about. This scenario is important in case that there is a plug of lower borated water in one of the primary coolant loops. (orig.)

  6. Steam as turbine blade coolant: Experimental data generation

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, B.; Engeda, A.; Lloyd, J.R. [Michigan State Univ., East Lansing, MI (United States)

    1995-10-01

    Steam as a coolant is a possible option to cool blades in high temperature gas turbines. However, to quantify steam as a coolant, there exists practically no experimental data. This work deals with an attempt to generate such data and with the design of an experimental setup used for the purpose. Initially, in order to guide the direction of experiments, a preliminary theoretical and empirical prediction of the expected experimental data is performed and is presented here. This initial analysis also compares the coolant properties of steam and air.

  7. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation)

    2007-07-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes.

  8. Development of additional module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Bogomazov, D.N.; Poliakov, N.

    2007-01-01

    The new special module to neutron-physic and thermal-hydraulic computer codes for coolant acoustical characteristics calculation is worked out. The Russian computer code Rainbow has been selected for joint use with a developed module. This code system provides the possibility of EFOCP (Eigen Frequencies of Oscillations of the Coolant Pressure) calculations in any coolant acoustical elements of primary circuits of NPP. EFOCP values have been calculated for transient and for stationary operating. The calculated results for nominal operating were compared with results of measured EFOCP. For example, this comparison was provided for the system: 'pressurizer + surge line' of a WWER-1000 reactor. The calculated result 0.58 Hz practically coincides with the result of measurement (0.6 Hz). The EFOCP variations in transients are also shown. The presented results are intended to be useful for NPP vibration-acoustical certification. There are no serious difficulties for using this module with other computer codes

  9. Device for preventing coolant in a reactor from being lost

    International Nuclear Information System (INIS)

    Maruyama, Hiromi; Matsumoto, Tomoyuki.

    1975-01-01

    Object: To prevent all of coolant from being lost from the core at the time of failure in rupture of pipe in a recirculation system to cool the core with the coolant remained within the reactor. Structure: A valve, which will be closed when a water level of the coolant within the core is in a level less than a predetermined level, is provided on a recirculating water outlet nozzle in a pressure vessel to thereby prevent the coolant from being lost when the pipe is broken, thus cooling the core by means of reduced-pressure boiling of coolant remained within the core and boiling due to heat, and restraining core reactivity by means of void produced at that time. (Kamimura, M.)

  10. Assessment of Loss-of-Coolant Effect on Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Won Young; Park, Joo Hwan; Kim, Bong Ghi

    2009-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. This causes the pressurized liquid coolant in the channel to void and therefore give rise to a reactivity transient in the event of a break or fault in the coolant circuit. In particular, all CANDU reactors are well known to have a positive void reactivity coefficient and thus this phenomenon may lead to a positive feedback, which can cause a large power pulse. We assess the loss-of-coolant effect by coolant void reactivity versus fuel burnup, four factor parameters for fresh fuel and equilibrium fuel, reactivity change due to the change of coolant density and reactivity change in the case of half- and full-core coolant

  11. Analysis on transient hydrodynamic characteristics of cavitation process for reactor coolant pump

    International Nuclear Information System (INIS)

    Wang Xiuli; Wang Peng; Yuan Shouqi; Zhu Rongsheng; Fu Qiang

    2014-01-01

    The reactor coolant pump hydrodynamic characteristics at different cavitation conditions were studied by using flow field analysis software ANSYS CFX, and the corresponding data were processed and analyzed by using Morlet wavelet transform and fast Fourier transform. The results show that gas content presents the law of exponential function with the pressure reduction or time increase. In the cavitation primary condition, the pulsation frequency of head for the reactor coolant pump is mainly low frequency, and the main frequency of pressure pulsation is still rotation frequency while the effect of the pressure pulsation caused by cavitation on main frequency is not obvious. With the development of cavitation, the pressure fluctuation induced by cavitation becomes more serious especially for the main frequency, secondary frequency and pulsating amplitude while the head pulsation frequency is given priority to low frequency pulse. Under serious cavitation condition, the head pulsation frequency is given priority to irregular changes of pulse high frequency, and also contains almost regular changes of low frequency. (authors)

  12. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  13. Thermodynamic Assessment of Silica Precipitation in the Primary Coolant of PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dooho; Kwon, Hyukchul; Sung, Kibang [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    Increasing silica concentration has been observed in many plants' reactor coolant system (RCS) following a refueling outage as a result of the cross contamination between the refueling cavity and the spent fuel pool. To have a better understanding of the role of silica on the fuel crud deposition, MULTEQ (MULTiple Equilibrium) calculations were performed in this study to predict high-temperature aqueous and precipitated species such as aluminum, calcium, magnesium, zinc and silica. This thermodynamic study implies that all hardness cations such as aluminum, calcium and magnesium already have precipitates with boron under current normal plant operating conditions. However, In-core boiling can increase the amount of precipitates with silica, such as CaB{sub 2}O{sub 4} and CaMg(SiO{sub 3}){sub 2}. For all cases modeled, a 1 ppm silica concentration will not result in precipitation of SiO{sub 2}.

  14. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  15. Recommended reactor coolant water chemistry requirements for WWER-1000 units with 235U higher enriched fuel

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2011-01-01

    The last decade worldwide experience of PWRs and WWERs confirms the trends for the improvement of the nuclear power industry electricity production through the implementation of high burn-up or high fuel duty, which are usually accompanied with the usage of UO 2 fuel with higher content of 235 U - 4.0% - 4.5% (5.0%). It was concluded that the onset of sub-cooled nucleate boiling (SNB) on the fuel cladding surfaces and the initial excess reactivity of the core are the primary and basic factors accompanying the implementation of uranium fuel with higher 235 U content, aiming extended fuel cycles and higher burn-up of the fuel in Pressurized Water Reactors. As main consequences of the presence of these factors the modifications of chemical / electrochemical environments of nuclear fuel cladding- and reactor coolant system- surfaces are evaluated. These conclusions are the reason for: 1) The determination of the choices of the type of fuel cladding materials in respect with their enough corrosion resistance to the specific fuel cladding environment, created by the presence of SNB; 2) The development and implementation of primary circuit water chemistry guidelines ensuring the necessary low corrosion rates of primary circuit materials and limitation of cladding deposition and out-of-core radioactivity buildup; 3) Implementation of additional neutron absorbers which allow enough decrease of the initial concentration of H 3 BO 3 in coolant, so that its neutralization will be possible with the permitted alkalising agent concentrations. In this paper the specific features of WWER-1000 units in Bulgarian Nuclear Power Plant; use of 235 U higher enriched fuel in the WWER-1000 reactors in the Kozloduy NPP; coolant water chemistry and radiochemistry plant data during the power operation period of the Kozloduy NPP Unit 5, 15 th fuel cycle; evaluation of the approaches and results by the conversion of the WWER-1000 Units at the Kozloduy NPP to the uranium fuel with 4.3% 235 U as

  16. Primary care research conducted in networks: getting down to business.

    Science.gov (United States)

    Mold, James W

    2012-01-01

    This seventh annual practice-based research theme issue of the Journal of the American Board of Family Medicine highlights primary care research conducted in practice-based research networks (PBRNs). The issue includes discussion of (1) theoretical and methodological research, (2) health care research (studies addressing primary care processes), (3) clinical research (studies addressing the impact of primary care on patients), and (4) health systems research (studies of health system issues impacting primary care including the quality improvement process). We had a noticeable increase in submissions from PBRN collaborations, that is, studies that involved multiple networks. As PBRNs cooperate to recruit larger and more diverse patient samples, greater generalizability and applicability of findings lead to improved primary care processes.

  17. RETRAN code analysis of Tsuruga-2 plant chemical volume control system (CVCS) reactor coolant leakage incident

    International Nuclear Information System (INIS)

    Kawai, Hiroshi

    2002-01-01

    In the Chemical Volume Control System (CVCS) reactor primary coolant leakage incident, which occurred in Tsuruga-2 (4-loop PWR, 3,423 MWt, 1,160 MWe) on July 12, 1999, it took about 14 hours before the leakage isolation. The delayed leakage isolation and a large amount of leakage have become a social concern. Effective procedure modification was studied. Three betterments were proposed based on a qualitative analysis to reduce the pressure and temperature of the primary loop as fast as possible by the current plant facilities while maintaining enough subcooling of the primary loop. I analyzed the incident with RETRAN code in order to quantitatively evaluate the leakage reduction when these betterments are adopted. This paper is very new because it created a typical analysis method for PWR plant behavior during plant shutdown procedure which conventional RETRAN transient analyses rarely dealt with. Also the event time is very long. To carry out this analysis successfully, I devised new models such as an Residual Heat Removal System (RHR) model etc. and simplified parts of the conventional model. Based on the analysis results, I confirmed that leakage can be reduced by about 30% by adopting these betterments. Then the Japan Atomic Power Company (JAPC) modified the operational procedure for reactor primary coolant leakage events adopting these betterments. (author)

  18. On-Line Coolant Chemistry Analysis

    International Nuclear Information System (INIS)

    LM Bachman

    2006-01-01

    Impurities in the gas coolant of the space nuclear power plant (SNPP) can provide valuable indications of problems in the reactor and an overall view of system health. By monitoring the types and amounts of these impurities, much can be implied regarding the status of the reactor plant. However, a preliminary understanding of the expected impurities is important before evaluating prospective detection and monitoring systems. Currently, a spectroscopy system is judged to hold the greatest promise for monitoring the impurities of interest in the coolant because it minimizes the number of entry and exit points to the plant and provides the ability to detect impurities down to the 1 ppm level

  19. On steady-state concentrations of ammonia and molecular hydrogen in the primary circuit of the WWER-1000 reactors

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kamakchi, S.A.

    1997-01-01

    It is shown that the MORAVA-N2 software package describes well the coolant state in the primary circuit of an actual reactor facility with the WWER-1000 during on-load operation. It permits using the package for analysis of process perturbation effect on the coolant composition. Specific feature of ammonia radiation chemistry in the primary circuit of a reactor facility with the WWER-1000, assuring the rates hydrogen concentration in the coolant with ammonia concentration variation in the coolant within wide limits, when reactor operates on power, can be mentioned by way of example, the fact being ascertained in this study

  20. Vent clearing during a simulated loss-of-coolant accident in a Mark I boiling-water reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.; McCauley, E.W.

    1978-01-01

    In this test series, drywell pressurization rate, drywell overpressure, downcomer submergence, and overall vent system loss coefficient were varied to quantify the primary load sensitivities in the pressure suppression system. Extensive tests were conducted on a unique three-dimensional 1/5 scale model of the pressure suppression system a MARK-I BWR. They were focused on the initial or air cleaning phase of a hypothetical loss of coolant accident. As a result of the complete measurement system employed including multiple high speed cameras, the logical interrelationship between measured forces, measured pressures, and the hydrodynamic phenomena observed in high speed photographic pictures were established. The quantitative values from the 1/5 scale experiments can be applied to full scale plants using established scaling laws. (author)

  1. Manufacturing and characterization of porous SiC for flow channel inserts in dual-coolant blanket designs

    International Nuclear Information System (INIS)

    Bereciartu, Ainhoa; Ordas, Nerea; Garcia-Rosales, Carmen; Morono, Alejandro; Malo, Marta; Hodgson, Eric R.; Abella, Jordi; Sedano, Luis

    2011-01-01

    SiC is the primary candidate for the flow channel inserts in dual-coolant blanket concepts. Porous SiC ceramics are attractive candidates for this non-structural application, since they can satisfy the required properties through a low cost manufacturing route, compared to SiC f /SiC. This work shows first results of the manufacturing of porous SiC ceramics prepared with different amounts of Y 2 O 3 and Al 2 O 3 as sintering additives. C powders were used as pore-formers by their burnout during oxidation after sintering. Comparison of microstructure, porosity, flexural strength, thermal and electrical conductivity and corrosion under Pb-15.7Li of porous SiC without and with sintering additives is presented. The addition of 2.5 wt.% of Y 2 O 3 and Al 2 O 3 improves the mechanical properties, and reduces the thermal and electrical conductivity down to reasonable values. Preliminary corrosion tests under Pb-15.7 Li at 500 deg. C show that the absence of a dense coating on porous SiC leads to poor corrosion behavior.

  2. Fuel-Coolant Interactions: Visualization and Mixing Measurements

    International Nuclear Information System (INIS)

    Loewen, Eric P.; Bonazza, Riccardo; Corradini, Michael L.; Johannesen, Robert E.

