WorldWideScience

Sample records for primary cml cells

  1. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Disrupting BCR-ABL in Combination with Secondary Leukemia-Specific Pathways in CML Cells Leads to Enhanced Apoptosis and Decreased Proliferation

    OpenAIRE

    Woessner, David W.; Lim, Carol S.

    2012-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell.1 Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which blocks ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use of is required in order to treat CML. The primary failure for TKIs is through development of a resistant population d...

  3. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration.

    Science.gov (United States)

    Xu, Suining; Li, Lihua; Yan, Jinchuan; Ye, Fei; Shao, Chen; Sun, Zhen; Bao, Zhengyang; Dai, Zhiyin; Zhu, Jie; Jing, Lele; Wang, Zhongqun

    2018-01-01

    Among the various complications of type 2 diabetes mellitus, atherosclerosis causes the highest disability and morbidity. A multitude of macrophage-derived foam cells are retained in atherosclerotic plaques resulting not only from recruitment of monocytes into lesions but also from a reduced rate of macrophage migration from lesions. Nε-carboxymethyl-Lysine (CML), an advanced glycation end product, is responsible for most complications of diabetes. This study was designed to investigate the mechanism of CML/CD36 accelerating atherosclerotic progression via inhibiting foam cell migration. In vivo study and in vitro study were performed. For the in vivo investigation, CML/CD36 accelerated atherosclerotic progression via promoting the accumulation of macrophage-derived foam cells in aorta and inhibited macrophage-derived foam cells in aorta migrating to the para-aorta lymph node of diabetic apoE -/- mice. For the in vitro investigation, CML/CD36 inhibited RAW264.7-derived foam cell migration through NOX-derived ROS, FAK phosphorylation, Arp2/3 complex activation and F-actin polymerization. Thus, we concluded that CML/CD36 inhibited foam cells of plaque migrating to para-aorta lymph nodes, accelerating atherosclerotic progression. The corresponding mechanism may be via free cholesterol, ROS generation, p-FAK, Arp2/3, F-actin polymerization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  5. Acadesine kills chronic myelogenous leukemia (CML cells through PKC-dependent induction of autophagic cell death.

    Directory of Open Access Journals (Sweden)

    Guillaume Robert

    Full Text Available CML is an hematopoietic stem cell disease characterized by the t(9;22 (q34;q11 translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients.

  6. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation.

    Science.gov (United States)

    Woessner, David W; Lim, Carol S

    2013-01-07

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder caused by expression of the fusion gene BCR-ABL following a chromosomal translocation in the hematopoietic stem cell. Therapeutic management of CML uses tyrosine kinase inhibitors (TKIs), which block ABL-signaling and effectively kill peripheral cells with BCR-ABL. However, TKIs are not curative, and chronic use is required in order to treat CML. The primary failure for TKIs is through the development of a resistant population due to mutations in the TKI binding regions. This led us to develop the mutant coiled-coil, CC(mut2), an alternative method for BCR-ABL signaling inhibition by targeting the N-terminal oligomerization domain of BCR, necessary for ABL activation. In this article, we explore additional pathways that are important for leukemic stem cell survival in K562 cells. Using a candidate-based approach, we test the combination of CC(mut2) and inhibitors of unique secondary pathways in leukemic cells. Transformative potential was reduced following silencing of the leukemic stem cell factor Alox5 by RNA interference. Furthermore, blockade of the oncogenic protein MUC-1 by the novel peptide GO-201 yielded reductions in proliferation and increased cell death. Finally, we found that inhibiting macroautophagy using chloroquine in addition to blocking BCR-ABL signaling with the CC(mut2) was most effective in limiting cell survival and proliferation. This study has elucidated possible combination therapies for CML using novel blockade of BCR-ABL and secondary leukemia-specific pathways.

  7. HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells

    NARCIS (Netherlands)

    Ebeling, Saskia B.; Ivanov, Roman; Hol, Samantha; Aarts, Tineke I.; Hagenbeek, Anton; Verdonck, Leo F.; Petersen, Eefke J.

    2003-01-01

    The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML)

  8. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    Directory of Open Access Journals (Sweden)

    Giallongo Cesarina

    2013-02-01

    Full Text Available Abstract Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM, in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.

  9. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    International Nuclear Information System (INIS)

    Giallongo, Cesarina; Palumbo, Giuseppe A; Di Raimondo, Francesco; La Cava, Piera; Tibullo, Daniele; Barbagallo, Ignazio; Parrinello, Nunziatina; Cupri, Alessandra; Stagno, Fabio; Consoli, Carla; Chiarenza, Annalisa

    2013-01-01

    SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML

  10. Human AQP5 plays a role in the progression of chronic myelogenous leukemia (CML.

    Directory of Open Access Journals (Sweden)

    Young Kwang Chae

    2008-07-01

    Full Text Available Aquaporins (AQPs have previously been associated with increased expression in solid tumors. However, its expression in hematologic malignancies including CML has not been described yet. Here, we report the expression of AQP5 in CML cells by RT-PCR and immunohistochemistry. While normal bone marrow biopsy samples (n = 5 showed no expression of AQP5, 32% of CML patient samples (n = 41 demonstrated AQP5 expression. In addition, AQP5 expression level increased with the emergence of imatinib mesylate resistance in paired samples (p = 0.047. We have found that the overexpression of AQP5 in K562 cells resulted in increased cell proliferation. In addition, small interfering RNA (siRNA targeting AQP5 reduced the cell proliferation rate in both K562 and LAMA84 CML cells. Moreover, by immunoblotting and flow cytometry, we show that phosphorylation of BCR-ABL1 is increased in AQP5-overexpressing CML cells and decreased in AQP5 siRNA-treated CML cells. Interestingly, caspase9 activity increased in AQP5 siRNA-treated cells. Finally, FISH showed no evidence of AQP5 gene amplification in CML from bone marrow. In summary, we report for the first time that AQP5 is overexpressed in CML cells and plays a role in promoting cell proliferation and inhibiting apoptosis. Furthermore, our findings may provide the basis for a novel CML therapy targeting AQP5.

  11. Hoxa9 and Hoxa10 induce CML myeloid blast crisis development through activation of Myb expression.

    Science.gov (United States)

    Negi, Vijay; Vishwakarma, Bandana A; Chu, Su; Oakley, Kevin; Han, Yufen; Bhatia, Ravi; Du, Yang

    2017-11-17

    Mechanisms underlying the progression of Chronic Myeloid Leukemia (CML) from chronic phase to myeloid blast crisis are poorly understood. Our previous studies have suggested that overexpression of SETBP1 can drive this progression by conferring unlimited self-renewal capability to granulocyte macrophage progenitors (GMPs). Here we show that overexpression of Hoxa9 or Hoxa10 , both transcriptional targets of Setbp1 , is also sufficient to induce self-renewal of primary myeloid progenitors, causing their immortalization in culture. More importantly, both are able to cooperate with BCR/ABL to consistently induce transformation of mouse GMPs and development of aggressive leukemias resembling CML myeloid blast crisis, suggesting that either gene can drive CML progression by promoting the self-renewal of GMPs. We further identify Myb as a common critical target for Hoxa9 and Hoxa10 in inducing self-renewal of myeloid progenitors as Myb knockdown significantly reduced colony-forming potential of myeloid progenitors immortalized by the expression of either gene. Interestingly, Myb is also capable of immortalizing primary myeloid progenitors in culture and cooperating with BCR/ABL to induce leukemic transformation of mouse GMPs. Significantly increased levels of MYB transcript also were detected in all human CML blast crisis samples examined over chronic phase samples, further suggesting the possibility that MYB overexpression may play a prevalent role in driving human CML myeloid blast crisis development. In summary, our results identify overexpression of HOXA9 , HOXA10 , and MYB as critical drivers of CML progression, and suggest MYB as a key therapeutic target for inhibiting the self-renewal of leukemia-initiating cells in CML myeloid blast crisis patients.

  12. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    Science.gov (United States)

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  13. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1.

    Science.gov (United States)

    Li, Fengyin; He, Bing; Ma, Xiaoke; Yu, Shuyang; Bhave, Rupali R; Lentz, Steven R; Tan, Kai; Guzman, Monica L; Zhao, Chen; Xue, Hai-Hui

    2017-09-07

    Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34 + stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.

    Science.gov (United States)

    Zhu, Xiaoyang; Perez, Manon; Aldon, Didier; Galaud, Jean-Philippe

    2017-05-04

    In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca 2+ ) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.

  15. The Culture Repopulation Ability (CRA) Assay and Incubation in Low Oxygen to Test Antileukemic Drugs on Imatinib-Resistant CML Stem-Like Cells.

    Science.gov (United States)

    Cheloni, Giulia; Tanturli, Michele

    2016-01-01

    Chronic myeloid leukemia (CML) is a stem cell-driven disorder caused by the BCR/Abl oncoprotein, a constitutively active tyrosine kinase (TK). Chronic-phase CML patients are treated with impressive efficacy with TK inhibitors (TKi) such as imatinib mesylate (IM). However, rather than definitively curing CML, TKi induces a state of minimal residual disease, due to the persistence of leukemia stem cells (LSC) which are insensitive to this class of drugs. LSC persistence may be due to different reasons, including the suppression of BCR/Abl oncoprotein. It has been shown that this suppression follows incubation in low oxygen under appropriate culture conditions and incubation times.Here we describe the culture repopulation ability (CRA) assay, a non-clonogenic assay capable - together with incubation in low oxygen - to reveal in vitro stem cells endowed with marrow repopulation ability (MRA) in vivo. The CRA assay can be used, before moving to animal tests, as a simple and reliable method for the prescreening of drugs potentially active on CML and other leukemias with respect to their activity on the more immature leukemia cell subsets.

  16. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation.

    Directory of Open Access Journals (Sweden)

    Aurélie Bedel

    Full Text Available Chronic myeloid leukemia disease (CML found effective therapy by treating patients with tyrosine kinase inhibitors (TKI, which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs derived from CD34⁺ blood cells isolated from CML patients (CML-iPSCs as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.

  17. Expression, purification and preliminary diffraction studies of CmlS

    International Nuclear Information System (INIS)

    Latimer, Ryan; Podzelinska, Kateryna; Soares, Alexei; Bhattacharya, Anupam; Vining, Leo C.; Jia, Zongchao; Zechel, David L.

    2009-01-01

    CmlS from S. venezuelae is a flavin-dependent halogenase that is involved in the biosynthesis of the widely used antibiotic chloramphenicol. Here, the crystallization of CmlS and analysis of the initial diffraction data are reported. CmlS, a flavin-dependent halogenase (FDH) present in the chloramphenicol-biosynthetic pathway in Streptomyces venezuelae, directs the dichlorination of an acetyl group. The reaction mechanism of CmlS is of considerable interest as it will help to explain how the FDH family can halogenate a wide range of substrates through a common mechanism. The protein has been recombinantly expressed in Escherichia coli and purified to homogeneity. The hanging-drop vapour-diffusion method was used to produce crystals that were suitable for X-ray diffraction. Data were collected to 2.0 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 208.1, b = 57.7, c = 59.9 Å, β = 97.5°

  18. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  19. SL-401 and SL-501, Targeted Therapeutics Directed at the Interleukin-3 Receptor, Inhibit the Growth of Leukaemic Cells and Stem Cells in Advanced Phase Chronic Myeloid Leukaemia

    Science.gov (United States)

    Frolova, Olga; Benito, Juliana; Brooks, Chris; Wang, Rui-Yu; Korchin, Borys; Rowinsky, Eric K.; Cortes, Jorge; Kantarjian, Hagop; Andreeff, Michael; Frankel, Arthur E.; Konopleva, Marina

    2014-01-01

    SUMMARY While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin-3 receptor (IL3R, CD123) is highly expressed on CD34+/CD38− BCR-ABL1+ CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)-IL3 fusion proteins SL-401 (DT388-IL3) and SL-501 (DT388-IL3[K116W]) could eradicate these stem cells. SL-401 and SL-501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI-resistant KBM5-STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL-401 and SL-501 decreased the absolute numbers of viable CD34+/CD38−/CD123+ CML progenitor cells by inducing apoptosis. IL3-targeting agents reduced clonogenic growth and diminished the fraction of primitive long-term culture-initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI-resistant CML blast crisis. These data suggest that the DT-IL3 fusion proteins, SL-401 and SL-501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk. PMID:24942980

  20. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Directory of Open Access Journals (Sweden)

    Avik Acharya Chowdhury

    Full Text Available BACKGROUND: Hydroxychavicol (HCH, a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS. The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4, non-leukemic (A549, MIA-PaCa2, PC-3, HepG2 cancer cell lines and normal cell lines (NIH3T3, Vero was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM after staining with annexin V-FITC/propidium iodide (PI, detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF by confocal microscopy. Intracellular reduced glutathione (GSH was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM were used as probes to measure intracellular increase in ROS and nitric oxide (NO levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the

  1. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    Science.gov (United States)

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  2. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  3. A study on stability and medical implications for a complex delay model for CML with cell competition and treatment.

    Science.gov (United States)

    Rădulescu, I R; Cândea, D; Halanay, A

    2014-12-21

    We study a mathematical model describing the dynamics of leukemic and normal cell populations (stem-like and differentiated) in chronic myeloid leukemia (CML). This model is a system of four delay differential equations incorporating three types of cell division. The competition between normal and leukemic stem cell populations for the common microenvironment is taken into consideration. The stability of one steady state is investigated. The results are discussed via their medical interpretation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    Science.gov (United States)

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  5. Design and prototyping of real-time systems using CSP and CML

    DEFF Research Database (Denmark)

    Rischel, Hans; Sun, Hong Yan

    1997-01-01

    A procedure for systematic design of event based systems is introduced by means of the Production Cell case study. The design is documented by CSP style processes, which allow both verification using formal techniques and also validation of a rapid prototype in the functional language CML...

  6. Management of CML in the Pediatric Age Group: Imatinib Mesylate or SCT.

    Science.gov (United States)

    El-Alfy, Mohsen S; Al-Haddad, Alaa M; Hamed, Ahmed A

    2010-12-01

    Management of CML has changed markedly since the introduction of tyrosine kinase inhibitors (TKIs). However stem cell transplantation (SCT) remains a valid therapeutic modality especially in developing countries due to its relatively lower cost. We aim to compare between imatinib mesylate and SCT as regard outcome in CML in the pediatric age group. Forty-eight patients with newly diagnosed CML in the chronic phase, aged 3 to 18 years were enrolled in this prospective study. Patients without a matched donor (Group I; N=30) were assigned to receive imatinib mesylate at a dose of 340mg÷m2÷day, while patients with a fully matched related donor (Group II; N=18), were offered SCT. Response (hematologic, cytogenetic and molecular), side effects and survival were analyzed. Complete hematologic response was obtained in 97% of the patients in group I and 94% in group II. Major cytogenetic response (CyR) was obtained in 80% of patients in group I and 100% in group II. Complete CyR was 57% in group I and 64% in group II. Major molecular response (MMR) was 36% in group I and 50% in group II with no significant difference between both groups. Six years overall survival (OS) was 87% in the 1st group and 61% in the 2nd group (pSCT group (55% had GVHD and 78% had infection). Imatinib mesylate has a superior OS and EFS than SCT in children. It is generally safe and well tolerated. Imatinib mesylate should be the 1st line treatment of pediatric patients with CML in the chronic phase. CML- Imatinib- SCT- Pediatrics.

  7. A power-efficient switchable CML driver at 10 Gbps

    Science.gov (United States)

    Peipei, Chen; Lei, Li; Huihua, Liu

    2016-02-01

    High static power limits the application of conventional current-mode logic(CML). This paper presents a power-efficient switchable CML driver, which achieves a significant current saving by 75% compared with conventional ones. Implemented in the 130 nm CMOS technology process, the proposed CML driver just occupies an area about 0.003 mm2 and provides a robust differential signal of 1600 mV for 10 Gbps optical line terminal (OLT) with a total current of 10 mA. The peak-to-peak jitter is about 4 ps (0.04TUI) and the offset voltage is 347.2 mV @ 1600 mVPP.

  8. HLA restriction of non-HLA-A, -B, -C and -D cell mediated lympholysis (CML)

    International Nuclear Information System (INIS)

    Goulmy, E.; Termijtelen, A.; Bradley, B.A.; Rood, J.J. van

    1976-01-01

    The aim of our study was to define target determinations other than those coded for by the classical HLA-A, -B, -C or -D loci which were responsible for killing in CML. In one of the families studied, strong evidence was found for the existence of a determinant coded for within the HLA region. CML was restricted to targets carrying the classical HLA-Bw35 and Cw4 determinants but the targets were neither HLA-Bw35 nor Cw4 themselves. We therefore concluded that this new HLA determinant was either the product of a new locus closely associated with HLA-B or that it was a product of the classical HLA-B locus which has not been recognized by serology. (author)

  9. A power-efficient switchable CML driver at 10 Gbps

    International Nuclear Information System (INIS)

    Chen Peipei; Li Lei; Liu Huihua

    2016-01-01

    High static power limits the application of conventional current-mode logic(CML). This paper presents a power-efficient switchable CML driver, which achieves a significant current saving by 75% compared with conventional ones. Implemented in the 130 nm CMOS technology process, the proposed CML driver just occupies an area about 0.003 mm 2 and provides a robust differential signal of 1600 mV for 10 Gbps optical line terminal (OLT) with a total current of 10 mA. The peak-to-peak jitter is about 4 ps (0.04T UI ) and the offset voltage is 347.2 mV @ 1600 mV PP . (paper)

  10. Evaluation of multielements in human serum of patients with chronic myelogenous leukemia (CML) using SRTXRF

    International Nuclear Information System (INIS)

    Leitao, Catarine Canellas Gondim

    2005-04-01

    In this work, trace elements were analyzed in serum of patients with chronic myelogenous leukemia (CML) by Total Reflection X-Ray Fluorescence using synchrotron radiation (SRTXRF). Chronic myelogenous leukemia (CML) affects the myeloid cells in the blood and affects 1 to 2 people per 100,000 and accounts for 7-20% cases of leukemia. Sixty patients with CML and sixty healthy volunteers (control group) were studied. Blood was collected into vacutainers without additives. Directly after collection, each blood sample was centrifuged at 3000 rev/min for 10 min in order to separate blood cells and suspended particles from blood serum. Sera were transferred into polyethylene tubes and stored in a freezer at 253 K. A 500 m u L serum quantity was spiked with Ga (50 m u L ) as internal standard. 10 m u L aliquots were pipetted on Perspex sample carrier. After deposition, the samples were left to dry under an infrared lamp. The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory (LNLS), using a polychromatic beam. Standard solutions with gallium as internal standard were prepared for calibration system. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br and Rb. Starting from the ANOVA test was observed that the elements P, S, Ca, Cr, Mn, Fe, Cu and Rb presented real significant differences (α = 0.05) between groups (healthy subjects and CML patients) and Sex (males and females). (author)

  11. Turkish Chronic Myeloid Leukemia Study: Retrospective Sectional Analysis of CML Patients

    Directory of Open Access Journals (Sweden)

    Fahri Şahin

    2013-12-01

    Full Text Available OBJECTIVE: here have been tremendous changes in treatment and follow-up of patients with chronic myeloid leukemia (CML in the last decade. Especially, regular publication and updating of NCCN and ELN guidelines have provided enermous rationale and base for close monitorization of patients with CML. But, it is stil needed to have registry results retrospectively to evaluate daily CML practices. METHODS: In this article, we have evaluated 1133 patients’ results with CML in terms of demographical features, disease status, response, resistance and use of second-generation TKIs. RESULTS: The response rate has been found relatively high in comparison with previously published articles, and we detected that there was a lack of appropriate and adequate molecular response assessment. CONCLUSION: We concluded that we need to improve registry systems and increase the availability of molecular response assessment to provide high-quality patient care.

  12. DRUG THERAPY IN THE PROGRESSED CML PATIENT WITH MULTI-TKI FAILURE

    Directory of Open Access Journals (Sweden)

    Ibrahim C. Haznedaroglu

    2015-02-01

    Full Text Available The aim of this paper is to outline pharmacotherapy of the ‘third-line management of CML’ (progressive disease course after sequential TKI drugs. Current management of CML with multi-TKI failure is reviewed. TKI (bosutinib, ponatinib, dasatinib, nilotinib and non-TKI (omacetaxine mepussecinate, IFN or PEG-IFN drugs are available. The literature search was made in PubMed with particular focus on the clinical trials, recommendations, guidelines and expert opinions, as well as international recommendations. Progressing CML disease with multi-TKI failure should be treated with alloSCT based on the availability of the donor and EBMT transplant risk scores. The TKI and non-TKI drugs shall be used to get best promising (hematological, cytogenetic, molecular response. During the CP-CML phase of multi-TKI failure, 2nd generation TKIs (nilotinib or dasatinib are used if they remained. Bosutinib and ponatinib (3rd generation TKIs can be administered in triple-TKI failed (imatinib and nilotinib and dasatinib patients. The presence of T315I mutation at any phase requires ponatinib or omacetaxine mepussecinate therapy before allografting. During the AP/BC-CML phase of multi-TKI failure, the most powerful TKI available (ponatinib or dasatinib if remained together with chemotherapy should be given before alloSCT. Monitoring of CML disease and drug off-target risks (particularly vascular thrombotic events are vital.

  13. Two cases of chronic myelogenous leukemia (CML) treated with Iminitab (Glivec) in different phases

    International Nuclear Information System (INIS)

    Davoli, R.; Ciarlo, S.; Acosta, I.; Perez, S.; Lagorio, S.; Pratti, A.A.

    2003-01-01

    Full text: IMINITAB, inhibitor of cytoplasmic transduction signs, and hindering neoplastic cells growth, is a new therapeutic agent for chronic myelogenous leukemia (CML). It is a tyrosine kinase bcrabl inhibitor, inhibiting also the c-kit receptor protein in gastrointestinal neoplasia and small cells lung cancer. The aim of the present work was to evaluate the effect of this agent in CML patients in two different time-periods, namely the chronic phase and the acute one. We hereby present two patients: 1) a 48 years old patient with radioactive contamination history, and 2) a 19 years old patient. In both cases diagnosis was confirmed by BM and BM biopsy, neutrophile alkaline phosphatase, and Ph chromosome t(9;22) (q34;q11). There were non-compatible BM donors available. Both patients were treated with hydroxyurea, hydroxyurea plus interferon, and one of them adding ARAC. Since there was no favorable response an Iminitab course was started. Patient (2) with blastic crisis remitted for 12 month until subsequent relapse and death. Patient (1) treated during chronic phase is still in remission. Neither of them attained negative Ph chromosome. Up to now, current reports show a high percentage of relapse in patients treated during the acute phase, while the chronic ones present a smaller number of relapses. It is to be noted the importance of the follow up during the chronic phase, due to the short time drug utilization in our country (May 2001). Good tolerance and sustained remission in CML patients allows being optimistic regarding this therapeutic agent. (author)

  14. Tyrosine kinase inhibitors therapy related neutropenia and thrombocythopenia correction in CML patients

    Directory of Open Access Journals (Sweden)

    V. A. Shuvaev

    2014-07-01

    Full Text Available At present, introduction of target therapy to chronic myelogenous leukemia (CML treatment made CML not life-limiting disorder. The main condition of treatment efficacy is its continuity. The most common causes of dose reduction and CML therapy interruption is hematologic toxicities such as neutropenia and thrombocytopenia. The adverse events correction in these circumstances is vital. Recommendations for neutropenia and thrombocytopenia correction are proposed in this article. The basement and results of the use of granulocyte colony stimulating factor (G-CSF and thrombopoietine receptor agonist for hematologic toxicities correction with clinical case are presented.

  15. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  16. Droplet Digital PCR for BCR/ABL(P210) Detecting of CML: A High Sensitive Method of the Minimal Residual Disease& Disease Progression.

    Science.gov (United States)

    Wang, Wen-Jun; Zheng, Chao-Feng; Liu, Zhuang; Tan, Yan-Hong; Chen, Xiu-Hua; Zhao, Bin-Liang; Li, Guo-Xia; Xu, Zhi-Fang; Ren, Fang-Gang; Zhang, Yao-Fang; Chang, Jian-Mei; Wang, Hong-Wei

    2018-04-25

    The present study intended to establish a droplet digital PCR (dd-PCR) for monitoring minimal residual disease (MRD) in patients with BCR/ABL (P210)-positive CML, thereby achieving deep-level monitoring of tumor load and determining the efficacy for guided clinically individualized treatment. Using dd-PCR and RT-qPCR, two cell suspensions were obtained from K562 cells and normal peripheral blood mononuclear cells by gradient dilution and were measured at the cellular level. At peripheral blood(PB) level, 61 cases with CML-chronic phase (CML-CP) were obtained after tyrosine kinase inhibitors (TKIs) treatment and regular follow-ups. By RT-qPCR, BCR/ABL (P210) fusion gene was undetectable in PB after three successive analyses, which were performed once every three months. At the same time, dd-PCR was performed simultaneously with the last equal amount of cDNA. Ten CML patients with MR4.5 were followed up by the two methods. At the cellular level, consistency of results of dd-PCR and RT-qPCR reached R 2 ≥0.99, with conversion equation of Y=33.148X 1.222 (Y: dd-PCR results; X: RT-qPCR results). In the dd-PCR test, 11 of the 61 CML patients (18.03%) tested positive and showed statistically significant difference (PPCR 3 months earlier than by RT-qPCR. In contrast with RT-qPCR, dd-PCR is more sensitive, thus enabling accurate conversion of dd-PCR results into internationally standard RT-qPCR results by conversion equation, to achieve a deeper molecular biology-based stratification of BCR/ABL(P210) MRD. It has some reference value to monitor disease progression in clinic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Chromosome abnormalities in the acute phase of CML

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, J D

    1978-01-01

    Additional chromosome changes are superimposed on the Ph/sup 1/ positive cell line in approximately 80% of patients in the acute phase of chronic myelogenous leukemia (CML). These changes may precede the onset of blast crisis by several months. They are nonrandom and frequently involve an extra No. 8, an isochromosome for the long arm of No. 17, an extra No. 19, and a second Ph/sup 1/ chromosome. Since such changes may occur in combination, modal numbers frequently range between 47 and 57 chromosomes. Although present evidence suggests that abnormal clones originate, or at least proliferate, in the spleen, similar changes have been observed in patients who underwent splenectomy during the chronic phase of their disease. The question of particular clinical-chromosomal correlations has been discussed in only one study. It appeared that patients whose karyotype did not change might have a longer median survival than those whose karyotype showed additional abnormalities. Tests for levels of terminal deoxynucleotidyl transferase (TDT) and response to anti-acute lymphoblastic leukemia (ALL) serum suggest that some, but not all patients react as do patients with ALL. Those who are similar to ALL have high levels of TDT and are anti-ALL serum-positive; the others have low levels of TDT and are anti-ALL serum-negative. In the future, correlations of these more sophisticated tests with the blast morphology, clinical course, and karyotype pattern should provide significant new insights into the acute phase of CML.

  18. Role of STAT3 in Transformation and Drug Resistance in CML

    International Nuclear Information System (INIS)

    Nair, Rajesh R.; Tolentino, Joel H.; Hazlehurst, Lori A.

    2012-01-01

    Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

  19. Role of STAT3 in Transformation and Drug Resistance in CML

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Rajesh R.; Tolentino, Joel H.; Hazlehurst, Lori A., E-mail: lori.hazlehurst@moffitt.org [Molecular Oncology Program, H. Lee Moffitt Cancer Center, Tampa, FL (United States)

    2012-04-10

    Chronic myeloid leukemia (CML) is initially driven by the bcr–abl fusion oncoprotein. The identification of bcr–abl led to the discovery and rapid translation into the clinic of bcr–abl kinase inhibitors. Although, bcr–abl inhibitors are efficacious, experimental evidence indicates that targeting bcr–abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr–abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr–abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr–abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK–STAT3 pathway in combination with bcr–abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

  20. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL).

    Science.gov (United States)

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-10-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a few months, signs of CML were disappeared and CLL became dominant. This is first reported case.

  1. Frequency of BCR-ABL Transcript Types in Syrian CML Patients

    Directory of Open Access Journals (Sweden)

    Sulaf Farhat-Maghribi

    2016-01-01

    Full Text Available Background. In Syria, CML patients are started on tyrosine kinase inhibitors (TKIs and monitored until complete molecular response is achieved. BCR-ABL mRNA transcript type is not routinely identified, contrary to the recommendations. In this study we aimed to identify the frequency of different BCR-ABL transcripts in Syrian CML patients and highlight their significance on monitoring and treatment protocols. Methods. CML patients positive for BCR-ABL transcripts by quantitative RT-PCR were enrolled. BCR-ABL transcript types were investigated using a home-made PCR method that was adapted from published protocols and optimized. The transcript types were then confirmed using a commercially available research kit. Results. Twenty-four transcripts were found in 21 patients. The most common was b2a2, followed by b3a2, b3a3, and e1a3 present solely in 12 (57.1%, 3 (14.3%, 2 (9.5%, and 1 (4.8%, respectively. Three samples (14.3% contained dual transcripts. While b3a2 transcript was apparently associated with warning molecular response to imatinib treatment, b2a2, b3a3, and e1a3 transcripts collectively proved otherwise (P=0.047. Conclusion. It might be advisable to identify the BCR-ABL transcript type in CML patients at diagnosis, using an empirically verified method, in order to link the detected transcript with the clinical findings, possible resistance to treatment, and appropriate monitoring methods.

  2. The semantics of Chemical Markup Language (CML): dictionaries and conventions

    Science.gov (United States)

    2011-01-01

    The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs. PMID:21999509

  3. The semantics of Chemical Markup Language (CML): dictionaries and conventions.

    Science.gov (United States)

    Murray-Rust, Peter; Townsend, Joe A; Adams, Sam E; Phadungsukanan, Weerapong; Thomas, Jens

    2011-10-14

    The semantic architecture of CML consists of conventions, dictionaries and units. The conventions conform to a top-level specification and each convention can constrain compliant documents through machine-processing (validation). Dictionaries conform to a dictionary specification which also imposes machine validation on the dictionaries. Each dictionary can also be used to validate data in a CML document, and provide human-readable descriptions. An additional set of conventions and dictionaries are used to support scientific units. All conventions, dictionaries and dictionary elements are identifiable and addressable through unique URIs.

  4. Appearance and Disappearance of Chronic Myeloid Leukemia (CML) in Patient with Chronic Lymphocytic Leukemia (CLL)

    OpenAIRE

    Payandeh, Mehrdad; Sadeghi, Edris; Khodarahmi, Reza; Sadeghi, Masoud

    2014-01-01

    Chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are the most common leukemias of the elderly (>43 year). However, the sequential occurrence of CML followed by CLL in the same patient is extremely rare. In our report, a 52-year-old female was diagnosed with CLL (type of bone marrow (BM) infiltration was nodular and interstitial) and was treated with chlorambucil. 64 months after the diagnosis of CLL, she developed CML. She was treated with imatinib (400mg/day). After a fe...

  5. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  6. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  7. The novel anticancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmutated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins.

    Science.gov (United States)

    You, Liangshun; Liu, Hui; Huang, Jian; Xie, Wanzhuo; Wei, Jueying; Ye, Xiujin; Qian, Wenbin

    2017-01-31

    Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.

  8. Chronic Myelogenous Leukemia Cells Contribute to the Stromal Myofibroblasts in Leukemic NOD/SCID Mouse In Vivo

    Directory of Open Access Journals (Sweden)

    Ryosuke Shirasaki

    2012-01-01

    Full Text Available We recently reported that chronic myelogenous leukemia (CML cells converted into myofibroblasts to create a microenvironment for proliferation of CML cells in vitro. To analyze a biological contribution of CML-derived myofibroblasts in vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimeric BCR-ABL transcript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferation in vivo.

  9. Combined inhibition of β-catenin and Bcr–Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-01-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte–macrophage progenitors, and highest among a novel CD34+CD38+CD123hiTim-3hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5T315I and TKI-resistant primary BC-CML cells with or without BCR–ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR–ABLT315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR–ABLT315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr–Abl inhibition to prevent or overcome Bcr–Abl kinase-dependent or -independent TKI resistance in BC-CML. PMID:28321124

  10. Combined inhibition of β-catenin and Bcr-Abl synergistically targets tyrosine kinase inhibitor-resistant blast crisis chronic myeloid leukemia blasts and progenitors in vitro and in vivo.

    Science.gov (United States)

    Zhou, H; Mak, P Y; Mu, H; Mak, D H; Zeng, Z; Cortes, J; Liu, Q; Andreeff, M; Carter, B Z

    2017-10-01

    Tyrosine kinase inhibitor (TKI) resistance and progression to blast crisis (BC), both related to persistent β-catenin activation, remain formidable challenges for chronic myeloid leukemia (CML). We observed overexpression of β-catenin in BC-CML stem/progenitor cells, particularly in granulocyte-macrophage progenitors, and highest among a novel CD34 + CD38 + CD123 hi Tim-3 hi subset as determined by CyTOF analysis. Co-culture with mesenchymal stromal cells (MSCs) induced the expression of β-catenin and its target CD44 in CML cells. A novel Wnt/β-catenin signaling modulator, C82, and nilotinib synergistically killed KBM5 T315I and TKI-resistant primary BC-CML cells with or without BCR-ABL kinase mutations even under leukemia/MSC co-culture conditions. Silencing of β-catenin by short interfering RNA restored sensitivity of primary BCR-ABL T315I/E255V BC-CML cells to nilotinib. Combining the C82 pro-drug, PRI-724, with nilotinib significantly prolonged the survival of NOD/SCID/IL2Rγ null mice injected with primary BCR-ABL T315I/E255V BC-CML cells. The combined treatment selectively targeted CML progenitors and inhibited CD44, c-Myc, survivin, p-CRKL and p-STAT5 expression. In addition, pretreating primary BC-CML cells with C82, or the combination, but not with nilotinib alone, significantly impaired their engraftment potential in NOD/SCID/IL2Rγ-null-3/GM/SF mice and significantly prolonged survival. Our data suggest potential benefit of concomitant β-catenin and Bcr-Abl inhibition to prevent or overcome Bcr-Abl kinase-dependent or -independent TKI resistance in BC-CML.

  11. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  12. Diagnosis and Treatment of Chronic Myeloid Leukemia (CML) in 2015

    Science.gov (United States)

    Thompson, Philip A; Kantarjian, Hagop; Cortes, Jorge E

    2017-01-01

    Few neoplastic diseases have undergone a transformation in a relatively short period of time like chronic myeloid leukemia (CML) has in the last few years. In 1960, CML was the first cancer where a unique chromosomal abnormality, “a minute chromosome”,1 was identified and a pathophysiologic correlation suggested. Landmark work followed, recognizing the underlying translocation between chromosomes 9 and 22 that gave rise to this abnormality2 and shortly afterward, the specific genes involved3,4 and the pathophysiologic implications of this novel rearrangement.5–7 Fast-forward a few years, this knowledge has given us the most remarkable example of a specific therapy targeting the dysregulated kinase activity represented by this molecular change. The broad use of tyrosine kinase inhibitors has resulted in an improvement in the overall survival to the point where the life expectancy of patients today is nearly equal to that of the general population.8 Still, there are challenges and unanswered questions that define the reasons why the progress still escapes many patients, and the details that separate patients from ultimate “cure”. In this manuscript we review our current understanding of CML in 2015, present recommendations for optimal management, and discuss the unanswered questions and what could be done to answer them in the near future. PMID:26434969

  13. Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells

    Science.gov (United States)

    Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin

    2015-01-01

    Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811

  14. Is the primary event in radiation-induced chronic myelogenous leukemia the induction of the t(9; 22) translocation

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, M. (Swedish Radiation Protection Inst., Stockholm (Sweden))

    1992-05-18

    The probability that ionizing radiation induces a t(9;22) reciprocal translocation with its break points confined to the same regions as the break points for the Philadelphia (Ph') translocation in chronic myelogenous leukemia (CML) has been calculated to be 7 x 10[sup -12] per cell and gray. This figure was used to estimate the number of individuals among the atomic bomb survivors at Hiroshima and Nagasaki with such an induced translocation. For 9196 atomic bomb survivors who received a mean organ dose equivalent to bone marrow of 0.85 sievert, the estimate is done that the number of individuals with a radiation-induced t(9;22) translocation in one of the pluripotent stem cells in bone marrow is of the order of 50. The observed number of affected individuals with CML within the same cohort is 18. Even if the estimate of the number of individuals has relatively large errors, this indicates that the primary event in the radiation-induced CML cases can be a radiation-induced t(9;22) reciprocal translocation. (Author).

  15. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl

    Science.gov (United States)

    2010-01-01

    Background Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. Bcr-Abl-T315I is the notorious point mutation that causes resistance to imatinib and the second generation tyrosine kinase inhibitors, leading to poor prognosis. CML blasts have constitutive p65 (RelA NF-κB) transcriptional activity, and NF-κB may be a potential target for molecular therapies in CML that may also be effective against CML cells with Bcr-Abl-T315I. Results In this report, we discovered that pristimerin, a quinonemethide triterpenoid isolated from Celastraceae and Hippocrateaceae, inhibited growth and induced apoptosis in CML cells, including the cells harboring Bcr-Abl-T315I mutation. Additionally, pristimerin inhibited the growth of imatinib-resistant Bcr-Abl-T315I xenografts in nude mice. Pristimerin blocked the TNFα-induced IκBα phosphorylation, translocation of p65, and expression of NF-κB-regulated genes. Pristimerin inhibited two steps in NF-κB signaling: TAK1→IKK and IKK→IκBα. Pristimerin potently inhibited two pairs of CML cell lines (KBM5 versus KBM5-T315I, 32D-Bcr-Abl versus 32D-Bcr-Abl-T315I) and primary cells from a CML patient with acquired resistance to imatinib. The mRNA and protein levels of Bcr-Abl in imatinib-sensitive (KBM5) or imatinib-resistant (KBM5-T315I) CML cells were reduced after pristimerin treatment. Further, inactivation of Bcr-Abl by imatinib pretreatment did not abrogate the TNFα-induced NF-κB activation while silencing p65 by siRNA did not affect the levels of Bcr-Abl, both results together indicating that NF-κB inactivation and Bcr-Abl inhibition may be parallel independent pathways. Conclusion To our knowledge, this is the first report to show that pristimerin is effective in vitro and in vivo against CML cells, including those with the T315I mutation. The mechanisms may involve inhibition of NF-κB and Bcr-Abl. We concluded that pristimerin could be a lead compound for further drug development to

  16. The Role of Mitochondrial DNA Damage and Repair in the Resistance of BCR/ABL-Expressing Cells to Tyrosine Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-08-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs, primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.

  17. The HDAC inhibitor SB939 overcomes resistance to BCR-ABL kinase Inhibitors conferred by the BIM deletion polymorphism in chronic myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Muhammad Rauzan

    Full Text Available Chronic myeloid leukemia (CML treatment has been improved by tyrosine kinase inhibitors (TKIs such as imatinib mesylate (IM but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM gene which impairs the expression of pro-apoptotic splice isoforms of BIM. SB939 (pracinostat is a hydroxamic acid based HDAC inhibitor with favorable pharmacokinetic, physicochemical and pharmaceutical properties, and we investigated if this drug could overcome BIM deletion polymorphism-induced TKI resistance. We found that SB939 corrects BIM pre-mRNA splicing in CML cells with the BIM deletion polymorphism, and induces apoptotic cell death in CML cell lines and primary cells with the BIM deletion polymorphism. More importantly, SB939 both decreases the viability of CML cell lines and primary CML progenitors with the BIM deletion and restores TKI-sensitivity. Our results demonstrate that SB939 overcomes BIM deletion polymorphism-induced TKI resistance, and suggest that SB939 may be useful in treating CML patients with BIM deletion-associated TKI resistance.

  18. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML in human brain: relation to vascular dementia

    Directory of Open Access Journals (Sweden)

    Williams Jonathan

    2007-10-01

    Full Text Available Abstract Background Advanced glycation end-products (AGEs and their receptor (RAGE occur in dementia of the Alzheimer's type and diabetic microvascular disease. Accumulation of AGEs relates to risk factors for vascular dementia with ageing, including hypertension and diabetes. Cognitive dysfunction in vascular dementia may relate to microvascular disease resembling that in diabetes. We tested if, among people with cerebrovascular disease, (1 those with dementia have higher levels of neuronal and vascular AGEs and (2 if cognitive dysfunction depends on neuronal and/or vascular AGE levels. Methods Brain Sections from 25 cases of the OPTIMA (Oxford Project to Investigate Memory and Ageing cohort, with varying degrees of cerebrovascular pathology and cognitive dysfunction (but only minimal Alzheimer type pathology were immunostained for Nε-(carboxymethyl-lysine (CML, the most abundant AGE. The level of staining in vessels and neurons in the cortex, white matter and basal ganglia was compared to neuropsychological and other clinical measures. Results The probability of cortical neurons staining positive for CML was higher in cases with worse cognition (p = 0.01 or a history of hypertension (p = 0.028. Additionally, vascular CML staining related to cognitive impairment (p = 0.02 and a history of diabetes (p = 0.007. Neuronal CML staining in the basal ganglia related to a history of hypertension (p = 0.002. Conclusion CML staining in cortical neurons and cerebral vessels is related to the severity of cognitive impairment in people with cerebrovascular disease and only minimal Alzheimer pathology. These findings support the possibility that cerebral accumulation of AGEs may contribute to dementia in people with cerebrovascular disease.

  19. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  20. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  1. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  2. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  3. Review of clinical, cytogenetic, and molecular aspects of Ph-negative CML

    NARCIS (Netherlands)

    D. van der Plas (D.); G.C. Grosveld (Gerard); A. Hagemeijer (Anne)

    1991-01-01

    markdownabstractAbstract Between 1985 and 1989, many cases of Philadelphia (Ph) chromosome negative chronic myelogenous leukemia (CML) were reported. For this review, the following selection criteria were used: the original articles on Ph-negative cases should provide clinical, hematologic,

  4. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Hamad

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML that have the potential to target CML stem cells and potentially provide cure for CML.

  5. Mesenchymal Stem Cells (MSC Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC in Chronic Myeloid Leukemia Patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available It is well known that mesenchymal stem cells (MSC have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML. Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  6. Mesenchymal Stem Cells (MSC) Regulate Activation of Granulocyte-Like Myeloid Derived Suppressor Cells (G-MDSC) in Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Giallongo, Cesarina; Romano, Alessandra; Parrinello, Nunziatina Laura; La Cava, Piera; Brundo, Maria Violetta; Bramanti, Vincenzo; Stagno, Fabio; Vigneri, Paolo; Chiarenza, Annalisa; Palumbo, Giuseppe Alberto; Tibullo, Daniele; Di Raimondo, Francesco

    2016-01-01

    It is well known that mesenchymal stem cells (MSC) have a role in promotion of tumor growth, survival and drug-resistance in chronic myeloid leukemia (CML). Recent reports indicated that a subpopulation of myeloid cells, defined as granulocyte-like myeloid-derived suppressor cells (G-MDSC) is increased in these patients. So far, the role of MSC in MDSC expansion and activation into the BM microenvironment remains unexplored. To address this question, here we use a specific experimental model in vitro, co-culturing MSC with peripheral blood mononucleated cells (PBMC) from normal individuals, in order to generate MSC-educated G-MDSC. Although MSC of healthy donors (HD) and CML patients were able to generate the same amount of MDSC, only CML-MSC-educated G-MDSC exhibited suppressive ability on autologous T lymphocytes. In addition, compared with HD-MSC, CML-MSC over-expressed some immunomodulatory factors including TGFβ, IL6 and IL10, that could be involved in MDSC activation. CML-MSC-educated G-MDSC expressed higher levels of ARG1, TNFα, IL1β, COX2 and IL6 than G-MDSC isolated from co-culture with HD-MSC. Our data provide evidence that CML-MSC may play a critical role in tumor microenvironment by orchestrating G-MDSC activation and regulating T lymphocytes-mediated leukemia surveillance, thus contributing to CML immune escape.

  7. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    Science.gov (United States)

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  8. Novel Acylguanidine Derivatives Targeting Smoothened Induce Antiproliferative and Pro-Apoptotic Effects in Chronic Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Alessandra Chiarenza

    Full Text Available The most relevant therapeutic approaches to treat CML rely on the administration of tyrosine kinase inhibitors (TKIs like Imatinib, which are able to counteract the activity of Bcr-Abl protein increasing patient's life expectancy and survival. Unfortunately, there are some issues TKIs are not able to address; first of all TKIs are not so effective in increasing survival of patients in blast crisis, second they are not able to eradicate leukemic stem cells (LSC which represent the major cause of disease relapse, and third patients often develop resistance to TKIs due to mutations in the drug binding site. For all these reasons it's of primary interest to find alternative strategies to treat CML. Literature shows that Hedgehog signaling pathway is involved in LSC maintenance, and pharmacological inhibition of Smoothened (SMO, one of the key molecules of the pathway, has been demonstrated to reduce Bcr-Abl positive bone marrow cells and LSC. Consequently, targeting SMO could be a promising way to develop a new treatment strategy for CML overcoming the limitations of current therapies. In our work we have tested some compounds able to inhibit SMO, and among them MRT92 appears to be a very potent SMO antagonist. We found that almost all our compounds were able to reduce Gli1 protein levels in K-562 and in KU-812 CML cell lines. Furthermore, they were also able to increase Gli1 and SMO RNA levels, and to reduce cell proliferation and induce apoptosis/autophagy in both the tested cell lines. Finally, we demonstrated that our compounds were able to modulate the expression of some miRNAs related to Hedgehog pathway such as miR-324-5p and miR-326. Being Hedgehog pathway deeply implicated in the mechanisms of CML we may conclude that it could be a good therapeutic target for CML and our compounds seem to be promising antagonists of such pathway.

  9. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V.

    2015-01-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML),

  10. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis

    Directory of Open Access Journals (Sweden)

    C.R.T. Godoy

    2015-06-01

    Full Text Available We measured circulating endothelial precursor cells (EPCs, activated circulating endothelial cells (aCECs, and mature circulating endothelial cells (mCECs using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML patients and 65 healthy controls; and vascular endothelial growth factor (VEGF by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146% was significantly higher than in healthy subjects (0.0059%, P0.05. In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145. In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  11. Evaluation of multielements in human serum of patients with chronic myelogenous leukemia (CML) using SRTXRF; Avaliacao multielementar em soro humano de individuos portadores de leucemia mieloide cronica (LMC) usando SRTXRF

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Catarine Canellas Gondim

    2005-04-15

    In this work, trace elements were analyzed in serum of patients with chronic myelogenous leukemia (CML) by Total Reflection X-Ray Fluorescence using synchrotron radiation (SRTXRF). Chronic myelogenous leukemia (CML) affects the myeloid cells in the blood and affects 1 to 2 people per 100,000 and accounts for 7-20% cases of leukemia. Sixty patients with CML and sixty healthy volunteers (control group) were studied. Blood was collected into vacutainers without additives. Directly after collection, each blood sample was centrifuged at 3000 rev/min for 10 min in order to separate blood cells and suspended particles from blood serum. Sera were transferred into polyethylene tubes and stored in a freezer at 253 K. A 500 {sup m}u{sup L} serum quantity was spiked with Ga (50 {sup m}u{sup L} ) as internal standard. 10 {sup m}u{sup L} aliquots were pipetted on Perspex sample carrier. After deposition, the samples were left to dry under an infrared lamp. The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory (LNLS), using a polychromatic beam. Standard solutions with gallium as internal standard were prepared for calibration system. It was possible to determine the concentrations of the following elements: P, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br and Rb. Starting from the ANOVA test was observed that the elements P, S, Ca, Cr, Mn, Fe, Cu and Rb presented real significant differences ({alpha} = 0.05) between groups (healthy subjects and CML patients) and Sex (males and females). (author)

  12. “Preleukemic or smoldering” chronic myelogenous leukemia (CML:BCR-ABL1 positive: A brief case report

    Directory of Open Access Journals (Sweden)

    John M. Bennett

    2015-01-01

    The most common feature of CML is an elevated WBC count, usually above 25×103/µL, and frequently above 100×103/µL. We report a case of confirmed Ph+CML with a normal CBC detected because of the presence of rare myelocytes and 2% basophils [Fig. 1]. Previous leukocyte counts for the preceding eight years were normal with the exception of one done four months prior to his presentation that showed an abnormal differential with 1% basophils, 2% metamyelocytes and 2% myelocytes.

  13. Chloramphenicol Biosynthesis: The Structure of CmlS, a Flavin-Dependent Halogenase Shwing a Covalent Flavin-Aspartate Bond

    International Nuclear Information System (INIS)

    Podzelinska, K.; Latimer, R.; Bhattacharya, A.; Vining, L.; Zechel, D.; Jia, Z.

    2010-01-01

    Chloramphenicol is a halogenated natural product bearing an unusual dichloroacetyl moiety that is critical for its antibiotic activity. The operon for chloramphenicol biosynthesis in Streptomyces venezuelae encodes the chloramphenicol halogenase CmlS, which belongs to the large and diverse family of flavin-dependent halogenases (FDH's). CmlS was previously shown to be essential for the formation of the dichloroacetyl group. Here we report the X-ray crystal structure of CmlS determined at 2.2 (angstrom) resolution, revealing a flavin monooxygenase domain shared by all FDHs, but also a unique 'winged-helix' C-terminal domain that creates a T-shaped tunnel leading to the halogenation active site. Intriguingly, the C-terminal tail of this domain blocks access to the halogenation active site, suggesting a structurally dynamic role during catalysis. The halogenation active site is notably nonpolar and shares nearly identical residues with Chondromyces crocatus tyrosyl halogenase (CndH), including the conserved Lys (K71) that forms the reactive chloramine intermediate. The exception is Y350, which could be used to stabilize enolate formation during substrate halogenation. The strictly conserved residue E44, located near the isoalloxazine ring of the bound flavin adenine dinucleotide (FAD) cofactor, is optimally positioned to function as a remote general acid, through a water-mediated proton relay, which could accelerate the reaction of the chloramine intermediate during substrate halogenation, or the oxidation of chloride by the FAD(C4α)-OOH intermediate. Strikingly, the 8α carbon of the FAD cofactor is observed to be covalently attached to D277 of CmlS, a residue that is highly conserved in the FDH family. In addition to representing a new type of flavin modification, this has intriguing implications for the mechanism of FDHs. Based on the crystal structure and in analogy to known halogenases, we propose a reaction mechanism for CmlS.

  14. A Preliminary Study of the Suitability of Archival Bone Marrow and Peripheral Blood Smears for Diagnosis of CML Using FISH

    Directory of Open Access Journals (Sweden)

    Alice Charwudzi

    2014-01-01

    Full Text Available Background. FISH is a molecular cytogenetic technique enabling rapid detection of genetic abnormalities. Facilities that can run fresh/wet samples for molecular diagnosis and monitoring of neoplastic disorders are not readily available in Ghana and other neighbouring countries. This study aims to demonstrate that interphase FISH can successfully be applied to archival methanol-fixed bone marrow and peripheral blood smear slides transported to a more equipped facility for molecular diagnosis of CML. Methods. Interphase FISH was performed on 22 archival methanol-fixed marrow (BM and 3 peripheral blood (PB smear slides obtained at diagnosis. The BM smears included 20 CML and 2 CMML cases diagnosed by morphology; the 3 PB smears were from 3 of the CML patients at the time of diagnosis. Six cases had known BCR-ABL fusion results at diagnosis by RQ-PCR. Full blood count reports at diagnosis were also retrieved. Result. 19 (95% of the CML marrow smears demonstrated the BCR-ABL translocation. There was a significant correlation between the BCR-ABL transcript detected at diagnosis by RQ-PCR and that retrospectively detected by FISH from the aged BM smears at diagnosis (r=0.870; P=0.035. Conclusion. Archival methanol-fixed marrow and peripheral blood smears can be used to detect the BCR-ABL transcript for CML diagnosis.

  15. The Efficacy of Reduced-dose Dasatinib as a Subsequent Therapy in Patients with Chronic Myeloid Leukemia in the Chronic Phase: The LD-CML Study of the Kanto CML Study Group

    Science.gov (United States)

    Iriyama, Noriyoshi; Ohashi, Kazuteru; Hashino, Satoshi; Kimura, Shinya; Nakaseko, Chiaki; Takano, Hina; Hino, Masayuki; Uchiyama, Michihiro; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-01-01

    Objective The aim of this study was to prospectively investigate the efficacy and safety profiles of low-dose dasatinib therapy (50 mg once daily). Methods Patients with chronic myeloid leukemia in the chronic phase (CML-CP) who were being treated with low-dose imatinib (≤200 mg/day), but were resistant to this agent were enrolled in the current study (referred to as the LD-CML study). Results There subjects included 9 patients (4 men and 5 women); all were treated with dasatinib at a dose of 50 mg once daily. Among 8 patients who had not experienced major molecular response (MMR; BCR-ABL1 transcript ≤0.1% according to International Scale [IS]) at study enrollment, 5 attained MMR by 12 months. In particular, 3 of 9 patients demonstrated a deep molecular response (DMR; IS ≤0.0069%) by 18 months. Five patients developed lymphocytosis accompanied by cytotoxic lymphocyte predominance. There was no mortality or disease progression, and all continue to receive dasatinib therapy at 18 months with only 2 patients requiring dose reduction. Toxicities were mild-to-moderate, and pleural effusion was observed in 1 patient (grade 1). Conclusion Low-dose dasatinib can attain MMR and DMR without severe toxicity in patients with CML-CP who are unable to achieve MMR with low-dose imatinib. Switching to low-dose dasatinib should therefore be considered for patients in this setting, especially if they are otherwise considering a cessation of treatment. PMID:29033428

  16. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99. Does it matter which one you choose

    DEFF Research Database (Denmark)

    Dreyer, Louise Camilla; Niemann, Anne Louise; Hauschild, Michael Zwicky

    2003-01-01

    ?’ To investigate this issue, a comparison is performed of three frequently applied life cycle impact assessment methods. Methods. The three life cycle impact assessment methods EDIP97 (1), CML2001 (2) and Eco-indicator 99 (3) are compared on their performance through application to the same life cycle inventory...... of the EDIP97 and CML2001 output, differences up to two orders of magnitude are found for some of the indicator results for the impact categories describing toxicity to humans and ecosystems, and there is little similarity in the patterns of major contributors among the two methods. For human toxicity the CML......2001 score is dominated by contribution from metals while the EDIP97 score is caused by a solvent and nitrogen oxides. For aquatic ecotoxicity, metals are the main contributors for both methods but while it is vanadium for CML2001, it is strontium for EDIP97. After normalisation, the differences...

  17. 3CML: a software application for quality control of multi leaf collimators; 3CML: una aplicacion informatica para el control de calidad de colimadores multilaminas

    Energy Technology Data Exchange (ETDEWEB)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-07-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  18. Evaluation of monocyte-derived dendritic cells, T regulatory and Th17 cells in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors.

    Science.gov (United States)

    Hus, Iwona; Tabarkiewicz, Jacek; Lewandowska, Magdalena; Wasiak, Magdalena; Wdowiak, Paulina; Kusz, Maria; Legieć, Monika; Dmoszyńska, Anna; Roliński, Jacek

    2011-01-01

    Immunotherapy with dendritic cells (DC) may constitute a new and advantageous option for patients with chronic myeloid leukemia (CML) who respond to therapy with tyrosine kinase inhibitors (TKI), but do not reach complete cytogenetic or molecular remission. In this study, we evaluated the immunophenotype of DC generated from monocytes (Mo-DC) of patients with CML and the influence of TKI therapy on the results of CML-DC generation. We also measured the percentages of T regulatory cells (Tregs) as well as Th17 cells in 19 untreated patients suffering from CML, and in 28 CML patients treated with TKI. We found that DC can be reliably generated from the peripheral blood CD14+ cells of untreated CML patients. But we observed a persistent expression of CD14 monocyte marker on DC from CML patients, together with lower percentages of Mo-DC with expression of CD1a (p = 0.002), CD80 (p = 0.0005), CD83 (p = 0.0004), and CD209 (p = 0.02) compared to healthy donors. There was an adverse correlation between WBC count and the percentage of Mo-DC with co-expression of CD80 and CD86 (R = -0.63; p = 0.03). In patients treated with TKI, we observed higher efficacy of DC generation in seven-day cultures, compared to untreated patients. Expression of CD209 on DC was higher in patients treated with TKI (0.02). The duration of TKI therapy correlated adversely with MFI for CD1a (R = -0.49; p = 0.006) and positively with MFI for CD83 (R = 0.63; p = 0.01). Percentages of CD4+CD25highFoxP3+ cells (p = 0.0002) and Th17 cells (p = 0.02) were significantly higher in untreated CML patients compared to healthy controls. There was a significant correlation between the percentage of Treg cells and the percentage of peripheral blood basophiles (R = 0.821; p = 0.02). There were no changes in Tregs or Th17 cell percentages in CML patients after six months of TKI therapy. However, the expression of intracellular IL-17 in Th17 cells correlated negatively with the time of TKI therapy in the whole group

  19. Estimation of the target stem-cell population size in chronic myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Radivoyevitch, T.; Ramsey, M.J.; Tucker, J.D.

    1999-01-01

    Estimation of the number of hematopoietic stem cells capable of causing chronic myeloid leukemia (CML) is relevant to the development of biologically based risk models of radiation-induced CML. Through a comparison of the age structure of CML incidence data from the Surveillance, Epidemiology, and End Results (SEER) Program and the age structure of chromosomal translocations found in healthy subjects, the number of CML target stem cells is estimated for individuals above 20 years of age. The estimation involves three steps. First, CML incidence among adults is fit to an exponentially increasing function of age. Next, assuming a relatively short waiting time distribution between BCR-ABL induction and the appearance of CML, an exponential age function with rate constants fixed to the values found for CML is fitted to the translocation data. Finally, assuming that translocations are equally likely to occur between any two points in the genome, the parameter estimates found in the first two steps are used to estimate the number of target stem cells for CML. The population-averaged estimates of this number are found to be 1.86 x 10 8 for men and 1.21 x 10 8 for women; the 95% confidence intervals of these estimates are (1.34 x 10 8 , 2.50 x 10 8 ) and (0.84 x 10 8 , 1.83 x 10 8 ), respectively. (orig.)

  20. [The molecular-cytogenetic characterization and tyrosine kinase inhibitors efficacy in newly diagnosed chronic phase CML patients with variant Philadelphia chromosomes].

    Science.gov (United States)

    Zhao, J J; Zhang, Y L; Zhang, S J; Zhou, J; Yu, F K; Zu, Y L; Zhao, H F; Li, Z; Song, Y P

    2018-03-14

    Objective: To investigate the molecular-cytogenetic characterization and impact on tyrosine kinase inhibitors (TKIs) therapy in chronic phase of chronic myeloid leukemia (CML-CP) patients with variant Ph chromosome (vPh). Methods: The clinical data of 32 patients with vPh chromosomes were collected and compared with 703 patients with typical Ph chromosome in newly diagnosed CML-CP who were on first-line imatinib (IM) and with BCR-ABL transcript of P210. Results: There was no significant difference in demographic and hematological characteristics between vPh and classic Ph patients. 3(9.4%) of the 32 vPh cases were simple variant translocations. Among the remaining 29 cases with complex variant translocations, 28 cases (87.5%) involved 3 chromosomes, and only 1 (3.1%) involved 4 chromosomes. Except for 8, 15, 18, X, and Y chromosomes, the other chromosomes were involved. The frequency of chromosome 12q(15.5%) and 1p (12.1%) were higher involved. The most common FISH signal pattern was 2G2R1Y (74.1%), followed by 1G1R2F (14.8%), 2G1R1Y (3.7%), 1G2R1Y (3.7%), 1G1R1Y (3.7%). The comparison of complete cytogenetic response (CCyR) ( P =0.269), major molecular response (MMR) ( P =0.391) were carried out between simple and complex mechanisms, without difference. Compared with the classic Ph, the patients with vPh had higher IM primary resistance rate ( χ 2 =3.978, P =0.046), especially primary hematological resistance ( χ 2 =7.870, P =0.005), but the difference of CCyR ( χ 2 =0.192, P =0.661), MMR ( χ 2 =0.822, P =0.365), EFS ( χ 2 =0.509, P =0.476), OS ( χ 2 =3.485, P =0.062) were not statistically significant, and multivariate analysis showed that the presence of vPh did not affect OS ( RR =0.692, 95% CI 0.393-1.765, P =0.658)、EFS ( RR =0.893, 95% CI 0.347-2.132, P =0.126) and PFS ( RR =1.176, 95% CI 0.643-2.682, P =0.703). Conclusion: CML-CP patients with vPh and classic Ph had similar demographic and hematological characteristics. Except for 22q11, 9q34, the

  1. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  2. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  3. Long-term outcome of patients with newly diagnosed chronic myeloid leukemia: a randomized comparison of stem cell transplantation with drug treatment.

    Science.gov (United States)

    Gratwohl, A; Pfirrmann, M; Zander, A; Kröger, N; Beelen, D; Novotny, J; Nerl, C; Scheid, C; Spiekermann, K; Mayer, J; Sayer, H G; Falge, C; Bunjes, D; Döhner, H; Ganser, A; Schmidt-Wolf, I; Schwerdtfeger, R; Baurmann, H; Kuse, R; Schmitz, N; Wehmeier, A; Fischer, J Th; Ho, A D; Wilhelm, M; Goebeler, M-E; Lindemann, H W; Bormann, M; Hertenstein, B; Schlimok, G; Baerlocher, G M; Aul, C; Pfreundschuh, M; Fabian, M; Staib, P; Edinger, M; Schatz, M; Fauser, A; Arnold, R; Kindler, T; Wulf, G; Rosselet, A; Hellmann, A; Schäfer, E; Prümmer, O; Schenk, M; Hasford, J; Heimpel, H; Hossfeld, D K; Kolb, H-J; Büsche, G; Haferlach, C; Schnittger, S; Müller, M C; Reiter, A; Berger, U; Saußele, S; Hochhaus, A; Hehlmann, R

    2016-03-01

    Tyrosine kinase inhibitors represent today's treatment of choice in chronic myeloid leukemia (CML). Allogeneic hematopoietic stem cell transplantation (HSCT) is regarded as salvage therapy. This prospective randomized CML-study IIIA recruited 669 patients with newly diagnosed CML between July 1997 and January 2004 from 143 centers. Of these, 427 patients were considered eligible for HSCT and were randomized by availability of a matched family donor between primary HSCT (group A; N=166 patients) and best available drug treatment (group B; N=261). Primary end point was long-term survival. Survival probabilities were not different between groups A and B (10-year survival: 0.76 (95% confidence interval (CI): 0.69-0.82) vs 0.69 (95% CI: 0.61-0.76)), but influenced by disease and transplant risk. Patients with a low transplant risk showed superior survival compared with patients with high- (Ptreatment (56% vs 6%; P<0.001). Differences in symptoms and Karnofsky score were not significant. In the era of tyrosine kinase inhibitors, HSCT remains a valid option when both disease and transplant risk are considered.

  4. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  5. Chronic Myeloid Leukemia Blood Inflicted Injury in Cord Derived Wharton's Jelly Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Wajid, N.; Ali, M.; Javed, S.; Ali, F.; Anwar, S. S.

    2016-01-01

    Objective: To determine the effects of blood from CML patients on human umbilical cord derived Wharton's jelly mesenchymal stem cells (WJMSCs) for evaluation of their therapeutic potential. Study Design: An experimental study. Place and Duration of Study: Centre for Research in Molecular Medicine, University of Lahore, from September 2013 to December 2014. Methodology: Possible behavior of WJMSCs in CML patients was assessed by culturing these cells in their plasma. WJMSCs at passage 3 were cultured in plasma isolated from 9 CML patients as well as 9 normal subjects. Effects on cell viability, proliferation, LDH release, paracrine factors (p38 and p53) and oxidative stress were evaluated. Result: WJMSCs cultured in plasma of CML patients showed decreased viability, slow proliferation, high LDH release, high expression of p38 and p53 and a high oxidative stress compared to normal subjects. Conclusion: Stressed environment of CML patients' blood/plasma induced injury to WJMSCs as well as reduced their viability. Effectiveness of these cells for therapeutics of CML is, therefore, likely to be reduced. (author)

  6. Cyclopiamines C and D: Epoxide Spiroindolinone Alkaloids from Penicillium sp. CML 3020

    DEFF Research Database (Denmark)

    Kildgaard, Sara; de Medeiros, Lívia S; Phillips, Emma

    2018-01-01

    Cyclopiamines C (1) and D (2) were isolated from the extract of Penicillium sp. CML 3020, a fungus sourced from an Atlantic Forest soil sample. Their structures and relative configuration were determined by 1D and 2D NMR, HRMS, and UV/vis data analysis. Cyclopiamines C and D belong to a small...

  7. Evaluation of monocyte-derived dendritic cells, T regulatory and Th17 cells in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    Jacek Roliński

    2011-04-01

    Full Text Available Immunotherapy with dendritic cells (DC may constitute a new and advantageous option for patients with chronic myeloid leukemia (CML who respond to therapy with tyrosine kinase inhibitors (TKI, but do not reach complete cytogenetic or molecular remission. In this study, we evaluated the immunophenotype of DC generated from monocytes (Mo-DC of patients with CML and the influence of TKI therapy on the results of CML-DC generation. We also measured the percentages of T regulatory cells (Tregs as well as Th17 cells in 19 untreated patients suffering from CML, and in 28 CML patients treated with TKI. We found that DC can be reliably generated from the peripheral blood CD14+ cells of untreated CML patients. But we observed a persistent expression of CD14 monocyte marker on DC from CML patients, together with lower percentages of Mo-DC with expression of CD1a (p = 0.002, CD80 (p = 0.0005, CD83 (p = 0.0004, and CD209 (p = 0.02 compared to healthy donors. There was an adverse correlation between WBC count and the percentage of Mo-DC with co-expression of CD80 and CD86 (R = –0.63; p = 0.03. In patients treated with TKI, we observed higher efficacy of DC generation in seven-day cultures, compared to untreated patients. Expression of CD209 on DC was higher in patients treated with TKI (0.02. The duration of TKI therapy correlated adversely with MFI for CD1a (R = –0.49; p = 0.006 and positively with MFI for CD83 (R = 0.63; p = 0.01. Percentages of CD4+CD25highFoxP3+ cells (p = 0.0002 and Th17 cells (p = 0.02 were significantly higher in untreated CML patients compared to healthy controls. There was a significant correlation between the percentage of Treg cells and the percentage of peripheral blood basophiles (R = 0.821; p = 0.02. There were no changes in Tregs or Th17 cell percentages in CML patients after six months of TKI therapy. However, the expression of intracellular IL-17 in Th17 cells correlated negatively with the time of TKI therapy in the

  8. Prognostic value of regulatory T cells in newly diagnosed chronic myeloid leukemia patients.

    Science.gov (United States)

    Zahran, Asmaa M; Badrawy, Hosny; Ibrahim, Abeer

    2014-08-01

    Chronic myeloid leukemia (CML) is a clonal disease, characterized by a reciprocal t(9, 22) that results in a chimeric BCR/ABL fusion gene. Regulatory T cells (Tregs) constitute the main cell population that enables cancer cells to evade immune surveillance. The purpose of our study was to investigate the level of Tregs in newly diagnosed CML patients and to correlate it with the patients' clinical, laboratory and molecular data. We also aimed to assess the effect of treatment using tyrosine kinase inhibitor (TKI) on Treg levels. Tregs were characterized and quantified by flow cytometry in 63 newly diagnosed CML patients and 40 healthy controls. TKI was used in 45 patients with chronic phase CML, and the response to therapy was correlated with baseline Treg levels. The percentages of Tregs were significantly increased in CML patients compared to the controls. Treg numbers were significantly lower in patients with chronic phase CML versus the accelerated and blast phases, and were significantly lower in patients with complete molecular remission (CMR) compared to those patients without CMR. Tregs may play a role in the maintenance of CML. Moreover, the decrease of their levels in patients with CMR suggests that Tregs might have a clinical value in evaluating the effects of therapy.

  9. Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis.

    Science.gov (United States)

    Abollo-Jiménez, Fernando; Campos-Sánchez, Elena; Toboso-Navasa, Amparo; Vicente-Dueñas, Carolina; González-Herrero, Inés; Alonso-Escudero, Esther; González, Marcos; Segura, Víctor; Blanco, Oscar; Martínez-Climent, José Angel; Sánchez-García, Isidro; Cobaleda, César

    2014-01-01

    In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.

  10. International development of an EORTC questionnaire for assessing health-related quality of life in chronic myeloid leukemia patients : The EORTC QLQ-CML24

    NARCIS (Netherlands)

    Efficace, Fabio; Baccarani, Michele; Breccia, Massimo; Saussele, Susanne; Abel, Gregory; Caocci, Giovanni; Guilhot, Francois; Cocks, Kim; Naeem, Adel; Sprangers, Mirjam; Oerlemans, Simone; Chie, Weichu; Castagnetti, Fausto; Bombaci, Felice; Sharf, Giora; Cardoni, Annarita; Noens, Lucien; Pallua, Stephan; Salvucci, Marzia; Nicolatou-Galitis, Ourania; Rosti, Gianantonio; Mandelli, Franco

    Background Health-related quality of life (HRQOL) is a key aspect for chronic myeloid leukemia (CML) patients. The aim of this study was to develop a disease-specific HRQOL questionnaire for patients with CML to supplement the European Organization for Research and Treatment of Cancer (EORTC)-QLQ

  11. International development of an EORTC questionnaire for assessing health-related quality of life in chronic myeloid leukemia patients: the EORTC QLQ-CML24

    NARCIS (Netherlands)

    Efficace, Fabio; Baccarani, Michele; Breccia, Massimo; Saussele, Susanne; Abel, Gregory; Caocci, Giovanni; Guilhot, Francois; Cocks, Kim; Naeem, Adel; Sprangers, Mirjam; Oerlemans, Simone; Chie, Weichu; Castagnetti, Fausto; Bombaci, Felice; Sharf, Giora; Cardoni, Annarita; Noens, Lucien; Pallua, Stephan; Salvucci, Marzia; Nicolatou-Galitis, Ourania; Rosti, Gianantonio; Mandelli, Franco

    2014-01-01

    Background Health-related quality of life (HRQOL) is a key aspect for chronic myeloid leukemia (CML) patients. The aim of this study was to develop a disease-specific HRQOL questionnaire for patients with CML to supplement the European Organization for Research and Treatment of Cancer (EORTC)-QLQ

  12. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation.

    Science.gov (United States)

    Liu, Shing Hwa; Sheu, Wayne Huey Herng; Lee, Maw Rong; Lee, Wen Jane; Yi, Yu Chiao; Yang, Tzung Jie; Jen, Jen Fon; Pan, Hung Chuan; Shen, Chin Chang; Chen, Wen Bao; Tien, Hsing Ru; Sheu, Meei Ling

    2013-06-01

    N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  13. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...

  14. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  15. Arabidopsis calmodulin-like protein CML36 is a calcium (Ca2+) sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity.

    Science.gov (United States)

    Astegno, Alessandra; Bonza, Maria Cristina; Vallone, Rosario; La Verde, Valentina; D'Onofrio, Mariapina; Luoni, Laura; Molesini, Barbara; Dominici, Paola

    2017-09-08

    Calmodulin-like (CML) proteins are major EF-hand-containing, calcium (Ca 2+ )-binding proteins with crucial roles in plant development and in coordinating plant stress tolerance. Given their abundance in plants, the properties of Ca 2+ sensors and identification of novel target proteins of CMLs deserve special attention. To this end, we recombinantly produced and biochemically characterized CML36 from Arabidopsis thaliana We analyzed Ca 2+ and Mg 2+ binding to the individual EF-hands, observed metal-induced conformational changes, and identified a physiologically relevant target. CML36 possesses two high-affinity Ca 2+ /Mg 2+ mixed binding sites and two low-affinity Ca 2+ -specific sites. Binding of Ca 2+ induced an increase in the α-helical content and a conformational change that lead to the exposure of hydrophobic regions responsible for target protein recognition. Cation binding, either Ca 2+ or Mg 2+ , stabilized the secondary and tertiary structures of CML36, guiding a large structural transition from a molten globule apo-state to a compact holoconformation. Importantly, through in vitro binding and activity assays, we showed that CML36 interacts directly with the regulative N terminus of the Arabidopsis plasma membrane Ca 2+ -ATPase isoform 8 (ACA8) and that this interaction stimulates ACA8 activity. Gene expression analysis revealed that CML36 and ACA8 are co-expressed mainly in inflorescences. Collectively, our results support a role for CML36 as a Ca 2+ sensor that binds to and modulates ACA8, uncovering a possible involvement of the CML protein family in the modulation of plant-autoinhibited Ca 2+ pumps. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells.

    Science.gov (United States)

    Palamà, Ilaria E; Leporatti, Stefano; de Luca, Emanuela; Di Renzo, Nicola; Maffia, Michele; Gambacorti-Passerini, Carlo; Rinaldi, Ross; Gigli, Giuseppe; Cingolani, Roberto; Coluccia, Addolorata M L

    2010-04-01

    The lack of sensitivity of chronic myeloid leukemia (CML) stem cells to imatinib mesylate (IM) commonly leads to drug dose escalation or early disease relapses when therapy is stopped. Here, we report that packaging of IM into a biodegradable carrier based on polyelectrolyte microcapsules increases drug retention and antitumor activity in CML stem cells, also improving the ex vivo purging of malignant progenitors from patient autografts. Microparticles/capsules were obtained by layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolyte multilayers on removable calcium carbonate (CaCO(3)) templates and loaded with or without IM. A leukemic cell line (KU812) and CD34(+) cells freshly isolated from healthy donors or CML patients were tested. Polyelectrolyte microcapsules (PMCs) with an average diameter of 3 microm, fluorescently labelled multilayers sensitive to the action of intracellular proteases and 95-99% encapsulation efficiency of IM, were prepared. Cell uptake efficiency of such biodegradable carriers was quantified in KU812, leukemic and normal CD34(+) stem cells (range: 70-85%), and empty PMCs did not impact cell viability. IM-loaded PMCs selectively targeted CML cells, by promoting apoptosis at doses that exert only cytostatic effects by IM alone. More importantly, residual CML cells from patient leukapheresis products were reduced or eliminated more efficiently by using IM-loaded PMCs compared with freely soluble IM, with a purging efficiency of several logs. No adverse effects on normal CD34(+) stem-cell survival and their clonogenic potential was noticed in long-term cultures of hematopoietic progenitors in vitro. This pilot study provides the proof-of-principle for the clinical application of biodegradable IM-loaded PMC as feasible, safe and effective ex vivo purging agents to target CML stem cells, in order to improve transplant outcome of resistant/relapsed patients or reduce IM dose escalation.

  17. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein

    DEFF Research Database (Denmark)

    Järås, Marcus; Johnels, Petra; Hansen, Nils Gunder

    2010-01-01

    stem cells could be prospectively separated. In addition, by generating an anti-IL1RAP antibody, we provide proof of concept that IL1RAP can be used as a target on CML CD34(+)CD38(-) cells to induce antibody-dependent cell-mediated cytotoxicity. This study thus identifies IL1RAP as a unique cell...... will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test...... whether IL1RAP expression distinguishes normal (Ph(-)) and leukemic (Ph(+)) cells within the CML CD34(+)CD38(-) cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate...

  18. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  19. 3CML: a software application for quality control of multi leaf collimators

    International Nuclear Information System (INIS)

    Miras, H.; Perez, M. A.; Macias, J.; Moreno, J. C.; Campo, J. L.; Ortiz, M.; Arrans, R.; Ortiz, A.; Terron, J. A.; Fernandez, D.

    2011-01-01

    The treatments of intensity modulated radiotherapy (IMRT) require a deep knowledge of the accuracy, precision and reproducibility of positioning of the plates that make up the multi leaf collimator (MLC). We have developed a computer application, 3CML, to analyze an image corresponding to a pattern of separate bands irradiation to determine the deviations of the positioning of the blades on the nominal values.

  20. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release.

    Directory of Open Access Journals (Sweden)

    Yuki Ishii

    Full Text Available Knockout serum replacement (KOSR is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors--imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.

  1. Sequential Use of Second-Generation Tyrosine Kinase Inhibitor Treatment and Intensive Chemotherapy Induced Long-Term Complete Molecular Response in Imatinib-Resistant CML Patient Presenting as a Myeloid Blast Crisis

    Directory of Open Access Journals (Sweden)

    Masaaki Tsuji

    2017-01-01

    Full Text Available Myeloid blast crisis of chronic myeloid leukemia (CML-MBC is rarely seen at presentation and has a poor prognosis. There is no standard therapy for CML-MBC. It is often difficult to distinguish CML-MBC from acute myeloid leukemia expressing the Philadelphia chromosome (Ph+ AML. We present a case in which CML-MBC was seen at the initial presentation in a 75-year-old male. He was treated with conventional AML-directed chemotherapy followed by imatinib mesylate monotherapy, which failed to induce response. However, he achieved long-term complete molecular response after combination therapy involving dasatinib, a second-generation tyrosine kinase inhibitor, and conventional chemotherapy.

  2. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    Science.gov (United States)

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants.

    Science.gov (United States)

    Hehlmann, R; Lauseker, M; Saußele, S; Pfirrmann, M; Krause, S; Kolb, H J; Neubauer, A; Hossfeld, D K; Nerl, C; Gratwohl, A; Baerlocher, G M; Heim, D; Brümmendorf, T H; Fabarius, A; Haferlach, C; Schlegelberger, B; Müller, M C; Jeromin, S; Proetel, U; Kohlbrenner, K; Voskanyan, A; Rinaldetti, S; Seifarth, W; Spieß, B; Balleisen, L; Goebeler, M C; Hänel, M; Ho, A; Dengler, J; Falge, C; Kanz, L; Kremers, S; Burchert, A; Kneba, M; Stegelmann, F; Köhne, C A; Lindemann, H W; Waller, C F; Pfreundschuh, M; Spiekermann, K; Berdel, W E; Müller, L; Edinger, M; Mayer, J; Beelen, D W; Bentz, M; Link, H; Hertenstein, B; Fuchs, R; Wernli, M; Schlegel, F; Schlag, R; de Wit, M; Trümper, L; Hebart, H; Hahn, M; Thomalla, J; Scheid, C; Schafhausen, P; Verbeek, W; Eckart, M J; Gassmann, W; Pezzutto, A; Schenk, M; Brossart, P; Geer, T; Bildat, S; Schäfer, E; Hochhaus, A; Hasford, J

    2017-11-01

    Chronic myeloid leukemia (CML)-study IV was designed to explore whether treatment with imatinib (IM) at 400 mg/day (n=400) could be optimized by doubling the dose (n=420), adding interferon (IFN) (n=430) or cytarabine (n=158) or using IM after IFN-failure (n=128). From July 2002 to March 2012, 1551 newly diagnosed patients in chronic phase were randomized into a 5-arm study. The study was powered to detect a survival difference of 5% at 5 years. After a median observation time of 9.5 years, 10-year overall survival was 82%, 10-year progression-free survival was 80% and 10-year relative survival was 92%. Survival between IM400 mg and any experimental arm was not different. In a multivariate analysis, risk group, major-route chromosomal aberrations, comorbidities, smoking and treatment center (academic vs other) influenced survival significantly, but not any form of treatment optimization. Patients reaching the molecular response milestones at 3, 6 and 12 months had a significant survival advantage. For responders, monotherapy with IM400 mg provides a close to normal life expectancy independent of the time to response. Survival is more determined by patients' and disease factors than by initial treatment selection. Although improvements are also needed for refractory disease, more life-time can currently be gained by carefully addressing non-CML determinants of survival.

  4. Human monoclonal antibodies reactive with human myelomonocytic leukemia cells.

    Science.gov (United States)

    Posner, M R; Santos, D J; Elboim, H S; Tumber, M B; Frackelton, A R

    1989-04-01

    Peripheral blood mononuclear cells from a patient with chronic myelogenous leukemia (CML), in remission, were depleted of CD8-positive T-cells and cultured with Epstein-Barr virus. Four of 20 cultures (20%) secreted human IgG antibodies selectively reactive with the cell surfaces of certain human leukemia cell lines. Three polyclonal, Epstein-Barr virus-transformed, B-cell lines were expanded and fused with the human-mouse myeloma analogue HMMA2.11TG/O. Antibody from secreting clones HL 1.2 (IgG1), HL 2.1 (IgG3), and HL 3.1 (IgG1) have been characterized. All three react with HL-60 (promyelocytic), RWLeu4 (CML promyelocytic), and U937 (monocytic), but not with KG-1 (myeloblastic) or K562 (CML erythroid). There is no reactivity with T-cell lines, Burkitt's cell lines, pre-B-leukemia cell lines, or an undifferentiated CML cell line, BV173. Leukemic cells from two of seven patients with acute myelogenous leukemia and one of five with acute lymphocytic leukemia react with all three antibodies. Normal lymphocytes, monocytes, polymorphonuclear cells, red blood cells, bone marrow cells, and platelets do not react. Samples from patients with other diverse hematopoietic malignancies showed no reactivity. Immunoprecipitations suggest that the reactive antigen(s) is a lactoperoxidase iodinatable series of cell surface proteins with molecular weights of 42,000-54,000 and a noniodinatable protein with a molecular weight of 82,000. Based on these data these human monoclonal antibodies appear to react with myelomonocytic leukemic cells and may detect a leukemia-specific antigen or a highly restricted differentiation antigen.

  5. In vitro evaluation of digestive and endolysosomal enzymes to cleave CML-modified Ara h 1 peptides

    Science.gov (United States)

    The sensory, biological, chemical, and immunological characteristics of foods can be modified non-enzymatically during processing. Notably, these modifications may modulate the allergenic potency of food allergens, such as the Ara h 1 peanut allergen. Carboxymethyl-lysine (CML) modification is a p...

  6. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  7. Structure optimization of cathode microporous layer for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Ding, Xianan; Zhou, Hongwei; Chen, Ming; Wang, Manxiang; Zhao, Zhenxuan; Yin, Zhuang; Wang, Xindong

    2015-01-01

    Highlights: • Pore-forming technology was introduced to optimize microporous layer microstructure. • The water removal and gas mass transfer property of diffusion layer were improved. • The optimum DMFC performance reached 292 mW cm −2 at 80 °C. - Abstract: To obtain the cathode microporous layer (CML) with high mass transfer performance and high electronic conductivity, a pore-forming technology was introduced to optimize CML microstructure for direct methanol fuel cells. In this paper, the effects of carbon material type, carbon material loading and pore-forming agent loading in CML on fuel cell performance were discussed systematically. The results indicated that the optimized CML consisted of carbon nanotubes and ammonium oxalate with the loading of 1.5 and 3.5 mg cm −2 respectively. The fuel cell performance was improved by 30.3%, from 224 to 292 mW cm −2 at 80 °C under 0.3 MPa O 2 . Carbon nanotube was found to be the most suitable carbon material for the CML due to its great specific surface area and small particle size, resulting in increasing the number of the hydrophobic sites and the contact area between the support and the catalyst layer. The carbon material and pore-forming agent loading directly influenced the pore distribution and the contact resistance of membrane electrode assembly. The water removal capacity and the gas mass transfer property of diffusion layer were improved by optimizing the amount of micropore and macropore structures

  8. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy.

    Science.gov (United States)

    Ali, Mohamed A M

    2016-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs.

  9. Further phenotypic characterization of the primitive lineage− CD34+CD38−CD90+CD45RA− hematopoietic stem cell/progenitor cell sub-population isolated from cord blood, mobilized peripheral blood and patients with chronic myelogenous leukemia

    International Nuclear Information System (INIS)

    Wisniewski, D; Affer, M; Willshire, J; Clarkson, B

    2011-01-01

    The most primitive hematopoietic stem cell (HSC)/progenitor cell (PC) population reported to date is characterized as being Lin−CD34+CD38−CD90+CD45R. We have a long-standing interest in comparing the characteristics of hematopoietic progenitor cell populations enriched from normal subjects and patients with chronic myelogenous leukemia (CML). In order to investigate further purification of HSCs and for potential targetable differences between the very primitive normal and CML stem/PCs, we have phenotypically compared the normal and CML Lin−CD34+CD38−CD90+CD45RA− HSC/PC populations. The additional antigens analyzed were HLA-DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-3 cytokine receptor, CD33 and the activation antigen CD69, the latter of which was recently reported to be selectively elevated in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we found a strikingly low percentage of cells from the HSC/PC sub-population isolated from CML patients that were found to express the c-kit receptor (<1%) compared with the percentages of HSC/PCs expressing the c-kitR isolated from umbilical cord blood (50%) and mobilized peripheral blood (10%). Surprisingly, Tie2 receptor expression within the HSC/PC subset was extremely low from both normal and CML samples. Using in vivo transplantation studies, we provide evidence that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable markers for further partitioning of HSCs from the Lin−CD34+CD38−CD90+CD45RA− sub-population

  10. T cell-B cell interactions in primary immunodeficiencies.

    Science.gov (United States)

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  11. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    Science.gov (United States)

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. An InGaAs/InP 40 GHz CML static frequency divider

    International Nuclear Information System (INIS)

    Su Yongbo; Jin Zhi; Cheng Wei; Ge Ji; Wang Xiantai; Chen Gaopeng; Liu Xinyu; Xu Anhuai; Qi Ming

    2011-01-01

    Static frequency dividers are widely used as a circuit performance benchmark or figure-of-merit indicator to gauge a particular device technology's ability to implement high speed digital and integrated high performance mixed-signal circuits. We report a 2 : 1 static frequency divider in InGaAs/InP heterojunction bipolar transistor technology. This is the first InP based digital integrated circuit ever reported on the mainland of China. The divider is implemented in differential current mode logic (CML) with 30 transistors. The circuit operated at a peak clock frequency of 40 GHz and dissipated 650 mW from a single -5 V supply. (semiconductor integrated circuits)

  13. Primary clear cell sarcoma of bone

    International Nuclear Information System (INIS)

    Choi, J.H.; Gu, M.J.; Kim, M.J.; Bae, Y.K.; Choi, W.H.; Shin, D.S.; Cho, K.H.

    2003-01-01

    Clear cell sarcoma is a rare soft tissue sarcoma of young adults with melanocytic differentiation. It occurs predominantly in the soft tissue of extremities, typically involving tendons and aponeuroses. Primary clear cell sarcoma of bone is extremely rare. We report a case of primary clear cell sarcoma of the right first metatarsal in a 48-year-old woman and provide a literature review of the entity. (orig.)

  14. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era

    DEFF Research Database (Denmark)

    Warlick, Erica; Ahn, Kwang Woo; Pedersen, Tanya L

    2012-01-01

    Tyrosine kinase inhibitors (TKIs) and reduced intensity conditioning (RIC)/nonmyeloablative (NMA) conditioning hematopoietic cell transplants (HCTs) have changed the therapeutic strategy for chronic myelogenous leukemia (CML) patients. We analyzed post-HCT outcomes of 306 CML patients reported to...

  15. An Exercise in Extrapolation: Clinical Management of Atypical CML, MDS/MPN-Unclassifiable, and MDS/MPN-RS-T.

    Science.gov (United States)

    Talati, Chetasi; Padron, Eric

    2016-12-01

    According to the recently published 2016 World Health Organization (WHO) classification of myeloid malignancies, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) include atypical chronic myeloid leukemia (aCML), MDS/MPN-unclassifiable (MDS/MPN-U), chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic leukemia (JMML), and MDS/MPN ring sideroblasts with thrombocytosis (MDS/MPN-RS-T). MDS/MPN-RS-T was previously a provisional category known as refractory anemia with ring sideroblasts with thrombocytosis (RARS-T) which has now attained a distinct designation in the 2016 WHO classification. In this review, we focus on biology and management of aCML, MDS/MPN-U, and MDS/MPN-RS-T. There is considerable overlap between these entities which we attempt to further elucidate in this review. We also discuss recent advances in the field of molecular landscape that further defines and characterizes this heterogeneous group of disorders. The paucity of clinical trials available secondary to unclear pathogenesis and rarity of these diseases makes the management of these entities clinically challenging. This review summarizes some of the current knowledge of the molecular pathogenesis and suggested treatment guidelines based on the available data.

  16. Naturally occurring CD4+ CD25+ FOXP3+ T-regulatory cells are increased in chronic myeloid leukemia patients not in complete cytogenetic remission and can be immunosuppressive.

    Science.gov (United States)

    Rojas, Jose M; Wang, Lihui; Owen, Sally; Knight, Katy; Watmough, Sarah J; Clark, Richard E

    2010-12-01

    Clinical presentation of chronic myeloid leukemia (CML) requires not only the deregulated tyrosine kinase BCR-ABL, but also the failure of an immune response against BCR-ABL-expressing cells. T-cell responses against BCR-ABL and other antigens are well-described, but their relevance to the in vivo control of CML is unclear. The suppressive role of naturally occurring T regulatory (T-reg) cells in antitumor immunity is well-established, although little is known about their role in modulating the T-cell response to BCR-ABL. Naturally occurring T-reg cells were characterized and quantified by flow cytometry in 39 CML patients and 10 healthy donors. Their function was studied by observing their effect on responses to purified protein derivative, a recall antigen, and on the response of an autologous T-cell line recognizing BCR-ABL. T-reg cells were CD4(+), CD25(+), FOXP3(+), CD127(low), and CD62L(high). T-reg numbers in patients in complete cytogenetic remission were significantly lower than in patients not in complete cytogenetic remission (p T-reg cell depletion using anti-CD25 selection enhanced proliferative responses to purified protein derivative. Furthermore, the interferon-γ and/or granzyme-B production of effector cells specific for viral peptides or a BCR-ABL HLA-A3-restricted peptide was inhibited when autologous T-reg cells were present. Taken together, these data suggest a role for T-reg cells in limiting immune responses in CML patients and this may include immune responses to BCR-ABL. The increased frequency of T-reg cells in patients with high levels of BCR-ABL transcripts indicates that an immune mechanism may be important in the control of CML. Copyright © 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. Regulatory T Cells and Host Anti-CML Responses

    National Research Council Canada - National Science Library

    Wong, Jr, K. K

    2008-01-01

    CD4+CD25+FoxP-3+ regulatory T-cells (Tregs) suppress immune responses to "self" antigens, but also have been shown to suppress host anti-tumor responses in several human malignancies, including breast, gastrointestinal, and ovarian cancer...

  18. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Li, Qianyin; Huang, Zhenglan; Gao, Miao; Cao, Weixi; Xiao, Qin; Luo, Hongwei; Feng, Wenli

    2017-03-02

    The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML). The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein) and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR) mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag), HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag) and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 5 (STAT5) pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells) apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI)-resistance.

  19. Blockade of Y177 and Nuclear Translocation of Bcr-Abl Inhibits Proliferation and Promotes Apoptosis in Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Qianyin Li

    2017-03-01

    Full Text Available The gradual emerging of resistance to imatinib urgently calls for the development of new therapy for chronic myeloid leukemia (CML. The fusion protein Bcr-Abl, which promotes the malignant transformation of CML cells, is mainly located in the cytoplasm, while the c-Abl protein which is expressed in the nucleus can induce apoptosis. Based on the hetero-dimerization of FKBP (the 12-kDa FK506- and rapamycin-binding protein and FRB (the FKBP-rapamycin binding domain of the protein kinase, mTOR mediated by AP21967, we constructed a nuclear transport system to induce cytoplasmic Bcr-Abl into nuclear. In this study, we reported the construction of the nuclear transport system, and we demonstrated that FN3R (three nuclear localization signals were fused to FRBT2098L with a FLAG tag, HF2S (two FKBP domains were in tandem and fused to the SH2 domain of Grb2 with an HA tag and Bcr-Abl form a complexus upon AP21967. Bcr-Abl was imported into the nucleus successfully by the nuclear transport system. The nuclear transport system inhibited CML cell proliferation through mitogen-activated protein kinase (MAPK and signal transducer and activator of transcription 5 (STAT5 pathways mainly by HF2S. It was proven that nuclear located Bcr-Abl induced CML cell (including imatinib-resistant K562G01 cells apoptosis by activation of p73 and its downstream molecules. In summary, our study provides a new targeted therapy for the CML patients even with Tyrosine Kinase Inhibitor (TKI-resistance.

  20. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Science.gov (United States)

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Primary orbital squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ana L. Campos Arbulú

    2017-02-01

    Full Text Available Primary orbital squamous cell carcinoma is a rare entity. There is little published literature. We report a case of primary squamous cell carcinoma of the orbital soft tissues. Surgical resection offered the best treatment for the patient. Complete resection of the lesion was achieved. The patient received adjuvant radiotherapy due to the proximity of the lesion to the surgical margins. Surgical treatment is feasible and should be considered as part of the surgeon's arsenal. However, therapeutic decisions must be made on a case-by-case basis

  2. Single-cell qPCR on dispersed primary pituitary cells -an optimized protocol

    Directory of Open Access Journals (Sweden)

    Haug Trude M

    2010-11-01

    Full Text Available Abstract Background The incidence of false positives is a potential problem in single-cell PCR experiments. This paper describes an optimized protocol for single-cell qPCR measurements in primary pituitary cell cultures following patch-clamp recordings. Two different cell harvesting methods were assessed using both the GH4 prolactin producing cell line from rat, and primary cell culture from fish pituitaries. Results Harvesting whole cells followed by cell lysis and qPCR performed satisfactory on the GH4 cell line. However, harvesting of whole cells from primary pituitary cultures regularly produced false positives, probably due to RNA leakage from cells ruptured during the dispersion of the pituitary cells. To reduce RNA contamination affecting the results, we optimized the conditions by harvesting only the cytosol through a patch pipette, subsequent to electrophysiological experiments. Two important factors proved crucial for reliable harvesting. First, silanizing the patch pipette glass prevented foreign extracellular RNA from attaching to charged residues on the glass surface. Second, substituting the commonly used perforating antibiotic amphotericin B with β-escin allowed efficient cytosol harvest without loosing the giga seal. Importantly, the two harvesting protocols revealed no difference in RNA isolation efficiency. Conclusion Depending on the cell type and preparation, validation of the harvesting technique is extremely important as contaminations may give false positives. Here we present an optimized protocol allowing secure harvesting of RNA from single cells in primary pituitary cell culture following perforated whole cell patch clamp experiments.

  3. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Rachel [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Roberts, Claudia [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Waterboer, Tim [Infection and Cancer Program, DKFZ (German Cancer Research Centre), 69120 Heidelberg (Germany); Steele, Jane [Human Biomaterials Resource Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Marsden, Jerry [University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Steven, Neil M., E-mail: n.m.steven@bham.ac.uk [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Blackbourn, David J., E-mail: n.m.steven@bham.ac.uk [Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)

    2014-05-06

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus.

  4. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Wheat, Rachel; Roberts, Claudia; Waterboer, Tim; Steele, Jane; Marsden, Jerry; Steven, Neil M.; Blackbourn, David J.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus

  5. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  6. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  7. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    Science.gov (United States)

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  8. Primary clear cell sarcoma of rib

    International Nuclear Information System (INIS)

    Hersekli, Murat Ali; Ozkoc, Gurkan; Akpinar, Sercan; Ozalay, Metin; Tandogan, Reha N.; Bircan, Sema; Tuncer, Ilhan

    2005-01-01

    Clear cell sarcoma (malignant melanoma of soft tissues) is a very rare soft tissue neoplasm. It generally arises in tendons and aponeuroses. Although metastasis of malignant melanoma to bone is not uncommon, primary clear cell sarcoma of bone is an extremely rare neoplasm. To our knowledge five cases have been reported in the English literature. We present a case of primary clear cell sarcoma of bone in a 28-year-old woman arising in the left ninth rib. We treated the patient with total excision of the mass and postoperative radiotherapy. The patient is alive and well without local recurrence or distant metastasis at 33 months after surgery. (orig.)

  9. Multicentric primary extramammary Paget disease: a Toker cell disorder?

    Science.gov (United States)

    Hashemi, Pantea; Kao, Grace F; Konia, Thomas; Kauffman, Lisa C; Tam, Christine C; Sina, Bahram

    2014-07-01

    Toker cells are epithelial clear cells found in the areolar and nipple areas of the breast, vulvar region, and other apocrine gland-bearing areas of the skin. Toker cells have been implicated in the pathogenesis of clear cell papulosis, cutaneous hamartoma with pagetoid cells, and rare cases of primary extramammary Paget disease (EMPD) but not in secondary EMPD with underlying adenocarcinoma. The pathogenesis of primary EMPD is not well defined. We report a case of multicentric primary EMPD with evidence of Toker cell proliferation and nonaggressive biologic behavior in a 63-year-old white man. A detailed description of the morphologic and biologic features of Toker cells and their possible carcinogenetic links also are discussed. Based on the observation and follow-up of our patient, we hypothesize that multicentric primary EMPD starts with Toker cell hyperplasia and can potentially evolve to carcinoma in the genital region.

  10. Primary Hepatosplenic Large B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    M.R. Morales-Polanco

    2008-03-01

    Full Text Available Diffuse large B-cell lymphoma is the most common form of lymphoma. It usually begins in the lymph nodes; up to 40% may have an extranodal presentation. According to a definition of primary extranodal lymphoma with presentation only in extranodal sites, there are reports of large B-cell lymphomas limited to liver or spleen as separate entities, and to date there have been only three documented cases of primary hepatosplenic presentation. This paper reports a fourth case. Due to a review of the literature and the clinical course of the case reported, we conclude that primary hepatosplenic large B-cell lymphoma has been found predominantly in females older than 60 years. The patients reported had <2 months of evolution prior to diagnosis, prominent B symptoms, splenomegaly in three and hepatomegaly in two, none with lymph node involvement. All had thrombocytopenia and abnormal liver function tests; three had anemia and elevated serum lactic dehydrogenase levels, two with hemophagocytosis in bone marrow. Because of the previously mentioned data, it can be stated that primary hepatosplenic lymphoma is an uncommon and aggressive form of disease that requires immediate recognition and treatment.