    2002-01-01

    Dynamic X-ray imaging of fuel-coolant interactions (FCI), including quantitative measurement of fuel-coolant volume fractions and length scales, has been accomplished with a novel imaging system at the Nuclear Safety Research Center at the University of Wisconsin, Madison. The imaging system consists of visible-light high-speed digital video, low-energy X-ray digital imaging, and high-energy X-ray digital imaging subsystems. The data provide information concerning the melt jet velocity, melt jet configuration, melt volume fractions, void fractions, and spatial and temporal quantification of premixing length scales for a model fuel-coolant system of molten lead poured into a water pool (fuel temperatures 500 to 1000 K; jet diameters 10 to 30 mm; coolant temperatures 20 to 90 deg. C). Overall results indicate that the FCI has three general regions of behavior, with the high fuel-coolant temperature region similar to what might be expected under severe accident conditions. It was observed that the melt jet leading edge has the highest void fraction and readily fragments into discrete masses, which then subsequently subdivide into smaller masses of length scales <10 mm. The intact jet penetrates <3 to 5 jet length/jet diameter before this breakup occurs into discrete masses, which continue to subdivide. Hydrodynamic instabilities can be visually identified at the leading edge and along the jet column with an interfacial region that consists of melt, vapor, and water. This interface region was observed to grow in size as the water pool temperature was increased, indicating mixing enhancement by boiling processes

  3. Performance Investigation of Automobile Radiator Operated with ZnFe2O4 Nano Fluid based Coolant

    Directory of Open Access Journals (Sweden)

    Tripathi Ajay

    2015-01-01

    Full Text Available The cooling system of an Automobile plays an important role in its performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. Water and ethylene glycol as conventional coolants have been widely used in radiators of an automotive industry for many years. These heat transfer fluids offer low thermal conductivity. With the advancement of nanotechnology, the new generation of heat transfer fluids called, “nanofluids” have been developed and researchers found that these fluids offer higher thermal conductivity compared to that of conventional coolants. This study focused on the preparation of Zinc based nanofluids (ZnFe2O4 using chemical co-precipitation method and its application in an automotive cooling system along with mixture of ethylene glycol and water (50:50. Relevant input data, nanofluids properties and empirical correlations were obtained from literatures to investigate the heat transfer enhancement of an automotive car radiator operated with nano fluid-based coolants. It was observed that, overall heat transfer coefficient and heat transfer rate in engine cooling system increased with the usage of nanofluids (with ethylene glycol the base-fluid compared to ethylene glycol (i.e. base-fluid alone. It is observed that, about 78% of heat transfer enhancement could be achieved with the addition of 1% ZnFe2O4 particles in a base fluid at the Reynolds number of 84.4x103 and 39.5x103 for air and coolant respectively

  4. Evaluation of stress histories of reactor coolant loop piping for pipe rupture prediction

    International Nuclear Information System (INIS)

    Lu, S.C.; Larder, R.A.; Ma, S.M.

    1981-01-01

    This paper describes the analyses used to evaluate stress histories in the primary coolant loop piping of a selected four-loop PNR power station. In order to make the simulation as realistic as possible, best estimates rather than conservative assumptions were considered throughout. The best estimate solution, however, was aided by a sensitivity study to assess the possible variation of outcomes resulted from uncertainties associated with these assumptions. Sources of stresses considered in the evaluation were pressure, dead weight, thermal expansion, thermal gradients through the pipe wall, residual welding, pump vibrations, and finally seismic excitations. The best estimates of pressure and thermal transient histories arising from plant operations were based on actual plant operation records supplemented by specified plant design conditions. Seismic motions were generated from response spectrum curves developed specifically for the region surrounding the plant site. Stresses due to dead weight and thermal expansion were computed from a three dimensional finite element model which used a combination of pipe, truss, and beam elements to represent the coolant loop piping, the pressure vessel, coolant pumps, steam generators, and the pressurizer. Stresses due to pressure and thermal gradients were obtained by closed form solutions. Seismic stress calculations considered the soil structure interaction, the coupling effect between the containment structure and the reactor coolant system. A time history method was employed for the seismic analysis. Calculations of residual stresses accounted for the actual heat impact, welding speed, weld preparation geometry, and pre- and post-heat treatments. Vibrational stresses due to pump operation were estimated by a dynamic analysis using existing measurements of pump vibrations. (orig./HP)

  5. Analysis of actual status of works on technology of heavy liquid metal coolants

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Orlov, Yu.I.; Storozhenko, A.N.

    2014-01-01

    Principle duties in heavy liquid metal coolant technology (HLMC) are provision of the purity of coolant and surfaces of circulation loop for maintenance of design thermohydraulic characteristics, prevention of structural materials corrosion and erosion during long service life and present-day safety precautions on different stages of reactor facility operation. For this reason, current HLMC (Pb-Bi, Pb) technology must include coolant pre-operation and charging; monitoring and regulating of coolant oxygen potential; hydrogen purification of coolant and surfaces of circulation loop from lead oxides-based slags; coolant filtration; reactor cover gas purification from coolant aerosols. The current topical problem is personnel training on the questions of HLMC technology [ru

  6. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  7. Fuel-coolant interaction-phenomena under prompt burst conditions

    International Nuclear Information System (INIS)

    Jacobs, H.; Young, M.F.; Reil, K.O.

    1979-01-01

    The Prompt Burst Energetics (PBE) experiments conducted at Sandia Laboratories are a series of in-pile tests with fresh uranium oxide or uranium carbide fuel pins in stagnant sodium. Fuel-coolant-interactions in PBE-9S (oxide/sodium system) and PBE-SG2 (carbide/sodium) have been analyzed with the MURTI parametric FCI code. The purpose is to gain insight into possible FCI scenarios in the experiments and sensitivity of results to input parameters. Results are in approximate agreement for the second (triggered) event in PBE-9S (32 MPa peak) and the initial interaction in PBE-SG2

  8. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  9. Breakup of jet and drops during premixing phase of fuel coolant interactions

    International Nuclear Information System (INIS)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  10. BWR fuel assembly bottom nozzle with one-way coolant flow valve

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    In a nuclear reactor having a flow of coolant/moderator fluid therein, at least one fuel assembly installed in the fluid flow, the fuel assembly is described comprising in combination: a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods; an outer tubular flow channel surrounding the fuel rods so as to direct the flow of coolant/moderator fluid along the fuel rods; bottom and top nozzles mounted at opposite ends of the flow channel and having an inlet and outlet respectively for allowing entry and exit of the flow of coolant/moderator fluid into and from the flow channel and along the fuel rods therein; and a coolant flow direction control device operatively disposed in the bottom nozzle so as to open the inlet thereof to the flow of coolant/moderator fluid in an inflow direction into the flow channel through the bottom nozzle inlet but close the inlet to the flow of coolant/moderator fluid from the flow channel through the bottom nozzle inlet upon reversal of coolant/moderator fluid flow from the inflow direction

  11. Coolant mixing in pressurized water reactors. Proceedings

    International Nuclear Information System (INIS)

    Hoehne, T.; Grunwald, G.; Rohde, U.

    1998-10-01

    models for the numerical solutions require additional experiments. Therefore a 1:5 scaled plexiglas model is under construction at RC Rossendorf. The model can be used variably for PWR's of KONVOI- and EPR-types including the primary loops. The measurements of the mixing effects will be performed with modern wire mesh sensors based on conductivity differences and LDA is used to measure the flow conditions. (orig.)

  12. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant

    International Nuclear Information System (INIS)

    Amiri, Ahmad; Sadri, Rad; Shanbedi, Mehdi; Ahmadi, Goodarz; Kazi, S.N.; Chew, B.T.; Zubir, Mohd Nashrul Mohd

    2015-01-01

    Highlights: • A potentially mass production method is introduced for preparing EG-treated GNP. • A promising car radiator coolant in the presence of neutral media synthesized. • Car engine can work in lower temperature via high-performance coolant. • The ratio of convective to conductive heat transfer is unique. • New economical product with high performance index is introduced. - Abstract: An electrophilic addition reaction under microwave irradiation was developed as a promising, quick and cost-effective approach to functionalize Graphene Nanoplatelets (GNP) with ethylene glycol (EG). EG-treated GNP was synthesized to reach a promising dispersibility in the water–EG media without negative effects of acid-treatment. Surface functionality groups and the morphology of chemically-functionalized GNP were characterized by the vibration spectroscopies, temperature-programmed study, and microscopic method. Despite the fact that the main structures of GNP were remained reasonably intact, characterization results consistently verified the functionalization of GNP with EG functionalities. As new kinds of high-performance engine coolant, the EG-treated GNP based water–EG coolant (GNP-WEG) was prepared and its thermo-physical and rheological properties are evaluated. In particular, the thermal conductivity, viscosity, specific heat capacity, and density of all samples were experimentally measured to evaluate the thermal performance of the GNP-WEG coolant. The data showed insignificant increases in the pressure drop at different temperatures and concentrations, low friction factor, lack of corrosive condition, and the performance index larger than 1. In addition, no momentous change in the pumping power in the presence of GNP-WEG confirmed that it can be an appropriate alternative coolant for different thermal equipment in terms of economy and performance

  13. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    International Nuclear Information System (INIS)

    Kadalev, Stoyan

    2014-01-01

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction

  14. Development of an autoclave with zirconia crystal windows for in-situ observation of sample surface under primary water conditions of pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Totsuka, Nobuo; Arioka, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Nakajima, Nobuo

    2002-09-01

    Elucidating the mechanism for primary water stress corrosion cracking (PWSCC) is important for improving the reliability of structural materials in the primary system of pressurized water reactors (PWR). For this purpose, visualization of corrosion material surface in the primary coolant environment is effective, but it was impossible because of lack of suitable window material. Yttria stabilized zirconia was newly selected as a candidate for in-situ window material in the primary coolant environment of PWR. Its sufficient corrosion resistance was proved by measuring the transmissivity of light after being immersed in the primary coolant environment. A new autoclave with two windows of yttria-stabilized zirconia was developed. The corrosion material surfaces of Alloy600 and SUS304 in the primary coolant environment were clearly observed with this autoclave. Observations of cracks generated on the surface of SUS304 specimen, suggest that its generation time depends on temperature. (author)

  15. Design of the solid target structure and the study on the coolant flow distribution in the solid target using the 2-dimensional flow analysis

    International Nuclear Information System (INIS)

    Haga, Katsuhiro; Terada, Atsuhiko; Ishikura, Shuichi; Teshigawara, Makoto; Kinoshita, Hidetaka; Kobayashi, Kaoru; Kaminaga, Masaki; Hino, Ryutaro; Susuki, Akira

    1999-11-01

    A solid target cooled by heavy water is presently under development under the Neutron Science Research Project of the Japan Atomic Energy Research Institute (JAERI). Target plates of several millimeters thickness made of heavy metal are used as the spallation target material and they are put face to face in a row with one to two millimeters gaps in between though which heavy water flows, as the coolant. Based on the design criteria regarding the target plate cooling, the volume percentage of the coolant, and the thermal stress produced in the target plates, we conducted thermal and hydraulic analysis with a one dimensional target plate model. We choosed tungsten as the target material, and decided on various target plate thicknesses. We then calculated the temperature and the thermal stress in the target plates using a two dimensional model, and confirmed the validity of the target plate thicknesses. Based on these analytical results, we proposed a target structure in which forty target plates are divided into six groups and each group is cooled using a single pass of coolant. In order to investigate the relationship between the distribution of the coolant flow, the pressure drop, and the coolant velocity, we conducted a hydraulic analysis using the general purpose hydraulic analysis code. As a result, we realized that an uniform coolant flow distribution can be achieved under a wide range of flow velocity conditions in the target plate cooling channels from 1 m/s to 10 m/s. The pressure drop along the coolant path was 0.09 MPa and 0.17 MPa when the coolant flow velocity was 5 m/s and 7 m/s respectively, which is required to cool the 1.5 MW and 2.5 MW solid targets. (author)

  16. Actively controlling coolant-cooled cold plate configuration

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  17. Reactor coolant pumps for nuclear reactors

    International Nuclear Information System (INIS)

    Harand, E.; Richter, G.; Tschoepel, G.

    1975-01-01

    A brake for the pump rotor of a main coolant pump or a shutoff member on the pump are provided in order to prevent excess speeds of the pump rotor. Such excess speeds may occur in PWR type reactors with water at a pressure below, e.g., 150 bars if there is leakage from a coolant line associated with the main coolant pump. As a brake, a centrifugal brake depending upon the pump speed or a brake ring arranged on the pump housing and acting on the pump rotor, which ring would be activated by pressure differentials in the pump, may be used. If the pressure differences between suction and pressure sockets are very small, a controlled hydraulic increase of the pressure force on the brake may also be provided. Furthermore, a turbine brake may be provided. A slide which is automatically movable in closing position along the pump rotor axis is used as a shutoff element. It is of cylindrical configuration and is arranged concentrically with the rotor axis. (DG) [de

  18. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  19. Behavior of antimony isotopes in the primary coolant of WWER-1000-type nuclear reactors in NPP Kozloduy during operation and shutdown

    International Nuclear Information System (INIS)

    Dobrevski, Ivan D.; Zaharieva, Neli N.; Minkova, Katia F.; Gerchev, Nikolay B.

    2009-01-01

    This paper focuses on the behavior of the antimony isotopes 122 Sb and 124 Sb in the coolant of the WWER reactors in the nuclear power plant Kozloduy (Bulgaria) during operation and shutdown. It is concluded that the chemical properties of their actual precursor, the isotope 121 Sb, determine the behavior of 122 Sb and 124 Sb during operation, load fluctuations, and shutdown as well as during the reactor coolant purification process. It is supposed that differences between the reactor bulk and the core fuel cladding surface chemistry as well as the presence of sub-cooled nucleate boiling at the fuel cladding may create conditions under which a local oxidizing environment may come into existence. (orig.)