  11. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  12. Primary cutaneous anaplastic large-cell lymphoma.

    Science.gov (United States)

    Perry, Edward; Karajgikar, Jay; Tabbara, Imad A

    2013-10-01

    Since the recognition of the anaplastic large-cell lymphomas in the 1980s, much has been learned about the diagnosis, clinical presentation, and treatment of these malignant conditions. The systemic and primary cutaneous types of anaplastic large cell lymphomas have been differentiated on clinical and immunophenotypical findings, but further research is required to elucidate their exact etiologies and pathogeneses. Primary cutaneous anaplastic large-cell lymphoma has a 95% disease-specific 5-year survival, owing partly to the relatively benign course of the disease and partly to the variety of effective treatments that are available. As with many other oncological diseases, new drugs are continually being tested and developed, with immunotherapy and biological response modifiers showing promise.

  13. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy.

    Science.gov (United States)

    Schmidt, M; Hochhaus, A; König-Merediz, S A; Brendel, C; Proba, J; Hoppe, G J; Wittig, B; Ehninger, G; Hehlmann, R; Neubauer, A

    2000-10-01

    Mice experiments have established an important role for interferon regulatory factor (IRF) family members in hematopoiesis. We wanted to study the expression of interferon regulatory factor 4 (IRF4) in various hematologic disorders, especially chronic myeloid leukemia (CML), and its association with response to interferon alfa (IFN-alpha) treatment in CML. Blood samples from various hematopoietic cell lines, different leukemia patients (70 CML, 29 acute myeloid leukemia [AML], 10 chronic myelomonocytic leukemia [CMMoL], 10 acute lymphoblastic leukemia, and 10 chronic lymphoid leukemia patients), and 33 healthy volunteers were monitored for IRF4 expression by reverse transcriptase polymerase chain reaction. Then, with a focus on CML, the IRF4 level was determined in sorted cell subpopulations from CML patients and healthy volunteers and in in vitro-stimulated CML cells. Furthermore, IRF4 expression was compared in the CML samples taken before IFN-alpha therapy and in 47 additional CML samples taken during IFN-alpha therapy. IRF4 expression was then correlated with cytogenetic response to IFN-alpha. IRF4 expression was significantly impaired in CML, AML, and CMMoL samples. The downregulation of IRF4 in CML samples was predominantly found in T cells. In CML patients during IFN-alpha therapy, a significant increase in IRF4 levels was detected, and this was also observed in sorted T cells from CML patients. The increase seen during IFN-alpha therapy was not due to different blood counts. In regard to the cytogenetic response with IFN-alpha, a good response was associated with high IRF4 expression. IRF4 expression is downregulated in T cells of CML patients, and its increase is associated with a good response to IFN-alpha therapy. These data suggest IRF4 expression as a useful marker to monitor, if not predict, response to IFN-alpha in CML.

  14. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  15. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Bartek, J; Rahbar, A

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express...... human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary...... GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co...

  16. Center for Media Literacy Unveils the CML Medialit Kit[TM]: A Free Educational Framework that Helps Students Challenge and Understand Media

    Science.gov (United States)

    Social Studies, 2004

    2004-01-01

    Five key questions form the basis of the new CML MediaLit Kit, an educational framework and curriculum guide developed by the Center for Media Literacy. Adaptable to all grades, the key questions help children and young people evaluate the thousands of media messages that bombard them daily. More than two years in development and available for…

  17. Different Chondrogenic Potential among Human Induced Pluripotent Stem Cells from Diverse Origin Primary Cells

    Directory of Open Access Journals (Sweden)

    Yeri Alice Rim

    2018-01-01

    Full Text Available Scientists have tried to reprogram various origins of primary cells into human induced pluripotent stem cells (hiPSCs. Every somatic cell can theoretically become a hiPSC and give rise to targeted cells of the human body. However, there have been debates on the controversy about the differentiation propensity according to the origin of primary cells. We reprogrammed hiPSCs from four different types of primary cells such as dermal fibroblasts (DF, n=3, peripheral blood mononuclear cells (PBMC, n=3, cord blood mononuclear cells (CBMC, n=3, and osteoarthritis fibroblast-like synoviocytes (OAFLS, n=3. Established hiPSCs were differentiated into chondrogenic pellets. All told, cartilage-specific markers tended to express more by the order of CBMC > DF > PBMC > FLS. Origin of primary cells may influence the reprogramming and differentiation thereafter. In the context of chondrogenic propensity, CBMC-derived hiPSCs can be a fairly good candidate cell source for cartilage regeneration. The differentiation of hiPSCs into chondrocytes may help develop “cartilage in a dish” in the future. Also, the ideal cell source of hiPSC for chondrogenesis may contribute to future application as well.

  18. Mantle cell lymphoma of the larynx: Primary case report

    Directory of Open Access Journals (Sweden)

    Naciri Sarah

    2012-07-01

    Full Text Available Abstract Introduction Primary laryngeal lymphomas are exceedingly rare. Only about a hundred cases have been reported. They consist mainly of non-Hodgkin lymphoma, especially of diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue. We report the first case of a primary laryngeal mantle cell lymphoma. Case presentation We report a case of a primary mantle cell lymphoma of the larynx in a 70-year-old North African non-smoker male. We present a detailed report of his clinical and paraclinical data as well as treatment options. Conclusions Mantle cell lymphoma is a very aggressive lymphoma subset associated with poor prognosis. Laryngeal mantle cell lymphoma is exceedingly rare. To the best of our knowledge, this is the first case to ever be reported.

  19. Cerebellar T-cell lymphoma: an unusual primary intracranial neoplasm

    International Nuclear Information System (INIS)

    Knorr, J.R.; Ragland, R.L.; Stone, B.B.; Woda, B.A.; Gelber, N.D.

    1992-01-01

    Primary T-cell lymphoma within the central nervous system is extremely rare. Imaging characteristics appear indistinguishable from the more common B-cell lymphoma. A case of such a primary tumor is discussed and the MRI and CT findings presented. (orig.)

  20. B-Cell Chronic Lymphocytic Leukemia with 11q22.3 Rearrangement in Patient with Chronic Myeloid Leukemia Treated with Imatinib

    Directory of Open Access Journals (Sweden)

    Krzysztof Lewandowski

    2016-01-01

    Full Text Available The coexistence of two diseases chronic myeloid leukemia (CML and B-cell chronic lymphocytic leukemia (B-CLL is a rare phenomenon. Both neoplastic disorders have several common epidemiological denominators (they occur more often in men over 50 years of age but different origin and long term prognosis. In this paper we described the clinical and pathological findings in patient with CML in major molecular response who developed B-CLL with 11q22.3 rearrangement and Coombs positive hemolytic anemia during the imatinib treatment. Due to the presence of the symptoms of autoimmune hemolytic anemia and optimal CML response to the imatinib treatment, the decision about combined therapy with prednisone and imatinib was made. During the follow-up, the normalization of complete blood count and resolution of peripheral lymphadenopathy were noted. The hematologic response of B-CLL was diagnosed. The repeated FISH analysis of cultured peripheral blood lymphocytes showed 2% of cells carrying 11q22.3 rearrangement. At the same time, molecular monitoring confirmed the deep molecular response of CML. The effectiveness of such combination in the described case raises the question about the best therapeutic option in such situation, especially in patients with good imatinib tolerance and optimal response.

  1. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  2. MPT0B169, a New Antitubulin Agent, Inhibits Bcr-Abl Expression and Induces Mitochondrion-Mediated Apoptosis in Nonresistant and Imatinib-Resistant Chronic Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Shuit-Mun Wong

    Full Text Available Chronic myeloid leukemia (CML is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.

  3. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent.

    Directory of Open Access Journals (Sweden)

    Masako Yokoo

    Full Text Available 2-Hydroxypropyl-β-cyclodextrin (HP-β-CyD is a cyclic oligosaccharide that is widely used as an enabling excipient in pharmaceutical formulations, but also as a cholesterol modifier. HP-β-CyD has recently been approved for the treatment of Niemann-Pick Type C disease, a lysosomal lipid storage disorder, and is used in clinical practice. Since cholesterol accumulation and/or dysregulated cholesterol metabolism has been described in various malignancies, including leukemia, we hypothesized that HP-β-CyD itself might have anticancer effects. This study provides evidence that HP-β-CyD inhibits leukemic cell proliferation at physiologically available doses. First, we identified the potency of HP-β-CyD in vitro against various leukemic cell lines derived from acute myeloid leukemia (AML, acute lymphoblastic leukemia and chronic myeloid leukemia (CML. HP-β-CyD treatment reduced intracellular cholesterol resulting in significant leukemic cell growth inhibition through G2/M cell-cycle arrest and apoptosis. Intraperitoneal injection of HP-β-CyD significantly improved survival in leukemia mouse models. Importantly, HP-β-CyD also showed anticancer effects against CML cells expressing a T315I BCR-ABL mutation (that confers resistance to most ABL tyrosine kinase inhibitors, and hypoxia-adapted CML cells that have characteristics of leukemic stem cells. In addition, colony forming ability of human primary AML and CML cells was inhibited by HP-β-CyD. Systemic administration of HP-β-CyD to mice had no significant adverse effects. These data suggest that HP-β-CyD is a promising anticancer agent regardless of disease or cellular characteristics.

  4. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    Science.gov (United States)

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  5. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  6. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  7. Pulmonary squamous cell carcinoma following head and neck squamous cell carcinoma: Metastasis or second primary?

    NARCIS (Netherlands)

    Geurts, Tom W.; Nederlof, Petra M.; van den Brekel, Michiel W. M.; van't Veer, Laura J.; de Jong, Daphne; Hart, August A. M.; van Zandwijk, Nico; Klomp, Houke; Balm, Alfons J. M.; van Velthuysen, Marie-Louise F.

    2005-01-01

    Purpose: To distinguish a metastasis from a second primary tumor in patients with a history of head and neck squamous cell carcinoma and subsequent pulmonary squamous cell carcinoma. Experimental Design: For 44 patients with a primary squamous cell carcinoma of the head and neck followed by a

  8. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes.

    Science.gov (United States)

    Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li

    2011-05-01

    The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.

  9. Growth of primary embryo cells in a microculture system.

    Science.gov (United States)

    Villa, Max; Pope, Sara; Conover, Joanne; Fan, Tai-Hsi

    2010-04-01

    We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

  10. Radiosensitivity of primary cultured fish cells with different ploidy

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Egami, Nobuo; Kobayashi, Hiromu.

    1986-01-01

    The radiosensitivity of primary cultured goldfish cells (Carassius auratus) was investigated by colony formation assay. The radiosensitivity of cells from two varieties of goldfish, which show different sensitivity to lethal effect of ionizing radiation in vivo, was almost identical. Primary cultured cells from diploid, triploid and tetraploid fish retained their DNA content as measured by microfluorometry, and the nuclear size increases as ploidy increases. However, radiosensitivity was not related to ploidy. (author)

  11. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  12. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Xin P

    2017-04-01

    Full Text Available Pengliang Xin, Chuntuan Li, Yan Zheng, Qunyi Peng, Huifang Xiao, Yuanling Huang, Xiongpeng Zhu Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China Background: Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on proliferation, apoptosis, and autophagy of chronic myelogenous leukemia (CML cells and sensitivity of tyrosine kinase inhibitor in vitro.Methods: Two human CML cell lines, K562 and KBM7R (T315I mutant strain, were used. The proliferation of CML cells was detected by MTS (Owen’s reagent assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels and the expression levels were both evaluated by Western blot analysis. NVP-BEZ235 in combination with imatinib was also used to reveal the effect on proliferation and apoptosis.Results: NVP-BEZ235 significantly inhibited the proliferation in a time- and dose-dependent manner, and the half-maximal inhibitory concentration values of NVP-BEZ235 inhibiting the proliferation of K562 and KBM7R were 0.37±0.21 and 0.43±0.27 µmol/L, respectively, after 48 h. Cell apoptosis assay showed that NVP-BEZ235 significantly increased the late apoptotic cells. Cell cycle analysis indicated that the cells were mostly arrested in G1/G0 phase after treatment by NVP-BEZ235. In addition, results also found that, after treatment by NVP-BEZ235, phosphorylation levels of Akt kinase and S6K kinase significantly reduced, and the expression levels of cleaved caspase-3 significantly increased; meanwhile, the expression levels of caspase-3, B-cell lymphoma-2, cyclin D1, and cyclin D2 significantly decreased, and the ratio of LC3II/LC3I was significantly increased with increased LC3II expression level. Moreover, imatinib in combination with NVP-BEZ235

  13. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10)

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Bluestone, J.A.; Barbieri, S.A.; Stephany, D.; Sachs, D.H.

    1986-01-01

    Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. Experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it

  14. The treatment of pediatric chronic myelogenous leukemia in the imatinib era

    Directory of Open Access Journals (Sweden)

    Jae Wook Lee

    2011-03-01

    Full Text Available Childhood chronic myelogenous leukemia (CML is a rare hematologic disease, with limited literature on the methods of treatment. Previously, allogeneic hematopoietic stem cell transplantation (HSCT was considered the only curative treatment for this disease. Treatment with imatinib, a selective inhibitor of the BCR-ABL tyrosine kinase (TKI, has resulted in prolonged molecular response with limited drug toxicity. Imatinib is now implemented in the primary treatment regimen for children, but the paucity of evidence on its ability to result in permanent cure and the potential complications that may arise from long-term treatment with TKIs have prevented imatinib from superseding HSCT as the primary means of curative treatment in children. The results of allogeneic HSCT in children with CML are similar to those observed in adults; HSCT-related complications such as transplant-related mortality and graft-versus-host disease remain significant challenges. An overall consensus has been formed with regards to the need for HSCT in patients with imatinib resistance or those with advanced-phase disease. However, issues such as when to undertake HSCT in chronic-phase CML patients or how best to treat patients who have relapsed after HSCT are still controversial. The imatinib era calls for a reevaluation of the role of HSCT in the treatment of CML. Specific guidelines for the treatment of pediatric CML have not yet been formulated, underscoring the importance of prospective studies on issues such as duration of imatinib treatment, optimal timing of HSCT and the type of conditioning utilized, possible treatment preand post-HSCT, and the role of second-generation TKIs.

  15. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  16. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    International Nuclear Information System (INIS)

    Dvorak, J; Kasaova, L; Filip, S; Petera, J; Sitorova, V; Nikolov, D Hadzi; Ryska, A; Mokry, J; Richter, I

    2011-01-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G 1 (G 0 ) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  17. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    Science.gov (United States)

    Dvorak, J.; Sitorova, V.; Hadzi Nikolov, D.; Mokry, J.; Richter, I.; Kasaova, L.; Filip, S.; Ryska, A.; Petera, J.

    2011-12-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G1(G0) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  18. Primary Squamous Cell Carcinoma of Stomach: A Rare Entity ...

    African Journals Online (AJOL)

    Schmidt C, Schmid A, Lüttges JE, Kremer B, Henne-Bruns D. Primary squamous cell carcinoma of the stomach. Report of a case and review of literature. Hepatogastroenterology 2001;48:1033-6. 5. Muto M, Hasebe T, Muro K, Boku N, Ohtsu A, Fujii T, et al. Primary squamous cell carcinoma of the stomach: A case report with ...

  19. Polimorfismo do gene tp53 no códon 72 em pacientes com suspeita de LMC Codon 72 polymorphism of the TP53 gene in patients suspected to have CML

    Directory of Open Access Journals (Sweden)

    Camila S. Hamú

    2007-12-01

    Full Text Available A leucemia mielóide crônica (LMC é uma doença proliferativa do sistema hematopoiético, caracterizada pela expansão clonal de uma célula-tronco primitiva e pluripotente denominada stem cell. Este tipo de leucemia está associado, em 90% dos casos, à translocação t(9;22(q34;q11. Essa alteração cromossômica estrutural codifica para uma proteína quimérica BCR-ABL, que confere às células leucêmicas uma alta resistência à morte, independente do agente indutor desse processo. A proteína p53 é uma reguladora transcricional induzida por danos no DNA, fato que resulta na parada do ciclo celular com conseqüente ativação de mecanismos de reparo ou mesmo na indução à apoptose. As mutações no gene TP53 são as alterações genéticas mais comuns em tumores malignos humanos. O presente estudo teve como objetivo genotipar e determinar a freqüência alélica do polimorfismo do TP53 no códon 72 (arginina - Arg e prolina - Pro, em pacientes com suspeita de LMC, pela Reação em Cadeia da Polimerase. Desta forma, os resultados indicaram que 73,4% (23/30 dos pacientes apresentaram homozigose para arginina (Arg/Arg e 26,6% (7/30 heterozigose (Arg/Pro. Não foi encontrado nenhum paciente homozigoto para prolina (Pro/Pro. Os resultados obtidos sugerem que o polimorfismo do gene TP53 no códon 72 não é um fator de risco importante para a iniciação, promoção e progressão da LMC.Chronic myeloid leukemia (CML is a proliferative disorder of the hematopoietic system characterized by clonal expansion of a primitive and pluripotent stem cell. In this type of leukemia, up to 90% of all cases is associated to a specific chromosomal translocation, t(9;22(q34;q11. The genomic alteration results in a chimeric protein, BCR-ABL, that confers a high resistance leukemia cells to death, independent of the induction mechanism of this process. Protein p53 is a transcriptional factor expressed after DNA damage which ceases cell cycle progression and

  20. RhoA: A therapeutic target for chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Molli Poonam R

    2012-03-01

    Full Text Available Abstract Background Chronic Myeloid Leukemia (CML is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. Methods To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. Results In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. Conclusions RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a

  1. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  2. Tumor necrosis factor (cachetin) decreases adipose cell differentiation in primary cell culture

    International Nuclear Information System (INIS)

    Martin, R.J.; Jones, D.D.; Jewell, D.E.; Hausman, G.J.

    1986-01-01

    Cachetin has been shown to effect gene product expression in the established adipose cell line 3T3-L1. Expression of messenger RNA for lipoprotein lipase is suppressed in cultured adipocytes. The purpose of this study was to determine the effect of Cachetin on adipose cell differentiation in primary cell culture. Stromalvascular cells obtained from the inguinal fat pad of 4-5 week old Sprague-Dawley rats were grown in culture for two weeks. During the proliferative growth phase all cells were grown on the same medium and labelled with 3 H-thymidine. Cachetin treatment (10 -6 to 10 -10 M) was initiated on day 5, the initial phase of preadipocyte differentiation. Adipocytes and stromal cells were separated using density gradient, and 3 H-thymidine was determined for both cell types. Thymidine incorporation into adipose cells was decreased maximally (∼ 50%) at 10 -10 M. Stromalvascular cells were not influenced at any of the doses tested. Adipose cell lipid content as indicated by oil red-O staining was decreased by Cachetin. Esterase staining by adipose cells treated with Cachetin was increased indicating an increase in intracellular lipase. These studies show that Cachetin has specific effects on primary adipose cell differentiation

  3. Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.

    Science.gov (United States)

    Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael

    2016-01-01

    To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.

  4. Neoexpression of a functional primary cilium in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Blanche Sénicourt

    2016-05-01

    Full Text Available The Hedgehog (HH signaling pathway is involved in the maintenance of numerous cell types both during development and in the adult. Often deregulated in cancers, its involvement in colorectal cancer has come into view during the last few years, although its role remains poorly defined. In most tissues, the HH pathway is highly connected to the primary cilium (PC, an organelle that recruits functional components and regulates the HH pathway. However, normal epithelial cells of the colon display an inactive HH pathway and lack a PC. In this study, we report the presence of the PC in adenocarcinoma cells of primary colorectal tumors at all stages. Using human colorectal cancer cell lines we found a clear correlation between the presence of the PC and the expression of the final HH effector, GLI1, and provide evidence of a functional link between the two by demonstrating the recruitment of the SMO receptor to the membrane of the primary cilium. We conclude that the primary cilium directly participates in the HH pathway in colorectal cancer cells.

  5. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Directory of Open Access Journals (Sweden)

    Agnes S. M. Yong

    2017-04-01

    Full Text Available Chronic myeloid leukemia (CML is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01% in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR, which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important

  6. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S. M.

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56dim NK cells may be important in mediating

  7. Influence of different chromosomal abnormalities in Ph-positive bone marrow cells on the chronic myeloid leukemia course during tyrosine kinase inhibitors therapy

    Directory of Open Access Journals (Sweden)

    O. Yu. Vinogradova

    2014-07-01

    Full Text Available The additional molecular and chromosomal abnormalities (ACA in Phositive cells usually considered as a genetic marker of chronic myeloid leukemia (CML progression. 457 patients in different CML phases received tyrosine kinase inhibitors (1st and 2nd generation were studied. During therapy 50 cases with additional chromosomal abnormalities in Ph+ clone (22 of them in chronic CML phase were revealed (median follow-up from CML diagnosis – 117 months, median imatinib therapy – 62 months. 86 % of patients in chronic phase with Ph+- cell abnormalities were cytogenetic resistance, and their 5-years overall survival was 80 % which was significantly lower than in patients without ACA (p < 0.005. The treatment results depend on chromosomal abnormalities detected. In patients with additional chromosome 8 imatinib therapy is effective, although complete cytogenetic response (CCR is achieved only in the later therapy stages. In patients with additional translocations CCR also achieved with imatinib or 2nd generation TKI. Only a third of patients with additional Ph-chromosome or BCR/ABL amplification achieved complete suppression of Ph+ clone using 2nd generation TKI. The presence of additional chromosome 7 abnormalities and complex karyotype disorders involving isochromosome i(17(q10 are poor prognostic factors of TKI treatment failures.

  8. Quantification of BCR-ABL transcripts in peripheral blood cells and ...

    African Journals Online (AJOL)

    Purpose: To investigate the feasibility of using peripheral blood plasma samples as surrogates for blood cell sampling for quantification of breakpoint cluster region-Abelson oncogene (BCR-ABL) transcript levels to monitor treatment responses in chronic myeloid leukemia (CML) patients. Methods: Peripheral blood samples ...

  9. Suppression of in vitro cell-mediated lympholysis generation by alloactivated lymphocytes. Examination of radioresistant suppressive activity

    International Nuclear Information System (INIS)

    Orosz, C.G.; Ferguson, R.M.

    1986-01-01

    We investigated the radioresistant (1000 rads) suppression of CML generation mediated by alloactivated murine splenocytes. Suppressive cells were generated in MLCs by stimulation of (A X 6R)F1 splenocytes with irradiated C57BL/10 splenocytes. Suppressive cells could lyse targets bearing H-2b alloantigens, but would not lyse parental B10.T(6R) or B10.A targets. Suppressive activity was detected by including the alloactivated (A X 6R)F1 cells in B10.T(6R) anti-B10.A(1R) MLCs. Relative to the suppressive (A X 6R)F1 cells, the B10.A(1R) lymphocytes display both parental and suppressor-inducing alloantigens. In the absence of a suppressive population, B10.A(1R) stimulators cause B10.T(6R) splenocytes to generate cytolytic activity specific for both H-2Db (suppressor-inducing) and H-2Kk (suppressor-borne) target determinants. The irradiated, alloactivated (A X 6R)F1 cells decrease the H-2Db-specific CML generated in this system, thus mediating apparent antigen-specific suppression. However, cytolytic activity concomitantly generated in the same culture against the unrelated H-2Kk target determinants is similarly reduced by the (A X 6R)F1 cells. Thus, radioresistant suppression by alloactivated splenocytes is not necessarily antigen-specific. The irradiated (A X 6R)F1 cells would not suppress the generation of H-2Kk-specific CTL in B10.T(6R) anti-B10.A MLCs. Hence, the irradiated (A X 6R)F1 cells can impede CML generation against third-party alloantigens if, and only if, those alloantigens are coexpressed with suppressor-inducing alloantigens on the stimulator cells in suppressed MLCs. Similar results were also obtained using a different histoincompatible lymphocyte combination

  10. Primary Small Cell Neuroendocrine Carcinoma of Vagina: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Jignasa N. Bhalodia

    2011-01-01

    Full Text Available Primary small cell neuroendocrine carcinoma of vagina is an extremely rare disease. There have been only 26 previously reported cases in literature. Here, we report a case of primary small cell neuroendocrine carcinoma of vagina. Immunohistochemistry (IHC showed tumor cells positive for synaptophysin, chromogranin, and neuron-specific enolase (NSE.

  11. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  12. Establishment of primary cell culture from the temperate symbiotic cnidarian, Anemonia viridis.

    Science.gov (United States)

    Barnay-Verdier, Stéphanie; Dall'osso, Diane; Joli, Nathalie; Olivré, Juliette; Priouzeau, Fabrice; Zamoum, Thamilla; Merle, Pierre-Laurent; Furla, Paola

    2013-10-01

    The temperate symbiotic sea anemone Anemonia viridis, a member of the Cnidaria phylum, is a relevant experimental model to investigate the molecular and cellular events involved in the preservation or in the rupture of the symbiosis between the animal cells and their symbiotic microalgae, commonly named zooxanthellae. In order to increase research tools for this model, we developed a primary culture from A. viridis animal cells. By adapting enzymatic dissociation protocols, we isolated animal host cells from a whole tentacle in regeneration state. Each plating resulted in a heterogeneous primary culture consisted of free zooxanthellae and many regular, small rounded and adherent cells (of 3-5 μm diameter). Molecular analyses conducted on primary cultures, maintained for 2 weeks, confirmed a specific signature of A. viridis cells. Further serial dilutions and micromanipulation allowed us to obtain homogenous primary cultures of the small rounded cells, corresponding to A. viridis "epithelial-like cells". The maintenance and the propagation over a 4 weeks period of primary cells provide, for in vitro cnidarian studies, a preliminary step for further investigations on cnidarian cellular pathways notably in regard to symbiosis interactions.

  13. Regulatory effects of sestrin 3 (SESN3 in BCR-ABL expressing cells.

    Directory of Open Access Journals (Sweden)

    Eliza Vakana

    Full Text Available Chronic myeloid leukemia (CML and Ph+ acute lymphoblastic leukemia (ALL are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3, a unique cellular inhibitor of mTOR complex 1 (mTORC1. Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3. Catalytic mTOR inhibition also results in upregulation of SESN3 expression in cells harboring the TKI-insensitive T315I-BCR-ABL mutant, which is resistant to imatinib mesylate. Overexpression of SESN3 results in inhibitory effects on different Ph+ leukemic cell lines including KT-1-derived leukemic precursors, indicating that SESN3 mediates anti-leukemic responses in Ph+ cells. Altogether, our findings suggest the existence of a novel mechanism for the generation of antileukemic responses in CML cells, involving upregulation of SESN3 expression.

  14. Effect of low dose radiation on expression of p16 gene in chronic myelogenous leukemia cells

    International Nuclear Information System (INIS)

    Zhang Longzhen; Ding Xin; Li Xiangyang; Cen Jiannong; Shen Hongjie; Chen Zixing

    2010-01-01

    Objective: To investigate the effect of low dose radiation on the expression on p16 gene in chronic myelogenous leukemia. Methods: Leukemic stem cells (LSCs) which expressed CD34 +, CD38 - and CD123 + were isolated from bone marrow cells obtained from twenty patients newly-diagnosedas chronic myeloid leukemia with EasySep TM magnet beads. Hematopoietic stem cells (HSCs) which expressed CD34 + and CD38 - were isolated from human cord blood cells obtained from twenty full-term deliveries with EasySep TM magnet beads as control. HSCs vs LSCs samples were further divided into three dose groups, including 0, 12.5 and 50 cGy, respectively. RT-PCR and real-time quantitative reverse transcription-polymerase chain reaction methods were used to detect mRNA expression of p16 gene in HSCs and LSCs after irradiation. Cells were harvested at different time for detection of cell cycle and apoptosis by flow cytometer. Results: p16 mRNA level in CML-LSCs was increased slightly at 12.5 cGy, and significantly increased at 50 cGy (Z=-3.39, P 0 /G 1 stagewas increased 48 h after 12.5 cGy irradiation, and 72 h post-irradiation with 50 cGy. The apoptosis rate of CML-LSCs was gradually raised after LDR, especially at 72 h post-irradiation of 50 cGy [(17.75±11.760% vs (6.13±4.71)%, Z=-2.37, P<0.01]. Conclusions: p16 gene transcription could be up-regulated by low dose radiation, which might provide a theoretical evidence for CML therapy and LDR in leukemic clinical application. (authors)

  15. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  16. Longevity in vivo of primary cell wall cellulose synthases.

    Science.gov (United States)

    Hill, Joseph Lee; Josephs, Cooper; Barnes, William J; Anderson, Charles T; Tien, Ming

    2018-02-01

    Our work focuses on understanding the lifetime and thus stability of the three main cellulose synthase (CESA) proteins involved in primary cell wall synthesis of Arabidopsis. It had long been thought that a major means of CESA regulation was via their rapid degradation. However, our studies here have uncovered that AtCESA proteins are not rapidly degraded. Rather, they persist for an extended time in the plant cell. Plant cellulose is synthesized by membrane-embedded cellulose synthase complexes (CSCs). The CSC is composed of cellulose synthases (CESAs), of which three distinct isozymes form the primary cell wall CSC and another set of three isozymes form the secondary cell wall CSC. We determined the stability over time of primary cell wall (PCW) CESAs in Arabidopsis thaliana seedlings, using immunoblotting after inhibiting protein synthesis with cycloheximide treatment. Our work reveals very slow turnover for the Arabidopsis PCW CESAs in vivo. Additionally, we show that the stability of all three CESAs within the PCW CSC is altered by mutations in individual CESAs, elevated temperature, and light conditions. Together, these results suggest that CESA proteins are very stable in vivo, but that their lifetimes can be modulated by intrinsic and environmental cues.

  17. Transfection in Primary Cultured Neuronal Cells.

    Science.gov (United States)

    Marwick, Katie F M; Hardingham, Giles E

    2017-01-01

    Transfection allows the introduction of foreign nucleic acid into eukaryotic cells. It is an important tool in understanding the roles of NMDARs in neurons. Here, we describe using lipofection-mediated transfection to introduce cDNA encoding NMDAR subunits into postmitotic rodent primary cortical neurons maintained in culture.

  18. Reliability Evaluation of Primary Cells | Anyaka | Nigerian Journal of ...

    African Journals Online (AJOL)

    Evaluation of the reliability of a primary cell took place in three stages: 192 cells went through a slow-discharged test. A designed experiment was conducted on 144 cells; there were three factors in the experiment: Storage temperature (three levels), thermal shock (two levels) and date code (two levels). 16 cells ...

  19. Primary Small Cell Carcinoma of the Upper Urinary Tract

    Directory of Open Access Journals (Sweden)

    Victor Ka-Siong Kho

    2010-03-01

    Full Text Available We report a case of primary extrapulmonary small cell carcinoma of the distal ureter, with a synchronous small cell carcinoma of the ipsilateral renal pelvis. These tumors, rarely reported in the urinary tract, are locally aggressive and have a poor prognosis. A 77-year-old male bedridden patient presented with fever and chills with left side-flank pain for 3 days. Following a diagnosis of ureteral urothelial carcinoma, hand-assisted laparoscopic nephroureterectomy with bladder cuff excision was carried out. Adjuvant chemotherapy was given after pathologic report of primary small cell carcinoma of the distal ureter and a synchronous small cell carcinoma of the ipsilateral renal pelvis. After 3 cycles of combination chemotherapy, the patient died 4 months postoperatively due to sepsis.

  20. Mechanisms of tolerance in murine radiation bone marrow chimeras. I. Nonspecific suppression of alloreactivity by spleen cells from early, but not late, chimeras

    International Nuclear Information System (INIS)

    Auchincloss, H. Jr.; Sachs, D.H.

    1983-01-01

    Allogeneic chimeras were prepared using lethally irradiated B6 hosts and untreated marrow from exsanguinated BALB/c donors. For about two months after reconstitution, chimeras had very weak antihost cell-mediated lymphocytotoxicity (CML) reactivity and little third-party alloreactivity. During this time a cell population capable of suppressing CML reactivity against both host and third-party alloantigens (i.e., antigen-nonspecific) was demonstrated in chimera spleens by in vitro mixing experiments. The putative suppressor cells were Thy-1-negative and radiation-sensitive. Subsequently, mature chimeras showed host tolerance and strong third-party alloreactivity. At this point suppressor mechanisms could no longer be demonstrated. These data are consistent with a clonal elimination hypothesis in that they do not provide evidence to indicate that maintenance of specific immune tolerance is mediated by an active suppressor mechanism

  1. Rituximab in the treatment of primary cutaneous B-cell lymphoma: a review.

    Science.gov (United States)

    Fernández-Guarino, M; Ortiz-Romero, P L; Fernández-Misa, R; Montalbán, C

    2014-06-01

    Rituximab is a chimeric mouse-human antibody that targets the CD20 antigen, which is found in both normal and neoplastic B cells. In recent years, it has been increasingly used to treat cutaneous B-cell lymphoma and is now considered an alternative to classic treatment (radiotherapy and surgery) of 2 types of indolent lymphoma, namely, primary cutaneous follicle center lymphoma and primary cutaneous marginal zone B-cell lymphoma. Rituximab is also administered as an alternative to polychemotherapy in the treatment of primary cutaneous large B-cell lymphoma, leg type. Its use as an alternative drug led to it being administered intralesionally, with beneficial effects. In the present article, we review the literature published on the use of rituximab to treat primary cutaneous B-cell lymphoma. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  2. Evaluation of cooperative antileukemic effects of nilotinib and vildagliptin in Ph+ chronic myeloid leukemia.

    Science.gov (United States)

    Willmann, Michael; Sadovnik, Irina; Eisenwort, Gregor; Entner, Martin; Bernthaler, Tina; Stefanzl, Gabriele; Hadzijusufovic, Emir; Berger, Daniela; Herrmann, Harald; Hoermann, Gregor; Valent, Peter; Rülicke, Thomas

    2018-01-01

    Chronic myeloid leukemia (CML) is a stem cell (SC) neoplasm characterized by the BCR/ABL1 oncogene. Although the disease can be kept under control using BCR/ABL1 tyrosine kinase inhibitors (TKIs) in most cases, some patients relapse or have resistant disease, so there is a need to identify new therapeutic targets in this malignancy. Recent data suggest that leukemic SCs (LSCs) in CML display the stem-cell (SC)-mobilizing cell surface enzyme dipeptidyl-peptidase IV (DPPIV = CD26) in an aberrant manner. In the present study, we analyzed the effects of the DPPIV blocker vildagliptin as single agent or in combination with the BCR/ABL1 TKI imatinib or nilotinib on growth and survival of CML LSCs in vitro and on LSC engraftment in an in vivo xenotransplantation nonobese diabetic SCID-IL-2Rγ -/- (NSG) mouse model. We found that nilotinib induces apoptosis in CML LSCs and inhibits their engraftment in NSG mice. In contrast, no substantial effects were seen with imatinib or vildagliptin. Nevertheless, vildagliptin was found to reduce the "mobilization" of CML LSCs from a stroma cell layer consisting of mouse fibroblasts in an in vitro co-culture model, suggesting reduced disease expansion. However, although vildagliptin and nilotinib produced cooperative effects in individual experiments, overall, no significant effects of coadministered vildagliptin over nilotinib or imatinib treatment alone were seen on the engraftment of CML cells in NSG mice. Gliptins may be interesting drugs in the context of CML and nilotinib therapy, but our preclinical studies did not reveal a major cooperative effect of the drug-combination vildagliptin + nilotinib on engraftment of CML cells in NSG mice. Copyright © 2018 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  3. Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells

    OpenAIRE

    Kim, Taeyong; Kahng, Yung Ho; Lee, Takhee; Lee, Kwanghee; Kim, Do Han

    2013-01-01

    Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electro...

  4. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  5. Radiation Gene-expression Signatures in Primary Breast Cancer Cells.

    Science.gov (United States)

    Minafra, Luigi; Bravatà, Valentina; Cammarata, Francesco P; Russo, Giorgio; Gilardi, Maria C; Forte, Giusi I

    2018-05-01

    In breast cancer (BC) care, radiation therapy (RT) is an efficient treatment to control localized tumor. Radiobiological research is needed to understand molecular differences that affect radiosensitivity of different tumor subtypes and the response variability. The aim of this study was to analyze gene expression profiling (GEP) in primary BC cells following irradiation with doses of 9 Gy and 23 Gy delivered by intraoperative electron radiation therapy (IOERT) in order to define gene signatures of response to high doses of ionizing radiation. We performed GEP by cDNA microarrays and evaluated cell survival after IOERT treatment in primary BC cell cultures. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate candidate genes. We showed, for the first time, a 4-gene and a 6-gene signature, as new molecular biomarkers, in two primary BC cell cultures after exposure at 9 Gy and 23 Gy respectively, for which we observed a significantly high survival rate. Gene signatures activated by different doses of ionizing radiation may predict response to RT and contribute to defining a personalized biological-driven treatment plan. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Imprint lithography provides topographical nanocues to guide cell growth in primary cortical cell culture

    NARCIS (Netherlands)

    Xie, S.; Luttge, R.

    2014-01-01

    In this paper, we describe a technology platform to study the effect of nanocues on the cell growth direction in primary cortical cell culture. Topographical cues to cells are provided using nanoscale features created by Jet and Flash Imprint Lithography, coated with polyethylenimine. We

  7. Evolution of BCR/ABL gene mutation in CML is time dependent and dependent on the pressure exerted by tyrosine kinase inhibitor.

    Directory of Open Access Journals (Sweden)

    Shantashri Vaidya

    Full Text Available BACKGROUND: Mutations in the ABL kinase domain and SH3-SH2 domain of the BCR/ABL gene and amplification of the Philadelphia chromosome are the two important BCR/ABL dependent mechanisms of imatinib resistance. Here, we intended to study the role played by TKI, imatinib, in selection of gene mutations and development of chromosomal abnormalities in Indian CML patients. METHODS: Direct sequencing methodology was employed to detect mutations and conventional cytogenetics was done to identify Philadelphia duplication. RESULTS: Among the different mechanisms of imatinib resistance, kinase domain mutations (39% of the BCR/ABL gene were seen to be more prevalent, followed by mutations in the SH3-SH2 domain (4% and then BCR/ABL amplification with the least frequency (1%. The median duration of occurrence of mutation was significantly shorter for patients with front line imatinib than those pre-treated with hydroxyurea. Patients with high Sokal score (p = 0.003 showed significantly higher incidence of mutations, as compared to patients with low/intermediate score. Impact of mutations on the clinical outcome in AP and BC was observed to be insignificant. Of the 94 imatinib resistant patients, only 1 patient exhibited duplication of Philadelphia chromosome, suggesting a less frequent occurrence of this abnormality in Indian CML patients. CONCLUSION: Close monitoring at regular intervals and proper analysis of the disease resistance would facilitate early detection of resistance and thus aid in the selection of the most appropriate therapy.

  8. Primary cutaneous marginal zone B-cell lymphoma: clinical and histological aspects.

    Science.gov (United States)

    Khaled, A; Sassi, S; Fazaa, B; Ben Hassouna, J; Ben Romdhane, K; Kamoun, M R

    2009-02-01

    According to the WHO-EORTC classification of cutaneous lymphomas, primary cutaneous marginal zone B-cell lymphoma are now well characterized. We report here a case of primary cutaneous marginal zone B-cell lymphoma in a 51 year-old man in which the diagnosis was made using both histology and immunopathology. The patient had no remarkable medical history, no history of either acute inflammation or insect bite, and presented with a 5 cm solitary asymptomatic erythematous firm, multinodular and infiltrated plaque on the back for 12 months. Histological examination and immunohistochemical study of a cutaneous biopsy provided a differential diagnosis between B cell lymphoma and lymphocytoma cutis. Full body work up revealed no signs of extracutaneous dissemination. The patient underwent surgical excision of the nodule. Histological examination showed a histological and immunophenotyping profile typical of primary cutaneous marginal zone B-cell lymphoma. The lesion was completely excised with clear margins and no recurrence occurred after a 12 month-follow-up period. Primary cutaneous marginal zone B-cell lymphoma are low-grade lymphomas that have an indolent course and a high tendency to recur. They should be differentiated from lymphocytoma cutis and from the other types of cutaneous B cell lymphomas that have a different course and prognosis.

  9. Immunocytochemical characterization of primary cell culture in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Luis M.M. Flórez

    Full Text Available Abstract: Immunochemistry with anti-vimentin, anti-lysozyme, anti-alpha 1 antitrypsin, anti-CD3 and anti-CD79α antibodies has been used for characterization of primary cell culture in the transmissible venereal tumor (TVT. Samples for primary cell culture and immunohistochemistry assays were taken from eight dogs with cytological and clinical diagnosis of TVT. To validate the immunochemical results in the primary cell culture of TVT, a chromosome count was performed. For the statistical analysis, the Mann-Whitney test with p<0.05 was used. TVT tissues and culture cells showed intense anti-vimentin immunoreactivity, lightly to moderate immunoreactivity for anti-lysozyme, and mild for anti-alpha-antitrypsin. No marking was achieved for CD3 and CD79α. All culture cells showed chromosomes variable number of 56 to 68. This is the first report on the use of immunocytochemical characterization in cell culture of TVT. Significant statistic difference between immunochemistry in tissue and culture cell was not established, what suggests that the use of this technique may provide greater certainty for the confirmation of tumors in the primary culture. This fact is particularly important because in vitro culture of tumor tissues has been increasingly used to provide quick access to drug efficacy and presents relevant information to identify potential response to anticancer medicine; so it is possible to understand the behavior of the tumor.

  10. Primary intraosseous squamous cell carcinoma of the mandible arising de novo.

    Science.gov (United States)

    Shamim, Thorakkal

    2009-07-01

    Primary intraosseous squamous cell carcinoma is an odontogenic tumour with aggressive behaviour usually noticed in 6th to 7th decades of life. The tumour is characterized by progressive swelling of the jaw, pain and loosening of teeth. Microscopically, the lesion is showing foci of keratinising cells separated by collagenous connective tissue stroma. A case of primary intraosseous squamous cell carcinoma of mandible arising de novo in a 40-year-old man is reported.

  11. Autophagy induction by Bcr-Abl-expressing cells facilitates their recovery from a targeted or nontargeted treatment.

    LENUS (Irish Health Repository)

    Crowley, Lisa C

    2012-01-31

    Although Imatinib has transformed the treatment of chronic myeloid leukemia (CML), it is not curative due to the persistence of resistant cells that can regenerate the disease. We have examined how Bcr-Abl-expressing cells respond to two mechanistically different therapeutic agents, etoposide and Imatinib. We also examined Bcr-Abl expression at low and high levels as elevated expression has been associated with treatment failure. Cells expressing low levels of Bcr-Abl undergo apoptosis in response to the DNA-targeting agent (etoposide), whereas high-Bcr-Abl-expressing cells primarily induce autophagy. Autophagic populations engage a delayed nonapoptotic death; however, sufficient cells evade this and repopulate following the withdrawal of the drug. Non-Bcr-Abl-expressing 32D or Ba\\/F3 cells induce both apoptosis and autophagy in response to etoposide and can recover. Imatinib treatment induces both apoptosis and autophagy in all Bcr-Abl-expressing cells and populations rapidly recover. Inhibition of autophagy with ATG7 and Beclin1 siRNA significantly reduced the recovery of Imatinib-treated K562 cells, indicating the importance of autophagy for the recovery of treated cells. Combination regimes incorporating agents that disrupt Imatinib-induced autophagy would remain primarily targeted and may improve response to the treatment in CML.

  12. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Directory of Open Access Journals (Sweden)

    Shi D

    2016-11-01

    Full Text Available Dan Shi,1,* Yan Liu,1,* Ronggang Xi,1 Wei Zou,2 Lijun Wu,3 Zhiran Zhang,1 Zhongyang Liu,1 Chao Qu,1 Baoli Xu,1 Xiaobo Wang1 1Department of Pharmacy, The 210th Hospital of People’s Liberation Army, 2College of Life Science, Liaoning Normal University, Dalian, Liaoning, 3Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Chronic myelogenous leukemia (CML is characterized by the t(9;22 (q34;q11-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1 participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during

  13. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: Effects on response and toxicity.

    Science.gov (United States)

    Schiffer, Charles A; Cortes, Jorge E; Hochhaus, Andreas; Saglio, Giuseppe; le Coutre, Philipp; Porkka, Kimmo; Mustjoki, Satu; Mohamed, Hesham; Shah, Neil P

    2016-05-01

    The proliferation of clonal cytotoxic T-cells or natural killer cells has been observed after dasatinib treatment in small studies of patients with chronic myeloid leukemia (CML). The incidence of lymphocytosis and its association with response, survival, and side effects were assessed in patients from 3 large clinical trials. Overall, 1402 dasatinib-treated patients with newly diagnosed CML in chronic phase (CML-CP), CML-CP refractory/intolerant to imatinib, or with CML in accelerated or myeloid-blast phase were analyzed. Lymphocytosis developed in 32% to 35% of patients and persisted for >12 months. This was not observed in the patients who received treatment with imatinib. Dasatinib-treated patients in all stages of CML who developed lymphocytosis were more likely to achieve a complete cytogenetic response, and patients who had CML-CP with lymphocytosis were more likely to achieve major and deep molecular responses. Progression-free and overall survival rates were significantly longer in patients with CML-CP who were refractory to or intolerant of imatinib and had lymphocytosis. Pleural effusions developed more commonly in patients with lymphocytosis. Overall, lymphocytosis occurred and persisted in many dasatinib-treated patients in all phases of CML. Its presence was associated with higher response rates, significantly longer response durations, and increased overall survival, suggesting an immunomodulatory effect. Prospective studies are warranted to characterize the functional activity of these cells and to assess whether an immunologic effect against CML is detectable. Cancer 2016;122:1398-1407. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

  14. Chronic myeloid leukemia with variation of translocation at (Ph) [ins (22;9) (q11;q21q34)]: a case report.

    Science.gov (United States)

    Wang, Zhiqiong; Zen, Wen; Meng, Fankai; Xin, Xing; Luo, Li; Sun, Hanying; Zhou, Jianfeng; Huang, Lifang

    2015-01-01

    Chronic myeloid leukemia (CML) is most frequently observed in middle-aged individuals. In most patients, normal marrow cells are replaced by cells with an abnormal G-group chromosome, the Philadelphia (Ph) chromosome. The Ph chromosome that is characterized by the translocation (9;22) (q34;q11) is noted in 90-95% of patients diagnosed with CML. Studies have also shown that CML can be associated with various other cytogenetic abnormalities, with 5-10% of these cases showing complex translocation involving another chromosome in addition to the Ph chromosome. Here, we report the case of a Ph(+) CML patient with an inserted karyotype who presented clinically in the chronic phase but with atypical features. This case highlights the significance of cytogenetic abnormalities on the prognosis in CML.

  15. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  16. Diagnostic radiography as a risk factor for chronic myeloid and monocytic leukaemia (CML)

    International Nuclear Information System (INIS)

    Preston-Martin, S.; Thomas, D.C.; Yu, M.C.; Henderson, B.E.

    1989-01-01

    The study included 136 Los Angeles County residents aged 20-69 with chronic myeloid and monocytic leukemia CML diagnosed from 1979 to 1985 (cases) and 136 neighbourhood controls. During 3-20 years before diagnosis more cases than controls had radiographic examinations of back, gastrointestinal (GI) tract and kidneys, and cases more often had GI and back radiography on multiple occasions (odds ratio (OR) for back X-rays on five or more occasions = 12.0; P < 0.01). Published estimates were used to assign a minimum dose to active bone marrow for various radiographic procedures. ORs were estimated for cumulative marrow doses for each of four time periods (3-5 years, 6-10 years, 11-20 years and 3-20 years before diagnosis). ORs for exposure to 0.99, 100-999, 1000-1999 and ≥ 2000 mrad in the 3-20 years before diagnosis were 1.0, 1.4, 1.6 and 2.4 (P for highest exposure category and P for trend both < 0.05). The association was strongest for 6-10 years before diagnosis, and effects of radiation exposure during this period remained significant after consideration of other risk factors in a logistic regression analysis. (author)

  17. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  18. Results of radiotherapy for primary subglottic squamous cell carcinoma

    International Nuclear Information System (INIS)

    Paisley, Sonya; Warde, Padraig R.; O'Sullivan, Brian; Waldron, John; Gullane, Patrick J.; Payne, David; Liu, F.-F.; Bayley, Andrew; Ringash, Jolie; Cummings, Bernard J.