  20. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  1. Analyses of Decrease in Reactor Coolant Flow Rate in SMART

    International Nuclear Information System (INIS)

    Kim, Hyung Rae; Bae, Kyoo Hwan; Choi, Suhn

    2011-01-01

    SMART is a small integral reactor, which is under development at KAERI to get the standard design approval by the end of 2011. SMART works like a pressurized light-water reactor in principle though it is more compact than large commercial reactors. SMART houses major components such as steam generators, a pressurizer, and reactor coolant pumps inside the reactor pressure vessel. Due to its compact design, SMART adopts a canned-motor type reactor coolant pump which has much smaller rotational inertia than the ones used in commercial reactors. As a consequence, the reactor coolant pump has very short coastdown time and reactor coolant flow rate decreases more severely compared to commercial reactors. The transients initiated by reduction of reactor coolant flow rate have been analyzed to ensure that SMART can be safely shutdown on such transients. The design basis events in this category are complete loss of flow, single pump locked rotor with loss of offsite power, and single pump shaft break with loss of offsite power

  2. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  3. Trace organics in AGR coolants

    International Nuclear Information System (INIS)

    Smith, R.; Green, L.O.; Johnson, P.A.V.

    1980-01-01

    Several analytical techniques have been employed in previous studies of the stable organic compounds arising from the radiolysis of methane/carbon monoxide/carbon dioxide coolants. The majority of this early information was collected from the Windscale AGR prototype. Analyses were also carried out on the liquors obtained from the WAGR humidryers. Three classes of compound were found in the liquors; aliphatic acids in the aqueous phase and methyl ketones and aromatic hydrocarbons in the oily phase. Acetic acid was found to be the predominant carboxylic acid. This paper outlines the major findings from a recent analytical survey of coolants taken over a wide range of dose rate, pressure, temperature and composition, from materials testing reactor facilities, WAGR and CAGR. (author)

  4. Comparative analysis of coolants for FBR of future nuclear power

    International Nuclear Information System (INIS)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I.

    2001-01-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR

  5. Comparative analysis of coolants for FBR of future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, G.I.; Grigoryev, O.G.; Pylchenkov, E.H.; Skorikov, D.E.; Komkova, O.I. [State Scientific Center of Russian Federation, Institute for Physics and Power Engineering named after Academician A.I. Leipusky, Kaluga Region (Russian Federation)

    2001-07-01

    Selection of a fast reactor (FR) coolant for future nuclear reactors is a complex task that has not a single solution. Safety requirements are expected to grow in the future. The requirements to FR are reconsidered. Gradual transition from the FR as a builder up of plutonium to the FR as an economically effective energy source, is taking place. Among all types of coolants viable for FR, LMC (light molten salt coolants) cover the most complete range of requirements to advanced reactors and have a complete database. Sodium and lead-bismuth coolant (LBC) are selected because there is a complete package of technologies for their handling. Heavy liquid metal coolant (HLMC), being at a disadvantage of heat transfer rate in relation to sodium, make it possible to give the inherent safety properties to the reactor and, as a result, to simplify essentially the reactor design and its safety systems. This results in capital and costs reduction. Neutronic characteristics of HLMC cooled reactors make possible to transmute their own minor actinides (MA) safely, and LBC cooled reactors are able to transmute LWR'MA with high safety characteristics. Basing on the comparison carried out, it can be concluded, that both LBC and sodium are perspective coolants for future FR.

  6. Studies on dissolution characteristics of simulated corrosion products on pressurized water reactor primary coolant loops. Pt.2: Cobalt simulated corrosion product

    International Nuclear Information System (INIS)

    Li Shan; Zhou Xianyu

    1997-01-01

    The studies on the dissolution characteristics of simulated corrosion product of cobalt on pressurized water reactor primary coolant loops in aqueous solution of citric acid, hydrogen peroxide and citric acid-hydrogen peroxide have been performed. The results show that the portion of the dissolved simulated corrosion product of cobalt in citric acid aqueous solution clearly increases with a rise in citric acid concentration and is ten times above the corresponding value of iron. The portion of the products that dissolve is the largest at pH 3.00 in the pH range of 2.33∼4.50 and at 70 degree C in the range of 60∼80 degree C. It is shown that the portion of the dissolved simulated corrosion product of cobalt in hydrogen peroxide aqueous solution is smaller than the corresponding value in citric acid, and that the portion of the dissolved simulated corrosion product of cobalt in aqueous solution of hydrogen peroxide-citric acid is larger than the corresponding value in single citric acid aqueous solution

  7. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  8. Symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries: proceedings

    International Nuclear Information System (INIS)

    2008-12-01

    The symposium is organised to bring together researchers, plant operators and regulatory agencies working in the area of operational and environmental problems associated with use of water as a coolant in power plants and other allied industries. The symposium targets chemists, biologists, environmental scientists, power plant operating engineers and plant designers working in various academic, governmental and non-governmental organisations. The major themes of the symposium are: water chemistry of coolant systems in power plants and other industries, chemistry of primary and moderator systems in nuclear power plants and research reactors, corrosion issues including Flow-Accelerated Corrosion (FAC) and its control in water coolant systems, chemistry of steam and water at elevated temperature in nuclear power plants, once through steam generator chemistry, industrial fire water systems, ion-exchange purification, innovative water treatment in power and industrial units, chemical cleaning and chemical decontamination, biofouling and biocorrosion, cooling water treatment chemicals and their environmental fate and environmental impact of thermal effluents. Papers relevant to INIS are indexed separately

  9. Knock-limited performance of several internal coolants

    Science.gov (United States)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  10. ENVIRONMENTALLY REDUCING OF COOLANTS IN METAL CUTTING

    Directory of Open Access Journals (Sweden)

    Veijo KAUPPINEN

    2012-11-01

    Full Text Available Strained environment is a global problem. In metal industries the use of coolant has become more problematic in terms of both employee health and environmental pollution. It is said that the use of coolant forms approximately 8 - 16 % of the total production costs.The traditional methods that use coolants are now obviously becoming obsolete. Hence, it is clear that using a dry cutting system has great implications for resource preservation and waste reduction. For this purpose, a new cooling system is designed for dry cutting. This paper presents the new eco-friendly cooling innovation and the benefits gained by using this method. The new cooling system relies on a unit for ionising ejected air. In order to compare the performance of using this system, cutting experiments were carried out. A series of tests were performed on a horizontal turning machine and on a horizontal machining centre.

  11. Improving Coolant Effectiveness through Drill Design Optimization in Gundrilling

    Science.gov (United States)

    Woon, K. S.; Tnay, G. L.; Rahman, M.

    2018-05-01

    Effective coolant application is essential to prevent thermo-mechanical failures of gun drills. This paper presents a novel study that enhances coolant effectiveness in evacuating chips from the cutting zone using a computational fluid dynamic (CFD) method. Drag coefficients and transport behaviour over a wide range of Reynold numbers were first established through a series of vertical drop tests. With these, a CFD model was then developed and calibrated with a set of horizontal drilling tests. Using this CFD model, critical drill geometries that lead to poor chip evacuation including the nose grind contour, coolant hole configuration and shoulder dub-off angle in commercial gun drills are identified. From this study, a new design that consists a 20° inner edge, 15° outer edge, 0° shoulder dub-off and kidney-shaped coolant channel is proposed and experimentally proven to be more superior than all other commercial designs.

  12. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5

    International Nuclear Information System (INIS)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R.

    2015-09-01

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm 2 and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  13. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  14. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  15. Low-activation lead coolant for advanced small modular NPP

    International Nuclear Information System (INIS)

    Khorasanov, G.L.; Ivanov, A.P.; Blokhin, A.I.

    2001-01-01

    The purpose of the paper is in studying perspectives of a new heavy liquid metal coolant for a small fast reactor (FR) concept. To reduce the post irradiation activity of the coolant the using of lead isotope, Pb-206, instead of natural lead, Pb-nat, is offered. In this case the accumulation of such hazardous radionuclides, as Po-210, Bi-208, Bi-207, essentially decreases. The interval of the lead-206 coolant cost which does not exceed 20% of the overall FR cost is estimated. The possibility of lead-206 obtaining for FR needs with the centrifugal separation technique is pointed out. (author)

  16. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  17. Liquid metal coolants for fusion-fission hybrid system: A neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Renato V.A.; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L., E-mail: claubia@nuclear.ufmg.br [Universidade de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany P. [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on a work already published by the UFMG Nuclear Engineering Department, it was suggested to use different coolant materials in a fusion-fission system after a fuel burnup simulation, including that one used in reference work. The goal is to compare the neutron parameters, such as the effect multiplication factor and actinide amounts in transmutation layer, for each used coolant and find the best(s) coolant material(s) to be applied in the considered system. Results indicate that the lead and lead-bismuth coolant are the most suitable choices to be applied to cool the system. (author)

  18. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  19. Description of steam condensation phenomena during the loss-of-coolant accident

    International Nuclear Information System (INIS)

    McCauley, E.W.; Holman, G.S.; Aust, E.; Furst, H.; Schwan, H.; Vollbrandt, J.

    1981-01-01

    Study of results from the full scale multivent pressure suppression experiment conducted by the GKSS Laboratory has developed an improved understanding of the dynamic, oscillatory steam condensation events and related loading functions which occur during the hypothetical loss-of-coolant accident in a boiling water nuclear reactor. Due to the unique measurements systems which combines both cinematic and digital data, qualified correlation between the dynamic physical variables and the associated two-phase thermo-hydraulic phenomena has been obtained

  20. Iron crud supply device to reactor coolant

    International Nuclear Information System (INIS)

    Baba, Takao.

    1993-01-01

    In a device for supplying iron cruds into reactor coolants in a BWR type power plant, a system in which feed water containing iron cruds is supplied to the reactor coolants after once passing through an ion exchange resin is disposed. As a result, iron cruds having characteristics similar with those of naturally occurring iron cruds in the plant are obtained and they react with ionic radioactivity, to form composite oxides. Then, iron cruds having high performance of being secured to the surface of a fuel cladding tube can be supplied to the reactor coolants, thereby enabling to greatly reduce the density of reactor water ionic radioactivity. In its turn, dose rate on the surface of pipelines can be reduced, thereby enabling to reduce operators' radiation exposure dose in the plant. Further, contamination of a condensate desalting device due to iron cruds can be prevented, and further, the density of the iron cruds supplied can easily be controlled. (N.H.)

  1. Organic coolants and their applications to fusion reactors

    International Nuclear Information System (INIS)

    Gierszewski, P.; Hollies, B.

    1986-08-01

    Organic coolants offer a unique set of characteristics for fusion applications. Their advantages include high-temperature (670 K or 400 degrees C) but low-pressure (2 MPa) operation, limited reactivity with lithium and lithium-lead, reduced corrosion and activation, good heat-transfer capabilities, no magnetohydrodynamic (MHD) effects, and an operating temperature range that extends to room temperature. The major disadvantages are decomposition and flammability. However, organic coolants have been extensively studied in Canada, including nineteen years with an operating 60-MW organic-cooled reactor. Proper attention to design and coolant chemistry controlled these potential problems to acceptable levels. This experience provides an extensive data base for design under fusion conditions. The organic fluid characteristics are described in sufficient detail to allow fusion system designers to evaluate organic coolants for specific applications. To illustrate and assess the potential applications, analyses are presented for organic-cooled blankets, first walls, high heat flux components and thermal power cycles. Designs are identified that take advantage of organic coolant features, yet have fluid decomposition related costs that are a small fraction of the overall cost of electricity. For example, organic-cooled first walls make lithium/ferritic steel blankets possible in high-field, high-surface-heat-flux tokamaks, and organic-cooled limiters (up to about 8 MW/m 2 surface heating) are a safer alternative to water cooling for liquid metal blanket concept. Organics can also be used in intermediate heat exchanger loops to provide efficient heat transfer with low reactivity and a large tritium barrier. 55 refs

  2. Leak detection device for reactor coolant

    International Nuclear Information System (INIS)

    Oshima, Koichiro.

    1990-01-01

    In a light water cooled reactor, if reactor coolants are leaked from pipelines in a pipeline chamber, activated products (N-16) are diffused together to an atmosphere in the pipeline chamber. N-16 is sucked from an extracting tube which is always sucking the atmosphere in the pipeline chamber to a sucking blower. Then, β-rays released from N-16 are monitored by a radiation monitor in a measuring chamber which is radiation-shielded from the pipeline chamber. Accordingly, since the radiation monitor can detect even slight leakage, the slight leakage of reactor coolants in the pipelines can be detected at an early stage. (I.N.)

  3. Fast instrumentation for loss of coolant accident (LOCA) experimental studies pertaining to nuclear reactors

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Sreenivas Rao, G.; Belokar, D.G.; Dolas, P.K.

    1989-01-01

    The loss of coolant accident (LOCA) which involves a breach in the pressure boundary of the primary coolant system (PCS) is one of the postulated accident conditions against which the safety of the reactor system is to be ensured. Mathematical models have been developed to analyse this kind of transients. However, because of the extremely complicated nature of the phenomena involved, it is necessary to validate the analytical models with appropriate experimental data. Many parameters are to be measured during the experiments, out of which temperature, pressure, void fraction and two-phase mass flow rate are the most important parameters. Since the phenomenon is very fast, special fast response instruments are required. This paper deals with the considerations that govern the selection of appropriate instruments and the development of suitable instruments for transient two-phase flow and void fraction measurements. The requirements of the associated fast data acquisition system are also discussed. (author). 4 figs

  4. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  5. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    National Research Council Canada - National Science Library

    Can, Levent

    2006-01-01

    .... The overall focus of this study is the build up of induced radioactivity in the coolant of metal cooled reactors as well as the evaluation of other physical and chemical properties of such coolants...