    2002-01-01

    Purpose: To retrospectively evaluate the outcome after radical radiotherapy (RT) and surgical salvage and assess the risk of late toxicity for patients with primary subglottic squamous cell carcinoma treated at our center. Methods and Materials: Between 1971 and 1996, 43 patients with primary squamous cell carcinoma of the subglottis (35 men, 8 women) were treated with radical RT. All received megavoltage irradiation, most commonly to a dose of 50-52 Gy in 20 fractions during 4 weeks (39 patients). The median follow-up was 4.2 years. Results: Local control was achieved with RT alone in 24 (56%) of the 43 patients: 7 of 11 with T1, 8 of 12 with T2, 4 of 8 with T3, and 5 of 12 with T4. The 5-year actuarial local relapse-free rate was 52%. Subsequent local control was achieved in 11 of the 13 patients with failed RT and attempted surgical salvage, for an ultimate local control rate of 81.4% (35 of 43). The 5-year overall and cause-specific actuarial survival rate was 50.3% and 66.9%, respectively. No patients developed Grade 3 or 4 late radiation morbidity. Conclusion: These data support the use of primary RT in the treatment of patients with primary squamous cell carcinoma of the subglottis as an appropriate treatment approach providing an option for laryngeal conservation

  19. Electromigration of cadmium in contaminated soils driven by single and multiple primary cells

    International Nuclear Information System (INIS)

    Yuan Songhu; Wu Chan; Wan Jinzhong; Lu Xiaohua

    2008-01-01

    This study tentatively used an iron (Fe) and carbon (C) primary cell, instead of dc electric power, to drive the electromigration of cadmium in contaminated soils. The addition of acid to C compartment increased the electric potential, while the addition of acid to Fe compartment had a slight influence on the potential. It was feasible using the primary cell to drive the electromigration of cadmium in kaolin. The electromigration efficiencies were highly related to the soil pH. Lower pH led to greater migration efficiency. The mechanisms involved the desorption of cadmium from soils to pore solution and the electromigration of cadmium in the pore solution. The desorption was critical to the electromigration process. The series of primary cells could expand the treatment area, but the electromigration efficiencies of cadmium in each cell were less than that achieved by single primary cell. Since the potential gradient produced by the primary cell was rather low, the electromigration rate of pollutants was very low and remediation duration was long. The application would be acceptable in some specific sites, such as acidic soils or artificially controlled acid conditions so that heavy metals have been desorbed from soils

  20. Primary signet cell adenocarcinoma of bladder

    Directory of Open Access Journals (Sweden)

    Prateek Kinra

    2017-01-01

    Full Text Available Primary signet cell cancer of the urinary bladder is a relatively rare entity. Since there is no mucinous epithelium in the bladder, It is proposed that the tumor arises from metaplastic urothelium. Two thirds of the tumours are mucin secreting, in most of which the site of the deposition is either extracellular or intracellular displacing the nucleus to a peripheral crescent, giving the cells a signet ring appearance. The tumours are most often infiltrative and diffusely involving the majority of the bladder akin to its name sake in stomach. It is essential to distinguish this carcinoma from gastrointestinal metastases as different therapeutic strategies are often necessary.

  1. A Cell Culture Platform to Maintain Long-term Phenotype of Primary Human Hepatocytes and Endothelial Cells.

    Science.gov (United States)

    Ware, Brenton R; Durham, Mitchell J; Monckton, Chase P; Khetani, Salman R

    2018-03-01

    Modeling interactions between primary human hepatocytes (PHHs) and primary human liver sinusoidal endothelial cells (LSECs) in vitro can help elucidate human-specific mechanisms underlying liver physiology/disease and drug responses; however, existing hepatocyte/endothelial coculture models are suboptimal because of their use of rodent cells, cancerous cell lines, and/or nonliver endothelial cells. Hence, we sought to develop a platform that could maintain the long-term phenotype of PHHs and primary human LSECs. Primary human LSECs or human umbilical vein endothelial cells as the nonliver control were cocultivated with micropatterned PHH colonies (to control homotypic interactions) followed by an assessment of PHH morphology and functions (albumin and urea secretion, and cytochrome P-450 2A6 and 3A4 enzyme activities) over 3 weeks. Endothelial phenotype was assessed via gene expression patterns and scanning electron microscopy to visualize fenestrations. Hepatic responses in PHH/endothelial cocultures were benchmarked against responses in previously developed PHH/3T3-J2 fibroblast cocultures. Finally, PHH/fibroblast/endothelial cell tricultures were created and characterized as described previously. LSECs, but not human umbilical vein endothelial cells, induced PHH albumin secretion for ∼11 days; however, neither endothelial cell type could maintain PHH morphology and functions to the same magnitude/longevity as the fibroblasts. In contrast, both PHHs and endothelial cells displayed stable phenotype for 3 weeks in PHH/fibroblast/endothelial cell tricultures; furthermore, layered tricultures in which PHHs and endothelial cells were separated by a protein gel to mimic the space of Disse displayed similar functional levels as the coplanar tricultures. PHH/fibroblast/endothelial tricultures constitute a robust platform to elucidate reciprocal interactions between PHHs and endothelial cells in physiology, disease, and after drug exposure.

  2. Resveratrol Differentially Regulates NAMPT and SIRT1 in Hepatocarcinoma Cells and Primary Human Hepatocytes

    Science.gov (United States)

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2014-01-01

    Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648

  3. Resveratrol differentially regulates NAMPT and SIRT1 in Hepatocarcinoma cells and primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Susanne Schuster

    Full Text Available Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382. Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells.

  4. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells.

    Science.gov (United States)

    Ávila, Felipe; Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva; Schmeda-Hirschmann, Guillermo

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries ( Rubus geoides ), strawberries ( Fragaria chiloensis ssp. chiloensis f . chiloensis ), and currants ( Ribes magellanicum ) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis . This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  5. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion.

    Directory of Open Access Journals (Sweden)

    Gina D Kusuma

    Full Text Available Mesenchymal stem/stromal cells (MSCs exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25 human telomerase reverse transcriptase (hTERT transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs and decidua basalis (DMSCs, respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.

  6. N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response.

    Science.gov (United States)

    Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry

    2008-03-01

    Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.

  7. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells

    OpenAIRE

    Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.

    2017-01-01

    Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring...

  8. (/sup 3/H)ouabain binding to leukaemic cells and intralymphocytic sodium content in chronic lymphocytic leukaemia; no evidence for alterations of the Na/sup +//K/sup +/-pump

    Energy Technology Data Exchange (ETDEWEB)

    Berntorp, E; Berntorp, K

    1987-01-01

    The number of specific (/sup 3/H)ouabain binding sites and dissociation constants (K/sub d/) were determined by Scatchard analysis of values for leucocytes from patients with B-cell chronic lymphocytic leukaemia (CCL), chronic myeloid leukaemia (CML), acute blastic leukaemia (AL) and healthy subjects. CCL lymphocytes and normal B-cells bound significantly less (/sup 3/H)ouabain than did normal T-lymphocytes. CML granulocytes showed the same binding characteristics as normal granulocytes, while blast cells from AL patients bound significantly more (/sup 3/H)ouabain than did normal granulocytes or B-cells. The increased binding capacity in blast cells might, at least partly, reflect their larger cell size. A decrease in K/sub d/ values was only found in CLL lymphocytes, as compared with normal B-cells. Intralymphocytic sodium content in CLL lymphocytes was significantly increased, as sompared with that in T-cell-enriched normal lymphocytes. (/sup 3/H)ouabain binding did not show any relationship to different prognostic variables in CLL. The present data mainly argue against altered Na/sup +//K/sup +/-ATPase enzyme activity as an indicator of malignancy.

  9. Primary orbital precursor T-cell lymphoblastic lymphoma

    DEFF Research Database (Denmark)

    Stenman, Lisa; Persson, Marta; Enlund, Fredrik

    2016-01-01

    Primary T-cell lymphoblastic lymphoma (T-LBL) in the eye region is very rare. The present study described a unique case of T-LBL involving the extraocular muscles. A 22-year-old male patient presented with a 3-week history of headache, reduced visual acuity and edema of the left eye. Clinical...... knowledge, this is the first report of a case of T-LBL involving the extraocular muscles. Although primary T-LBL in the eye region is very rare, our findings demonstrate that lymphoma should be considered in the differential diagnosis of patients with similar symptoms....

  10. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Marzia Vezzalini

    2017-06-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor gamma (PTPRG is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML have been reported, only one polyclonal antibody (named chPTPRG has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2 to better define PTPRG protein downregulation in CML patients. Methods TPγ B9-2 specifically recognizes PTPRG (both human and murine by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells. After effective tyrosine kinase inhibitor (TKI treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the

  11. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  12. Association of immunity and tolerance of host H-2 determinants in irradiated F1 hybrid mice reconstituted with bone marrow cells from one parental strain

    International Nuclear Information System (INIS)

    Sprent, J.; von Boehmer, H.; Nabholz, M.

    1975-01-01

    Semiallogeneic radiation chimeras were prepared by injecting heavily irradiated F 1 hybrid mice with bone marrow cells from one parental strain; the bone marrow cells were treated with anti-theta serum and complement to remove T cells and injected in large numbers (2 x 10 7 cells). The mice survived in excellent health until sacrifice 6 mo later. Thoracic duct cannulation at this stage showed that the mice possessed normal numbers of recirculating lymphocytes. Close to 100 percent of thoracic duct lymphocytes and lymph node cells were shown to be of donor strain origin. The capacity of lymphocytes from the chimeras to respond to host-type determinants was tested in mixed leukocyte culture and in an assay for cell-mediated lympholysis (CML). Mixed leukocyte reactions (MLR) were measured both in vitro and in vivo; tumor cells and phytohemagglutinin-stimulated blast cells were used as target cells for measuring CML. While responding normally to third party determinants, cells from the chimeras gave a definite, though reduced MLR when exposed to host-type determinants. However, this proliferative response to host-type determinants, unlike that to third party determinants, was not associated with differentiation into cytotoxic lymphocytes

  13. Identification of differences in gene expression in primary cell cultures of human endometrial epithelial cells and trophoblast cells following their interaction

    DEFF Research Database (Denmark)

    Høgh, Mette; Islin, Henrik; Møller, Charlotte

    2006-01-01

    The interaction between the cell types was simulated in vitro by growing primary cell cultures of human endometrial epithelial cells and trophoblast cells together (co-culture) and separately (control cultures). Gene expression in the cell cultures was compared using the Differential Display method and confirmed...

  14. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    International Nuclear Information System (INIS)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan; Gu, Haihui; Huang, Yanyan; Zhu, Lishuang; Li, Jinqi; Liu, Yang; Tu, Xiaohua; Song, Haihan; Qian, Baohua

    2017-01-01

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5"+ CD4"+ T cells, in DLBCL. Data showed that compared to CXCR5"- CD4"+ T cells, CXCR5"+ CD4"+ T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5"+ CD4"+ T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5"- CD4"+ T cells, while the level of IL-10 secretion was significant elevated in the CXCR5"+ compartment compared to the CXCR5"- compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5"+ CD4"+ T cell coculture compromised the CXCR5"+ CD4"+ T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5"+ compartment also contained significantly lower frequencies of cytotoxic CD4"+ T cells than the CXCR5"- compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4"+ T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.

  15. Spontaneous regression of primary diffuse large B-cell lymphoma, leg type.

    Science.gov (United States)

    Alcántara-González, J; González-García, C; Fernández-Guarino, M; Jaén-Olasolo, P

    2014-01-01

    Primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL LT) accounts for approximately 20% of all primary cutaneous B-cell lymphomas and tends to present as infiltrated nodules, tumors, and plaques on the legs in the elderly. Unlike other primary cutaneous large B-cell lymphomas, it has a poor prognosis and tends to require treatment with systemic chemotherapy. We present the case of an 82-year-old patient with a 1-year history of nodules and plaques on her right leg. Biopsy led to a diagnosis of PCLBCL LT and the lesions resolved without treatment within 1 month of the first visit. This is an atypical course of PCLBCL LT and we believe that it is the first such case to be reported in the literature. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  16. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  17. Disease: H00004 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available sm. While fusion of c-ABL and BCR is believed to be the primary cause of the chronic phase of CML, progression to blast crisis... ... AUTHORS ... Calabretta B, Perrotti D. ... TITLE ... The biology of CML blast crisis. ... JOURNAL ... Blood 103:40

  18. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis.

    Science.gov (United States)

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M; Gish, Gerald D; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2011-10-14

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    Science.gov (United States)

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of

  20. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Eide, Marta; Rusten, Marte; Male, Rune; Jensen, Knut Helge Midtbø; Goksøyr, Anders

    2014-01-01

    Highlights: •The ZFL cell line and primary hepatocytes were characterized. •Basic and induced expression of nuclear receptors and target genes were found. •The ZFL cell line expresses very low basic levels of most genes. •The ZFL cells have low induction of gene expression following exposures. •Primary hepatocytes show large sex-dependent differences in gene expression. -- Abstract: The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic

  1. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Marta, E-mail: marta.eide@bio.uib.no [Department of Biology, University of Bergen, Bergen (Norway); Rusten, Marte; Male, Rune [Department of Molecular Biology, University of Bergen, Bergen (Norway); Jensen, Knut Helge Midtbø; Goksøyr, Anders [Department of Biology, University of Bergen, Bergen (Norway)

    2014-02-15

    Highlights: •The ZFL cell line and primary hepatocytes were characterized. •Basic and induced expression of nuclear receptors and target genes were found. •The ZFL cell line expresses very low basic levels of most genes. •The ZFL cells have low induction of gene expression following exposures. •Primary hepatocytes show large sex-dependent differences in gene expression. -- Abstract: The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic

  2. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chiara Francavilla

    2017-03-01

    Full Text Available Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer.

  3. Identifying and validating a combined mRNA and microRNA signature in response to imatinib treatment in a chronic myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Steven Bhutra

    Full Text Available Imatinib, a targeted tyrosine kinase inhibitor, is the gold standard for managing chronic myeloid leukemia (CML. Despite its wide application, imatinib resistance occurs in 20-30% of individuals with CML. Multiple potential biomarkers have been identified to predict imatinib response; however, the majority of them remain externally uncorroborated. In this study, we set out to systematically identify gene/microRNA (miRNA whose expression changes are related to imatinib response. Through a Gene Expression Omnibus search, we identified two genome-wide expression datasets that contain expression changes in response to imatinib treatment in a CML cell line (K562: one for mRNA and the other for miRNA. Significantly differentially expressed transcripts/miRNAs post imatinib treatment were identified from both datasets. Three additional filtering criteria were applied 1 miRbase/miRanda predictive algorithm; 2 opposite direction of imatinib effect for genes and miRNAs; and 3 literature support. These criteria narrowed our candidate gene-miRNA to a single pair: IL8 and miR-493-5p. Using PCR we confirmed the significant up-regulation and down-regulation of miR-493-5p and IL8 by imatinib treatment, respectively in K562 cells. In addition, IL8 expression was significantly down-regulated in K562 cells 24 hours after miR-493-5p mimic transfection (p = 0.002. Furthermore, we demonstrated significant cellular growth inhibition after IL8 inhibition through either gene silencing or by over-expression of miR-493-5p (p = 0.0005 and p = 0.001 respectively. The IL8 inhibition also further sensitized K562 cells to imatinib cytotoxicity (p < 0.0001. Our study combined expression changes in transcriptome and miRNA after imatinib exposure to identify a potential gene-miRNA pair that is a critical target in imatinib response. Experimental validation supports the relationships between IL8 and miR-493-5p and between this gene-miRNA pair and imatinib sensitivity in a CML cell

  4. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    Science.gov (United States)

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Cell type and transfection reagent-dependent effects on viability, cell content, cell cycle and inflammation of RNAi in human primary mesenchymal cells

    DEFF Research Database (Denmark)

    Yang, Hsiao Yin; Vonk, Lucienne A.; Licht, Ruud

    2014-01-01

    % amidation), for siRNA delivery into primary mesenchymal cells including nucleus pulposus cells, articular chondrocytes and mesenchymal stem cells (MSCs). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an endogenous model gene to evaluate the extent of silencing by 20 nM or 200 nM siRNA at day...

  6. Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas.

    Science.gov (United States)

    Menguy, Sarah; Frison, Eric; Prochazkova-Carlotti, Martina; Dalle, Stephane; Dereure, Olivier; Boulinguez, Serge; Dalac, Sophie; Machet, Laurent; Ram-Wolff, Caroline; Verneuil, Laurence; Gros, Audrey; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Pham-Ledard, Anne

    2018-03-26

    In nodal diffuse large B-cell lymphoma, the search for double-hit with MYC and BCL2 and/or BCL6 rearrangements or for dual expression of BCL2 and MYC defines subgroups of patients with altered prognosis that has not been evaluated in primary cutaneous large B-cell lymphoma. Our objectives were to assess the double-hit and dual expressor status in a cohort of 44 patients with primary cutaneous large B-cell lymphoma according to the histological subtype and to evaluate their prognosis relevance. The 44 cases defined by the presence of more than 80% of large B-cells in the dermis corresponded to 21 primary cutaneous follicle centre lymphoma with large cell morphology and 23 primary cutaneous diffuse large B-cell lymphoma, leg type. Thirty-one cases (70%) expressed BCL2 and 29 (66%) expressed MYC. Dual expressor profile was observed in 25 cases (57%) of either subtypes (n = 6 or n = 19, respectively). Only one primary cutaneous follicle centre lymphoma, large-cell case had a double-hit status (2%). Specific survival was significantly worse in primary cutaneous diffuse large B-cell lymphoma, leg type than in primary cutaneous follicle centre lymphoma, large cell (p = 0.021) and for the dual expressor primary cutaneous large B-cell lymphoma group (p = 0.030). Both overall survival and specific survival were worse for patients belonging to the dual expressor primary cutaneous diffuse large B-cell lymphoma, leg type subgroup (p = 0.001 and p = 0.046, respectively). Expression of either MYC and/or BCL2 negatively impacted overall survival (p = 0.017 and p = 0.018 respectively). As the differential diagnosis between primary cutaneous follicle centre lymphoma, large cell and primary cutaneous diffuse large B-cell lymphoma, leg type has a major impact on prognosis, dual-expression of BCL2 and MYC may represent a new diagnostic criterion for primary cutaneous diffuse large B-cell lymphoma, leg type subtype and further identifies patients with

  7. Primary Diffuse Large Cell Lymphoma of the Bladder: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Mansour Ansari

    2017-01-01

    Full Text Available Most bladder tumors are epithelial in origin. Nonepithelial cancers are rarely located in the bladder. Sarcomas are the most common malignancies among nonepithelial cancers. Primary bladder lymphoma is rare and mostly low grade. Here, we have reported a case of diffuse large cell lymphoma of the bladder. The patient, a 64-year-old man, had urinary frequency for 18 months. Abdominal sonography indicated a thick bladder wall and transurethral biopsy showed diffuse large cell lymphoma. Immunohistochemistry (IHC results showed that the tumor was positive for CD20, CD45, and Pax-5 and negative for BCL-2, cytokeratin, and S100. He had a normal bone marrow biopsy, abdominal, pelvic and chest CT scans. He had no B symptoms. The patient received 6 cycles of R-CHOP followed by radiotherapy (36 Gy to the pelvis. Six months after treatment, the patient is well and has returned to work. We have searched PubMed for primary diffuse large cell lymphoma. Primary diffuse large cell lymphoma of the bladder is best treated according to treatment for diffuse large cell lymphoma of other sites, which includes chemotherapy and radiotherapy. As seen in our review, primary diffuse large cell lymphoma of the bladder has a similar clinical course to diffuse large cell lymphoma of other sites.

  8. Primary central nervous system B-cell lymphoma in a young dog

    Science.gov (United States)

    Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2012-01-01

    This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372

  9. Primary endometrial squamous cell carcinoma with extensive squamous metaplasia and dysplasia

    Directory of Open Access Journals (Sweden)

    Bagga Permeet

    2008-04-01

    Full Text Available Primary squamous cell carcinoma of endometrium is a rare entity. Only 64 cases have been documented in the literature. We report a case of 60-year-old postmenopausal woman who presented with abdominal distention and blood-stained vaginal discharge for 6-7 months. Clinically, chronic pyometra was considered. Total abdominal hysterectomy was performed and histopathologically, it was diagnosed as a case of primary squamous cell carcinoma of endometrium with extensive squamous metaplasia and dysplasia.

  10. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  11. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie [Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2 (Ireland); Smith, Anthony J. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom); Fleming, Garry J.P. [Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin (Ireland); Cooper, Paul R. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom)

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  12. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    International Nuclear Information System (INIS)

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-01-01

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2

  13. Primary Cutaneous Diffuse Large B-Cell Lymphoma – a Case Report

    Directory of Open Access Journals (Sweden)

    Milovanović Milena

    2017-06-01

    Full Text Available In 2005, the World Health Organization - European Organization for Research and Treatment of Cancer (WHOEORTC classified cutaneous B-cell lymphomas into 4 categories: primary cutaneous marginal zone B-cell lymphoma (PCMZL, primary cutaneous follicle center lymphoma (PCFCL, primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT, and primary cutaneous diffuse large B-cell lymphoma, other (PCDLBCL-O. The absence of evident extra-cutaneous disease is a necessary condition for the diagnosis of primary cutaneous B-cell lymphomas, because they have a completely different clinical behavior and prognosis from their nodal counterparts. PCDLBCL-O basically represents a morphological variation, lacking the typical features of PCDLBCLLT, neither confirming the definition of PCFCCL, but on the clinical ground, its behavior seems at least to partially overlap the indolent course of PCFCCL. In fact, the present WHO lymphoma classification from 2008 overcame the previous WHO-EORTC classification, including at least a part of PCDLBCL-O within the spectrum of PCFCCL. However, owing to the rarity and heterogeneity of the PCDLBCL-O, the precise clinicopathological characteristics have not been well characterized and the optimal treatment for this group of lymphomas is yet to be defined. Nevertheless, dermatologists and pathologists should be aware of this entity in order to avoid unnecessary aggressive treatment. We present a case of a 46-year-old Caucasian male with one large round-shaped tumor and a few scattered nodules localized on the back. The histopathological features of the lesion corresponded to PCDLBCL-O. The patient follow-up showed that he was disease-free three months after surgical excision of the lesions and adjuvant local radiotherapy. No additional therapy was introduced, including chemotherapy with rituximab, cyclophosphamide, doxorubicin hydrochloride, oncovin, prednisolone (R-CHOP.

  14. The efficiency of tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia exposed to ionizing radiation due to the Chornobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Dmitrenko, Yi.V.; Fedorenko, V.G.; Shlyakhtichenko, T.Yu.; And Others

    2014-01-01

    Additional chromosomal abnormalities as well as special pattern of BCR/ABL transcripts were not revealed in CML patients exposed to ionizing radiation. Complete cytogenetic response (CCR) was shown in 50 and 48.5 % of patients from study and comparison group, respectively. Major molecular response (MMR) was achieved in 20 % of patients with radiation exposure in anamnesis and in 27.6 % of patients from comparison group. The vast majority of CCR and MMR was reached in patients with the pretreatment term up to 6 months, when imatinib was used as a first line therapy. There were less cases of primary imatinib resistance in the same group of patients. In CML patients who had a history of radiation exposure, secondary resistance developed more frequently than in the comparison group and was 25 %. Laboratory monitoring based on the registration of CCR and MMR demonstrated high efficiency of TKI in the CML treatment of patients, exposed due to Chornobyl accident. Extension of pretreatment term leads to the loss of TKI therapy efficiency and increases the likelihood of primary resistance. CML patients exposed to ionizing radiation develop secondary resistance more often than CML patients without radiation exposure in anamnesis

  15. Primary mucinous adenocarcinoma of the bladder with signet-ring cells: case report

    Directory of Open Access Journals (Sweden)

    Marcelo Lorenzi Marques

    Full Text Available CONTEXT: Primary adenocarcinomas of the bladder are uncommon and usually occur by contiguity with or hematogenic dissemination of other adenocarcinomas such as colorectal, prostate and gynecological tract carcinomas. Mucinous and signet-ring cell histological patterns are even rarer and it is often difficult to morphologically distinguish them from metastatic colorectal adenocarcinoma. CASE REPORT: We present and discuss a rare case of primary mucinous adenocarcinoma of the bladder with signet-ring cells in a 57-year-old male patient. Other primary sites for the tumor had been excluded and, in the absence of digestive tract tumor and for confirmation that it was a primary bladder tumor, an immunohistochemistry study was performed.

  16. MicroRNA profiling of primary cutaneous large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Lianne Koens

    Full Text Available Aberrant expression of microRNAs is widely accepted to be pathogenetically involved in nodal diffuse large B-cell lymphomas (DLBCLs. However, the microRNAs profiles of primary cutaneous large B-cell lymphomas (PCLBCLs are not yet described. Its two main subtypes, i.e., primary cutaneous diffuse large B-cell lymphoma, leg type (PCLBCL-LT and primary cutaneous follicle center lymphoma (PCFCL are characterized by an activated B-cell (ABC-genotype and a germinal center B-cell (GCB-genotype, respectively. We performed high-throughput sequencing analysis on frozen tumor biopsies from 19 cases of PCFCL and PCLBCL-LT to establish microRNA profiles. Cluster analysis of the complete microRNome could not distinguish between the two subtypes, but 16 single microRNAs were found to be differentially expressed. Single microRNA RT-qPCR was conducted on formalin-fixed paraffin-embedded tumor biopsies of 20 additional cases, confirming higher expression of miR-9-5p, miR-31-5p, miR-129-2-3p and miR-214-3p in PCFCL as compared to PCLBCL-LT. MicroRNAs previously described to be higher expressed in ABC-type as compared to GCB-type nodal DLBCL were not differentially expressed between PCFCL and PCLBCL-LT. In conclusion, PCFCL and PCLBCL-LT differ in their microRNA profiles. In contrast to their gene expression profile, they only show slight resemblance with the microRNA profiles found in GCB- and ABC-type nodal DLBCL.

  17. Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Etienne Caron

    2017-03-01

    Full Text Available Spatiotemporal organization of protein interactions in cell signaling is a fundamental process that drives cellular functions. Given differential protein expression across tissues and developmental stages, the architecture and dynamics of signaling interaction proteomes is, likely, highly context dependent. However, current interaction information has been almost exclusively obtained from transformed cells. In this study, we applied an advanced and robust workflow combining mouse genetics and affinity purification (AP-SWATH mass spectrometry to profile the dynamics of 53 high-confidence protein interactions in primarycells, using the scaffold protein GRB2 as a model. The workflow also provided a sufficient level of robustness to pinpoint differential interaction dynamics between two similar, but functionally distinct, primarycell populations. Altogether, we demonstrated that precise and reproducible quantitative measurements of protein interaction dynamics can be achieved in primary cells isolated from mammalian tissues, allowing resolution of the tissue-specific context of cell-signaling events.

  18. Primary clear cell sarcoma of bone: a unique site of origin

    International Nuclear Information System (INIS)

    Gelczer, R.K.; Wenger, D.E.; Wold, L.E.

    1999-01-01

    Clear cell sarcoma is a rare soft tissue neoplasm, accounting for less than 1% of soft tissue sarcomas. We are presenting a case of a clear cell sarcoma of bone which, to our knowledge, is the only report of a primary clear cell sarcoma of bone. (orig.)

  19. Cooperation of imipramine blue and tyrosine kinase blockade demonstrates activity against chronic myeloid leukemia

    Science.gov (United States)

    Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo

    2016-01-01

    The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151

  20. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Zhanshan [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Qian, Guangfang [Department of Endocrinology, Zhangqiu Municipal Hospital of Traditional Chinese Medicine, Zhangqiu, Shandong 250200 (China); Zang, Yan; Gu, Haihui; Huang, Yanyan; Zhu, Lishuang; Li, Jinqi; Liu, Yang; Tu, Xiaohua [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Song, Haihan [Emergency Center, East Hospital, Shanghai 200120 (China); Qian, Baohua, E-mail: qianbhl963@163.com [Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-01-01

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.

  1. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells

    DEFF Research Database (Denmark)

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C

    2014-01-01

    BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This st......BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported...

  2. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector

    Directory of Open Access Journals (Sweden)

    Lauro Augusto de Oliveira

    2010-10-01

    Full Text Available PURPOSE: To evaluate the transfer of heterologous genes carrying a Green Fluorescent Protein (GFP reporter cassette to primary corneal epithelial cells ex vivo. METHODS: Freshly enucleated rabbit corneoscleral tissue was used to obtain corneal epithelial cell suspension via enzymatic digestion. Cells were plated at a density of 5×10³ cells/cm² and allowed to grow for 5 days (to 70-80% confluency prior to transduction. Gene transfer was monitored using fluorescence microscopy and fluorescence activated cell sorter (FACS. We evaluated the transduction efficiency (TE over time and the dose-response effect of different lentiviral particles. One set of cells were dual sorted by fluorescence activated cell sorter for green fluorescent protein expression as well as Hoechst dye exclusion to evaluate the transduction of potentially corneal epithelial stem cells (side-population phenotypic cells. RESULTS: Green fluorescent protein expressing lentiviral vectors were able to effectively transduce rabbit primary epithelial cells cultured ex vivo. Live cell imaging post-transduction demonstrated GFP-positive cells with normal epithelial cell morphology and growth. The transduction efficiency over time was higher at the 5th post-transduction day (14.1% and tended to stabilize after the 8th day. The number of transduced cells was dose-dependent, and at the highest lentivirus concentrations approached 7%. When double sorted by fluorescence activated cell sorter to isolate both green fluorescent protein positive and side population cells, transduced side population cells were identified. CONCLUSIONS: Lentiviral vectors can effectively transfer heterologous genes to primary corneal epithelial cells expanded ex vivo. Genes were stably expressed over time, transferred in a dose-dependence fashion, and could be transferred to mature corneal cells as well as presumable putative stem cells.

  3. A Case of Primary Gastric Small-Cell Carcinoma in an Elderly Patient

    Directory of Open Access Journals (Sweden)

    Fa-Chang Yu

    2012-03-01

    Full Text Available We report a case of primary small-cell carcinoma of the stomach in a 75-year-old man. The patient was admitted to our hospital with a 1-week history of intermittent tarry stool. An upper gastrointestinal examination revealed a large stage A2 ulcer in the greater curvature of the body of the stomach, and pathological findings from biopsy specimens revealed small-cell carcinoma. The tumor cells were small-sized, composed of hyperchromatic nuclei with scant cytoplasm, and stained positive for cytokeratin, synaptophysin, and chromogranin A. The patient was diagnosed with primary small-cell carcinoma of the stomach. He declined further evaluation and received palliative management. This is a rare carcinoma of the stomach, with aggressive manifestations and a poor prognosis. The mean survival of patients with primary gastric small-cell carcinoma is reported to be 7 months. The choice of treatment for this disease is still controversial. This rare gastric tumor should be listed in the differential diagnosis of gastric carcinoma in the elderly.

  4. Nanoscaffold's stiffness affects primary cortical cell network formation

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Wolbers, F.; Lüttge, Regina; Hassink, Gerrit Cornelis

    2014-01-01

    Networks of neurons cultured on-chip can provide insights into both normal and disease-state brain function. The ability to guide neuronal growth in specific, artificially designed patterns allows us to study how brain function follows form. Primary cortical cells cultured on nanograting scaffolds,

  5. [Effects of recombinant human alpha-2b and gamma interferons on bone marrow megakaryocyte progenitors (CFU-Meg) from patients with chronic myelocytic leukemia].

    Science.gov (United States)

    Tanabe, Y; Dan, K; Kuriya, S; Nomura, T

    1989-10-01

    The effects of recombinant human interferon (IFN) alpha-2b and gamma on the bone marrow megakaryocyte progenitors (CFU-Meg) were compared between eight patients in the chronic phase of Ph1-positive chronic myelocytic leukemia (CML) and five hematologically normal patients. CFU-Meg was assayed in plasma clot culture added with phytohemagglutinin-stimulated leukocyte-conditioned medium as a source of colony stimulating activity. The average count of CFU-Meg colonies formed from the bone marrow of CML patients was 5.5 times that of normal controls. Spontaneous CFU-Meg colonies were grown in seven of eight CML patients, but in none of five controls. Colony formation by CFU-Meg in CML as well as normal bone marrow was suppressed by the two preparations of IFN in a dose dependent fashion. Their suppressive influence on colonies from CFU-Meg was comparable between CML and normal bone marrow at lower concentrations, but was less marked for CML than normal bone marrow at higher concentrations. The formation of CFU-Meg colonies from CML bone marrow was more severely suppressed by IFN-gamma than IFN-alpha-2b. Depletion of either T lymphocytes or adherent cells from the CML bone marrow cells diminished the suppressive effects of IFN-gamma, but had no influence on the effects of IFN-alpha-2b.

  6. Synchronous sigmoid and caecal cancers together with a primary renal cell carcinoma.

    LENUS (Irish Health Repository)

    Bhargava, A

    2012-06-01

    Multiple primary neoplasms, a common clinical entity, can be classified as synchronous or metachronous. Renal cell carcinoma, in particular, is associated with a high rate of multiple primary neoplasms.

  7. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  8. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-01-01

    Full Text Available The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs from Chilean raspberries (Rubus geoides, strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis, and currants (Ribes magellanicum and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  9. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.

    Science.gov (United States)

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi; Villa, Alessandra; Kowalczyk, Katarzyna; Rakownikow Jersie-Christensen, Rosa; Bertalot, Giovanni; Confalonieri, Stefano; Brunak, Søren; Jensen, Lars J; Cavallaro, Ugo; Olsen, Jesper V

    2017-03-28

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  11. Primary signet ring cell carcinoma of the appendix mimicking acute appendicitis

    Directory of Open Access Journals (Sweden)

    Mario Fusari

    2012-10-01

    Full Text Available Primary signet ring cell carcinoma of the appendix is a very rare neoplasm that usually presents with signs and symptoms of acute appendicitis and in particular with a right lower abdominal pain. Preoperative imaging detection of appendiceal adenocarcinoma has an important value because it may result in an appropriate surgical procedure. We report a rare case of primary signet ring cell carcinoma of the vermiform appendix in an 80-year-old man who was misdiagnosed on computed tomography (CT scan as acute appendicitis.

  12. Development of Functional Microfold (M Cells from Intestinal Stem Cells in Primary Human Enteroids.

    Directory of Open Access Journals (Sweden)

    Joshua D Rouch

    Full Text Available Intestinal microfold (M cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs, and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting.Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium.Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2 in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells.Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an

  13. SPECTRa: the deposition and validation of primary chemistry research data in digital repositories.

    Science.gov (United States)

    Downing, Jim; Murray-Rust, Peter; Tonge, Alan P; Morgan, Peter; Rzepa, Henry S; Cotterill, Fiona; Day, Nick; Harvey, Matt J

    2008-08-01

    The SPECTRa (Submission, Preservation and Exposure of Chemistry Teaching and Research Data) project has investigated the practices of chemists in archiving and disseminating primary chemical data from academic research laboratories. To redress the loss of the large amount of data never archived or disseminated, we have developed software for data publication into departmental and institutional Open Access digital repositories (DSpace). Data adhering to standard formats in selected disciplines (crystallography, NMR, computational chemistry) is transformed to XML (CML, Chemical Markup Language) which provides added validation. Context-specific chemical metadata and persistent Handle identifiers are added to enable long-term data reuse. It was found essential to provide an embargo mechanism, and policies for operating this and other processes are presented.

  14. Proliferation and mineralization ability of dental pulp cells derived from primary and permanent teeth

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2011-04-01

    Full Text Available The aims of this study were to compare the proliferation and mineralization ability of CFU-F selected dental pulp cellsderived from primary and permanent teeth. Those cells were isolated by enzyme digestion and analyzed for their colonyformingcapacity. The cell proliferation was measured by the MTT assay on day 1, day 7, and day14. Alizarin Red S stainingwas used to detect mineralized nodule formation of the cells on day 7, 14, 21, and 28. Proliferation of CFU-F selected pulpcells from primary teeth was significantly higher than that of CFU-F selected pulp cells from permanent teeth in all periods ofthe experiment. Upon cultured cells in mineralization inducing media, the mineralized nodules appeared as early as day 14 inCFU-F selected pulp cells from primary teeth and MG-63, whereas those of CFU-F selected pulp cells from permanent teethcan be found at day 21. On day 21 and day 28, the mineralized nodules of the CFU-F selected pulp cells from the primaryteeth group were more than those in the CFU-F selected pulp cells from the permanent teeth group. Mineralized noduleformation in the CFU-F selected pulp cells from the permanent teeth group appeared later and were less than those ofCFU-F selected pulp cells from primary teeth. However, mineralized nodules in CFU-F selected pulp cells from the permanentteeth group increased very fast after their appearance. Those results suggest that CFU-F selected pulp cells from primaryteeth had a higher proliferation rate and mineralization rate when compared to CFU-F selected pulp cells from permanentteeth.

  15. Primary tonsillar mast cell tumour in a dog.

    Science.gov (United States)

    Shekell, C C; Thomson, M J; Miller, R I; Mackie, J T

    2018-05-01

    A 6-year-old speyed female Bull Arab-cross dog was found to have a small tonsillar nodule. Histological examination revealed a well-differentiated mast cell tumour (MCT). At initial staging, no evidence of concurrent cutaneous or visceral MCTs was found on a complete blood count, a single lateral thoracic radiograph, abdominal ultrasound or cytology of the spleen and regional lymph nodes. A diagnosis of primary tonsillar MCT was made. At 40 months postoperatively, the dog is alive with no evidence of gross tumour progression, in contrast to some previous reports of rapid disease progression and metastasis in dogs with primary oral MCTs. To the authors' knowledge, no previous reports of a primary MCT of the tonsil in dogs exist in the veterinary literature. © 2018 Australian Veterinary Association.

  16. Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408 Determination of lactate dehydrogenase (LDH and Bcr-Abl transcript in the follow-up of patients with chronic myeloid leukemia - doi: 10.4025/actascihealthsci.v32i2.6408

    Directory of Open Access Journals (Sweden)

    Thiago Cezar Fujita

    2010-09-01

    Full Text Available Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed with CML and 56 healthy donors. LDH concentration in plasma was higher in patients with CML. All patients with CML in this study were under treatment, but even so four patients had the Bcr-Abl (b3a2 transcript in peripheral blood. Two out of the four patients with b3a2 showed higher LDH (486 U L-1 and 589 U L-1. Thus, although the study was conducted with small numbers of samples, it is possible to suggest therapy alteration for two patients who presented transcript b3a2 in the peripheral blood samples and whose LDH concentration was high, in order to improve the disease.Chronic myeloid leukemia (CML is a malignant myeloproliferative disorder that originates from a pluripotent stem cell characterized by abnormal release of the expanded, malignant stem cell clone from the bone marrow into the bloodstream. The vast majority of patients with CML present Bcr-Abl transcripts. Lactate dehydrogenase (LDH is considered a biochemical marker common for tumor growth, anaerobic glycolysis and has been considered a poor prognostic factor for acute myeloid leukemia. Therefore, this study aimed to evaluate the concentration of LDH in plasma and the detection of the Bcr-Abl transcripts in patients with CML and healthy donors. We analyzed 22 patients demonstrably diagnosed

  17. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Molecular Biology and Immunology and Institute for Cancer Research, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-11-04

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high ({approx}97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  18. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    Science.gov (United States)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  19. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    International Nuclear Information System (INIS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P; Vishwanatha, Jamboor K

    2011-01-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (∼97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  20. Inefficiency in macromolecular transport of SCS-based microcapsules affects viability of primary human mesenchymal stem cells but not of immortalized cells

    DEFF Research Database (Denmark)

    Sanz-Nogués, Clara; Horan, Jason; Thompson, Kerry

    2015-01-01

    mesenchymal stem cells (hMSCs). Human MSCs are of interest in regenerative medicine applications due to pro-angiogenic, anti-inflammatory and immunomodulatory properties, which result from paracrine effects of this cell type. In the present work we have encapsulated primary hMSCs and hMSC-TERT immortalized...... nutrients and had a more detrimental effect on the viability of primary cell cultures compared to cell lines and immortalized cells. This article is protected by copyright. All rights reserved....

  1. Uptake of gold nanoparticles in primary human endothelial cells

    DEFF Research Database (Denmark)

    Klingberg, Henrik; Oddershede, Lene B.; Löschner, Katrin

    2015-01-01

    Gold nanoparticles (AuNPs) are relevant in nanomedicine for drug delivery in the vascular system, where endothelial cells are the first point of contact. We investigated the uptake of 80 nm AuNPs in primary human umbilical vein endothelial cells (HUVECs) by flow cytometry, 3D confocal microscopy......–3 or more particles. Pre-treatment with chlorpromazine inhibited the AuNP-uptake in HUVECs, indicating that internalisation occurred mainly by clathrin-mediated endocytosis. Cell activation by exposure to tumour necrosis factor or lipopolysaccharide had a slight or no effect on the uptake of Au...

  2. Cutaneous features seen in primary liver cell (Hepatocellular ...

    African Journals Online (AJOL)

    Primary liver cell carcinoma (PLCC), predominantly hepatocellular carcinoma is a killer. In the southwestern region of Nigeria it occupies the second position, behind prostate cancer in males. Females account for about a third of diagnosed cases. Children are not spared. Over 80 % of PLCC cases present to the hospital at ...

  3. Analysis of T Cell Subsets in Adult Primary/Idiopathic Minimal Change Disease: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Francisco Salcido-Ochoa

    2017-01-01

    Full Text Available Aim. To characterise infiltrating T cells in kidneys and circulating lymphocyte subsets of adult patients with primary/idiopathic minimal change disease. Methods. In a cohort of 9 adult patients with primary/idiopathic minimal change recruited consecutively at disease onset, we characterized (1 infiltrating immune cells in the kidneys using immunohistochemistry and (2 circulating lymphocyte subsets using flow cytometry. As an exploratory analysis, association of the numbers and percentages of both kidney-infiltrating immune cells and the circulating lymphocyte subsets with kidney outcomes including deterioration of kidney function and proteinuria, as well as time to complete clinical remission up to 48 months of follow-up, was investigated. Results. In the recruited patients with primary/idiopathic minimal change disease, we observed (a a dominance of infiltrating T helper 17 cells and cytotoxic cells, comprising cytotoxic T cells and natural killer cells, over Foxp3+ Treg cells in the renal interstitium; (b an increase in the circulating total CD8+ T cells in peripheral blood; and (c an association of some of these parameters with kidney function and proteinuria. Conclusions. In primary/idiopathic minimal change disease, a relative numerical dominance of effector over regulatory T cells can be observed in kidney tissue and peripheral blood. However, larger confirmatory studies are necessary.

  4. Posttransplantation primary cutaneous CD30 (Ki-1)-positive large-cell lymphoma.

    Science.gov (United States)

    Seçkin, D; Demirhan, B; Oğuz Güleç, T; Arikan, U; Haberal, M

    2001-12-01

    We describe the case of a 51-year-old female renal transplant recipient with primary cutaneous CD30-positive large-cell lymphoma of T-cell origin. Cutaneous T-cell lymphomas are rarely reported in organ transplant recipients, and we believe they should be considered in the differential diagnosis of cutaneous neoplastic and infectious diseases affecting this patient group.

  5. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available Lung cancer (LC with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC, large cell carcinoma (LCC, squamous cell carcinoma (SCC and adenocarcinoma (AC. We identified a small population of cells strongly positive for CD44 (CD44(high and a main population which was either weakly positive or negative for CD44 (CD44(low/-. Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44(highCD90(+ sub-population. Moreover, these CD44(highCD90(+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44(highCD90(+ population a good candidate for the lung CSCs. Both CD44(highCD90(+ and CD44(highCD90(- cells in the PLCCL derived from SCC formed spheroids, whereas the CD44(low/- cells were lacking this potential. These results indicate that CD44(highCD90(+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44(high sub-population.

  6. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    Science.gov (United States)

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  7. MLL-ENL cooperates with SCF to transform primary avian multipotent cells.

    Science.gov (United States)

    Schulte, Cathleen E; von Lindern, Marieke; Steinlein, Peter; Beug, Hartmut; Wiedemann, Leanne M

    2002-08-15

    The MLL gene is targeted by chromosomal translocations, which give rise to heterologous MLL fusion proteins and are associated with distinct types of acute lymphoid and myeloid leukaemia. To determine how MLL fusion proteins alter the proliferation and/or differentiation of primary haematopoietic progenitors, we introduced the MLL-AF9 and MLL-ENL fusion proteins into primary chicken bone marrow cells. Both fusion proteins caused the sustained outgrowth of immature haematopoietic cells, which was strictly dependent on stem cell factor (SCF). The renewing cells have a long in vitro lifespan exceeding the Hayflick limit of avian cells. Analysis of clonal cultures identified the renewing cells as immature, multipotent progenitors, expressing erythroid, myeloid, lymphoid and stem cell surface markers. Employing a two-step commitment/differentiation protocol involving the controlled withdrawal of SCF, the MLL-ENL-transformed progenitors could be induced to terminal erythroid or myeloid differentiation. Finally, in cooperation with the weakly leukaemogenic receptor tyrosine kinase v-Sea, the MLL-ENL fusion protein gave rise to multilineage leukaemia in chicks, suggesting that other activated, receptor tyrosine kinases can substitute for ligand-activated c-Kit in vivo.

  8. Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay.

    Science.gov (United States)

    Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei

    2013-08-19

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.

  9. Simultaneous Expression of Cancer Stem Cell-Like Properties and Cancer-Associated Fibroblast-Like Properties in a Primary Culture of Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Mami; Inoue, Takahiro; Shirai, Takuma; Takamatsu, Kazuhiko; Kunihiro, Shiori; Ishii, Hirokazu [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Nishikata, Takahito, E-mail: nisikata@konan-u.ac.jp [Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047 (Japan); Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe 650-0047 (Japan)

    2014-07-31

    The importance of cancer-associated fibroblasts (CAFs) in cancer biology has been recently highlighted owing to their critical roles in cancer growth, progression, metastasis, and therapeutic resistance. We have previously established a primary culture of breast cancer cells, which showed epithelial-mesenchymal transition and cancer stem cell-like properties. In this study, we found that the primary culture also showed CAF-like properties. For example, hypoxia inducible factor 1α (HIF1A) and its downstream genes, nuclear factor-kappa B2 (NF-κB2) and BCL2/adenovirus E1B 19 kd-interacting protein 3 (BNIP3), and many enzymes involved in glycolysis, such as GAPDH, LDH, PGAM1, and PKM2, were highly overexpressed in the primary culture. Moreover, media conditioned with the primary culture cells enhanced the growth of breast cancer cells. Similar to previous CAF studies, this enhancement suggested to be occurred through fibroblast growth factor signaling. This MCKH primary culture cell, which showed simultaneous expression of tumorigenic and CAF properties, offers a unique experimental system for studying the biology of CAFs.

  10. Primary Squamous Cell Carcinoma of the Thyroid: A Population-Based Analysis.

    Science.gov (United States)

    Au, Joshua K; Alonso, Jose; Kuan, Edward C; Arshi, Armin; St John, Maie A

    2017-07-01

    Objectives To analyze the epidemiology and describe the prognostic indicators of patients with primary squamous cell carcinoma of the thyroid. Study Design and Setting Retrospective cohort study based on a national database. Methods The US National Cancer Institute's SEER registry (Surveillance, Epidemiology, and End Results) was reviewed for patients with primary squamous cell carcinoma of the thyroid from 1973 to 2012. Study variables included age, sex, race, tumor size, tumor grade, regional and distant metastases, and treatment modality. Survival measures included overall survival (OS) and disease-specific survival (DSS). Results A total of 199 cases of primary squamous cell carcinoma of the thyroid were identified. Mean age at diagnosis was 68.1 years; 58.3% were female; and 79.4% were white. Following diagnosis, 46.3% of patients underwent surgery; 55.7%, radiation therapy; and 45.8%, surgery with radiation therapy. Kaplan-Meier analysis demonstrated OS and DSS of 16% and 21% at 5 years, respectively. Median survival after diagnosis was 9.1 months. Multivariate Cox regression analysis showed that predictors of OS and DSS included age ( P Squamous cell carcinoma of the thyroid is a rare malignancy with a very poor prognosis. Surgical resection confers an overall survival benefit. Age, tumor grade, and tumor size are predictors of OS and DSS.

  11. Spontaneous regression of primary cutaneous diffuse large B-cell lymphoma, leg type with significant T-cell immune response

    Directory of Open Access Journals (Sweden)

    Paul M. Graham, DO

    2018-05-01

    Full Text Available We report a case of histologically confirmed primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT that subsequently underwent spontaneous regression in the absence of systemic treatment. The case showed an atypical lymphoid infiltrate that was CD20+ and MUM-1+ and CD10–. A subsequent biopsy of the spontaneously regressed lesion showed fibrosis associated with a lymphocytic infiltrate comprising reactive T cells. PCDLBCL-LT is a cutaneous B-cell lymphoma with a poor prognosis, which is usually treated with chemotherapy. We describe a case of clinical and histologic spontaneous regression in a patient with PCDLBCL-LT who had a negative systemic workup but a recurrence over a year after his initial presentation. Key words: B cell, lymphoma, primary cutaneous diffuse large B-cell lymphoma, leg type, regression

  12. Cell surface of sea urchin micromeres and primary mesenchyme

    International Nuclear Information System (INIS)

    DeSimone, D.W.

    1985-01-01

    The cell surface and extracellular matrix (ECM) of the sea urchin embryo were studied during the early morphogenetic events involved in the differentiation of the micromere cell lineage. Sixteen-cell and early cleavage stage blastomeres were isolated and the protein composition of their cell surfaces examined by 125 I-labelling followed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Micromere-specific cell surface proteins are reported for Arbacia punctulata, Strongylocentrotus droebachiensis, and Strongylocentrotus purpuratus. Cell surface glycoproteins were characterized on the basis of lectin binding specificity with a novel lectin affinity transfer technique. Using this procedure, cell-type specific surface proteins, which are also lectin-binding specific, can be detected. In addition, fluorescein conjugated lectins were microinjected into the blastocoels of living S. drobachiensis and Lytechinus pictus embryos and the patterns of lectin bindings observed by fluorescence microscopy. The evidence presented in this thesis suggests that the differentiation of the primary mesenchyme cells is correlated with changes in the molecular composition of the cell-surface and the ECM

  13. The influence of 60Co gamma rays to cell reproduction (An experiment using low dose levels on vero and primary monkey kidney cells)

    International Nuclear Information System (INIS)

    Danusupadmo, C.J. Sugiarto

    1985-01-01

    Vero and primary monkey kidney cells in culture were gamma irradiated with doses of 0, 0.4 and 0.8 Gy at a dose-rate of 1.30-1.45x10 3 Gy/hour. At harvest time 3 days post irradiation, 0.4 Gy proved to be able to lower the number of vero cells in such a degree that it became significantly different from the control, whereas 0.8 Gy could not suppress the number of primary cells to a level that differed significantly from its control. At harvest time of 7 days post irradiation, 0.4 Gy was found effective in lowering both vero and primary cells so that the number of the harvested cells were significantly different from the controls. At harvest time of 3 days post irradiation, 0.8 Gy caused both cell types reached levels that were not significantly different from 0.4 Gy, but at 7 days post irradiation the number of vero cells was very significantly different from that of 0.4 Gy, while the number of primary cells remained equal to that of 0.4 Gy. This phenomenon showed that irradiation could cause greater injurious effect at more advanced post irradiation times, while the more proliferative vero cells proved to be more susceptible to irradiation than primary cells, but at the same time more potential in performing repair. (author)

  14. On the dynamics of neutral mutations in a mathematical model for a homogeneous stem cell population.

    Science.gov (United States)

    Traulsen, Arne; Lenaerts, Tom; Pacheco, Jorge M; Dingli, David

    2013-02-01

    The theory of the clonal origin of cancer states that a tumour arises from one cell that acquires mutation(s) leading to the malignant phenotype. It is the current belief that many of these mutations give a fitness advantage to the mutant population allowing it to expand, eventually leading to disease. However, mutations that lead to such a clonal expansion need not give a fitness advantage and may in fact be neutral--or almost neutral--with respect to fitness. Such mutant clones can be eliminated or expand stochastically, leading to a malignant phenotype (disease). Mutations in haematopoietic stem cells give rise to diseases such as chronic myeloid leukaemia (CML) and paroxysmal nocturnal haemoglobinuria (PNH). Although neutral drift often leads to clonal extinction, disease is still possible, and in this case, it has important implications both for the incidence of disease and for therapy, as it may be more difficult to eliminate neutral mutations with therapy. We illustrate the consequences of such dynamics, using CML and PNH as examples. These considerations have implications for many other tumours as well.

  15. A Case of Mature Natural Killer-Cell Neoplasm Manifesting Multiple Choroidal Lesions: Primary Intraocular Natural Killer-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2015-11-01

    Full Text Available Purpose: Natural killer (NK cell neoplasm is a rare disease that follows an acute course and has a poor prognosis. It usually emerges from the nose and appears in the ocular tissue as a metastasis. Herein, we describe a case of NK-cell neoplasm in which the eye was considered to be the primary organ. Case: A 50-year-old female displayed bilateral anterior chamber cells, vitreous opacity, bullous retinal detachment, and multiple white choroidal mass lesions. Although malignant lymphoma or metastatic tumor was suspected, various systemic examinations failed to detect any positive results. A vitrectomy was performed OS; however, histocytological analyses from the vitreous sample showed no definite evidence of malignancy, and IL-10 concentration was low. Enlarged choroidal masses were fused together. Three weeks after the first visit, the patient suddenly developed an attack of fever, night sweat, and hepatic dysfunction, and 5 days later, she passed away due to multiple organ failure. Immunohistochemisty and in situ hybridization revealed the presence of atypical cells positive for CD3, CD56, and Epstein-Barr virus-encoded RNAs, resulting in the diagnosis of NK-cell neoplasm. With the characteristic clinical course, we concluded that this neoplasm was a primary intraocular NK-cell lymphoma. Conclusions: This is the first report to describe primary intraocular NK-cell neoplasm. When we encounter atypical choroidal lesions, we should consider the possibility of NK-cell lymphoma, even though it is a rare disease.

  16. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  17. Early events associated with infection of Epstein-Barr virus infection of primary B-cells.

    Directory of Open Access Journals (Sweden)

    Sabyasachi Halder

    2009-09-01

    Full Text Available Epstein Barr virus (EBV is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology was used to introduce an expression cassette of green fluorescent protein (GFP by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6-7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6-12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.

  18. Metastatic Signet-Ring Cell Gastric Carcinoma Masquerading as Breast Primary

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra Doval

    2009-03-01

    Full Text Available Metastasis to the breast from an extra-mammary primary is a rare phenomenon; metastasis from gastric carcinoma to the breast is extremely so. We report a case who initially presented as mucin-secreting and signet-ring cell tumor of the ovary, and after an interval of 8 months with breast and chest wall metastatic nodules. The covert gastric primary eluded the oncologists at both presentations.

  19. A novel three-dimensional cell culture method enhances antiviral drug screening in primary human cells.

    Science.gov (United States)

    Koban, Robert; Neumann, Markus; Daugs, Aila; Bloch, Oliver; Nitsche, Andreas; Langhammer, Stefan; Ellerbrok, Heinz

    2018-02-01

    Gefitinib is a specific inhibitor of the epidermal growth factor receptor (EGFR) and FDA approved for treatment of non-small cell lung cancer. In a previous study we could show the in vitro efficacy of gefitinib for treatment of poxvirus infections in monolayer (2D) cultivated cell lines. Permanent cell lines and 2D cultures, however, are known to be rather unphysiological; therefore it is difficult to predict whether determined effective concentrations or the drug efficacy per se are transferable to the in vivo situation. 3D cell cultures, which meanwhile are widely distributed across all fields of research, are a promising tool for more predictive in vitro investigations of antiviral compounds. In this study the spreading of cowpox virus and the antiviral efficacy of gefitinib were analyzed in primary human keratinocytes (NHEK) grown in a novel 3D extracellular matrix-based cell culture model and compared to the respective monolayer culture. 3D-cultivated NHEK grew in a polarized and thus a more physiological manner with altered morphology and close cell-cell contact. Infected cultures showed a strongly elevated sensitivity towards gefitinib. EGFR phosphorylation, cell proliferation, and virus replication were significantly reduced in 3D cultures at gefitinib concentrations which were at least 100-fold lower than those in monolayer cultures and well below the level of cytotoxicity. Our newly established 3D cell culture model with primary human cells is an easy-to-handle alternative to conventional monolayer cell cultures and previously described more complex 3D cell culture systems. It can easily be adapted to other cell types and a broad spectrum of viruses for antiviral drug screening and many other aspects of virus research under more in vivo-like conditions. In consequence, it may contribute to a more targeted realization of necessary in vivo experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity

    Science.gov (United States)

    Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.

    2014-01-01

    The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442

  1. Pulp tissue from primary teeth: new source of stem cells

    Directory of Open Access Journals (Sweden)

    Paloma Dias Telles

    2011-06-01

    Full Text Available SHED (stem cells from human exfoliated deciduous teeth represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.

  2. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Castelo-Branco, Morgana TL; Pizzatti, Luciana; Abdelhay, Eliana

    2012-01-01

    The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy. This resistance has been associated with the overexpression of ABCB1, which gives rise to the multidrug resistance (MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by ABCB1) has been implicated as the major cause of its emergence. Wnt signaling has been demonstrated to be important in several aspects of CML. Recently, Wnt signaling was linked to ABCB1 regulation through its canonical pathway, which is mediated by β-catenin, in other types of cancer. In this study, we investigated the involvement of the Wnt/β-catenin pathway in the regulation of ABCB1 transcription in CML, as the basal promoter of ABCB1 has several β-catenin binding sites. β-catenin is the mediator of canonical Wnt signaling, which is important for CML progression. In this work we used the K562 cell line and its derived MDR-resistant cell line Lucena (K562/VCR) as CML study models. Real time PCR (RT-qPCR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), flow cytometry (FACS), western blot, immunofluorescence, RNA knockdown (siRNA) and Luciferase reporter approaches were used. β-catenin was present in the protein complex on the basal promoter of ABCB1 in both cell lines in vitro, but its binding was more pronounced in the resistant cell line in vivo. Lucena cells also exhibited higher β-catenin levels compared to its parental cell line. Wnt1 and β-catenin depletion and overexpression of nuclear β-catenin, together with TCF binding sites activation demonstrated that ABCB1 is positively regulated by the canonical pathway of Wnt signaling. These results suggest, for the first time, that the Wnt/β-catenin pathway regulates ABCB1 in CML

  3. Treating the chronic-phase chronic myeloid leukemia patient: which TKI, when to switch and when to stop?

    Science.gov (United States)

    Patel, Ami B; Wilds, Brandon W; Deininger, Michael W

    2017-07-01

    With the discovery of imatinib mesylate nearly 20 years ago, tyrosine kinase inhibitors (TKIs) were found to be effective in chronic myeloid leukemia (CML). TKI therapy has since revolutionized the treatment of CML and has served as a paradigm of success for targeted drug therapy in cancer. Several new TKIs for CML have been approved over the last two decades that exhibit improved potency over imatinib and have different off-target profiles, providing options for individualized therapy selection. Areas covered: Current management of chronic phase CML, including guidance on the sequential use of imatinib and newer-generation TKIs and evolving treatment strategies such as TKI discontinuation. Relevant literature was identified by searching biomedical databases (i.e. PubMed) for primary research material. Expert commentary: Although survival outcomes have drastically improved for CML patients, treatment for CML has grown more complex with the introduction of next-generation TKIs and the advent of treatment-free remissions (TFR). Goals of therapy have shifted accordingly, with increased focus on improving quality of life, managing patient expectations and optimizing patient adherence.

  4. Cell context-specific expression of primary cilia in the human testis and ciliary coordination of Hedgehog signalling in mouse Leydig cells

    DEFF Research Database (Denmark)

    Berg Nygaard, Marie; Almstrup, Kristian; Lindbæk, Louise

    2015-01-01

    Primary cilia are sensory organelles that coordinate numerous cellular signalling pathways during development and adulthood. Defects in ciliary assembly or function lead to a series of developmental disorders and diseases commonly referred to as ciliopathies. Still, little is known about...... cells of mature seminiferous epithelium, but present in Sertoli cell-only tubules in Klinefelter syndrome testis. Peritubular cells in atrophic testis produce overly long cilia. Furthermore cultures of growth-arrested immature mouse Leydig cells express primary cilia that are enriched in components...

  5. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  6. Primary leiomyoma of ureter coexisting with renal cell carcinoma: A case report

    International Nuclear Information System (INIS)

    Baek, Seung Hwan; Kim, Hee Jin; Han, Hyun Young

    2014-01-01

    Mesenchymal origin of ureter tumors account for less than 3 percent of all primary ureteral tumors. Among mesenchymal tumors, primary leiomyoma of ureter is extremely rare. Here, we present a case of primary leiomyoma of ureter coexisting with renal cell carcinoma. When encountering well-defined homogeneously enhanced mass of ureter on computed tomography, radiologist should keep in mind that ureteral leiomyoma should be considered as differential diagnosis.

  7. Primary leiomyoma of ureter coexisting with renal cell carcinoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Hwan; Kim, Hee Jin; Han, Hyun Young [Dept. of Radiology, Eulji University Hospital, Daejeon (Korea, Republic of)

    2014-12-15

    Mesenchymal origin of ureter tumors account for less than 3 percent of all primary ureteral tumors. Among mesenchymal tumors, primary leiomyoma of ureter is extremely rare. Here, we present a case of primary leiomyoma of ureter coexisting with renal cell carcinoma. When encountering well-defined homogeneously enhanced mass of ureter on computed tomography, radiologist should keep in mind that ureteral leiomyoma should be considered as differential diagnosis.

  8. Effects of Tyrosine Kinase inhibitor Imatinib (Glivec) on PDGFR-positive primary and metastatic melanoma cells

    International Nuclear Information System (INIS)

    Straface, E.; Gambardella, L.; Vona, R.

    2009-01-01

    In summary these preliminary results indicate that Imatinib is able to induce apoptosis in metastatic cells and to sensitize these cells to pro-apoptotic agents commonly used in melanoma therapy, e.g. radiation or Cisplatin. Conversely, primary melanoma cells seem to be intrinsically resistant either to Imatinib given alone or in combination with Cisplatin or radiation. By contrast, these cells underwent autophagy and replicative senescence boostering their survival. Interestingly, the use of Imatinib in combination with anti-CD95/Fas antibodies sensitizes primary melanoma cells to apoptosis

  9. Novel grading system for quantification of cystic macular lesions in Usher syndrome.

    Science.gov (United States)

    Sliesoraityte, Ieva; Peto, Tunde; Mohand-Said, Saddek; Sahel, Jose Alain

    2015-12-10

    To evaluate novel grading system used to quantify optical coherence tomography (OCT) scans for cystic macular lesions (CML) in Usher syndrome (USH) patients, focusing on CML associated alterations in MOY7A and USH2A mutations. Two readers evaluated 76 patients' (mean age 42 ± 14 years) data prospectively uploaded on Eurush database. OCT was used to obtain high quality cross-sectional images through the fovea. The CML was graded as none, mild, moderate or severe, depending on the following features set: subretinal fluid without clearly detectable CML boundaries; central macular thickness; largest diameter of CML; calculated mean of all detectable CML; total number of detectable CML; retinal layers affected by CML. Intra-and inter-grader reproducibility was evaluated. CML were observed in 37 % of USH eyes, while 45 % were observed in MYO7A and 29 % in USH2A cases. Of those with CML: 52 % had mild, 22 % had moderate and 26 % had severe changes, respectively. CML were found in following retinal layers: 50 % inner nuclear layer, 44 % outer nuclear layer, 6 % retinal ganglion cell layer. For the inter-grader repeatability analysis, agreements rates for CML were 97 % and kappa statistics was 0.91 (95 % CI 0.83-0.99). For the intra-grader analysis, agreement rates for CML were 98 %, while kappa statistics was 0.96 (95 % CI 0.92-0.99). The novel grading system is a reproducible tool for grading OCT images in USH complicated by CML, and potentially could be used for objective tracking of macular pathology in clinical therapy trials.

  10. Cancer Stem Cells in Primary Liver Cancers: Pathological Concepts and Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ijin [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Kim, Haeryoung [Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Lee, Jeong Min [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-11-01

    There is accumulating evidence that cancer stem cells (CSCs) play an integral role in the initiation of hepatocarcinogenesis and the maintaining of tumor growth. Liver CSCs derived from hepatic stem/progenitor cells have the potential to differentiate into either hepatocytes or cholangiocytes. Primary liver cancers originating from CSCs constitute a heterogeneous histopathologic spectrum, including hepatocellular carcinoma, combined hepatocellular-cholangiocarcinoma, and intrahepatic cholangiocarcinoma with various radiologic manifestations. In this article, we reviewed the recent concepts of CSCs in the development of primary liver cancers, focusing on their pathological and radiological findings. Awareness of the pathological concepts and imaging findings of primary liver cancers with features of CSCs is critical for accurate diagnosis, prediction of outcome, and appropriate treatment options for patients.

  11. Cancer Stem Cells in Primary Liver Cancers: Pathological Concepts and Imaging Findings

    International Nuclear Information System (INIS)

    Joo, Ijin; Kim, Haeryoung; Lee, Jeong Min

    2015-01-01

    There is accumulating evidence that cancer stem cells (CSCs) play an integral role in the initiation of hepatocarcinogenesis and the maintaining of tumor growth. Liver CSCs derived from hepatic stem/progenitor cells have the potential to differentiate into either hepatocytes or cholangiocytes. Primary liver cancers originating from CSCs constitute a heterogeneous histopathologic spectrum, including hepatocellular carcinoma, combined hepatocellular-cholangiocarcinoma, and intrahepatic cholangiocarcinoma with various radiologic manifestations. In this article, we reviewed the recent concepts of CSCs in the development of primary liver cancers, focusing on their pathological and radiological findings. Awareness of the pathological concepts and imaging findings of primary liver cancers with features of CSCs is critical for accurate diagnosis, prediction of outcome, and appropriate treatment options for patients

  12. Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine

    International Nuclear Information System (INIS)

    Lobo, Nazleen C.; Gedye, Craig; Apostoli, Anthony J.; Brown, Kevin R.; Paterson, Joshua; Stickle, Natalie; Robinette, Michael; Fleshner, Neil; Hamilton, Robert J.; Kulkarni, Girish; Zlotta, Alexandre; Evans, Andrew; Finelli, Antonio; Moffat, Jason; Jewett, Michael A. S.; Ailles, Laurie

    2016-01-01

    Patients with clear cell renal cell carcinoma (ccRCC) have few therapeutic options, as ccRCC is unresponsive to chemotherapy and is highly resistant to radiation. Recently targeted therapies have extended progression-free survival, but responses are variable and no significant overall survival benefit has been achieved. Commercial ccRCC cell lines are often used as model systems to develop novel therapeutic approaches, but these do not accurately recapitulate primary ccRCC tumors at the genomic and transcriptional levels. Furthermore, ccRCC exhibits significant intertumor genetic heterogeneity, and the limited cell lines available fail to represent this aspect of ccRCC. Our objective was to generate accurate preclinical in vitro models of ccRCC using tumor tissues from ccRCC patients. ccRCC primary single cell suspensions were cultured in fetal bovine serum (FBS)-containing media or defined serum-free media. Established cultures were characterized by genomic verification of mutations present in the primary tumors, expression of renal epithelial markers, and transcriptional profiling. The apparent efficiency of primary cell culture establishment was high in both culture conditions, but genotyping revealed that the majority of cultures contained normal, not cancer cells. ccRCC characteristically shows biallelic loss of the von Hippel Lindau (VHL) gene, leading to accumulation of hypoxia-inducible factor (HIF) and expression of HIF target genes. Purification of cells based on expression of carbonic anhydrase IX (CA9), a cell surface HIF target, followed by culture in FBS enabled establishment of ccRCC cell cultures with an efficiency of >80 %. Culture in serum-free conditions selected for growth of normal renal proximal tubule epithelial cells. Transcriptional profiling of ccRCC and matched normal cell cultures identified up- and down-regulated networks in ccRCC and comparison to The Cancer Genome Atlas confirmed the clinical validity of our cell cultures. The ability

  13. Primary intraosseous squamous cell carcinoma in odontogenic keratocyst: A rare entity

    Science.gov (United States)

    Saxena, Chitrapriya; Aggarwal, Pooja; Wadhwan, Vijay; Bansal, Vishal

    2015-01-01

    Squamous cell carcinoma (SCC) arising from the wall of an odontogenic cyst (also known as primary intraosseous carcinoma) is a rare tumor which occurs only in jaw bones. This tumor was first described by Loos in 1913 as a central epidermoid carcinoma of the jaw. Primary intraosseous carcinomas (PIOC) may theoretically arise from the lining of an odontogenic cyst or de novo from presumed odontogenic cell rests. According to the new histological classification of tumors of the World Health Organization, odontogenic keratocyst is nowadays considered a specific odontogenic tumor and the PIOC derived from it is considered as a specific entity which is different from other PIOCs derived from the odontogenic cysts. The following report describes a case of such extremely rare entity that is primary intraosseous SCC of the mandible derived from an OKC in a 60-year-old male patient with brief review of literature. PMID:26980976

  14. Primary diffuse large B cell lymphoma arising from a leiomyoma of the uterine corpus.

    Science.gov (United States)

    Zhao, Lianhua; Ma, Qiang; Wang, Qiushi; Zeng, Ying; Luo, Qingya; Xiao, Hualiang

    2016-01-20

    Primary diffuse large B cell lymphoma (DLBCL) of the uterus is rare, and primary DLBCL arising from a uterine leiomyoma (collision tumor) has not been reported in the literature. We describe the clinical, histological, immunohistochemical, and molecular features of primary DLBCL arising from a leiomyoma in the uterine corpus. A 73-year-old female patient had a uterine mass for 23 years. An ultrasound scan revealed marked enlargement of the uterus, measuring 18.2 × 13 × 16.3 cm, with a 17.6 × 10.9 × 11.6 cm hypoechoic mass in the uterine corpus. The tumors consisted of medium- to large-sized cells exhibiting a diffuse pattern of growth with a well-circumscribed leiomyoma. The neoplastic cells strongly expressed CD79α, CD20 and PAX5. Molecular analyses indicated clonal B-cell receptor gene rearrangement. To the best of our knowledge, no previous cases of primary DLBCL arising from a leiomyoma have been reported. It is necessary to differentiate a diagnosis of primary DLBCL arising from a leiomyoma from that of leiomyoma with florid reactive lymphocytic infiltration (lymphoma-like lesion). Careful analysis of clinical, histological, immunophenotypic, and genetic features is required to establish the correct diagnosis.

  15. Targeting of beta-arrestin2 to the centrosome and primary cilium: role in cell proliferation control.

    Directory of Open Access Journals (Sweden)

    Anahi Molla-Herman

    Full Text Available The primary cilium is a sensory organelle generated from the centrosome in quiescent cells and found at the surface of most cell types, from where it controls important physiological processes. Specific sets of membrane proteins involved in sensing the extracellular milieu are concentrated within cilia, including G protein coupled receptors (GPCRs. Most GPCRs are regulated by beta-arrestins, betaarr1 and betaarr2, which control both their signalling and endocytosis, suggesting that betaarrs may also function at primary cilium.In cycling cells, betaarr2 was observed at the centrosome, at the proximal region of the centrioles, in a microtubule independent manner. However, betaarr2 did not appear to be involved in classical centrosome-associated functions. In quiescent cells, both in vitro and in vivo, betaarr2 was found at the basal body and axoneme of primary cilia. Interestingly, betaarr2 was found to interact and colocalize with 14-3-3 proteins and Kif3A, two proteins known to be involved in ciliogenesis and intraciliary transport. In addition, as suggested for other centrosome or cilia-associated proteins, betaarrs appear to control cell cycle progression. Indeed, cells lacking betaarr2 were unable to properly respond to serum starvation and formed less primary cilia in these conditions.Our results show that betaarr2 is localized to the centrosome in cycling cells and to the primary cilium in quiescent cells, a feature shared with other proteins known to be involved in ciliogenesis or primary cilium function. Within cilia, betaarr2 may participate in the signaling of cilia-associated GPCRs and, therefore, in the sensory functions of this cell "antenna".

  16. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    International Nuclear Information System (INIS)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous β-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in 35 SO 4 -labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed

  17. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...... induction of c-fos mRNA was observed 20-60 min after stimulation with 5 nM GRF, returning to basal levels after 2 h. Somatostatin-14 (5 nM) partially inhibited the GRF induced c-fos expression. Forskolin and phorbol 12, 13 dibutyrate induced c-fos gene in cultured primary pituitary cells with similar...

  18. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  19. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2016-01-01

    Full Text Available Diabetic nephropathy (DN caused by advanced glycation end products (AGEs may be associated with lipid accumulation in the kidneys. This study was designed to investigate whether Nε-(carboxymethyl lysine (CML, a member of the AGEs family increases lipid accumulation in a human renal tubular epithelial cell line (HK-2 via increasing cholesterol synthesis and uptake and reducing cholesterol efflux through endoplasmic reticulum stress (ERS. Our results showed that CML disrupts cholesterol metabolism in HK-2 cells by activating sterol regulatory element-binding protein 2 (SREBP-2 and liver X receptor (LXR, followed by an increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR mediated cholesterol synthesis and low density lipoprotein receptor (LDLr mediated cholesterol uptake and a reduction in ATP-binding cassette transporter A1 (ABCA1 mediated cholesterol efflux, ultimately causing lipid accumulation in HK-2 cells. All of these responses could be suppressed by an ERS inhibitor, which suggests that CML causes lipid accumulation in renal tubule cells through ERS and that the inhibition of ERS is a potential novel approach to treating CML-induced renal tubular foam cell formation.

  20. Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection.

    Directory of Open Access Journals (Sweden)

    Thavamalar Balakrishnan

    Full Text Available BACKGROUND: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4-7 days after fever onset was more than 50% even after primary infection. CONCLUSIONS/SIGNIFICANCE: Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and "innate specificities" seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.

  1. Pattern of second primary malignancies in thyroid cancer patients

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... Many factors, including relatively young age of thyroid cancer diagnoses and improved survival, .... leukemia (CML), about 16.7% of malignancies occurred in .... thyroid neoplasia in children is a recognized result of direct.

  2. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells.

    Science.gov (United States)

    Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui

    2017-08-01

    Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti

  3. Induced Pluripotent Stem Cells: A novel frontier in the study of human primary immunodeficiencies

    Science.gov (United States)

    Pessach, Itai M.; Ordovas-Montanes, Jose; Zhang, Shen-Ying; Casanova, Jean-Laurent; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Manos, Philip D.; Schlaeger, Thorsten M.; Park, In-Hyun; Rucci, Francesca; Agarwal, Suneet; Mostoslavsky, Gustavo; Daley, George Q.; Notarangelo, Luigi D.

    2010-01-01

    Background The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells through the exogenous expression of transcription promises to revolutionize the study of human diseases. Objective Here we report on the generation of 25 induced pluripotent stem cell lines from 6 patients with various forms of Primary Immunodeficiencies, affecting adaptive and/or innate immunity. Methods Patients’ dermal fibroblasts were reprogrammed by expression of four transcription factors, OCT4, SOX2, KLF4, and c-MYC using a single excisable polycistronic lentiviral vector. Results Induced pluripotent stem cells derived from patients with primary immunodeficiencies show a stemness profile that is comparable to that observed in human embryonic stem cells. Following in vitro differentiation into embryoid bodies, pluripotency of the patient-derived indiced pluripotent stem cells lines was demonstrated by expression of genes characteristic of each of the three embryonic layers. We have confirmed the patient-specific origin of the induced pluripotent stem cell lines, and ascertained maintenance of karyotypic integrity. Conclusion By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of induced pluripotent stem cell lines from patients with primary immunodeficiencies represents a unique resource to investigate the pathophysiology of hematopoietic and extra-hematopoietic manifestations of these diseases, and may assist in the development of novel therapeutic approaches based on gene correction. PMID:21185069

  4. Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    Science.gov (United States)

    Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi

    2011-01-01

    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376

  5. Global investigation of interleukin-1β signaling in primary β-cells using quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Størling, Joachim; Pociot, Flemming

    in β-cells by which this cytokine can modulate cell-matrix interactions during inflammation, a regulation shown in other cell types. Further data analysis is currently ongoing, and the collective results of the experiments will hopefully facilitate additional insights into the effect of IL-1β......Novel Aspect: Global phosphoproteomic analysis of cytokine signaling in primary β-cells Introduction The insulin-producing β-cells of the pancreatic islets of Langerhans are targeted by aberrant immune system responses in diabetes mellitus involving cytokines, especially interleukin-1β (IL-1 β......), which initiate apoptosis of the β-cells. As only limited amounts of primary β-cells can be isolated from model organisms like mouse and rat, global phosphoproteomic analysis of these signaling events by mass spectrometry has generally been unfeasible. We have therefore developed a strategy...

  6. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    Science.gov (United States)

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  7. Trends in the treatment changes and medication persistence of chronic myeloid leukemia in Taiwan from 1997 to 2007: a longitudinal population database analysis

    Directory of Open Access Journals (Sweden)

    Chang Chao-Sung

    2012-10-01

    Full Text Available Abstract Background Few studies have examined the longitudinal changes in the patterns, selection, and utilization of treatments for chronic myeloid leukemia (CML in routine clinical practice since the introduction of imatinib. Therefore, we investigated the trends in CML therapy, including changes, patterns, and persistence to imatinib therapy among patients with newly diagnosed CML. Methods We conducted a cross-sectional and longitudinal analysis of 11 years of claims data for patients with newly diagnosed CML included in the Taiwan National Health Insurance program. Pharmacy and diagnosis claims for newly diagnosed CML recorded between 1997 and 2007 year were extracted from the database. Annual overall use, new use of CML therapy, and persistence to imatinib therapy were estimated. The Anatomical Therapeutic Chemical codes for CML therapy [i.e., imatinib and conventional therapy: busulfan, hydroxyurea, interferon-α (IFNα, and cytarabine], and the process code for hematopoietic stem cell transplantation were used to categorize treatment patterns. Associations with patients characteristics were analyzed by multivariate logistic regression. Results Overall, the proportion of patients with newly diagnosed CML to all patients with CML increased by approximately 4-fold between 1998 and 2007. There were steady increases in the proportions of all treated patients and those starting therapy from 2003 to 2007. Fewer comorbid conditions and lower severity of CML were associated with treatment initiation. Medication persistence varied according to treatment duration, as 38.7% patients continued imatinib for ≥ 18 months without interruption but only 7.7% continued imatinib for ≥ 5 years. Factors associated with persistence to imatinib therapy were removal of the need for prior authorization for imatinib, and prior use of hydroxyurea and IFNα, whereas having undergone hematopoietic stem cell transplantation led to reduced likelihood

  8. Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation

    NARCIS (Netherlands)

    Millot, F; Guilhot, J; Nelken, B; Leblanc, T; De Bont, ES; Bekassy, AN; Gadner, H; Sufliarska, S; Stary, J; Gschaidmeier, H; Guilhot, F; Suttorp, M

    A multicentric phase 2 study was conducted to determine the efficiency and the tolerance of imatinib mesylate in children with chronic myelogenous leukemia (CML) in advanced phase of the disease, in relapse after stem cell transplantation, or in case of failure to an interferon a-based regimen. In

  9. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2018-03-01

    Full Text Available Human natural killer (NK cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.

  10. Glycotoxin and Autoantibodies Are Additive Environmentally Determined Predictors of Type 1 Diabetes

    Science.gov (United States)

    Beyan, Huriya; Riese, Harriette; Hawa, Mohammed I.; Beretta, Guisi; Davidson, Howard W.; Hutton, John C.; Burger, Huibert; Schlosser, Michael; Snieder, Harold; Boehm, Bernhard O.; Leslie, R. David

    2012-01-01

    In type 1 diabetes, diabetes-associated autoantibodies, including islet cell antibodies (ICAs), reflect adaptive immunity, while increased serum Nε-carboxymethyl-lysine (CML), an advanced glycation end product, is associated with proinflammation. We assessed whether serum CML and autoantibodies predicted type 1 diabetes and to what extent they were determined by genetic or environmental factors. Of 7,287 unselected schoolchildren screened, 115 were ICA+ and were tested for baseline CML and diabetes autoantibodies and followed (for median 7 years), whereas a random selection (n = 2,102) had CML tested. CML and diabetes autoantibodies were determined in a classic twin study of twin pairs discordant for type 1 diabetes (32 monozygotic, 32 dizygotic pairs). CML was determined by enzyme-linked immunosorbent assay, autoantibodies were determined by radioimmunoprecipitation, ICA was determined by indirect immunofluorescence, and HLA class II genotyping was determined by sequence-specific oligonucleotides. CML was increased in ICA+ and prediabetic schoolchildren and in diabetic and nondiabetic twins (all P < 0.001). Elevated levels of CML in ICA+ children were a persistent, independent predictor of diabetes progression, in addition to autoantibodies and HLA risk. In twins model fitting, familial environment explained 75% of CML variance, and nonshared environment explained all autoantibody variance. Serum CML, a glycotoxin, emerged as an environmentally determined diabetes risk factor, in addition to autoimmunity and HLA genetic risk, and a potential therapeutic target. PMID:22396204

  11. Detection of a rare BCR-ABL tyrosine kinase fusion protein in H929 multiple myeloma cells using immunoprecipitation (IP)-tandem mass spectrometry (MS/MS).

    Science.gov (United States)

    Breitkopf, Susanne B; Yuan, Min; Pihan, German A; Asara, John M

    2012-10-02

    Hypothesis directed proteomics offers higher throughput over global analyses. We show that immunoprecipitation (IP)-tandem mass spectrometry (LC-MS/MS) in H929 multiple myeloma (MM) cancer cells led to the discovery of a rare and unexpected BCR-ABL fusion, informing a therapeutic intervention using imatinib (Gleevec). BCR-ABL is the driving mutation in chronic myeloid leukemia (CML) and is uncommon to other cancers. Three different IP-MS experiments central to cell signaling pathways were sufficient to discover a BCR-ABL fusion in H929 cells: phosphotyrosine (pY) peptide IP, p85 regulatory subunit of phosphoinositide-3-kinase (PI3K) IP, and the GRB2 adaptor IP. The pY peptides inform tyrosine kinase activity, p85 IP informs the activating adaptors and receptor tyrosine kinases (RTKs) involved in AKT activation and GRB2 IP identifies RTKs and adaptors leading to ERK activation. Integration of the bait-prey data from the three separate experiments identified the BCR-ABL protein complex, which was confirmed by biochemistry, cytogenetic methods, and DNA sequencing revealed the e14a2 fusion transcript. The tyrosine phosphatase SHP2 and the GAB2 adaptor protein, important for MAPK signaling, were common to all three IP-MS experiments. The comparative treatment of tyrosine kinase inhibitor (TKI) drugs revealed only imatinib, the standard of care in CML, was inhibitory to BCR-ABL leading to down-regulation of pERK and pS6K and inhibiting cell proliferation. These data suggest a model for directed proteomics from patient tumor samples for selecting the appropriate TKI drug(s) based on IP and LC-MS/MS. The data also suggest that MM patients, in addition to CML patients, may benefit from BCR-ABL diagnostic screening.

  12. Primary peritoneal clear cell carcinoma versus ovarian carcinoma versus malignant transformation of endometriosis: a vexing issue.

    Science.gov (United States)

    Insabato, Luigi; Natella, Valentina; Somma, Anna; Persico, Marcello; Camera, Luigi; Losito, Nunzia Simona; Masone, Stefania

    2015-05-01

    Peritoneum is a site for both primary and secondary tumors. Primary peritoneal tumors are fairly rare. The most common primary tumors of the peritoneum are malignant mesothelioma and serous papillary adenocarcinoma. Clear cell carcinoma of the peritoneum is extremely rare and often misdiagnosed as mesothelioma, serous carcinoma, or metastatic adenocarcinoma, so it represents a diagnostic challenge for both clinicians and pathologists. Up to date, to the best of our knowledge, only 11 cases of primary peritoneal clear cell carcinoma have been reported in the English literature. Distinguishing this tumor of the peritoneum versus ovarian carcinoma can be problematic. Herein, we report a rare case of primary peritoneal clear cell carcinoma occurring in a 49-year-old woman, along with a review of the literature. © The Author(s) 2015.

  13. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  14. Variation in pestivirus growth in testicle primary cell culture is more dependent on the individual cell donor than cattle breed.

    Science.gov (United States)

    Weber, Matheus N; Bauermann, Fernando V; Gómez-Romero, Ninnet; Herring, Andy D; Canal, Cláudio W; Neill, John D; Ridpath, Julia F

    2017-03-01

    The causes of bovine respiratory disease complex (BRDC) are multifactorial and include infection with both viral and bacterial pathogens. Host factors are also involved as different breeds of cattle appear to have different susceptibilities to BRDC. Infection with bovine pestiviruses, including bovine viral diarrhea virus 1 (BVDV1), BVDV2 and 'HoBi'-like viruses, is linked to the development of BRDC. The aim of the present study was to compare the growth of different bovine pestiviruses in primary testicle cell cultures obtained from taurine, indicine and mixed taurine and indicine cattle breeds. Primary cells strains, derived from testicular tissue, were generated from three animals from each breed. Bovine pestivirus strains used were from BVDV-1a, BVDV-1b, BVDV-2a and 'HoBi'-like virus. Growth was compared by determining virus titers after one passage in primary cells. All tests were run in triplicate. Virus titers were determined by endpoint dilution and RT-qPCR. Statistical analysis was performed using one way analysis of variance (ANOVA) followed by the Tukey's Multiple Comparison Test (P˂0.05). Significant differences in virus growth did not correlate with cattle breed. However, significant differences were observed between cells derived from different individuals regardless of breed. Variation in the replication of virus in primary cell strains may reflect a genetic predisposition that favors virus replication.

  15. Novel Approach for Coexpression Analysis of E2F1–3 and MYC Target Genes in Chronic Myelogenous Leukemia

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2014-01-01

    Full Text Available Background. Chronic myelogenous leukemia (CML is characterized by tremendous amount of immature myeloid cells in the blood circulation. E2F1–3 and MYC are important transcription factors that form positive feedback loops by reciprocal regulation in their own transcription processes. Since genes regulated by E2F1–3 or MYC are related to cell proliferation and apoptosis, we wonder if there exists difference in the coexpression patterns of genes regulated concurrently by E2F1–3 and MYC between the normal and the CML states. Results. We proposed a method to explore the difference in the coexpression patterns of those candidate target genes between the normal and the CML groups. A disease-specific cutoff point for coexpression levels that classified the coexpressed gene pairs into strong and weak coexpression classes was identified. Our developed method effectively identified the coexpression pattern differences from the overall structure. Moreover, we found that genes related to the cell adhesion and angiogenesis properties were more likely to be coexpressed in the normal group when compared to the CML group. Conclusion. Our findings may be helpful in exploring the underlying mechanisms of CML and provide useful information in cancer treatment.

  16. Re-emergence of interferon-α in the treatment of chronic myeloid leukemia

    Science.gov (United States)

    Talpaz, M; Hehlmann, R; Quintás-Cardama, A; Mercer, J; Cortes, J

    2013-01-01

    Treatment for chronic myeloid leukemia (CML) has evolved from chemotherapy (busulfan, hydroxyurea) to interferon-α (IFNα), and finally to tyrosine kinase inhibitors such as imatinib. Although imatinib has profoundly improved outcomes for patients with CML, it has limitations. Most significantly, imatinib cannot eradicate CML primitive progenitors, which likely accounts for the high relapse rate when imatinib is discontinued. IFNα, unlike imatinib, preferentially targets CML stem cells. Early studies with IFNα in CML demonstrated its ability to induce cytogenetic remission. Moreover, a small percentage of patients treated with IFNα were able to sustain durable remissions after discontinuing therapy and were probably cured. The mechanisms by which IFNα exerts its antitumor activity in CML are not well understood; however, activation of leukemia-specific immunity may have a role. Some clinical studies have demonstrated that the combination of imatinib and IFNα is superior to either therapy alone, perhaps because of their different mechanisms of action. Nonetheless, the side effects of IFNα often impede its administration, especially in combination therapy. Here, we review the role of IFNα in CML treatment and the recent developments that have renewed interest in this once standard therapy for patients with CML. PMID:23238589

  17. Primary testicular diffuse large B-cell lymphoma: A case report

    Directory of Open Access Journals (Sweden)

    Muhammad Sadiq

    2017-12-01

    Full Text Available Primary testicular diffuse large-B cell lymphoma (DLBCL is an uncommon and aggressive disease with predominant manifestation in the older age. Herein, we report a case of 47-year-old male patient who presented with three months history of left testis swelling. The patient underwent unilateral (left radical orchiectomy. Histopathological examination revealed extensive involvement and replacement of testicular parenchyma by a tumor composed of large discohesive sheets of cells with pleomorphic, hyperchromatic nuclei and prominent nucleoli. Immunohistochemical (IHC staining showed reactivity for LCA & Pan B (CD20 and negativity for OCT 3/4, SALL4 and Inhibin. Moreover, Pan T (CD3 highlighted reactive T-cells. These features rendered the diagnosis of DLBCL of testis. The hybrid 2-[fluorine-18] fluoro-2-deoxy-d-glucose (FDG positron emission tomography/computed tomography (PET/CT demonstrated two para-aortic FDG avid lymph nodes on the left side at the level of L2 vertebra. Presently, the patient has been planned for doxorubicin-based chemotherapy (i.e., cyclophosphamide, doxorubicin, vincristine and prednisone; CHOP along with intrathecal Methroxate (MTX, which would presumably improve the prognosis. Our study would expand the pool of this uncommon tumor towards its better understanding. Keywords: Primary testicular lymphoma, Diffuse large-B cell lymphoma, Orchiectomy, Doxorubicin-based chemotherapy

  18. Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia

    Science.gov (United States)

    Jabbour, Elias J.; Hughes, Timothy P.; Cortés, Jorge E.; Kantarjian, Hagop M.; Hochhaus, Andreas

    2014-01-01

    Despite vast improvements in treatment of Philadelphia chromosome–positive chronic myeloid leukemia (CML) in chronic phase (CP), advanced stages of CML, accelerated phase or blast crisis, remain notoriously difficult to treat. Treatments that are highly effective against CML-CP produce disappointing results against advanced disease. Therefore, a primary goal of therapy should be to maintain patients in CP for as long as possible, by (1) striving for deep, early molecular response to treatment; (2) using tyrosine kinase inhibitors that lower risk of disease progression; and (3) more closely observing patients who demonstrate cytogenetic risk factors at diagnosis or during treatment. PMID:24050507

  19. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey

    Directory of Open Access Journals (Sweden)

    Alişan Yıldıran

    2017-12-01

    Full Text Available Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11, Chediak-Higashi syndrome (n=2, leukocyte adhesion deficiency (n=2, MHC class 2 deficiency (n=2, chronic granulomatous syndrome (n=2, hemophagocytic lymphohistiocytosis (n=1, Wiskott-Aldrich syndrome (n=1, and Omenn syndrome (n=1. Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  20. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Patients in the Black Sea Region of Turkey.

    Science.gov (United States)

    Yıldıran, Alişan; Çeliksoy, Mehmet Halil; Borte, Stephan; Güner, Şükrü Nail; Elli, Murat; Fışgın, Tunç; Özyürek, Emel; Sancak, Recep; Oğur, Gönül

    2017-12-01

    Hematopoietic stem cell transplantation is a promising curative therapy for many combined primary immunodeficiencies and phagocytic disorders. We retrospectively reviewed pediatric cases of patients diagnosed with primary immunodeficiencies and scheduled for hematopoietic stem cell transplantation. We identified 22 patients (median age, 6 months; age range, 1 month to 10 years) with various diagnoses who received hematopoietic stem cell transplantation. The patient diagnoses included severe combined immunodeficiency (n=11), Chediak-Higashi syndrome (n=2), leukocyte adhesion deficiency (n=2), MHC class 2 deficiency (n=2), chronic granulomatous syndrome (n=2), hemophagocytic lymphohistiocytosis (n=1), Wiskott-Aldrich syndrome (n=1), and Omenn syndrome (n=1). Of the 22 patients, 7 received human leukocyte antigen-matched related hematopoietic stem cell transplantation, 12 received haploidentical hematopoietic stem cell transplantation, and 2 received matched unrelated hematopoietic stem cell transplantation. The results showed that 5 patients had graft failure. Fourteen patients survived, yielding an overall survival rate of 67%. Screening newborn infants for primary immunodeficiency diseases may result in timely administration of hematopoietic stem cell transplantation.

  1. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Science.gov (United States)

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  2. Evaluation of high-energy lithium thionyl chloride primary cells

    Science.gov (United States)

    Frank, H. A.

    1980-02-01

    An advanced commercial primary lithium cell (LiSoCl2) was evaluated in order to establish baseline data for improved lithium batteries for aerospace applications. The cell tested had nominal capacity of 6 Ah. Maximum energy density at low rates (less than C/30, where C is the cell capacity in amp-hrs and 30 corresponds to a 30 hr discharge time) was found to be near 300 Wh/kg. An equation which predicts the operating voltage of these cells as a function of current and state of charge is presented. Heat generation rates of these cells were determined as a function of current in a calorimeter. It was found that heat rates could be theoretically predicted with some degree of accuracy at currents less than 1 amp or the C/6 rate. No explosions were observed in the cells during the condition of overdischarge or reversal nor during high rate discharge. It was found, however, that the cells can vent when overdischarge currents are greater than C/30 and when discharge rates are greater than 1.5C.

  3. A case with primary signet ring cell adenocarcinoma of the prostate and review of the literature

    Directory of Open Access Journals (Sweden)

    Orcun Celik

    2014-06-01

    Full Text Available Primary signet cell carcinoma of the prostate is a rare histological variant of prostate malignancies. It is commonly originated from the stomach, colon, pancreas, and less commonly in the bladder. Prognosis of the classical type is worse than the adenocarcinoma of the prostate. Primary signet cell adenocarcinoma is diagnosed by eliminating the adenocarcinomas of other organs such as gastrointestinal tract organs. In this case report, we present a case with primary signet cell adenocarcinoma of the prostate who received docetaxel chemotherapy because of short prostate specific antigen doubling time.

  4. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    Science.gov (United States)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  5. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia.

    Science.gov (United States)

    Hattori, Ayuna; Tsunoda, Makoto; Konuma, Takaaki; Kobayashi, Masayuki; Nagy, Tamas; Glushka, John; Tayyari, Fariba; McSkimming, Daniel; Kannan, Natarajan; Tojo, Arinobu; Edison, Arthur S; Ito, Takahiro

    2017-05-25

    Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML. BCAT1 is upregulated during progression of CML and promotes BCAA production in leukaemia cells by aminating the branched-chain keto acids. Blocking BCAT1 gene expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML both in vitro and in vivo. Stable-isotope tracer experiments combined with nuclear magnetic resonance-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function through BCAA production in blast crisis CML cells. Importantly, BCAT1 expression not only is activated in human blast crisis CML and de novo acute myeloid leukaemia, but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for blast crisis CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukaemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukaemia.

  6. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    International Nuclear Information System (INIS)

    Cifola, Ingrid; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A

    2011-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  7. T-lineage blast crisis of chronic myelogenous leukemia: simple record of 4 cases

    Directory of Open Access Journals (Sweden)

    Kartika W. Taroeno-Hariadi

    2005-09-01

    Full Text Available Blast crisis (BC transformation in chronic myelogenous leukemia (CML can involve each differentiation lineage of the hematopoietic system, i.e. granulocyte, monocyte, erythrocyte, megakaryocyte, and lymphocyte lineage. The lymphoid blast crisis (BC leukemia cells usually belong to B-lineage, commonly having the phenotype of Pre-B stage of the B-lineage, in which cell-surface immunoglobulin (sIg is not yet expressed. In contrast, T-lineage BC of CML is extremely rare. The objective of this study is to describe the fenotype, fusion transcript of bcr-abl, TdT, and cytoplasmic CD3 in T-lineage BC CML cases. Case report study. This report shows a simple summary of 4 cases of T-lineage BC of CML which have been collected in the phenotypic and genotypic analysis study for 17 years (1987-2004. In all cases, the chromosomal analysis revealed the presence of t(9;22(q34;q11 at presentation. Cell surface analysis were done at diagnosis. Cases’ mononuclear cells stored as 10% DMSO were retrieved to be performed reverse transcription (RT PCR BCR-ABL multiplex to demonstrate the presence of the fusion transcript of bcr-abl. RT-PCR was also performed for detecting the expression of cytoplasmic CD3ε and terminal deoxynucleotydil transferase (TdT. The results of cell surface antigen (CSA at presentation showed that 1 case was CD7+, CD5-, and CD2-; 1 case CD7+, CD5+, and CD2-; and 2 cases CD7+, CD5+ and CD2+ indicating that all these T-lineage BC of CML cells show the phenotype of pre-(pro- thymic stage phenotype. In the present study, two cases showed b2a2, one e1a2, and one negative bcr-abl transcript. The RT-PCR revealed the presence of CD3ε mRNA in all cases, and TdT mRNA in only one case. These results can constitute a basis for the future analysis of T-lineage BC of CML from now on. (Med J Indones 2005; 14: 184-9Keywords: chronic myelogenous leukemia (CML, blastic crisis (BC, T-lineage, bcr-abl fusion gene, CDε, TdT

  8. Cell mediated lympholysis: CML. A microplate technique requiring few target cells and employing a new method of supernatant collection

    International Nuclear Information System (INIS)

    Hirschberg, A.; Thorsby, E.

    1977-01-01

    A micromethod for the 51 Cr release assay is described. Allogeneically induced cytotoxic lymphocytes are generated in mixed lymphocyte microcultures in the wells of microplates. Their cytotoxic capacity is assayed by adding 51 Cr-labelled PHA derived lymphoblasts directly into the microcultures with no pooling or transfer of the cytotoxic effector cells being required. The 51 Cr isotope released into the cell supernatants is collected by inserting a cellulose acetate absorption cartridge into each well. A glass fiber filter attached to the cartridge effectively separates the supernatant from the cellular elemets. This system allows the simultaneous collection of the supernatant from 96 wells, and can be used with either adherent or non-adherent target cells

  9. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Primary cutaneous anaplastic large cell lymphoma masquerading as large pyogenic granuloma

    Directory of Open Access Journals (Sweden)

    Anupama Bains

    2016-01-01

    Full Text Available Primary cutaneous anaplastic large cell lymphoma (pcALCL forms 9% of the cutaneous T-cell lymphomas. It usually presents as solitary reddish brown ulcerating nodule or indurated plaque. Sometimes, it mimics other dermatological diseases such as eczema, pyoderma gangrenosum, pyogenic granuloma, morphea, and squamous cell carcinoma. Our case presented with large pyogenic granuloma like lesion with regional lymphadenopathy. Since pcALCL is rare, one can misdiagnose such cases and therefore high index of suspicion is necessary.