  6. Physics study of Canada deuterium uranium lattice with coolant void reactivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Su; Lee, Hyun Suk; Tak, Tae Woo; Lee, Deok Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Shin, Ho Cheol [Korea Hydro and Nuclear Power Central Research Institute (KHNP-CRI), Daejeon (Korea, Republic of)

    2017-02-15

    This study presents a coolant void reactivity analysis of Canada Deuterium Uranium (CANDU)-6 and Advanced Canada Deuterium Uranium Reactor-700 (ACR-700) fuel lattices using a Monte Carlo code. The reactivity changes when the coolant was voided were assessed in terms of the contributions of four factors and spectrum shifts. In the case of single bundle coolant voiding, the contribution of each of the four factors in the ACR-700 lattice is large in magnitude with opposite signs, and their summation becomes a negative reactivity effect in contrast to that of the CANDU-6 lattice. Unlike the coolant voiding in a single fuel bundle, the 2 x 2 checkerboard coolant voiding in the ACR-700 lattice shows a positive reactivity effect. The neutron current between the no-void and voided bundles, and the four factors of each bundle were analyzed to figure out the mechanism of the positive coolant void reactivity of the checkerboard voiding case. Through a sensitivity study of fuel enrichment, type of burnable absorber, and moderator to fuel volume ratio, a design strategy for the CANDU reactor was suggested in order to achieve a negative coolant void reactivity even for the checkerboard voiding case.

  7. Fuel-coolant interaction-phenomena under prompt burst conditions. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, H.; Young, M.F.; Reil, K.O.

    1979-01-01

    The Prompt Burst Energetics (PBE) experiments conducted at Sandia Laboratories are a series of in-pile tests with fresh uranium oxide or uranium carbide fuel pins in stagnant sodium. Fuel-coolant-interactions in PBE-9S (oxide/sodium system) and PBE-SG2 (carbide/sodium) have been analyzed with the MURTI parametric FCI code. The purpose is to gain insight into possible FCI scenarios in the experiments and sensitivity of results to input parameters. Results are in approximate agreement for the second (triggered) event in PBE-9S (32 MPa peak) and the initial interaction in PBE-SG2 (190 MPa peak).

  8. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Sims, Howard; Dickinson Shirley; Garbett, Keith

    2012-09-01

    Although 14 C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14 C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO 2 ), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14 C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14 C in reactor coolant. A simple chemical kinetic model predicts that CH 3 OH would be the initial product from radiolytic reactions of 14 C following its formation from 17 O. CH 3 OH is predicted to arise as a result of reactions of OH . with CH 4 and CH 3 , and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH 3 OH can be thermally reduced to CH 4 in PWR conditions, although formation of CO 2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH 4 is the dominant form in PWR and CO 2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14 C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12 C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble

  9. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  10. Analysis of the loss of coolant accident for LEU cores of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Khan, L.A.; Bokhari, I.H.; Raza, S.H.

    1993-12-01

    Response of LEU cores for PARR-1 to a Loss of Coolant Accident (LOCA) has been studied. It has been assumed that pool water drains out to double ended rupture of primary coolant pipe or complete shearing of an experimental beam tube. Results show that for an operating power level of 10 MW, both the first high power and equilibrium cores would enter into melting conditions if the pool drain time is less than 22 h and 11 h respectively. However, an Emergency Core Cooling System (ECCS) capable of spraying the core at flow rate of 8.3 m/sup 3/h, for the above mentioned duration, would keep the peak core temperature much below the critical value. Maximum operating power levels below which melting would not occur have been assessed to 3.4 MW and 4.8 MW, respectively, for the first high power and equilibrium cores. (author) 5 figs

  11. Evaluation of filtration and distillation methods for recycling automotive coolant

    International Nuclear Information System (INIS)

    Randall, P.M.; Gavaskar, A.R.

    1992-01-01

    Government regulations and high waste disposal cost of spent automotive coolant have driven the vehicle maintenance industry to explore on-site recycling. The USEPA in cooperation with the New Jersey Department of Environmental Protection (NJDEP) and the New Jersey Department of Transportation (NJDOT) evaluated two commercially available technologies that have potential for reducing the volume of spent automotive coolant. The objective of this study was to evaluate the quality of the recycled coolant, the pollution prevention potential, and the economic feasibility of the technologies

  12. Manufacturing and characterization of porous SiC for flow channel inserts in dual-coolant blanket designs

    Energy Technology Data Exchange (ETDEWEB)

    Bereciartu, Ainhoa [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Ordas, Nerea, E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Garcia-Rosales, Carmen [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Morono, Alejandro; Malo, Marta; Hodgson, Eric R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abella, Jordi [Institut Quimic de Sarria, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, Luis [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2011-10-15

    SiC is the primary candidate for the flow channel inserts in dual-coolant blanket concepts. Porous SiC ceramics are attractive candidates for this non-structural application, since they can satisfy the required properties through a low cost manufacturing route, compared to SiC{sub f}/SiC. This work shows first results of the manufacturing of porous SiC ceramics prepared with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering additives. C powders were used as pore-formers by their burnout during oxidation after sintering. Comparison of microstructure, porosity, flexural strength, thermal and electrical conductivity and corrosion under Pb-15.7Li of porous SiC without and with sintering additives is presented. The addition of 2.5 wt.% of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} improves the mechanical properties, and reduces the thermal and electrical conductivity down to reasonable values. Preliminary corrosion tests under Pb-15.7 Li at 500 deg. C show that the absence of a dense coating on porous SiC leads to poor corrosion behavior.

  13. Radioactive corrosion products in circuit of fast reactor loop with dissociating coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.

    1982-01-01

    The results of experimental investigation into depositions of radionuclides of corrosion origin on the surfaces of a reactor-in-pile loop facility with a dissociating coolant are presented. It is stated that the ratio of radionuclides in fixed depositions linearly decreases with decrease of the coolant temperature at the core-condenser section. The element composition of non-fixed compositions quantitatively and qualitatively differs from the composition of structural material, and it is more vividly displayed for the core-condenser section. The main mechanism of circuit contamination with radioactive corrosion products is substantiated: material corrosion in the zones of coolant phase transfer, their remove by the coolant in the core, deposition, activation and wash-out by the coolant from the core surfaces

  14. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  15. Thermal aging of primary coolant pipe steel

    International Nuclear Information System (INIS)

    Miller, M.K.; Bentley, J.; Brenner, S.S.; Spitznagel, J.A.

    1985-01-01

    The long term mechanical integrity of the pipes used to carry the primary cooling water in a pressurized water nuclear reactor is of the utmost importance for safe operation. A combined atom probe field-ion microscopy (APFIM) and transmission electron microscopy (TEM) study was performed to characterize the microstructure of this cast stainless steel and to determine the changes that occur during long-term low-temperature thermal aging. The material used in this investigation was a commercial CF 8 type stainless. The steel was examined in the as-cast, unaged condition and also after aging for 7500 h at 673K. 3 refs., 4 figs., 2 tabs

  16. Environmental radiological consequences of a loss of coolant accident

    International Nuclear Information System (INIS)

    Guimaraes, A.C.F.

    1981-01-01

    The elaboration of a calculation model to determine safety areas, named Exclusion Zone and Low Population Zone for nuclear power plants, is dealt with. These areas are determined from a radioactive doses calculation for the population living around the NPP after occurence of a postulated ' Maximum Credible Accident' (MCA). The MCA is defined as an accident with complete loss of primary coolant and consequent fusion of a substantial portion of the reactor core. In the calculations carried out, data from NPP Angra I were used and the assumptions made were conservative, to be compatible with licensing requirements. Under the most pessimistic assumption (no filters) the values of 410m and 1000m were obtained for the Exclusion Zone and Low Population Zone radii, respectivily. (Author) [pt

  17. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  18. MABEL-2: a code to analyse cladding deformation in a loss-of-coolant accident: status February 1980

    International Nuclear Information System (INIS)

    Gittus, J.H.; Haste, T.J.; Bowring, R.W.; Cooper, C.A.

    1980-02-01

    MABEL-2 calculates the deformation of a single fuel rod. This rod is surrounded by 8 other rods on a square lattice whose behaviour is specified via Input Data options. A 2-D (r,theta) conduction model is used for the fuel rod, the cladding creep is calculated from the CANSWEL-2 model and the feedback effect of clad strain on heat transfer to the coolant is obtained from subchannel analysis of the coolant passages surrounding the rod. The coding of the first version of MABEL-2 has been completed except for work to optimise the iteration convergence, minimise the running time and generally tidy up the coding. (author)

  19. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  20. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  1. Flow rate control systems for coolants for BWR type reactors

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1981-01-01

    Purpose: To increase spontaneous recycling flow rate of coolants in BWR type reactors when the water level in the reactor decreases, by communicating a downcomer with a lower plenum. Constitution: An opening is provided to the back plate disposed at the lower end of a reactor core shroud for communicating a downcomer with a lower plenum, and an ON-OFF valve actuated by an operation rod is provided to the opening. When abnormal water level or pressure in the reactor is detected by a level metal or pressure meter, the operation rod is driven to open the ON-OFF valve, whereby coolants fed from a jet pump partially flows through the opening to increase the spontaneous recycling flow rate of the coolants. This can increase the spontaneous recycling flow rate of the coolants upon spontaneous recycling operation, thereby maintaining the reactor safety and the fuel soundness. (Moriyama, K.)

  2. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  3. Preliminary design of reactor coolant pump canned motor for AC600

    International Nuclear Information System (INIS)

    Deng Shaowen

    1998-01-01

    The reactor coolant pump canned motor of AC600 PWR is the kind of shielded motors with high moment of inertia, high reliability, high efficiency and nice starting performance. The author briefly presents the main feature, design criterion and technical requirements, preliminary design, computation results and analysis of performance of AC600 reactor coolant pump canned motor, and proposes some problems to be solved for study and design of AC600 reactor coolant pump canned motor

  4. Using the coolant temperature noise for measuring the flow rate in the RBMK technological channels

    International Nuclear Information System (INIS)

    Selivanov, V.M.; Karlov, N.P.; Martynov, A.D.; Prostyakov, V.V.; Lysikov, B.V.; Kuznetsov, B.A.; Pallagi, D.; Khorani, Sh.; Khargitai, T.; Tezher, Sh.

    1983-01-01

    The problems are considered connected with the possibility of using thermometric correlation method to measure the coolant flow rate in the RBMK reactor technological channels. The main attention is paid to the study of the physical nature of the coolant temperature pulsations and to estimation of the effect of parameters of the primary thermaelectrical converter (TEC) on the results of measurements. In the process of reactor inspections made using the thermometric correlation flowmeter of a special design, the temperature noise distribution in the points of flow rate measurement is studied, the noise intensity and physical nature are determined, as well as the effect of different TEC parameters (TEC inertia and base distance between them) on the measurement accuracy. On the basis of the analysis of the effect on the results of the TEC thermal inertia measured value divergence, tausub(α) and transport time, tau sub(T), a conclusion is made on the necessity of choosing the base distance between TEC with tausub(T)>tausub(d)

  5. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant; Avaliacao da integridade de varetas combustiveis em reatores PWR a partir da analise espectrometrica da agua do primario

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Iara Arraes

    1999-02-15

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  6. Radiological impact of a loss of coolant accident at Angra 2 reactor

    International Nuclear Information System (INIS)

    Dias, W.

    1992-01-01

    A loss of coolant accident is analyzed which comprises a double ended rupture of a main primary system line. The accident sequence is described and the main assumptions as to the activity release are presented. On the basis of site specific meteorological data, the atmospheric dispersion factors are calculated using the Gaussian plume diffusion model and the doses are then determined at the boundary of the low population zone. The resulting values for the effective dose equivalent are more than one order of magnitude below that due to the average background radiation received in one year. (author)

  7. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  8. Physical model and calculation code for fuel coolant interactions

    International Nuclear Information System (INIS)

    Goldammer, H.; Kottowski, H.

    1976-01-01

    A physical model is proposed to describe fuel coolant interactions in shock-tube geometry. According to the experimental results, an interaction model which divides each cycle into three phases is proposed. The first phase is the fuel-coolant-contact, the second one is the ejection and recently of the coolant, and the third phase is the impact and fragmentation. Physical background of these phases are illustrated in the first part of this paper. Mathematical expressions of the model are exposed in the second part. A principal feature of the computational method is the consistent application of the fourier-equation throughout the whole interaction process. The results of some calculations, performed for different conditions are compiled in attached figures. (Aoki, K.)

  9. LOFT advanced densitometer for nuclear loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lassahn, G.D.; Wood, D.B.