  11. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    Science.gov (United States)

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  12. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  13. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    International Nuclear Information System (INIS)

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-01-01

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li 2 CO 3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  14. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    Directory of Open Access Journals (Sweden)

    P.B. Soares

    2013-01-01

    Full Text Available Imatinib mesylate (IM is used to treat chronic myeloid leukemia (CML because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM. The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM, using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells increased. At higher concentrations (15 µM, the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control. Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved.

  15. Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona

    2017-05-01

    Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.

  16. Increased risk of gastric adenocarcinoma after treatment of primary gastric diffuse large B-cell lymphoma

    International Nuclear Information System (INIS)

    Inaba, Koji; Morota, Madoka; Mayahara, Hiroshi; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun; Kushima, Ryoji; Murakami, Naoya; Kuroda, Yuuki; Harada, Ken; Kitaguchi, Mayuka; Yoshio, Kotaro; Sekii, Shuhei; Takahashi, Kana

    2013-01-01

    There have been sporadic reports about synchronous as well as metachronous gastric adenocarcinoma and primary gastric lymphoma. Many reports have dealt with metachronous gastric adenocarcinoma in mucosa-associated lymphoid tissue lymphoma of stomach. But to our knowledge, there have been no reports that document the increased incidence of metachronous gastric adenocarcinoma in patients with gastric diffuse large B-cell lymphoma. This retrospective study was conducted to estimate the incidence of metachronous gastric adenocarcinoma after primary gastric lymphoma treatment, especially in diffuse large B-cell lymphoma. The retrospective cohort study of 139 primary gastric lymphoma patients treated with radiotherapy at our hospital. Mean observation period was 61.5 months (range: 3.7-124.6 months). Patients profile, characteristics of primary gastric lymphoma and metachronous gastric adenocarcinoma were retrieved from medical records. The risk of metachronous gastric adenocarcinoma was compared with the risk of gastric adenocarcinoma in Japanese population. There were 10 (7.2%) metachronous gastric adenocarcinoma patients after treatment of primary gastric lymphomas. It was quite high risk compared with the risk of gastric carcinoma in Japanese population of 54.7/100,000. Seven patients of 10 were diffuse large B-cell lymphoma and other 3 patients were mixed type of diffuse large B-cell lymphoma and mucosa associated lymphoid tissue lymphoma. Four patients of 10 metachronous gastric adenocarcinomas were signet-ring cell carcinoma and two patients died of gastric adenocarcinoma. Metachronous gastric adenocarcinoma may have a more malignant potential than sporadic gastric adenocarcinoma. Old age, Helicobacter pylori infection and gastric mucosal change of chronic gastritis and intestinal metaplasia were possible risk factors for metachronous gastric adenocarcinoma. There was an increased risk of gastric adenocarcinoma after treatment of primary gastric lymphoma

  17. Primary Endometrial Squamous Cell Carcinoma In Situ; Report of a rare disease

    Directory of Open Access Journals (Sweden)

    Sujata Jetley

    2015-11-01

    Full Text Available Squamous cell carcinoma (SCC of the endometrium, whether primary or secondary to cervical cancer, is a rare entity. Primary endometrial squamous cell carcinoma in situ is even more uncommon; it usually occurs in postmenopausal women and has a strong association with pyometra. We report a 60-year-old multiparous postmenopausal woman who presented to the Hakeem Abdul Hameed Centenary Hospital, New Delhi, India, in May 2014 with a lower abdominal swelling corresponding in size to a pregnancy of 26 gestational weeks and vaginal discharge of one year’s duration. A total abdominal hysterectomy with a bilateral salpingooophorectomy was performed, which revealed an enlarged uterus with pyometra. Histopathology showed that the entire endometrial lining had been replaced with malignant squamous cells without invasion of the myometrium. Immunohistochemistry revealed that the tumour cells were positive for p63 with a high Ki-67 labelling index. No adjuvant therapy was required and the patient was disease-free at a seven-month follow-up.

  18. Primary Endometrial Squamous Cell Carcinoma In Situ: Report of a rare disease.

    Science.gov (United States)

    Jetley, Sujata; Jairajpuri, Zeeba S; Hassan, Mohammad J; Madaan, Garima; Jain, Reena

    2015-11-01

    Squamous cell carcinoma (SCC) of the endometrium, whether primary or secondary to cervical cancer, is a rare entity. Primary endometrial squamous cell carcinoma in situ is even more uncommon; it usually occurs in postmenopausal women and has a strong association with pyometra. We report a 60-year-old multiparous postmenopausal woman who presented to the Hakeem Abdul Hameed Centenary Hospital, New Delhi, India, in May 2014 with a lower abdominal swelling corresponding in size to a pregnancy of 26 gestational weeks and vaginal discharge of one year's duration. A total abdominal hysterectomy with a bilateral salpingooophorectomy was performed, which revealed an enlarged uterus with pyometra. Histopathology showed that the entire endometrial lining had been replaced with malignant squamous cells without invasion of the myometrium. Immunohistochemistry revealed that the tumour cells were positive for p63 with a high Ki-67 labelling index. No adjuvant therapy was required and the patient was disease-free at a seven-month follow-up.

  19. Relationship between Ga-67 uptake and radiotherapeutic response of primary lung cancer (squamous cell carcinoma)

    International Nuclear Information System (INIS)

    Higashi, Kotaro; Takase, Shuko; Ohguchi, Manabu; Seki, Hiroyasu; Okimura, Tetsuro; Miyamura, Toshio; Yamamoto, Itaru; Rikimaru, Shigeho.

    1992-01-01

    This investigation was undertaken to evaluate the relationship between Ga-67 uptake and radiotherapeutic response of primary lung cancer (squamous cell carcinoma), Ga-67 uptake of tumor was estimated on 16 patients with untreated primary lung cancer (squamous cell carcinoma). Ga-67 uptake was then compared with the response to radiation therapy (tumor reduction ratio). There was statistically significant inverse correlation between Ga-67 uptake and response to radiation therapy (r=-0.701, p<0.01). The fewer the Ga-67 accumulation in the tumor, the more effective radiotherapy in reducing tumor size. In conclusion, Ga-67 scintigraphy appears to be able to predict the response of primary lung cancer (squamous cell carcinoma) to radiation therapy. (author)

  20. Primary NK/T cell lymphoma nasal type of the stomach with skin involvement: a case report

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2009-12-01

    Full Text Available Since nasal NK/T cell lymphoma and NK/T cell lymphoma nasal type are rare diseases, gastric involvement has seldom been seen. We report a unique case of a patient with a primary NK/T cell lymphoma nasal type of the stomach with skin involvement. The patient had no history of malignant diseases and was diagnosed with hematemesis and intense bleeding from his gastric primary site. Shortly after this event, exanthemic skin lesions appeared with concordant histology to the primary site. Despite chemotherapy, the patient died one month after the first symptomatic appearance of disease.

  1. A rare case of primary clear cell sarcoma of the pubic bone resembling small round cell tumor: an unusual morphological variant

    International Nuclear Information System (INIS)

    Nakayama, Shoko; Tsuji, Motomu; Hanafusa, Toshiaki; Yokote, Taiji; Iwaki, Kazuki; Akioka, Toshikazu; Miyoshi, Takuji; Hirata, Yuji; Takayama, Ayami; Nishiwaki, Uta; Masuda, Yuki

    2012-01-01

    Clear cell sarcoma (CCS) and malignant melanoma share overlapping immunohistochemistry with regard to the melanocytic markers HMB45, S100, and Melan-A. However, the translocation t(12; 22)(q13; q12) is specific to CCS. Therefore, although these neoplasms are closely related, they are now considered to be distinct entities. However, the translocation is apparently detectable only in 50%–70% of CCS cases. Therefore, the absence of a detectable EWS/AFT1 rearrangement may occasionally lead to erroneous exclusion of a translocation-negative CCS. Therefore, histological assessment is essential for the correct diagnosis of CCS. Primary CCS of the bone is exceedingly rare. Only a few cases of primary CCS arising in the ulna, metatarsals, ribs, radius, sacrum, and humerus have been reported, and primary CCS arising in the pubic bone has not been reported till date. We present the case of an 81-year-old man with primary CCS of the pubic bone. Histological examination of the pubic bone revealed monomorphic small-sized cells arranged predominantly as a diffuse sheet with round, hyperchromatic nuclei and inconspicuous nucleoli. The cells had scant cytoplasm, and the biopsy findings indicated small round cell tumor (SRCT). Immunohistochemical staining revealed the tumor cells to be positive for HMB45, S100, and Melan-A but negative for cytokeratin (AE1/AE3) and epithelial membrane antigen. To the best of our knowledge, this is the first case report of primary CCS of the pubic bone resembling SRCT. This ambiguous appearance underscores the difficulties encountered during the histological diagnosis of this rare variant of CCS. Awareness of primary CCS of the bone is clinically important for accurate diagnosis and management when the tumor is located in unusual locations such as the pubic bone and when the translocation t(12; 22)(q13; q12) is absent

  2. Primary cutaneous large B-cell lymphoma of scalp: Case report of a rare variant

    Directory of Open Access Journals (Sweden)

    Yasmeen Khatib

    2017-01-01

    Full Text Available Primary cutaneous large B-cell lymphoma (Bcl is defined as a lymphoma composed of large cells constituting more than 80% of the infiltrate and absence of extracutaneous involvement after staging investigations. In the new World Health Organization/European Organization for Research and Treatment of Cancer classification, cutaneous Bcls with large cells are of three types - primary cutaneous large Bcl leg type (PCLBCLLT, primary cutaneous follicle center lymphoma diffuse type (PCFCLDT, and primary cutaneous large Bcls other (PCLBCLO. These three different types are distinct in terms of their clinicopathological features and survival. The PCLBCLO has intermediate features between those of PCLBCLLT and PCFCLDT. We present a case of PCLBCLO in a 57-year-old male who presented with a scalp swelling. Ultrasonography examination was suggestive of a sebaceous cyst. Computed tomography scan revealed the presence of an ill-defined hyperdense region in the soft tissue of the scalp region extending into the deeper layers of the scalp. Fine-needle aspiration cytology (FNAC revealed the presence of atypical lymphoid cells. Diagnosis was confirmed by biopsy and immunohistochemistry. Patient received rituximab combined with doxorubicin, vincristine, cyclophosphamide, and prednisolone regimen with complete resolution of the lesion. We present this case for its rarity, the utility of FNAC in early diagnosis, and to discuss the differential diagnosis.

  3. Primary Germ Cell Tumors of the Mediastinum: 10 Years of Experience in a Tertiary Teaching Hospital

    Directory of Open Access Journals (Sweden)

    Chih-Jen Yang

    2005-09-01

    Full Text Available Germ cell tumors occur mostly in the gonad. Extragonadal germ cell tumors are rare, and most occur in the retroperitoneum and mediastinum. Primary mediastinal germ cell tumors are often found in the anterior portion of the mediastinum and include teratomas and non-teratomatous tumors. Non-teratomatous tumors include seminomas and malignant non-seminomatous germ cell tumors (MNSGCTs. MNSGCTs include yolk sac tumors, choriocarcinomas, embryonal carcinomas, and mixed type germ cell tumors. Teratomas are the most common germ cell tumors of the mediastinum, and seminomas are the most common non-teratomatous germ cell tumors of the mediastinum. Cases of primary mediastinal MNSGCT reported in the literature are rare. In this report, we review all primary mediastinal germ cell tumors from a 10-year period at the Chung-Ho Memorial Hospital of Kaohsiung Medical University. A total of 14 cases were reviewed, including 11 patients with mature teratomas, two with yolk sac tumors, and one with seminoma. We discuss the differences in clinical presentation, histopathologic characteristics, treatment, and prognosis.

  4. Identification of cancer stem-like side population cells in purified primary cultured human laryngeal squamous cell carcinoma epithelia.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Wu

    Full Text Available Cancer stem-like side population (SP cells have been identified in many solid tumors; however, most of these investigations are performed using established cancer cell lines. Cancer cells in tumor tissue containing fibroblasts and many other types of cells are much more complex than any cancer cell line. Although SP cells were identified in the laryngeal squamous cell carcinoma (LSCC cell line Hep-2 in our pilot study, it is unknown whether the LSCC tissue contains SP cells. In this study, LSCC cells (LSCCs were primary cultured and purified from a surgically resected LSCC specimen derived from a well-differentiated epiglottic neoplasm of a Chinese male. This was followed by the verification of epithelium-specific characteristics, such as ultrastructure and biomarkers. A distinct SP subpopulation (4.45±1.07% was isolated by Hoechst 33342 efflux analysis from cultured LSCCs by using a flow cytometer. Cancer stem cell (CSC-associated assays, including expression of self-renewal and CSC marker genes, proliferation, differentiation, spheroid formation, chemotherapy resistance, and tumorigenicity were then conducted between SP and non-SP (NSP LSCCs. In vitro and in vivo assays revealed that SP cells manifested preferential expression of self-renewal and CSC marker genes, higher capacity for proliferation, differentiation, and spheroid formation; enhanced resistance to chemotherapy; and greater xenograft tumorigenicity in immunodeficient mice compared with NSP cells. These findings suggest that the primary cultured and purified LSCCs contain cancer stem-like SP cells, which may serve as a valuable model for CSC research in LSCC.

  5. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells.

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2011-03-01

    Full Text Available Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR. T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD.A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35-45% of splenic T cells were transduced by Ad-RGD.Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.

  6. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    Science.gov (United States)

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors.

    Science.gov (United States)

    Dondossola, Eleonora; Dobroff, Andrey S; Marchiò, Serena; Cardó-Vila, Marina; Hosoya, Hitomi; Libutti, Steven K; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-23

    Circulating cancer cells can putatively colonize distant organs to form metastases or to reinfiltrate primary tumors themselves through a process termed "tumor self-seeding." Here we exploit this biological attribute to deliver tumor necrosis factor alpha (TNF), a potent antitumor cytokine, directly to primary and metastatic tumors in a mechanism that we have defined as "tumor self-targeting." For this purpose, we genetically engineered mouse mammary adenocarcinoma (TSA), melanoma (B16-F10), and Lewis lung carcinoma cells to produce and release murine TNF. In a series of intervention trials, systemic administration of TNF-expressing tumor cells was associated with reduced growth of both primary tumors and metastatic colonies in immunocompetent mice. We show that these malignant cells home to tumors, locally release TNF, damage neovascular endothelium, and induce massive cancer cell apoptosis. We also demonstrate that such tumor-cell-mediated delivery avoids or minimizes common side effects often associated with TNF-based therapy, such as acute inflammation and weight loss. Our study provides proof of concept that genetically modified circulating tumor cells may serve as targeted vectors to deliver anticancer agents. In a clinical context, this unique paradigm represents a personalized approach to be translated into applications potentially using patient-derived circulating tumor cells as self-targeted vectors for drug delivery.

  8. Breast Carcinoma Cells in Primary Tumors and Effusions Have Different Gene Array Profiles

    Directory of Open Access Journals (Sweden)

    Sophya Konstantinovsky

    2010-01-01

    Full Text Available The detection of breast carcinoma cells in effusions is associated with rapidly fatal outcome, but these cells are poorly characterized at the molecular level. This study compared the gene array signatures of breast carcinoma cells in primary carcinomas and effusions. The genetic signature of 10 primary tumors and 10 effusions was analyzed using the Array-Ready Oligo set for the Human Genome platform. Results for selected genes were validated using PCR, Western blotting, and immunohistochemistry. Array analysis identified 255 significantly downregulated and 96 upregulated genes in the effusion samples. The majority of differentially expressed genes were part of pathways involved in focal adhesion, extracellular matrix-cell interaction, and the regulation of the actin cytoskeleton. Genes that were upregulated in effusions included KRT8, BCAR1, CLDN4, VIL2, while DCN, CLDN19, ITGA7, and ITGA5 were downregulated at this anatomic site. PCR, Western blotting, and immunohistochemistry confirmed the array findings for BCAR1, CLDN4, VIL2, and DCN. Our data show that breast carcinoma cells in primary carcinomas and effusions have different gene expression signatures, and differentially express a large number of molecules related to adhesion, motility, and metastasis. These differences may have a critical role in designing therapy and in prognostication for patients with metastatic disease localized to the serosal cavities.

  9. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht

    2013-01-01

    summarize selected methods in analyzing ciliary function in directional cell migration, including immunofluorescence microscopy, scratch assay, and chemotaxis assay by micropipette addition of PDGFRα ligands to cultures of fibroblasts. These methods should be useful not only in studying cell migration....... In particular, platelet-derived growth factor receptor alpha (PDGFRα) is compartmentalized to the primary cilium to activate signaling pathways that regulate reorganization of the cytoskeleton required for lamellipodium formation and directional migration in the presence of a specific ligand gradient. We...

  10. Allogeneic Hematopoietic Stem Cell Transplantation Is an Effective Salvage Therapy for Patients with Chronic Myeloid Leukemia Presenting with Advanced Disease or Failing Treatment with Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Nair, Anish P; Barnett, Michael J; Broady, Raewyn C; Hogge, Donna E; Song, Kevin W; Toze, Cynthia L; Nantel, Stephen H; Power, Maryse M; Sutherland, Heather J; Nevill, Thomas J; Abou Mourad, Yasser; Narayanan, Sujaatha; Gerrie, Alina S; Forrest, Donna L

    2015-08-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) remains the only known curative therapy for chronic myeloid leukemia (CML); however, it is rarely utilized given the excellent long-term results with tyrosine kinase inhibitor (TKI) treatment. The purpose of this study is to examine HSCT outcomes for patients with CML who failed TKI therapy or presented in advanced phase and to identify predictors of survival, relapse, and nonrelapse mortality (NRM). Fifty-one patients with CML underwent HSCT for advanced disease at diagnosis (n = 15), TKI resistance as defined by the European LeukemiaNet guidelines (n = 30), TKI intolerance (n = 2), or physician preference (n = 4). At a median follow-up of 71.9 months, the 8-year overall survival (OS), event-free survival (EFS), relapse, and NRM were 68%, 46%, 41%, and 23%, respectively. In univariate analysis, predictors of OS included first chronic phase (CP1) disease status at HSCT (P = .0005), European Society for Blood and Marrow Transplantation score 1 to 4 (P = .04), and complete molecular response (CMR) to HSCT (P treatment to optimize transplantation outcomes. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  11. A new color image encryption scheme using CML and a fractional-order chaotic system.

    Directory of Open Access Journals (Sweden)

    Xiangjun Wu

    Full Text Available The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks.

  12. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  13. Sensitive detection of pre-existing BCR-ABL kinase domain mutations in CD34+ cells of newly diagnosed chronic-phase chronic myeloid leukemia patients is associated with imatinib resistance: implications in the post-imatinib era.

    Directory of Open Access Journals (Sweden)

    Zafar Iqbal

    Full Text Available BACKGROUND: BCR-ABL kinase domain mutations are infrequently detected in newly diagnosed chronic-phase chronic myeloid leukemia (CML patients. Recent studies indicate the presence of pre-existing BCR-ABL mutations in a higher percentage of CML patients when CD34+ stem/progenitor cells are investigated using sensitive techniques, and these mutations are associated with imatinib resistance and disease progression. However, such studies were limited to smaller number of patients. METHODS: We investigated BCR-ABL kinase domain mutations in CD34+ cells from 100 chronic-phase CML patients by multiplex allele-specific PCR and sequencing at diagnosis. Mutations were re-investigated upon manifestation of imatinib resistance using allele-specific PCR and direct sequencing of BCR-ABL kinase domain. RESULTS: Pre-existing BCR-ABL mutations were detected in 32/100 patients and included F311L, M351T, and T315I. After a median follow-up of 30 months (range 8-48, all patients with pre-existing BCR-ABL mutations exhibited imatinib resistance. Of the 68 patients without pre-existing BCR-ABL mutations, 24 developed imatinib resistance; allele-specific PCR and BCR-ABL kinase domain sequencing detected mutations in 22 of these patients. All 32 patients with pre-existing BCR-ABL mutations had the same mutations after manifestation of imatinib-resistance. In imatinib-resistant patients without pre-existing BCR-ABL mutations, we detected F311L, M351T, Y253F, and T315I mutations. All imatinib-resistant patients except T315I and Y253F mutations responded to imatinib dose escalation. CONCLUSION: Pre-existing BCR-ABL mutations can be detected in a substantial number of chronic-phase CML patients by sensitive allele-specific PCR technique using CD34+ cells. These mutations are associated with imatinib resistance if affecting drug binding directly or indirectly. After the recent approval of nilotinib, dasatinib, bosutinib and ponatinib for treatment of chronic myeloid

  14. Primary Human Blood Dendritic Cells for Cancer Immunotherapy—Tailoring the Immune Response by Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Simone P. Sittig

    2015-12-01

    Full Text Available Dendritic cell (DC-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.

  15. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues.

    Science.gov (United States)

    Cifola, Ingrid; Bianchi, Cristina; Mangano, Eleonora; Bombelli, Silvia; Frascati, Fabio; Fasoli, Ester; Ferrero, Stefano; Di Stefano, Vitalba; Zipeto, Maria A; Magni, Fulvio; Signorini, Stefano; Battaglia, Cristina; Perego, Roberto A

    2011-06-13

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  16. Structure of cellulose microfibrils in primary cell walls from Collenchyma

    Czech Academy of Sciences Publication Activity Database

    Thomas, L. H.; Forsyth, V. T.; Šturcová, Adriana; Kennedy, C. J.; May, R. P.; Altaner, C. M.; Apperley, D. C.; Wess, T. J.; Jarvis, M. C.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 465-476 ISSN 0032-0889 R&D Projects: GA ČR GAP108/12/0703 Institutional support: RVO:61389013 Keywords : primary cell wall * cellulose microfibril structure * chain packing disorder Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.394, year: 2013

  17. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    Science.gov (United States)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-01-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation. PMID:24346024

  18. A mathematical model of a lithium/thionyl chloride primary cell

    Science.gov (United States)

    Evans, T. I.; Nguyen, T. V.; White, R. E.

    1987-08-01

    A 1-D mathematical model for the lithium/thionyl chloride primary cell was developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict 1-D, time dependent profiles of concentration, porosity, current, and potential as well as cell temperature and voltage. When a certain discharge rate is required, the model can be used to determine the design criteria and operating variables which yield high cell capacities. Model predictions can be used to establish operational and design limits within which the thermal runaway problem, inherent in these cells, can be avoided.

  19. Primary clear cell carcinoma of parotid gland: Case report and review of literature.

    Science.gov (United States)

    Rodríguez, Marta Saldaña; Reija, Maria Fe García; Rodilla, Irene González

    2013-01-01

    Clear cell carcinoma (CCC) is a rare low-grade carcinoma that represents only 1% to 2% of all salivary glands tumors. The finding of a clear cell tumor in a parotid gland involves the necessity of differential diagnosis between primary clear cell parotid tumors and metastases, mainly from kidney. The biological behavior is not very aggressive and development, which is very slow, is usually asymptomatic and indeed, the tumor often reaches considerable dimensions before being diagnosed. The treatment of choice is the surgical excision. There are rare cases of local recurrence and distant metastases. The aim of this article is to report a primary CCC in the parotid gland that microscopically closely resembled a metastatic CCC of renal origin, making microscopic differentiation difficult.

  20. [Primary peripheral T-cell lymphoma of the penis: a case report and review of the literature].

    Science.gov (United States)

    Shi, Yan-Lin; Yin, Hong-Lin; Zhou, Xiao-Jun; Zhou, Hang-Bo; Lu, Zhen-Feng

    2008-11-01

    To report a case of primary peripheral T-cell lymphoma of the penis. We analyzed the clinicopathological characteristics of the case of primary peripheral T-cell lymphoma using histological, cytochemical and immunohistochemical methods and by review of the literature. The patient was a 65 years old man and presented with a diffuse enlargement of the penis as the initial sign, followed by erosive ulcer in the caput penis and inguinal lymphadenectasis. The tumor was pathohistologically manifested as an epidermal ulcer, with tumorous necrosis around the capillary, infiltrative growth and atypical changes of the neoplastic cells and proliferation of capillaries. Immunohistochemically, the tumor cells were positive for CD43 and CD3, but negative for CD20, CD79a, CD34, CD30, CD56 and CD34. Clinically it responded to the chemotherapy designed for peripheral T-cell lymphoma. Primary peripheral T-cell lymphoma of the penis is an extremely rare malignant tumor, the diagnosis of which relies on histopathological examination, immunohistochemical staining and differentiation between squamous cell carcinoma and other types of lymphoma.

  1. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo.

    Science.gov (United States)

    Sepúlveda-Ramírez, Silvia P; Toledo-Jacobo, Leslie; Henson, John H; Shuster, Charles B

    2018-05-15

    In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Characterization of miRNomes in Acute and Chronic Myeloid

    Directory of Open Access Journals (Sweden)

    Qian Xiong

    2014-04-01

    Full Text Available Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.

  3. Randomized study on hydroxyurea alone versus hydroxyurea combined with low-dose interferon-alpha 2b for chronic myeloid leukemia

    NARCIS (Netherlands)

    Kluin-Nelemans, JC; Delannoy, A; Louwagie, A; Le Cessie, S; Hermans, J; van der Burgh, JF; Hagemeijer, AM; Van den Berghe, H

    1998-01-01

    Interferon-alpha (IFN-alpha) is considered the standard therapy for chronic myeloid leukemia (CML) patients not suitable for allogeneic stem cell transplantation. From 1987 through 1992, 195 patients in the Benelux with recent untreated CML were randomized between low-dose IFN-alpha 2b (3 MIU, 5

  4. Primary Intra-aortic Epstein-Barr Virus-Positive Large B-Cell Lymphoma Presenting as Aortic Mural Thrombosis: An Entity Distinct From Intravascular Large B-Cell Lymphoma.

    Science.gov (United States)

    Nakao, Ryuta; Sakashita, Aki; Omoto, Atsushi; Sato, Osamu; Hino, Yoko; Yanagisawa, Akio; Urata, Yoji

    2017-12-01

    Intravascular selective growth of neoplastic B lymphocytes is a characteristic finding of intravascular large B-cell lymphoma (IVLBCL). However, because neoplastic B cells of IVLBCL grow merely in the lumina of capillaries or small vessels, primary IVLBCL of the great vessels is considered exceptional. To our knowledge, only 2 primary B-cell lymphomas in the lumina of the vena cava have been reported. However, there has been no report of primary B-cell lymphoma with intra-aortic growth. We describe a novel manifestation of primary Epstein-Barr virus-positive large B-cell lymphoma mainly affecting the lumina of the aorta and its major branches in a 76-year-old man. He had a long-term fever that was refractory to antibiotics and aortic mural thrombosis with visceral embolization. Because he had no detectable mass suggesting a malignancy, it was difficult to diagnose while he was alive. He died without anticancer treatment, and the confirmed diagnosis was made at autopsy.

  5. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T; Zhang, G; PY Lau, Carol; Zheng, L Z; Xie, X H; Wang, X L; Patrick, Y; Qin, L; Kumta, Shekhar M [Department of Orthopaedics and Traumatology, Chinese University of Hong Kong (Hong Kong); Wang, X H; He, K, E-mail: kumta@cuhk.edu.hk [Department of Mechanical Engineering, Institute of Bio-manufacturing Engineering, Tsinghua University, Beijing (China)

    2011-02-15

    Water-soluble phosphorylated chitosan (P-chitosan) and disodium (1 {yields} 4)-2-deoxy-2-sulfoamino-{beta}-D-glucopyranuronan (S-chitosan) are two chemically modified chitosans. In this study, we found that P-chitosan significantly promotes cell proliferation of both human primary osteoblasts (OBs) and the OB like stromal cell component of the giant cell tumor of bone (GCTB) cells at the concentration from 125 to 1000 {mu}g ml{sup -1} at all time points of 1, 3, 5 and 7 days after treatment. Further investigation of the osteogenic effect of the P-chitosan suggested that it regulates the levels of osteoclastogenic factors, receptor activator of nuclear factor kappa B ligand and osteoprotegerin expression. An interesting finding is that S-chitosan at lower concentration (100 {mu}g ml{sup -1}) stimulates cell proliferation while a higher dose (1000 {mu}g ml{sup -1}) of S-chitosan inhibits it. The inhibitory effect of S-chitosan on human primary GCT stromal cells was greater than that of OBs (p < 0.05). Taken together, our findings elucidated the osteogenic effect of P-chitosan and the varying effects of S-chitosan on the proliferation of human primary OBs and GCT stromal cells and provided us the rationale for the construction of novel bone repair biomaterials with the dual properties of bone induction and bone tumor inhibition.

  6. Primary Lung Signet Ring Cell Carcinoma Presenting as a Cavitary Pancoast Tumor in a 32-Year-Old Man.

    Science.gov (United States)

    Corvini, Michael; Koorji, Alysha; Sgroe, Erica; Nguyen, Uyen

    2018-06-01

    Signet ring cell carcinoma, a subtype of adenocarcinoma, is a rare cause of primary lung cancer. The authors report a case of primary lung signet ring cell carcinoma presenting as a cavitary Pancoast tumor in a 32-year-old male smoker. Beyond the rarity of primary lung signet ring cell carcinoma itself, the youth of the patient, his smoking status, the presence of cavitation, and the location of the tumor in the superior sulcus make it especially atypical.

  7. Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia.

    Science.gov (United States)

    Nemoto, Michiko; Hattori, Hiroyoshi; Maeda, Naoko; Akita, Nobuhiro; Muramatsu, Hideki; Moritani, Suzuko; Kawasaki, Tomonori; Maejima, Masami; Ode, Hirotaka; Hachiya, Atsuko; Sugiura, Wataru; Yokomaku, Yoshiyuki; Horibe, Keizo; Iwatani, Yasumasa

    2018-05-03

    Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4 + T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.

  8. Effects of aflibercept on primary RPE cells: toxicity, wound healing, uptake and phagocytosis.

    Science.gov (United States)

    Klettner, Alexa; Tahmaz, Nihat; Dithmer, Michaela; Richert, Elisabeth; Roider, Johann

    2014-10-01

    Anti-VEGF treatment is the therapy of choice in age-related macular degeneration, and is also applied in diabetic macular oedema or retinal vein occlusion. Recently, the fusion protein, aflibercept, has been approved for therapeutic use. In this study, we investigate the effects of aflibercept on primary RPE cells. Primary RPE cells were prepared from freshly slaughtered pigs' eyes. The impact of aflibercept on cell viability was investigated with MTT and trypan blue exclusion assay. The influence of aflibercept on wound healing was assessed with a scratch assay. Intracellular uptake of aflibercept was investigated in immunohistochemistry and its influence on phagocytosis with a phagocytosis assay using opsonised latex beads. Aflibercept displays no cytotoxicity on RPE cells but impairs its wound healing ability. It is taken up into RPE cells and can be intracellularly detected for at least 7 days. Intracellular aflibercept impairs the phagocytic capacity of RPE cells. Aflibercept interferes with the physiology of RPE cells, as it is taken up into RPE cells, which is accompanied by a reduction of the phagocytic ability. Additionally, it impairs the wound healing capacity of RPE cells. These effects on the physiology of RPE cells may indicate possible side effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Immunocytochemical investigation of immune cells within human primary and permanent tooth pulp.

    Science.gov (United States)

    Rodd, H D; Boissonade, F M

    2006-01-01

    The aim of this study was to determine whether there are any differences in the number and distribution of immune cells within human primary and permanent tooth pulp, both in health and disease. The research took the form of a quantitative immunocytochemical study. One hundred and twenty-four mandibular first permanent molars and second primary molars were obtained from children requiring dental extractions under general anaesthesia. Following exodontia, 10-microm-thick frozen pulp sections were processed for indirect immunofluorescence. Triple-labelling regimes were employed using combinations of the following: (1) protein gene product 9.5, a general neuronal marker; (2) leucocyte common antigen (LCA); and (3) Ulex europaeus I lectin, a marker of vascular endothelium. Image analysis was then used to determine the percentage area of immunostaining for LCA. Leucocytes were significantly more abundant in the pulp horn and mid-coronal region of intact and carious primary teeth, as compared to permanent teeth (P < 0.05, anova). Both dentitions demonstrated the presence of well-localized inflammatory cell infiltrates and marked aborization of pulpal nerves in areas of dense leucocyte accumulation. Primary and permanent tooth pulps appear to have a similar potential to mount inflammatory responses to gross caries The management of the compromised primary tooth pulp needs to be reappraised in the light of these findings.

  10. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  11. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  12. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells

    Directory of Open Access Journals (Sweden)

    Karolina Skvarova Kramarzova

    2017-06-01

    Full Text Available Fanconi anemia (FA is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 (FANCD1 primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 system was employed to target and correct a FANCD1 gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase. FANCD1 function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primary FANCD1 cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.

  13. Esophageal Large-Cell Neuroendocrine Carcinoma with Inconsistent Response to Treatment in the Primary and Metastatic Lesions

    Directory of Open Access Journals (Sweden)

    Takashi Tomiyama

    2018-05-01

    Full Text Available Esophageal large-cell neuroendocrine carcinoma (NEC is a rare malignant tumor that is characterized by high-grade malignancy and a poor prognosis. However, the rarity of esophageal NEC has prevented the development of an established treatment, and no reports have described a discrepancy in the effectiveness of cisplatin plus irinotecan between primary and metastatic lesions. A 43-year-old Japanese man was referred to our hospital with refractory epigastralgia. A previous gastrointestinal endoscopy had revealed a 50-mm type 2 tumor in the abdominal esophagus. The pathological findings indicated poorly differentiated squamous cell carcinoma. Contrast-enhanced computed tomography revealed a metastatic liver tumor. One cycle of fluorouracil and cisplatin was not effective, and endoscopy was repeatedly performed. The pathological findings indicated a large-cell malignant tumor with tumor cells that were positive for CD56, synaptophysin, and Ki-67 (> 80%. Based on a diagnosis of esophageal large-cell NEC with a metastatic liver tumor, the patient received cisplatin plus irinotecan biweekly. After 4 months, computed tomography revealed marked shrinkage of the metastatic tumor, but the patient complained of dysphagia. Endoscopy revealed enlargement of the primary tumor, which was then treated using radiotherapy plus fluorouracil and cisplatin. The primary tumor subsequently shrank, and the patient’s symptoms were relieved, but the metastatic tumor grew. Thus, chemoradiotherapy could be an option for managing a primary esophageal large-cell NEC that does not respond to chemotherapy alone. However, the possibility of an inconsistent response to therapy in primary and metastatic lesions should be considered.

  14. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  15. Occurrence of chronic lymphocytic leukemia in patients with chronic myelogenous leukemia

    Directory of Open Access Journals (Sweden)

    Pritish K Bhattacharyya

    2013-01-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most common leukemia of adults in the western world and constitutes about 33% of all leukemia′s. The incidence of CLL increases with age and are more common in older population. Chronic myeloid leukemia (CML on the contrary occurs in both young adults and elderly and is a chronic myeloproliferative disease that originates from abnormal pluripotent stem cells and results in involvement of multiple hematopoietic lineages, but predominantly myeloid and less commonly lymphoid. Association between CLL and myeloid malignancies (CML, acute myeloid leukemia and MDS, myelodysplastic syndrome is rare. In literature documenting CLL and CML in same patients, occur either simultaneously or CML is preceded by CLL.

  16. 2-Dodecylcyclobutanone, a radiolytic product of palmitic acid, is genotoxic in primary human colon cells and in cells from preneoplastic lesions

    International Nuclear Information System (INIS)

    Knoll, Nadine; Weise, Anja; Claussen, Uwe; Sendt, Wolfgang; Marian, Brigitte; Glei, Michael; Pool-Zobel, Beatrice L.

    2006-01-01

    The irradiation of fat results in the formation of 2-alkylcyclobutanones, a new class of food contaminants. Results of previous in vitro studies with primary human colon cells and in vivo experiments with rats fed with 2-alkylcyclobutanones indicated that these radiolytic derivatives may be genotoxic and enhance the progression of colon tumors. The underlying mechanisms of these effects, however, are not clearly understood. Therefore we performed additional investigations to elucidate the genotoxic potential of 2-dodecylcyclobutanone (2dDCB) that is generated from palmitic acid. In particular, we explored the relative sensitivities of human colon cells, representing different stages of tumor development and healthy colon tissues, respectively. HT29clone19A cells, LT97 adenoma cells and primary human epithelial cells were exposed to 2dDCB (150-2097 μM). We determined cytotoxic effects using trypan blue exclusion. Genotoxicity, reflected as strand breaks, was assessed using the alkaline version of the comet assay and chromosomal abnormalities were investigated by 24-color fluorescence-in-situ-hybridization. 2dDCB was cytotoxic in a time- and dose-dependent manner in LT97 adenoma cells and in freshly isolated primary cells but not in the human colon tumor cell line. Associated with this was a marked induction of DNA damage by 2dDCB in LT97 adenoma cells and in freshly isolated colonocytes, whereas in the HT29clone19A cells no strand breaks were detectable. A long-term incubation of LT97 adenoma cells with lower concentrations of 2dDCB revealed cytogenetic effects. In summary, 2dDCB was clearly genotoxic in healthy human colon epithelial cells and in cells representing preneoplastic colon adenoma. These findings provide additional evidence that this compound may be regarded as a possible risk factor for processes in colon carcinogenesis related to initiation and progression

  17. Bufalin Inhibits the Differentiation and Proliferation of Cancer Stem Cells Derived from Primary Osteosarcoma Cells through Mir-148a.

    Science.gov (United States)

    Chang, Yuewen; Zhao, Yongfang; Gu, Wei; Cao, Yuelong; Wang, Shuqiang; Pang, Jian; Shi, Yinyu

    2015-01-01

    Osteosarcoma (OS) is the second leading cause of cancer-related death in children and young adults. Chemoresistance is the most important cause of treatment failure in OS, largely resulting from presence of cancer stem cells (CSCs). However, CSCs isolated from cancer cell lines do not necessarily represent those from primary human tumors due to accumulation of genetic aberrations that increase with passage number. Therefore, studies on CSCs from primary OS may be more important for understanding the mechanisms driving the chemoresistance of CSCs in OS. We established a primary culture of OS cells, known as C1OS, from freshly resected tumor tissue. We further isolated CSCs from C1OS cells (C1OS-CSCs). We analyzed the effects of bufalin, a traditional Chinese medicine, on the stemness of C1OS-CSCs. We also analyzed the microRNA (miR) targets of bufalin on the stemness of C1OS-CSCs. Moreover, we examined these findings in the OS specimen. Bufalin inhibited the stemness of C1OS-CSCs. Moreover, we found that miR-148a appeared to be a target of bufalin, and miR-148a further regulated DNMT1 and p27 to control the stemness of OS cells. This mechanism was further confirmed in OS specimen. Our data suggest that bufalin may be a promising treatment for OS, and its function may be conducted through regulation of miR-148a. © 2015 S. Karger AG, Basel.

  18. Bufalin Inhibits the Differentiation and Proliferation of Cancer Stem Cells Derived from Primary Osteosarcoma Cells through Mir-148a

    Directory of Open Access Journals (Sweden)

    Yuewen Chang

    2015-06-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the second leading cause of cancer-related death in children and young adults. Chemoresistance is the most important cause of treatment failure in OS, largely resulting from presence of cancer stem cells (CSCs. However, CSCs isolated from cancer cell lines do not necessarily represent those from primary human tumors due to accumulation of genetic aberrations that increase with passage number. Therefore, studies on CSCs from primary OS may be more important for understanding the mechanisms driving the chemoresistance of CSCs in OS. Methods: We established a primary culture of OS cells, known as C1OS, from freshly resected tumor tissue. We further isolated CSCs from C1OS cells (C1OS-CSCs. We analyzed the effects of bufalin, a traditional Chinese medicine, on the stemness of C1OS-CSCs. We also analyzed the microRNA (miR targets of bufalin on the stemness of C1OS-CSCs. Moreover, we examined these findings in the OS specimen. Results: Bufalin inhibited the stemness of C1OS-CSCs. Moreover, we found that miR-148a appeared to be a target of bufalin, and miR-148a further regulated DNMT1 and p27 to control the stemness of OS cells. This mechanism was further confirmed in OS specimen. Conclusion: Our data suggest that bufalin may be a promising treatment for OS, and its function may be conducted through regulation of miR-148a.

  19. An optimized protocol for isolating primary epithelial cell chromatin for ChIP.

    Directory of Open Access Journals (Sweden)

    James A Browne

    Full Text Available A critical part of generating robust chromatin immunoprecipitation (ChIP data is the optimization of chromatin purification and size selection. This is particularly important when ChIP is combined with next-generation sequencing (ChIP-seq to identify targets of DNA-binding proteins, genome-wide. Current protocols refined by the ENCODE consortium generally use a two-step cell lysis procedure that is applicable to a wide variety of cell types. However, the isolation and size selection of chromatin from primary human epithelial cells may often be particularly challenging. These cells tend to form sheets of formaldehyde cross-linked material in which cells are resistant to membrane lysis, nuclei are not released and subsequent sonication produces extensive high molecular weight contamination. Here we describe an optimized protocol to prepare high quality ChIP-grade chromatin from primary human bronchial epithelial cells. The ENCODE protocol was used as a starting point to which we added the following key steps to separate the sheets of formaldehyde-fixed cells prior to lysis. (1 Incubation of the formaldehyde-fixed adherent cells in Trypsin-EDTA (0.25% room temperature for no longer than 5 min. (2 Equilibration of the fixed cells in detergent-free lysis buffers prior to each lysis step. (3 The addition of 0.5% Triton X-100 to the complete cell membrane lysis buffer. (4 Passing the cell suspension (in complete cell membrane lysis buffer through a 25-gauge needle followed by continuous agitation on ice for 35 min. Each step of the modified protocol was documented by light microscopy using the Methyl Green-Pyronin dual dye, which stains cytoplasm red (Pyronin and the nuclei grey-blue (Methyl green. This modified method is reproducibly effective at producing high quality sheared chromatin for ChIP and is equally applicable to other epithelial cell types.

  20. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  1. Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus.

    Science.gov (United States)

    O'Hara, Bethany A; Gee, Gretchen V; Atwood, Walter J; Haley, Sheila A

    2018-04-15

    JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML. IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood

  2. Generation of iPSC lines from primary human chorionic villi cells

    Directory of Open Access Journals (Sweden)

    Björn Lichtner

    2015-11-01

    Full Text Available Primary human chorionic villi (CV cells were used to generate the iPSC line by retroviral transduction of the four Yamanaka-factors OCT4, SOX2, KLF4 and c-MYC. Pluripotency was confirmed both in vivo and in vitro. The transcriptomes of the CV-derived iPSC lines and the human embryonic stem cell lines—H1 and H9 have a Pearson correlation of 0.929 and 0.943 respectively.

  3. A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells.

    Science.gov (United States)

    Rix, U; Remsing Rix, L L; Terker, A S; Fernbach, N V; Hantschel, O; Planyavsky, M; Breitwieser, F P; Herrmann, H; Colinge, J; Bennett, K L; Augustin, M; Till, J H; Heinrich, M C; Valent, P; Superti-Furga, G

    2010-01-01

    Resistance to the BCR-ABL tyrosine kinase inhibitor imatinib poses a pressing challenge in treating chronic myeloid leukemia (CML). This resistance is often caused by point mutations in the ABL kinase domain or by overexpression of LYN. The second-generation BCR-ABL inhibitor INNO-406 is known to inhibit most BCR-ABL mutants and LYN efficiently. Knowledge of its full target spectrum would provide the molecular basis for potential side effects or suggest novel therapeutic applications and possible combination therapies. We have performed an unbiased chemical proteomics native target profile of INNO-406 in CML cells combined with functional assays using 272 recombinant kinases thereby identifying several new INNO-406 targets. These include the kinases ZAK, DDR1/2 and various ephrin receptors. The oxidoreductase NQO2, inhibited by both imatinib and nilotinib, is not a relevant target of INNO-406. Overall, INNO-406 has an improved activity over imatinib but a slightly broader target profile than both imatinib and nilotinib. In contrast to dasatinib and bosutinib, INNO-406 does not inhibit all SRC kinases and most TEC family kinases and is therefore expected to elicit fewer side effects. Altogether, these properties may make INNO-406 a valuable component in the drug arsenal against CML.

  4. Interactions of virulent and avirulent leptospires with primary cultures of renal epithelial cells

    DEFF Research Database (Denmark)

    Ballard, S A; Williamson, M; Adler, B

    1986-01-01

    A primary culture system for the cells of mouse renal-tubular epithelium was established and used to observe the adhesion of leptospires. Virulent strains of serovars copenhageni and ballum attached themselves to epithelial cells within 3 h of infection whereas an avirulent variant of serovar cop...

  5. Effect of anabolics on bovine granulosa-luteal cell primary cultures.

    Directory of Open Access Journals (Sweden)

    Bartolomeo Biolatti

    2007-10-01

    Full Text Available Granulosa cell tumours are observed with increased frequency among calves slaughtered in Northern Italy. The use of illegal anabolics in breeding was taken into account as a cause of this pathology. An in vitro approach was used to detect the possible alterations of cell proliferation induced by anabolics on primary cultures of bovine granulosa-luteal cells. Cultures were treated with different concentrations of substances illegally used in cattle (17beta-estradiol, clenbuterol and boldione. Cytotoxicity was determined by means of MTT test, to exclude toxic effects induced by anabolics and to determine the highest concentration to be tested. Morphological changes were evaluated by means of routine cytology, while PCNA expression was quantified in order to estimate cell proliferation. Cytotoxic effects were revealed at the highest concentrations. The only stimulating effect on cell proliferation was detected in boldione treated cultures: after 48 h treated cells, compared to controls, showed a doubled expression of PCNA. In clenbuterol and 17beta-estradiol treated cells PCNA expression was similar to controls or even decreased. As the data suggest an alteration in cell proliferation, boldione could have a role in the early stage of pathogenesis of granulosa cell tumour in cattle.

  6. Mechanical touch responses of Arabidopsis TCH1-3 mutant roots on inclined hard-agar surface

    Science.gov (United States)

    Zha, Guodong; Wang, Bochu; Liu, Junyu; Yan, Jie; Zhu, Liqing; Yang, Xingyan

    2016-01-01

    The gravity-induced mechanical touch stimulus can affect plant root architecture. Mechanical touch responses of plant roots are an important aspect of plant root growth and development. Previous studies have reported that Arabidopsis TCH1-3 genes are involved in mechano-related events, how-ever, the physiological functions of TCH1-3 genes in Arabidopsis root mechanoresponses remain unclear. In the present study, we applied an inclined hard agar plate method to produce mechanical touch stimulus, and provided evidence that altered mechanical environment could influence root growth. Furthermore, tch1-3 Arabidopsis mutants were investigated on inclined agar surfaces to explore the functions of TCH1-3 genes on Arabidopsis root mechanoresponses. The results showed that two tch2 mutants, cml24-2 and cml24-4, exhibited significantly reduced root length, biased skewing, and decreased density of lateral root. In addition, primary root length and density of lateral root of tch3 (cml12-2) was significantly decreased on inclined agar surfaces. This study indicates that the tch2 and tch3 mutants are hypersensitive to mechanical touch stimulus, and TCH2 (CML24-2 and CML24-4) and TCH3 (CML12-2) genes may participate in the mechanical touch response of Arabidopsis roots.

  7. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  8. Post-transcriptional regulation of osteoblastic platelet-derived growth factor receptor-alpha expression by co-cultured primary endothelial cells

    DEFF Research Database (Denmark)

    Finkenzeller, Günter; Mehlhorn, Alexander T; Schmal, Hagen

    2010-01-01

    -alpha downregulation is dependent on time and cell number. This effect was specific to endothelial cells and was not observed when hOBs were co-cultured with human primary chondrocytes or fibroblasts. Likewise, HUVEC-mediated suppression of PDGFR-alpha expression was only seen in hOBs and mesenchymal stem cells......Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in osteoblast function. Inhibition of PDGFR activity leads to a suppression of osteoblast proliferation, whereas mineralized matrix production is enhanced. In previous experiments, we showed that co......-cultivation of human primary endothelial cells and human primary osteoblasts (hOBs) leads to a cell contact-dependent downregulation of PDGFR-alpha expression in the osteoblasts. In this study, we investigated this effect in more detail, revealing that human umbilical vein endothelial cell (HUVEC)-mediated PDGFR...

  9. Primary B cell lymphoma of the tongue base: a case report

    Science.gov (United States)

    Bechir, Achour; Asma, Achour; Haifa, Regaieg; Nesrine, Abdessayed; Yosra, Ben Youssef; Badreddine, Sriha; Abderrahim, Khelif

    2016-01-01

    Primary non-Hodgkin’s lymphoma’s of the tongue is very rare and accounts for 1% of all malignant tumor of the oral cavity. Clinical features are non-specific ulcerative lesions that do not heal. In the literature, the majority of cases are diffuse large B cell type however, T cell phenotype also may occur. We describe a 77 years old man, who presented with an ulcerative mass in the left margin of the tongue the diagnosis diffuse large B cell lymphoma was confirmed. The patient is actually on treatment R-mini CEOP and has favorable evolution. PMID:28292136

  10. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  11. Primary NK/T cell lymphoma nasal type of the colon

    Directory of Open Access Journals (Sweden)

    Ana María Chirife

    2013-02-01

    Full Text Available Since nasal NK/T-cell lymphoma and NK/T-cell lymphoma nasal type are rare diseases, colonic involvement has seldom been seen. We report a case of a patient with a primary NK/T-cell lymphoma nasal type of the colon. The patient had no history of malignant diseases and was diagnosed after exhaustive study in the context of fever of unknown origin. The first therapeutic approach followed the DAEPOCH-protocol: etoposide, prednisone, doxor-rubicin, vincristine and cyclophosphamide. The persistence of constitutional symptoms after the first treatment course motivated the switch to a second line following the SMILE-protocol: dexamethasone, metotrexate, ifosfamide, E.coli L-asparaginase, and etoposide. Despite intensive chemotherapy, the patient died 2 months after the diagnose of an extranodal NK/T-cell lymphoma of the colon and 4 months after the first symptomatic appearance of disease.

  12. Edge Detection Based On the Characteristic of Primary Visual Cortex Cells

    Science.gov (United States)

    Zhu, M. M.; Xu, Y. L.; Ma, H. Q.

    2018-01-01

    Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness

  13. Molecular techniques for the personalised management of patients with chronic myeloid leukaemia.

    Science.gov (United States)

    Alikian, Mary; Gale, Robert Peter; Apperley, Jane F; Foroni, Letizia

    2017-03-01

    Chronic myeloid leukemia (CML) is the paradigm for targeted cancer therapy. RT-qPCR is the gold standard for monitoring response to tyrosine kinase-inhibitor (TKI) therapy based on the reduction of blood or bone marrow BCR-ABL1 . Some patients with CML and very low or undetectable levels of BCR-ABL1 transcripts can stop TKI-therapy without CML recurrence. However, about 60 percent of patients discontinuing TKI-therapy have rapid leukaemia recurrence. This has increased the need for more sensitive and specific techniques to measure residual CML cells. The clinical challenge is to determine when it is safe to stop TKI-therapy. In this review we describe and critically evaluate the current state of CML clinical management, different technologies used to monitor measurable residual disease (MRD) focus on comparingRT-qPCR and new methods entering clinical practice. We discuss advantages and disadvantages of new methods.

  14. Adenoviral Gene Delivery to Primary Human Cutaneous Cells and Burn Wounds

    OpenAIRE

    Hirsch, Tobias; von Peter, Sebastian; Dubin, Grzegorz; Mittler, Dominik; Jacobsen, Frank; Lehnhardt, Markus; Eriksson, Elof; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2006-01-01

    The adenoviral transfer of therapeutic genes into epidermal and dermal cells is an interesting approach to treat skin diseases and to promote wound healing. The aim of this study was to assess the in vitro and in vivo transfection efficacy in skin and burn wounds after adenoviral gene delivery. Primary keratinocytes (HKC), fibroblasts (HFB), and HaCaT cells were transfected using different concentrations of an adenoviral construct (eGFP). Transfection efficiency and cytotoxicity was determine...

  15. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines.

    Science.gov (United States)

    Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong

    2014-03-01

    To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p adhesives showed mild to moderate cytotoxicity to primary HOKs (p  0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  16. Primary candidiasis and squamous cell carcinoma of the larynx: report of a case.

    Science.gov (United States)

    Lee, Dong Hoon; Cho, Hyong Ho

    2013-02-01

    Primary candidiasis is rare and often confused with a pre-cancerous lesion, squamous cell carcinoma, or verrucous carcinoma. We report an extremely rare case of squamous cell carcinoma of the vocal cord following primary candidiasis. A 62-year-old man presented to our department reporting a 1-month history of hoarseness. He underwent laryngeal microscopic surgery for a presumptive diagnosis of glottic carcinoma. Histopathologic examination revealed candidiasis and scattered moderate dysplasia. He was treated with itraconazole for 4 weeks, and followed up without any recurrence of candidiasis. However, the 42-month follow-up examination revealed a focal whitish lesion on the right true vocal cord, and a repeat biopsy of this area revealed squamous cell carcinoma without evidence of candidiasis. The patient was treated with radiotherapy and remains well with no signs of tumor recurrence or candidiasis.

  17. Pure primary small cell carcinoma of urinary bladder: A rare diagnostic entity

    Directory of Open Access Journals (Sweden)

    Sonia Gon

    2013-01-01

    Full Text Available Small cell carcinoma of the bladder is a rare, aggressive, poorly differentiated neuroendocrine neoplasm accounting for only 0.3-0.7% of all bladder tumors. Since the tumor is very rare, pathogenesis is uncertain. Small cell carcinomas of the urinary bladder are mixed with classic urothelial carcinomas or adenocarcinomas of the bladder in 68% cases, making pure primary small cell carcinoma even a rarer entity. The unknown etiology and natural history of small cell carcinoma of the urinary bladder represent a challenge both to the pathologist and urologists for its diagnosis and treatment, respectively.

  18. Alginate foam-based three-dimensional culture to investigate drug sensitivity in primary leukaemia cells.

    Science.gov (United States)

    Karimpoor, Mahroo; Yebra-Fernandez, Eva; Parhizkar, Maryam; Orlu, Mine; Craig, Duncan; Khorashad, Jamshid S; Edirisinghe, Mohan

    2018-04-01

    The development of assays for evaluating the sensitivity of leukaemia cells to anti-cancer agents is becoming an important aspect of personalized medicine. Conventional cell cultures lack the three-dimensional (3D) structure of the bone marrow (BM), the extracellular matrix and stromal components which are crucial for the growth and survival of leukaemia stem cells. To accurately predict the sensitivity of the leukaemia cells in an in vitro assay a culturing system containing the essential components of BM is required. In this study, we developed a porous calcium alginate foam-based scaffold to be used for 3D culture. The new 3D culture was shown to be cell compatible as it supported the proliferation of both normal haematopoietic and leukaemia cells. Our cell differential assay for myeloid markers showed that the porous foam-based 3D culture enhanced myeloid differentiation in both leukaemia and normal haematopoietic cells compared to two-dimensional culture. The foam-based scaffold reduced the sensitivity of the leukaemia cells to the tested antileukaemia agents in K562 and HL60 leukaemia cell line model and also primary myeloid leukaemia cells. This observation supports the application of calcium alginate foams as scaffold components of the 3D cultures for investigation of sensitivity to antileukaemia agents in primary myeloid cells. © 2018 The Author(s).

  19. Mathematical modeling of a zinc/bromine flow cell and a lithium/thionyl chloride primary cell

    Energy Technology Data Exchange (ETDEWEB)

    Evans, T.I.

    1988-01-01

    Three mathematical models are presented, one for the secondary zinc/bromine flow cell and two for the lithium/thionyl chloride primary cell. The objectives in this modeling work are to aid in understanding the physical phenomena affecting cell performance, determine methods of improving cell performance and safety, and reduce the experimental efforts needed to develop these electrochemical systems. The zinc/bromine cell model is the first such model to include a porous layer on the bromine electrode and to predict discharge behavior. The model is used to solve simultaneously the component material balances and the electroneutrality condition for the unknowns, species concentrations and the solution potential. Two models are presented for the lithium/thionyl chloride cell. The first model is a detailed one-dimensional model which is used to solve simultaneously the component material balances, Ohm's law relations, and current balance. The independent design criteria are identified from the model development. The second model presented here is a two-dimensional thermal model for the spirally would configuration of the lithium/thionyl chloride cell. This is the first model to address the effects of the spiral geometry on heat transfer in the cell.

  20. Functional cell mediated lympholysis I. Description of the assay

    International Nuclear Information System (INIS)

    Goeken, N.E.; Thompson, J.S.

    1981-01-01

    The anamnestic response by human bi-directional (BD) mixed lymphocyte cultures (MLC) to restimulation by cells of the original stimulating type is generally strikingly reduced as compared to that of standard one-way cultures. This difference was shown not to be related to a change in kinetics nor was it due to exhaustion of the media or soluble factors since fresh media did not ameliorate the effect nor were supernatants from BD cultures found to be suppressive. The relative inhibition was also not reversed by removal of the allogeneic cells by phenotype specific antiserum. Cytotoxic tests with donor and responder specific antisera revealed that the cells bearing that phenotype were dramatically reduced in BD as compared to one-way cultures. Thus, the diminished secondary response appears to be due to cytotoxic elimination of the responder cells. This allogeneic cytotoxicity is dependent on non-T, phagocytic, adherent cells. The phenomenon is called Functional Cell Mediated Lympholysis (F-CML). (author)

  1. Primary desmoplastic small round cell tumor of the femur

    International Nuclear Information System (INIS)

    Yoshida, Akihiko; Garcia, Joaquin; Edgar, Mark A.; Meyers, Paul A.; Morris, Carol D.; Panicek, David M.

    2008-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  2. Primary desmoplastic small round cell tumor of the femur

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Akihiko; Garcia, Joaquin [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Edgar, Mark A. [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Medical College of Cornell University, New York, NY (United States); Meyers, Paul A. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Morris, Carol D. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Surgery, Orthopaedic Service, New York, NY (United States); Panicek, David M. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2008-09-15

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  3. Methods Development for the Isolation and Culture of Primary Corneal Endothelial Cells

    Science.gov (United States)

    2017-02-01

    a cell population particularly suitable for low serum propagation, provided that appropriate growth factors are available. A low serum medium...of MGK. 15. SUBJECT TERMS Cornea, chemical warfare agent, corneal endothelial cell, endothelium, growth , isolation, mouse, rabbit, porcine, in...with corneal SM exposure.2 A primary requirement in achieving this goal is to develop methods that enable the isolation of a pure CEC population and

  4. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.

    Science.gov (United States)

    Popova, Daria; Stonier, Adam; Pain, David; Titchener-Hooker, Nigel J; Farid, Suzanne S

    2016-07-01

    Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    Science.gov (United States)

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. BAG3 promotes the phenotypic transformation of primary rat vascular smooth muscle cells via TRAIL.

    Science.gov (United States)

    Fu, Yao; Chang, Ye; Chen, Shuang; Li, Yuan; Chen, Yintao; Sun, Guozhe; Yu, Shasha; Ye, Ning; Li, Chao; Sun, Yingxian

    2018-05-01

    Under normal physiological condition, the mature vascular smooth muscle cells (VSMCs) show differentiated phenotype. In response to various environmental stimuluses, VSMCs convert from the differentiated phenotype to dedifferentiated phenotype characterized by the increased ability of proliferation/migration and the reduction of contractile ability. The phenotypic transformation of VSMCs played an important role in atherosclerosis. Both Bcl-2-associated athanogene 3 (BAG3) and tumor necrosis factor-related apopt-osis inducing ligand (TRAIL) involved in apoptosis. The relationship between BAG3 and TRAIL and their effects the proliferation and migration in VSMCs are rarely reported. This study investigated the effects of BAG3 on the phenotypic modulation and the potential underlying mechanisms in primary rat VSMCs. Primary rat VSMCs were extracted and cultured in vitro. Cell proliferation was detected by cell counting, real-time cell analyzer (RTCA) and EdU incorporation. Cell migration was detected by wound healing, Transwell and RTCA. BAG3 and TRAIL were detected using real-time PCR and western blotting and the secreted proteins in the cultured media by dot blot. The expression of BAG3 increased with continued passages in cultured primary VSMCs. BAG3 promoted the proliferation and migration of primary rat VSMC in a time-dependent manner. BAG3 significantly increased the expression of TRAIL while had no effects on its receptors. TRAIL knockdown or blocking by neutralizing antibody inhibited the proliferation of VSMCs induced by BAG3. TRAIL knockdown exerted no obvious influence on the migration of VSMCs. Based on this study, we report for the first time that BAG3 was expressed in cultured primary rat VSMCs and the expression of BAG3 increased with continued passages. Furthermore, BAG3 promoted the proliferation of VSMCs via increasing the expression of TRAIL. In addition, we also demonstrated that BAG3 promoted the migration of VSMCs independent of TRAIL

  7. Combined Treatment with Low Concentrations of Decitabine and SAHA Causes Cell Death in Leukemic Cell Lines but Not in Normal Peripheral Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2013-01-01

    Full Text Available Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.

  8. Human primary erythroid cells as a more sensitive alternative in vitro hematological model for nanotoxicity studies: Toxicological effects of silver nanoparticles.

    Science.gov (United States)

    Rujanapun, Narawadee; Aueviriyavit, Sasitorn; Boonrungsiman, Suwimon; Rosena, Apiwan; Phummiratch, Duangkamol; Riolueang, Suchada; Chalaow, Nipon; Viprakasit, Vip; Maniratanachote, Rawiwan

    2015-12-01

    Although immortalized cells established from cancerous cells have been widely used for studies in nanotoxicology studies, the reliability of the results derived from immortalized cells has been questioned because of their different characteristics from normal cells. In the present study, human primary erythroid cells in liquid culture were used as an in vitro hematological cell model for investigation of the nanotoxicity of silver nanoparticles (AgNPs) and comparing the results to the immortalized hematological cell lines HL60 and K562. The AgNPs caused significant cytotoxic effects in the primary erythroid cells, as shown by the decreased cell viability and induction of intracellular ROS generation and apoptosis, whereas they showed much lower cytotoxic and apoptotic effects in HL60 and K562 cells and did not induced ROS generation in these cell lines. Scanning electron microcopy revealed an interaction of AgNPs to the cell membrane in both primary erythroid and immortalized cells. In addition, AgNPs induced hemolysis in the primary erythroid cells in a dose-dependent manner, and transmission electron microcopy analysis revealed that AgNPs damaged the erythroid cell membrane. Taken together, these results suggest that human primary erythroid cells in liquid culture are a more sensitive alternative in vitro hematological model for nanotoxicology studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rate of primary refractory disease in B and T-cell non-Hodgkin's lymphoma: correlation with long-term survival.

    Directory of Open Access Journals (Sweden)

    Corrado Tarella

    Full Text Available BACKGROUND: Primary refractory disease is a main challenge in the management of non-Hodgkin's Lymphoma (NHL. This survey was performed to define the rate of refractory disease to first-line therapy in B and T-cell NHL subtypes and the long-term survival of primary refractory compared to primary responsive patients. METHODS: Medical records were reviewed of 3,106 patients who had undergone primary treatment for NHL between 1982 and 2012, at the Hematology Centers of Torino and Bergamo, Italy. Primary treatment included CHOP or CHOP-like regimens (63.2%, intensive therapy with autograft (16.9%, or other therapies (19.9%. Among B-cell NHL, 1,356 (47.8% received first-line chemotherapy with rituximab. Refractory disease was defined as stable/progressive disease, or transient response with disease progression within six months. RESULTS: Overall, 690 (22.2% patients showed primary refractory disease, with a higher incidence amongst T-cell compared to B-cell NHL (41.9% vs. 20.5%, respectively, p<0.001. Several other clinico-pathological factors at presentation were variably associated with refractory disease, including histological aggressive disease, unfavorable clinical presentation, Bone Marrow involvement, low lymphocyte/monocyte ration and male gender. Amongst B-cell NHL, the addition of rituximab was associated with a marked reduction of refractory disease (13.6% vs. 26.7% for non-supplemented chemotherapy, p<0.001. Overall, primary responsive patients had a median survival of 19.8 years, compared to 1.3 yr. for refractory patients. A prolonged survival was consistently observed in all primary responsive patients regardless of the histology. The long life expectancy of primary responsive patients was documented in both series managed before and after 2.000. Response to first line therapy resulted by far the most predictive factor for long-term outcome (HR for primary refractory disease: 16.52, p<0.001. CONCLUSION: Chemosensitivity to primary

  10. A CASE REPORT OF MULTIPLE PRIMARY SQUAMOUS CELL CARCINOMAS OF THE OVARY AND SIGMOID COLON

    Directory of Open Access Journals (Sweden)

    A. B. Villert

    2016-01-01

    Full Text Available Squamous cell ovarian and sigmoid colon carcinomas are extremely rare malignancies. Because of their rarity, it is difficult to investigate the clinical characteristics and prognosis of patients with theses malignancies, and therefore, the increased interest in each clinical case report is highly relevant. Multiple primary squamous cell ovarian and sigmoid colon carcinomas are the subject of discussion and differential diagnosis of sigmoid colon cancer with secondary ovarian cancer. Histopathological and clinical characteristics of the tumors were present and evidences in favor of the multiple primary malignancies were given. The association of squamous cell ovarian and sigmoid colon carcinomas with human papilloma virus type 16 was shown.

  11. Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

    Directory of Open Access Journals (Sweden)

    Josephine C Bodle

    Full Text Available Adipose-derived stem cells (ASC are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1, polycystin-2 (PC2 and intraflagellar transport protein-88 (IFT88, in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical

  12. High-throughput gene expression profiling of memory differentiation in primary human T cells

    Directory of Open Access Journals (Sweden)

    Russell Kate

    2008-08-01

    Full Text Available Abstract Background The differentiation of naive T and B cells into memory lymphocytes is essential for immunity to pathogens. Therapeutic manipulation of this cellular differentiation program could improve vaccine efficacy and the in vitro expansion of memory cells. However, chemical screens to identify compounds that induce memory differentiation have been limited by 1 the lack of reporter-gene or functional assays that can distinguish naive and memory-phenotype T cells at high throughput and 2 a suitable cell-line representative of naive T cells. Results Here, we describe a method for gene-expression based screening that allows primary naive and memory-phenotype lymphocytes to be discriminated based on complex genes signatures corresponding to these differentiation states. We used ligation-mediated amplification and a fluorescent, bead-based detection system to quantify simultaneously 55 transcripts representing naive and memory-phenotype signatures in purified populations of human T cells. The use of a multi-gene panel allowed better resolution than any constituent single gene. The method was precise, correlated well with Affymetrix microarray data, and could be easily scaled up for high-throughput. Conclusion This method provides a generic solution for high-throughput differentiation screens in primary human T cells where no single-gene or functional assay is available. This screening platform will allow the identification of small molecules, genes or soluble factors that direct memory differentiation in naive human lymphocytes.

  13. Squamous cell carcinoma presenting with trigeminal anesthesia: An uncommon presentation of head & neck cancer with unknown primary.

    Science.gov (United States)

    Shah, Ameer T; Dagher, Walid I; O'Leary, Miriam A; Wein, Richard O

    The differential diagnosis of facial anesthesia is vast. This may be secondary to trauma, neoplasm, both intracranial and extracranial, infection, and neurologic disease. When evaluating a patient with isolated facial anesthesia, the head and neck surgeon often thinks of adenoid cystic carcinoma, which has a propensity for perineural invasion and spread. When one thinks of head and neck squamous cell carcinoma with or without unknown primary, the typical presentation involves dysphagia, odynophagia, weight loss, hoarseness, or more commonly, a neck mass. Squamous cell carcinoma presenting as facial anesthesia and perineural spread, with no primary site is quite rare. Case presentations and review of the literature. Trigeminal anesthesia is an uncommon presentation of head and neck squamous cell carcinoma with unknown primary. We present two interesting cases of invasive squamous cell carcinoma of the trigeminal nerve, with no primary site identified. We will also review the literature of head and neck malignancies with perineural spread and the management techniques for the two different cases presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Science.gov (United States)

    Bonazza, Camila; Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Batista, Fabrício Pereira; Paredes-Gamero, Edgar J; Girão, Manoel J B C; Oliva, Maria Luiza V; Castro, Rodrigo Aquino

    2016-01-01

    Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  15. Differential expression of c-Met between primary and metastatic sites in clear-cell renal cell carcinoma and its association with PD-L1 expression.

    Science.gov (United States)

    Lalani, Aly-Khan A; Gray, Kathryn P; Albiges, Laurence; Callea, Marcella; Pignon, Jean-Christophe; Pal, Soumitro; Gupta, Mamta; Bhatt, Rupal S; McDermott, David F; Atkins, Michael B; Woude, G F Vande; Harshman, Lauren C; Choueiri, Toni K; Signoretti, Sabina

    2017-11-28

    In preclinical models, c-Met promotes survival of renal cancer cells through the regulation of programmed death-ligand 1 (PD-L1). However, this relationship in human clear cell renal cell carcinoma (ccRCC) is not well characterized. We evaluated c-Met expression in ccRCC patients using paired primary and metastatic samples and assessed the association with PD-L1 expression and other clinical features. Areas with predominant and highest Fuhrman nuclear grade (FNG) were selected. c-Met expression was evaluated by IHC using an anti-Met monoclonal antibody (MET4 Ab) and calculated by a combined score (CS, 0-300): intensity of c-Met staining (0-3) x % of positive cells (0-100). PD-L1 expression in tumor cells was previously assessed by IHC and PD-L1+ was defined as PD-L1 > 0% positive cells. Our cohort consisted of 45 pairs of primary and metastatic ccRCC samples. Overall, c-Met expression was higher in metastatic sites compared to primary sites (average c-Met CS: 55 vs. 28, p = 0.0003). Higher c-Met expression was associated with higher FNG (4 vs. 3) in primary tumors (average c-Met CS: 52 vs. 20, p = 0.04). c-Met expression was numerically greater in PD-L1+ vs. PD-L1- tumors. Higher c-Met expression in metastatic sites compared to primary tumors suggests that testing for biomarkers of response to c-Met inhibitors should be conducted in metastases. While higher c-Met expression in PD-L1+ tumors requires further investigation, it supports exploring these targets in combination clinical trials.

  16. Multiple Primary Merkel Cell Carcinomas Presenting as Pruritic, Painful Lower Leg Tumors

    Science.gov (United States)

    Blumenthal, Laura; VandenBoom, Timothy; Melian, Edward; Peterson, Anthony; Hutchens, Kelli A.

    2015-01-01

    Merkel cell carcinoma (MCC) is a rare and highly aggressive neuroendocrine tumor of the skin which almost exclusively presents as a solitary tumor. It is most often seen on sun-exposed regions, historically almost exclusively on the head and neck, with only rare case reports on the extremities. Although recent studies have shown increased incidence with up to 20% on the extremities, here we present one of these rare emerging presentations, with the addition of a unique treatment option. Our patient is an 80-year-old male with a 3-month history of multiple raised, rapidly enlarging tumors on the right ankle. Two separate biopsies were performed and demonstrated sheets and clusters of small blue cells filling the dermis with scant cytoplasm, dusty chromatin, and nuclear molding. Subsequent immunohistochemical stains confirmed the diagnosis of multiple primary MCC. Despite the characteristic immunohistochemical profile of primary MCC, the possibility of a metastatic neuroendocrine carcinoma from an alternate primary site was entertained, given his unusual clinical presentation. A complete clinical workup including CT scans of the chest, abdomen, and pelvis showed no evidence of disease elsewhere. Instead of amputation, the patient opted for nonsurgical treatment with radiation therapy alone, resulting in a rapid and complete response. This case represents an unusual presentation of primary MCC and demonstrates further evidence that radiation as monotherapy is an effective local treatment option for inoperable MCC. PMID:26594171

  17. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Clabault, Hélène; Laurent, Laetitia; Hudon-Thibeault, Andrée-Anne; Salustiano, Eugênia Maria Assunção; Fortier, Marlène; Bienvenue-Pariseault, Josianne; Wong Yen, Philippe; Sanderson, J Thomas; Vaillancourt, Cathy

    2016-07-30

    This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.

  18. CT findings of primary squamous cell carcinoma of the stomach: a case report

    International Nuclear Information System (INIS)

    Kim, Kyoung Min; Lee, Chang Hee; Kim, Kyeong Ah; Park, Cheol Min

    2008-01-01

    Primary squamous cell carcinoma is a rare tumor of the stomach with an incidence ranging from 0.04% to 0.4% of all diagnosed gastric cancers. We report a case of squamous cell carcinoma in the stomach associated with hypertrophic gastropathy and observed as a huge mass and wall thickening on the greater curvature site by a multidetector CT

  19. Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Gregor Hoermann

    2015-01-01

    Full Text Available The term myeloproliferative neoplasms (MPN refers to a heterogeneous group of diseases including not only polycythemia vera (PV, essential thrombocythemia (ET, and primary myelofibrosis (PMF, but also chronic myeloid leukemia (CML, and systemic mastocytosis (SM. Despite the clinical and biological differences between these diseases, common pathophysiological mechanisms have been identified in MPN. First, aberrant tyrosine kinase signaling due to somatic mutations in certain driver genes is common to these MPN. Second, alterations of the bone marrow microenvironment are found in all MPN types and have been implicated in the pathogenesis of the diseases. Finally, elevated levels of proinflammatory and microenvironment-regulating cytokines are commonly found in all MPN-variants. In this paper, we review the effects of MPN-related oncogenes on cytokine expression and release and describe common as well as distinct pathogenetic mechanisms underlying microenvironmental changes in various MPN. Furthermore, targeting of the microenvironment in MPN is discussed. Such novel therapies may enhance the efficacy and may overcome resistance to established tyrosine kinase inhibitor treatment in these patients. Nevertheless, additional basic studies on the complex interplay of neoplastic and stromal cells are required in order to optimize targeting strategies and to translate these concepts into clinical application.

  20. Factors associated with a primary surgical approach for sinonasal squamous cell carcinoma.

    Science.gov (United States)

    Cracchiolo, Jennifer R; Patel, Krupa; Migliacci, Jocelyn C; Morris, Luc T; Ganly, Ian; Roman, Benjamin R; McBride, Sean M; Tabar, Viviane S; Cohen, Marc A

    2018-03-01

    Primary surgery is the preferred treatment of T1-T4a sinonasal squamous cell carcinoma (SNSCC). Patients with SNSCC in the National Cancer Data Base (NCDB) were analyzed. Factors that contributed to selecting primary surgical treatment were examined. Overall survival (OS) in surgical patients was analyzed. Four-thousand seven hundred and seventy patients with SNSCC were included. In T1-T4a tumors, lymph node metastases, maxillary sinus location, and treatment at high-volume centers were associated with selecting primary surgery. When primary surgery was utilized, tumor factors and positive margin guided worse OS. Adjuvant therapy improved OS in positive margin resection and advanced T stage cases. Tumor and non-tumor factors are associated with selecting surgery for the treatment of SNSCC. When surgery is selected, tumor factors drive OS. Negative margin resection should be the goal of a primary surgical approach. When a positive margin resection ensues, adjuvant therapy may improve OS. © 2017 Wiley Periodicals, Inc.

  1. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    International Nuclear Information System (INIS)

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC 50 s ranging from 0.1 to 7.4 μg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: →Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. →MVCs inhibited infection by T cell line-adapted viruses. →MVCs inhibited infection by primary isolates of HIV-1. →MVCs inhibited Env-mediated membrane fusion.

  2. [Molecular genetics in chronic myeloid leukemia with variant Ph translocation].

    Science.gov (United States)

    Wu, Wei; Li, Jian-yong; Zhu, Yu; Qiu, Hai-rong; Pan, Jin-lan; Xu, Wei; Chen, Li-juan; Shen, Yun-feng; Xue, Yong-quan

    2007-08-01

    To explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh). Cytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique. Of the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities. The combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.

  3. Different surface sensing of the cell body and nucleus in healthy primary cells and in a cancerous cell line on nanogrooves.

    Science.gov (United States)

    Davidson, Patricia M; Bigerelle, Maxence; Reiter, Günter; Anselme, Karine

    2015-10-01

    Cancer cells are known to have alterations compared to healthy cells, but can these differences extend to the way cells interact with their environment? Here, the authors focused on the alignment on an array of grooves of nanometer depth using two cell types: healthy osteoprogenitor primary cells (HOP) and a cancerous osteosarcoma (SaOs-2) cell line. Another concern was how this alignment affects the cell's interior, namely, the nucleus. Based on the results, it is proposed that these two cell types respond to different size regimes: SaOs-2 cells are more sensitive to shallow grooves while HOP cells are strongly aligned with deep grooves. As a measure of the impact of cell alignment on the nucleus the orientation and elongation of the nucleus were determined. Compared to HOP cells, the cell nucleus of SaOs-2 cells is more aligned and elongated in response to grooves, suggesting a softer nucleus and/or increased force transmission. These results support the hypothesis that cancer cells have reduced nucleus rigidity compared to healthy ones and further indicate differences in sensing, which may be important during metastasis.

  4. Provision of TCRγδ T Cells and Memory T Cells Plus Selected Use of Blinatumomab in Naïve T-cell Depleted Haploidentical Donor Hematopoietic Cell Transplantation for Hematologic Malignancies Relapsed or Refractory Despite Prior Transplantation

    Science.gov (United States)

    2018-01-03

    Acute Lymphoblastic Leukemia (ALL); Acute Myeloid Leukemia (AML); Myeloid Sarcoma; Chronic Myeloid Leukemia (CML); Juvenile Myelomonocytic Leukemia (JMML); Myelodysplastic Syndrome (MDS); Non-Hodgkin Lymphoma (NHL)

  5. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  6. Chapter 10 the primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Stine F; Satir, Peter

    2008-01-01

    Cell cycle control and migration are critical processes during development and maintenance of tissue functions. Recently, primary cilia were shown to take part in coordination of the signaling pathways that control these cellular processes in human health and disease. In this review, we present...... an overview of the function of primary cilia and the centrosome in the signaling pathways that regulate cell cycle control and migration with focus on ciliary signaling via platelet-derived growth factor receptor alpha (PDGFRalpha). We also consider how the primary cilium and the centrosome interact...... with the extracellular matrix, coordinate Wnt signaling, and modulate cytoskeletal changes that impinge on both cell cycle control and cell migration....

  7. MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors

    Directory of Open Access Journals (Sweden)

    Brian Shuch

    2015-01-01

    Full Text Available Aims. Inhibitors of the MET pathway hold promise in the treatment for metastatic kidney cancer. Assessment of predictive biomarkers may be necessary for appropriate patient selection. Understanding MET expression in metastases and the correlation to the primary site is important, as distant tissue is not always available. Methods and Results. MET immunofluorescence was performed using automated quantitative analysis and a tissue microarray containing matched nephrectomy and distant metastatic sites from 34 patients with clear cell renal cell carcinoma. Correlations between MET expressions in matched primary and metastatic sites and the extent of heterogeneity were calculated. The mean expression of MET was not significantly different between primary tumors when compared to metastases (P=0.1. MET expression weakly correlated between primary and matched metastatic sites (R=0.5 and a number of cases exhibited very high levels of discordance between these tumors. Heterogeneity within nephrectomy specimens compared to the paired metastatic tissues was not significantly different (P=0.39. Conclusions. We found that MET expression is not significantly different in primary tumors than metastatic sites and only weakly correlates between matched sites. Moderate concordance of MET expression and significant expression heterogeneity may be a barrier to the development of predictive biomarkers using MET targeting agents.

  8. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  9. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Anna Maria Lustri

    Full Text Available Cholangiocarcinoma (CCA and its subtypes (mucin- and mixed-CCA arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i CX-4945, a casein kinase-2 (CK2 inhibitor that blocks TGF-β1-induced EMT; and (ii LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay.at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM. At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA. Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks foci, suggesting the active role of CK2 as

  10. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  11. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    International Nuclear Information System (INIS)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe; Ranty, Benoit

    2010-01-01

    Research highlights: → The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein → The interaction is confirmed in plant cell nuclei → The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  12. Interaction of a plant pseudo-response regulator with a calmodulin-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Perochon, Alexandre; Dieterle, Stefan; Pouzet, Cecile; Aldon, Didier; Galaud, Jean-Philippe [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France); Ranty, Benoit, E-mail: ranty@scsv.ups-tlse.fr [UMR 5546 CNRS/Universite Toulouse 3, Pole de Biotechnologie vegetale, BP 42617 Auzeville, 31326 Castanet-Tolosan cedex (France)

    2010-08-06

    Research highlights: {yields} The pseudo-response regulator PRR2 specifically binds CML9, a calmodulin-like protein {yields} The interaction is confirmed in plant cell nuclei {yields} The interaction requires an intact PRR2 protein. -- Abstract: Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.

  13. Primary Human Uterine Leiomyoma Cell Culture Quality Control: Some Properties of Myometrial Cells Cultured under Serum Deprivation Conditions in the Presence of Ovarian Steroids.

    Directory of Open Access Journals (Sweden)

    Camila Bonazza

    Full Text Available Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2 and progesterone (P4 effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation. These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.

  14. Cnidarian Primary Cell Culture as a Tool to Investigate the Effect of Thermal Stress at Cellular Level.

    Science.gov (United States)

    Ventura, P; Toullec, G; Fricano, C; Chapron, L; Meunier, V; Röttinger, E; Furla, P; Barnay-Verdier, S

    2018-04-01

    In the context of global change, symbiotic cnidarians are largely affected by seawater temperature elevation leading to symbiosis breakdown. This process, also called bleaching, is triggered by the dysfunction of the symbiont photosystems causing an oxidative stress and cell death to both symbiont and host cells. In our study, we wanted to elucidate the intrinsic capacity of isolated animal cells to deal with thermal stress in the absence of symbiont. In that aim, we have characterized an animal primary cell culture form regenerating tentacles of the temperate sea anemone Anemonia viridis. We first compared the potential of whole tissue tentacle or separated epidermal or gastrodermal monolayers as tissue sources to settle animal cell cultures. Interestingly, only isolated cells extracted from whole tentacles allowed establishing a viable and proliferative primary cell culture throughout 31 days. The analysis of the expression of tissue-specific and pluripotency markers defined cultivated cells as differentiated cells with gastrodermal origin. The characterization of the animal primary cell culture allowed us to submit the obtained gastrodermal cells to hyperthermal stress (+ 5 and + 8 °C) during 1 and 7 days. Though cell viability was not affected at both hyperthermal stress conditions, cell growth drastically decreased. In addition, only a + 8 °C hyperthermia induced a transient increase of antioxidant defences at 1 day but no ubiquitin or carbonylation protein damages. These results demonstrated an intrinsic resistance of cnidarian gastrodermal cells to hyperthermal stress and then confirmed the role of symbionts in the hyperthermia sensitivity leading to bleaching.

  15. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  16. Cell longevity and sustained primary growth in palm stems.

    Science.gov (United States)

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  17. Primary Small Cell Carcinoma of the Stomach Successfully Treated With Cisplatin and Etoposide

    Directory of Open Access Journals (Sweden)

    Shu-Chen Kuo

    2009-11-01

    Full Text Available We report a 44-year-old man with primary gastric small cell carcinoma who showed a remarkable response to chemotherapy specific for pulmonary small cell carcinoma. The patient had been admitted to another local hospital because of intermittent epigastralgia. An upper gastrointestinal examination there revealed an ulcerative tumor, 5 cm in diameter, on the lesser curvature side of the cardia, and endoscopic biopsy reported adenocarcinoma. Computed tomography revealed a mass over the lesser curvature of the stomach and some enlarged regional lymph nodes. Radical total gastrectomy, lymph node dissection, Roux-en-Y esophagojejunostomy and splenectomy were performed at our hospital. Pathology revealed gastric mucosa infiltrated by small-sized tumor cells with scanty cytoplasm and hyperchromatic nuclei. Immunohisto- chemically, the tumor cells were positive for synaptophysin, chromogranin A, and CD56. Primary gastric small cell carcinoma was diagnosed. The postoperative course, complicated by shock due to bleeding, wound infection and intra-abdominal abscess, took more than 2 months to resolve. Follow-up computed tomography showed tumor recurrence with multiple enlarged lymph nodes in the aortocaval region and hepatic hilum. The patient received palliative chemotherapy consisting of cisplatin 80 mg/m2 on day 1 and etoposide 80 mg/m2 on days 1–3 every 28 days, and had partial response to the chemotherapy, with a progression-free survival of 10 months. Chemotherapy with cisplatin and etoposide used for small cell carcinoma of the lung is a good treatment for gastric small cell carcinoma.

  18. Expression of advanced glycation end-products on sun-exposed and non-exposed cutaneous sites during the ageing process in humans.

    Science.gov (United States)

    Crisan, Maria; Taulescu, Marian; Crisan, Diana; Cosgarea, Rodica; Parvu, Alina; Cãtoi, Cornel; Drugan, Tudor

    2013-01-01

    The glycation process is involved in both the intrinsic (individual, genetic) and extrinsic (ultraviolet light, polution and lifestyle) aging processes, and can be quantified at the epidermal or dermal level by histological, immunohistochemical (IHC), or imagistic methods. Our study is focused on a histological and immunohistological comparison of sun-protected regions versus sun-exposed regions from different age groups of skin phototype III subjects, related to the aging process. Skin samples collected from non-protected and UV protected regions of four experimental groups with different ages, were studied using histology and IHC methods for AGE-CML [N(epsilon)-(carboxymethyl)lysine]. A semi-quantitative assessment of the CML expression in the microvascular endothelium and dermal fibroblasts was performed. The Pearson one-way ANOVA was used to compare data between the groups. In the dermis of sun-exposed skin, the number and the intensity of CML positive cells in both fibroblasts and endothelial cells (p<0.05) was higher compared to sun-protected skin, and was significantly increased in older patients. The sun-exposed areas had a more than 10% higher AGE-CML score than the protected areas. No statistically significant correlation was observed between the histological score and the IHC expression of CML. We concluded that in healthy integument, the accumulation of final glycation products increases with age and is amplified by ultraviolet exposure. The study provides new knowledge on differences of AGE-CML between age groups and protected and unprotected areas and emphasizes that endothelium and perivascular area are most affected, justifying combined topical and systemic therapies.

  19. Expression of advanced glycation end-products on sun-exposed and non-exposed cutaneous sites during the ageing process in humans.

    Directory of Open Access Journals (Sweden)

    Maria Crisan

    Full Text Available The glycation process is involved in both the intrinsic (individual, genetic and extrinsic (ultraviolet light, polution and lifestyle aging processes, and can be quantified at the epidermal or dermal level by histological, immunohistochemical (IHC, or imagistic methods. Our study is focused on a histological and immunohistological comparison of sun-protected regions versus sun-exposed regions from different age groups of skin phototype III subjects, related to the aging process. Skin samples collected from non-protected and UV protected regions of four experimental groups with different ages, were studied using histology and IHC methods for AGE-CML [N(epsilon-(carboxymethyllysine]. A semi-quantitative assessment of the CML expression in the microvascular endothelium and dermal fibroblasts was performed. The Pearson one-way ANOVA was used to compare data between the groups. In the dermis of sun-exposed skin, the number and the intensity of CML positive cells in both fibroblasts and endothelial cells (p<0.05 was higher compared to sun-protected skin, and was significantly increased in older patients. The sun-exposed areas had a more than 10% higher AGE-CML score than the protected areas. No statistically significant correlation was observed between the histological score and the IHC expression of CML. We concluded that in healthy integument, the accumulation of final glycation products increases with age and is amplified by ultraviolet exposure. The study provides new knowledge on differences of AGE-CML between age groups and protected and unprotected areas and emphasizes that endothelium and perivascular area are most affected, justifying combined topical and systemic therapies.

  20. Primary cutaneous smoldering adult T-cell leukemia/ lymphoma.

    Science.gov (United States)

    Gittler, Julia; Martires, Kathryn; Terushkin, Vitaly; Brinster, Nooshin; Ramsay, David

    2016-12-15

    HTLV-1 is a virus that is endemic in southwesternJapan and the Caribbean and has been implicatedin the development of ATLL. ATLL, which is anuncommon malignant condition of peripheralT-lymphocytes, is characterized by four clinicalsubtypes, which include acute, lymphomatous,chronic, and smoldering types, that are based onLDH levels, calcium levels, and extent of organinvolvement. We present a 52-year- old woman withpruritic patches with scale on the buttocks and withtender, hyperpigmented macules and papules oftwo-years duration. Histopathologic examinationwas suggestive of mycosis fungoides, laboratoryresults showed HTLV-I and II, and the patient wasdiagnosed with primary cutaneous ATLL. We reviewthe literature on HTLV-1 and ATLL and specifically theprognosis of cutaneous ATLL. The literature suggeststhat a diagnosis of ATLL should be considered amongpatients of Caribbean origin or other endemicareas with skin lesions that suggest a cutaneousT-cell lymphoma, with clinicopathologic features ofmycosis fungoides. Differentiation between ATLLand cutaneous T-cell lymphoma is imperative as theyhave different prognoses and treatment approaches.

  1. Primary intravascular large B-cell lymphoma of pituitary

    Directory of Open Access Journals (Sweden)

    K R Anila

    2012-01-01

    Full Text Available A 68-year-old retired nurse, who was a known hypertensive on medication, presented with prolonged fever of 2-month duration without any clinical evidence of infection. On examination she had altered mental status. She also had other nonspecific complaints such as sleep disturbances, loss of weight, etc. On investigation, she was found to have anemia, thrombocytopenia, raised erythrocyte sedimentation rate (ESR, C-reactive protein (CRP, and lactate dehydrogenase (LDH values. She also had electrolyte imbalance. Radiological evaluation of brain showed mass lesion in the sella turcica, suggestive of pituitary adenoma. Biochemical evaluation showed hypopituitarism. Trans-sphenoidal biopsy was done. Based on histopathological and immunohistochemical findings a diagnosis of intravascular large B-cell lymphoma (IVLBCL of pituitary was made. Our patient′s condition deteriorated rapidly and she succumbed to her illness before therapy could be initiated. We are reporting this case because of the rare subtype of large B-cell lymphoma presenting at an extremely unusual primary site.

  2. Long-Lasting Production of New T and B Cells and T-Cell Repertoire Diversity in Patients with Primary Immunodeficiency Who Had Undergone Stem Cell Transplantation: A Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Monica Valotti

    2014-01-01

    Full Text Available Levels of Kappa-deleting recombination excision circles (KRECs, T-cell receptor excision circles (TRECs, and T-cell repertoire diversity were evaluated in 1038 samples of 124 children with primary immunodeficiency, of whom 102 (54 with severe combined immunodeficiency and 48 with other types of immunodeficiency underwent hematopoietic stem cell transplantation. Twenty-two not transplanted patients with primary immunodeficiency were used as controls. Only data of patients from whom at least five samples were sent to the clinical laboratory for routine monitoring of lymphocyte reconstitutions were included in the analysis. The mean time of the follow-up was 8 years. The long-lasting posttransplantation kinetics of KREC and TREC production occurred similarly in patients with severe combined immunodeficiency and with other types of immunodeficiency and, in both groups, the T-cell reconstitution was more efficient than in nontransplanted children. Although thymic output decreased in older transplanted patients, the degree of T-cell repertoire diversity, after an initial increase, remained stable during the observation period. However, the presence of graft-versus-host disease and ablative conditioning seemed to play a role in the time-related shaping of T-cell repertoire. Overall, our data suggest that long-term B- and T-cell reconstitution was equally achieved in children with severe combined immunodeficiency and with other types of primary immunodeficiency.

  3. Chronic Myelogenous Leukemia (CML) (For Parents)

    Science.gov (United States)

    ... studying the leukemia cells collected from the blood, bone marrow, and/or spinal fluid, doctors can determine the type of leukemia a child has. This is important because treatment varies among different types ... blood or bone marrow, doctors can tell whether the Philadelphia chromosome is ...

  4. Primary clear cell ductal adenocarcinoma of the pancreas: A case report and clinicopathologic literature review

    Directory of Open Access Journals (Sweden)

    Yashpal Modi

    2014-01-01

    Full Text Available We present a very rare, interesting case of a carcinoma of the pancreas with predominantly abundant clear cell morphology. According to the WHO classification, primary clear cell carcinoma of the pancreas is classified as a rare "miscellaneous" carcinoma. The tumor was observed in the distal body and tail of the pancreas of a 74-year-old woman. The histopathology of tumor cells showed well-defined cell membranes, clear cytoplasm, and prominent cell boundaries. Immunohistochemical (IHC staining showed positive reactions to antibodies against vimentin, cytokeratin 7 (CK-7, mucicarmine (MUC-1, periodic acid-Schiff (PAS, periodic acid-Schiff with diastase (PASD, carcinoembryonic antigen (CEA, and Carbohydrate Antigen 19-9 (CA 19-9. On the other hand, IHC staining was negative for alpha-fetoprotein (AFP, cytokeratin 20 (CK-20, HMB45, chromogranin, and synaptophysin. The patient was subsequently diagnosed with a primary solid-type pancreatic clear cell carcinoma with hepatic metastasis. Herein, we report this rare case and include a review of the current literature of this tumor.

  5. [Primary cutaneous B-cell lymphomas: study of 22 cases].

    Science.gov (United States)

    Martín Carrasco, Pablo; Morillo Andújar, Mercedes; Pérez Ruiz, Carmen; de Zulueta Dorado, Teresa; Cabrera Pérez, Rocío; Conejo-Mir, Julián

    2016-09-02

    Primary cutaneous B-cell lymphoma (CBCL) is a very low prevalence neoplasm and constitutes 25% of all primary cutaneous lymphomas. Our objective was to discover the epidemiological, clinic and histologic characteristics of CBCL in our area. Retrospective descriptive study with patients with histologic diagnosis of CBCL followed up in our department between 2004 and 2015. Twenty-two patients with CBCL were included; 65% were men and 35% were women. Follicle centre lymphoma was the most common subtype (41%). Only 3 cases presented with node involvement and one with bone marrow invasion. Five recurrences were detected and one patient died because of the CBCL. This is one of the first CBCL series in theSpanish population. The incidence, sex, age, subtype distribution, clinical features and immunohistochemical patterns are very similar to those of the other series. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  6. Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls

    Science.gov (United States)

    Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.

    Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.

  7. Dasatinib rapidly induces deep molecular response in chronic-phase chronic myeloid leukemia patients who achieved major molecular response with detectable levels of BCR-ABL1 transcripts by imatinib therapy.

    Science.gov (United States)

    Shiseki, Masayuki; Yoshida, Chikashi; Takezako, Naoki; Ohwada, Akira; Kumagai, Takashi; Nishiwaki, Kaichi; Horikoshi, Akira; Fukuda, Tetsuya; Takano, Hina; Kouzai, Yasuji; Tanaka, Junji; Morita, Satoshi; Sakamoto, Junichi; Sakamaki, Hisashi; Inokuchi, Koiti

    2017-10-01

    With the introduction of imatinib, a first-generation tyrosine kinase inhibitor (TKI) to inhibit BCR-ABL1 kinase, the outcome of chronic-phase chronic myeloid leukemia (CP-CML) has improved dramatically. However, only a small proportion of CP-CML patients subsequently achieve a deep molecular response (DMR) with imatinib. Dasatinib, a second-generation TKI, is more potent than imatinib in the inhibition of BCR-ABL1 tyrosine kinase in vitro and more effective in CP-CML patients who do not achieve an optimal response with imatinib treatment. In the present study, we attempted to investigate whether switching the treatment from imatinib to dasatinib can induce DMR in 16 CP-CML patients treated with imatinib for at least two years who achieved a major molecular response (MMR) with detectable levels of BCR-ABL1 transcripts. The rates of achievement of DMR at 1, 3, 6 and 12 months after switching to dasatinib treatment in the 16 patients were 44% (7/16), 56% (9/16), 63% (10/16) and 75% (12/16), respectively. The cumulative rate of achieving DMR at 12 months from initiation of dasatinib therapy was 93.8% (15/16). The proportion of natural killer cells and cytotoxic T cells in peripheral lymphocytes increased after switching to dasatinib. In contrast, the proportion of regulatory T cells decreased during treatment. The safety profile of dasatinib was consistent with previous studies. Switching to dasatinib would be a therapeutic option for CP-CML patients who achieved MMR but not DMR by imatinib, especially for patients who wish to discontinue TKI therapy.

  8. Multiple Primary Merkel Cell Carcinomas Presenting as Pruritic, Painful Lower Leg Tumors

    Directory of Open Access Journals (Sweden)

    Laura Blumenthal

    2015-10-01

    Full Text Available Merkel cell carcinoma (MCC is a rare and highly aggressive neuroendocrine tumor of the skin which almost exclusively presents as a solitary tumor. It is most often seen on sun-exposed regions, historically almost exclusively on the head and neck, with only rare case reports on the extremities. Although recent studies have shown increased incidence with up to 20% on the extremities, here we present one of these rare emerging presentations, with the addition of a unique treatment option. Our patient is an 80-year-old male with a 3-month history of multiple raised, rapidly enlarging tumors on the right ankle. Two separate biopsies were performed and demonstrated sheets and clusters of small blue cells filling the dermis with scant cytoplasm, dusty chromatin, and nuclear molding. Subsequent immunohistochemical stains confirmed the diagnosis of multiple primary MCC. Despite the characteristic immunohistochemical profile of primary MCC, the possibility of a metastatic neuroendocrine carcinoma from an alternate primary site was entertained, given his unusual clinical presentation. A complete clinical workup including CT scans of the chest, abdomen, and pelvis showed no evidence of disease elsewhere. Instead of amputation, the patient opted for nonsurgical treatment with radiation therapy alone, resulting in a rapid and complete response. This case represents an unusual presentation of primary MCC and demonstrates further evidence that radiation as monotherapy is an effective local treatment option for inoperable MCC.

  9. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  10. The influence of Listeria monocytogenes cells on the primary immunologic response in irradiated mice

    International Nuclear Information System (INIS)

    Borowski, J.; Jokoniuk, P.

    1977-01-01

    The influence of killed Listeria monocytogenes cells on the primary immunologic response in mice irradiated with 300 or 500 R was studied. The immunologic response of the mice to sheep red blood cells used as antigen was assessed at the cellular level (by counting PFC) and humoral level. Injection of killed Listeria monocytogenes cells before irradiation of the mice diminished the immunosuppressive effect of roentgen radiation. Injection of the cells after irradiation accelerated regeneration of immunologic reactivity in the irradiated mice. (author)

  11. A primary cell model of HIV-1 latency that uses activation through the T cell receptor and return to quiescence to establish latent infection

    Science.gov (United States)

    Kim, Michelle; Hosmane, Nina N.; Bullen, C. Korin; Capoferri, Adam; Yang, Hung-Chih; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    A mechanistic understanding of HIV-1 latency depends upon a model system that recapitulates the in vivo condition of latently infected, resting CD4+ T lymphocytes. Latency appears to be established after activated CD4+ T cells, the principal targets of HIV-1 infection, become productively infected and survive long enough to return to a resting memory state in which viral expression is inhibited by changes in the cellular environment. This protocol describes an ex vivo primary cell system that is generated under conditions that reflect the in vivo establishment of latency. Creation of these latency model cells takes 12 weeks and, once established, the cells can be maintained and used for several months. The resulting cell population contains both uninfected and latently infected cells. This primary cell model can be used to perform drug screens, study CTL responses to HIV-1, compare viral alleles, or to expand the ex vivo lifespan of cells from HIV-1 infected individuals for extended study. PMID:25375990

  12. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  13. Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications.

    Science.gov (United States)

    Zaccaria, Alfonso; Testoni, Nicoletta; Valenti, Anna Maria; Luatti, Simona; Tonelli, Michela; Marzocchi, Giulia; Cipriani, Raffaella; Baldazzi, Carmen; Giannini, Barbara; Stacchini, Monica; Gamberini, Carla; Castagnetti, Fausto; Rosti, Gianantonio; Azzena, Annalisa; Cavazzini, Francesco; Cianciulli, Anna Maria; Dalsass, Alessia; Donti, Emilio; Giugliano, Emilia; Gozzetti, Alessandro; Grimoldi, Maria Grazia; Ronconi, Sonia; Santoro, Alessandra; Spedicato, Francesco; Zanatta, Lucia; Baccarani, Michele

    2010-06-01

    Additional chromosome abnormalities (ACAs) occur in less than 10% of cases at diagnosis of Philadelphia chromosome (Ph)-positive chronic myelogenous leukemia (CML). In some cases, on the basis of the persistence of the ACAs in Ph-negative cells after response to imatinib, a secondary origin of the Ph chromosome has been demonstrated. In this study, the possible prognostic value of this phenomenon was evaluated. Thirty-six Ph-positive CML patients were included in the study. In six patients, ACAs persisted after the disappearance of the Ph. A complete cytogenetic response (CCR) was obtained in five of these six patients, and five of six also had a high Sokal score. In all the other cases, ACAs disappeared together (in cases of response to therapy with imatinib) or persisted with the Ph (in cases of no response to imatinib). In the former cases, the primary origin of the Ph was demonstrated. CCR was obtained in 22 cases (17 with low to intermediate Sokal scores), while no response was observed in 8 patients (5 with a high Sokal score). Sokal score seems to maintain its prognostic value for patients in whom the Ph occurs as a primary event, but not in those in whom it occurs as a secondary one. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    Science.gov (United States)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  15. Biophysical effects in off-resonant gold nanoparticle mediated (GNOME) laser transfection of cell lines, primary- and stem cells using fs laser pulses.

    Science.gov (United States)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Heinemann, Dag; Kalies, Stefan; Ngezahayo, Anaclet; Nolte, Ingo; Ripken, Tammo; Junghanß, Christian; Meyer, Heiko; Murua Escobar, Hugo; Heisterkamp, Alexander

    2015-08-01

    Gold nanoparticle mediated (GNOME) laser transfection is a powerful technique to deliver small biologically relevant molecules into cells. However, the transfection of larger and especially negatively charged DNA remains challenging. The efficiency for pDNA was 0.57% using parameter that does not influence the endo- and exogenous DNA. In order to gain a deeper understanding of the actual molecule uptake process, the uptake efficiency was determined using molecules of different sizes. It was evaluated that uncharged dextran molecules (2000 kDa) were delivered with an efficiency of 68%. The intracellular distribution of injected molecules was visualized and larger molecules were primary found in the cytoplasm. Patch clamp measurements suggested a permeabilization time up to 15 minutes. The uptake efficiency depended on the size and charge of the molecule to deliver as well as the cell size. A minor role for transfection plays the cell type since primary stem cells were successfully transfected. The perforation efficiency of semi-adherent and suspension cells is influenced by the cell and molecule size. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Primary cerebral non-Langerhans cell histiocytosis: MRI and differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ernemann, U.; Skalej, M.; Voigt, K. [Department of Neuroradiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Hermisson, M.; Platten, M. [Department of Neurology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Jaffe, R. [Pathology Department, Children' s Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213 (United States)

    2002-09-01

    We report a young woman with primary cerebral non-Langerhans cell histiocytosis of the juvenile xanthogranuloma family. The clinical course was complicated by extensive infiltration of cranial nerves and meninges and epi- and intramedullary spinal dissemination. Whereas the cutaneous form of juvenile xanthogranuloma is usually benign and self-limited, central nervous system involvement is associated with high morbidity and mortality and might therefore be considered a separate clinical entity. (orig.)

  17. Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells.

    Science.gov (United States)

    Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana

    2018-07-01

    Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.

  18. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6.

    Science.gov (United States)

    Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan

    2017-06-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Establishment and Characterization of Primary Cultures from Iranian Oral Squamous Cell Carcinoma Patients by Enzymatic Method and Explant Culture

    Directory of Open Access Journals (Sweden)

    Meysam Ganjibakhsh

    2017-10-01

    Full Text Available Objectives: Oral Squamous Cell Carcinoma (OSCC is the most frequent oral cancer worldwide. It is known as the eighth most common cancer in men and as the fifth most common cancer in women. Cytogenetic and biochemical studies in recent decades have emphasized the necessity of providing an appropriate tool for such researches. Cancer cell culture is a useful tool for investigations on biochemical, genetic, molecular and immunological characteristics of different cancers, including oral cancer. Here, we explain the establishment process of five primary oral cancer cells derived from an Iranian population.Materials and Methods: The specimens were obtained from five oral cancer patients. Enzymatic, explant culture and magnetic-activated cell sorting (MACS methods were used for cell isolation. After quality control tests, characterization and authentication of primary oral cancer cells were performed by short tandem repeats (STR profiling, chromosome analysis, species identification, and monitoring the growth, morphology and the expression of CD326 and CD133 markers.Results: Five primary oral cancer cells were established from an Iranian population. The flow cytometry results showed that the isolated cells were positive for CD326 and CD133 markers. Furthermore, the cells were free from mycoplasma, bacterial and fungal contamination. No misidentified or cross-contaminated cells were detected by STR analysis.Conclusions: Human primary oral cancer cells provide an extremely useful platform for studying carcinogenesis pathways of oral cancer in Iranian population. They may be helpful in explaining the ethnic differences in cancer biology and the individuality in anticancer drug response in future studies.

  20. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    Directory of Open Access Journals (Sweden)

    Chen YJ

    2016-07-01

    Full Text Available Yu-Jen Chen,1–4 Li-Wen Fang,5 Wen-Chi Su,6,7 Wen-Yi Hsu,1 Kai-Chien Yang,1 Huey-Lan Huang8 1Department of Medical Research, 2Department of Radiation Oncology, Mackay Memorial Hospital, 3Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, 4Institute of Pharmacology, Taipei Medical University, Taipei, 5Department of Nutrition, I-Shou University, Kaohsiung, 6Research Center for Emerging Viruses, China Medical University Hospital, 7Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 8Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan, Taiwan, Republic of China Abstract: Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML, chronic myeloid leukemia (CML, and acute lymphoblastic leukemia (ALL cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of

  1. Glucosamine exposure reduces proteoglycan synthesis in primary human endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Trine M. Reine

    2016-09-01

    Full Text Available Purpose: Glucosamine (GlcN supplements are promoted for medical reasons, for example, for patients with arthritis and other joint-related diseases. Oral intake of GlcN is followed by uptake in the intestine, transport in the circulation and thereafter delivery to chondrocytes. Here, it is postulated to have an effect on synthesis and turnover of extracellular matrix constituents expressed by these cells. Following uptake in the intestine, serum levels are transiently increased, and the endothelium is exposed to increased levels of GlcN. We investigated the possible effects of GlcN on synthesis of proteoglycans (PGs, an important matrix component, in primary human endothelial cells. Methods: Primary human endothelial cells were cultured in vitro in medium with 5 mM glucose and 0–10 mM GlcN. PGs were recovered and analysed by western blotting, or by SDS-PAGE, gel chromatography or ion-exchange chromatography of 35S-PGs after 35S-sulphate labelling of the cells. Results: The synthesis and secretion of 35S-PGs from cultured endothelial cells were reduced in a dose- and time-dependent manner after exposure to GlcN. PGs are substituted with sulphated glycosaminoglycan (GAG chains, vital for PG function. The reduction in 35S-PGs was not related to an effect on GAG chain length, number or sulphation, but rather to the total expression of PGs. Conclusion: Exposure of endothelial cells to GlcN leads to a general decrease in 35S-PG synthesis. These results suggest that exposure to high levels of GlcN can lead to decreased matrix synthesis, contrary to what has been claimed by supporters of such supplements.

  2. Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT).

    Science.gov (United States)

    Mickisch, G; Fajta, S; Keilhauer, G; Schlick, E; Tschada, R; Alken, P

    1990-01-01

    MTT staining procedures have been used in chemosensitivity testing of established cell lines of human and other sources as well as of human leukaemias, but only limited information on its application in primary solid human tumors is presently available. We have evaluated MTT staining in primary human Renal Cell Carcinomas (RCCs), studied various factors interfering with the optimal use, and finally applied it in subsequent chemosensitivity testing. The method depends on the conversion of a water-soluble tetrazolium salt (MTT) to a purple colored formazan precipitate, a reaction effected by enzymes active only in living cells. Single cell suspensions of RCCs were obtained either by enzymatic dispersion or by mechanical dissagregation, filtered through gauze, and purified by Ficoll density centrifugation. Tests were carried out in 96-well microculture plates. 10(4) viable tumor cells per well at 4 h incubation time with 20 micrograms MTT/100 microliters total medium volume yielded best results. Formazan crystals were dissolved with DMSO, and the plates were immediately measured on a microculture plate reader at 540 nm. Under these criteria, linearity of the system could be demonstrated. For chemosensitivity testing, cells were continuously exposed to a number of drugs prior to the MTT staining procedure. Reproducibility of results was assessed and confirmed by culturing RCCs in flasks additionally, resubmitting them after 1, 2, and 4 weeks to the MTT assay. We conclude that the semiautomated MTT assay offers a valid, rapid, reliable and simple method to determine the degree of chemoresistance in primary human RCCs.

  3. Novel primary thymic defect with T lymphocytes expressing gamma delta T cell receptor

    DEFF Research Database (Denmark)

    Geisler, C; Pallesen, G; Platz, P

    1989-01-01

    Flow cytometric analysis of the peripheral blood mononuclear cells in a six year old girl with a primary cellular immune deficiency showed a normal fraction of CD3 positive T cells. Most (70%) of the CD3 positive cells, however, expressed the gamma delta and not the alpha beta T cell receptor....... Immunoprecipitation and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that most of the gamma delta T cell receptors existed as disulphide-linked heterodimers. Proliferative responses to mitogens were severely reduced, but specific antibody responses after vaccination could be detected...... deficiency associated with a high proportion of T cells expressing the gamma delta T cell receptor has been described in nude mice, and it is suggested that the immune deficiency of this patient may represent a human analogue....

  4. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  5. Comparison of the Influence of Phospholipid-Coated Porous Ti-6Al-4V Material on the Osteosarcoma Cell Line Saos-2 and Primary Human Bone Derived Cells

    Directory of Open Access Journals (Sweden)

    Axel Deing

    2016-03-01

    Full Text Available Biomaterial surface functionalization remains of great interest in the promotion of cell osteogenic induction. Previous studies highlighted the positive effects of porous Ti-6Al-4V and phospholipid coating on osteoblast differentiation and bone remodeling. Therefore, the first objective of this study was to evaluate the potential synergistic effects of material porosity and phospholipid coating. Primary human osteoblasts and Saos-2 cells were cultured on different Ti-6Al-4V specimens (mirror-like polished or porous specimens and were coated or not with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE for three weeks or five weeks. Selected gene expressions (e.g., classical bone markers: alkaline phosphatase, osteocalcin, osteoprotegerin (OPG, receptor activator of nuclear factor kappa-β ligand (RANKL and runt-related transcription factor 2 were estimated in vitro. Furthermore, the expressions of osteocalcin and osteopontin were examined via fluorescent microscopy at five weeks (immunocytochemistry. Consequently, it was observed that phospholipid coating potentiates preferences for low and high porosities in Saos-2 and primary cells, respectively, at the gene and protein levels. Additionally, RANKL and OPG exhibited different gene expression patterns; primary cells showed dramatically increased RANKL expression, whereas OPG expression was decreased in the presence of POPE. A synergistic effect of increased porosity and phospholipid coating was observed in primary osteoblasts in bone remodeling. This study showed the advantage of primary cells over the standard bone cell model.

  6. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling.

    Science.gov (United States)

    Hoefnagel, Juliette J; Dijkman, Remco; Basso, Katia; Jansen, Patty M; Hallermann, Christian; Willemze, Rein; Tensen, Cornelis P; Vermeer, Maarten H

    2005-05-01

    In the European Organization for Research and Treatment of Cancer (EORTC) classification 2 types of primary cutaneous large B-cell lymphoma (PCLBCL) are distinguished: primary cutaneous follicle center cell lymphomas (PCFCCL) and PCLBCL of the leg (PCLBCL-leg). Distinction between both groups is considered important because of differences in prognosis (5-year survival > 95% and 52%, respectively) and the first choice of treatment (radiotherapy or systemic chemotherapy, respectively), but is not generally accepted. To establish a molecular basis for this subdivision in the EORTC classification, we investigated the gene expression profiles of 21 PCLBCLs by oligonucleotide microarray analysis. Hierarchical clustering based on a B-cell signature (7450 genes) classified PCLBCL into 2 distinct subgroups consisting of, respectively, 8 PCFCCLs and 13 PCLBCLsleg. PCLBCLs-leg showed increased expression of genes associated with cell proliferation; the proto-oncogenes Pim-1, Pim-2, and c-Myc; and the transcription factors Mum1/IRF4 and Oct-2. In the group of PCFCCL high expression of SPINK2 was observed. Further analysis suggested that PCFCCLs and PCLBCLs-leg have expression profiles similar to that of germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphoma, respectively. The results of this study suggest that different pathogenetic mechanisms are involved in the development of PCFCCLs and PCLBCLs-leg and provide molecular support for the subdivision used in the EORTC classification.

  7. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    Science.gov (United States)

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  8. Experimental and computational tools for analysis of signaling networks in primary cells

    DEFF Research Database (Denmark)

    Schoof, Erwin M; Linding, Rune

    2014-01-01

    Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis, or differ......Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis......; this information is critical when trying to elucidate key proteins involved in specific cellular responses. Here, methods to generate high-quality quantitative phosphorylation data from cell lysates originating from primary cells, and how to analyze the generated data to construct quantitative signaling network...

  9. The antioxidative effect of bread crust in a mouse macrophage reporter cell line.

    Science.gov (United States)

    Pötzsch, Sandy; Dalgalarrondo, Michele; Bakan, Benedicte; Marion, Didier; Somoza, Veronika; Stangl, Gabriele; Silber, Rolf-Edgar; Simm, Andreas; Navarrete Santos, Alexander

    2014-10-01

    Free radicals and oxidative stress are important factors in the biology of aging and responsible for the development of age-related diseases. One way to reduce the formation of free radicals is to boost the antioxidative system by nutrition. Heat treatment of food promote the Maillard reaction which is responsible for their characteristic color and taste. During the Maillard reaction reducing sugars react with proteins in a non-enzymatic way leading to the formation of advanced glycation end products (AGEs). As an AGE-rich source our group used bread crust (BCE) to investigate the effect of AGEs on the antioxidant defense. It is well known that the NF-kB pathway is activated by treatment of cells with AGEs. Therefore for stimulation with the BCE we used the macrophage reporter cell line RAW/NF-kB/SEAPorter™. Amino acid analysis and LC-MS/MS by Orbitrap Velo was used to determine the bioactive compounds in the soluble BCE. The radical scavenging effect was conducted by the DPPH-assay. BCE induced the NF-kB pathway in RAW/NF-kB/SEAPorter™ cells and also showed a concentration-dependent antioxidative capacity by the DPPH-assay. With the LC/MS and amino acid analyses, we identified the presence of gliadin in BCE confirmed by using specific gliadin antibodies. By immunoprecipitation (IP) with an antibody against γ-gliadin and western blot probing against the AGE carboxymethyllysine (CML) the presence of AGE-gliadin in BCE was confirmed. Stimulation of the RAW/NF-kB/SEAPorter™ cells with the γ-gliadin depleted fractions did not activate the NF-kB pathway. CML-modified gliadin in the BCE is a bioactive compound of the bread crust which is responsible for the antioxidative capacity and for the induction of the NF-kB pathway in mouse macrophages. Copyright © 2014. Published by Elsevier Inc.

  10. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  11. Accurate and reproducible measurements of RhoA activation in small samples of primary cells.

    Science.gov (United States)

    Nini, Lylia; Dagnino, Lina

    2010-03-01

    Rho GTPase activation is essential in a wide variety of cellular processes. Measurement of Rho GTPase activation is difficult with limited material, such as tissues or primary cells that exhibit stringent culture requirements for growth and survival. We defined parameters to accurately and reproducibly measure RhoA activation (i.e., RhoA-GTP) in cultured primary keratinocytes in response to serum and growth factor stimulation using enzyme-linked immunosorbent assay (ELISA)-based G-LISA assays. We also established conditions that minimize RhoA-GTP in unstimulated cells without affecting viability, allowing accurate measurements of RhoA activation on stimulation or induction of exogenous GTPase expression. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Clinical Significance of "Double-hit" and "Double-protein" expression in Primary Gastric B-cell Lymphomas.

    Science.gov (United States)

    He, Miaoxia; Chen, Keting; Li, Suhong; Zhang, Shimin; Zheng, Jianming; Hu, Xiaoxia; Gao, Lei; Chen, Jie; Song, Xianmin; Zhang, Weiping; Wang, Jianmin; Yang, Jianmin

    2016-01-01

    Primary gastric B-cell lymphoma is the second most common malignancy of the stomach. There are many controversial issues about its diagnosis, treatment and clinical management. "Double-hit" and "double-protein" involving gene rearrangement and protein expression of c-Myc and bcl2/bcl6 are the most used terms to describe DLBCL poor prognostic factors in recent years. However, very little is known about the role of these prognostic factors in primary gastric B-cell lymphomas. This study aims to obtain a molecular pathology prognostic model of gastric B-cell lymphoma for clinical stratified management by evaluating how the "double-hit" and "double-protein" in tumor cells as well as microenvironmental reaction of tumor stromal tissue affect clinical outcome in primary gastric B-cell lymphomas. Data and tissues of 188 cases diagnosed with gastric B-cell lymphomas were used in this study. Tumor tissue microarray (TMA) of formalin fixed and paraffin embedded (FFPE) tissues was constructed for fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analysis with a serial of biomarkers containing MYC, BCL2, BCL6, CD31, SPARC, CD10, MUM1 and Ki-67. Modeled period analysis was used to estimate 3-year and 5-year overall survival (OS) and disease-free survival (DFS) distributions. There was no definite "double-hit" case though the gene rearrangement of c-Myc (5.9%), bcl2 (0.1%) and bcl6 (7.4%) was found in gastric B-cell lymphomas. The gene amplification or copy gains of c-Myc (10.1%), bcl-2 (17.0%) and bcl-6 (0.9%) were present in these lymphomas. There were 12 cases of the lymphomas with the "double-protein" expression of MYC and BCL2/BCL6. All patients with "double-protein" gastric B-cell lymphomas had poor outcome compared with those without. More importantly, "MYC-BCL2-BCL6" negative group of gastric B-cell lymphoma patients had favorable clinical outcome regardless clinical stage, pathological types and therapeutic modalities. And the similar better

  13. Betal-integrins in the primary cilium of MDCK cells potentiate fibronectin-induced Ca2+ signalling

    DEFF Research Database (Denmark)

    Prætorius, Helle; Prætorius, Jeppe; Nielsen, Søren

    2004-01-01

    observed that β1-integrin, α3-integrin, and perhaps α5-integrin were localized to the primary cilium of MDCK cells by combining lectin and immunofluorescence confocal microscopy. β1-Integrin was also colocalized with tubulin to the primary cilia of the rat renal collecting ducts, as well as to the cilia...

  14. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo

    2018-05-11

    Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins

    Energy Technology Data Exchange (ETDEWEB)

    Kamau Chapman, Sarah W. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland); Hassa, Paul O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland); European Molecular Biology Laboratory (EMBL) Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Koch-Schneidemann, Sabine; Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann-Amtenbrink, Margarethe [MatSearch, Chemin Jean Pavillard 14, 1009 Pully (Switzerland); Steitz, Benedikt; Petri-Fink, Alke; Hofmann, Heinrich [Laboratory of Powder Technology, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Hottiger, Michael O. [Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstr. 190, 8057 Zurich (Switzerland)], E-mail: hottiger@vetbio.uzh.ch

    2008-04-15

    Primary cell lines are more difficult to transfect when compared to immortalized/transformed cell lines, and hence new techniques are required to enhance the transfection efficiency in these cells. We isolated and established primary cultures of synoviocytes, chondrocytes, osteoblasts, melanocytes, macrophages, lung fibroblasts, and embryonic fibroblasts. These cells differed in several properties, and hence were a good representative sample of cells that would be targeted for expression and delivery of therapeutic genes in vivo. The efficiency of gene delivery in all these cells was enhanced using polyethylenimine-coated polyMAG magnetic nanoparticles, and the rates (17-84.2%) surpassed those previously achieved using other methods, especially in cells that are difficult to transfect. The application of permanent and pulsating magnetic fields significantly enhanced the transfection efficiencies in synoviocytes, chondrocytes, osteoblasts, melanocytes and lung fibroblasts, within 5 min of exposure to these magnetic fields. This is an added advantage for future in vivo applications, where rapid gene delivery is required before systemic clearance or filtration of the gene vectors occurs.

  16. Neuroendocrine Merkel cell nodal carcinoma of unknown primary site: management and outcomes of a rare entity.

    Science.gov (United States)

    Kotteas, E A; Pavlidis, N

    2015-04-01

    Merkel cell nodal carcinoma of unknown primary (MCCUP) is a rare neuroendocrine tumour with distinct clinical and biological behaviour. We conducted a review of retrospective data extracted from 90 patients focusing on the management and outcome of this disease. We also compared life expectancy of these patients with the outcome of patients with known Merkel primaries and with neuroendocrine cancers of unidentifiable primary. There is a limited body of data for this type of malignancy, however, patients with Merkel cell nodal carcinoma of unknown primary site, seem to have better survival when treated aggressively than patients with cutaneous Merkel tumours of the same stage and equal survival with patients with low-grade neuroendocrine tumour of unknown origin. The lack of prospective trials, and the inadequate data, hamper the management of these tumours. Establishment of treatment guidelines is urgently needed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Primary B-cell Lymphoma of the Thyroid Featuring the Different Ultrasonographic Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Na; Choi, Yoon Jung; Kim, Dong Hoon [Kangbuk Samsung Medical Center, Seoul (Korea, Republic of)

    2009-06-15

    We review here 3 cases of primary thyroid lymphoma that we experienced during the past 5 years (age range: 39-55, all of the patients were female). The clinical and various ultrasonographic characteristics together with the other imaging modalities of primary thyroid lymphomas are described. The clinical features at presentation for one patient were a goiter with rapid growth and this was accompanied by compressive symptoms. The tumors of the other 2 patients were incidentally found during screening thyroid ultrasound exams. The pathologic studies of 2 cases showed a diffuse B-cell lymphoma with associated Hashimoto's thyroiditis and one case was a B-cell lymphoma of the MALT type. An extra-thyroid extension was shown in one case. The treatments included surgery alone for two cases, and chemotherapy and radiation therapy for one case. A US exam of thyroid lymphoma can show various morphological features, and US-CNB is helpful for diagnosing thyroid lymphoma.

  18. Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9.

    Directory of Open Access Journals (Sweden)

    Enas R Yassin

    2009-08-01

    Full Text Available NUP98-HOXA9 is the prototype of a group of oncoproteins associated with acute myeloid leukemia. It consists of an N-terminal portion of NUP98 fused to the homeodomain of HOXA9 and is believed to act as an aberrant transcription factor that binds DNA through the homeodomain. Here we show that NUP98-HOXA9 can regulate transcription without binding to DNA. In order to determine the relative contributions of the NUP98 and HOXA9 portions to the transforming ability of NUP98-HOXA9, the effects of NUP98-HOXA9 on primary human CD34+ cells were dissected and compared to those of wild-type HOXA9. In contrast to previous findings in mouse cells, HOXA9 had only mild effects on the differentiation and proliferation of primary human hematopoietic cells. The ability of NUP98-HOXA9 to disrupt the differentiation of primary human CD34+ cells was found to depend primarily on the NUP98 portion, whereas induction of long-term proliferation required both the NUP98 moiety and an intact homeodomain. Using oligonucleotide microarrays in primary human CD34+ cells, a group of genes was identified whose dysregulation by NUP98-HOXA9 is attributable primarily to the NUP98 portion. These include RAP1A, HEY1, and PTGS2 (COX-2. Their functions may reflect the contribution of the NUP98 moiety of NUP98-HOXA9 to leukemic transformation. Taken together, these results suggest that the effects of NUP98-HOXA9 on gene transcription and cell transformation are mediated by at least two distinct mechanisms: one that involves promoter binding through the homeodomain with direct transcriptional activation, and another that depends predominantly on the NUP98 moiety and does not involve direct DNA binding.

  19. Total-body irradiation - role and indications. Results from the German Registry for Stem Cell Transplantation (DRST)

    International Nuclear Information System (INIS)

    Heinzelmann, F.; Bamberg, M.; Belka, C.; Ottinger, H.; Mueller, C.H.; Allgaier, S.; Faul, C.

    2006-01-01

    Background and purpose: total-body irradiation (TBI) is a key part of the conditioning regimen before hematopoietic stem cell transplantation (HSCT). The exact role of TBI as part of the conditioning regimen is largely unclear. In order to determine the relevance of TBI, the status of TBI utilization was analyzed on the basis of a nationwide registry. Material and methods: 14,371 patients (1998-2002) documented in the German Stem Cell Transplantation Registry (DRST) were analyzed regarding TBI utilization prior to autologous or allogeneic transplantation, underlying disorder, type of donor, stem cell source, and size of the treatment center. Results: for autologous HSCT ∝10% of the patients (873/8,167) received TBI, with chronic lymphocytic leukemia (CLL, ∝80%, 171/214) and low-grade non-Hodgkin's lymphoma (l-NHL, ∝35%, 330/929) being the most important disorders. In the allogeneic setting 50% of the patients (2,399/4,904) received TBI, with acute lymphocytic leukemia (ALL, 85%, 794/930), acute myeloid leukemia (AML, 45%, 662/1,487) and chronic myeloid leukemia (CML, 49%, 561/1,156) being the key indications. The type of donor, stem cell source and center size did not strongly influence the use of TBI. Conclusion: TBI has only a limited role for the conditioning prior to autologous HCST. For allogeneic HSCT TBI is widely accepted with no major changes over the observation time. The use of TBI is generally accepted for ALL, whereas approximately half of the patients with CML or AML received TBI. Although a considerably large database was analyzed, no clear determinants for the use of TBI could be distinguished. (orig.)

  20. Total-body irradiation - role and indications. Results from the German Registry for Stem Cell Transplantation (DRST)

    Energy Technology Data Exchange (ETDEWEB)

    Heinzelmann, F.; Bamberg, M.; Belka, C. [Dept. of Radiation Oncology, Univ. of Tuebingen (Germany); Ottinger, H. [German Registry for Stem Cell Transplantation (DRST) Secretary, Univ. of Essen (Germany); Mueller, C.H.; Allgaier, S. [DRST Datacenter, DRK Bloodbank Center Ulm (Germany); Faul, C. [Dept. of Internal Medicine II, Univ. of Tuebingen (Germany)

    2006-04-15

    Background and purpose: total-body irradiation (TBI) is a key part of the conditioning regimen before hematopoietic stem cell transplantation (HSCT). The exact role of TBI as part of the conditioning regimen is largely unclear. In order to determine the relevance of TBI, the status of TBI utilization was analyzed on the basis of a nationwide registry. Material and methods: 14,371 patients (1998-2002) documented in the German Stem Cell Transplantation Registry (DRST) were analyzed regarding TBI utilization prior to autologous or allogeneic transplantation, underlying disorder, type of donor, stem cell source, and size of the treatment center. Results: for autologous HSCT {proportional_to}10% of the patients (873/8,167) received TBI, with chronic lymphocytic leukemia (CLL, {proportional_to}80%, 171/214) and low-grade non-Hodgkin's lymphoma (l-NHL, {proportional_to}35%, 330/929) being the most important disorders. In the allogeneic setting 50% of the patients (2,399/4,904) received TBI, with acute lymphocytic leukemia (ALL, 85%, 794/930), acute myeloid leukemia (AML, 45%, 662/1,487) and chronic myeloid leukemia (CML, 49%, 561/1,156) being the key indications. The type of donor, stem cell source and center size did not strongly influence the use of TBI. Conclusion: TBI has only a limited role for the conditioning prior to autologous HCST. For allogeneic HSCT TBI is widely accepted with no major changes over the observation time. The use of TBI is generally accepted for ALL, whereas approximately half of the patients with CML or AML received TBI. Although a considerably large database was analyzed, no clear determinants for the use of TBI could be distinguished. (orig.)

  1. Studies on the Identification of Constituents in Ethanol Extract of Radix Glycyrrhizae and Their Anti-Primary Hepatoma Cell Susceptibility

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-01-01

    Full Text Available The objective of this paper is to study the chemical constituents of Radix Glycyrrhizae and to apply the resulting natural products in the study of drug susceptibility of hepatoma cells so as to provide a scientific basis for quality standards and clinical application of medicinal Radix Glycyrrhizae. Chromatographic materials were used for isolation and purification; structural identification was performed based on physicochemical properties and spectral data. MTT colorimetry was used to detect the proliferation inhibition rate against primary hepatoma cells by natural products, and flow cytometry was used to detect the changes in cell cycle progression. Five compounds were isolated and identified, namely, liquiritigenin (1, liquiritin (2, isoliquiritigenin (3, betulinic acid (4, and oleanolic acid (5. In the study, 5-FU (5-fluorouracil is used as a positive control to the hepatoma cells. Primary hepatoma cells were highly susceptible to 5-FU and liquiritigenin, both of which markedly inhibited the proliferation of hepatoma cells; flow cytometry results showed an increase in G0/G1 phase cells, a decrease in S phase cells, and a relative increase in G2/M phase cells. Primary hepatoma cells are highly susceptible to liquiritigenin, a natural product; the testing of tumor cell susceptibility is of important significance to the improvement of therapeutic effect of cancer.

  2. Alteration of UV primary fluorescence of vital tumor cells following irradiation with neutrons and gamma rays

    International Nuclear Information System (INIS)

    Merkle, K.

    1980-01-01

    The change of UV primary fluorescence intensity of vital unstained cells of Ehrlich ascites carcinoma after 60 Co-gamma and neutron irradiation was investigated. The mean neutron energy was 6.2 MeV. Fluorescence intensity was detected using impulse cytophotometry. The UV intensity of single cells was measured in the spectral range from 300-400 nm. An monotonous increase of dose-effect curves and a maximum at 3.5 Gy (neutrons) and 30 Gy (γ-rays) was obtained. The first relevant increase of fluorescence intensity was detected at 0.4 Gy (neutrons) and 0.75 Gy (γ-rays). Factors influencing the increase and decrease of primary fluorescence behavior of vital cells are discussed. (author)

  3. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  4. Generation of primary cultures of bovine brain endothelial cells and setup of cocultures with rat astrocytes

    DEFF Research Database (Denmark)

    Helms, Hans C; Brodin, Birger

    2014-01-01

    -brain barrier. The present protocol describes the setup of an in vitro coculture model based on primary cultures of endothelial cells from bovine brain microvessels and primary cultures of rat astrocytes. The model displays a high electrical tightness and expresses blood-brain barrier marker proteins....

  5. MHC class II restricted innate-like double negative T cells contribute to optimal primary and secondary immunity to Leishmania major.

    Science.gov (United States)

    Mou, Zhirong; Liu, Dong; Okwor, Ifeoma; Jia, Ping; Orihara, Kanami; Uzonna, Jude Ezeh

    2014-09-01

    Although it is generally believed that CD4(+) T cells play important roles in anti-Leishmania immunity, some studies suggest that they may be dispensable, and that MHC II-restricted CD3(+)CD4(-)CD8(-) (double negative, DN) T cells may be more important in regulating primary anti-Leishmania immunity. In addition, while there are reports of increased numbers of DN T cells in Leishmania-infected patients, dogs and mice, concrete evidence implicating these cells in secondary anti-Leishmania immunity has not yet been documented. Here, we report that DN T cells extensively proliferate and produce effector cytokines (IFN-γ, TNF and IL-17) and granzyme B (GrzB) in the draining lymph nodes and spleens of mice following primary and secondary L. major infections. DN T cells from healed mice display functional characteristics of protective anti-Leishmania memory-like cells: rapid and extensive proliferation and effector cytokines production following L. major challenge in vitro and in vivo. DN T cells express predominantly (> 95%) alpha-beta T cell receptor (αβ TCR), are Leishmania-specific, restricted mostly by MHC class II molecules and display transcriptional profile of innate-like genes. Using in vivo depletion and adoptive transfer studies, we show that DN T cells contribute to optimal primary and secondary anti-Leishmania immunity in mice. These results directly identify DN T cells as important players in effective and protective primary and secondary anti-L. major immunity in experimental cutaneous leishmaniasis.

  6. Adoptively transferred dendritic cells restore primary cell-mediated inflammatory competence to acutely malnourished weanling mice.

    Science.gov (United States)

    Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill

    2008-02-01

    Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.

  7. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts

    DEFF Research Database (Denmark)

    Hejbøl, Eva Kildall; Sellathurai, Jeeva; Nair, Prabha Damodaran

    2017-01-01

    Scaffolds are materials used for delivery of cells for regeneration of tissues. They support three-dimensional organization and improve cell survival. For the repair of small skeletal muscles, injections of small volumes of cells are attractive, and injectable scaffolds for delivery of cells offer...... a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed......, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid...

  8. Primary mantle cell lymphoma of tonsil: Case report

    Directory of Open Access Journals (Sweden)

    Knežević Snežana B.

    2017-01-01

    Full Text Available Introduction: Mantle cell lymphoma is rare type of the mature B cell lymphoma. It includes 4% - 6% of all Non Hodgkin's Lymphomas. Compared to the other subtypes of lymphoma it develops more often in older men, and the median age of patients is 65 years. Primary tonsillar lymphoma accounts for less than 1% of head and neck malignancies. Method: Data obtained from medical records of the patient. Objective: Emphasize the importance of early and accurate diagnosis and early treatment of malignant diseases. Case report: Patient RP, 63 years old, presents with difficult swallowing, hoarseness, enlarged tonsils, snoring. Left tonsil almost sets into the right tonsillar vine, displaces the uvula and covers the isthmus. Respiratory sound is normal, with rhythmic action of the heart and soft abdomen. Good general condition. Echo: enlarged and actively altered lymph glands of the middle right jugular chain, the largest 148x77 mm, on the left side lymph nodes are enlarged, the largest is 143x72 mm. Echo of the abdomen inconspicuous. Lab: WBC 5.9, RBC 5.2, Hb 152, Hct 0.44, SE 10, CK 129, LDH 331, CRP 4.6, ALP 61, fibrinogen 2.4, Ca2+ 2.3, phosphate 0.8; BK, HCV, HBsAg, EB, HIV negative. X-ray of the chest inconspicuous. Admitted to the hematology department of the General Hospital. PH: Immunoproliferative disease. Immunohistochemistry, at the institute of Pathology: IHH CK AE1-AE3, PAX5 +, CD20 +, CD3, bcl2 +, bcl6-, CyklinD1 +, CD23-, CD43 +, MUM1 - / +, Ki67 + in about 20% of the tumor cells. Morphological and immunohistochemical findings: Mantle cell lymphoma. MSCD of the neck, chest and upper abdomen: Left tonsil diameter is 28x32 mm and length is 36mm, with lobular contour and heterogeneous structure, asymmetrically narrowing lumen of the airways to 7 mm. pathologically enlarged submandibular and par jugular lymph nodes (10-15 mm diameter on the left. There were no pathological findings in the lung parenchyma. Abdominal and retroperitoneal lymph nodes

  9. Oncogenes in myeloproliferative disorders.

    Science.gov (United States)

    Tefferi, Ayalew; Gilliland, D Gary

    2007-03-01

    Myeloproliferative disorders (MPDs) constitute a group of hematopoietic malignancies that feature enhanced proliferation and survival of one or more myeloid lineage cells. William Dameshek is credited for introducing the term "MPDs" in 1951 when he used it to group chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) under one clinicopathologic category. Since then, other myeloid neoplasms have been added to the MPD member list: chronic neutrophilic (CNL), eosinophilic (CEL) and myelomonocytic (CMML) leukemias; juvenile myelomonocytic leukemia (JMML); hypereosinophilic syndrome (HES); systemic mastocytosis (SM); and others. Collectively, MPDs are stem cell-derived clonal proliferative diseases whose shared and diverse phenotypic characteristics can be attributed to dysregulated signal transduction--a consequence of acquired somatic mutations. The most recognized among the latter is BCR-ABL, the disease-causing mutation in CML. Other mutations of putative pathogenetic relevance in MPDs include: JAK2V617F in PV, ET, and PMF; JAK2 exon 12 mutations in PV; MPLW515L/K in PMF and ET; KITD816V in SM; FIP1L1-PDGFRA in CEL-SM; rearrangements of PDGFRB in CEL-CMML and FGFR1 in stem cell leukemia-lymphoma syndrome; and RAS/PTPN11/NF1 mutations in JMML. This increasing repertoire of mutant molecules has streamlined translational research and molecularly targeted drug development in MPDs.

  10. Breast abscess as the initial manifestation of primary pure squamous cell carcinoma: a rare presentation and literature review.

    Science.gov (United States)

    Salemis, Nikolaos S

    2011-01-01

    Primary squamous cell carcinoma of the breast is a very rare tumor accounting for less than 0.4% of all breast cancers. Fewer than 100 cases have been reported in the literature so far. The diagnosis requires strict pathologic criteria to be fulfilled. Due to the rarity of this tumor the optimal treatment and prognosis are both unclear. Breast abscess as the initial presentation of a primary squamous cell breast carcinoma is an extremely rare clinical entity. In this study, we describe a case of a 61-year-old postmenopausal woman who presented with typical manifestations of a breast abscess and was diagnosed with a pure primary squamous cell breast carcinoma. Diagnostic evaluation and management of the patient are discussed along with a review of the literature. Despite its rarity, the possibility of a primary pure squamous cell breast carcinoma should always be considered in the differential diagnosis in postmenopausal patients presenting with manifestations of a breast abscess, especially in those who respond poorly to the initial treatment. Physicians should be aware of this rare malignancy in order to avoid delays in diagnosis and treatment.

  11. The Hepatocyte Growth Factor (HGF/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Directory of Open Access Journals (Sweden)

    Marjorie Boissinot

    2014-08-01

    Full Text Available Met is the receptor of hepatocyte growth factor (HGF, a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML, and myeloproliferative neoplasms (MPNs. The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs.

  12. The Hepatocyte Growth Factor (HGF)/Met Axis: A Neglected Target in the Treatment of Chronic Myeloproliferative Neoplasms?

    Energy Technology Data Exchange (ETDEWEB)

    Boissinot, Marjorie [Translational Neuro-Oncology Group, Leeds Institute of Cancer and Pathology, University of Leeds, Level 5 Wellcome Trust Brenner Building, St James’s Hospital, Leeds LS9 7TF (United Kingdom); Vilaine, Mathias [Institute of Research on Cancer and Aging (IRCAN), CNRS-Inserm-UNS UMR 7284, U 1081, Centre A. Lacassagne, 33 Avenue Valombrose, Nice 06189 (France); Hermouet, Sylvie, E-mail: sylvie.hermouet@univ-nantes.fr [Centre Hospitalier Universitaire (CHU), Place Alexis Ricordeau, Nantes 44093 (France); Inserm UMR892, Centre de Recherche en Cancérologie Nantes-Angers, Institut de Recherche en Santé, Université de Nantes, 8 quai Moncousu, Nantes cedex 44007 (France)

    2014-08-12

    Met is the receptor of hepatocyte growth factor (HGF), a cytoprotective cytokine. Disturbing the equilibrium between Met and its ligand may lead to inappropriate cell survival, accumulation of genetic abnormalities and eventually, malignancy. Abnormal activation of the HGF/Met axis is established in solid tumours and in chronic haematological malignancies, including myeloma, acute myeloid leukaemia, chronic myelogenous leukaemia (CML), and myeloproliferative neoplasms (MPNs). The molecular mechanisms potentially responsible for the abnormal activation of HGF/Met pathways are described and discussed. Importantly, inCML and in MPNs, the production of HGF is independent of Bcr-Abl and JAK2V617F, the main molecular markers of these diseases. In vitro studies showed that blocking HGF/Met function with neutralizing antibodies or Met inhibitors significantly impairs the growth of JAK2V617F-mutated cells. With personalised medicine and curative treatment in view, blocking activation of HGF/Met could be a useful addition in the treatment of CML and MPNs for those patients with high HGF/MET expression not controlled by current treatments (Bcr-Abl inhibitors in CML; phlebotomy, hydroxurea, JAK inhibitors in MPNs)

  13. Coexistance of JAK2V617F mutation and BCR/ABL translocation in one patient

    Directory of Open Access Journals (Sweden)

    Murat Albayrak

    2010-09-01

    Full Text Available Dear Editor,The myeloproliferative disorders (MPDs constitute a subcategory of chronic myeloid disorders and include chronic myeloid leukemia (CML, essential thrombocytemia (ET, polycythemia vera (PV and myelofibrosis (MF. In 1960, the discovery of the Philadelphia chromosome (Ph became a cornerstone in CML treatment and led to the development of moleculary targeted therapy. Recently, an acquired mutation in the Janus kinase 2 (JAK2 gene has been discovered in nearly all patents with PV and approximately half of the patients with primary MF and ET. Subsequently, the mutation has been demonstrated in atypical MPDs (chronic neutrophilic leukemia, unclassified, de novo myelodysplastic syndrome or acute myeloid leukemia.1 It has been hoped that targeted inhibition of JAK2V617F should achieve similar disease control as thyrosine kinases has produced in CML.

  14. Primary Diffuse Large Cell Lymphoma of the Bladder: Case Report and Literature Review

    OpenAIRE

    Mansour Ansari; Hamid Nasrollahi; Majdaddin Rajaei; Maral Mokhtari; Seyed Hasan Hamedi; Mohammad Mohammadianpanah; Shapour Omidvari; Ahmad Mosalaei; Niloofar Ahmadloo

    2017-01-01

    Most bladder tumors are epithelial in origin. Nonepithelial cancers are rarely located in the bladder. Sarcomas are the most common malignancies among nonepithelial cancers. Primary bladder lymphoma is rare and mostly low grade. Here, we have reported a case of diffuse large cell lymphoma of the bladder. The patient, a 64-year-old man, had urinary frequency for 18 months. Abdominal sonography indicated a thick bladder wall and transurethral biopsy showed diffuse large cell lymp...

  15. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

    Science.gov (United States)

    Rimann, Markus; Bono, Epifania; Annaheim, Helene; Bleisch, Matthias; Graf-Hausner, Ursula

    2016-08-01

    Cells grown in 3D are more physiologically relevant than cells cultured in 2D. To use 3D models in substance testing and regenerative medicine, reproducibility and standardization are important. Bioprinting offers not only automated standardizable processes but also the production of complex tissue-like structures in an additive manner. We developed an all-in-one bioprinting solution to produce soft tissue models. The holistic approach included (1) a bioprinter in a sterile environment, (2) a light-induced bioink polymerization unit, (3) a user-friendly software, (4) the capability to print in standard labware for high-throughput screening, (5) cell-compatible inkjet-based printheads, (6) a cell-compatible ready-to-use BioInk, and (7) standard operating procedures. In a proof-of-concept study, skin as a reference soft tissue model was printed. To produce dermal equivalents, primary human dermal fibroblasts were printed in alternating layers with BioInk and cultured for up to 7 weeks. During long-term cultures, the models were remodeled and fully populated with viable and spreaded fibroblasts. Primary human dermal keratinocytes were seeded on top of dermal equivalents, and epidermis-like structures were formed as verified with hematoxylin and eosin staining and immunostaining. However, a fully stratified epidermis was not achieved. Nevertheless, this is one of the first reports of an integrative bioprinting strategy for industrial routine application. © 2015 Society for Laboratory Automation and Screening.

  16. The Role of CREB in CML

    Science.gov (United States)

    2008-02-01

    responses differ after stroke, seizures, hypoglycemia , and hypoxia: Blood genomic fingerprints of disease. Ann Neurol 2001;50:699–707. 62 Whitney LW...et al. Engraft- ment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase defi- ciency. Nat Med. 1995;1:1017-1023. 33...Proteolysis Targeting Chimeric molecules: Recruiting Cancer- Causing Proteins for Ubiquitination and Degradation. Modulation of Protein Stability in

  17. Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts.

    Science.gov (United States)

    Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar

    2002-02-01

    Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.

  18. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    Science.gov (United States)

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  19. Primary male neuroendocrine adenocarcinoma involving the nipple simulating Merkel cell carcinoma - a diagnostic pitfall.

    Science.gov (United States)

    Mecca, Patricia; Busam, Klaus

    2008-02-01

    Male breast cancer is a rare entity accounting for Nipple skin/subcutaneous tumors in men are even rarer. Likewise, true neuroendocrine carcinoma of the breast, defined as > 50% of tumor cells staining for either chromogranin or synaptophysin, is not a common entity, usually occurring in older women. We present the case of a 70-year-old man with a slowly growing nipple mass that had enlarged over the previous 1.5 years. The histology consisted of nests, trabeculae and sheets of basaloid cells with rare abortive gland formation and a pushing edge. The case was originally misdiagnosed as a Merkel cell carcinoma, based largely on histologic morphology. Strong staining for synaptophysin (in greater than 50% of cells), CD56, keratins AE1 : AE3 and Cam 5.2, as well as estrogen receptor and progesterone receptor was noted. Myoepithelial cells within in situ areas were identified using stains for calponin and 4A4, supporting a primary mammary duct origin. Additionally, a substantial portion of cells stained for Gross Cystic Disease Fluid Protein-15 (GCDFP-15), confirming some overlap with sweat duct differentiation. To the best of our knowledge, although reported in the male breast, no case of primary nipple neuroendocrine carcinoma in a male patient has been reported in the literature. The gender of the patient and association with the skin of the chest wall probably contributed to the original misdiagnosis of Merkel cell carcinoma in this patient.

  20. Primary angiitis of the central nervous system with diffuse cerebral mass effect and giant cells.

    LENUS (Irish Health Repository)

    Kinsella, J A

    2012-02-01

    Primary angiitis of the central nervous system (PACNS), also called primary CNS vasculitis, is an idiopathic inflammatory condition affecting only intracranial and spinal cord vessels, particularly medium-sized and smaller arteries and arterioles. Angiography and histopathology typically do not reveal evidence of systemic vasculitis.(1,2) Histopathology usually reveals granulomatous inflammation affecting arterioles and small arteries of the parenchyma and\\/or leptomeninges, similar to that seen in Takayasu\\'s or giant cell arteritis.(1-3) We report a patient with biopsy-proven PACNS with giant cells and cerebral mass effect on MRI. Magnetic resonance angiography and cerebral angiography appeared normal and there was no evidence of extracranial vasculitis.