    1979-01-01

    A ''nuclear hardened'' gamma densitometer, a device which uses radiation attenuation to measure fluid density in the presence of a background radiation field, is described. Data from the nuclear hardened gamma densitometer are acquired by time sampling the coolant fluid piping and fluid attenuated source energy spectrum. The data are used to calculate transient coolant fluid cross sectional average density to analyze transient mass flow and other thermal-hydraulic characteristics during the Loss-of-Fluid Test (LOFT) loss-of-coolant experiments. The nuclear hardened gamma densitometer uses a pulse height analysis or energy discrimination, pulse counting technique which makes separation of the gamma radiation source signal from the reactor generated gamma radiation background noise signal possible by processing discrete pulses which retain their pulse amplitude information

  10. Independent modification on water lubrication loop of radial-axial bearing of Russian reactor coolant pump

    International Nuclear Information System (INIS)

    Gu Yingbin

    2012-01-01

    Water lubrication was used for radial-axial bearings of 1391M reactor coolant pumps at both units of Tianwan Nuclear Power Plant Phase I Project, which was the first trial on large commercial pressurized water reactors in the world. As a prototype, there were inherent deficiencies leading to a series of operational events. Jiangsu Nuclear Power Corporation conducted the independent innovative technical modification to cope with the defects, and succeeded in reducing heat removal rate of the radial-axial bearings of the reactor coolant pumps, mitigating or preventing the cavitation abrasion of the bearings and improving the cooling effects. This paper illustrates the reasons of the innovative modification, the design and implementation preparation of modification program, the implementation process and evaluation of modification effect, including detailed follow-up work program. (author)

  11. Predicting the conditions under which vibroacoustic resonances with external periodic loads occur in the primary coolant circuits of VVER-based NPPs

    Science.gov (United States)

    Proskuryakov, K. N.; Fedorov, A. I.; Zaporozhets, M. V.

    2015-08-01

    The accident at the Japanese Fukushima Daiichi nuclear power plant (NPP) caused by an earthquake showed the need of taking further efforts aimed at improving the design and engineering solutions for ensuring seismic resistance of NPPs with due regard to mutual influence of the dynamic processes occurring in the NPP building structures and process systems. Resonance interaction between the vibrations of NPP equipment and coolant pressure pulsations leads to an abnormal growth of dynamic stresses in structural materials, accelerated exhaustion of equipment service life, and increased number of sudden equipment failures. The article presents the results from a combined calculation-theoretical and experimental substantiation of mutual amplification of two kinds of external periodic loads caused by rotation of the reactor coolant pump (RCP) rotor and an earthquake. The data of vibration measurements at an NPP are presented, which confirm the predicted multiple amplification of vibrations in the steam generator and RCP at a certain combination of coolant thermal-hydraulic parameters. It is shown that the vibration frequencies of the main equipment may fall in the frequency band corresponding to the maximal values in the envelope response spectra constructed on the basis of floor accelerograms. The article presents the results from prediction of conditions under which vibroacoustic resonances with external periodic loads take place, which confirm the occurrence of additional earthquake-induced multiple growth of pressure pulsation intensity in the steam generator at the 8.3 Hz frequency and additional multiple growth of vibrations of the RCP and the steam generator cold header at the 16.6 Hz frequency. It is shown that at the elastic wave frequency equal to 8.3 Hz in the coolant, resonance occurs with the frequency of forced vibrations caused by the rotation of the RCP rotor. A conclusion is drawn about the possibility of exceeding the design level of equipment vibrations

  12. Quantitative Analysis of Radionuclide for the Used Resin of the Primary Purification System in HANARO

    International Nuclear Information System (INIS)

    Lee, Mun; Kim, Myong Seop; Park, Se Il; Kim, Tae Whan; Kim, Dong Hun; Kim, Young Chil

    2005-01-01

    In HANARO, a 30 MW research reactor, the ion exchange resin has been used for the purification of the primary coolant system. The resin used in the primary coolant purification system is replaced with new one once every 3 months during 30 MW reactor operation. The extracted resin from the primary coolant purification system is temporarily stored in a shielding treatment of the reactor hall for radiation cooling. After the radiation level of resin decreases enough to be handled for the waste disposal, it is put into the waste drum, and delivered to the waste facility in KAERI. Recently, in this procedure, the quantitative analysis of radionuclide which is contained in resin is required to have more quantitative data for the disposal. Therefore, in this work, a preliminary study was performed to find a sampling method for the representation of the characteristics of radionuclide in the spent resin

  13. Experimental investigations of pressure and temperature loads on a containment after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Kanzleiter, T.F.

    1976-01-01

    For the design of an LWR containment one of the important conditions to be considered is the rapid rise of internal pressure and temperature caused by a loss-of-coolant accident (LOCA) of the primary cooling system. The phenomena occurring within a containment during a LOCA are currently investigated through experiments with a model containment. The experimental results are compared with the results of model calculations to improve the calculational methods. An experimental facility was built, consisting of a primary coolant circuit and a special model containment. The model containment, built in conventional reinforced concrete, has a diameter of 12 m, a height of 12.5 m, a capacity of 580 m 3 and is designed for an internal pressure of 6 bar. The interior is divided by concrete walls and removable partitions into several compartments, which are interconnected through openings with adjustable cross sections. By exchanging the removable partitions it is possible to modify the interior of the containment and to simulate different containment shapes. For the first experiments a PWR configuration with nine compartments has been installed. The model scales of the compartment volumes and the overflow areas are about 1 : 64 compared to the 1200 MW PWR plant Biblis A. (Auth.)

  14. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  15. Preliminary assessment of water-based nano-fluids for use as coolants in PWRs

    International Nuclear Information System (INIS)

    Jacopo Buongiorno

    2005-01-01

    Full text of publication follows: The impact of using water-based fluids with small additions (<2% vol.) of nano-sized (10-100 nm) particle populations as coolants for current and advanced PWRs is evaluated. Such 'engineered' fluids (known as nano-fluids) are attractive because the presence of the nano-particles enhances energy transport considerably. As a result, nano-fluids are known to have (i) higher thermal conductivity than water (up to 20% depending on nano-particle material, size and volumetric fraction), (ii) higher heat transfer coefficients (up to 40%), (iii) higher CHF (up to 300% in pool boiling), and (iv) comparable pressure drop. Furthermore, nano-fluids appear to be very stable suspensions with little or no sedimentation, because of the small size of the dispersed particles and their typically low volumetric fractions. The ultimate objective of this work is to assess whether existing PWRs could be retro-fitted with a water-based nano-fluid coolant, to increase safety margins, reduce stored energy, and/or allow for power up-rates. Also, advanced PWRs could be designed with nano-fluids. The linear heat generation rate in PWRs is limited by a) fuel centerline melting, b) cladding overheating (CHF), and c) stored energy release following a large-break LOCA. Mechanisms b) and c) are usually the most limiting. For given geometry and linear power, it is obvious that the core with the nano-fluid coolant will have higher margins to CHF and LOCA limits. Conversely, for given margins, a higher linear power can be accommodated by the nano-fluid-cooled core. Standard thermal-hydraulic models for the PWR hot fuel pin (including a RELAP model for the LOCA) have been used to quantify the benefit of using nano-fluid coolants on the performance of a PWR. (author)

  16. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  17. Components of the LWR primary circuit. Pt. 2. Design, construction and calculation. Draft

    International Nuclear Information System (INIS)

    1995-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400 deg C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives. (orig.) [de

  18. Modular Porous Plate Sublimator /MPPS/ requires only water supply for coolant

    Science.gov (United States)

    Rathbun, R. J.

    1966-01-01

    Modular porous plate sublimators, provided for each location where heat must be dissipated, conserve the battery power of a space vehicle by eliminating the coolant pump. The sublimator requires only a water supply for coolant.

  19. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  20. Method of injecting iron ion into reactor coolant

    International Nuclear Information System (INIS)

    Ito, Kazuyuki; Sawa, Toshio; Nishino, Yoshitaka; Adachi, Tetsuro; Osumi, Katsumi.

    1988-01-01

    Purpose: To form iron ions stably and inject them into nuclear reactor coolants with no substantial degradation of the severe water quality conditions for reactor coolants. Method: Iron ions are formed by spontaneous corrosion of iron type materials and electroconductivity is increased with the iron ions. Then, the liquids are introduced into an electrolysis vessel using iron type material as electrodes and, thereafter, incorporation of newly added ions other than the iron ions are prevented by supplying electric current. Further, by retaining the iron type material in the packing vessel by the magnetic force therein, only the iron ions are flow out substantially from the packing vessel while preventing the discharge of iron type materials per se or solid corrosion products and then introduced into the electrolysis vessel. Powdery or granular pure iron or carbon steel is used as the iron type material. Thus, iron ions and hydroxides thereof can be injected into coolants by using reactor water at low electroconductivity and incapable of electrolysis. (Kamimura, M.)

  1. Labelling Of Coolant Flow Anomaly Using Fractal Structure

    International Nuclear Information System (INIS)

    Djainal, Djen Djen

    1996-01-01

    This research deals with the instrumentation of the detection and characterization of vertical two-phase flow coolant. This type of work is particularly intended to find alternative method for the detection and identification of noise in vertical two-phase flow in a nuclear reactor environment. Various new methods have been introduced in the past few years, an attempt to developed an objective indicator off low patterns. One of new method is Fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. In the present work, Fractal analysis was applied to analyze simulated boiling coolant signal. This simulated signals were built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both are characterized by their void fractions. In the case of uni modal -PDF signals, the difference between these modes is relatively small. On other hand, bimodal -PDF signals have relative large range. In this research, Fractal dimension can indicate the characters of that signals simulation

  2. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  3. Loss of coolant acident analyses on Osiris research reactor using the RELAP5 code

    International Nuclear Information System (INIS)

    Soares, Humberto Vitor; Costa, Antonella Lombardi; Lima, Claubia Pereira Bezerra; Veloso, Maria Auxiliadora Fortini

    2011-01-01

    RELAP5/MOD 3.3 code is widely used for thermal hydraulic studies of commercial nuclear power plants. However, several current investigations have shown that RELAP5 code can also be applied for thermal hydraulic analysis of nuclear research systems with good predictions. In this paper, a nodalization of the core and the most important components of the primary cooling system of the OSIRIS reactor developed for RELAP5 thermal hydraulic code are presented as well as results of steady state and transient simulations. OSIRIS has thermal power of 70 MW and it is an open pool type research reactor moderated and cooled by water. The OSIRIS reactor characteristics have been used as a base for the development of a model for the Multipurpose Brazilian Reactor (RMB). The aim of the present work is to investigate the behavior of the core during a loss of coolant accident and the possible damage of the fuel elements due an inadequate heat removal. Although the core coolant reached the saturation point due the large break, the fuel element conditions were out of the damage zone. (author)

  4. Evaluation of specific activity in the primary circuit of SMART-P

    International Nuclear Information System (INIS)

    Kim, Ah Young; Choi, Byung Seon; Kim, Seong Hoon; Yoon, Ju Hyeon; Zee, Sung Qunn

    2005-01-01

    SMART-P is a soluble boron free reactor, and the ammonia is used as a pH reagent. The titanium alloy, which has a high corrosion resistance, is chosen as a steam generator tube material. Despite these design features to achieve the corrosion reduction, it is expected that SMART-P exhibits a relatively high specific activity in the coolant due to the lack of purification during the power operation. The main reason for the high specific activity is the activation and transportation of the corrosion products that released from the primary circuit surfaces. The objective of this work is to analyze the corrosion product activity in the primary circuit of SMART-P using a multi-region model, KORA. This model, which is incorporated with the mass and activity transport between the dissolved corrosion products in the coolant and the surface, describes the specific activity of corrosion products in coolant and on the surfaces according to the operation modes

  5. THYDE-B1/MOD1: a computer code for analysis of small-break loss-of-coolant accident of boiling water reactors

    International Nuclear Information System (INIS)

    Muramatsu, Ken; Akimoto, Masayuki

    1982-08-01

    THYDE-B1/MOD1 is a computer code to analyze thermo-hydraulic transients of the reactor cooling system of a BWR, mainly during a small-break loss-of-coolant accidnet (SB-LOCA) with a special emphasis on the behavior of pressure and mixture level in the pressure vessel. The coolant behavior is simulated with a volume-and-junction method based on assumptions of thermal equilibrium and homogeneous conditions for two-phase flow. A characteristic feature of this code is a three-region representation of the state of the coolant in a control volume, in which three regions, i.e., subcooled liquid, saturated mixture and saturated steam regions are allowed to exist. The regions are separated by moving boundaries, tracked by mass and energy balances for each region. The interior of the pressure vessel is represented by two volumes with three regions: one for inside of the shroud and the other for outside, while other portions of the system are treated with homogeneous model. This method, although it seems to be very simple, has been verified to be adequate for cases of BWR SB-LOCAs in which the hydraulic transient is relatively slow and the cooling of the core strongly depends on the mixture level behavior in the vessel. In order to simulate the system behavior, THYDE-B1 is provided with analytical models for reactor kinetics, heat generation and conduction in fuel rods and structures, heat transfer between coolant and solid surfaces, coolant injection systems, breaks and discharge systems, jet pumps, recirculation pumps, and so on. The verification of the code has been conducted. A good predictability of the code has been indicated through the comparison of calculated results with experimental data provided by ROSA-III small-break tests. This report presents the analytical models, solution method, and input data requirements of the THYDE-B1/MOD1 code. (author)

  6. The use of Zeolite into the controlling of Lithium concentration in the PWR primary water coolant (I) : the influences of Ca, Mg and Boric Acid concentration into the exchanges capacity of Ammonium Zeolite

    International Nuclear Information System (INIS)

    Sumijanto; Siti-Amini

    1996-01-01

    In this first part of research, the influences of calsium, magnesium and boric acid concentrations to the zeolite uptake of lithium in the PWR primary water coolant have been studied. The ammonium form of zeolite was found by modification of the natural zeolite which was originated from Bayah. The results showed that the boric acid concentration in the normal condition of PWR operation absolutely did not affects the lithium uptake. The Li uptake efficiency was influenced by the presence of Ca and Mg ions in order to the presence of cations competition which was dominated by Ca ion

  7. Analysis and development of the automated emergency algorithm to control primary to secondary LOCA for SUNPP safety upgrading

    International Nuclear Information System (INIS)

    Kim, V.; Kuznetsov, V.; Balakan, G.; Gromov, G.; Krushynsky, A.; Sholomitsky, S.; Lola, I.

    2007-01-01

    The paper presents the results of the study conducted to support planned modernization of the South Ukraine nuclear power plant. The objective of the analysis has been to develop the automated emergency control algorithm for primary to secondary LOCA accident for SUNPP WWER-1000 safety upgrading. According to the analyses performed in the framework of safety assesment report, given accident is the most complex for control and has the largest contribution into the core damage frequency value. This is because of initial event diagnostics is difficult, emergency control is complicated for personnel, time available for decision making and actions performing is limited with coolant inventory for make-up, probability of steam dump valves on affected steam generator non-closing after opening is high, and as a consequence containment bypass, irretrievable loss of coolant and radioactive materials release into the environment are possible. Unit design modifications are directed on expansion of safety systems capabilities to overcome given accident and to facilitate the personnel actions on emergency control. Safety systems modification according to developed algorithm will allow to simplify accident control by personnel and enable to control the ECCS discharge limiting pressure below the affected steam generator steam dump valve opening pressure, and decrease the probability of the containment bypass sequences. The analysis of the primary-to-secondary LOCA thermal-hydraulics has been conducted with RELAP5/Mod 3.2, and involved development of the dedicated analytical model, calculations of various plant response accident scenarios, conducting of plant personnel intervention analyses using full-scale simulator, development and justification of the emergency control algorithm aimed on the minimization of negative consequences of the primary-to-secondary LOCA (Authors)

  8. Impact of high-pressure coolant supply on chip formation in milling

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lakner, T.

    2017-10-01

    Machining of titanium alloys is considered as difficult, because of their high temperature strength, low thermal conductivity and low E-modulus, which contributes to high mechanical loads and high temperatures in the contact zone between tool and workpiece. The generated heat in the cutting zone can be dissipated only in a low extent. When cutting steel materials, up to 75% of the process heat is transported away by the chips, contrary to only 25% when machining titanium alloys. As a result, the cutting tool heats up, which leads to high tool wear. Therefore, machining of titanium alloys is only possible with relatively low cutting speeds. This leads to low levels of productivity for milling processes with titanium alloys. One way to increase productivity is to use more cutting edges in tools with the same diameter. However, the limiting factor of adding more cutting edges to a milling tool is the minimum size of the chip spaces, which are sufficient for a stable chip evacuation. This paper presents experimental results on the chip formation and chip size influenced by high-pressure coolant supply, which can lead to smaller chips and to smaller sizes of the chip spaces, respectively. Both influences, the pressure of the supplied coolant and the volumetric flow rate were individually examined. Alpha-beta annealed titanium TiAl6V4 was examined in relation to the reference material quenched and tempered steel 42CrMo4+QT (AISI 4140+QT). The work shows that with proper chip control due to high-pressure coolant supply in milling, the number of cutting edges on the same diameter tool can be increased, which leads to improved productivity.

  9. Babcock and Wilcox revisions to CONTEMPT, computer program for predicting containment pressure-temperature response to a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Hsii, Y.H.

    1975-01-01

    The CONTEMPT computer program predicts the pressure-temperature response of a single-volume reactor building to a loss-of-coolant accident. The analytical model used for the program is described. CONTEMPT assumes that the loss-of-coolant accident can be separated into two phases; the primary system blowdown and reactor building pressurization. The results of the blowdown analysis serve as the boundary conditions and are input to the CONTEMPT program. Thus, the containment model is only concerned with the pressure and temperature in the reactor building and the temperature distribution through the reactor building structures. The program also calculates building leakage and the effects of engineered safety features such as reactor building sprays, decay heat coolers, sump coolers, etc. 11 references. (U.S.)

  10. Dynamic response of INTOR/NET blankets after coolant tube rupture

    International Nuclear Information System (INIS)

    Klippel, H.T.

    1985-01-01

    The dynamic response of different water-cooled liquid Li 17 Pb 83 breeder blanket modules has been calculated to study the potential of these modules in case of coolant tube rupture. Numerical calculations with the code PISCES have been carried out taking into account the fluid-structure interaction and the elasto-plastic behaviour of the structural material. The results show that for inert coolant characteristics the proposed conceptual designs for NET and INTOR have sufficient resistance against coolant tube rupture but when taking into account energy release due to chemical reaction of water with LiPb-alloy up to doubling of the wall thickness has to be envisaged to guarantee structural reliability. (orig.)

  11. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  12. Standardized sampling system for reactor coolants

    International Nuclear Information System (INIS)

    Divine, J.R.; Munson, L.F.; Nelson, J.L.; McDowell, R.L.; Jankowski, M.W.

    1982-09-01

    A three-pronged approach was developed to reach the objectives of acceptable coolant sampling, assessment of occupational exposure from corrosion products, and model development for the transport and buildup of corrosion products. Emphasis is on sampler design

  13. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, Kenneth Mitchell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  14. Coolant controls of a PEM fuel cell system

    Science.gov (United States)

    Ahn, Jong-Woo; Choe, Song-Yul

    When operating the polymer electrolyte membrane (PEM) fuel cell stack, temperatures in the stack continuously change as the load current varies. The temperature directly affects the rate of chemical reactions and transport of water and reactants. Elevated temperature increases the mobility of water vapor, which reduces the ohmic over-potential in the membrane and eases removal of water produced. Adversely, the high temperature might impose thermal stress on the membrane and cathode catalyst and cause degradation. Conversely, excessive supply of coolants lowers the temperature in the stack and reduces the rate of the chemical reactions and water activity. Corresponding parasitic power dissipated at the electrical coolant pump increases and overall efficiency of the power system drops. Therefore, proper design of a control for the coolant flow plays an important role in ensuring highly reliable and efficient operations of the fuel cell system. Herein, we propose a new temperature control strategy based on a thermal circuit. The proposed thermal circuit consists of a bypass valve, a radiator with a fan, a reservoir and a coolant pump, while a blower and inlet and outlet manifolds are components of the air supply system. Classic proportional and integral (PI) controllers and a state feedback control for the thermal circuit were used in the design. In addition, the heat source term, which is dependent upon the load current, was feed-forwarded to the closed loop and the temperature effects on the air flow rate were minimized. The dynamics and performance of the designed controllers were evaluated and analyzed by computer simulations using developed dynamic fuel cell system models, where a multi-step current and an experimental current profile measured at the federal urban driving schedule (FUDS) were applied. The results show that the proposed control strategy cannot only suppress a temperature rise in the catalyst layer and prevent oxygen starvation, but also reduce the

  15. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  16. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  17. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  18. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  19. Atucha I nuclear power plant: Probabilistic safety study. Loss-of-coolant accidents

    International Nuclear Information System (INIS)

    Perez, S.S.

    1987-01-01

    The plant response to the group of events 'large coolant loss' in order to evaluate the associated risk is analyzed. The event that covers all events of similar sequence due to its evolution features, being also the most demanded, is selected as starting event. The representative event is the 'guillotine type rupture of cold primary branch'. An annual occurrence frequency of 10/year is assumed for this event. The safety systems, when the event occurs, must assure the reactor shutdown and the core cooling, creating a heat sink to remove the decay heat. The annual frequency of core meltdown due to great loss of coolant is obtained multiplying the annual frequency of the starting event by the probability of failure of involved safety systems. By means of failure trees, the following is obtained: a) probability of failure to demand of the boron injection shutdown system = 4 x 10 -2 ; b) probability of failure to demand of the high pressure safety injection = 3 x 10 -3 ; c) probability of emergency cooling system failure = 4.4 x 10 -2 . Therefore, the three possible sequences of core meltdown have the following frequencies: λ 1 = 4 x 10 -6 /year λ 2 = 3 x 10 -7 /year λ 3 = 4.4 x 10 -6 /year. (Author)

  20. Hydrodynamic problems of heavy liquid metal coolants technology in loop-type and mono-block-type reactor installations

    International Nuclear Information System (INIS)

    Orlov, Yuri I.; Efanov, Alexander D.; Martynov, Pyotr N.; Gulevsky, Valery A.; Papovyants, Albert K.; Levchenko, Yuri D.; Ulyanov, Vladimir V.

    2007-01-01

    In the report, the influence of hydrodynamics of the loop with heavy liquid metal coolants (Pb and Pb-Bi) on the realization methods and efficiency of the coolant technology for the reactor installations of loop, improved loop and mono-block type of design has been studied. The last two types of installations, as a rule, are characterized by the following features: availability of loop sections with low hydraulic head and low coolant velocities, large squares of coolant free surfaces; absence of stop and regulating valve, auxiliary pumps on the coolant pumping-over lines. Because of the different hydrodynamic conditions in the installation types, the tasks of the coolant technology have specific solutions. The description of the following procedures of coolant technology is given in the report: purification by hydrogen (purification using gas mixture containing hydrogen), regulation of dissolved oxygen concentration in coolant, coolant filtrating, control of dissolved oxygen concentration in coolant. It is shown that change of the loop design made with economic purpose and for improvement of the installation safety cause additional requirements to the procedures and apparatuses of the coolant technology realization

  1. SSYST-1. A computer code system to analyse the fuel rod behaviour during a loss of coolant accident

    International Nuclear Information System (INIS)

    Gulden, W.

    1977-08-01

    The modules of the SSYST program system allow the detailed analysis of an LWR fuel rod in the course of a postulated loss-of-coolant accident. They provide a tool for considering the interaction between the heat conduction in the fuel rod, heat transfer in the gap, fuel and cladding tube deformation, pressure in the coolant, as well as thermal and fluid dynamics in the cooling channel and for calculating the time and location of ballooning and rod failure, respectively. They can be used both to precalculate the behaviour of fuel rods during LWR accidents and in support of the design of experiments. Depending on the problem to be solved, the individual modules can be easily combined. (orig.) [de

  2. AGING MANAGMENT OF REACTOR COOLANT SYSTEM MECHANICAL COMPONENTS FOR LICENSE RENEWAL

    International Nuclear Information System (INIS)

    SUBUDHI, M.; MORANTE, R.; LEE, A.D.

    2002-01-01

    The reactor coolant system (RCS) mechanical components that require an aging management review for license renewal include the primary loop piping and associated connections to other support systems, reactor vessel, reactor vessel internals, pressurizer. steam generators, reactor coolant pumps, and all other inter-connected piping, pipe fittings, valves, and bolting. All major RCS components are located inside the reactor building. Based on the evaluation findings of recently submitted license renewal applications for pressurized water reactors, this paper presents the plant programs and/or activities proposed by the applicants to manage the effects of aging. These programs and/or activities provide reasonable assurance that the intended function(s) of these mechanical components will be maintained for the period of extended operation. The license renewal application includes identification of RCS subcomponents that are within the scope of license renewal and are vulnerable to age-related degradation when exposed to environmental and operational conditions. determination of the effects of aging on their intended safety functions. and implementation of the aging management programs and/or activities including both current and new programs. Industry-wide operating experience, including generic communication by the NRC, is part of the aging management review for the RCS components. In addition, this paper discusses time-limited aging analyses associated with neutron embrittlement of the reactor vessel beltline region and thermal fatigue

  3. Four decades of working experience of Cirus primary cooling water heat exchangers

    International Nuclear Information System (INIS)

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  4. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  5. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  6. Core dynamics analysis for reactivity insertion and loss of coolant flow tests using the HTTR

    International Nuclear Information System (INIS)

    Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki

    2007-01-01

    The High Temperature engineering Test Reactor (HTTR) is a graphite-moderated and a gas-cooled reactor with a thermal power of 30 MW and a reactor outlet coolant temperature of 950degC (SAITO, 1994). Safety demonstration tests using the HTTR are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-Temperature Gas-cooled Reactors (HTGRs) (TACHIBANA 2002) (NAKAGAWA 2004). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named ACCORD (TAKAMATSU 2006), was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We used a conventional method, namely, a one-dimensional flow channel model and reactor kinetics model with a single temperature coefficient, taking into account the temperature changes in the core. However, a slight difference between the analytical and experimental results was observed. Therefore, we have modified this code to use a model with four parallel channels and twenty temperature coefficients in the core. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results of the reactivity insertion test as well as the loss of coolant flow tests by tripping one or two out of three gas circulators. Finally, the pre-analytical result of

  7. Design and development of remotely operated coolant channel cutting machine

    International Nuclear Information System (INIS)

    Suthar, R.L.; Sinha, A.K.; Srikrishnamurty, G.

    1994-01-01

    One of the coolant tubes of Narora Atomic Power Station (NAPS) reactor needs to be removed. To remove a coolant tube, four cutting operations, (liner tube cutting, end-fitting cutting, machining of seal weld of bellow ring and finally coolant tube cutting) are required to be carried out. A remotely operated cutting machine to carry out all these operations has been designed and developed by Central Workshops. This machine is able to cut at the exact location because of numerically controlled axial and radial travel of tool. Only by changing the tool head and tool holder, same machine can be used for various types of cutting/machining operations. This report details the design, manufacture, assembly and testing work done on the machine. (author). 4 figs

  8. Nanofluid as coolant for grinding process: An overview

    Science.gov (United States)

    Kananathan, J.; Samykano, M.; Sudhakar, K.; Subramaniam, S. R.; Selavamani, S. K.; Manoj Kumar, Nallapaneni; Keng, Ngui Wai; Kadirgama, K.; Hamzah, W. A. W.; Harun, W. S. W.

    2018-04-01

    This paper reviews the recent progress and applications of nanoparticles in lubricants as a coolant (cutting fluid) for grinding process. The role of grinding machining in manufacturing and the importance of lubrication fluids during material removal are discussed. In grinding process, coolants are used to improve the surface finish, wheel wear, flush the chips and to reduce the work-piece thermal deformation. The conventional cooling technique, i.e., flood cooling delivers a large amount of fluid and mist which hazardous to the environment and humans. Industries are actively looking for possible ways to reduce the volume of coolants used in metal removing operations due to the economical and ecological impacts. Thus as an alternative, an advanced cooling technique known as Minimum Quantity Lubrication (MQL) has been introduced to the enhance the surface finish, minimize the cost, to reduce the environmental impacts and to reduce the metal cutting fluid consumptions. Nanofluid is a new-fangled class of fluids engineered by dispersing nanometre-size solid particles into base fluids such as water, lubrication oils to further improve the properties of the lubricant or coolant. In addition to advanced cooling technique review, this paper also reviews the application of various nanoparticles and their performance in grinding operations. The performance of nanoparticles related to the cutting forces, surface finish, tool wear, and temperature at the cutting zone are briefly reviewed. The study reveals that the excellent properties of the nanofluid can be beneficial in cooling and lubricating application in the manufacturing process.

  9. Numerical analysis of coolant mixing in the pressure vessel of WWER-440 type nuclear reactors

    International Nuclear Information System (INIS)

    Boros, I.; Aszodi, A.

    2003-01-01

    The precise description of the coolant mixing processes taking place in the reactor pressure vessel (RPV) of pressurized water nuclear reactors has an essential importance during power operation, as well as in case of incidental or accidental conditions. In this paper the detailed CFD model of the pressure vessel of a WWER-440 type reactor and calculations performed with this RPV model are presented. The CFD model of the pressure vessel contains all the important internal structural elements of the RPV. Sensitivity study on the effect of these elements was also carried out. Both steady-state and transient calculation were performed using the CFD code CFX-5.5.1. The results of the steady-state calculations give the so called mixing factors, i.e. the effect of each single primary loop at the core inlet. The mixing factors can be given for nominal circumstances (i.e. all main coolant pumps are working) or in case of less than six working MCPs. In order to validate the model the calculated mixing factors are compared with the values measured in the Paks NPP (Authors)

  10. Integrated Fuel-Coolant Interaction (IFCI 6.0) code

    International Nuclear Information System (INIS)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks

  11. Probabilistic analyses of failure in reactor coolant piping

    International Nuclear Information System (INIS)

    Holman, G.S.

    1984-01-01

    LLNL is performing probabilistic reliability analyses of PWR and BWR reactor coolant piping for the NRC Office of Nuclear Regulatory Research. Specifically, LLNL is estimating the probability of a double-ended guillotine break (DEGB) in the reactor coolant loop piping in PWR plants, and in the main stream, feedwater, and recirculation piping of BWR plants. In estimating the probability of DEGB, LLNL considers two causes of pipe break: pipe fracture due to the growth of cracks at welded joints (direct DEGB), and pipe rupture indirectly caused by the seismically-induced failure of critical supports or equipment (indirect DEGB)

  12. Study on severe accident induced by large break loss of coolant accident for pressureized water reactor

    International Nuclear Information System (INIS)

    Zhang Longfei; Zhang Dafa; Wang Shaoming

    2007-01-01

    Using the best estimate computer code SCDAP/RELAP5/MOD3.2 and taking US Westinghouse corporation Surry nuclear power plant as the reference object, a typical three-loop pressurized water reactor severe accident calculation model was established and 25 cm large break loss of coolant accident (LBLOCA) in cold and hot leg of primary loop induced core melt accident was analyzed. The calculated results show that core melt progression is fast and most of the core material melt and relocated to the lower plenum. The lower head of reactor pressure vessel failed at an early time and the cold leg break is more severe than the hot leg break in primary loop during LBLOCA. (authors)

  13. Components of the LWR primary circuit. Pt. 2. Komponenten des Primaerkreises von Leichtwasserreaktoren. T. 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This standard is to be applied to components made of metallic materials, operated at design temperatures of up to 673 K (400/sup 0/C). The primary circuit as the pressure containment of the reactor coolant comprises: Reactor pressure vessel (without internals), steam generator (primary loop), pressurizer, reactor coolant pump housing, interconnecting pipings between the components mentioned above and appropriate various valve and instrument casings, pipings branding from the above components and interconnecting pipings, including the appropriate instrument casings, up to and including the first isolating valve, pressure shielding of control rod drives.

  14. Knock-Limited Power Outputs from a CFR Engine Using Internal Coolants. 3; Four Alkyl Amines, Three Alkanolamines, Six Amides, and Eight Heterocyclic Compounds

    Science.gov (United States)

    Imming, Harry S.; Bellman, Donald R.

    1947-01-01

    An investigation of the antiknock effectiveness of various additive-water solutions when used as internal coolants has been conducted at the NACA Cleveland laboratory. Nine compounds have been previously run in a CFR engine and the results are presented. In an effort to find a good anti-knock-coolant additive with more desirable physical properties than those of the nine compounds previously investigated, water solutions of four alkyl amines, three alkanolamines, six amides, and eight heterocyclic compounds were investigated and the results are presented.

  15. Sodium as a reactor coolant

    International Nuclear Information System (INIS)

    Cesar, S.B.G.

    1989-01-01

    This work is related to the use of sodium as a reactor coolant, to the advantages and problems related to its use, its mechanical, thermophysics, eletronical, magnetic and nuclear properties. It is mainly a bibliographic review, with the aim of gathering the necessary information to persons initiating in the study of sodium and also as reference source. (author) [pt

  16. Experimental investigation of boiling-water nuclear-reactor parallel-channel effects during a postulated loss-of-coolant accident

    International Nuclear Information System (INIS)

    Conlon, W.M.; Lahey, R.T. Jr.

    1982-12-01

    This report describes an experimental study of the influence of parallel channel effects (PCE) on the distribution of emergency core spray cooling water in a Boiling Water Nuclear Reactor (BWR) following a postulated design basis loss of coolant accident (LCA). The experiments were conducted in a scaled test section in which the reactor coolant was simulated by Freon-114 at conditions similar to those postulated to occur in the reactor vessel shortly after a LOCA. A BWR/4 was simulated by a (PCE) test section which contained three parallel heated channels to simulate fuel assemblies; a core bypass channel, and a jet pump channel. The test section also inlcuded scaled regions to simulate the lower and upper plena, downcomer, and steam separation regions of a BWR. A series of nine transient experiments were conducted, in which the lower plenum vaporization rate and heater rod power were varied while the core spray flow rate was held constant to simulate that of a BWR/4. During these experiments the flow distribution and heat transfer phenomena were observed and measured

  17. MHD considerations for poloidal-toroidal coolant ducts of self-cooled blankets

    International Nuclear Information System (INIS)

    Hua, T.Q.; Walker, J.S.

    1990-01-01

    Magnetohydrodynamic flows of liquid metals through sharp elbow ducts with rectangular cross sections and with thin conducting walls in the presence of strong uniform magnetic fields are examined. The geometries simulate the poloidaltoroidal coolant channels in fusion tokamak blankets. Analysis for obtaining the three-dimensional numerical solutions are described. Results for pressure drop, velocity profiles and flow distribution are predicted for the upcoming joint ANL/KfK sharp elbow experiment. Results from a parametric study using fusion relevant parameters to investigate the three-dimensional pressure drop are presented for possible applications to blanket designs. 10 refs., 9 refs

  18. Simulation of the IAEA's fourth Standard Problem Exercise small-break loss-of-coolant accident using RELAP5/MOD.3.1

    International Nuclear Information System (INIS)

    Cebull, P.P.; Hassan, Y.A.

    1995-01-01

    A small-break loss-of-coolant accident experiment conducted at the PMK-2 integral test facility in Hungary is analyzed using the RELAP5/MOD3.1 thermal-hydraulic code. The experiment simulated a 7.4% break in the cold leg of a VVER-440/213-type nuclear power plant as part of the International Atomic Energy Agency's Fourth Standard Problem Exercise (SPE-4). Blind calculations of the exercise are presented, and the timing of various events throughout the transient is discussed. A posttest analysis is performed in which the sensitivity of the calculated results is investigated. The code RELAP5 predicts most of the transient events well, although a few problems are noted, particularly the failure of RELAP5 to predict dryout in the core even through the collapsed liquid level fell below the top of the heated portion. A discrepancy between the predicted primary mass inventory distribution and the experimental data is identified. Finally, the primary and secondary pressures calculated by RELAP5 fell too rapidly during the latter part of the transient, resulting in rather large errors in the predicted timing of some pressure-actuated events

  19. Design of channel experiment equipment for measuring coolant velocity of innovative research reactor

    International Nuclear Information System (INIS)

    Muhammad Subekti; Endiah Puji Hastuti; Dedi Heriyanto

    2014-01-01

    The design of innovative high flux research reactor (RRI) requires high power so that the capability core cooling requires to be improved by designing the faster core coolant velocity near to the critical velocity limit. Hence, the critical coolant velocity as the one of the important parameter of the reactor safety shall be measured by special equipment to the velocity limit that may induce fuel element degradation. The research aims is to calculate theoretically the critical coolant velocity and to design the special experiment equipment namely EXNal for measuring the critical coolant velocity in fuel element subchannel of the RRI. EXNal design considers the critical velocity calculation result of 20.52 m/s to determine the variation of flow rate of 4.5-29.2 m 3 /h, in which the experiment could simulate the 1-4X standard coolant velocity of RSG-GAS as well as destructive test of RRI's fuel plate. (author)

  20. Decontamination between dismantling of the Rapsodie primary coolant circuit

    International Nuclear Information System (INIS)

    Costes, J.R.; Gauchon, J.P.; Antoine, P.

    1991-01-01

    The large-scale decontamination of FBR sodium loops is a novel task, as only a limited number of laboratory-scale results are available to date. The principal objective of this work is to develop a suitable decontamination procedure for application to the primary loops of the RAPSODIE fast breeder reactor as part of decommissionning to Stage 2

  1. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  2. Influence of steam generator tube ruptures during semiscale loss-of-coolant experiments

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Larson, T.K.

    1978-01-01

    Tests which simulated rupture of steam generator tubes during loss-of-coolant experiments in a PWR type system have been conducted in the Semiscale Mod-1 system. Analysis of test data indicates that high rod cladding temperatures occured only for a band of tube ruptures (between 12 and 20 tubes) and that the peak cladding temperatures attained within this band were strongly dependent on the magnitude of the tube rupture flow rates. Maximum cladding temperature of about 1255 K was observed for tests which simulated tube ruptures within this narrow band. (author)

  3. Recovery studies for plutonium machining oil coolant

    International Nuclear Information System (INIS)

    Navratil, J.D.; Baldwin, C.E.

    1977-01-01

    Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tetrachloride. Appropriate methods then could be developed to remove the plutonium and to recycle the oil and carbon tetrachloride. Studies showed that the mixtures of spent oil and carbon tetrachloride contained particulate plutonium and plutonium species that are soluble in water or in oil and carbon tetrachloride. The particulate plutonium was removed by filtration; the nonfilterable plutonium was removed by adsorption on various materials. Laboratory-scale tests indicated the lathe-coolant oil mixture could be separated by distilling the carbon tetrachloride to yield recyclable products

  4. In-pile loop studies of the effect of PWR coolant pH on corrosion product radionuclide deposition

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Harling, O.K.; Kohse, G.E.

    1992-02-01

    An in-pile loop which simulates the primary coolant system of a PWR has been constructed and operated in the MIT research reactor. A total of seven one-month-long irradiations have been carried out to evaluate the effect of coolant pH controlled by variation in LiOH/H 3 BO 3 concentrations. With the exception of one run at zero boron, all employed 800 ppm B; pH 300degreesC values of 6.5, 7.0, 7.2, 7.5 were studied, and two runs each at 7.0 and 7.2 were carried out. Finally, one of the runs at a pH 300degreesC of 7.2 was conducted with special care to exclude zinc because of its potential effects on cobalt deposition. The results show the expected benefits of high pH in reducing the rate of activity deposition on plant surfaces, but pH 300degreesC = 7.2 is approximately as effective as 7.5, while pH 300degreesC = 6.5 exhibits much larger activity transport and qualitatively different deposition behavior. Significant heat flux effects not predicted by current models have been consistently observed. While not as extensively studied, the zero-boron run suggests that the presence of boron species, at fixed pH, may reduce the net amount of activity deposited on ex-core surfaces. Neutron activation analysis of a variety of samples ruled out Zircaloy as an important source of Co-60, since its cobalt content is less than one ppm, considerably less than the applicable ASTM specification of ≤ 20 ppm. Amendment of the latter has been recommended

  5. On possibility of application of the parallel-mixed type coolant flow scheme to NPP steam generators linked with superheaters

    International Nuclear Information System (INIS)

    Malkis, V.A.; Lokshin, V.A.

    1983-01-01

    Optimum distribution of the coolant straight-through flow between the superheater, evaporator and economizer is determined and the parallel-mixed type flow scheme is compared with other schemes. The calculations are performed for the 250 MW(e) steam generator for the WWER-1000 reactor unit the inlet and outlet primary coolant temperature of which is 324 and 290 deg C, respectively, while the feed water and saturation temperatures are 220 and 278.5 deg C, respectively. The rated superheating temperature is 300 deg C. The comparison of different schemes has been performed according to the average temperature head value at the steam-generator under the condition of equality as well as essential difference in the heat transfer coefficients in certain steam-generator sections. The calculations have shown that the use of parallel-mixed type flow permits to essentially increase the temperature head of the steam generator. At a constant heat transfer coefficient in all steam generator sections the highest temperature head is reached. At relative flow rates in the steam generator, economizer and evaporator equal to 6, 8 and 86%, respectively. The superheated steam generator temperature head in this case by 12% exceeds the temperature head of the WWER-1000 reactor unit wet steam generator. In case of heat transfer coefficient reduction in the superheater by a factor of three, the choice of the primary coolant, optimum distribution permits to maintain the steam generator temperature head at the level of the WWER-1000 reactor unit wet-steam steam generator. The use of the parallel-mixed type flow scheme permits to design a steam generator of slightly superheated steam for the parameters of the WWER-1000 unit

  6. Coolant void effect investigation - case of a na-cooled fast reactor

    International Nuclear Information System (INIS)

    Glinatsis, G.; Gugiu, D.

    2013-01-01

    In the frame of the last EURATOM-FP7 Program, a large sized Sodium-cooled FR (SFR) has been studied. Mixed carbides fuel (U, Pu)C has been adopted for the backup core solution and important work has been also performed in order to obtain an ''optimised'' backup configuration ''close'' to the reference one, which is fueled by mixed oxides fuel (U, Pu)Ox. The peculiarity of both core designs (the reference configuration and the optimised backup configuration) is the adoption of a 60 cm Plenum zone in the upper part of each fuel assembly (FA), that is filled by coolant, in order to mitigate (when emptied) the core positive coolant void effect. This paper presents some results of a detailed study of the coolant void effect for the above SFR with mixed carbides core. Many aspects, like geometric heterogeneity, the burnup state, the operating conditions, etc., have been taken into consideration in order to obtain information about the ''propagation'' and the behaviour of the coolant void effect itself. The performed study investigates also the coolant void effect consequences on some reactivity coefficients, which are important for a safe behaviour of the reactor. The investigation consisted in the steady state simulations of the reactor on different operating conditions in Monte Carlo approach. (authors)

  7. Analysis of a water-coolant leak into a very high-temperature vitrification chamber

    International Nuclear Information System (INIS)

    Felicione, F. S.

    1998-01-01

    A coolant-leakage incident occurred during non-radioactive operation of the Plasma Hearth Process waste-vitrification development system at Argonne National Laboratory when a stray electric arc ruptured az water-cooling jacket. Rapid evaporation of the coolant that entered the very high-temperature chamber pressurized the normally sub-atmospheric system above ambient pressure for over 13 minutes. Any positive pressurization, and particularly a lengthy one, is a safety concern since this can cause leakage of contaminants from the system. A model of the thermal phenomena that describe coolant/hot-material interactions was developed to better understand the characteristics of this type of incident. The model is described and results for a variety of hypothetical coolant-leak incidents are presented. It is shown that coolant leak rates above a certain threshold will cause coolant to accumulate in the chamber, and evaporation from this pool can maintain positive pressure in the system long after the leak has been stopped. Application of the model resulted in reasonably good agreement with the duration of the pressure measured during the incident. A closed-form analytic solution is shown to be applicable to the initial leak period in which the peak pressures are generated, and is presented and discussed

  8. Reactor coolant pump service life evaluation for current life cycle optimization and license renewal

    International Nuclear Information System (INIS)

    Doroshuk, B.W.; Berto, D.S.; Robles, M.

    1990-01-01

    This paper reports that as part of the plant life cycle management and license renewal program, Baltimore Gas and Electric Company (BG and E) has completed a service life evaluation of their reactor coolant pumps, funded jointly by EPRI and performed by ABB Combustion Engineering Nuclear Power. Two of the goals of the BG and E plant life cycle management and license renewal program, and of this current evaluation, are to identify actions which would optimize current plant operation, and ensure that license renewal remains a viable option. The reactor coolant pumps (RCPs) at BG and E's Calvert Cliffs Units 1 and 2 are Byron Jackson pumps with a diffuser and a single suction. This pump design is also used in many other nuclear plants. The RCP service life evaluation assessed the effect of all plausible age-related degradation mechanisms (ARDMs) on the RCP components. Cyclic fatigue and thermal embrittlement were two ARDMs identified as having a high potential to limit the service life of the pump case. The pump case is a primary pressure boundary component. Hence, ensuring its continued structural integrity is important

  9. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  10. Sodium coolant of fast reactors: Experience and problems

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Volchkov, L.G.; Drobyshev, A.V.; Nikulin, M.P.; Kochetkov, L.A.; Alexeev, V.V.

    1997-01-01

    In present report the following subjects are considered: state of the coolant and sodium systems under normal operating condition as well as under decommissioning, disclosing of sodium circuits and liquidation of its consequences, cleaning from sodium and decontamination under repairing works of equipment and circuits. Cleaning of coolant and sodium systems under normal operating conditions and under accident contamination. Cleaning of the equipment under repairing works and during decommissioning from sodium and products of its interaction with water and air. Treatment of sodium waste, taking into account a possibility of sodium fires. It is shown that the state of coolant, cover gas, surfaces of constructive materials which are in contact with them, cleaning systems, formed during installation operation require development of specific technologies. Developed technologies ensured safety operation of sodium cooled installations as in normal operating conditions so in abnormal situations. R and D activities in this field and experience gained provided a solid base for coping with problems arising during decommissioning. Prospective research problems are emphasized where the future efforts should be concentrated in order to improve characteristics of sodium cooled reactors and to make their decommissioning optimal and safe. (author)

  11. Optimization of a primary circuit of the nuclear power plant from the vibration point of view

    International Nuclear Information System (INIS)

    Dupal, J.; Zeman, V.

    2003-01-01

    The primary circuit of the nuclear power plant (NPP) as a dynamical vibrating system can be disturbed by various excitation including earthquake or pressure pulsation generated by main circulation pumps (MCP). Especially, unpleasant pulsation vibration growth can be caused by the small differences of revolutions between main circulation pumps of the individual coolant loops. This growth corresponds to the well known beats. The paper deals with an approach to the improving and optimization of dynamical properties of the whole primary circuit system including the reactor and coolant loops under pressure pulsation. (author)

  12. Analysis of the VVER-1000 coolant transient benchmark phase 1 with the code system RELAP5/PARCS

    International Nuclear Information System (INIS)

    Victor Hugo Sanchez Espinoza

    2005-01-01

    Full text of publication follows: As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during

  13. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  14. Management of large scale coolant channel replacement programme for Indian PHWRs

    International Nuclear Information System (INIS)

    Bhatnagar, V.K.; Chadda, S.K.; Arya, R.C.

    1994-01-01

    Coolant channel assemblies form most important core components of pressurised heavy water reactors. Zirconium alloy pressure tube which form part of coolant channel assemblies are subjected to environment of high neutron flux, high pressure and temperature. Under those operating environmental conditions, the pressure tubes material undergoes degradation of metallurgical and mechanical properties in addition to dimensional changes. The coolant channels are subjected to an in-service inspection (ISI) programme for monitoring the health particularly of the pressure tubes. The en-mass replacement of pressure tubes is needed after most of the pressure tubes show unacceptable conditions for an assured safe and reliable operation. An overview of various issues pertaining to this aspect is presented. (author). 4 figs

  15. Assessment of heat loss for RSG-GAS primary cooling system

    International Nuclear Information System (INIS)

    Dibyo, S.

    1998-01-01

    Heat Loss is part term of energy balance equation of system, therefore heat loss very important thing in the thermal dynamic analysis. Heat energy loosed from the surface pipe to the air in the room was calculated. Heat energy pass through by conduction, convection and radiation. The convection process are caused by moving of air density, i.e up flow of the hot air return to be down flow. The heat transfer phenomenon could be determined by empirical correlation of Heilman. The primary cooling system is consisted to the 3 zone : 1). Zone of (safety valves-heat exchanger), 2). Zone of heat exchanger surfaces, 3). Zone of heat exchanger-reactor pool. By using input data of air temperature are about 25 o C, temperature of primary coolant about 45 o C, The heat Loss along the pipes to the air are 23.9 k watt or 0.1%

  16. The effect of zinc injection into PWR primary coolant on the reduction of radiation buildup and corrosion control. The solubilities of zinc, nickel and cobalt spinel oxides

    International Nuclear Information System (INIS)

    Miyajima, Kaori; Hirano, Hideo

    1999-01-01

    The use of zinc injection into PWR primary coolant to reduce radiation buildup has been widely studied, and te reduction effect has been experimentally confirmed. However, some items, such as the optimal concentration of zinc required to reduce radiation buildup, the corrosion control effect of zinc injection, and the influence of zinc injection on the integrity of fuel cladding, have not been clarified yet. In particular, the corrosion suppression effect of zinc remains unconfirmed. Therefore, it is necessary to measure and calculate the solubilities of zinc and nickel spinel oxides, which are formed on the surface of Ni-based alloys in PWR primary systems. In this study, in order to assess the effectiveness of zinc injection in the reduction of radiation buildup and the corrosion control of Ni-based alloy, the potential-pH diagrams for Zn-Cr-H 2 O, Ni-Cr-H 2 O, and Co-Cr-H 2 O systems at 300degC were constructed and the solubilities of Zn-Cr, Ni-Cr, and Co-Cr spinel oxides were calculated. It is concluded that under pH conditions for which NiCr 2 O 4 is stable, zinc injection is effective in corrosion control as well as in reducing radiation buildup. (author)

  17. Dryout heat flux in a debris bed with forced coolant flow from below

    International Nuclear Information System (INIS)

    Bang, Kwang-Hyun; Kim, Jong-Myung

    2004-01-01

    The objective of the present study is to experimentally investigate the enhancement of dryout heat flux in debris beds with coolant flow from below. The experimental facility consists mainly of an induction heater (40 kW, 35 kHz), a double-wall quartz-tube test section containing steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of particle bed was achieved by induction heating. This paper reports the experimental data for 5 mm particle bed and 300 mm bed height. The dryout heat rate data were obtained of both top-flooding case and forced coolant injection from below with the injection mass flux up to 1.5 kg/m 2 s. For the top-flooded case, the volumetric dryout heat rate was about 4 MW/m 3 and it increased as the rate of coolant injection from below was increased. At the coolant injection mass flux of 1.5 kg/m 2 s, the volumetric dryout heat rate was about 10 MW/m 3 , the enhancement factor was more than two. (author)

  18. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  19. Spectral analysis of coolant activity from a commercial nuclear generating station

    International Nuclear Information System (INIS)

    Swann, J.D.; Lewis, B.J.; Ip, M.

    2008-01-01

    In support of the development of a real-time on-line fuel failure monitoring system for the CANDU reactor, actual gamma spectroscopy data files from the gaseous fission product (GFP) monitoring system were acquired from almost four years of operation at a commercial Nuclear Generating Station (NGS). Several spectral analysis techniques were used to process the data files. Radioisotopic activity from the plant information (PI) system was compared to an in-house C++ code that was used to determine the photopeak area and to a separate analysis with commercial software from Canberra-Aptec. These various techniques provided for a calculation of the coolant activity concentration of the noble gas and iodine species in the primary heat transport system. These data were then used to benchmark the Visual DETECT code, a user friendly software tool which can be used to characterize the defective fuel state based on a coolant activity analysis. Acceptable agreement was found with the spectral techniques when compared to the known defective bundle history at the commercial reactor. A more generalized method of assessing the fission product release data was also considered with the development of a pre-processor to evaluate the radioisotopic release rate from mass balance considerations. The release rate provided a more efficient means to characterize the occurrence of a defect and was consistent with the actual defect situation at the power plant as determined from in-bay examination of discharged fuel bundles. (author)

  20. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle