WorldWideScience

Sample records for primary biological material

  1. [Accidents with biological material in health care workers in 2 primary health care areas (1990-1999)].

    Science.gov (United States)

    Hernández Navarrete, M J; Montes Villameriel, F J; Solano Bernad, V M; Sánchez Matienzo, D; del Val García, J L; Gil Montalbán, E; Arribas Llorente, J L

    2001-09-15

    To find out the exposures with biological material in health care workers in primary health care, registered in the biological accidents database from Preventive Medicine Service in Miguel Servet Universitary Hospital of Zaragoza. Descriptive study of a retrospective cohort. SITE: Primary health care, Areas II and V of Zaragoza.Participants. Workers in this areas, distributed by: physician, nursing staff, auxiliary, orderly, housekeeping staff, others. Data of: workers, accident, serologic source, worker protection and vaccinal status of hepatitis B. The incidence of accidents was 26 (period 1997-1999). Most proportion of accidents were declared by nursing (78%). The highest occupational incidence was in auxiliary (63 ). In 90,1% of the cases, the accident was needlestick injury. The source was known in 67,7% of cases. The accidents occurred in hands in 96,8% of cases, and only one third of workers carried gloves. Results obtained are similar with previous studies about this event. We must insist on the need to declare these accidents, providing more information and accessibility for the declaration to worker. Moreover, we must insist on the correct application in the health care field of the standard precautions, because almost 50% of accidents are evitable, and to increase hepatitis B vaccination covertures.

  2. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  3. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  4. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  5. 37 CFR 1.801 - Biological material.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Biological material. 1.801... Biological Material § 1.801 Biological material. For the purposes of these regulations pertaining to the deposit of biological material for purposes of patents for inventions under 35 U.S.C. 101, the term...

  6. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  7. Viscoelastic characterization of soft biological materials

    Science.gov (United States)

    Nayar, Vinod Timothy

    Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly

  8. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    Science.gov (United States)

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  9. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  10. Anal Sphincter Augmentation Using Biological Material.

    Science.gov (United States)

    Alam, Nasra N; Narang, Sunil K; Köckerling, Ferdinand; Daniels, Ian R; Smart, Neil J

    2015-01-01

    The aim of this review is to provide an overview of the use of biological materials in the augmentation of the anal sphincter either as part of an overlapping sphincter repair (OSR) or anal bulking procedure. A systematic search of PubMed was conducted using the search terms "anal bulking agents," "anal sphincter repair," or "overlapping sphincter repair." Five studies using biological material as part of an overlapping sphincter repair (OSR) or as an anal bulking agent were identified. 122 patients underwent anal bulking with a biological material. Anorectal physiology was conducted in 27 patients and demonstrated deterioration in maximum resting pressure, and no significant change in maximum squeeze increment. Quality of life scores (QoLs) demonstrated improvements at 6 weeks and 6 months, but this had deteriorated at 12 months of follow up. Biological material was used in 23 patients to carry out an anal encirclement procedure. Improvements in QoLs were observed in patients undergoing OSR as well as anal encirclement using biological material. Incontinence episodes decreased to an average of one per week from 8 to 10 preoperatively. Sphincter encirclement with biological material has demonstrated improvements in continence and QoLs in the short term compared to traditional repair alone. Long-term studies are necessary to determine if this effect is sustained. As an anal bulking agent the benefits are short-term.

  11. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  12. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  13. Biological and environmental reference materials in CENAM.

    Science.gov (United States)

    Arvizu-Torres, R; Perez-Castorena, A; Salas-Tellez, J A; Mitani-Nakanishi, Y

    2001-06-01

    Since 1994, when the NIST/NOAA Quality Assurance Program in Chemical Measurements was discussed in Queretaro, CENAM, the National Measurement Institute (NMI) of Mexico, has become involved in the development of reference materials. In the field of biological and environmental reference materials, in particular, the NORAMET collaboration program with NIST and NRC, and the North-American Environmental Cooperation signed among three free-trade treaty organizations, have greatly helped the development of the materials metrology program in the newly established CENAM. This paper describes some particularly significant efforts of CENAM in the development of biological and environmental reference materials, on the basis of inter-comparison studies organized with local and governmental environmental agencies of Mexico. In the field of water pollution CENAM has developed a practical proficiency testing (PT) scheme for field laboratories, as a part of registration by local government in the metropolitan area, according to the Mexican Ecological Regulation. The results from these eight PTs in the last 5 years have demonstrated that this scheme has helped ensure the reliability of analytical capability of more than 50 field laboratories in three states, Mexico, D.F., and the States of Mexico and Queretaro. Similar experience has been obtained for more than 70 service units of stack emission measurements in the three states in 1998 and 1999, as a result of the design of a PT scheme for reference gas mixtures. This PT scheme has been accomplished successfully by 30 analytical laboratories who provide monitoring services and perform research on toxic substances (Hg, methylmercury, PCB, etc.) in Mexico. To support these activities, reference samples have been produced through the NIST SRMs, and efforts have been made to increase CENAM's capability in the preparation of primary reference materials in spectrometric solutions and gas mixtures. Collaboration among NMIs has also

  14. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  15. Biological reference materials and analysis of toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R; Sukumar, A

    1988-12-01

    Biological monitoring of toxic metal pollution in the environment requires quality control analysis with use of standard reference materials. A variety of biological tissues are increasingly used for analysis of element bioaccumulation, but the available Certified Reference Materials (CRMs) are insufficient. An attempt is made to review the studies made using biological reference materials for animal and human tissues. The need to have inter-laboratory studies and CRM in the field of biological monitoring of toxic metals is also discussed.

  16. NBS SRM 1569 Brewer's Yeast: Is it an adequate standard reference material for testing a chromium determination in biological materials tion in biological materials

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Volkers, K.J.; Tjioe, P.S.; Kroon, J.J.

    1978-01-01

    Some analytical experiences with NBS SRM 1569 Brewer's Yeast are presented. Against this background the adequacy of this standard reference material for the determination of chromium in biological materials is discussed. Authors have three main objections. Due to its high content of insoluble chromium-containing particles, SRM 1569 is not typical for biological materials, possibly not even for Brewer's Yeast. The chromium level of SRM 1569 is not typical for the chromium levels normally encountered in pure biological materials. The major fraction (69 +- 3 percent) of the chromium is present in a form which is insoluble under the conditions used in Author's analysis. (T.I.)

  17. Materiomics: biological protein materials, from nano to macro

    Science.gov (United States)

    Cranford, Steven; Buehler, Markus J

    2010-01-01

    Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents) such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and replicate Nature’s materials have been hindered by our lack of fundamental understanding of these materials’ intricate hierarchical structures, scale-bridging mechanisms, and complex material components that bestow protein-based materials their unique properties

  18. Materiomics: biological protein materials, from nano to macro

    Directory of Open Access Journals (Sweden)

    Steven Cranford

    2010-11-01

    Full Text Available Steven Cranford, Markus J BuehlerCenter for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and

  19. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. A routine chromium determination in biological materials; application to various reference materials and standard reference materials

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Volkers, K.J.

    1979-01-01

    The determination limit under standard working conditions of chromium in biological materials is discussed. Neutron activation analysis and atomic spectrometry have been described for some analytical experiences with NBS SRM 1577 reference material. The chromium determination is a part of a larger multi-element scheme for the determination of 12 elements in biological materials

  1. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  2. THE DEVELOPMENT OF BIOLOGY MATERIAL RESOURCES BY METACOGNITIVE STRATEGY

    Directory of Open Access Journals (Sweden)

    Endang Susantini

    2016-02-01

    Full Text Available The Development of Biology Material Resources by Metacognitive Strategy The study was aimed at finding out the suitability of Biology Materials using the metacognitive strategy. The materials were textbooks, self-understanding Evaluation Sheet and the key, lesson plan, and tests including the answer key. The criteria of appropriateness included the relevance of the resources with the content validity, face va­lidity and the language. This research and development study was carried out employing a 3D model, namely define, design and develop. At the define stage, three topics were selected for analysis, they were virus, Endocrine System, and Genetic material. During the design phase, the physical appearance of the materials was suited with the Metacognitive Strategy. At the develop phase, the material resources were examined and validated by two Biology experts and senior teachers of Biology. The results showed that the Biology material Resources using Metacognitive Strategy developed in the study has fell into the category of very good ( score > 3.31 and was therefore considered suitable.

  3. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  4. DETERMINATION OF EDUCATIONAL EFFICIENCY AND STUDENTS’ INVOLVEMENT IN THE FLIPPED BIOLOGY CLASSROOM IN PRIMARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Vera S. Županec

    2018-02-01

    Full Text Available The Flipped Classroom (FC is a teaching approach in which students gain the first-exposure learning with online materials outside the classroom, and then, in the classroom, they focus on interactive or engaging exercises. Despite its considerable publicity, the studies focused on the FC in primary education are deficient. The aim of this research is to determine efficiency and students’ involvement in the flipped Biology classroom in primary school, compared to the conventional classroom (CC approach. Educational efficiency and students’ involvement are measured by combining the values of the students’ performance and mental effort on the test. Each task in the test was followed by the 5-point Likert scale for evaluation of invested mental effort. The total sample of this research included 112 students, aged from 12 to 13. The results show that the FC approach contributes to the reduction of the students’ mental effort and an increase in the students’ performance. On the basis of calculated efficiency and students’ involvement of applied teaching approaches, it was concluded that the FC represents a feasible and efficient approach to Biology primary education.

  5. Conduit for regeneration of biological material

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a conduit comprising a first material, having 1) a through-going hole, 2) fibers aligned along the long-axis in the through-going hole, each fiber having a diameter in the range 200-2000 nm. The conduit is preferably for regeneration of biological material, even...

  6. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    International Nuclear Information System (INIS)

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  7. AC Calorimetric Design for Dynamic of Biological Materials

    OpenAIRE

    Shigeo Imaizumi

    2006-01-01

    We developed a new AC calorimeter for the measurement of dynamic specific heat capacity in liquids, including aqueous suspensions of biological materials. This method has several advantages. The first is that a high-resolution measurement of heat capacity, inmillidegrees, can be performed as a function of temperature, even with a very small sample. Therefore, AC calorimeter is a powerful tool to study critical behavior a tphase transition in biological materials. The second advantage is that ...

  8. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  9. Source Identification of Human Biological Materials and Its Prospect in Forensic Science.

    Science.gov (United States)

    Zou, K N; Gui, C; Gao, Y; Yang, F; Zhou, H G

    2016-06-01

    Source identification of human biological materials in crime scene plays an important role in reconstructing the crime process. Searching specific genetic markers to identify the source of different human biological materials is the emphasis and difficulty of the research work of legal medical experts in recent years. This paper reviews the genetic markers which are used for identifying the source of human biological materials and studied widely, such as DNA methylation, mRNA, microRNA, microflora and protein, etc. By comparing the principles and methods of source identification of human biological materials using different kinds of genetic markers, different source of human biological material owns suitable marker types and can be identified by detecting single genetic marker or combined multiple genetic markers. Though there is no uniform standard and method for identifying the source of human biological materials in forensic laboratories at present, the research and development of a series of mature and reliable methods for distinguishing different human biological materials play the role as forensic evidence which will be the future development direction. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  10. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  11. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia–a short version for primary care

    DEFF Research Database (Denmark)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas

    2017-01-01

    Objective: Schizophrenia is a severe mental disorder and many patients are treated in primary care settings. Apart from the pharmacological management of disease-associated symptoms, the detection and treatment of side effects is of the utmost importance in clinical practice. The purpose of this ......Objective: Schizophrenia is a severe mental disorder and many patients are treated in primary care settings. Apart from the pharmacological management of disease-associated symptoms, the detection and treatment of side effects is of the utmost importance in clinical practice. The purpose...... of this publication is to offer relevant evidence-based recommendations for the biological treatment of schizophrenia in primary care. Methods: This publication is a short and practice-oriented summary of Parts I–III of the World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological...

  12. LUTE primary mirror materials and design study report

    Science.gov (United States)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  13. Factors associated with occupational exposure to biological material among nursing professionals.

    Science.gov (United States)

    Negrinho, Nádia Bruna da Silva; Malaguti-Toffano, Silmara Elaine; Reis, Renata Karina; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2017-01-01

    to identify factors associated with occupational exposure to biological material among nursing professionals. a cross-sectional study was conducted in a high complexity hospital of a city in the state of São Paulo, Brazil. Nursing professionals were interviewed from March to November 2015. All ethical aspects were observed. among the 226 professionals interviewed, 17.3% suffered occupational exposure to potentially contaminated biological material, with 61.5% being percutaneous. Factors such as age (p=0.003), professional experience in nursing (p=0.015), and experience at the institution (p=0.032) were associated with the accidents with biological material. most accidents with biological material among nursing professionals were percutaneous. Age, professional experience, and experience at the institution were considered factors associated with occupational exposure.

  14. Occupational accidents involving biological material among public health workers.

    Science.gov (United States)

    Chiodi, Mônica Bonagamba; Marziale, Maria Helena Palucci; Robazzi, Maria Lúcia do Carmo Cruz

    2007-01-01

    This descriptive research aimed to recognize the occurrence of work accidents (WA) involving exposure to biological material among health workers at Public Health Units in Ribeirão Preto-SP, Brazil. A quantitative approach was adopted. In 2004, 155 accidents were notified by means of the Work Accident Communication (WAC). Sixty-two accidents (40%) involved exposure to biological material that could cause infections like Hepatitis and Aids. The highest number of victims (42 accidents) came from the category of nursing aids and technicians. Needles were responsible for 80.6% of accidents and blood was the biological material involved in a majority of occupational exposure cases. This subject needs greater attention, so that prevention measures can be implemented, which consider the peculiarities of the activities carried out by the different professional categories.

  15. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  16. 75 FR 6348 - Deposit of Biological Materials

    Science.gov (United States)

    2010-02-09

    ... either directly or indirectly. When the invention involves a biological material, sometimes words alone... charge about the same rates for their services. For example, the American Type Culture Collection (ATCC...

  17. Magnetically responsive biological materials and their applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Pospíšková, K.; Baldíková, E.; Šafaříková, Miroslava

    2016-01-01

    Roč. 7, č. 4 (2016), s. 254-261 ISSN 0976-3961 Institutional support: RVO:60077344 Keywords : adsorbents * biological materials * carriers * magnetic modification * whole-cell biocatalyst Subject RIV: EI - Biotechnology ; Bionics

  18. The mechanism for the primary biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Byakov, Vsevolod M; Stepanov, Sergei V

    2006-01-01

    The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (OH, H, e aq - , O 2 - , H 2 O 2 ) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions H 3 O + , where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range. (reviews of topical problems)

  19. Nanomechanical strength mechanisms of hierarchical biological materials and tissues.

    Science.gov (United States)

    Buehler, Markus J; Ackbarow, Theodor

    2008-12-01

    Biological protein materials (BPMs), intriguing hierarchical structures formed by assembly of chemical building blocks, are crucial for critical functions of life. The structural details of BPMs are fascinating: They represent a combination of universally found motifs such as alpha-helices or beta-sheets with highly adapted protein structures such as cytoskeletal networks or spider silk nanocomposites. BPMs combine properties like strength and robustness, self-healing ability, adaptability, changeability, evolvability and others into multi-functional materials at a level unmatched in synthetic materials. The ability to achieve these properties depends critically on the particular traits of these materials, first and foremost their hierarchical architecture and seamless integration of material and structure, from nano to macro. Here, we provide a brief review of this field and outline new research directions, along with a review of recent research results in the development of structure-property relationships of biological protein materials exemplified in a study of vimentin intermediate filaments.

  20. NBS activities in biological reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Rasberry, S.D.

    1988-12-01

    NBS activities in biological reference materials during 1986-1988 are described with a preview of plans for future certifications of reference materials. During the period, work has been completed or partially completed on about 40 reference materials of importance to health, nutrition, and environmental quality. Some of the reference materials that have been completed during the period and are described include: creatinine (SRM 914a), bovine serum albumin (SRM 927a), cholesterol in human serum (SRM's 1951-1952), aspartate aminotransferase (RM 8430), cholesterol and fat-soluble vitamins in coconut oil (SRM 1563), wheat flour (SRM 1567a), rice flour (SRM 1568a), mixed diet (RM 8431a), dinitropyrene isomers and 1-nitropyrene (SRM 1596), and complex PAH's from coal tar (SRM 1597). Oyster tissue (SRM 1566a) is being analyzed and should be available in 1988.

  1. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  2. Study of biocompatible and biological materials

    CERN Document Server

    Pecheva, Emilia

    2017-01-01

    The book gives an overview on biomineralization, biological, biocompatible and biomimetic materials. It reveals the use of biomaterials alone or in composites, how their performance can be improved by tailoring their surface properties by external factors and how standard surface modification techniques can be applied in the area of biomaterials to beneficially influence their growth on surfaces.

  3. Survey of currently available reference materials for use in connection with the determination of trace elements in biological materials

    International Nuclear Information System (INIS)

    Parr, R.M.

    1983-09-01

    Elemental analysis of biological materials is at present the subject of intensive study by many different research groups throughout the world, in view of the importance of these trace elements in health and medical diagnosis. IAEA and other organizations are now making a variety of suitable reference materials available for use in connection with the determination of trace elements in biological materials. To help analysts in making a selection from among these various materials, the present report provides a brief survey of data for all such biological reference materials known to the author. These data are compiled by the author from January 1982 to June 1983

  4. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  5. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    International Nuclear Information System (INIS)

    Metelkin, A; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems. (paper)

  6. Moessbauer spectroscopic studies of magnetically ordered biological materials

    International Nuclear Information System (INIS)

    Dickson, D.P.E.

    1987-01-01

    This paper discusses recent work showing the application of Moessbauer spectroscopy to the study of the properties of the magnetically ordered materials which occur in a variety of biological systems. These materials display a diversity of behaviour which provides good examples of the various possibilities which can arise with iron-containing particles of different compositions and sizes. (orig.)

  7. Electron Transfer in Chemistry and Biology – The Primary Events

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electron Transfer in Chemistry and Biology – The Primary Events in Photosynthesis. V Krishnan. General Article Volume 2 Issue 12 December 1997 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Invited review liquid crystal models of biological materials and silk spinning.

    Science.gov (United States)

    Rey, Alejandro D; Herrera-Valencia, Edtson E

    2012-06-01

    A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.

  9. Strategy on biological evaluation for biodegradable/absorbable materials and medical devices.

    Science.gov (United States)

    Liu, Chenghu; Luo, Hongyu; Wan, Min; Hou, Li; Wang, Xin; Shi, Yanping

    2018-01-01

    During the last two decades, biodegradable/absorbable materials which have many benefits over conventional implants are being sought in clinical practices. However, to date, it still remains obscure for us to perform full physic-chemical characterization and biological risk assessment for these materials and related devices due to their complex design and coherent processing. In this review, based on the art of knowledge for biodegradable/absorbable materials and biological risk assessment, we demonstrated some promising strategies to establish and improve the current biological evaluation systems for these biodegradable/absorbable materials and related medical devices.

  10. Neutron activation analysis of biological material

    International Nuclear Information System (INIS)

    Kucera, J.; Simkova, M.; Obrusnik, I.

    1985-01-01

    The possibilities are briefly summed up of usino. NAA (neutron activation analysis) for determining element traces in foodstuffs and their intake by organisms, for monitoring changes in the content of important trace elements in tissues and body fluids owing to environmental pollution, for verifying the results of other analytical techniques and for certifying the content of element traces in reference materials. Examples are given of the use of NAA, and the results are summed up of the determination of Cd, Mn and Zn in biological reference materials NBS SRM-1577, Bovine Liver, Bowen's Kale, IAEA Milk Powder A-11 and IAEA Animal Muscle H-4. (E.S.)

  11. OECD Policy Recommendations on Security for Biological Materials

    International Nuclear Information System (INIS)

    Radisch, J.

    2007-01-01

    Biomedical innovations derived from research on pathogenic micro-organisms promise astounding health and economic benefits. Some such biological resources employed in the RandD for diagnostic kits, vaccines and therapeutics, however, possess capacity for dual-use; they may be misused to develop biological weapons. Research facilities entrusted with possession of such dual-use materials have a responsibility to comply with biosecurity measures that are designed to prevent loss or theft and thereby reduce the probability of a bioterrorist attack. The OECD has provided a forum for its Member countries to engage in a dialogue of international co-operation with a view to produce policies that achieve a research environment fortified by biosecurity measures and capable of producing health innovations. In 2007, the OECD developed a risk assessment framework and risk management principles for Biological Resource Centres. Ongoing policy work at the OECD will look to design biosecurity guidelines appropriate to a broader range of facilities in possession of dual-use materials, such as university and industrial laboratories.(author)

  12. Enhancing Access to Primary Cultural Heritage Materials of India

    Science.gov (United States)

    Scharf, Peter M.; Hyman, Malcolm

    This chapter is about enhancing access to primary cultural heritage materials of India housed in academic libraries by integrating them with machine-readable texts, lexical resources, and linguistic software in a digital library. Integrating primary cultural materials with a digital library can enable broad use of Indic collections for research and education. For the purposes of illustrating this procedure, we outline here the development of a prototype using the collections of Sanskrit manuscripts in the libraries at Brown University and the University of Pennsylvania and integrating them with The Sanskrit Library. The result is extendable to collections of Indic materials throughout the world and can serve as a model for digitization projects of cultural materials in other major culture-bearing languages such as Greek, Latin, Arabic, Persian, and Chinese.

  13. Effectiveness of computer-assisted learning in biology teaching in primary schools in Serbia

    Directory of Open Access Journals (Sweden)

    Županec Vera

    2013-01-01

    Full Text Available The paper analyzes the comparative effectiveness of Computer-Assisted Learning (CAL and the traditional teaching method in biology on primary school pupils. A stratified random sample consisted of 214 pupils from two primary schools in Novi Sad. The pupils in the experimental group learned the biology content (Chordate using CAL, whereas the pupils in the control group learned the same content using traditional teaching. The research design was the pretest-posttest equivalent groups design. All instruments (the pretest, the posttest and the retest contained the questions belonging to three different cognitive domains: knowing, applying, and reasoning. Arithmetic mean, standard deviation, and standard error were analyzed using the software package SPSS 14.0, and t-test was used in order to establish the difference between the same statistical indicators. The analysis of results of the post­test and the retest showed that the pupils from the CAL group achieved significantly higher quantity and quality of knowledge in all three cognitive domains than the pupils from the traditional group. The results accomplished by the pupils from the CAL group suggest that individual CAL should be more present in biology teaching in primary schools, with the aim of raising the quality of biology education in pupils. [Projekat Ministarstva nauke Republike Srbije, br. 179010: Quality of Educational System in Serbia in the European Perspective

  14. Mechanical properties of nanostructure of biological materials

    Science.gov (United States)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  15. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  16. Certification of biological reference materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lanjewar, Mamata R.; Lanjewar, R.B.

    2014-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 21 minor and trace elements in two standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques ,Czechoslovakia. Also some biological standards such as Bowen's kale, cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of Reference Materials of Biological Matrices. (author)

  17. The opinions of primary school teachers’ candidates towards material preparation and usage

    Directory of Open Access Journals (Sweden)

    Zeynep Genc

    2017-04-01

    Full Text Available Abstract Instruction materials help students to acquire more memorable information. Instruction materials have an important effect on providing more permanent and simple way of learning in every step of education. Instruction materials are the most frequently used by primary school teachers. Primary school teachers should support their lectures with instruction materials in order to provide permanent learning. The Teaching Technologies and Material Designing (TTMD course which is one of the compulsory courses that students must take aims to acquire students the information and skills related with the preparation and use of materials. Evaluation of TTMD course is important in terms of the effectiveness of the course which provides the opportunity of motivating the students to learn by attracting their attention, keeping their attentions alive, making abstract concepts more concrete, facilitating the acquisition of knowledge in an organized way in the process of learning and teaching. In this context, it was aimed to determine the opinions of students in the department of primary school teaching about preparation and use of materials through teaching practice which is done within TTMD course in this study. This study is a descriptive study based on qualitative data. The sample of this research included 37 students from the department of primary school teaching who took TTMD course in the second semester in 2014-2015 academic year at Ataturk Education Faculty of Near East University or students who took this course in previous academic years. The data of this research were collected with structured interview form. According to the results, it was revealed that primary school teachers’ candidates attach importance to prepare and use materials based on their answers about the use and preparation of materials in instruction. When the opinions of primary school teachers candidates about the criteria that they give value in preparing and using

  18. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  19. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia - a short version for primary care.

    Science.gov (United States)

    Hasan, Alkomiet; Falkai, Peter; Wobrock, Thomas; Lieberman, Jeffrey; Glenthøj, Birte; Gattaz, Wagner F; Thibaut, Florence; Möller, Hans-Jürgen

    2017-06-01

    Schizophrenia is a severe mental disorder and many patients are treated in primary care settings. Apart from the pharmacological management of disease-associated symptoms, the detection and treatment of side effects is of the utmost importance in clinical practice. The purpose of this publication is to offer relevant evidence-based recommendations for the biological treatment of schizophrenia in primary care. This publication is a short and practice-oriented summary of Parts I-III of the World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Schizophrenia. The recommendations were developed by the authors and consented by a task force of international experts. Guideline recommendations are based on randomized-controlled trials and supplemented with non-randomized trials and meta-analyses where necessary. Antipsychotics of different chemical classes are the first-line pharmacological treatments for schizophrenia. Specific circumstances (e.g., suicidality, depression, substance dependence) may need additional treatment options. The pharmacological and non-pharmacological management of side effects is of crucial importance for the long-term treatment in all settings of the healthcare system. This summary of the three available evidence-based guidelines has the potential to support clinical decisions and can improve treatment of schizophrenia in primary care settings.

  20. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Gridelli, Bruno; Gerlach, Jörg C

    Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.

  1. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    Cortes Toro, E.; Parr, R.M.; Clements, S.A.

    1990-01-01

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  2. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  3. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  4. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  6. Transport of biologically active material in laser cutting.

    Science.gov (United States)

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  7. Impacts of insufficient instructional materials on teaching biology: Higher education systems in focus

    Directory of Open Access Journals (Sweden)

    Sutuma Edessa

    2017-01-01

    Full Text Available Abstract The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was collected while these trainees were attending the course of Biology Teaching Methods in the Post Graduate Diploma in Teaching, both in the regular and summer 2015/2016 training programs at Addis Ababa University. The study employs a mixed method design of both qualitative and quantitative data evaluations. Data was collected through classroom observations and interviews with the trainees. The findings indicated that insufficient instructional materials and ineffective teaching methods in higher education had negative impacts; that have affected the skills of performing biological tasks of graduates 71%. In the course of the Post Graduate Diploma in Teaching training, trainees were unsuccessful to conduct essential biological tasks expected from graduates of biology upon the completion of their undergraduate study program. The study was concluded with emphasis on the need to integrate theory and practice through using adequate instructional materials and proper teaching methods in the higher education biology teaching.

  8. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    Science.gov (United States)

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Instrumental neutron activation analysis for the certification of biological reference materials

    International Nuclear Information System (INIS)

    Ambulkar, M.N.; Chutke, N.L.; Garg, A.N.

    1992-01-01

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 22 minor and trace constituents in two proposed Standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques, Czechoslovakia. Also some biological standards such as Bowen's Kale, Cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of reference materials of biological matrices. (author). 7 refs., 1 tab

  10. Metallic and Non-Metallic Materials for the Primary Support Structure

    International Nuclear Information System (INIS)

    RA Wolf; RP Corson

    2006-01-01

    The primary support structure (PSS) is required for mechanical support of reactor module (RM) components and mounting of the RM to the spacecraft. The PSS would provide support and accept all loads associated with dynamic (e. g., launch and maneuvering) or thermally induced loading. Prior to termination of NRPCT involvement in Project Prometheus, the NRPCT Mechanical Systems team developed preliminary finite element models to gain a basic understanding of the behavior of the structure, but optimization of the models, specification of the final design, and materials selection were not completed. The Space Plant Materials team had evaluated several materials for potential use in the primary support structure, namely titanium alloys, beryllium, aluminum alloys and carbon-carbon composites. The feasibility of application of each material system was compared based on mass, stiffness, thermal expansion, and ease of fabrication. Due to insufficient data on environmental factors, such as temperatures and radiation, and limited modeling support, a final materials selection was not made

  11. Biological evaluation of dental materials, in vitro and in vivo

    International Nuclear Information System (INIS)

    Kawahara, H.

    1982-01-01

    In this paper, the correlation between the user of tissue culture for in vitro tests and the tissue irritability and pupal response observed in in vitro tests, will be discussed. It would produce confusion if dental materials were standardised with the unreliable parameter of the living system in dynamic balance. Biological tests, both in vitro and in vivo, should be used for pre-standards testing, without any political control to establish physicochemical standards. As a first step, corrosion tests and the dissolution dosje of toxic components from the material in the tissue culture medium and/or artificial salvia should be standardised under conditions simulating the oral environment. The CNC method and photo-pattern analysis are used for the interpretation of cytotoxicity. The need for biological testing, both in vitro and in vivo, definitely exists in order to obtain physicochemical standards, with a biological simulation depending upon the feedback obtained from the results of in vitro and in vivo tests

  12. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  13. Criteria for the selection of PEC primary circuit structural material

    International Nuclear Information System (INIS)

    Antoni, R.; Brunori, G.; Maesa, S.; Scibona, G.; Tomassetti, G.

    1977-01-01

    The choice of the structural materials is generally a compromise between the project requirements, the characteristics (mechanical and environmental) of the materials and the available technology to construct the various parts of the components. The criteria of selection of structural materials for the primary circuit of fast reactor are reported. The criteria concern both general and utilization aspects

  14. Determination of mercury concentration in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Munoz, L.; Gras, N.; Cortes, E.; Cassorla, V.

    1983-01-01

    The objective of this work was to obtain a confident analytical method for measuring the mercury concentration in biological materials. Destructive neutron activation analysis was used for this purpose and a radiochemical separation method was studied to isolate the mercury from its main interferences: sodium and phosphorus, because these elements in biological materials are in high concentrations. The method developed was based on the copper amalgamation under controlled conditions. Yield and reproductibility studies were performed using 203 Hg as radioactive tracer. Finally, food samples of regular consumption were analyzed and the results were compared with those recommended by FAO/WHO. (Author)

  15. The use of reference materials in the elemental analysis of biological samples

    International Nuclear Information System (INIS)

    Bowen, H.J.M.

    1975-01-01

    Reference materials (RMs) are useful to compare the accuracy and precision of laboratories and techniques. The desirable properties of biological reference materials are listed, and the problems of production, homogenization and storage described. At present there are only 10 biological RMs available compared with 213 geological and 520 metallurgical RMs. There is a need for more biological RMs including special materials for microprobe analysis and for in vivo activation analysis. A study of 650 mean values for elements in RM Kale, analysed by many laboratories, leads to the following conclusions. 61% of the values lie within +-10% of the best mean, and 80% lie within +-20% of the best mean. Atomic absorption spectrometry gives results that are 5-30% high for seven elements, while intrumental neutron activation analysis gives low and imprecise results for K. Other techniques with poor interlaboratory precision include neutron activation for Mg, polarography for Zn and arc-spectrometry for many elements. More than half the values for elements in Kale were obtained by neutron activation, confirming the importance of this technique and the need for RMs. As a rough estimate, 6 x 10 9 elemental analyses of biological materials are carried out each year, mostly by medical, agricultural and food scientists. It seems likely that a substantial percentage of these are inaccurate, a situation that might be improved by quality control using standard RMs. (author)

  16. The preparation of four biological reference materials for QUASIMEME

    NARCIS (Netherlands)

    Leeuwen, van S.P.J.; Pieters, H.; Boer, de J.

    2004-01-01

    Four biological materials have been prepared for use in QUASIMEME interlaboratory studies including a shrimp sample for metal analysis (QM01-1) and two mussel (QO01-3 and QO02-2) and one mackerel sample (QO02-1) for organic contaminant analysis.

  17. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  18. Biological export of radioactive materials from a leaching pond in SE Idaho

    International Nuclear Information System (INIS)

    Millard, Jere B.

    1978-01-01

    A radioecological investigation was conducted to quantify biological export of radioactive materials from a test reactor area leaching pond located on the Idaho National Engineering Laboratory site in southeast Idaho. An estimated 42,000 Ci have been discharged to the pond since 1952. Approximately 35 gamma emitting radionuclides are detectable in unfiltered water. Biomass estimates and mean radionuclide concentrations were determined for major pond compartments. A radionuclide inventory of the pond ecosystem was constructed listing totals for radioactivity present in each compartment. Mean concentrations of predominant radionuclides and population census data were used to estimate biologically exported materials. Particular attention was paid to migrant waterfowl, a resident population of barn swallows (Hirundo rustica), and nesting shore birds. Whole body gamma spectra indicated 15 or more detectable fission and activation products associated with swallows and shore birds, and 20 or more for waterfowl. Concentration factors relative to filtered pond water were also calculated. Finally, biologically exported radioactive materials were compared with total amounts present in the pond. (author)

  19. Theory of light transfer in food and biological materials

    Science.gov (United States)

    In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...

  20. Esthetic Rehabilitation of Primary Anterior Teeth using Temporization Material: A Novel Approach

    Science.gov (United States)

    Pandit, IK; Gupta, Monika; Nagpal, Jyoti

    2017-01-01

    Pediatric dentists should always aim for esthetic and functional rehabilitation of decayed/traumatized primary teeth. The most common method for restoring such teeth involves the use of “strip crowns” with composites, while the recent trend is toward using other extracoronal restorations including preve-neered stainless steel crowns and zirconia crowns. All these restorative options have shown good success rates, but also have some limitations. This case series depicts novel clinical technique of using a temporization material for full-coronal restoration(s) in primary anterior teeth. This included the chair-side custom fabrication of full-coronal restoration using temporization material, which has resulted in good immediate esthetics and might be a cost-effective alternative for restoring primary anterior teeth in future. How to cite this article Gugnani N, Pandit IK, Gupta M, Nagpal J. Esthetic Rehabilitation of Primary Anterior Teeth using Temporization Material: A Novel Approach. Int J Clin Pediatr Dent 2017;10(1):111-114. PMID:28377667

  1. Biologically inspired autonomous structural materials with controlled toughening and healing

    Science.gov (United States)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return

  2. [The meaning of accidents with biological material to nursing professionals].

    Science.gov (United States)

    Magagnini, Maristela Aparecida Magri; Rocha, Suelen Alves; Ayres, Jairo Aparecido

    2011-06-01

    The aim of this study is to understand what meaning work accidents with exposure to biological material has to nurses. This is an exploratory study with a qualitative approach, and it used Bardin's content analysis. 87 accidents with biological material occurred in the period between 2001 and 2006; among them, eight were seropositive for Hepatitis B and C and HIV/AIDS. An interview with guiding questions was used to collect data. When inquiring these professionals about the meaning of these accidents, four categories emerged: risk situation, danger perception, fatality, and feelings. Although it is not a strategy of clarification, it is a fact that work organization and educative actions have considerable impact in reducing this type of accident, also reducing damage to the life of nurses involved in these accidents.

  3. Biological and chemical sensors based on graphene materials.

    Science.gov (United States)

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  4. Fuel from biologic wase materials; Kraftstoff aus biologischen Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Braesel, Martina

    2013-06-01

    In Germany, annually about 770,000 tons of biological waste reach rubbish bins or composting plants. In order to recondition this biological waste, the Federal Ministry of Education and Research (Berlin, Federal Republic of Germany) has launched a research project with a funding of 4.3 million Euro limited to a period of time of five years. In cooperation with the Fraunhofer Institute for Interfacial Engineering and Biotechnology (Stuttgart, Federal Republic of Germany) easily fermentable, wet biomass with a low content of lignocellulosic material has to be completely transformed to biogas with maximum energy. Only some of the ash remains.

  5. Social justice and research using human biological material: A ...

    African Journals Online (AJOL)

    Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper. ... South African Medical Journal ... In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research ...

  6. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  7. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  8. A Qualitative Study Examining the Exclusive Use of Primary Literature in a Special Topics Biology Course: Improving Conceptions about the Nature of Science and Boosting Confidence in Approaching Original Scientific Research

    Science.gov (United States)

    Carter, B. Elijah; Wiles, Jason R.

    2017-01-01

    This qualitative study explores the experiences of six students enrolled in a special topics biology class that exclusively used primary literature as course material. Nature of science (NOS) conceptions have been linked to students' attitudes toward scientific subjects, but there has been little research specifically exploring the effects of…

  9. Routine Determination of Arsenic in Biological Materials. RCN Report

    International Nuclear Information System (INIS)

    Kroon, J.J.; Das, H.A.

    1970-08-01

    This text describes a routine procedure for the determination of arsenic in biological materials by neutron activation analysis. Unlike most methods published in literature the present analysis is not based on chemical separation by destination. After a first purification by anion-exchange the 76 As-activity (T1/2 = 26,4 h) is isolated by precipitation as the metal. The method was tested by analysis of the standard kale powder. This material was prepared and issued by Bowen in 1966, to provide a reliable standard for the intercomparison of various methods. (author)

  10. Chemical preparation of biological materials for accurate chromium determination by isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Dunstan, L.P.; Garner, E.L.

    1977-01-01

    The current interest in trace elements in biological materials has created a need for accurate methods of analysis. The source of discrepancies and variations in chromium concentration determinations is often traceable to inadequate methods of sample preparation. Any method of Cr analysis that requires acid digestion of a biological matrix must take into consideration the existence or formation of a volatile Cr component. In addition, because Cr is often present at concentrations less than 1 μg/g, the analytical blank becomes a potential source of error. Chemical procedures have been developed for the digestion of the biological matrix and the separation of Cr without either large analytical blanks or significant losses by volatilization. These procedures have been used for the analysis of NBS Standard Reference Material (SRM) 1569 Brewers Yeast; SRM 1577 Bovine Liver; SRM 1570 Spinach and other biological materials including human hair and nails. At this time, samples containing 1 μg of Cr can be determined with an estimated accuracy of 2 percent

  11. Sampling and sample preparation methods for the analysis of trace elements in biological material

    International Nuclear Information System (INIS)

    Sansoni, B.; Iyengar, V.

    1978-05-01

    The authors attempt to give a most systamtic possible treatment of the sample taking and sample preparation of biological material (particularly in human medicine) for trace analysis (e.g. neutron activation analysis, atomic absorption spectrometry). Contamination and loss problems are discussed as well as the manifold problems of the different consistency of solid and liquid biological materials, as well as the stabilization of the sample material. The process of dry and wet ashing is particularly dealt with, where new methods are also described. (RB) [de

  12. Determination of trace elements in biological material by neutron activation analysis

    International Nuclear Information System (INIS)

    Tran Van, L.; Teherani, D.K.

    1989-01-01

    Eighteen trace elements in biological materials [grass (Imperata cylindrica), mimosa plant (Mimosa pudica), rice] by neutron activation method were determined. In the comparative analysis the content of the same element was different in each material, although they were collected at the same place and the same sampling method was applied. (author) 4 refs.; 1 fig.; 1 tab

  13. Quantitation of biological retinoids by high-pressure liquid chromatography: primary internal standardization using tritiated retinoids

    International Nuclear Information System (INIS)

    Cullum, M.E.; Zile, M.H.

    1986-01-01

    A single method is described for quantitation of 14 retinoids found in biological material. The method consists of reversed-phase HPLC, internal standardization, and carrier extraction procedures with three synthetic retinoids. Primary standardization of HPLC uv detector is achieved using tritiated all-trans-retinoic acid, all-trans-retinol, all-trans-retinyl palmitate, and all-trans-retinyl acetate. Extraction methods are standardized by correlating the uv absorbance of retinoids at 340 nm with radioactivity of tritiated retinoids of known specific activity. Quantitation of 10 pg of tritiated or 5 ng of nonradioactive retinoid per 0.1 g sample in a polarity range from 4-oxo-retinoic acid to retinyl stearate can be achieved in a single, 50-min chromatographic run. A single HPLC pump, a C 18 reversed-phased analytical column, a multistep three-solvent gradient, and inexpensive solvents based on methanol, water, and chloroform comprise this cost-effective chromatographic system. Our primary standardization method allows investigators employing different procedures to compare results between laboratories by standardizing the HPLC uv detector with commercially available tritiated retinoids. With this method we were able to quantitate nanomolar amounts of endogenous retinoic acids and retinyl esters, that HPLC uv only conditions usually would not detect in the circulation and liver of rats under physiological conditions

  14. Structural and functional biological materials: Abalone nacre, sharp materials, and abalone foot adhesion

    Science.gov (United States)

    Lin, Albert Yu-Min

    A three-part study of lessons from nature is presented through the examination of various biological materials, with an emphasis on materials from the mollusk Haliotis rufescens, commonly referred to as the red abalone. The three categories presented are: structural hierarchy, self-assembly, and functionality. Ocean mollusk shells are composed of aragonite/calcite crystals interleaved with layers of a visco-elastic protein, having dense, tailored structures with excellent mechanical properties. The complex nano-laminate structure of this bio-composite material is characterized and related to its mechanical properties. Three levels of structural hierarchy are identified: macroscale mesolayers separating larger regions of tiled aragonite, microscale organization of 0.5 mum by 10 mum aragonite bricks; nanoscale mineral bridges passing through 30 nm layers of organic matrix separating individual aragonite tiles. Composition and growth mechanisms of this nanostructure were observed through close examination of laboratory-grown samples using scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). Glass slides and nacre pucks were implanted onto the growth surface of living abalone and removed periodically to observe trends in nacre deposition. Various deproteinization and demineralization experiments are used to explore the inorganic and organic components of the nacre's structure. The organic component of the shell is characterized by atomic force microscopy (AFM). The functionality of various biological materials is described and investigated. Two specific types of functionality are characterized, the ability of some materials to cut and puncture through sharp designs, and the ability for some materials to be used as attachment devices. Aspects of cutting materials employed by a broad range of animals were characterized and compared. In respect to the attachment mechanisms the foot of the abalone and the tree frog were

  15. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  16. Rapid homogenisation and drying of biological materials

    International Nuclear Information System (INIS)

    Donev, I.Y.

    1977-01-01

    In connection with the implementation for detection of trace elements in the pathogenesis of Ischaemic Heart Diseases and for the work of the laboratory a small apparatus for homogenisation and drying biological materials at liquid nitrogen temperature was constructed. For a complete drying 4 to 6 hours are necessary. A laboratory assistant of average qualification can do the work for 13 homogenisates in about 8-9 hours. The capacity of the homogeniser is about 1.5x10 -5 m 3 . Preliminary investigations were carried out for the determination of differences at drying. (T.G.)

  17. Effect of decontamination on nuclear power plant primary circuit materials

    International Nuclear Information System (INIS)

    Brezina, M.; Kupca, L.

    1991-01-01

    The effect of repeated decontamination on the properties of structural materials of the WWER-440 primary coolant circuit was examined. Three kinds of specimens of 08Kh18Ni10T steel were used for radioactivity-free laboratory experiments; they included material obtained from assembly additions to the V-2 nuclear power plant primary piping, and a sheet of the CSN 17247 steel. Various chemical, electrochemical and semi-dry electrochemical decontamination procedures were tested. Chemical decontamination was based on the conventional AP(20/5)-CITROX(20/20) procedure and its variants; NP-CITROX type procedures with various compositions were also employed. Solutions based on oxalic acid were tested for the electrochemical and semi-dry electrochemical decontamination. The results of measurements of mass losses of the surfaces, of changes in the corrosion resistance and in the mechanical properties of the materials due to repeated decontamination are summarized. (Z.S.). 12 figs., 1 tab., 8 refs

  18. Analysis of occupational accidents with biological material among professionals in pre-hospital services.

    Science.gov (United States)

    de Oliveira, Adriana Cristina; Paiva, Maria Henriqueta Rocha Siqueira

    2013-02-01

    To estimate the prevalence of accidents due to biological material exposure, the characteristics and post-accident conduct among professionals of pre-hospital services of the four municipalities of Minas Gerais, Brazil. A cross-sectional study, using a structured questionnaire that was developed to enable the calculation of prevalence, descriptive analysis and analytical analysis using logistic regression. The study included 228 professionals; the prevalence of accidents due to biological material exposure was 29.4%, with 49.2% percutaneous, 10.4% mucousal, 6.0% non-intact skin, and 34.4% intact skin. Among the professionals injured, those that stood out were nursing technicians (41.9%) and drivers (28.3%). Notification of the occurrence of the accident occurred in 29.8% of the cases. Percutaneous exposure was associated with time of work in the organization (OR=2.51, 95% CI: 1.18 to 5.35, paccidents with biological material should be encouraged, along with professional evaluation/monitoring.

  19. Micro-buckling in the nanocomposite structure of biological materials

    Science.gov (United States)

    Su, Yewang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang

    2012-10-01

    Nanocomposite structure, consisting of hard mineral and soft protein, is the elementary building block of biological materials, where the mineral crystals are arranged in a staggered manner in protein matrix. This special alignment of mineral is supposed to be crucial to the structural stability of the biological materials under compressive load, but the underlying mechanism is not yet clear. In this study, we performed analytical analysis on the buckling strength of the nanocomposite structure by explicitly considering the staggered alignment of the mineral crystals, as well as the coordination among the minerals during the buckling deformation. Two local buckling modes of the nanostructure were identified, i.e., the symmetric mode and anti-symmetric mode. We showed that the symmetric mode often happens at large aspect ratio and large volume fraction of mineral, while the anti-symmetric happens at small aspect ratio and small volume fraction. In addition, we showed that because of the coordination of minerals with the help of their staggered alignment, the buckling strength of these two modes approached to that of the ideally continuous fiber reinforced composites at large aspect ratio given by Rosen's model, insensitive to the existing "gap"-like flaws between mineral tips. Furthermore, we identified a mechanism of buckling mode transition from local to global buckling with increase of aspect ratio, which was attributed to the biphasic dependence of the buckling strength on the aspect ratio. That is, for small aspect ratio, the local buckling strength is smaller than that of global buckling so that it dominates the buckling behavior of the nanocomposite; for comparatively larger aspect ratio, the local buckling strength is higher than that of global buckling so that the global buckling dominates the buckling behavior. We also found that the hierarchical structure can effectively enhance the buckling strength, particularly, this structural design enables

  20. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  1. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  2. ATTENDING PROFESSIONALS VICTIMS OF ACCIDENT WITH BIOLOGICAL MATERIAL IN A TROPICAL DISEASES HOSPITAL

    OpenAIRE

    Lillian Kelly de Oliveira Lopes; Anaclara Ferreira Veiga Tipple; Sirlene Neves Damando; Cássia Silva Miranda; Ivete Vieira Gomes

    2006-01-01

    ABSTRACT: The occupational risk for the health´s workers is a subject discussed in the last decades. However, the professional accident involving biological material´s records in the health´s units don´t describe the real situation. The purpose of this article is to identify the number of attending of professional accident involving biological material and the source of the leading. The data were obtained by the professional accident´s handbooks in 2003. The hospital had 5768 appointments. Am...

  3. World Federation of Societies of Biological Psychiatry guidelines for the pharmacological treatment of dementias in primary care

    DEFF Research Database (Denmark)

    Ihl, Ralf; Bunevicius, Robertas; Frölich, Lutz

    2015-01-01

    OBJECTIVE: To define a practice guideline for biological treatment of dementias for general practitioners in primary care. METHODS: This paper is a short and practical summary of the World Federation of Biological Psychiatry (WFSBP) guidelines for the Biological treatment of Alzheimer's disease...... and other dementias for treatment in primary care ( Ihl et al. 2011 ). The recommendations were developed by a task force of international experts in the field and are based on randomized controlled studies. RESULTS: Anti-dementia medications neither cure, nor arrest, or alter the course of the disease....... The type of dementia, the individual symptom constellation and the tolerability and evidence for efficacy should determine what medications should be used. In treating neuropsychiatric symptoms, psychosocial intervention should be the treatment of first choice. For neuropsychiatric symptoms, medications...

  4. Captopril 25 mg tablets stability assessment in different primary packing materials

    Directory of Open Access Journals (Sweden)

    Flávia Costa Mendes Paiva

    2017-11-01

    Full Text Available Introduction: Packaging is used to provide protection and information, from the production to the administration of a formulation. It is essential to define the primary packaging, for keeping the therapeutic efficacy of drugs, safety of users and for protecting drugs from instability. Objectives: The main objective of this study was to assess the stability of captopril 25 mg tablets in different primary packaging materials. Method: The characterization (IR, DSC and physical tests of the packaging materials used for captopril was carried out prior to the manufacture of tablets. Tablets were also characterized by physical-chemical analysis, comparative dissolution profile and stability studies. Results: The characterization of packaging materials was crucial for understanding the behavior of captopril when packed in each material. Materials with significant barrier, as blisters PVC/PVdC 90 g.m-² and hard aluminum and PVC/PE/PVdC and hard aluminum showed satisfactory results in a second stage, S2. On the contrary, lower barrier materials as blisters PVC/PVdC 40 g.m-² and hard aluminum did not present dissolution analysis S2. Conclusions: The aluminum strip presented the best results. And the batch in glass bottle, although packaged in excellent material, was disapproved in accelerated stability.

  5. A model of engineering materials inspired by biological tissues

    Directory of Open Access Journals (Sweden)

    Holeček M.

    2009-12-01

    Full Text Available The perfect ability of living tissues to control and adapt their mechanical properties to varying external conditions may be an inspiration for designing engineering materials. An interesting example is the smooth muscle tissue since this "material" is able to change its global mechanical properties considerably by a subtle mechanism within individual muscle cells. Multi-scale continuum models may be useful in designing essentially simpler engineering materials having similar properties. As an illustration we present the model of an incompressible material whose microscopic structure is formed by flexible, soft but incompressible balls connected mutually by linear springs. This simple model, however, shows a nontrivial nonlinear behavior caused by the incompressibility of balls and is very sensitive on some microscopic parameters. It may elucidate the way by which "small" changes in biopolymer networks within individual muscular cells may control the stiffness of the biological tissue, which outlines a way of designing similar engineering materials. The 'balls and springs' material presents also prestress-induced stiffening and allows elucidating a contribution of extracellular fluids into the tissue’s viscous properties.

  6. Application of radiochemical separation procedures to environmental and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Eakins, J D [UKAEA Atomic Energy Research Establishment, Harwell. Environmental and Medical Sciences Div.

    1984-06-15

    The measurement of low levels of radionuclides in environmental and biological materials often depends on separation of the nuclide of interest from a bulky matrix containing interfering radioelements. In such case, however sophisticated and elegant the counting technique, the quality of the final data will

  7. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    1980-01-01

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  8. OCCUPATIONAL ACCIDENTS WITH BIOLOGICAL MATERIALS IN CLINICAL ANALYSIS LABORATORY: CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    T. M. Azevedo

    2014-07-01

    Full Text Available Accidents involving biological material can cause diseases to the professional healthcare and also bring psychosocial effects. The aim of this study was to characterize the accidents occurring with biological material with professional of clinical laboratories of Sinop-MT. Data were collected by a questionnaire consisting of sociodemographic and health variables. 21 (87.5% of respondents stated that they never suffered any kind of accident. One of the injured workers reported that there was involvement in your emotional life. It is observed underreporting of occupational accidents by employees affected, making it difficult to increase research on the subject and actions about the problem.

  9. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    International Nuclear Information System (INIS)

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  10. Phenomenon of primary and secondary extinction in textured material

    International Nuclear Information System (INIS)

    Kryshtab, T.G.; Palacios G, J.; Mazin, M.O.

    2002-01-01

    A new X-ray diffraction method is proposed for a more exact calculation of pole figures to determine the crystallite orientation distribution function (CODF) in textured materials, by the introduction of a correction of the integrated intensity of the diffracted beam due to the phenomenon of extinction. Besides, for the case of a symmetrical Bragg reflection from an ''infinitely thick'' flat parallel plate textured sample a simple solution is developed for the problem of separation and determination of primary and secondary extinction parameters, which can be present simultaneously. The determination of these parameters gives additional information about crystallite structure and allows us to evaluate the average subgrains size and their disorientation, respectively. In this work according to the dynamic diffraction theory, it is shown that the extinction length, which is directly connected with the phenomenon of primary extinction, in the Bragg geometry for σ polarization (perpendicular) is independent on the wavelength used for a given reflection. On the other hand, the additional contribution from secondary extinction depends on X-ray wavelength due to the change of effective absorption coefficient. Considering this fact, the calculations of pole density and the parameters of primary and secondary extinction are performed using the same strong reflection for two different wavelengths and, for one of these wavelengths, a second order of reflection. For confirmation of the proposed method a partially cold rolled aluminium sample and an aluminium powder standard sample were measured. The corrected pole densities, the values of primary and secondary extinction and the average sizes of perfect coherent areas and average angle of disorientation of subgrains in the selected directions were obtained. The obtained results show that the precise X-ray diffraction characterization of textured materials requires the consideration, in general, of primary as well as secondary

  11. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    2015-01-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  12. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    2014-01-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  13. Teleology in biology, chemistry and physics education: what primary teachers should know

    Directory of Open Access Journals (Sweden)

    KOSTAS KAMPOURAKIS

    2007-01-01

    Full Text Available Recent research in cognitive psychology suggests that children develop intuitions that may clash with what is accepted by scientists, thus making certain scientific concepts difficult to understand. Children possess intuitions about design and purpose that make them provide teleological explanations to many different sorts of tasks. One possible explanation for the origin of the bias to view objects as made for something derives from an early sensitivity to intentional agents and to their behavior as intentional object users and object makers. What is important is that teleological explanations may not be exclusively restricted in biological phenomena, as commonly assumed. Consequently, primary school teachers should take that into account when teaching biology, chemistry or physics concepts and try to refrain from enforcing students’ teleological intuitions.

  14. Nuclear, biological and chemical contamination survivability of Army material

    International Nuclear Information System (INIS)

    Feeney, J.J.

    1987-01-01

    Army Regulation (AR) 70-71, Nuclear, Biological and Chemical (NBC) Contamination Survivability of Army Material, published during 1984, establishes Army policy and procedures for the development and acquisition of material to ensure its survivablility and sustainability on the NBC-contaminated battlefield. This regulation defines NBC contamination as a term that includes both the individual and collective effects of residual radiological, biological, and chemical contamination. AR 70-71 applies to all mission-essential equipment within the Army. NBC contamination survivability is the capability of a system and its crew to withstand an NBC-contaminated environment, including decontamination, without losing the ability to accomplish the assigned mission. Characteristics of NBC contamination survivability are decontaminability, hardness, and compatability. These characteristics are engineering design criteria which are intended for use only in a developmental setting. To comply with AR 70-71, each mission-essential item must address all three criteria. The Department of Defense (DOD) has published a draft instruction addressing acquisition of NBC contamination survivable systems. This instruction will apply throughout DOD to those programs, systems and subsystems designated by the Secretary of Defense as major systems acquisition programs and to those non-major systems that have potential impact on critical functions

  15. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Wood-derived materials for green electronics, biological Devices, and energy applications

    Science.gov (United States)

    Hongli Zhu; Wei Luo; Peter N. Ciesielski; Zhiqiang Fang; Junyong Zhu; Gunnar Henriksson; Michael E. Himmel; Liangbing Hu

    2016-01-01

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example,...

  17. Impacts of Insufficient Instructional Materials on Teaching Biology: Higher Education Systems in Focus

    Science.gov (United States)

    Edessa, Sutuma

    2017-01-01

    The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was…

  18. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology-a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  19. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interesting morphology--a distinctly mesoporous structure. Moreover, the walls of fiber cells are composed of thousands of fibers (or macrofibrils) oriented in a similar angle. Nanofibrils and nanocrystals can be further liberated from macrofibrils by mechanical, chemical, and enzymatic methods. The obtained nanocellulose has unique optical, mechanical, and barrier properties and is an excellent candidate for chemical modification and reconfiguration. Wood is naturally a composite material, comprised of cellulose, hemicellulose, and lignin. Wood is sustainable, earth abundant, strong, biodegradable, biocompatible, and chemically accessible for modification; more importantly, multiscale natural fibers from wood have unique optical properties applicable to different kinds of optoelectronics and photonic devices. Today, the materials derived from wood are ready to be explored for applications in new technology areas, such as electronics, biomedical devices, and energy. The

  20. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  1. Prompt gamma cold neutron activation analysis applied to biological materials

    International Nuclear Information System (INIS)

    Rossbach, M.; Hiep, N.T.

    1992-01-01

    Cold neutrons at the external neutron guide laboratory (ELLA) of the KFA Juelich are used to demonstrate their profitable application for multielement characterization of biological materials. The set-up and experimental conditions of the Prompt Gamma Cold Neutron Activation Analysis (PGCNAA) device is described in detail. Results for C, H, N, S, K, B, and Cd using synthetic standards and the 'ratio' technique for calculation are reported for several reference materials and prove the method to be reliable and complementary with respect to the elements being determined by INAA. (orig.)

  2. Fresh biological reference materials. Use in inter laboratory studies and as CRMs

    International Nuclear Information System (INIS)

    De Boer, J.

    1999-01-01

    Biological reference materials were prepared and packed in tins and glass jars to be used in inter laboratory studies on chlorobiphenyls and organochlorine pesticides, and trace metals, respectively. The materials were homogenised, sterilised and packed as wet tissue, which is unique for the purpose of inter laboratory studies and offers the advantage of studying the extraction and destruction steps of the analytical methods. In addition to their use in inter laboratory studies, some materials have been prepared or are being prepared as certified reference material for chlorobiphenyl analysis. (author)

  3. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break con- cepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade.

  4. Diffusion theory in biology: a relic of mechanistic materialism.

    Science.gov (United States)

    Agutter, P S; Malone, P C; Wheatley, D N

    2000-01-01

    Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metalbolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.

  5. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  6. Overview of the U.S. programs on properties of primary circuit materials

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Sikka, V.K.; Booker, M.K.

    1977-01-01

    The objective of U.S. Breeder Reactor Programs associated with primary circuit structural materials is to develop the design data base and associated design technology on existing commercially available materials as well as new alloys. This will permit economic operation of components at acceptable levels of plant availability and at up to 40-year lifetimes for inaccessible components. Long-term component reliability, elevated-temperature service within the creep range, and resistance to sodium attack and irradiation damage, along with design in compliance with ASME Codes and RDT Specifications, have required that the U.S. programs be directed toward contributing knowledge in a number of areas. These areas, relating to material deformation, failure modes, compatibility, fabrication, long-term behavior, irradiation damage, and availability will be discussed. The U.S. Structural Material Programs concerned with primary-circuit components will be reviewed, and their current and future contributions to knowledge of these areas will be explained

  7. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  8. Survey of currently available reference materials for use in connection with the determination of trace elements in biological and environmental materials

    International Nuclear Information System (INIS)

    Muramatsu, Y.; Parr, R.M.

    1985-12-01

    This report focuses on analytical reference materials which have been developed for use in connection with the determination of toxic and essential trace elements in biomedical and health-related environmental samples. Data are reported on 60 biological and 40 environmental (non-biological) reference materials from 11 suppliers. Certified concentration values (or their equivalents) and non-certified concentration values (or information values) are presented in various tables which are intended to help the user select a reference material that matches as closely as possible (i.e. with respect to matrix type and concentration of the element of interest) the ''real'' samples that are to be analysed. These tables have been generated from a database characterized by the following parameters: total number of reference materials=100; total number of elements recorded=69; total number of concentration values recorded=1771. Also included in the report is information (where available) on the cost of each material, the unit weight or volume supplied, and the minimum weight of material recommended for analysis. (author)

  9. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K

    1966-09-15

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min.

  10. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    International Nuclear Information System (INIS)

    Samsahl, K.

    1966-09-01

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min

  11. The primary circuit materials properties results analysis performed on archive material used in NPP V-1 and Kola NPP Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L.; Beno, P. [Nuclear Power Plants Research Institute Inc., Trnava (Slovakia)

    1997-04-01

    A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

  12. Isotope dilution mass spectrometry as the primary method of measurement for the amount of matter. Application to cadmium determination in biological materials and comparison with instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Munoz, Luis; Gras, Nuri; Quejido, Alberto; Ferrada, Carlos

    2001-01-01

    A primary method of measurement as defined by the Consultative Committee on the Quantity of Matter (Comite Consultatif pour la Quantite de Matiere, CCQM) of the International Bureau of Weights and Measurements (Bureau International des Poids et Mesures, BIPM), is one whose measurement process is perfectly known, has valid theoretical foundations and is fully described and answers to an equation that relates what is measured with what is intended to be measured without any significant empirical correction factors. It is also a method that has insignificant systematic errors, where only magnitudes from the International System of Units (SI) are used and where, preferably, the uncertainties are small ones. They are, therefore, procedures that do not need instrumental calibration. The absolute methods of measurement allow a chain of traceability to be formed between the result obtained and the magnitude of the SI assigned to what is measured. So the results are said to be traceable to the SI. One of the methods that meets these requirements and is recognized as the primary method by the CCQM is Isotope Dilution Mass Spectrometry (IDMS). Through a project of Technical Cooperation with the International Atomic Energy Agency in the area of Chemical Metrology, the CCHEN obtained training in CIEMAT, Spain, in IDMS and its applications to the analysis of biological samples. This work describes the first experience carried out entirely in Chilean laboratories, applying IDMS to the determination of cadmium in the biological reference materials Oyster Tissue 15566-A from the NIST, United States, Dogfish Liver, DOLT-2 from the NRC-CNRC, Canada and Poplar Leaves GBW07604 from the NRCC, China. The samples were traced with an isotope enriched spike 111 Cd and then shaken to obtain the isotopic exchange. Once dissolved, the isotopic relationship 111 Cd/ 114 Cd was determined in the samples using mass spectrometry with plasma source. These results were compared with those obtained

  13. New improved method for evaluation of growth by food related fungi on biologically derived materials

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well...

  14. MAK and BAT values list 2017. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    2017-01-01

    The MAK and BAT values list 2017 includes the maximum permissible concentrations at the place of work and biological tolerance values for working materials. The following working materials are covered: carcinogenic working materials, sensitizing materials and aerosols. The report discusses the restriction of exposure peaks, skin resorption, MAK (maximum working place concentration) values during pregnancy, germ cell mutagens and specific working materials. Importance and application of BAT (biological working material tolerance) values, list of materials, carcinogens, biological guide values and reference values are also included.

  15. MAK and BAT values list 2016. Maximum permissible concentrations at the place of work and biological tolerance values for working materials

    International Nuclear Information System (INIS)

    2016-01-01

    The MAK and BAT values list 2016 includes the maximum permissible concentrations at the place of work and biological tolerance values for working materials. The following working materials are covered: carcinogenic working materials, sensitizing materials and aerosols. The report discusses the restriction of exposure peaks, skin resorption, MAK (maximum working place concentration) values during pregnancy, germ cell mutagens and specific working materials. Importance and application of BAT (biological working material tolerance) values, list of materials, carcinogens, biological guide values and reference values are also included.

  16. [Implementation of safety devices: biological accident prevention].

    Science.gov (United States)

    Catalán Gómez, M Teresa; Sol Vidiella, Josep; Castellà Castellà, Manel; Castells Bo, Carolina; Losada Pla, Nuria; Espuny, Javier Lluís

    2010-04-01

    Accidental exposures to blood and biological material were the most frequent and potentially serious accidents in healthcare workers, reported in the Prevention of Occupational Risks Unit within 2002. Evaluate the biological percutaneous accidents decrease after a progressive introduction of safety devices. Biological accidents produced between 2.002 and 2.006 were analyzed and reported by the injured healthcare workers to the Level 2b Hospital Prevention of Occupational Risk Unit with 238 beds and 750 employees. The key of the study was the safety devices (peripheral i.v. catheter, needleless i.v. access device and capillary blood collection lancet). Within 2002, 54 percutaneous biological accidents were registered and 19 in 2006, that represents a 64.8% decreased. There has been no safety devices accident reported involving these material. Accidents registered during the implantation period occurred because safety devices were not used at that time. Safety devices have proven to be effective in reducing needle stick percutaneous accidents, so that they are a good choice in the primary prevention of biological accidents contact.

  17. [Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material].

    Science.gov (United States)

    Almeida, Maria Cristina Mendes de; Canini, Silvia Rita Marin da Silva; Reis, Renata Karina; Toffano, Silmara Elaine Malaguti; Pereira, Fernanda Maria Vieira; Gir, Elucir

    2015-04-01

    To assess adherence to clinical appointments by health care workers (HCW) and students who suffered accidents with potentially infectious biological material. A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. A total of 461 individuals exposed to biological material were treated, of which 389 (84.4%) were HCWs and 72 (15.6%) students. Of the 461 exposed individuals, 307 (66.6%) attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83). The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  18. FDTD simulation of exposure of biological material to electromagnetic nanopulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States); Haynie, Donald T [Center for Applied Physics Studies and Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2005-01-21

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed using the finite difference-time domain (FDTD) method. The approach required the reparametrization of existing Cole-Cole model-based descriptions of dielectric properties of biological matter in terms of the Debye model without loss of accuracy. Several tissue types have been considered. Results show that the electromagnetic field inside biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behaviour inside tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 kV m{sup -1} nanopulses is insufficient to change the temperature of the exposed material for pulse repetition rates of 1 MHz or less, consistent with recent experimental results.

  19. INAA Application for Trace Element Determination in Biological Reference Material

    Science.gov (United States)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  20. Procurement of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials

    Science.gov (United States)

    2015-12-31

    SECURITY CLASSIFICATION OF: After acquiring the Infrared Imaging Microscope with large area mapping capabilities for structure -function research and...Inorganic Interfacial Analysis in Biological Materials The views, opinions and/or findings contained in this report are those of the author(s) and should...of a Large Area Mapping FTIR Microscope for Organic-Inorganic Interfacial Analysis in Biological Materials Report Title After acquiring the Infrared

  1. Analysis of 10 years of accidents with biological material among the nursing staff

    Directory of Open Access Journals (Sweden)

    Dayane Xavier de Barros

    2016-06-01

    Full Text Available The objectives of the present study were: to identify the profile of accidents with biological material among nursing professionals treated in a reference service; to characterize pre-exposure conducts and to analyze factors associated with percutaneous exposure. An epidemiological, retrospective and analytical study was conducted in records of accidents involving biological material from 2000 to 2010. The number of accidents with the nursing staff was 2,569, representing 44.6% of the total records. There was a prevalence of percutaneous exposure cases involving needles with lumen and blood in upper limbs among female nursing technicians. Being female and working outside the city where the service is located increased about twice the chances of suffering percutaneous accidents. The data found strengthen the importance of biological risk in the nursing practice and point to the fact that workers have to move between cities to be treated when the accident is considered serious, such as the case of percutaneous accidents.

  2. MODIS-derived terrestrial primary production [chapter 28

    Science.gov (United States)

    Maosheng Zhao; Steven Running; Faith Ann Heinsch; Ramakrishna Nemani

    2011-01-01

    Temporal and spatial changes in terrestrial biological productivity have a large impact on humankind because terrestrial ecosystems not only create environments suitable for human habitation, but also provide materials essential for survival, such as food, fiber and fuel. A recent study estimated that consumption of terrestrial net primary production (NPP; a list of...

  3. The determination of copper in biological materials by flame spectrophotometry

    Science.gov (United States)

    Newman, G. E.; Ryan, M.

    1962-01-01

    A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334

  4. Evaluation of Botanical Reference Materials for the Determination of Vanadium in Biological Samples

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemic....... A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration....

  5. Advanced composite structural concepts and material technologies for primary aircraft structures

    Science.gov (United States)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  6. Maximum concentrations at work and maximum biologically tolerable concentration for working materials 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The meaning of the term 'maximum concentration at work' in regard of various pollutants is discussed. Specifically, a number of dusts and smokes are dealt with. The valuation criteria for maximum biologically tolerable concentrations for working materials are indicated. The working materials in question are corcinogeneous substances or substances liable to cause allergies or mutate the genome. (VT) [de

  7. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  8. Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Behjat-Al-Molook Ajami

    2013-01-01

    Full Text Available Introduction: In restorative dentistry, selecting the proper material is an important factor for clinical success. The objective of this study was clinical evaluation of survival time of three tooth color materials in primary anterior teeth. Methods: In this interventional clinical trial study, 94 deciduous anterior teeth (36 teeth in boys, 58 teeth in girls belonging to 3-5 year old children in Pediatric Department of Mashhad Faculty of Dentistry, Iran were selected. Selective dental materials included compoglass, glass-ionomer Fuji II LC, and composite resin. The data were analyzed with Kaplan–Meyer and Log rank test. Results: compoglass had the highest survival time in comparison with composite and glass-ionomer. Nine months retention rate for teeth restored with compoglass, composite resin and glass-ionomer were estimated: 95%, 21%, and 12.5%, respectively. Conclusion: Compoglass can be a suitable material for anterior primary teeth restoration

  9. Evaluation of Survival Time of Tooth Color Dental Materials in Primary Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Taraneh Movahhed

    2012-09-01

    Full Text Available Introduction: In restorative dentistry, selecting the proper material is an important factor for clinical success. The objective of this study was clinical evaluation of survival time of three tooth color materials in primary anterior teeth. Methods: In this interventional clinical trial study, 94 deciduous anterior teeth (36 teeth in boys, 58 teeth in girls belonging to 3-5 year old children in Pediatric Department of Mashhad Faculty of Dentistry, Iran were selected. Selective dental materials included compoglass, glass-ionomer Fuji II LC, and composite resin. The data were analyzed with Kaplan–Meyer and Log rank test. Results: compoglass had the highest survival time in comparison with composite and glass-ionomer. Nine months retention rate for teeth restored with compoglass, composite resin and glass-ionomer were estimated: 95%, 21%, and 12.5%, respectively. Conclusion: Compoglass can be a suitable material for anterior primary teeth restoration.

  10. Determination of the dynamical behaviour of biological materials during impact using a pendulum device

    Science.gov (United States)

    Van Zeebroeck, M.; Tijskens, E.; Van Liedekerke, P.; Deli, V.; De Baerdemaeker, J.; Ramon, H.

    2003-09-01

    A pendulum device has been developed to measure contact force, displacement and displacement rate of an impactor during its impact on the sample. Displacement, classically measured by double integration of an accelerometer, was determined in an alternative way using a more accurate incremental optical encoder. The parameters of the Kuwabara-Kono contact force model for impact of spheres have been estimated using an optimization method, taking the experimentally measured displacement, displacement rate and contact force into account. The accuracy of the method was verified using a rubber ball. Contact force parameters for the Kuwabara-Kono model have been estimated with success for three biological materials, i.e., apples, tomatoes and potatoes. The variability in the parameter estimations for the biological materials was quite high and can be explained by geometric differences (radius of curvature) and by biological variation of mechanical tissue properties.

  11. Applications of mass spectrometry in the trace element analysis of biological materials

    International Nuclear Information System (INIS)

    Moens, L.

    1997-01-01

    The importance of mass spectrometry for the analysis of biological material is illustrated by reviewing the different mass spectrometric methods applied and describing some typical applications published recently. Though atomic absorption spectrometry is used in the majority of analyses of biological material, most mass spectrometric methods have been used to some extent for trace element determination in biomedical research. The relative importance of the different methods is estimated by reviewing recent research papers. It is striking that especially inductively coupled plasma mass spectrometry is increasingly being applied, partly because the method can be used on-line after chromatographic separation, in speciation studies. Mass spectrometric methods prove to offer unique possibilities in stable isotope tracer studies and for this purpose also experimentally demanding methods such as thermal ionization mass spectrometry and accelerator mass spectrometry are frequently used. (orig.)

  12. Primary energy-transformations in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Lehninger, A.L.

    1980-10-01

    In this paper I shall review the main outlines of current research on the molecular aspects of the primary energy-coupling mechanisms in cells, those carried out by energy-transducing membranes. They include the capture of solar energy by the chloroplast membranes of green plants, used to generate carbohydrates and molecular oxygen from carbon dioxide and water, and the counterpart of photosynthesis, the process of respiration in heterotrophic organisms, in which reduced organic products generated by photosynthesis are oxidized at the expense of dioxygen to form carbon dioxide and water. Although the cycling of dioxygen, carbon dioxide, and organic matter between the plant and animal worlds is well known, it is not generally appreciated that the magnitude of biological energy flux in these cycles is huge compared to the total energy flux in man-made devices. A major consequence is that the concentration of carbon dioxide in the atmosphere has been increasing at a significant rate, at a time when there is also a decrease, at least in some parts of the world, in the counterbalancing utilization of CO/sub 2/ by green plants, due to deforestation. The greenhouse effect of increased atmospheric CO/sub 2/ may not only change the earth's climate, but also may influence the rate of photosynthesis. It is also not generally appreciated that energy flow in the biosphere leads to production of enormous amounts of organic matter potentially useful in furnishing man's energy requirements.

  13. Comparison of Endoflas and Zinc oxide Eugenol as root canal filling materials in primary dentition

    Directory of Open Access Journals (Sweden)

    Nivedita Rewal

    2014-01-01

    Full Text Available Background: Zinc oxide eugenol has long been the material of choice of pediatric dentists worldwide, although it fails to meet the ideal requirements of root canal filling material for primary teeth. Endoflas, a mixture of zinc oxide eugenol, calcium hydroxide, and iodoform, can be considered to be an effective root canal filling material in primary teeth as compared with zinc oxide eugenol. This study was carried out to compare zinc oxide eugenol with endoflas for pulpectomy in primary dentition. Aim: The objective of the study was to compare clinically and radiographically success rates of zinc oxide eugenol with endoflas for the root canal filling of primary teeth at 3, 6, and 9 months. Design: Fifty primary molars were included in the study with 26 teeth in Group I (Endoflas and 24 in Group II (zinc oxide eugenol. A single visit pulpectomy was carried out. Results: The overall success rate of zinc oxide eugenol was 83% whereas 100% success was found in the case of endoflas. The obtained results were compiled and subjected to statistical analysis using the chi-square test. The difference in the success rate between the two was statistically significant (P < 0.05. Conclusion: Endoflas has shown to have better results than zinc oxide eugenol. It should therefore be the material of choice for root canal treatment in deciduous dentition.

  14. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  15. Certification of biological candidates reference materials by neutron activation analysis

    Science.gov (United States)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  16. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials

    International Nuclear Information System (INIS)

    Nass, Jens

    2010-01-01

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  17. An overview of the U.S. programs on properties of primary circuit materials

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Sikka, V.K.; Booker, M.K.

    1977-01-01

    The objective of U.S. Breeder Reactor Programs associated with primary circuit structural materials is to develop the design data base and associated design technology on existing commercially available materials as well as new alloys. This will permit economic operation of components at acceptable levels of plant availability and at up to 40-yr lifetimes for inaccessible components. Long-term component reliability, elevated-temperature service within the creep range, and resistance to sodium attack and irradiation damage, along with design in compliance with ASME Codes and RDT Specifications, have required that the U.S. Programs be directed toward contributing knowledge in a number of areas. These areas, relating to material deformation, failure modes, compatibility, fabrication, long-term behavior, irradiation damage, and availability will be discussed. The U.S. Structural Material Programs concerned with primary-circuit components will be reviewed, and their current and future contributions to knowledge of these areas will be explained. (author)

  18. An overview of the U.S. programs on properties of primary circuit materials

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C R; Sikka, V K; Booker, M K [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1977-07-01

    The objective of U.S. Breeder Reactor Programs associated with primary circuit structural materials is to develop the design data base and associated design technology on existing commercially available materials as well as new alloys. This will permit economic operation of components at acceptable levels of plant availability and at up to 40-yr lifetimes for inaccessible components. Long-term component reliability, elevated-temperature service within the creep range, and resistance to sodium attack and irradiation damage, along with design in compliance with ASME Codes and RDT Specifications, have required that the U.S. Programs be directed toward contributing knowledge in a number of areas. These areas, relating to material deformation, failure modes, compatibility, fabrication, long-term behavior, irradiation damage, and availability will be discussed. The U.S. Structural Material Programs concerned with primary-circuit components will be reviewed, and their current and future contributions to knowledge of these areas will be explained. (author)

  19. Organizational influence on the occurrence of work accidents involving exposure to biological material.

    Science.gov (United States)

    Marziale, Maria Helena Palucci; Rocha, Fernanda Ludmilla Rossi; Robazzi, Maria Lúcia do Carmo Cruz; Cenzi, Camila Maria; dos Santos, Heloisa Ehmke Cardoso; Trovó, Marli Elisa Mendes

    2013-01-01

    to analyze work accidents involving exposure to biological materials which took place among personnel working in nursing and to evaluate the influence of the organizational culture on the occurrence of these accidents. a retrospective, analytical study, carried out in two stages in a hospital that was part of the Network for the Prevention of Work Accidents. The first stage involved the analysis of the characteristics of the work accidents involving exposure to biological materials as recorded over a seven-year period by the nursing staff in the hospital studied, and registered in the Network databank. The second stage involved the analysis of 122 nursing staff members' perception of the institutional culture, who were allocated to the control group (workers who had not had an accident) and the case group (workers who had had an accident). 386 accidents had been recorded: percutaneous lesions occurred in 79% of the cases, needles were the materials involved in 69.7% of the accidents, and in 81.9% of the accident there was contact with blood. Regarding the influence of the organizational culture on the occurrence of accidents, the results obtained through the analysis of the two groups did not demonstrate significant differences between the average scores attributed by the workers in each organizational value or practice category. It is concluded that accidents involving exposure to biological material need to be avoided, however, it was not possible to confirm the influence of organizational values or practices on workers' behavior concerning the occurrence of these accidents.

  20. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  1. Outcome of zinc oxide eugenol paste as an obturating material in primary teeth pulpectomy: A systematic review

    Directory of Open Access Journals (Sweden)

    Harsha S Nalawade

    2017-01-01

    Full Text Available The aim of this systematic review is to use the principles of evidence-based dentistry to evaluate the outcome of zinc oxide eugenol (ZOE paste as an obturating material in primary teeth pulpectomies. Moderate-to-high success rates are reported with ZOE in preserving chronically infected primary teeth. However, it fails to meet many of the criteria for an ideal obturating material. Databases searched were PubMed, EBSCOhost, and Google Scholar. Articles published between January 1, 1993, and June 30, 2016, with in vivo studies for obturating materials in primary teeth pulpectomy with placement of preformed crown, reporting follow-up period of at least 12 months with clinical and radiographic success rates were selected for this review. In total, 122 articles were retrieved. After the removal of duplicates and screening, full-text articles were analyzed; of which eight articles were selected for the systematic review. No significant difference was seen in the outcome of obturating materials used in comparison with ZOE in the included studies. Outcomes of ZOE paste obtained with clinical and radiographic evaluation were similar when compared to the newer combinations of materials available for obturating primary teeth today. More number of randomized controlled clinical trials for primary teeth pulpectomies with at least 12 months follow-up period and placement of crown as final restoration need to be carried out for testing the newer materials in comparison with ZOE to conclude a suitable alternative obturating material.

  2. Instrumental neutron activation analysis of phosphorus in biological materials by Bremsstrahlung measurement

    International Nuclear Information System (INIS)

    Bajo, S.; Wyttenbach, A.

    1986-12-01

    The determination of phosphorus in biological materials by instrumental neutron activation via the reaction 31 P (n,γ) 32 P is described. The Bremsstrahlung produced by 32 P is measured in a well-type NaI(Tl) detector. The samples are measured within the polyethylene irradiation container with no changes between irradiation and measurement. The sources of error were studied and the proposed method was applied to the determination of phosphorus in ten internationally certified materials. (author)

  3. Analysis of microleakage of temporary restorative materials in primary teeth

    Directory of Open Access Journals (Sweden)

    Geórgia Linhares dos Santos

    2014-01-01

    Full Text Available Aim: The aim of this study was to compare the coronal microleakage of restorative materials used between sessions of endodontic treatment in primary teeth. Materials and Methods: Forty healthy primary canines were chosen and randomly allocated to four groups: Group 1 - Cimpat Branco ® (n = 10, Group 2 - Bioplic ® (n = 10, Group 3 - Maxxion R ® glass ionomer cement (n = 10, and Group 4 (control - Z350 ® composite resin (n = 10. Class V cavities were created and fillings carried out following the manufacturer′s instructions. The teeth were submitted to thermocycling, sealed, and immersed in 0.5% basic fuchsin solution for 24 h. The teeth were split along their long axis in the vestibulolingual direction and the tooth-restorative material interface was photographed. The percentage of microleakage was calculated using the ImageJ program. Data were analyzed using the analysis of variance (ANOVA F-test and Bonferroni′s t-test, with a 5% level of significance. Results: The following mean percentages of microleakage were found: Group 1 = 16.08%, Group 2 = 46.98%, Group 3 = 47.93%, and Group 4 = 11.03%. Statistically, significant differences were found in the comparison of Groups 1 and 4 to Groups 2 and 3. Conclusion: Cimpat Branco ® had a lower percentage of microleakage in comparison to Bioplic ® and Maxxion R ® glass ionomer cement.

  4. In Vitro Investigation of Wear of CAD/CAM Polymeric Materials Against Primary Teeth

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2017-12-01

    Full Text Available The aim of the study was to evaluate the effects of polymeric computer-aided design/computer-aided manufacturing CAD/CAM materials on antagonistic primary tooth wear. Five CAD/CAM polymeric materials were examined: Vipi Block Monocolor (VBM, Yamahachi polymethylmethacrylate (PMMA (YAP, Mazic Duro (MZD, Vita Enamic (ENA, and Pekkton (PEK. All of the specimens were tested in a thermomechanical loading machine with the primary canine as the antagonist (50 N, 1.2 × 105 cycles, 1.7 Hz, 5/55 °C. The wear losses of the antagonist tooth and the restorative materials were calculated using reverse modelling software and an electronic scale. VBM and ENA showed significantly higher antagonist tooth wear than PEK (p < 0.05, but there was no significant difference observed among VBM, YAP, MZD, and ENA (p > 0.05. PEK showed the largest value in both material volumetric and weight losses. In terms of material volumetric losses, there was no significant difference between all of the groups (p > 0.05. In terms of material weight losses, PEK was significantly larger than ENA (p < 0.05, but there was no significant difference between VBM, YAP, MZD, and ENA (p > 0.05. Volumetric and weight losses of materials showed similar wear behaviour. However, the wear patterns of antagonists and materials were different, especially in PEK.

  5. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  6. The High-Strain Rate Loading of Structural Biological Materials

    Science.gov (United States)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  7. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  8. Under-reporting of accidents involving biological material by nursing professionals at a Brazilian emergency hospital.

    Science.gov (United States)

    Facchin, Luiza Tayar; Gir, Elucir; Pazin-Filho, Antonio; Hayashida, Miyeko; da Silva Canini, Silvia Rita Marin

    2013-01-01

    Pathogens can be transmitted to health professionals after contact with biological material. The exact number of infections deriving from these events is still unknown, due to the lack of systematic surveillance data and under-reporting. A cross-sectional study was carried out, involving 451 nursing professionals from a Brazilian tertiary emergency hospital between April and July 2009. Through an active search, cases of under-reporting of occupational accidents with biological material by the nursing team were identified by means of individual interviews. The Institutional Review Board approved the research project. Over half of the professionals (237) had been victims of one or more accidents (425 in total) involving biological material, and 23.76% of the accidents had not been officially reported using an occupational accident report. Among the underreported accidents, 53.47% were percutaneous and 67.33% were bloodborne. The main reason for nonreporting was that the accident had been considered low risk. The under-reporting rate (23.76%) was low in comparison with other studies, but most cases of exposure were high risk.

  9. Ion beam modification of biological materials in nanoscale

    Science.gov (United States)

    Yu, L. D.; Anuntalabhochai, S.

    2012-07-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  10. Ion beam modification of biological materials in nanoscale

    International Nuclear Information System (INIS)

    Yu, L.D.; Anuntalabhochai, S.

    2012-01-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  11. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.

    1985-01-01

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  12. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology

    Science.gov (United States)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  13. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  14. Utilisation of biological and secondary raw materials VI. Recycling - conversion to energy; Bio- und Sekundaerrohstoffverwertung VI. Stofflich - energetisch

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael

    2011-07-01

    In a lot of contributions the Kasseler waste and bio-energy forum reports on a sustainable management of wastes. The organizers hope that this results in a lively dialogue on sustainable activities in waste management corresponding to the responsibility towards future generations. Within the 23rd Kasseler waste and bio-energy forum at 12th to 14th April, 2010 in Kassel (Federal Republic of Germany) lectures were held to the following themes: (1) Perspectives of the waste management; (2) Ressource conservation and securing of raw material; (3) Common capture of packages and high-grade materials; (4) Bin for reusable materials - system trusteeship, material flows, qualities, financing, practical examples; (5) Industrial waste flows, EBS quality assurance and increase of efficiency; (6) New technological developments in the area of fermentation of biological wastes; (7) Perspectives of material and energetical utilization of biological wastes; (8) Renewable Energy Law and direct marketing of 'green' electricity; (9) Technology and experiences with biogas processing; (10) Fermentation of biogenic residues and catering waste; (11) Increase of efficiency of mechanical-biological treatment plants; (12) Mechanical-biological treatment technology in an international environment; (13) Concepts of energetic utilization for landfill sites; (14) Landfill law and landfill after-care; (15) Renaturation of landfills.

  15. A method to determine site-specific, anisotropic fracture toughness in biological materials

    International Nuclear Information System (INIS)

    Bechtle, Sabine; Özcoban, Hüseyin; Yilmaz, Ezgi D.; Fett, Theo; Rizzi, Gabriele; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Many biological materials are hierarchically structured, with highly anisotropic structures and properties on several length scales. To characterize the mechanical properties of such materials, detailed testing methods are required that allow precise and site-specific measurements on several length scales. We propose a fracture toughness measurement technique based on notched focused ion beam prepared cantilevers of lower and medium micron size scales. Using this approach, site-specific fracture toughness values in dental enamel were determined. The usefulness and challenges of the method are discussed.

  16. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material.

    Science.gov (United States)

    Pérez-Lachaud, Gabriela; Lachaud, Jean-Paul

    2017-01-01

    Biological collections around the world are the repository of biodiversity on Earth; they also hold a large quantity of unsorted, unidentified, or misidentified material and can house behavioral information on species that are difficult to access or no longer available to science. Among the unsorted, alcohol-preserved material stored in the Formicidae Collection of the 'El Colegio de la Frontera Sur' Research Center (Chetumal, Mexico), we found nine colonies of the ponerine ant Neoponera villosa, that had been collected in bromeliads at Calakmul (Campeche, Mexico) in 1999. Ants and their brood were revised for the presence of any sign of parasitism. Cocoons were dissected and their content examined under a stereomicroscope. Six N. villosa prepupae had been attacked by the ectoparasitoid syrphid fly Hypselosyrphus trigonus Hull (Syrphidae: Microdontinae), to date the only known dipteran species of the Microdontinae with a parasitoid lifestyle. In addition, six male pupae from three colonies contained gregarious endoparasitoid wasps. These were specialized in parasitizing this specific host caste as no gyne or worker pupae displayed signs of having been attacked. Only immature stages (larvae and pupae) of the wasp could be obtained. Due to the long storage period, DNA amplification failed; however, based on biological and morphological data, pupae were placed in the Encyrtidae family. This is the first record of an encyrtid wasp parasitizing N. villosa, and the second example of an encyrtid as a primary parasitoid of ants. Furthermore, it is also the first record of co-occurrence of a dipteran ectoparasitoid and a hymenopteran endoparasitoid living in sympatry within the same population of host ants. Our findings highlight the importance of biological collections as reservoirs of hidden biodiversity, not only at the taxonomic level, but also at the behavioral level, revealing complex living networks. They also highlight the need for funding in order to carry out

  17. Growing a Primary Science Specialism: Assembling People, Places, Materials and Ideas

    Science.gov (United States)

    Lynch, Julianne; Frankel, Nadine; McCarthy, Kerry; Sharp, Lindy

    2015-01-01

    This paper derives from the authors' experiences of the development of a successful science specialism implemented in a large primary school in regional Victoria, Australia, since 2012. We discuss how diverse resources--people, spaces, equipment, materials and ideas--were brought together to support a science specialism that focuses on positioning…

  18. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  19. Evaluation of a fungal collection as certified reference material producer and as a biological resource center

    Directory of Open Access Journals (Sweden)

    Tatiana Forti

    2016-06-01

    Full Text Available Abstract Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC. For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061.

  20. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    Science.gov (United States)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  1. Fluorine determinations in biological materials by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Demiralp, R.; Guinn, V.P.; Becker, D.A.

    1992-01-01

    Exploratory studies were carried out at the University of California, Irvine on several freeze-dried human diet materials and on two freeze-dried vegetation materials - all prospective reference materials. The University of California, Irvine equipment includes a 250-kW TRIGA Mark 1 reactor, 2.5 x 10 12 n/cm 2 ·s thermal flux, 3-s sample transfer time, and a typical 18% Ge(Li)/4,096-channel gamma-ray spectrometer with a detector resolution of 3.3 keV at 1,332 keV. In these exploratory studies, it was found that it was not feasible to measure fluorine with adequate precision or accuracy at fluorine concentrations much less than ∼100 ppm. These initial studies, however, defined the magnitudes of the various difficulties. One good outcome of these studies was the demonstration that the otherwise excellent Teflon-mill brittle-fracture method for homogenizing freeze-dried biological samples was not suitable if fluorine was to be determined. Abrasion of the Teflon increased the fluorine content of a human diet sample about sevenfold (compared with similar treatment of the same material in an all-titanium mill)

  2. Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials

    Science.gov (United States)

    Raman imaging can analyze biological materials by generating detailed chemical images. Over the last decade, tremendous advancements in Raman imaging and data analysis techniques have overcome problems such as long data acquisition and analysis times and poor sensitivity. This review article introdu...

  3. Microsoft Biology Initiative: .NET Bioinformatics Platform and Tools

    Science.gov (United States)

    Diaz Acosta, B.

    2011-01-01

    The Microsoft Biology Initiative (MBI) is an effort in Microsoft Research to bring new technology and tools to the area of bioinformatics and biology. This initiative is comprised of two primary components, the Microsoft Biology Foundation (MBF) and the Microsoft Biology Tools (MBT). MBF is a language-neutral bioinformatics toolkit built as an extension to the Microsoft .NET Framework—initially aimed at the area of Genomics research. Currently, it implements a range of parsers for common bioinformatics file formats; a range of algorithms for manipulating DNA, RNA, and protein sequences; and a set of connectors to biological web services such as NCBI BLAST. MBF is available under an open source license, and executables, source code, demo applications, documentation and training materials are freely downloadable from http://research.microsoft.com/bio. MBT is a collection of tools that enable biology and bioinformatics researchers to be more productive in making scientific discoveries.

  4. Teaching Methods in Biology Education and Sustainability Education Including Outdoor Education for Promoting Sustainability--A Literature Review

    Science.gov (United States)

    Jeronen, Eila; Palmberg, Irmeli; Yli-Panula, Eija

    2017-01-01

    There are very few studies concerning the importance of teaching methods in biology education and environmental education including outdoor education for promoting sustainability at the levels of primary and secondary schools and pre-service teacher education. The material was selected using special keywords from biology and sustainable education…

  5. Biological availability of energy related effluent material in the coastal ecosystem

    International Nuclear Information System (INIS)

    Gibson, C.I.; Abel, K.H.; Ahlstrom, S.W.; Crecelius, E.A.; Schmidt, R.L.; Thatcher, T.O.; Wildung, R.E.

    1977-01-01

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  6. Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology.

    Science.gov (United States)

    Walker, Steven M; Knight, Laura A; McCavigan, Andrena M; Logan, Gemma E; Berge, Viktor; Sherif, Amir; Pandha, Hardev; Warren, Anne Y; Davidson, Catherine; Uprichard, Adam; Blayney, Jaine K; Price, Bethanie; Jellema, Gera L; Steele, Christopher J; Svindland, Aud; McDade, Simon S; Eden, Christopher G; Foster, Chris; Mills, Ian G; Neal, David E; Mason, Malcolm D; Kay, Elaine W; Waugh, David J; Harkin, D Paul; Watson, R William; Clarke, Noel W; Kennedy, Richard D

    2017-10-01

    Approximately 4-25% of patients with early prostate cancer develop disease recurrence following radical prostatectomy. To identify a molecular subgroup of prostate cancers with metastatic potential at presentation resulting in a high risk of recurrence following radical prostatectomy. Unsupervised hierarchical clustering was performed using gene expression data from 70 primary resections, 31 metastatic lymph nodes, and 25 normal prostate samples. Independent assay validation was performed using 322 radical prostatectomy samples from four sites with a mean follow-up of 50.3 months. Molecular subgroups were identified using unsupervised hierarchical clustering. A partial least squares approach was used to generate a gene expression assay. Relationships with outcome (time to biochemical and metastatic recurrence) were analysed using multivariable Cox regression and log-rank analysis. A molecular subgroup of primary prostate cancer with biology similar to metastatic disease was identified. A 70-transcript signature (metastatic assay) was developed and independently validated in the radical prostatectomy samples. Metastatic assay positive patients had increased risk of biochemical recurrence (multivariable hazard ratio [HR] 1.62 [1.13-2.33]; p=0.0092) and metastatic recurrence (multivariable HR=3.20 [1.76-5.80]; p=0.0001). A combined model with Cancer of the Prostate Risk Assessment post surgical (CAPRA-S) identified patients at an increased risk of biochemical and metastatic recurrence superior to either model alone (HR=2.67 [1.90-3.75]; pmolecular subgroup of primary prostate cancers with metastatic potential. The metastatic assay may improve the ability to detect patients at risk of metastatic recurrence following radical prostatectomy. The impact of adjuvant therapies should be assessed in this higher-risk population. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. An independent accurate reference method for the determination of chromium in biological materials

    NARCIS (Netherlands)

    Lagerwaard, A.; Woittiez, J.R.W.; de Goeij, J.J.M.

    1994-01-01

    A method for the determination of Cr in biological materials with high accuracy is reported for use as an independent reference method. It is based on radiochemical neutron activation analysis (RNAA) in combination with an individual yield determination based on the online yield principle. A

  8. Materials used for indirect pulp treatment in primary teeth: a mixed treatment comparisons meta-analysis

    Directory of Open Access Journals (Sweden)

    Pablo Silveira dos Santos

    2017-12-01

    Full Text Available Abstract: This study aimed to systematically review the literature to address the question regarding the influence of different materials in the clinical and radiographic success of indirect pulp treatment in primary teeth. A literature search was carried out for articles published prior to January 2017 in PubMed/MEDLINE, CENTRAL, Scopus, TRIP and ClinicalTrials databases; relevant articles included randomized clinical trials that compared materials used for indirect pulp treatment in primary teeth. Two reviewers independently selected the studies and extracted the data. The effects of each material on the outcome (clinical and radiographic failures were analyzed using a mixed treatment comparisons meta-analysis. The ranking of treatments according to their probability of being the best choice was also calculated. From 1,088 potentially eligible studies, 11 were selected for full-text analysis, and 4 were included in the meta-analysis. In all papers, calcium hydroxide liner was used as the control group versus an adhesive system, resin-modified glass ionomer cement or placebo. The follow-up period ranged from 24 to 48 months, with dropout rates of 0-25.7%. The material type did not significantly affect the risk of failure of the indirect pulp treatment. However, calcium hydroxide presented a higher probability of failure. In conclusion, there is no scientific evidence showing the superiority of any material used for indirect pulp treatment in primary teeth.

  9. Influence of different implant materials on the primary stability of orthodontic mini-implants.

    Science.gov (United States)

    Pan, Chin-Yun; Chou, Szu-Ting; Tseng, Yu-Chuan; Yang, Yi-Hsin; Wu, Chao-Yi; Lan, Ting-Hsun; Liu, Pao-Hsin; Chang, Hong-Po

    2012-12-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft(3) trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates(®) device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05). Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success. Copyright © 2012. Published by Elsevier B.V.

  10. Influence of different implant materials on the primary stability of orthodontic mini-implants

    Directory of Open Access Journals (Sweden)

    Chin-Yun Pan

    2012-12-01

    Full Text Available This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm. The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm and stainless steel mini-implants 10 mm in length. The mini-implants were inserted into artificial bones with a 2-mm-thick cortical layer and 40 or 20 lb/ft3 trabecular bone density at insertion depths of 2, 4, and 6 mm. The resonance frequency of the mini-implants in the artificial bone was detected with the Implomates® device. Data were analyzed by two-way analysis of variance followed by the Tukey honestly significant difference test (α = 0.05. Greater insertion depth resulted in higher resonance frequency, whereas longer mini-implants showed lower resonance frequency values. However, resonance frequency was not influenced by the implant materials titanium alloy or stainless steel. Therefore, the primary stability of a mini-implant is influenced by insertion depth and not by implant material. Insertion depth is extremely important for primary implant stability and is critical for treatment success.

  11. [Accidents with biological material at West Paraná University Hospital].

    Science.gov (United States)

    Murofuse, Neide Tiemi; Marziale, Maria Helena Palucci; Gemelli, Lorena Moraes Goetem

    2005-08-01

    It is a descriptive and retrospective study with the purpose of investigating labor accidents with biological material involving workers and trainees occurred in 2003 and 2004 in a University Hospital of Parana. For data collection, the electronic form of the Net of Occupational Accidents Prevention - REPAT has been utilized. Out of the 586 hospital workers, there was a register of 20 (3,4%) injured workers in 2003 and 23 (3,8%) in 2004, representing an increase of 15% in the notifications from one year to the other.

  12. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  13. Comparison of Principal Component Analysis and Linear Discriminant Analysis applied to classification of excitation-emission matrices of the selected biological material

    Directory of Open Access Journals (Sweden)

    Maciej Leśkiewicz

    2016-03-01

    Full Text Available Quality of two linear methods (PCA and LDA applied to reduce dimensionality of feature analysis is compared and efficiency of their algorithms in classification of the selected biological materials according to their excitation-emission fluorescence matrices is examined. It has been found that LDA method reduces the dimensions (or a number of significant variables more effectively than PCA method. A relatively good discrimination within the examined biological material has been obtained with the use of LDA algorithm.[b]Keywords[/b]: Feature Analysis, Fluorescence Spectroscopy, Biological Material Classification

  14. Use of composite materials for the determination of Cu, As, Mo, Cd and Sb in biological materials by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Lucanikova, M.; John, J.; Kucera, J.; Sebesta, F.

    2006-01-01

    New composite materials were developed and tested for determination of Cu, As, Mo, Cd, and Sb in biological materials by radiochemical neutron activation analysis (RNAA). The materials were prepared by incorporation of solid zinc diethyldithiocarbamate or liquid bis(2,4,4-trimethylpentyl)dithiophosphinic acid (CYANEX 301) into a polyacrylonitrile (PAN) binding matrix. The accuracy of the RNAA procedures was proved by analysis of NIST SRM-1515 Apple Leaves, NIST SRM-1577b Bovine Liver, and NIST SRM-1549 Non Fat Milk Powder. (author)

  15. [Care and specialized clinical follow-up of nursing professionals who have been victims of accidents with biological material].

    Science.gov (United States)

    Pimenta, Flaviana Regina; Ferreira, Milene Dias; Gir, Elucir; Hayashida, Miyeko; Canini, Silvia Rita Marin da Silva

    2013-02-01

    This cross-sectional study aimed to evaluate the conduct of nursing professionals who had been victims of accidents with biological material in a teaching hospital in the interior of the state of São Paulo, Brazil, regarding their care and specialized clinical follow-up. The study population consisted of 1,215 nursing professionals, who were interviewed individually between 2010 and 2011. Of the 1,215 nursing professionals interviewed, 636 (52.3%) reported having experienced accidents with biological material; of this population, 182 (28.6%) didn't sought specialized care. The most frequent reason reported for not seeking care was believing that it was a low-risk accident. The reasons professionals do not seek care and do not complete treatment and the clinical follow-up can contribute to strategies to increase professionals' adherence to prophylaxis measures after occupational exposure to biological material.

  16. Evaluation of a fungal collection as certified reference material producer and as a biological resource center.

    Science.gov (United States)

    Forti, Tatiana; Souto, Aline da S S; do Nascimento, Carlos Roberto S; Nishikawa, Marilia M; Hubner, Marise T W; Sabagh, Fernanda P; Temporal, Rosane Maria; Rodrigues, Janaína M; da Silva, Manuela

    2016-01-01

    Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC). For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Communication of work accidents involving biological material: a study in the city of Santa Cruz do Sul/RS

    OpenAIRE

    Dayane Diehl; Karini da Rosa; Susimar Souza Rosa; Susane Beatriz Frantz Krug

    2012-01-01

    Rationale and Objectives: Healthcare workers are constantly exposed to the risk of occupational accidents involving biological material. Thus the aim of the study was to develop a profile of workers involved in workplace accidents with biological materials in Santa Cruz do Sul, through the number of notifications made in information systems. Methods: Transversal retrospective study with a quantitative approach; data collection was carried out between the years 2008 and 2010 from medical recor...

  18. ATTENDING PROFESSIONALS VICTIMS OF ACCIDENT WITH BIOLOGICAL MATERIAL IN A TROPICAL DISEASES HOSPITAL

    Directory of Open Access Journals (Sweden)

    Lillian Kelly de Oliveira Lopes

    2006-12-01

    Full Text Available ABSTRACT: The occupational risk for the health´s workers is a subject discussed in the last decades. However, the professional accident involving biological material´s records in the health´s units don´t describe the real situation. The purpose of this article is to identify the number of attending of professional accident involving biological material and the source of the leading. The data were obtained by the professional accident´s handbooks in 2003. The hospital had 5768 appointments. Among these, 621 (10,76% were about professional accident, 25 (4,03% of this amount came from the own hospital and 596 (95,97% from other services. The article verified that workers proceeding from big services are leaded to the hospital evaluated. It´s important to structure health´s services to optimize the worker´s attending in the original´s unit. KEYWORDS: Occupational accidents; Occupational risk; Occupational Accidents registry.

  19. Evaluation of geologic materials to limit biological intrusion of low-level waste site covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.; Karlen, E.M.

    1982-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. This paper reports the preliminary results of a screening study to-determine the effectiveness of four biobarrier materials to stop plant root and animal penetration into simulated low-level wastes. Experiments employed 288 lysimeters consisting of 25-cm-diam PVC pipe, with four factors tested: plant species (alfalfa, barley, and sweet clover); top soil thickness (30 and 60 cm); biobarrier material (crushed tuff, bentonite clay, cobble, and cobble-gravel); and biobarrier thickness (clay-15, 30, and 45 cm, others 30, 60, and 90 cm). The crushed tuff, a sandy backfill material, offers little resistance to root and animal intrusion through the cover profile, while bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion thorugh cover profiles. However, dessication of the clay barrier by invading plant roots may limit the usefulness of this material as a moisture and/or biological barrier. The cobble-gravel combination appears to be the best candidate for further testing on a larger scale because the gravel helps impede the imgration of soil into the cobble layer - the probable cause of failure of cobble-only biobarriers

  20. The determination of plutonium alpha activity in urine, faeces and biological materials

    International Nuclear Information System (INIS)

    Bains, M.E.D.

    1963-07-01

    Methods have been developed for the determination of plutonium alpha activity in urine, faeces and biological materials. The chemical stages involved give practically complete separation of all extraneous material from the plutonium, which is electrodeposited on to a 0.5 inch stainless steel disc to produce a thin high resolution source. The limit of detection is 0.025 μμc/sample (sixteen-hour count) when the sources are counted in a small scintillator counter, but is lowest when counted in a counter which counts particles of energy 5.05-5.25 MeV only, and which therefore discriminates against small quantities of α-active materials introduced with the reagents in the final electrodeposition stage of the process. (Any such alpha activity may readily be identified by alpha pulse height analysis). (author)

  1. Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals.

    Science.gov (United States)

    Zmurko, Joanna; Vasey, Douglas B; Donald, Claire L; Armstrong, Alison A; McKee, Marian L; Kohl, Alain; Clayton, Reginald F

    2018-02-01

    Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.

  2. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    Science.gov (United States)

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  3. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    Science.gov (United States)

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  4. Evaluation of botanical reference materials for the determination of vanadium in biological samples

    International Nuclear Information System (INIS)

    Heydorn, K.; Damsgaard, E.

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemical or radiochemical separations, and results for vanadium were compared with those found by purely instrumental neutron activation analysis. Significantly lower results indicate losses or incomplete dissolution, which makes SRM 1575 Pine Needles and SRM 1573 Tomato Leaves less satisfactory than SRM 1570 Spinach. A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration. (author)

  5. Is there a best conventional material for restoring posterior primary teeth? A network meta-analysis.

    Science.gov (United States)

    Pires, Carine Weber; Pedrotti, Djessica; Lenzi, Tathiane Larissa; Soares, Fabio Zovico Maxnuck; Ziegelmann, Patricia Klarmann; Rocha, Rachel de Oliveira

    2018-03-01

    This study aimed to compare the longevity of different conventional restorative materials placed in posterior primary teeth. This systematic review was conducted following the PRISMA statement and registered in PROSPERO (CRD42016035775). A comprehensive electronic search without date or language restrictions was performed in PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, Scopus, Turning Research Into Practice (TRIP) and Clinical Trials databases up to January 2017, selecting randomized clinical trials that assessed the longevity of at least two different conventional restorative materials performed in primary molars. Seventeen studies were included in this systematic review. Pairwise and network meta-analyses were performed and relative risks and 95% confidence intervals (CI) calculated. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. Restorations of primary molars with conventional glass ionomer cement showed increased risk of failure than compomer, resin-modified glass ionomer cement, amalgam, and composite resin. Risk of bias was low in most studies (45.38% of all items across studies). Pediatric dentists should avoid conventional glass ionomer cement for restoring primary molars.

  6. Biotransformation of an uncured composite material

    Science.gov (United States)

    Welsh, Clement J.; Glass, Michael J.; Cheslack, Brian; Pryor, Robert; Tran, Duan K.; Bowers-Irons, Gail

    1994-01-01

    The feasibility of biologically degrading prepreg wastes was studied. The work was conducted with the intention of obtaining baseline data that would facilitate the achievement of two long-range goals. These goals are: (1) the biological remediation of the hazardous components in the prepreg wastes, and (2) providing the potential for recycling the prepreg waste fibers. The experiments examined a prepreg that employs an bismaleimide resin system. Initial results demonstrated an obvious deterioration of the prepreg material when incubated with several bacterial strains. The most active cultures were identified as a mixture of 'Bacillus cereus' and 'Pseudomonas sp'. Gas chromatography analyses revealed seven primary compounds in the resin mixture. Biotransformation studies, using the complete prepreg material, demonstrated on obvious loss of all seven organic compounds. Gas chromatography-mass spectrometry analyses resulted in structure assignments for the two primary components of the resin. Both were analogs of Bisphenol A; one being bismaleimide, and the other being Bisphenol A containing a diglycidyl moiety. The 'diglycidyl analog' was purified using thin-layer chromatography and the biotransformation of this compound (at 27 ug/ml bacterial culture) was monitored. After a seven-day incubation, approximately 40% of the organic compound was biotransformed. These results demonstrate the biotransformation of the prepreg resin and indicate that biological remediation of the prepreg wastes is feasible.

  7. Materiality, Symbolicity, and the Rhetoric of Order: "Dialectical Biologism" as Motive in Burke.

    Science.gov (United States)

    Engnell, Richard A.

    1998-01-01

    Considers how the work of Kenneth Burke has recently been critiqued for its lack of attention to the role of non-symbolic motivation in rhetoric. Describes Burke's contributions as a "dialectical biologism" that sets forth a system of five symbolic/material dialectics that undergird all rhetorical appeal. Suggests that the most effective…

  8. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    Science.gov (United States)

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Japanese tea leaves: a possible biological standard reference material

    International Nuclear Information System (INIS)

    Fuwa, Keiichiro; Notsu, Kenji; Tsunoda, Kin-ichi; Kato, Hideaki; Yamamoto, Yuko.

    1978-01-01

    Japanese Tea Leaves, prepared by pulverizing with an agate ball mill and sieving with a Saran fiber sieve (50 mesh) were assessed as a possible biological standard reference material for elemental analysis. The metal content of the tea leaves was determined independently at two laboratories using atomic absorption and flame emission spectrometry. Neutron activation analysis was also performed to determine the content (21 elements) of Tea Leaves. For some elements the result from the various methods were compared. The characteristics of Tea Leaves are discussed and the elemental composition is compared to that of Orchard Leaves (NBS SRM, 1571). The most significant characteristic of Tea Leaves was the high manganese content. (auth.)

  10. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes.

    Science.gov (United States)

    Deren, Matthew E; Yang, Xu; Guan, Yingjie; Chen, Qian

    2016-02-04

    Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  11. Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes

    Directory of Open Access Journals (Sweden)

    Matthew E. Deren

    2016-02-01

    Full Text Available Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88 siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation of ATDC5 cells in three-dimensional (3D culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II, hypertrophic chondrocyte marker Type X collagen (Col X, and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2. The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.

  12. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Hwang, S. S.; Lim, Y. S.

    1999-08-01

    A technology of laser hardfacing of amorphous materials on materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a power feeding system for the primary system. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phase of the clad. 5) Evaluation of the mechanical properties of the clad. 6) Development of an ultrasonic vibrator for VSR. (author)

  13. Survey on structural material investigations for the primary circuit of the SNR 300

    International Nuclear Information System (INIS)

    Grosser, E.D.; Lorenz, H.

    1977-01-01

    The material programs described so far cover major Important areas of structural material behavior in the primary system of a sodium cooled reactor. The results demonstrate that a good base is available for the design and safe operation of sodium systems. For complementation purposes some further work is needed in certain areas: creep-fatigue interaction mechanism and description of base material and weld metal behavior for design purposes, irradiation effects in the low-dose range on time-dependent material behavior, impact of heat-to-heat variation on materials properties data, establishment of a profound data base to evaluate sodium impact on mechanical properties, application of the leak-before-break concept in plant design, confirmation of laboratory test results by the operational experience of sodium cooled reactor systems. (author)

  14. The use of e-learning materials for teaching computer science in primary schools

    OpenAIRE

    Benedičič, Andrej

    2015-01-01

    In the last few years the teaching in primary and secondary schools all around the world changed severely. One of the reasons for the change was the development of the information and communications technology (ICT). Nowadays we can hardly imagine teaching without the use of the ICT. Schools are equipped with electronic boards, interactive boards, tablets, voting systems and other electronic devices. The right use of these devices and electronic materials (e-materials) developed for them can ...

  15. Biological Responses to Materials

    Science.gov (United States)

    Anderson, James M.

    2001-08-01

    All materials intended for application in humans as biomaterials, medical devices, or prostheses undergo tissue responses when implanted into living tissue. This review first describes fundamental aspects of tissue responses to materials, which are commonly described as the tissue response continuum. These actions involve fundamental aspects of tissue responses including injury, inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the biomaterial, medical device, or prosthesis. The second part of this review describes the in vivo evaluation of tissue responses to biomaterials, medical devices, and prostheses to determine intended performance characteristics and safety or biocompatibility considerations. While fundamental aspects of tissue responses to materials are important from research and development perspectives, the in vivo evaluation of tissue responses to these materials is important for performance, safety, and regulatory reasons.

  16. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material.

    Directory of Open Access Journals (Sweden)

    Gabriela Pérez-Lachaud

    Full Text Available Biological collections around the world are the repository of biodiversity on Earth; they also hold a large quantity of unsorted, unidentified, or misidentified material and can house behavioral information on species that are difficult to access or no longer available to science. Among the unsorted, alcohol-preserved material stored in the Formicidae Collection of the 'El Colegio de la Frontera Sur' Research Center (Chetumal, Mexico, we found nine colonies of the ponerine ant Neoponera villosa, that had been collected in bromeliads at Calakmul (Campeche, Mexico in 1999. Ants and their brood were revised for the presence of any sign of parasitism. Cocoons were dissected and their content examined under a stereomicroscope. Six N. villosa prepupae had been attacked by the ectoparasitoid syrphid fly Hypselosyrphus trigonus Hull (Syrphidae: Microdontinae, to date the only known dipteran species of the Microdontinae with a parasitoid lifestyle. In addition, six male pupae from three colonies contained gregarious endoparasitoid wasps. These were specialized in parasitizing this specific host caste as no gyne or worker pupae displayed signs of having been attacked. Only immature stages (larvae and pupae of the wasp could be obtained. Due to the long storage period, DNA amplification failed; however, based on biological and morphological data, pupae were placed in the Encyrtidae family. This is the first record of an encyrtid wasp parasitizing N. villosa, and the second example of an encyrtid as a primary parasitoid of ants. Furthermore, it is also the first record of co-occurrence of a dipteran ectoparasitoid and a hymenopteran endoparasitoid living in sympatry within the same population of host ants. Our findings highlight the importance of biological collections as reservoirs of hidden biodiversity, not only at the taxonomic level, but also at the behavioral level, revealing complex living networks. They also highlight the need for funding in order

  17. Activation analysis of biological materials at the Activation Analysis Centre

    International Nuclear Information System (INIS)

    Kukula, F.; Obrusnik, I.; Simkova, M.; Kucera, J.; Krivanek, M.

    1976-01-01

    A review is presented of the work of the Activation Analysis Centre of the Nuclear Research Institute for different fields of the Czechoslovak economy, aimed primarily at analyzing biological materials with the purpose of determining the contents of the so-called vital trace elements and of elements which already have a toxic effect on the organism in trace concentrations. Another important field of research is the path of trace elements from the environment to the human organism. A destructive method for the simultaneous determination of 12 trace elements in 11 kinds of human tissue has been studied. (Z.M.)

  18. Accidents with biological material among undergraduate nursing students in a public Brazilian university.

    Science.gov (United States)

    Reis, Renata Karina; Gir, Elucir; Canini, Silvia Rita M S

    2004-02-01

    During their academic activities, undergraduate nursing students are exposed to contamination by bloodborne pathogens, as well as by others found in body fluids, among which are the Human Immunodeficiency (HIV), Hepatitis B and C viruses. We developed a profile of victimized students, characterizing accidents with biological material occurring among undergraduate nursing students at a public university in São Paulo State, Brazil. We identified the main causes and evaluated the conduct adopted by students and their reactions and thoughts concerning the accidents. Seventy-two accidents were identified, of which 17% involved potentially contaminated biological material. Needles were the predominant cause of accidents. The most frequently involved topographic areas were the fingers. Only five students reported the accidents and sought medical care. Among these, two students were advised to begin prophylactic treatment against HIV infection by means of antiretroviral drugs. It was found that the risk of accidents is underestimated and that strategies such as formal teaching and continual training are necessary in order to make students aware of biosafety measures.

  19. Accidents with biological material among undergraduate nursing students in a public Brazilian university

    Directory of Open Access Journals (Sweden)

    Renata Karina Reis

    Full Text Available During their academic activities, undergraduate nursing students are exposed to contamination by bloodborne pathogens, as well as by others found in body fluids, among which are the Human Immunodeficiency (HIV, Hepatitis B and C viruses. We developed a profile of victimized students, characterizing accidents with biological material occurring among undergraduate nursing students at a public university in São Paulo State, Brazil. We identified the main causes and evaluated the conduct adopted by students and their reactions and thoughts concerning the accidents. Seventy-two accidents were identified, of which 17% involved potentially contaminated biological material. Needles were the predominant cause of accidents. The most frequently involved topographic areas were the fingers. Only five students reported the accidents and sought medical care. Among these, two students were advised to begin prophylactic treatment against HIV infection by means of antiretroviral drugs. It was found that the risk of accidents is underestimated and that strategies such as formal teaching and continual training are necessary in order to make students aware of biosafety measures.

  20. Efficiency of biological activator formulated material (BAFM) for volatile organic compounds removal--preliminary batch culture tests with activated sludge.

    Science.gov (United States)

    Corre, Charline; Couriol, Catherine; Amrane, Abdeltif; Dumont, Eric; Andrès, Yves; Le Cloirec, Pierre

    2012-01-01

    During biological degradation, such as biofiltration of air loaded with volatile organic compounds, the pollutant is passed through a bed packed with a solid medium acting as a biofilm support. To improve microorganism nutritional equilibrium and hence to enhance the purification capacities, a Biological Activator Formulated Material (BAFM) was developed, which is a mixture of solid nutrients dissolving slowly in a liquid phase. This solid was previously validated on mineral pollutants: ammonia and hydrogen sulphide. To evaluate the efficiency of such a material for biodegradation of some organic compounds, a simple experiment using an activated sludge batch reactor was carried out. The pollutants (sodium benzoate, phenol, p-nitrophenol and 2-4-dichlorophenol) were in the concentration range 100 to 1200 mg L(-1). The positive impact of the formulated material was shown. The improvement of the degradation rates was in the range 10-30%. This was the consequence of the low dissolution of the nutrients incorporated during material formulation, followed by their consumption by the biomass, as shown for urea used as a nitrogen source. Owing to its twofold interest (mechanical resistance and nutritional supplementation), the Biological Activator Formulated Material seems to be a promising material. Its addition to organic or inorganic supports should be investigated to confirm its relevance for implementation in biofilters.

  1. Radiation damage in materials. Primary knock-on atom energy analyses of cascade damage

    International Nuclear Information System (INIS)

    Sekimura, Naoto

    1995-01-01

    To understand cascade damage formation as a function of primary recoil energy, thin foils of gold were irradiated with 20 - 400 keV self-ions to 1.0 x 10 14 ions/m 2 at 300 K. Yield of groups of vacancy clusters saturated at ion energy higher than 100 keV. Number of clusters in a group had variation even from the same energy ions. Size distribution of the clusters was not strongly dependent on number of clusters in a group and ion energy. Density of vacancy clusters in a group formed near the specimen surface was calibrated to estimate vacancy cluster formation in neutron-irradiated material. A model was proposed to predict distribution of defect clusters in the irradiated materials based on a primary recoil spectrum. Examples of recomposed distribution of vacancy clusters in a group in irradiated gold were compared with the measured data. (author)

  2. Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method

    International Nuclear Information System (INIS)

    Xue Fei; Yu Weiwei; Wang Zhaoxi; Ma Qinzheng; Liu Wei

    2012-01-01

    The investigation was carried out on the changes in mechanical properties of the primary pipe material Z3CN20.09M after 10000 h aging at 400℃ by using micro- Vickers and impact testing machine. The results show that the impact energy of testing material decreases. However, the micro-Vickers hardness of ferrite phase and austenite phase which constitute the testing material increase and keep constant, respectively. The intrinsic relations were analyzed between the micro-Vickers hardness and the impact energy to make an attempt to present the micro-Vickers hardness measurement as a method applicable to evaluating the thermal aging of the primary pipe material. (authors)

  3. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  4. How to Choose between the Implant Materials Steel and Titanium in Orthopedic Trauma Surgery: Part 2 - Biological Aspects.

    Science.gov (United States)

    Perren, S M; Regazzoni, P; Fernandez, A A

    2017-01-01

    BIOLOGICAL ASPECTS OF STEEL AND TITANIUM AS IMPLANT MATERIAL IN ORTHOPEDIC TRAUMA SURGERY The following case from the ICUC database, where a titanium plate was implanted into a flourishing infection, represents the clinical experience leading to preferring titanium over steel. (Fig. 1) (6). Current opinions regarding biological aspects of implant function. The "street" opinions regarding the biological aspects of the use of steel versus titanium as a surgical trauma implant material differ widely. Statements of opinion leaders range from "I do not see any difference in the biological behavior between steel and titanium in clinical application" to "I successfully use titanium implants in infected areas in a situation where steel would act as foreign body "sustaining" infection." Furthermore, some comments imply that clinical proof for the superiority of titanium in human application is lacking. The following tries to clarify the issues addressing the different aspects more through a practical clinical approach than a purely scientific one, this includes simplifications. Today's overall biocompatibility of implant materials is acceptable but: As the vast majority of secondary surgeries are elective procedures this allows the selection of implant materials with optimal infection resistance. The different biological reactions of stainless steel and titanium are important for this segment of clinical pathologies. Biological tole - rance (18) depends on the toxicity and on the amount of soluble implant material released. Release, diffusion and washout through blood circulation determine the local concentration of the corrosion products. Alloying components of steel, especially nickel and chromium, are less than optimal in respect to tissue tolerance and allergenicity. Titanium as a pure metal provides excellent biological tolerance (3, 4, 16). Better strength was obtained by titanium alloys like TiAl6V4. The latter found limited application as surgical implants. It

  5. Potential interferences inherent in neutron-activation analysis of trace elements in biological materials

    International Nuclear Information System (INIS)

    Cornells, R.; Hoste, J.; Versieck, J.

    1982-01-01

    A comprehensive review is given of how neutron-activation analysis for trace elements in biological matrices can be jeopardized by radiation damage, by the impurities present in the packing material or by nuclear interferences of major elements. Systematic errors during the counting process and the quantitative interpretation of the γ-ray spectra should not be disregarded. (author)

  6. Use of vitamin B12 radioassay in the analysis of biological materials, mainly of foods

    International Nuclear Information System (INIS)

    Kralova, B.; Rauch, P.; Cerna, J.

    1982-01-01

    Vitamin B 12 was determined in biological materials by three basically different methods: microbiological assay with Lactobacillus leichmannii, microbiological assay with Escherichia coli and radioassay. The method with E. coli has a relatively low sensitivity to vitamin B 12 and in some cases of vitamin B 12 determination in microbial materials it can be used only after a separation of the interfering substances by gel chromatography. The procedure is suitable for orientational determinations of vitamin B 12 because it is very little affected by external factors. The assay with L. leichmannii is universal owing to its high specifity and sensitivity to vitamin B 12 . The main disadvantage of the latter procedure depends on the high requirements for a clean atmosphere which can be maintained in laboratories in industrial areas only with difficulties. These limitations do not apply to the quick and sensitive radioassay. The radioassay can be used after a suitable adjustment of the working procedure for large series of analyses of biological materials without any preliminary separational techniques. (author)

  7. Importance and possibilities of secondary cycles (recycling), substitution and innovation in mineral raw and primary material supply

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Part 1-4 of the series ''The basis of raw materials supply'' is intended to bring about a better understanding of the ''Concept for the supply of Austria with mineral raw- and primary materials''. Part 3 deals with recovery of raw material from old- and waste material as an important contribution to an extension of the supply's basis and to an improvement of raw material utilization.

  8. Laws and regulations associated with ownership of human biological material in South Africa

    Directory of Open Access Journals (Sweden)

    Kishen Mahesh

    2015-05-01

    Full Text Available Ownership with regard to human biological material (HBM is addressed to some extent within South African law, specifically in chapter eight of the National Health Act (NHA and its associated regulations. However, members of the legal fraternity struggle to conceptualise ownership of such materials without objectifying a person or people and risking reducing such individuals to a state of property. This then infers a reduction in human dignity by rendering one-self or parts of that same self as a commodity. The complexity of the issue raises much debate both legally as well as ethically. 

  9. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  10. Determination of rare earth elements in the biological reference materials Pine Needles and Spruce Needles by neutron activation analysis

    International Nuclear Information System (INIS)

    Machado, C.N.; Maria, S.P.; Saiki, M.; Figueiredo, A.M.G.

    1998-01-01

    Instrumental neutron activation analysis was applied to determine La, Ce, Nd, Sm, Eu, Tb, Yb, Lu and Sc in two biological reference materials: NIST 1575 Pine Needles and BCR-CRM 101 Spruce Needles. The purpose was to contribute to the reference data for these two reference materials. The results were obtained with a good precision (relative standard deviations less than 15%). For the Pine Needles reference material there are already some proposed values and our results showed, in general, a good agreement with the data published. The contribution of uranium fission products to La, Ce, Nd and Sm was evaluated and considered in the determination of these elements. Interferences in the determination of rare earth elements in biological materials are also discussed. (author)

  11. Ionometric determination of boron in natural, waste waters and biological materials

    International Nuclear Information System (INIS)

    Yakimov, V.P.; Markova, O.L.

    1992-01-01

    Method have been developed for the determination of boron in natural, waste waters and biological materials using direct potentiometry with a BF 4 - selective electrode. In order to estimate the matrix effects in plotting the calibration graphs, it is recommended to and the test water or solution of biomaterial mineralizates, containing boron in electrode-inactive form, to the calibration solutions before e.m.f. measurements version of boron into tetrafluoroborate in solid phase on heating the mineralized samples with ammonium bifluoride at 150-180 deg C

  12. A common basis for facilitated legitimate exchange of biological materials proposed by the European Culture Collections' Organisation

    Directory of Open Access Journals (Sweden)

    Dagmar Fritze

    2009-12-01

    Full Text Available Being charged with the task of accessioning and supplying of living microbiological material, microbial culture collections are institutions that play a central role between the interests of a variety of user communities. On the one side are the providers of living microbiological material, such as individual scientists, institutions and countries of origin and on the other side are the various kinds of recipients/users of cultures of microorganisms from academia and industry. Thus, providing access to high quality biological material and scientific services while at the same time observing donor countries' rights, intellectual property rights, biosafety and biosecurity aspects poses demanding challenges. E.g. donor countries rights relate to Article 15 of the Convention on Biological Diversity: "Contracting parties …. recognize the sovereign rights of states over their natural resources …. shall facilitate access to resources … and not impose restrictions that run counter to the aims of the Convention. Access to natural resources shall be by mutually agreed terms and subject to prior informed consent ..." The use of a proposed standard contract by culture collections is discussed as a way of contractually safeguarding the existing research commons, while observing the new rights established in the Convention on Biological Diversity as well as other existing and new legislation impacting on the accessibility of living microbial material.

  13. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  14. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  15. Biological characterization of two xenografts derived from human CUPs (carcinomas of unknown primary

    Directory of Open Access Journals (Sweden)

    Bernheim Alain

    2007-12-01

    Full Text Available Abstract Background Carcinomas of unknown primary site (CUP are epithelial malignancies revealed by metastatic lesions in the absence of any detectable primary tumor. Although they often adopt an aggressive clinical pattern, their basic biology remains poorly understood. Laboratory research on their biology have been hampered so far by the absence of cell lines representative of CUPs. Methods We attempted xenografts of CUP clinical specimens in immunodeficient mice and subsequent in vitro culture of transplanted malignant cells. Whenever possible, malignant xenografted or cultured cells were characterized by microsatellite genotyping, immunohistology, electron microscopy, multifish chromosome analysis and search of TP 53 gene mutations. Results Successful xenografts were achieved in 2 cases out of 4. One of them (Capi1 was lost after 3 passages whereas the other one (Capi3 has been adapted to in vitro culture and is currently available to the scientific community with reliable identification based on microsatellite genotyping. Both Capi1 and Capi3 have histological characteristics of adenocarcinomas and display intense expression of EMA, CEA and cytokeratin 7. Multifish chromosome analysis demonstrated a translocation involving chromosomes 4 and 21 in both specimens. Distinct rare missense mutations of the TP53 gene were detected in Capi1 (codon 312 and Capi3 (codon 181; the codon 181 mutation is consistent with a previously reported similar finding in a small series of CUP specimens. Finally, intense membrane expression of c-kit was recorded in Capi3. Conclusion Our data suggest that xenografted tumors can be obtained from a substantial fraction of CUP clinical specimens. The hypothesis of a preferential association of CUPs with TP 53 mutations of codon 181 deserves further investigations. The Capi3 cell line will be a useful tool for assessment of novel c-kit inhibitors.

  16. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  17. Communication of work accidents involving biological material: a study in the city of Santa Cruz do Sul/RS

    Directory of Open Access Journals (Sweden)

    Dayane Diehl

    2012-07-01

    Full Text Available Rationale and Objectives: Healthcare workers are constantly exposed to the risk of occupational accidents involving biological material. Thus the aim of the study was to develop a profile of workers involved in workplace accidents with biological materials in Santa Cruz do Sul, through the number of notifications made in information systems. Methods: Transversal retrospective study with a quantitative approach; data collection was carried out between the years 2008 and 2010 from medical records in the Municipal Reference Occupational Health Unit – UMREST – containing the notification via Individual Report of Accident Notification - RINA, and/or Work Accident Communication - CAT. Results: A total of 1,263 records were analyzed during the study period. There were 13 notifications in 2008, 7 cases in 2009 and 2 in 2010. Five records had CAT, 8 had RINA and 9 had RINA and CAT. The most frequently affected professional category was the nursing technician, with the highest frequency in 2008, followed by dentists and nurses. There was a higher prevalence of female workers, with 18 cases. The most prevalent age group was 20 to 49 years old. Conclusion: The study showed that women working in the nursingprofession at the productive-age group are the ones most often affected by work accidents involving biological material during the study period. The study results raise the suspicion of underreporting of accidents with biological material, considering the number of notifications in thesetting of records found in the investigated UMREST. KEYWORDS Wo rk-related accidents. Health care professional. Occupational accidents.

  18. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Chidambaram, R.; Hosur, M.V.; Ramanadham, M.; Godwal, B.K.

    2000-01-01

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  19. Searching for biological traces on different materials using a forensic light source and infrared photography.

    Science.gov (United States)

    Sterzik, V; Panzer, S; Apfelbacher, M; Bohnert, M

    2016-05-01

    Because biological traces often play an important role in the investigation process of criminal acts, their detection is essential. As they are not always visible to the human eye, tools like a forensic light source or infrared photography can be used. The intention of the study presented was to give advice how to visualize biological traces best. Which wavelengths and/or filters give the best results for different traces on different fabrics of different colors? Therefore, blood (undiluted and diluted), semen, urine, saliva, and perspiration have been examined on 29 different materials.

  20. PENGEMBANGAN HANDOUT BERBASIS KONTEKSTUAL PADA PELAJARAN BIOLOGI MATERI BIOTEKNOLOGI UNTUK SISWA KELAS XII SMK NEGERI 02 BATU

    Directory of Open Access Journals (Sweden)

    Fega Rahmayani

    2015-03-01

    Full Text Available The teaching learning activity in SMK is inappropriate with the purpose of teaching and learning in SMK, which the students are taught to be able to apply the materials in the real life. Teaching material is taken from the biology book of SMA that the content is theoretically, so the explanation on the material is unsuitable and not applicative that makes the student less in ability and skill for application in daily life. From the problem above, this research purpose on developing the contextual basic handout of the biological course in biotechnology material in SMK N 02 Batu.This research is developing research based on research and development by Sugiyono’s model that use a few developing steps, those are: (1 Potential and problem, (2 Collecting data, (3 Product design, (4 Validation design, (5 Design revision, (6 Try out the product, (7 Product revision. The data collecting methods is using validation from the expert of handout, material expert and try out to the study club. The technique of analyze data using quantitative and qualitative data. The result of quantitative data is the percentage of handout product value that classify in the handout quality and the result of qualitative data come from comment and advise of validator and try out in SMK.The result quality of the handout found that the developing contextual basic handout reach out the good quality after following the procedure of validation with percentage 80.90% and try out to the student that use the handout with percentage very good, 97.75% and get the positive respond from student with percentage 90.82%. From the whole of the contextual basic handout have a good quality and appropriate in use for teaching material of Biology in teaching learning process in SMK N 02 Batu.

  1. Problems in the determination of chromium in biological materials

    International Nuclear Information System (INIS)

    Behne, D.; Braetter, P.; Gessner, H.; Hube, G.; Mertz, W.; Roesick, U.

    1976-01-01

    The effects of sample preparation on the analysis of chromium in biological matter have been investigated using brewer's yeast as a test material. The apparent chromium content of the yeast as determined by flameless atomic absorption spectrometry was significantly higher after destruction of the organic matter with HNO 3 in a closed pressure vessel than after wet-ashing in open vessels and after direct introduction of the sample into the graphite furnace. The results obtained by neutron activation analysis without any sample preparation, which corresponded to the atomic absorption values after digestion in the pressure vessel, showed that considerable errors arise in the other methods of sample treatment. Chromium analysis of dried and ashed yeast suggest that losses of volatile chromium compounds may occur during heating. (orig.) [de

  2. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  3. Possibilities of nondestructive determination of fluorine in coal and biological materials by IPAA

    International Nuclear Information System (INIS)

    Randa, Zdenek; Mizera, Jiri; Chvatil, David

    2009-01-01

    The possibilities of nondestructive determination of fluorine in coal and biological materials by instrumental photon activation analysis (IPAA) were studied. The determination was based on counting the non-specific 511 keV annihilation gamma rays of 18 F, a pure positron emitter which is the product of the photonuclear reaction 19 F(γ, n) 18 F. The simultaneous formation of some additional positron emitters, particularly 45 Ti and 34m Cl, is an interfering factor. When using correction standards for Ti and Cl and optimization of the beam energy and irradiation-decay-counting times, fluorine could be determined by IPAA in selected coal and biological samples at the ten ppm level. The feasibility of additional optimization for further improvements of the proposed IPAA procedure are discussed

  4. Chemical and biological effects of radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Gupta, B.L.

    1975-01-01

    Radiation is extensively used for the sterilization of plastic materials, pharmaceuticals and biological tissue grafts. The pharmaceuticals may be solid, liquid, or suspension in a liquid or a solution. Cobalt-60 gamma radiation, generally used for sterilization, primarily interacts with these materials through the Compton process. The resulting damage may be direct or indirect. In aqueous systems the primary species produced compete for interaction among themselves and the dissolved solutes. The nature, the G-values and the reactions of the primary species very much depend on the pH of the solution. The important chemical changes in plastic materials are gas liberation, change in concentration of double bonds, cross-linking, degradation and oxidation. These chemical changes lead to some physical changes like crystallinity, specific conductivity and permeability. The reactions in biological systems are very complex and are influenced by the presence or absence of water and oxygen. Water produces indirect damage and the radiation effect is generally more in the presence of oxygen. Most microorganisms are relatively radioresistant. Various tissues of an animal differ in their response to radiation. Catgut is not stable to irradiation. Lyophilized human serum is stable to irradiation whereas, when irradiated in aqueous solutions, several changes are observed. Generally, pharmaceuticals are considerably more stable in the dry solid state to ionizing radiations than in aqueous solutions or in any other form of molecular aggregation. (author)

  5. Measuring spatially- and directionally-varying light scattering from biological material.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-05-20

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  6. Modelling effective dielectric properties of materials containing diverse types of biological cells

    International Nuclear Information System (INIS)

    Huclova, Sonja; Froehlich, Juerg; Erni, Daniel

    2010-01-01

    An efficient and versatile numerical method for the generation of different realistically shaped biological cells is developed. This framework is used to calculate the dielectric spectra of materials containing specific types of biological cells. For the generation of the numerical models of the cells a flexible parametrization method based on the so-called superformula is applied including the option of obtaining non-axisymmetric shapes such as box-shaped cells and even shapes corresponding to echinocytes. The dielectric spectra of effective media containing various cell morphologies are calculated focusing on the dependence of the spectral features on the cell shape. The numerical method is validated by comparing a model of spherical inclusions at a low volume fraction with the analytical solution obtained by the Maxwell-Garnett mixing formula, resulting in good agreement. Our simulation data for different cell shapes suggest that around 1MHz the effective dielectric properties of different cell shapes at different volume fractions significantly deviate from the spherical case. The most pronounced change exhibits ε eff between 0.1 and 1 MHz with a deviation of up to 35% for a box-shaped cell and 15% for an echinocyte compared with the sphere at a volume fraction of 0.4. This hampers the unique interpretation of changes in cellular features measured by dielectric spectroscopy when simplified material models are used.

  7. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Houtman, J.P.W.

    1976-09-01

    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  8. Evaluation of three common green building materials for ozone removal, and primary and secondary emissions of aldehydes

    Science.gov (United States)

    Gall, Elliott; Darling, Erin; Siegel, Jeffrey A.; Morrison, Glenn C.; Corsi, Richard L.

    2013-10-01

    Ozone reactions that occur on material surfaces can lead to elevated concentrations of oxidized products in the occupied space of buildings. However, there is little information on the impact of materials at full scale, especially for green building materials. Experiments were completed in a 68 m3 climate-controlled test chamber with three certified green building materials that can cover large areas in buildings: (1) recycled carpet, (2) perlite-based ceiling tile and (3) low-VOC paint and primer on recycled drywall. Ozone deposition velocity and primary and secondary emission rates of C1 to C10 saturated carbonyls were determined for two chamber mixing conditions and three values of relative humidity. A direct comparison was made between ozone deposition velocities and carbonyl yields observed for the same materials analyzed in small (10 L) chambers. Total primary carbonyl emission rates from carpet, ceiling tile and painted drywall ranged from 27 to 120 μg m-2 h-1, 13 to 40 μg m-2 h-1, 3.9 to 42 μg m-2 h-1, respectively. Ozone deposition velocity to these three materials averaged 6.1 m h-1, 2.3 m h-1 and 0.32 m h-1, respectively. Total secondary carbonyl emissions from these materials ranged from 70 to 276 μg m-2 h-1, 0 to 12 μg m-2 h-1, and 0 to 30 μg m-2 h-1, respectively. Carbonyl emissions were determined with a transient approximation, and were found to be in general agreement with those found in the literature. These results suggest that care should be taken when selecting green building materials due to potentially large differences in primary and secondary emissions.

  9. A complex method for the neutron activation analysis of biological materials

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-05-01

    The destructive and nondestructive approach of neutron activation analysis used by the author is reviewed to determine some trace elements in biological materials: Ca, Cl, Co, Cu, Fe, K, Mg, Mn, Na, Rb, Sb, Sc, V and Zn. Bowen's kale was used to determine the accuracy and reliability. The parameters obtained were confirmed by participating in round robins organized by the IAEA: in which potato powder and animal bone have been analyzed for Zn, Co, Fe, Cr, Mn, Rb, Na, K and Cu. Tabulated results are given and compared with recommended values and literature data. Gamma spectra are shown. (T.G.)

  10. Analysis of occupational accidents with biological material among professionals in pre-hospital services

    OpenAIRE

    Oliveira,Adriana Cristina de; Paiva,Maria Henriqueta Rocha Siqueira

    2013-01-01

    OBJECTIVE: To estimate the prevalence of accidents due to biological material exposure, the characteristics and post-accident conduct among professionals of pre-hospital services of the four municipalities of Minas Gerais, Brazil. METHOD: A cross-sectional study, using a structured questionnaire that was developed to enable the calculation of prevalence, descriptive analysis and analytical analysis using logistic regression. The study included 228 professionals; the prevalence of accidents du...

  11. Suitability of Co as an alloy material for components of the primary circuit of HTR reactors

    International Nuclear Information System (INIS)

    Iniotakis, N.

    1977-02-01

    For high temperature reactors it is of interest if Co-alloys could be used for the different components of the primary cooling circuit. It has been investigated in detail to what amount the Co-60 created by neutron activation of Co-59 contained in the material of the components could possibly contribute to the contamination of the primary cooling circuit of the reactor. The result of these investigations is compared with the contamination of the cooling circuit by fission and activation products like Co-137, Cs-134, Ag-11om etc. For pebble bed reactors with an OTTO-type fuel management it could be shown that there is no limitation for the use of cobalt in alloys for materials of the components in the primary cooling circuit. The only boundary condition is that the local Thermal Flux at the position of the components should be less than phisub(th) 7 n/cm 2 . sec. (orig.) [de

  12. Microbiologic Evaluation of Cotton and Polytetrafluoroethylene (PTFE) Tape as Endodontic Spacer Materials in Primary Molars An in Vivo Study.

    Science.gov (United States)

    Prabhakar, Attiguppe Ramasetty; Dixit, Kratika; Raju, O S

    PTFE tape, which is commonly used as plumber's tape is an inorganic, non-fibrous, ribbon like material. The aim of this study was to evaluate PTFE tape as endodontic spacer material and to compare it with commonly used spacer material that is cotton, in primary teeth. Seventeen children undergoing pulpectomy of lower second primary molar bilaterally were included in the study. Cotton and PTFE tape were placed as spacers on each side randomly. Samples were taken from the access cavity at baseline and after seven days to check for microbial leakage. Spacer materials were also checked for microbial contamination. The results revealed that there was a significant increase in the bacterial colony count after seven days in cotton group. The access cavities were also positive for microbial leakage in the cotton group where the spacers showed positive growth. In PTFE group only two samples showed microbial contamination of spacer and out of two only one sample showed contamination of access cavity along with spacer. Within the limitations of this study, it can be concluded that PTFE tape performed better than cotton as endodontic spacer material. Thus, PTFE tape can be recommended as an endodontic spacer material as an alternative to cotton in primary teeth.

  13. Primary science education: Views from three Australian States

    Science.gov (United States)

    Jeans, Bruce; Farnsworth, Ian

    1992-12-01

    This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work.

  14. Analytical methods for determination of terbinafine hydrochloride in pharmaceuticals and biological materials

    Directory of Open Access Journals (Sweden)

    Basavaiah Kanakapura

    2016-06-01

    Full Text Available Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of mycosessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.

  15. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    transfers, occurs in a cascade in many biological processes, including photosynthesis. ... the model reactions of photosynthetic ... biological relevance. GENERAL I ARTICLE of electrons, respectively. This has entirely changed the earlier framework of interpreting reactions in chemistry and biology. This shift in emphasis ...

  16. Occupational exposure to potentially infectious biological material in a dental teaching environment.

    Science.gov (United States)

    Machado-Carvalhais, Helenaura P; Ramos-Jorge, Maria L; Auad, Sheyla M; Martins, Laura H P M; Paiva, Saul M; Pordeus, Isabela A

    2008-10-01

    The aims of this cross-sectional study were to determine the prevalence of occupational accidents with exposure to biological material among undergraduate students of dentistry and to estimate potential risk factors associated with exposure to blood. Data were collected through a self-administered questionnaire (86.4 percent return rate), which was completed by a sample of 286 undergraduate dental students (mean age 22.4 +/-2.4 years). The students were enrolled in the clinical component of the curriculum, which corresponds to the final six semesters of study. Descriptive, bivariate, simple logistic regression and multiple logistic regression (Forward Stepwise Procedure) analyses were performed. The level of statistical significance was set at 5 percent. Percutaneous and mucous exposures to potentially infectious biological material were reported by 102 individuals (35.6 percent); 26.8 percent reported the occurrence of multiple episodes of exposure. The logistic regression analyses revealed that the incomplete use of individual protection equipment (OR=3.7; 95 percent CI 1.5-9.3), disciplines where surgical procedures are carried out (OR=16.3; 95 percent CI 7.1-37.2), and handling sharp instruments (OR=4.4; 95 percent CI 2.1-9.1), more specifically, hollow-bore needles (OR=6.8; 95 percent CI 2.1-19.0), were independently associated with exposure to blood. Policies of reviewing the procedures during clinical practice are recommended in order to reduce occupational exposure.

  17. Biological Effects of Provisional Resin Materials on Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Jun, S-K; Mahapatra, C; Lee, H-H; Kim, H-W; Lee, J-H

    This study investigated the in vitro cytotoxicity as well as the proinflammatory cytokine expression of provisional resin materials on primary cultured human dental pulp stem cells (hDPSCs). Five commercially available provisional resin materials were chosen (SNAP [SN], Luxatemp [LT], Jet [JE], Revotek LC [RL], and Vipi block [VB]). Eluates that were either polymerizing or already set were added to hDPSCs under serially diluted conditions divided into three different setting times (25% set, 50% set, and 100% set) and incubated for 24 hours with 2× concentrated culture media. Cell cytotoxicity tests were performed by LDH assay and live and dead confocal microscope images. The expression of proinflammatory cytokines in SN and VB was measured using cytokine antibody arrays. Data were analyzed using repeated measures analysis of variance (ANOVA) or ANOVA followed by the Tukey post hoc test at a significance level of pprovisional resin materials during polymerization (SN, LT, and JE) were cytotoxic to hDPSCs and may adversely affect pulp tissue.

  18. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    Science.gov (United States)

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  19. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. (1) Development of a powder feeding system for the laser cladding. (2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. (3) Development of laser cladding technology with amorphous alloy. (4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. (5) Evaluation of the mechanical properties of the clads. (6) Development of an ultrasonic vibrator for VSR.

  20. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S.

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a powder feeding system for the laser cladding. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. 5) Evaluation of the mechanical properties of the clads. 6) Development of an ultrasonic vibrator for VSR

  1. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  2. PENGARUH MODEL PEMBELAJARAN SYNECTICS DIPADU MIND MAPS TERHADAP KEMAMPUAN BERPIKIR KREATIF, SIKAP KREATIF, DAN PENGUASAAN MATERI BIOLOGI

    Directory of Open Access Journals (Sweden)

    Muh Khalifah Mustami

    2007-12-01

    Full Text Available One of the important tasks in teaching is assisting students to think. Synectics Model matched with Mind Maps are viewed necessary to be applied in the instruction in order to achieve the target.The research is an experiment research with pre-test post-test control group design. The results of analyses indicate that: (1 there is significance difference with the mean score of creative think ability, creative attitude, and mastery of biology materials due to difference of instruction model used, (2 there is no significant difference of mean score of creative attitude among the students who belong to the high and low achievement. (3 there is no interactional effect between the instructional model used with the students entry behavior towards creative thinking ability, creative attitude, and mastery of biology materials.

  3. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2015. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  4. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2014. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  5. MAK and BAT values list 2013. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2013. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2013 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  6. [Multi-causality in nursing work accidents with biological material].

    Science.gov (United States)

    Soares, Leticia Gramazio; Sarquis, Leila Maria Mansano; Kirchhof, Ana Lúcia Cardoso; Felli, Vanda Elisa Andres

    2013-12-01

    In order to analyze the multiple causes of occupational accidents with biological exposure among nursing staff was carried out a descriptive and exploratory research in a medium-sized hospital in the State of Paraná, in the period between January 2008 and January 2009. The population was 26 nursing staff of the medical clinic. Data collection was performed by semi-structured interviews with five of the eight injured in the period and its contents were analyzed by Causes and Effects Diagram. The categories of causes material, organizational, institutional and worker's behavior, showed the inappropriate disposal of sharps, work overload, no use of bio-security standards and poor supervision and training of workers, as factors for the occurrence of these accidents. The adoption of the tool of Causes and Effects Diagram provided an analysis of accidents in its multiple causes, showing the interaction between them.

  7. A complex neutron activation method for the analysis of biological materials

    International Nuclear Information System (INIS)

    Ordogh, M.

    1978-01-01

    The aim of the present work was to deal primarily with a few essential trace elements and to obtain reliable results of adequate accuracy and precision for the analysis of biological samples. A few other than trace elements were determined by the nondestructive technique as they can be well evaluated from the gamma-spectra. In the development of the method BOWEN's kale was chosen as model material. To confirm the reliability of the method two samples were analysed proposed by the IAEA in the frame of an international comparative analysis series. The comparative analysis shows the present method to be reliable, the precision and accuracy are good. (author)

  8. Determination of trace elements in KRISS biological CRMs by INAA

    International Nuclear Information System (INIS)

    Cho, Kyung Haeng; Park, Kwang Won; Zeisler, Rolf

    2005-01-01

    Two biological Certified Reference Materials (CRMs), KRISS 108-04-001 (oyster tissue) and 108-05-001 (water dropwort stem), were prepared by Korea Research Institute of Standards and Science (KRISS) during FY '01. The certified values of these materials had been determined by Isotope Dilution Mass Spectrometry (IDMS) for six elements (Cd, Cr, Cu, Fe, Pb and Zn). Additional analytical works are now progressing to certify the concentrations of a number of the environmental and nutrimental elements in these CRMs. The certified values in a CRM are usually determined by using a single primary method with confirmation by other method(s) or using two independent critically-evaluated methods. Instrumental Neutron Activation Analysis (INAA) plays an important role in determination of certified values. INAA procedure was used in determination of 20 elements in these two biological CRMs to acquire the concentration information and the results were compared with KRISS certified values

  9. Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression

    International Nuclear Information System (INIS)

    Landsberger, S.; Peshev, S.; Becker, D.A.

    1994-01-01

    Silicon determination in sixteen botanical and biological standard reference materials is described using the 29 Si(n, p) 29 Al reaction through instrumental epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. By simultaneous utilization of both cadmium and boron epithermal filters along with anticoincidence gamma-counting, detection limits as low as 12 ppm were obtained for certain matrices, much lower than previously reported values for this type of analysis. The method is applicable to many botanical and biological matrices and is attractive with its interference free, purely instrumental nature, compared with methods using the 28 Si(n, p) 28 Al reaction or chemical separation techniques. ((orig.))

  10. Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives.

    Science.gov (United States)

    Hennebel, Tom; Boon, Nico; Maes, Synthia; Lenz, Markus

    2015-01-25

    Europe is confronted with an increasing supply risk of critical raw materials. These can be defined as materials of which the risks of supply shortage and their impacts on the economy are higher compared to most of other raw materials. Within the framework of the EU Innovation Partnership on raw materials Initiative, a list of 14 critical materials was defined, including some bulk metals, industrial minerals, the platinum group metals and rare earth elements. To tackle the supply risk challenge, innovation is required with respect to sustainable primary mining, substitution of critical metals, and urban mining. In these three categories, biometallurgy can play a crucial role. Indeed, microbe-metal interactions have been successfully applied on full scale to win materials from primary sources, but are not sufficiently explored for metal recovery or recycling. On the one hand, this article gives an overview of the microbial strategies that are currently applied on full scale for biomining; on the other hand it identifies technologies, currently developed in the laboratory, which have a perspective for large scale metal recovery and the needs and challenges on which bio-metallurgical research should focus to achieve this ambitious goal. Copyright © 2013. Published by Elsevier B.V.

  11. Determination of arsenic in biological materials using ammonium molybdate labelled with 99Mo

    International Nuclear Information System (INIS)

    Maruyama, Y.; Nagaoka, Y.

    1983-01-01

    A new radiometric method for the determination of arsenic in biological materials has been developed. An excess of ammonium molybdate labelled with 99 Mo was added to the sample solution and the arsenomolybdic acid formed was extracted into n-butyl alcohol and ethyl acetate mixture. The activity of the organic phase was directly proportional to the amount of arsenic. The method was applied for the determination of arsenic in Orchard Leaves obtained from the National Bureau of Standards. (author)

  12. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2015-01-12

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  13. Tensile and fracture properties of primary heat transport system piping material

    International Nuclear Information System (INIS)

    Singh, P.K.; Chattopadhyay, J.; Kushwaha, H.S.

    1997-07-01

    The fracture mechanics calculations in leak-before-break analysis of nuclear piping system require material tensile data and fracture resistance properties in the form of J-R curve. There are large variations in fracture parameters due to variation in chemical composition and process used in making the steel components. Keeping this in view, a comprehensive program has been planned to generate the material data base for primary heat transport system piping using the specimens machined from actual pipes used in service. The material under study are SA333 Gr.6 (base as well as weld) and SA350 LF2 (base). Since the operating temperatures of 500 MWe Indian PHWR PHT system piping range from 260 degC to 304 degC the test temperature chosen are 28 degC, 200 degC, 250 degC and 300 degC. Tensile and compact tension specimens have been fabricated from actual pipe according to ASTM standard. Fracture toughness of base metal has been observed to be higher compared to weld metal in SA333 Gr.6 material for the temperature under consideration. Fracture toughness has been observed to be higher for LC orientation (notch in circumferential direction) compared to CL orientation (notch is in longitudinal direction) for the temperature range under study. Fracture toughness value decreases with increase in temperature for the materials under study. Finally, chemical analysis has been carried out to investigate the reason for high toughness of the material. It has been concluded that low percentage of carbon and nitrogen, low inclusion rating and fine grain size has enhanced the fracture toughness value

  14. Admissible loads in wastewater treatment, using a recycled support materials in a biological aerated filter; Cargas admisibles en depuracion de aguas residuales, usando material reciclado como soporte de un filtro sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Robles, F. [E.T.S.I. de Caminos Canales y Puertos de Granada (Spain)

    2000-07-01

    This study places in the context of the research into Biological Aerated Filters that the Environmental Technology and Environmental Microbiology Research Group (University of Granada, Spain) has been developing for several years. We have achieved a high level of optimization of the system, using a recycled ceramic-based materials as biofilm support. It enables to give some design parameters, which will make possible the practical application in the future. In this article the relations among volumetric and hydraulic loads applied and effluent concentrations and elimination rates in relation to several pollutants are presented. The oxygen supplied has been accurately controlled, and the relation among the consumption value and the loads applied and the system efficiency obtained is presented. The tests were performed at a pilot plant with full scale height. The influent used was the primary effluent of a conventional treatment plant and the operational flow was counter-current flow. (Author) 11 refs.

  15. Preparation of biological samples for transmission X-ray microanalysis: a review of alternative procedures to the use of sectioned material

    International Nuclear Information System (INIS)

    Sigee, D.C.

    1988-01-01

    Although transmission X-ray microanalysis of biological material has traditionally been carried out mainly on sectioned preparations, a number of alternative procedures exist. These are considered under three major headings - whole cell preparations, analysis of cell homogenates and biological fluids, and applications of the technique to microsamples of purified biochemicals. These three aspects provide a continuous range of investigative level - from the cellular to the molecular. The use of X-ray microanalysis with whole cell preparations is considered in reference to eukaryote (animal) cells and prokaryotes - where it has particular potential in environmental studies on bacteria. In the case of cell homogenates and biological fluids, the technique has been used mainly with microdroplets of animal material. The use of X-ray microanalysis with purified biochemicals is considered in relation to both particulate and non-particulate samples. In the latter category, the application of this technique for analysis of thin films of metalloprotein is particularly emphasised. It is concluded that wider use could be made of the range of preparative techniques available - both within a particular investigation, and in diverse fields of study. Transmission X-ray microanalysis has implications for environmental, physiological and molecular biology as well as cell biology

  16. Multimedia material about velopharynx and primary palatoplasty for orientation of caregivers of children with cleft lip and palate.

    Science.gov (United States)

    Costa, Tarcila Lima da; Souza, Olivia Mesquita Vieira de; Carneiro, Homero Aferri; Chiquito Netto, Cristianne; Pegoraro-Krook, Maria Inês; Dutka, Jeniffer de Cássia Rillo

    2016-01-01

    The objective of this study was to describe the process of elaboration and evaluation of multimedia material for caregivers about velopharynx, speech, and primary palatoplasty in babies with cleft lip and palate. The elaboration of the material involved an interdisciplinary relationship between the fields of Speech Language Pathology and Audiology, Dentistry and Arts. The definition and execution of the following activities were based on the principles of art education involving the following: characterization of audience, characterization of content, identification and elaboration of illustrations, characterization of educational approach, elaboration of text and narratives, definition of audiovisual sequence, and video preparation. The material was evaluated with the participation of 41 caregivers of patients with cleft lip and palate involving the comparison between acquired knowledge using an evaluation script applied before and after presenting the material. An increase was observed in correct responses regarding the role of velopharynx and the importance of primary palatoplasty for speech. The multimedia was effective in optimizing the knowledge of caregivers, suggesting the importance of such material during orientation.

  17. [Accident with biological material at the prehospital mobile care: reality for health and non-healthcare workers].

    Science.gov (United States)

    Tipple, Anaclara Ferreira Veiga; Silva, Elisangelo Aparecido Costa; Teles, Sheila Araújo; Mendonça, Katiane Martins; Souza, Adenícia Custódia Silva E; Melo, Dulcelene Sousa

    2013-01-01

    Analytical transversal study that was conducted with the objectives of identifying the prevalence and characterizing the accidents with biological material among professionals in pre-hospital service (PHS) and comparing the risk behaviors adopted by healthcare and non-healthcare groups that can affect the occurrence and seriousness of such accidents. Data were obtained by questionnaire applied to all PHS workers in Goiânia-GO. The study revealed a high prevalence of accidents involving biological material which, although higher for the healthcare group, also affected the non-healthcare group. There were significant (p accidents in both groups: not using gloves, masks or eye protectors; inappropriate disposal of sharps; inadequate dress; re-capping of needles; and a lack of immunization against hepatitis B. The results underscore the importance of both groups in adhering to preventive measures, and further point to the need to structure and implement vigilance and control system for this type of accident.

  18. Novel cost controlled materials and processing for primary structures

    Science.gov (United States)

    Dastin, S. J.

    1993-01-01

    Textile laminates, developed a number of years ago, have recently been shown to be applicable to primary aircraft structures for both small and large components. Such structures have the potential to reduce acquisition costs but require advanced automated processing to keep costs controlled while verifying product reliability and assuring structural integrity, durability and affordable life-cycle costs. Recently, resin systems and graphite-reinforced woven shapes have been developed that have the potential for improved RTM processes for aircraft structures. Ciba-Geigy, Brochier Division has registered an RTM prepreg reinforcement called 'Injectex' that has shown effectivity for aircraft components. Other novel approaches discussed are thermotropic resins producing components by injection molding and ceramic polymers for long-duration hot structures. The potential of such materials and processing will be reviewed along with initial information/data available to date.

  19. Non-contact tensile viscoelastic characterization of microscale biological materials

    Science.gov (United States)

    Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng

    2018-06-01

    Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.

  20. Web-Site as an Educational Tool in Biology Education: A Case of Nutrition Issue

    Science.gov (United States)

    Fancovicova, Jana; Prokop, Pavol; Usak, Muhammet

    2010-01-01

    The purpose of the study was to evaluate the efficacy and feasibility of using website in biology education. We have explored the World Wide Web as a possible tool for education about health and nutrition. The websites were teaching tools for primary school students. Control groups used the traditional educational materials as books or worksheets,…

  1. Inalienably Yours? The new case for an inalienable property right in human biological material: Empowerment of sample donors or a recipe for a tragic Anti-Commons?

    Directory of Open Access Journals (Sweden)

    Jasper A. Bovenberg

    2004-12-01

    Full Text Available Modern biomedical research into the genetic component of common diseases calls for broad access to existing and novel collections of samples of human biological material, aka Biobanks. Groups of donors of these samples, however, increasingly claim a property right in their samples. They perceive the recognition of a personal property right in their biological material as the best means to serve two goals: to secure ongoing control over their samples after donation and to underpin their claim for a share in the proceeds that the research on their samples may yield. Given the objective of ensuring ongoing control, this property right is claimed to be inalienable. Recognition of a personal property right in one’s biological material is problematic, especially where the requirement of inalienability seems at odds with the claim for a share of the profits. Yet, property rights in human biological material may be justified in a certain context, e.g. to enable subsets of patients to negotiate the terms and conditions of the research into their specific disorders. Biobanks, however, contain so many samples, which can be used for so many research purposes, that the unrestricted exercise of personal property rights by the sample donors will lead to a proliferation of rights. This proliferation is likely to deter or slow down both the creation of de novo Biobanks and the use of existing sample collections. Thus, recognising inalienable property rights in human biological material may lead to suboptimal use of these resources and create a classic ‘anticommons property’ scenario. It would also undermine the current trend to simplify existing informed consent requirements which aims to facilitate broad and previously unanticipated research on de novo and existing Biobanks. In addition, the tradition of altruistic participation in research and the notion that large-scale collections of human biological material are global public goods are arguments against

  2. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  3. The on-line detection of biological particle emissions from selected agricultural materials using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) technique

    Science.gov (United States)

    O'Connor, David J.; Healy, David A.; Sodeau, John R.

    2013-12-01

    Agricultural activities have, for some time, been linked to adverse health effects such as Farmers' lung, hypersensitivity pneumonitis, aspergillosis and chronic obstructive pulmonary disease (COPD) This connection is known to be, at least in part, due to the numerous microbiological organisms that live and grow on materials found in occupational settings such as barns, animal shelters, stables and composting sites. Traditional techniques for determining biological release of fungal spores and bacteria require intensive, experienced human resources and considerable time to determine ambient concentrations. However more recently the fluorescence and light scattering signals obtained from primary biological aerosol particles (PBAP) have been utilised for their near real-time counting and characterisation abilities. In the current study, data collected for the bioaerosol types released from hay and silage were counted and identified using a combination of the WIBS-4 bioaerosol sensor approach and impaction/optical microscopy. Particle emissions were characterised according to particle numbers, their size distributions, particle asymmetry values and fluorescence characteristics. The variables obtained were shown to provide potential “fingerprint” signatures for PBAP emissions emanating from two important compost components, namely, silage and hay. Comparisons between the data acquired by the WIBS-4 bioaerosol sensor, optical microscopy findings and also previous literature suggest that the likely identification of Aspergillus/Penicillium type spores and bacterial species released from hay and silage was achieved on a relatively rapid time-scale.

  4. Recovery of iodine as iodine-125 from biological materials prior to assay

    International Nuclear Information System (INIS)

    Jones, G.B.; Belling, G.B.; Buckley, R.A.

    1979-01-01

    In biological tissues iodine is usually present as iodoamino acids or iodoproteins. The organic material must be oxidised and the iodine converted into iodate prior to the final spectrophotometric determination. At parts per billion (10 9 ) levels, recoveries of added iodine are difficult to measure precisely as iodine can easily be lost from the sample and added inorganic iodine may not be recovered in the same proportions as the naturally occurring iodine. Iodine-125 provides a much more sensitive, specific and accurate means of testing the recovery of nanogram amounts of iodine from biological tissues and it can be incorporated into tissues in the naturally occurring compounds. Plants can be grown in a solution culture containing iodine-125 and animals can be injected with iodine-125 to provide tissues where naturally occurring iodine compounds are labelled with radioactive iodine. These tissues can be used to examine the recovery of iodine after oven drying, freeze drying, alkali ashing and acid digestion of the samples. Experimental details are given for spinach, tobacco, oats, cauliflower and thyroid. Results are given and discussed. (author)

  5. Utilisation of biological and secondary raw materials IX. Recycling - conversion to energy

    International Nuclear Information System (INIS)

    Wiemer, Klaus; Kern, Michael; Raussen, Thomas

    2014-01-01

    The book on the utilization of biological and secondary raw materials covers the following issues: Perspectives of the circular flow and resource economy, waste avoidance, closed substance cycle waste management law and biowaste assessment, economic evaluation and usage alternatives for biogas, consequences of the 4th BlmschV, the BioAbfV and the DueV for the biowaste treatment, alternative techniques of the Biowaste collection, alternative models of the recyclable substance assessment, future of the packaging and recyclable substance utilization, ElectroG and E-scrape recycling, innovative concepts for the municipal waste management, future of the MBA, MVA and EBS management.

  6. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts.

    Directory of Open Access Journals (Sweden)

    Binafsha M Syed

    Full Text Available Triple negative (ER, PgR and HER2 negative breast cancers (TNBCs are often considered as a poor prognostic phenotype. There is dearth of evidence showing the prevalence and biological behaviour of TNBCs in older women. This study aimed to analyse their biological characteristics in comparison with a well characterised younger series from a single centre with long term clinical follow-up. Over 37 years (1973-2010, 1,758 older (≥70 years women with early operable (<5 cm primary breast cancer were managed in a dedicated clinic and have complete clinical information available. Of these 813 patients underwent primary surgery and 575 had good quality tumour samples available for tissue microarray analysis using indirect immunohistochemistry. A total of 127 patients (22.1% had TNBCs and full biological analysis of 15 biomarkers was performed. The results were compared with those of their younger (<70 years counterparts 342 (18.9% from a previously characterised, consecutive series of primary breast cancer treated in the same unit (1986-1998. The 127 older patients with TNBCs showed lower rates of Ki67 and CK 7/8 positivity and high rates of bcl2 and CK18 positivity when compared with their younger counterparts (p<0.05. There was no significant difference in the long term clinical outcome between the two age groups, despite the fact that 47% of the younger patients had adjuvant chemotherapy, while none in the older cohort received such treatment. EGFR, axillary stage and pathological size showed prognostic significance in older women with TNBCs on univariate analysis. Despite not having received adjuvant chemotherapy, the older series had clinical outcome similar to the younger patients almost half of whom had chemotherapy. This appears to be related to other biomarkers (in addition to ER/PgR/HER2 eg Ki67, bcl2 and cytokeratins which have different expression patterns influencing prognosis.

  7. Consensus values for NIST biological and environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Roelandts, I.; Gladney, E.S.

    1998-01-01

    The National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards or NBS) has produced numerous Standard Reference Materials (SRM) for use in biological and environmental analytical chemistry. The value listed on the ''NIST Certificate of Analysis'' is the present best estimate of the ''true'' concentration of that element and is not expected to deviate from that concentration by more than the stated uncertainty. However, NIST does not certify the elemental concentration of every constituent and the number of elements reported in the NIST programs tends to be limited.Numerous analysts have published concentration data on these reference materials. Major journals in analytical chemistry, books, proceedings and ''technical reports'' have been surveyed to collect these available literature values. A standard statistical approach has been employed to evaluate the compiled data. Our methodology has been developed in a series of previous papers. Some subjective criteria are first used to reject aberrant data. Following these eliminations, an initial arithmetic mean and standard deviation (S.D.) are computed from remaining data for each element. All data now outside two S.D. from the initial mean are dropped and a second mean and S.D. recalculated. These final means and associated S.D. are reported as ''consensus values'' in our tables. (orig.)

  8. High Precision Zinc Stable Isotope Measurement of Certified Biological Reference Materials Using the Double Spike Technique and Multiple Collector-ICP-MS.

    Science.gov (United States)

    Moore, Rebekah E T; Larner, Fiona; Coles, Barry J; Rehkämper, Mark

    2017-04-01

    Biological reference materials with well-characterised stable isotope compositions are lacking in the field of 'isotope biochemistry', which seeks to understand bodily processes that rely on essential metals by determining metal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations: fish muscle, bovine muscle, pig kidney, human hair, human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13‰ for δ 66/64 Zn (which denotes the deviation of the 66 Zn/ 64 Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotope analyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ 66/64 Zn ≈ -0.8 to 0.0‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identical results.

  9. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    Science.gov (United States)

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  10. [Occupational accidents due to exposure to biological material in the multidisciplinary team of the emergency service].

    Science.gov (United States)

    Oliveira, Adriana Cristina; Lopes, Aline Cristine Souza; Paiva, Maria Henriqueta Rocha Siqueira

    2009-09-01

    This transversal, survey-based research was carried out with a multiprofessional emergency care team in Belo Horizonte, between June and December 2006. The study aimed at estimating the incidence of occupational accidents by exposure to biological material, post-accidents conducts and demographic determinant factors. The study applied a structured questionnaire and descriptive analyses, as well as incidence calculations and logistic regression. The incidence of accidents with biological material reached 20.6%, being 40.8% by sharp materials and 49.0% by body fluids; 35.3% of the accidents took place among physicians and 24.0% among nurses. Post-accidents procedures: no medical assessment, 63.3%; under-notification, 81.6%; no conduct, 55.0%; and no serological follow-up, 61.2%. Factors associated with accidents: working time in the institution (Odds Ratio--OR, 2.84; Credible Interval--CI 95%-1.22-6.62); working in advanced support units (OR = 4.18; CI 95%--1.64-10.64); and interaction between working time in the institution and working in Basic Support Unit (OR 0.27; CI 95%--0.07-1.00). In order to reduce accidents, the implementation of post-accident protocols and follow-up, as well as under-notification norms, are suggested.

  11. Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2011-01-01

    Failure under intense shearing at close to zero stress triaxiality is widely observed for ductile metallic materials, and is identified in experiments as smeared-out dimples on the fracture surface. Numerical cell-model studies of equal sized voids have revealed that the mechanism governing...... this shear failure mode boils down to the interaction between primary voids which rotate and elongate until coalescence occurs under severe plastic deformation of the internal ligaments. The objective of this paper is to analyze this failure mechanism of primary voids and to study the effect of smaller...... secondary damage that co-exists with or nucleation in the ligaments between larger voids that coalesce during intense shearing. A numerical cell-model study is carried out to gain a parametric understanding of the overall material response for different initial conditions of the two void populations...

  12. A virtual tissue bank for primary central nervous system lymphomas in immunocompetent individuals.

    Science.gov (United States)

    Ponzoni, Maurilio; Kwee, Ivo; Mazzucchelli, Luca; Ferreri, Andrés J M; Zucca, Emanuele; Doglioni, Claudio; Cavalli, Franco; Bertoni, Francesco

    2007-01-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of extranodal non-Hodgkin's lymphoma with continuously increasing incidence in both immunosuppressed and immunocompetent individuals. PCNSL is a very aggressive tumor with a poor outcome, and its clinical outcome is much worse than for nodal lymphomas. Differently from lymphomas arising in lymph nodes or in other extranodal sites, the treatment of PCNSL remains very unsatisfactory. Current biologic knowledge of PCNSL is still limited and several fundamental questions remain to be answered. This is mainly due to the paucity of PCNSL material for adequate translational research. With the aim of providing biologic material to investigators interested in PCNSL, we have implemented a virtual tissue bank (VTB) for PCNSL in immunocompetent patients. After registration, the VTB is accessible via any web browser at www.ielsg.org. Only anonymous data are centralized at the website of the International Extranodal Lymphoma Study Group, whilst the pathologic material is maintained at the local pathology institutes. (c) 2007 S. Karger AG, Basel.

  13. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  14. [Value of R2(*) in evaluating the biological behavior of primary hepatocellular carcinoma].

    Science.gov (United States)

    Tian, S F; Liu, A L; Liu, J H; Li, Y; Liu, X D; Huang, K; Song, Q W; Xu, M Z; Guo, W Y

    2016-04-19

    To investigate the correlation between R2(*) value of enhanced T2 star-weighted angiography (ESWAN) sequence and primary hepatocellular carcinoma infiltration and tumor thrombus, and investigate the biological behavior of HCC. A total of 221 cases of patients' imaging data with MRI examination(including ESWAN sequence) diagnosed as primary HCC were retrospectively analyzed.All the patients were collected from January 2014 to September 2015 in the First Affiliated Hospital of Dalian Medical University.The differences of R2(*) values in different MR types of HCC were analyzed.All patients were divided into infiltration group and non-infiltration group, tumor thrombus group and non-tumor thrombus group, the R2(*) values of the paired groups were compared.The diagnostic efficiency of R2(*) in HCC infiltration and tumor thrombus were evaluated by ROC curve, and to find out the threshold values. The MR types of 221 patients included 90 cases of nodular type, 62 cases of massive type, 69 cases of diffuse type.70 patients had tumor thrombus.The R2(*) values of different MR types were (21.82±8.52), (24.17±8.84)and (34.45±11.73) Hz, respectively.There was no statistically significant difference between the nodular and the massive types (P=0.144), while the difference between the nodular and diffuse type, the massive and diffuse types were statistically significant(P=0.000). The R2(*) values of infiltration group and non-infiltration group were (34.45±11.73) and (22.78±8.70) Hz , the R2(*) values of tumor thrombus group and non-tumor thrombus group were (31.20±12.17) and (24.21±9.90) Hz, the difference also had statistically significant(t=7.397 and 4.534, P=0.000 and 0.000). The AUC of R2(*) values for infiltration and tumor thrombus were 0.804, 0.681. R2(*) ≥24.68 Hz was the threshold value to diagnose the infiltration and tumor thrombus. R2(*) value can be used as a MR non-enhancement quantitative index to evaluate the biological behavior of HCC.

  15. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials.

    Science.gov (United States)

    Mills, G A; Walker, V

    2000-12-01

    Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.

  16. MAK and BAT values list 2017. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2017. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-08-01

    The MAK and BAT values list 2017 includes the maximum permissible concentrations at the place of work and biological tolerance values for working materials. The following working materials are covered: carcinogenic working materials, sensitizing materials and aerosols. The report discusses the restriction of exposure peaks, skin resorption, MAK (maximum working place concentration) values during pregnancy, germ cell mutagens and specific working materials. Importance and application of BAT (biological working material tolerance) values, list of materials, carcinogens, biological guide values and reference values are also included.

  17. Non-proliferation issues in the field of biological technologies and dual-use materials

    International Nuclear Information System (INIS)

    Mamadaliev, S.M.; Troitskij, E.N.; Ibraev, R.

    2001-01-01

    In the paper the results of the DTRA 01-00-C-0030 'Strengthening of physical and biological protection' project at the Research Agricultural Institute (Kazakhstan) are discussed. The project was directed on the organization of a reliable physical integrity of dangerous pathogens, on the provision reliable protection around the periphery and outside security of the whole object as well as on the exclusion of possibility of pathogens expansion of dangerous infection material out the controlled working conditions. The central section of the protection is storehouse of microorganism culture

  18. Development of analytical methods for the determination of some radiologically important elements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    Dang, H.S.; Jaiswal, D.D.; Pullat, V.R.; Krishnamony, S.

    1998-01-01

    This paper describes the analytical methods developed for the estimation of Cs, I, Sr, Th and U in biological materials such as food and human tissues. The methods employ both, the instrumental neutron activation analysis (INAA) and radiochemical neutron activation analysis (RNAA). The adequacy of these methods to determine the concentrations of the above elements in dietary and tissue materials was also studied. The study showed that the analytical methods described in this paper are adequate for the determination of Cs, Sr, Th and U in all kinds of biological samples. In the case of I however, the method is adequate only for determining its concentration in thyroid, but needs to be modified to improve its sensitivity for the determination of I in diet samples. (author)

  19. Analytic determination of the activation of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    Schelenz, R.

    1980-01-01

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO 3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 0 0 C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG) [de

  20. Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Point, David; Davis, W.C.; Christopher, Steven J.; Ellisor, Michael B.; Pugh, Rebecca S.; Becker, Paul R. [Hollings Marine Laboratory, National Institute of Standards and Technology, Analytical Chemistry Division, Charleston, SC (United States); Donard, Olivier F.X. [Laboratoire de Chimie Analytique BioInorganique et Environnement UMR 5034 du CNRS, Pau (France); Porter, Barbara J.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-04-15

    An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g{sup -1} level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials - a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 {+-} 0.06, 2.7 {+-} 0.4, and 6.58 {+-} 0.19 ng g{sup -1} as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 {+-} 0.06, 1.19 {+-} 0.26, and 3.55 {+-} 0.44 ng g{sup -1}, respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 {+-} 2.7 and 2.26 {+-} 0.38 ng g{sup -1} as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are

  1. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  2. Deciphering the language between biological and synthetic materials

    Directory of Open Access Journals (Sweden)

    Paolo A. Netti

    2014-06-01

    Full Text Available Chemical signals propagating through aqueous environment are at the basis of the language utilized by living systems to exchange information. In the last years, molecular biology has partly disclosed the grammar and the syntax of this complex language revealing the fascinating world of molecular communication that is the foundation of biological development.

  3. Nanogram determination of arsenic in biological reference materials by non-destructive Compton suppression neutron activation analysis

    International Nuclear Information System (INIS)

    Petra, M.; Landsberger, S.; Swift, G.

    1990-01-01

    Non-destructive epithermal neutron activation analysis in conjunction with Compton suppression has been applied to determine arsenic in seven biological standard reference materials from the National Institute of Standards and Technology. The accuracy is in excellent agreement with all the certified values and compilation results. For four of the materials detection limits between 1-4 ng/g were easily achieved while for three others they ranged from 18-50 ng/g. Overall analytical precision typically varied between 2-4% for five of the reference materials while for two other it was between 12-16%. These methods clearly demonstrate that through a judicious approach of anti-coincidence techniques, nanogram quantities of arsenic can be reliably determined without the need for labor intensive chemical separations. (orig.)

  4. Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material.

    Science.gov (United States)

    Crossgrove, Kirsten; Curran, Kristen L

    2008-01-01

    Student response systems (clickers) are viewed positively by students and instructors in numerous studies. Evidence that clickers enhance student learning is more variable. After becoming comfortable with the technology during fall 2005-spring 2006, we compared student opinion and student achievement in two different courses taught with clickers in fall 2006. One course was an introductory biology class for nonmajors, and the other course was a 200 level genetics class for biology majors. Students in both courses had positive opinions of the clickers, although we observed some interesting differences between the two groups of students. Student performance was significantly higher on exam questions covering material taught with clickers, although the differences were more dramatic for the nonmajors biology course than the genetics course. We also compared retention of information 4 mo after the course ended, and we saw increased retention of material taught with clickers for the nonmajors course, but not for the genetics course. We discuss the implications of our results in light of differences in how the two courses were taught and differences between science majors and nonmajors.

  5. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts

    DEFF Research Database (Denmark)

    Hejbøl, Eva Kildall; Sellathurai, Jeeva; Nair, Prabha Damodaran

    2017-01-01

    Scaffolds are materials used for delivery of cells for regeneration of tissues. They support three-dimensional organization and improve cell survival. For the repair of small skeletal muscles, injections of small volumes of cells are attractive, and injectable scaffolds for delivery of cells offer...... a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed......, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid...

  6. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  7. Investigations on construction material and construction concepts in order to obtain dose-reducing effects in the dismantling of the biological shield of a 1300 MWe-PWR

    International Nuclear Information System (INIS)

    Bittner, A.; Jungwirth, D.; Knell, M.; Schnitzler, L.

    1984-04-01

    Numerical values of neutron fluxes, activations, dose rates etc. as a function of characteristic values of materials required for optimization purposes to reduce the radiation effect of the biological shield of a PWR are not available. Design concepts are presented for biological shields of PWRs made of concrete with respect to both the most suitable application of materials and the design principles aiming at reduced radiation exposure as compared to present designs during entering, waste disposal and ultimate storage. To evaluate the present-state design the above values have been calculated. Suggested alternative designs are biological shields with selective material application, built from precast elements with or without boron carbide layer arranged in front of it. (orig./HP) [de

  8. Why should we respect the privacy of donors of biological material?

    Science.gov (United States)

    Tännsjö, Torbjörn

    2011-02-01

    Why should we respect the privacy of donors of biological material? The question is answered in the present article in general philosophical terms from the point of view of an ethics of honour, a libertarian theory of rights, a view of respect for privacy based on the idea that autonomy is of value in itself, and utilitarianism respectively. For different reasons the ethics of honour and the idea of the value of autonomy are set to one side. It surfaces that the moral rights theory and utilitarianism present conflicting answers to the question. The main thrust of the argument is that there is no way of finding an overlapping consensus, so politicians have to take decisions that are bound to be controversial in that they can be questioned on reasonable philosophical grounds.

  9. Reactivity comparison of biological material after radiolabeling with avidin-biotin system

    International Nuclear Information System (INIS)

    Fan Wo; Qian Jianhua; Zhu Benxing

    2003-01-01

    To find a method for determining the immunoreactivity of monoclonal antibodies after radiolabeling avidin is unlabeled and labeled with Rodamine, 131 I and 188 Re, respectively. The affinities and half-desorbed amounts of biotin and four kinds of avidin are determined by the biotin columns plus non-labeled avidin (cold avidin). The affinities of biotin and avidin unlabeled and labeled with Rodamine, 188 Re and 131 I are decreased in turn. Their half-desorbed amounts from biotin are 21.9, 19.5, 25.7 and 47.9 μg of cold avidin. Two kinds of radiolabeled avidin have lower affinity with biotin than that of avidin unlabeled and labeled with Rodamine. There is a possibility to evaluate the reactivity of biological materials with different labeling methods by avidin-biotin system

  10. Multifactorial Biological Modulation of Warm Ischemia Reperfusion Injury in Liver Transplantation From Non-Heart-Beating Donors Eliminates Primary Nonfunction and Reduces Bile Salt Toxicity

    NARCIS (Netherlands)

    Monbaliu, Diethard; Vekemans, Katrien; Hoekstra, Harm; Vaahtera, Lauri; Libbrecht, Louis; Derveaux, Katelijne; Parkkinen, Jaakko; Liu, Qiang; Heedfeld, Veerle; Wylin, Tine; Deckx, Hugo; Zeegers, Marcel; Balligand, Erika; Buurman, Wim; van Pelt, Jos; Porte, Robert J.; Pirenne, Jacques

    Objective: To design a multifactorial biological modulation approach targeting ischemia reperfusion injury to augment viability of porcine liver grafts from non-heart-beating donors (NHBD). Background Data: Liver Transplantation (LTx) from NHBD is associated with an increased risk of primary

  11. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2014-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".

  12. Automated extraction of DNA from reference samples from various types of biological materials on the Qiagen BioRobot EZ1 Workstation

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Jørgensen, Mads; Hansen, Anders Johannes

    2009-01-01

    , and muscle biopsies. The DNA extraction was validated according to EN/ISO 17025 for the STR kits AmpFlSTR« Identifiler« and AmpFlSTR« Yfiler« (Applied Biosystems). Of 298 samples extracted, 11 (4%) did not yield acceptable results. In conclusion, we have demonstrated that extraction of DNA from various types......We have validated and implemented a protocol for DNA extraction from various types of biological materials using a Qiagen BioRobot EZ1 Workstation. The sample materials included whole blood, blood from deceased, buccal cells on Omni swabs and FTA Cards, blood on FTA Cards and cotton swabs...... of biological material can be performed quickly and without the use of hazardous chemicals, and that the DNA may be successfully STR typed according to the requirements of forensic genetic investigations accredited according to EN/ISO 17025...

  13. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    International Nuclear Information System (INIS)

    Schauenburg, H.; Weigert, P.

    1992-01-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.)

  15. Standard operating procedure for combustion of 14C - samples with OX-500 biological material oxidizer

    International Nuclear Information System (INIS)

    Nashriyah Mat.

    1995-01-01

    This procedure is for the purpose of safe operation of OX-500 biological material oxidizer. For ease of operation, the operation flow chart (including testing the system and sample combustion) and end of day maintenance flow chart were simplified. The front view, diagrams and switches are duly copied from operating manual. Steps on sample preparation are also included for biotic and a biotic samples. This operating procedure is subjected to future reviews

  16. Verification test for radiation reduction effect and material integrity on PWR primary system by zinc injection

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Nagata, T.; Yamada, M. [Nuclear Power Engineering Corp. (Japan); Kasahara, K.; Tsuruta, T.; Nishimura, T. [Mitsubishi Heavy Industries, Ltd. (Japan); Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    Zinc injection is known to be an effective method for the reduction of radiation source in the primary water system of a PWR. There is a need to verify the effect of Zn injection operation on radiation source reduction and materials integrity of PWR primary circuit. In order to confirm the effectiveness of Zn injection, verification test as a national program sponsored by Ministry of Economy, Trade and Industry (METI) was started in 1995 for 7-year program, and will be finished by the end of March in 2002. This program consists of irradiation test and material integrity test. Irradiation test as an In-Pile-Test managed by AEAT Plc(UK) was performed using the LVR-15 reactor of NRI Rez in Check Republic. Furthermore, Out-of-Pile-Test using film adding unit was also performed to obtain supplemental data for In-Pile-Test at Takasago Engineering Laboratory of NUPEC. Material Integrity test was planned to perform constant load test, constant strain test and corrosion test at the same time using large scale Loop and slow strain extension rate testing (SSRT) at Takasago Engineering Laboratory of NUPEC. In this paper, the results of the verification test for Zinc program at present are discussed. (authors)

  17. Human biological monitoring for exposure assessment in response to an incident involving hazardous materials.

    Science.gov (United States)

    Scheepers, Paul T J; van Brederode, Nelly E; Bos, Peter M J; Nijhuis, Nicole J; van de Weerdt, Rik H J; van der Woude, Irene; Eggens, Martin L

    2014-12-15

    Biological monitoring in humans (HBM) is widely used in the field of occupational and environmental health. In the situation of an unexpected release of hazardous materials HBM may contribute to the medical support and treatment of exposed individuals from the general population or of emergency responders. Such exposure information may also be used to respond to individual concerns such as questions about a possible relationship between the chemicals released during the incident and health effects. In The Netherlands a guideline was prepared to support early decision-making about the possible use of HBM for exposure assessment during or as soon as possible following a chemical incident. The application of HBM in such an emergency setting is not much different from situations where HBM is normally used but there are some issues that need extra attention such as the choice of the biomarker, the biological media to be sampled, the time point at which biological samples should be collected, the ethics approval and technical implementation of the study protocol and the interpretation and communication of the study results. These issues addressed in the new guideline will support the use of HBM in the management of chemical disasters. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Science.gov (United States)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  19. Material and construction of primary components

    International Nuclear Information System (INIS)

    Kaser, A.; Wallner, F.

    1978-01-01

    The construction of SNR's requires specific properties of the materials, i.e. high strength at temperatures of 600 0 C, adequate creep rupture strength, low long-time embrittlement. Aspects are given for optimalization of the mentioned properties with regard to safe manufacture especially good weldability. The austenitic material X6CrNil811 similar the type AISI 304 SS finally was chosen. Besides the fundamental analysis of the material properties it will be reported about the experiences gained during the manufacturing of the essential components. (author)

  20. Influence of different implant materials on the primary stability of orthodontic mini-implants

    OpenAIRE

    Chin-Yun Pan; Szu-Ting Chou; Yu-Chuan Tseng; Yi-Hsin Yang; Chao-Yi Wu; Ting-Hsun Lan; Pao-Hsin Liu; Hong-Po Chang

    2012-01-01

    This study evaluates the influence of different implant materials on the primary stability of orthodontic mini-implants by measuring the resonance frequency. Twenty-five orthodontic mini-implants with a diameter of 2 mm were used. The first group contained stainless steel mini-implants with two different lengths (10 and 12 mm). The second group included titanium alloy mini-implants with two different lengths (10 and 12 mm) and stainless steel mini-implants 10 mm in length. The mini-implants w...

  1. Biological effects of nanoparticulate materials

    International Nuclear Information System (INIS)

    Soto, K.F.; Carrasco, A.; Powell, T.G.; Murr, L.E.; Garza, K.M.

    2006-01-01

    A range of morphologically nanoparticulate materials including Ag, NiO, TiO 2 , multiwall carbon nanotubes, and chrysotile asbestos have been characterized by transmission electron microscopy. All but the TiO 2 (anatase and rutile) were observed to exhibit some cytotoxicity at concentrations of 5 μg/ml for a murine macrophage cell line as a respiratory response model. Silver exhibits interesting systemic differences for animal and human toxicity, especially in light of its nanoparticulate materials, and should be avoided even if there is no detectable in vitro cytotoxic response, as a prudent approach to their technological applications

  2. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    Science.gov (United States)

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  3. [Work accidents with biological material occurred in municipalities of Minas Gerais].

    Science.gov (United States)

    Julio, Renata Siqueira; Filardi, Monique Borsato Silva; Marziale, Maria Helena Palucci

    2014-01-01

    The study aimed to identify the profile accidents involving exposure to biological material occurring in Minas Gerais. A descriptive study carried out by querying the Information System for Notifiable Diseases, 50 cities in south of Minas Gerais State, Brazil, in the period of 2007-2011. Were recorded 460 accidents, and about half occurred among nursing assistants and technicians, followed by nurses and physicians. There were more accidents due to improper disposal of sharps. Among the source patients, there was a 8.0% prevalence of positive serology for HIV, 1.0% for HBsAg, 6.0% for anti-HBc and 3% for anti-HCV. Among the injured 14.0% were not immunized to hepatitis B; however, the vaccine and immunoglobulin prescription was lower than necessary. The results will subsidize the plan preventive measures and new approach towards the occurrence of such accidents.

  4. Critical assessment of the performance of electronic moisture analyzers for small amounts of environmental samples and biological reference materials.

    Science.gov (United States)

    Krachler, M

    2001-12-01

    Two electronic moisture analyzers were critically evaluated with regard to their suitability for determining moisture in small amounts (environmental matrices such as leaves, needles, soil, peat, sediments, and sewage sludge, as well as various biological reference materials. To this end, several homogeneous bulk materials were prepared which were subsequently employed for the development and optimization of all analytical procedures. The key features of the moisture analyzers included a halogen or ceramic heater and an integrated balance with a resolution of 0.1 mg, which is an essential prerequisite for obtaining precise results. Oven drying of the bulk materials in a conventional oven at 105 degrees C until constant mass served as reference method. A heating temperature of 65degrees C was found to provide accurate and precise results for almost all matrices investigated. To further improve the accuracy and precision, other critical parameters such as handling of sample pans, standby temperature, and measurement delay were optimized. Because of its ponderous heating behavior, the performance of the ceramic radiator was inferior to that of the halogen heater, which produced moisture results comparable to those obtained by oven drying. The developed drying procedures were successfully applied to the fast moisture analysis (1.4-6.3 min) of certified biological reference materials of similar provenance to the investigated the bulk materials. Moisture results for 200 mg aliquots ranged from 1.4 to 7.8% and good agreement was obtained between the recommended drying procedure for the reference materials and the electronic moisture analyzers with absolute uncertainties amounting to 0.1% and 0.2-0.3%, respectively.

  5. Investigation of biological material for metallic poisoning by the fractional method. Issledovaniya biologicheskogo materiala na metallicheskiya yady drobnym metodom

    Energy Technology Data Exchange (ETDEWEB)

    Krylova, A.N.

    1975-01-01

    A fractional method is developed for analysis of biological material for the presence of toxic quantities of Pb, Hg, Ba, Mn, Cr, Ag, Cu, Sb, Tl, As, Bi, Cd and Zn. The method satisfies the requirements of medical forensic toxicology. (Ref. Zh.)

  6. Exploring the Contribution of Primary Marine Organic Matter to the Arctic Boundary Layer

    Science.gov (United States)

    Collins, D. B.; Chang, R. Y. W.; Boyer, M.; Abbatt, J.

    2016-12-01

    The ocean is a significant source of aerosol to the atmosphere, and contributes significantly to the aerosol population especially in remote locations. Both primary and secondary processes connect the ocean to ambient aerosol loadings, but the extent to which the ocean is a source of organic material to the atmosphere is a current topic of scientific debate. The contribution of primary marine aerosol to atmospheric organic matter may have an influence on the water uptake properties and chemical reactivity of primary marine aerosol particles, influencing their climate-relevant properties. In this study, we characterize the contribution of primary marine aerosol to the arctic marine boundary layer using coincident quantitative measurements of freshly-produced sea spray aerosol and ambient marine aerosol to the arctic boundary layer during an expedition aboard the CCGS Amundsen. Sea spray production experiments were conducted during the cruise using a tank fitted with a plunging waterfall apparatus, a technique which has been recently shown to closely mimic the aerosol production behavior of controlled breaking waves. Comparison of the chemical composition of sea spray particles generated from water samples in various locations throughout the Canadian Archipelago will be presented. A tracer analysis of specific compounds known to be important contributors to primary marine organic material are tracked using GC/MS, along with those known to be tracers of biological aerosol and other organic matter sources. Size-segregated trends in tracer concentrations and ratios with inorganic components will be discussed in the context of understanding the contribution of primary organics to the Arctic atmosphere and in comparison with other sources of organic material observed during the ship-board campaign.

  7. The use of an ion-beam source to alter the surface morphology of biological implant materials

    Science.gov (United States)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  8. Multiple primary cancers: Simultaneously occurring prostate cancer ...

    African Journals Online (AJOL)

    We also reviewed the existing literatures for possible biologic links between prostatic carcinoma and other primary tumors. ... The primary tumors co-existing with prostate cancer were colonic adenocarcinoma, rectal adenocarcinoma, urinary bladder transitional cell carcinoma, primary liver cell carcinoma, and thyroid ...

  9. Evaluation of biological activities and chemical constituent of storage medicinal plant materials used as a traditional medicine in Nepal

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Pandey

    2017-12-01

    Full Text Available Aim: The main aims of the study were to evaluate the phytochemicals, antioxidant, antibacterial and chemical constituents of storage medicinal plant materials used as a traditional medicine in Nepal. Methods: Phytochemical screening, total phenolic content, total flavonoid content, antibacterial activities, anti-oxidant assay of the crude extract (water, methanol, n-hexane and acetone were carried out to identify the biological activities and phytonutrients present in the different extract. The chemical constituents present in the crude extract were analyzed using the high performance liquid chromatography (HPLC equipped with UV detector. Results: Evaluated medicinal plant materials were found to have diverse phytonutrients. Results revealed that methanol extract of Pakhanved and Jethimadhu have highest total flavonoids and polyphenol content. Among the selected medicinal plant materials Jethimadhu extract revealed the highest antioxidant activities. Furthermore, evaluated medicinal plants extract were found to exert a range of in vitro growth inhibition activity against both gram positive and gram negative species. The highest antibacterial activities were observed in the case of methanol extract, whereas, least activity was observed with the hexane extract. HPLC analysis of the acetone extract of Jethimadhu reveals the presence of diosmetin. Conclusions: Our result revealed that among the five evaluated medicinal plant materials, Jethimadhu extract revealed biological activities and exhibits a higher amount of polyphenol and flavonoid content. [J Complement Med Res 2017; 6(4.000: 369-377

  10. Heavy metal ion removal by adsorption on to biological materials

    International Nuclear Information System (INIS)

    Jansson-Charrier, M.; Guibal, E.; Le Cloirec, P.; Surjous, R.

    1994-01-01

    The development of regulations constraints in the industrial waste-waters management leads to the study of new treatment processes, using raw or functionalized biological materials. These processes show competitive performances in metal ion sorption efficiency for the low metal content effluents. Uptake capacities of Uranium as high as 400 mg.g -1 chitosan, equivalent to the double of the uptake capacity of fungal origin biomass, can be reached. The application of these processes to real mine wastewaters gives efficiency coefficient upper to 90%, the residual concentrations are compatible to a direct injection into the environment. The grafting of functional groups onto the chitosan scales up the sorption performances to uptake capacity upper than 600 mg.g -1 polymer. pH, metal concentration are cited as major parameters, particle size influences both uptake kinetics and sorption equilibrium, in the case of the uranium accumulation by chitosan. The desorption of uranium from the sorbent allows the valorization of uranium and the re-use of the sorbent. (authors). 21 refs., 10 figs

  11. A rapid neutron activation method for the determination of traces of mercury. The mercury content of biological material of differing geographical and chronological origin

    International Nuclear Information System (INIS)

    Rohde, H.

    1975-08-01

    A rapid method based on activation analysis has been developed for the determination of mercury in biological material. The method employs the delayed gamma rays as prompt gamma rays have been shown to display insufficient sensitivity. The mercury content of 182 fish derived from the waters of the region of South Western Germany has been determined. Relatively high concentrations (> 1 ppm) have been measured in the muscle of Rhine fish. Similar mercury contents have been observed in aged biological material (birds feathers and human hair) and contemporary living organisms. (orig.) [de

  12. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  13. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  14. Instrumental neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The elemental compositions of 18 biological reference materials have been processed, for 14 stepped combinations of irradiation/decay/counting times, by the INAA Advance Prediction Computer Program. The 18 materials studied include 11 plant materials, 5 animal materials, and 2 other biological materials. Of these 18 materials, 14 are NBS Standard Reference Materials and four are IAEA reference materials. Overall, the results show that a mean of 52% of the input elements can be determined to a relative standard deviation of ±10% or better by reactor flux (thermal plus epithermal) INAA

  15. A rapid screening method for heavy metals in biological materials by emission spectroscopy.

    Science.gov (United States)

    Blacklock, E C; Sadler, P A

    1981-06-02

    A semi-quantitative screening method for heavy metals in biological material is described. The metals are complexed with ammonium pyrrolidine dithiocarbamate, sodium diethyl dithiocarbamate and potassium sodium tartrate. The solutions are adjusted to pH 4 and then extracted into chloroform. The chloroform phase is evaporated onto a matrix mixture of lithium fluoride and graphite. The sample is analysed by direct current arc emission spectroscopy using a 3 metre grating spectrograph. The spectra are recorded on a photographic plate. The method is developed on aqueous and spiked samples and then applied to in vivo samples containing toxic levels of heavy metals. Atomic absorption spectroscopy is used to check standard concentrations and to monitor the efficiency of the extraction procedure.

  16. Method for determination of radioactive iodine isotopes in environmental objects and biologic materials

    International Nuclear Information System (INIS)

    Dubynin, O.D.; Pogodin, R.I.

    1981-01-01

    The method proposed for determination of radioactive iodine isotopes content in environmental objects and biologic materials is based on the extraction of iodine with carbon tetrachloride and subsequent precipitation of bismuthyl iodine (BiOI) in perchloric medium. Sample preparation for analysis is carried out using conventional alkaline ashing methods. Quantitative iodine separation is hampered if macroquantities of Cl - , Br - , SO 4 2 - , SO 8 2 - , Cr 2 O 7 2 - and other ions are present in the solution. Iodine extraction is carried out before its precipitation. Separated iodine preparation activity is measured using scintillation (NaI) Tl gamma spectrometer. The method's sensitivity when measuring iodine-131 preparations makes up 0.07 Bq per 1 sample with the error +-25 %

  17. The monostandard method in thermal neutron activation analysis of geological, biological and environmental materials

    International Nuclear Information System (INIS)

    Alian, A.; Djingova, R.G.; Kroener, B.; Sansoni, B.

    1984-01-01

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9x10 12 nxcm -2 xs -1 and an epithermal neutron contribution of less than 0.03%. The values obtained were found to agree mostly well with the best literature values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standards and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. (orig.) [de

  18. [Determinant factors and conduct in post-accident with biological material among pre-hospital professionals].

    Science.gov (United States)

    Paiva, Maria Henriqueta Rocha Siqueira; Oliveira, Adriana Cristina

    2011-01-01

    This transversal study was carried out with a multiprofessional team in the pre-hospital care in Minas Gerais, Brazil. It aimed to estimate the incidence of occupational accidents by exposure to biological material and post-accidents conductsta. Descriptive analysis and logistic regression were used. Incidence of accidents was 19.8%: 39,1% perforating-cutting materials and 56.5% body fluids. Doctors (33.3%) and drivers (24.0%) were most involved. Inadequate subsequent measures were highly prevalent: no medical assessment (69.6%), no work accident communication issued (91.3%), no measures (52.2%) and no serological follow-up (52.2%). Variables associated with accidents were: age >31 years old (OR = 3,02; IC95%: 1,25 - 7,33; p = 0,014) and working in basic support units (OR = 5,36; IC95%: 1,51 19,08; p = 0,010). The implementation of post-accidents protocols is suggested in order to reduce accidents and under-notification, and increase post-accident follow-up.

  19. Computer Assisted Educational Material Preparation for Fourth Grade Primary School Students' English Language Class in Teaching Numbers

    Science.gov (United States)

    Yüzen, Abdulkadir; Karamete, Aysen

    2016-01-01

    In this study, using ADDIE instructional design model, it is aimed to prepare English language educational material for 4th grade primary students to teach them numbers. At the same time, ARCS model of motivation's attention, relevance and satisfaction phases are also taken into consideration. This study also comprises of Design Based Research…

  20. Water regime of mechanical-biological pretreated waste materials under fast-growing trees.

    Science.gov (United States)

    Rüth, Björn; Lennartz, Bernd; Kahle, Petra

    2007-10-01

    In this study mechanical-biological pre-treated waste material (MBP) was tested for suitability to serve as an alternative surface layer in combination with fast-growing and water-consumptive trees for final covers at landfill sites. The aim was to quantify evapotranspiration and seepage losses by numerical model simulations for two sites in Germany. In addition, the leaf area index (LAI) of six tree species over the growing season as the driving parameter for transpiration calculations was determined experimentally. The maximum LAI varied between 3.8 and 6.1 m2 m(-2) for poplar and willow clones, respectively. The evapotranspiration calculations revealed that the use of MBP waste material for re-cultivation enhanced evapotranspiration by 40 mm year(-1) (10%) over an 11 year calculation period compared to a standard mineral soil. Between 82% (for LAI(max) = 3.8) and 87% (for LAI(max) = 6.1) of the average annual precipitation (506 mm) could be retained from the surface layer assuming eastern German climate conditions, compared with a retention efficiency between 79 and 82% for a mineral soil. Although a MBP layer in conjunction with water-consumptive trees can reduce vertical water losses as compared to mineral substrates, the effect is not sufficient to meet legal regulations.

  1. Usefulness and biological background of dynamic contrast-enhanced MR images in patients with primary breast cancer

    International Nuclear Information System (INIS)

    Yamamoto, Yutaka; Kurebayashi, Junichi; Sonoo, Hiroshi

    2002-01-01

    Dynamic contrast-enhanced MR images were obtained between September 1998 and May 2000 from 44 primary breast cancer patients who were scheduled to undergo breast-conserving surgery. The MR images and clinico-pathological findings were analyzed to investigate the risk factors for histologically positive margins and histologically positive lymph node metastases. We elucidated the relationship between MR images and the biological background of breast cancer. The following interesting findings were made from these analyses. An irregular shape and unclear border of the tumor mass and the coexistence of daughter nodule(s) were significant risk factors for positive-surgical margins; an irregularly shaped tumor mass and spiculated tumor mass were significant risk factors for positive lymph node metastases; breast tumors with a strand-like appearance had a significantly lower histological grade; breast tumors with high contrast enhancement ratios had a significantly higher nuclear grade and progesterone receptor negativity; and breast tumors showing a ring-like enhancement expressed a low level of VEGF. These findings suggest that preoperative MR images of primary breast cancer provide not only useful information on the extent of breast tumors and the possibility of lymph node metastasis but also on the malignant potency and hormone responsiveness of breast tumors. (author)

  2. Accidental exposure to biological material in healthcare workers at a university hospital: Evaluation and follow-up of 404 cases.

    Science.gov (United States)

    Gutierrez, Eliana Battaggia; Lopes, Marta Heloísa; Yasuda, Maria Aparecida Shikanai

    2005-01-01

    The care and follow-up provided to healthcare workers (HCWs) from a large teaching hospital who were exposed to biological material between 1 August 1998 and 31 January 2002 is described here. After exposure, the HCW is evaluated by a nurse and doctor in an emergency consultation and receives follow-up counselling. The collection of 10 ml of blood sample from each HCW and its source patient, when known, is made for immunoenzymatic testing for HIV, HBV and HCV. Evaluation and follow-up of 404 cases revealed that the exposures were concentrated in only a few areas of the hospital; 83% of the HCWs exposed were seen by a doctor responsible for the prophylaxis up to 3 h after exposure. Blood was involved in 76.7% (309) of the exposures. The patient source of the biological material was known in 80.7% (326) of the exposed individuals studied; 80 (24.5%) sources had serological evidence of infection with 1 or more agents: 16.2% were anti-HCV positive, 3.8% were HAgBs positive and 10.9% were anti-HIV positive. 67% (273) of the study population completed the proposed follow-up. No confirmed seroconversion occurred. In conclusion, the observed adherence to the follow-up was quite low, and measures to improve it must be taken. Surprisingly, no difference in adherence to the follow-up was observed among those exposed HCW at risk, i.e. those with an infected or unknown source patient. Analysis of post-exposure management revealed excess prescription of antiretroviral drugs, vaccine and immunoglobulin. Infection by HCV is the most important risk of concern, in our hospital, in accidents with biological material.

  3. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals

    Science.gov (United States)

    Krichen, S.; Liu, L.; Sharma, P.

    2017-10-01

    Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.

  4. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    Science.gov (United States)

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  5. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Ticianelli, Regina B.; Figueiredo, Ana Maria G.

    2007-01-01

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  6. Determination of gold and platinum in biological materials by radiochemical neutron activation analysis using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Reitz, B.; Heydorn, K.

    1993-01-01

    A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains thee highest radiochemical purity without any interference from calcium or other major elements. With 199 Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out. (author) 18 refs.; 3 figs.; 2 tabs

  7. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim

    Science.gov (United States)

    Zhu, Chunmao; Kawamura, Kimitaka; Kunwar, Bhagawati

    2015-06-01

    Primary biological aerosol particles (PBAPs) play an important role in affecting atmospheric physical and chemical properties. Aerosol samples were collected at Cape Hedo, Okinawa Island, Japan, from October 2009 to February 2012 and analyzed for five primary saccharides and four sugar alcohols as PBAP tracers. We detected high levels of sucrose in spring when blossoming of plants happens and prolifically emits pollen to the air. Concentrations of glucose, fructose, and trehalose showed levels higher than the other saccharides in spring in 2010. In comparison, primary saccharide levels were mutually comparable in spring, summer, and autumn in 2011, indicating the interannual variability of their local production in subtropical forests, which is driven by local temperature and radiation. High trehalose events were found to be associated with Asian dust outflows, indicating that Asian dust also contributes to PBAPs at Okinawa. Sugar alcohols peaked in summer and correlated with local precipitation and temperature, indicating high microbial activities. Positive matrix factorization analysis confirmed that the PBAPs are mainly derived from local vegetation, pollen, and fungal spores. A higher contribution of PBAP tracers to water-soluble organic carbon (WSOC) was found in summer (14.9%). The annual mean ambient loadings of fungal spores and PBAPs were estimated as 0.49 µg m-3 and 4.12 µg m-3, respectively, using the tracer method. We report, for the first time, year-round biomarkers of PBAP and soil dust and their contributions to WSOC in the subtropical outflow region of the Asian continent.

  8. A New Approach to Studying Biological and Soft Materials Using Focused Ion Beam Scanning Electron Microscopy (FIB SEM)

    International Nuclear Information System (INIS)

    Stokes, D J; Morrissey, F; Lich, B H

    2006-01-01

    Over the last decade techniques such as confocal light microscopy, in combination with fluorescent labelling, have helped biologists and life scientists to study biological architectures at tissue and cell level in great detail. Meanwhile, obtaining information at very small length scales is possible with the combination of sample preparation techniques and transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM). Scanning electron microscopy (SEM) is well known for the determination of surface characteristics and morphology. However, the desire to understand the three dimensional relationships of meso-scale hierarchies has led to the development of advanced microscopy techniques, to give a further complementary approach. A focused ion beam (FIB) can be used as a nano-scalpel and hence allows us to reveal internal microstructure in a site-specific manner. Whilst FIB instruments have been used to study and verify the three-dimensional architecture of man made materials, SEM and FIB technologies have now been brought together in a single instrument representing a powerful combination for the study of biological specimens and soft materials. We demonstrate the use of FIB SEM to study three-dimensional relationships for a range of length scales and materials, from small-scale cellular structures to the larger scale interactions between biomedical materials and tissues. FIB cutting of heterogeneous mixtures of hard and soft materials, resulting in a uniform cross-section, has proved to be of particular value since classical preparation methods tend to introduce artefacts. Furthermore, by appropriate selection, we can sequentially cross-section to create a series of 'slices' at specific intervals. 3D reconstruction software can then be used to volume-render information from the 2D slices, enabling us to immediately see the spatial relationships between microstructural components

  9. Angiogenesis in cancer of unknown primary: clinicopathological study of CD34, VEGF and TSP-1

    International Nuclear Information System (INIS)

    Karavasilis, Vasilis; Malamou-Mitsi, Vasiliki; Briasoulis, Evangelos; Tsanou, Elena; Kitsou, Evangelia; Kalofonos, Haralambos; Fountzilas, George; Fotsis, Theodore; Pavlidis, Nicholas

    2005-01-01

    Cancer of unknown primary remains a mallignancy of elusive biology and grim prognosis that lacks effective therapeutic options. We investigated angiogenesis in cancer of unknown primary to expand our knowledge on the biology of these tumors and identify potential therapeutic targets. Paraffin embedded archival material from 81 patients diagnosed with CUP was used. Tumor histology was adenocarcinoma (77%), undifferentiated carcinoma (18%) and squamous cell carcinoma (5%). The tissue expression of CD34, VEGF and TSP-1 was assessed immunohistochemically by use of specific monoclonal antibodies and was analyzed against clinicopathological data. VEGF expression was detected in all cases and was strong in 83%. Stromal expression of TSP-1 was seen in 80% of cases and was strong in 20%. The expression of both proteins was not associated with any clinical or pathological parameters. Tumor MVD was higher in tumors classified as unfavorable compared to more favorable and was positively associated with VEGF and negatively with TSP-1. Angiogenesis is very active and expression of VEGF is almost universal in cancers of unknown primary. These findings support the clinical investigation of VEGF targeted therapy in this clinical setting

  10. Radiation, chemical and biological protection. Mass destruction weapons

    International Nuclear Information System (INIS)

    Janasek, D.; Svetlik, J.

    2005-01-01

    In this text-book mass destruction weapons and radiation, chemical and biological protection are reviewed. The text-book contains the following chapter: (1) Mass destruction weapons; (2) Matter and material; (3) Radioactive materials; (4) Toxic materials; (5) Biological resources; (6) Nuclear energetic equipment; Appendices; References.

  11. Pragmatic information in biology and physics.

    Science.gov (United States)

    Roederer, Juan G

    2016-03-13

    I will show how an objective definition of the concept of information and the consideration of recent results about information processing in the human brain help clarify some fundamental aspects of physics and biology. Rather than attempting to define information ab initio, I introduce the concept of interaction between material bodies as a primary concept. Two distinct categories can be identified: (i) interactions which can always be reduced to a superposition of physical interactions (forces) between elementary constituents; and (ii) interactions between complex bodies which cannot be expressed as a superposition of interactions between parts, and in which patterns and forms (in space and/or time) play the determining role. Pragmatic information is then defined as the link between a given pattern and the ensuing pattern-specific change. I will show that pragmatic information is a biological concept; it plays no active role in the purely physical domain-it only does so when a living organism intervenes. The consequences for physics (including foundations of quantum mechanics) and biology (including brain function) will be discussed. This will include speculations about three fundamental transitions, from the quantum to the classical domain, from natural inanimate to living systems, and from subhuman to human brain information-processing operations, introduced here in their direct connection with the concept of pragmatic information. © 2016 The Author(s).

  12. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  13. Soil biological shield exposed to high energy neutrons; Zemlja kao bioloski stit od neutrona visokih energija

    Energy Technology Data Exchange (ETDEWEB)

    Simovic, R; Marinkovic, N [Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1993-04-15

    Shielding efficiency of soil biological shield exposed to high energy neutrons was investigated. Dose rate equivalents for neutrons, secondary gamma and gamma radiation were computed on the surface of soil slabs having different thicknesses. Yields of primary and secondary nuclear radiation in the total dose were evaluated. Influence of the incident neutron spectrum, water content and chemical composition of the material on its shielding efficiency was examined. It was found that the soil density and the water content determine the quality of biological shield, the influence of other factors being less important. Comparison of shielding efficiencies for soil with sand, brick and ordinary concrete shields was done.

  14. Investigation of the primary plasticisers present in polyvinyl chloride (PVC) products currently authorised as food contact materials.

    Science.gov (United States)

    Carlos, Katherine S; de Jager, Lowri S; Begley, Timothy H

    2018-03-15

    PVC is a common food contact material that is usually plasticised to increase its flexibility. Phthalates are one class of chemical compounds that are often used as plasticisers in PVC in a wide range of industries. They may be used in packaging materials for foods and can also be found in components of certain food processing equipment such as conveyor belts and tubing. Transfer of plasticisers from packaging to foods can occur. In recent years, there has been increased interest in understanding the health effects of phthalates, as well as the possible human exposure levels. However, there is limited information available about the routes of exposure to phthalates. In July 2014, the Chronic Hazard Advisory Panel (CHAP) produced a report for the U.S. Consumer Product Safety Commission detailing the potential health hazards of phthalates and phthalate alternatives. This report listed diet as one factor contributing greater than or equal to 10% of total phthalate exposure. As a result of this report, the U.S. Food and Drug Administration (FDA) is interested in determining the types of the primary plasticiser present in food packaging and processing materials as well as their concentrations. An investigation was conducted of 56 different samples of PVC food packaging and food processing materials available in the US market using a solvent extraction and GC-MS analysis. Nine different plasticisers including three phthalates, di(2-ethylhexyl) phthalate, diisononyl phthalate and diisodecyl phthalate, were identified in the products tested. The plasticiser concentrations ranged from 1 to 53% depending on the types of food contact materials and the type of plasticiser. Overall, it appears that manufacturers are switching away from phthalates as their primary plasticiser to alternate compounds such as ESBO, ATBC, DEHT, DINCH, DEHA and DINA.

  15. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  16. Stopping powers for protons in materials of interest in dosimetry and in medical and biological applications

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1985-01-01

    Stopping powers are required for many radiation applications in medicine and biology. Their accuracy can be critical. Some published calculations for these situations have not included recent developments in stopping power theory or the body of work on deviations from additivity due to phase of chemical binding effects. These areas have recently been reviewed and mean excitation energies recommended for a range of materials of interest. Calculated stopping powers are presented for protons of 0.4 to 200 MeV taking the available information into account. The materials considered are Lucite, ICRU composition muscle and bone, A-150 plastic, a TE gas, acetylene and polystyrene and water and water vapour. With suitable corrections and suitable I values in the Bethe stopping power expression, accuracies of <2% can be achieved. (author)

  17. Green Synthesis of Metallic Nanoparticles via Biological Entities

    Directory of Open Access Journals (Sweden)

    Monaliben Shah

    2015-10-01

    Full Text Available Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm. At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications.

  18. Green Synthesis of Metallic Nanoparticles via Biological Entities

    Science.gov (United States)

    Shah, Monaliben; Fawcett, Derek; Sharma, Shashi; Tripathy, Suraj Kumar; Poinern, Gérrard Eddy Jai

    2015-01-01

    Nanotechnology is the creation, manipulation and use of materials at the nanometre size scale (1 to 100 nm). At this size scale there are significant differences in many material properties that are normally not seen in the same materials at larger scales. Although nanoscale materials can be produced using a variety of traditional physical and chemical processes, it is now possible to biologically synthesize materials via environment-friendly green chemistry based techniques. In recent years, the convergence between nanotechnology and biology has created the new field of nanobiotechnology that incorporates the use of biological entities such as actinomycetes algae, bacteria, fungi, viruses, yeasts, and plants in a number of biochemical and biophysical processes. The biological synthesis via nanobiotechnology processes have a significant potential to boost nanoparticles production without the use of harsh, toxic, and expensive chemicals commonly used in conventional physical and chemical processes. The aim of this review is to provide an overview of recent trends in synthesizing nanoparticles via biological entities and their potential applications. PMID:28793638

  19. Primary expatiation on micro material evidence and authentication

    International Nuclear Information System (INIS)

    Yang Mingtai; Wang Wen; Wu Lunqiang; Dai Changsong

    2012-01-01

    The micro material evidence is the impersonal and concrete material evidences, and the quantity and volume is small, but it plays an important role in judicature litigation. In the paper, the basic character, type and form mechanism of the micro material evidence have been analyzed and discussed, and the gist of the micro material evidence has been summarized. It must play a helpful role in the micro material evidence to correlative workers for cognizance and application. (authors)

  20. Effects of chemical and biological warfare remediation agents on the materials of museum objects

    Science.gov (United States)

    Solazzo, C.; Erhardt, D.; Marte, F.; von Endt, D.; Tumosa, C.

    In the fall of 2001, anthrax-contaminated letters were sent to public figures in the United States. Chemical and radiation treatments were employed to decontaminate exposed buildings, objects, and materials. These treatments are effective, but potentially damaging to exposed objects and materials. The recommended surface chemical treatments include solutions, gels, and foams of oxidizing agents such as peroxides or chlorine bleaching agents. Such oxidizing agents are effective against a wide range of hazardous chemical and biological agents. Knowing how these reagents affect various substrates would help to anticipate and to minimize any potential damage. We are examining the effects on typical museum materials of reagents likely to be used, including hydrogen peroxide, sodium hypochlorite, and potassium peroxymonosulfate. Results so far show significant changes in a number of materials. Surface corrosion was observed on metals such as copper, silver, iron, and brass. Color changes occurred with at least one reagent in about one-fourth of the dyed fabric swatches tested, and about half of the inks. Samples of aged yellowed paper are bleached. Effects varied with both the substrate and the tested reagent. The observed changes were generally less drastic than might have been expected. Enough materials were affected, though, to preclude the use of these reagents on museum objects unless no less drastic alternative is available. It appears that many objects of lesser intrinsic value can be treated without severe loss of properties or usefulness. For example, most documents should remain legible if the appropriate reagent is used. This work will provide a basis for determining which treatment is most appropriate for a specific situation and what consequences are to be expected from other treatments.

  1. Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials.

    Science.gov (United States)

    Schofield, Robert M S; Niedbala, Jack C; Nesson, Michael H; Tao, Ye; Shokes, Jacob E; Scott, Robert A; Latimer, Matthew J

    2009-06-01

    We find that the spoon-like tips of the chelipeds (large claws) of the crab Pachygrapsus crassipes differ from the rest of the claw in that they are not calcified, but instead contain about 1% bromine--thus they represent a new example of a class of structural biological materials that contain heavy elements such as Zn, Mn, Fe, Cu, and Br bound in an organic matrix. X-ray absorption spectroscopy data suggest that the bromine is bound to phenyl rings, possibly in tyrosine. We measure a broad array of mechanical properties of a heavy-element biological material for the first time (abrasion resistance, coefficient of kinetic friction, energy of fracture, hardness, modulus of elasticity and dynamic mechanical properties), and we make a direct comparison with a mineralized tissue. Our results suggest that the greatest advantage of bromine-rich cuticle over calcified cuticle is resistance to fracture (the energy of fracture is about an order of magnitude greater than for calcified cuticle). The greatest advantage relative to unenriched cuticle, represented by ant mandible cuticle, is a factor of about 1.5 greater hardness and modulus of elasticity.The spoon-like tips gain additional fracture resistance from the orientation of the constituent laminae and from the viscoelasticity of the material. We suggest that fracture resistance is of greater importance in smaller organisms, and we speculate that one function of heavy elements in structural biological materials is to reduce molecular resonant frequencies and thereby increase absorption of energy from impacts.

  2. Hanford Site Biological Resources Mitigation Strategy

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R

    2003-01-01

    The Biological Resources Mitigation Strategy (BRMiS), as part of a broader biological resource policy, is designed to aid the U.S. Department of Energy, Richland Operations Office (DOE-RL) in balancing its primary missions of waste cleanup, technology development, and economic diversification with its stewardship responsibilities for the biological resources it administers. This strategy will be applied to all DOE-RL programs as well as all contractor and subcontractor activities

  3. Determining biological fine structure by differential absorption of soft x-rays

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Warren, J.B.

    1979-06-01

    The use of soft x-ray contact microscopy in examining histochemically treated human tissue embedded in plastic and exposed as unstained thin sections is demonstrated. When our preliminary data revealed that we could clearly image not only the histochemical reaction product, but the unstained biological fine structure of the surrounding tissues, we decided to test our hypothesis further and see if we could image unstained biological molecular aggregates as well. For this part of the investigation, we chose to examine hydrated proteoglycan aggregates. Proteoglycans are an essential component of the organic matrix of cartilage, and play a primary role in the retention and maintenance of extracellular water. To avoid any artifacts due to the introduction of exogeneous materials, and examine the proteoglycan aggregates in their hydrated, natural configuration, we made contact x-ray images of isolated proteoglycan aggregates in water

  4. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  5. Characteristics of human infant primary fibroblast cultures from Achilles tendons removed post-mortem

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2014-01-01

    Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After...... established from post-mortem tissue are renewable sources of biological material; they can be the foundation for genetic, metabolic and other functional studies and thus constitute a valuable tool for molecular and pathophysiological investigations in biomedical and forensic sciences....

  6. The analysis for energy distribution and biological effects of the clusters from electrons in the tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng; Wang Yong

    2004-01-01

    Objective: To study energy distribution of the clusters from electrons in the tissue equivalent material, and discuss the important aspects of these clusters on inducing biological effects. Methods: Based on the physical mechanism for electrons interacting with tissue equivalent material, the Monte Carlo (MC) method was used. The electron tracks were lively simulated on an event-by-event (ionization, excitation, elastic scattering, Auger electron emission) basis in the material. The relevant conclusions were drawn from the statistic analysis of these events. Results: The electrons will deposit their energy in the form (30%) of cluster in passing through tissue equivalent material, and most clusters (80%) have the energy amount of more than 50 eV. The cluster density depends on its diameter and energy of electrons, and the deposited energy in the cluster depends on the type and energy of radiation. Conclusion: The deposited energy in cluster is the most important factor in inducing all sort of lesions on DNA molecules in tissue cells

  7. Biological evaluation of a new pulp capping material developed from Portland cement.

    Science.gov (United States)

    Negm, Ahmed M; Hassanien, Ehab E; Abu-Seida, Ashraf M; Nagy, Mohamed M

    2017-03-02

    This study evaluates the biological properties of a new pulp capping material developed from Portland cement. This study was conducted on 48 teeth in 4 dogs (12 teeth/dog). The dogs were classified into two equal groups (n=24 teeth) according to the evaluation period including: group A (3 weeks) and group B (3 months). Each group was further subdivided into three equal subgroups (n=8 teeth) according to the capping material including: subgroup 1: mineral trioxide aggregate (MTA), subgroup2: Portland cement+10% calcium hydroxide+20% bismuth oxide (Port Cal) and subgroup 3: Portland cement+bismuth oxide. After general anesthesia, a class V buccal cavity was prepared coronal to the gingival margin. After pulp exposure and hemostasis,the capping materials and glass ionomer filling were placed on the exposure sites. All histopathological findings, inflammatory cell count and dentin bridge formation were recorded. Data were analyzed statistically. After 3 months, the histopathological picture of the pulp in subgroup 1 showed normal pulp, continuous odontoblastic layer and complete dentin bridge formation while subgroup 2 showed partial and complete dentin bridge over a normal and necrotic pulps. Subgroup 3 showed loss of normal architecture, areas of necrosis, complete, or incomplete dentin bridge formation, attached and detached pulp stones and fatty degeneration in group B. For group A, MTA subgroup showed the least number of inflammatory cell infiltrate followed by Port Cal subgroup. While subgroup 3 showed the highest number of inflammatory cell infiltrate. For group B, the mean inflammatory cell count increased with the three tested materials with no statistical difference. Regarding dentin bridge formation at group A, no significant differences was found between subgroups, while at group B, MTA subgroup exhibited significantly higher scores than other subgroups. In conclusion, addition of calcium hydroxide to Portland cement improves the dentin bridge formation

  8. INAA applied to halogen (Br and I) stability in long-term storage of lyophilized biological materials

    International Nuclear Information System (INIS)

    Zaichick, V.; Zaichick, S.

    2000-01-01

    Instrumental neutron activation analysis (INAA) was used to determine the Br and I concentration in the same ten lyophilized and homogenized human thyroid samples prior and after a 20-year storage at room temperature. It was found that long-term storage had no effect on the iodine content. At the same time, the bromine content was about 2-fold lower (p<0.01). It was assumed that possible losses of other halogens can occur under long-term storage of lyophilized biological materials at room temperature. (author)

  9. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery.

    Science.gov (United States)

    Carlson, Brett L; Pokorny, Jenny L; Schroeder, Mark A; Sarkaria, Jann N

    2011-03-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short-term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies.

  10. Activation analytical determination of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    Schelenz, R.

    1980-01-01

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10 -9 to 10 -8 g, of Cu in the range of 10 -12 to 10 -10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB) [de

  11. Structural biological composites: An overview

    Science.gov (United States)

    Meyers, Marc A.; Lin, Albert Y. M.; Seki, Yasuaki; Chen, Po-Yu; Kad, Bimal K.; Bodde, Sara

    2006-07-01

    Biological materials are complex composites that are hierarchically structured and multifunctional. Their mechanical properties are often outstanding, considering the weak constituents from which they are assembled. They are for the most part composed of brittle (often, mineral) and ductile (organic) components. These complex structures, which have risen from millions of years of evolution, are inspiring materials scientists in the design of novel materials. This paper discusses the overall design principles in biological structural composites and illustrates them for five examples; sea spicules, the abalone shell, the conch shell, the toucan and hornbill beaks, and the sheep crab exoskeleton.

  12. Biological preconcentrator

    Science.gov (United States)

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  13. [Specificities of the logopenic variant of primary progressive aphasia].

    Science.gov (United States)

    Magnin, E; Teichmann, M; Martinaud, O; Moreaud, O; Ryff, I; Belliard, S; Pariente, J; Moulin, T; Vandel, P; Démonet, J-F

    2015-01-01

    The logopenic variant of primary progressive aphasia is a syndrome with neuropsychological and linguistic specificities, including phonological loop impairment for which diagnosis is currently mainly based on the exclusion of the two other variants, semantic and nonfluent/agrammatic primary progressive aphasia. The syndrome may be underdiagnosed due (1) to mild language difficulties during the early stages of the disease or (2) to being mistaken for mild cognitive impairment or Alzheimer's disease when the evaluation of episodic memory is based on verbal material and (3) finally, it is not uncommon that the disorders are attributed to psychiatric co-morbidities such as, for example, anxiety. Moreover, compared to other variants of primary progressive aphasia, brain abnormalities are different. The left temporoparietal junction is initially affected. Neuropathology and biomarkers (cerebrospinal fluid, molecular amyloid nuclear imaging) frequently reveal Alzheimer's disease. Consequently this variant of primary progressive aphasia does not fall under the traditional concept of frontotemporal lobar degeneration. These distinctive features highlight the utility of correct diagnosis, classification, and use of biomarkers to show the neuropathological processes underlying logopenic primary progressive aphasia. The logopenic variant of primary progressive aphasia is a specific form of Alzheimer's disease frequently presenting a rapid decline; specific linguistic therapies are needed. Further investigation of this syndrome is needed to refine screening, improve diagnostic criteria and better understand the epidemiology and the biological mechanisms involved. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. MyLabStocks: a web-application to manage molecular biology materials.

    Science.gov (United States)

    Chuffart, Florent; Yvert, Gaël

    2014-05-01

    Laboratory stocks are the hardware of research. They must be stored and managed with mimimum loss of material and information. Plasmids, oligonucleotides and strains are regularly exchanged between collaborators within and between laboratories. Managing and sharing information about every item is crucial for retrieval of reagents, for planning experiments and for reproducing past experimental results. We have developed a web-based application to manage stocks commonly used in a molecular biology laboratory. Its functionalities include user-defined privileges, visualization of plasmid maps directly from their sequence and the capacity to search items from fields of annotation or directly from a query sequence using BLAST. It is designed to handle records of plasmids, oligonucleotides, yeast strains, antibodies, pipettes and notebooks. Based on PHP/MySQL, it can easily be extended to handle other types of stocks and it can be installed on any server architecture. MyLabStocks is freely available from: https://forge.cbp.ens-lyon.fr/redmine/projects/mylabstocks under an open source licence. © 2014 Laboratoire de Biologie Moleculaire de la Cellule CNRS. Yeast published by John Wiley & Sons, Ltd.

  15. Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation

    International Nuclear Information System (INIS)

    Zeisler, R.; Greenberg, R.R.

    1982-01-01

    A neutron activation analysis scheme based upon a radiochemical separation of the activation products has been developed. The method utilizes the inherent sensitivity of the activation reaction 198 Pt(n,ν) 199 Pt and counting of the daughter nuclide 199 Au. This nuclide is radiochemically separated from interfering activities by homogeneous precipitation as elemental gold. The remaining interference of the secondary reaction 197 Au(n,ν) 198 Au(n,ν) 199 Au from gold in the samples is quantitatively assessed and corrected. During this process accurate gold concentrations in the samples are obtained at ultratrace levels. The analysis scheme is applied to gold and platinum determinations in biological Standard Reference Materials and human liver specimens. Gold and platinum are determined at concentrations of 5x10 - 11 g/g, and at higher levels. (author)

  16. Diretrizes nacionais para biorrepositório e biobanco de material biológico humano Brazilian guidelines for biorepositories and biobanks of human biological material

    Directory of Open Access Journals (Sweden)

    Gabriela Marodin

    2013-02-01

    Full Text Available OBJETIVO: Caracterizar a construção participativa e democrática das Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa, baseada nos princípios éticos da dignidade humana, da autonomia, da beneficência, da justiça e da precaução. MÉTODOS: Para a elaboração do documento formou-se um grupo de trabalho interdisciplinar Bioética considerando os seguintes critérios: experiência na operacionalização de biobancos, Biobancos representatividade regional, tipo de material biológico acondicionado e especialistas em Biorrepositório bioética. Participaram, também, membros da Agência Nacional de Vigilância Sanitária Diretrizes - Anvisa, pela competência regulatória e da Comissão Nacional de Ética em Pesquisa - Conep, enquanto controle social. RESULTADOS: O documento, baseado nos preceitos éticos, legais e técnicos, apresenta os conceitos, as atividades, finalidades e diferenças entre biorrepositórios e biobancos, as formas de consentimento do sujeito, além de outros aspectos permeados pela preocupação do uso adequado da informação. As Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa contém 39 artigos, dispostos em cinco capítulos. CONCLUSÃO: A importância de uma regulamentação surge da reflexão ética, considerando a moral, e tendo como norteador os aspectos legais, os quais se traduzem em um documento que não se esgota em si mesmo. A dinamicidade da ciência sempre nos remete à mudança de paradigmas, que podem ir além das legislações existentes.OBJECTIVE: To characterize the participatory and democratic creation of the Brazilian guidelines for biorepositories and biobanks of human biological material with the purpose of research based on the ethical principles of human dignity, autonomy, beneficence, justice, and precaution. METHODS: An interdisciplinary work group was constituted to

  17. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  18. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  19. Comparison of Two Base Materials Regarding Their Effect on Root Canal Treatment Success in Primary Molars with Furcation Lesions

    Directory of Open Access Journals (Sweden)

    Volkan Arikan

    2016-01-01

    Full Text Available Introduction. The aim of this study was to compare MTA with another base material, IRM, which is generally used on pulpal floor after root canal treatment, regarding their effect on the success of root canal treatment of primary teeth with furcation lesions. Materials and Methods. Fifty primary teeth with furcation lesions were divided into 2 groups. Following root canal treatment, the pulpal floor was coated with MTA in the experimental group and with IRM in the control group. Teeth were followed up considering clinical (pain, pathological mobility, tenderness to percussion and palpation, and any soft tissue pathology and sinus tract and radiographical (pathological root resorption, reduced size or healing of existing lesion, and absence of new lesions at the interradicular or periapical area criteria for 18 months. For the statistical analysis, Fisher’s exact test and Pearson’s chi-square tests were used and a p value of <0.05 was considered to be statistically significant. Results. Although there were no statistically significant differences between two groups in terms of treatment success, lesions healed significantly faster in the MTA group. Conclusion. In primary teeth with furcation lesions, usage of MTA on the pulpal floor following root canal treatment can be a better alternative since it induced faster healing.

  20. Multiscale modeling of emergent materials: biological and soft matter

    DEFF Research Database (Denmark)

    Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo

    2009-01-01

    In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed in the c......In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...

  1. Basis of the biological decomposition of xenobiotica

    International Nuclear Information System (INIS)

    Mueller, R. von

    1993-01-01

    The ability of micro-organisms to decompose different molecules and to use them as a source of carbon, nitrogen, sulphur or energy is the basis for all biological processes for cleaning up contaminated soil. Therefore, the knowledge of these decomposition processes is an important precondition for judging which contamination can be treated biologically at all and which materials can be decomposed biologically. The decomposition schemes of the most important harmful material classes (aliphatic, aromatic and chlorinated hydrocarbons) are introduced and the consequences which arise for the practical application in biological cleaning up of contaminated soils are discussed. (orig.) [de

  2. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology

    Science.gov (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.

    2013-01-01

    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  3. Occupational exposure to contaminated biological material: perceptions and feelings experienced among dental students

    Directory of Open Access Journals (Sweden)

    Camila PINELLI

    Full Text Available INTRODUCTION: Dental students may be a particularly vulnerable group exposed to the risk of acquiring infections through occupational injuries.OBJECTIVE: To investigate the perceptions with regard to their occupational exposure to potentially infectious biologic materials.MATERIAL AND METHOD: Interviews were conducted by means of a script with open questions. The speeches were recorded, transcribed and qualitative analysis was performed with the aid of QUALIQUANTISOFT® software. The Collective Subject Discourse (CSD was obtained.RESULT: The feeling most frequently experienced was related to the fear of contagion. Most accidents occurred during the handling of sharp dental instruments. Respondents attributed the occurrence of accidents especially the lack of attention, carelessness while handling sharp instruments, and lack of use of Personal Protective Equipment. As regards the measures taken right after the exposure, they "washed the local area". Other respondents reported they "continued the dental treatment". They complained mostly about the fear of having been infected, and because they had to leave the faculty to take blood exams for HIV screening. As part of the learning experience the injured reported they paid more attention when handling sharp instruments. The students informed that any type of injury due to contact with contaminated material must be notified. However, they were neglectful about reporting their own injury.CONCLUSION: Education strategies for preventive measures related to occupational exposure must be restructured, because the knowledge and the fear of contagion among dental students were not always sufficient for a complete adherence to treatment protocols and notification.

  4. Radiation distribution through serpentine concrete using local materials and its application as a reactor biological shield

    International Nuclear Information System (INIS)

    Kansouh, W.A.

    2012-01-01

    Highlights: ► New serpentine concrete was made and examined as a reactor biological shield. ► Ilmenite–limonite concrete is a better reactor biological shield. ► New serpentine concrete is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. ► Serpentine concrete has lower properties as a reactor total gamma rays shields. - Abstract: In the present work attempt has been made to estimate the shielding parameters of the new serpentine concrete (density = 2.4 g/cm 3 ) using local materials on the shielding parameters for two types of heat resistant concretes, namely hematite–serpentine (density = 2.5 g/cm 3 ) and ilmenite–limonite (density = 2.9 g/cm 3 ). Shielding parameters for ordinary concrete (density = 2.3 g/cm 3 ) were also discussed. These parameters were determined experimentally for serpentine concrete and compared with previously published values for other concretes, which had also been obtained using local materials. The leakage spectra of reactor fast neutrons and total gamma photon beams from cylindrical samples of these concrete shields were also investigated using a collimated beam from ET-RR-1 reactor. A neutron–gamma spectrometer was used in order to obtain pulse height spectra of reactor fast neutrons and the total gamma rays leakage through the investigated concrete samples. These spectra were utilized to obtain the energy spectra required in these investigations. Removal cross section Σ R (E n ) and linear attenuation coefficient μ(E g ) for reactor fast neutrons and total gamma rays and their relative coefficients were evaluated and presented. Measured results were compared with those previously measured for other concretes. The results show that ilmenite–limonite concrete is a better reactor biological shield than the other three concretes. Serpentine concrete under investigation is a better reactor fast neutrons shield than ordinary and hematite–serpentine concretes. Serpentine concrete

  5. Material science lesson from the biological photosystem.

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  6. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, G

    1964-10-15

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1{mu}g/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 {mu}g/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5{mu}g were determined with an analytical error of less than 5 % and Sr{sub q}uantities greater than 10 {mu}g with an error of less than 3 %.

  7. Flame Spectrophotometric Determination of Strontium in Water and Biological Material

    International Nuclear Information System (INIS)

    Joensson, G.

    1964-10-01

    A flame spectrophotometric method has been developed for the determination of strontium in biological material and water samples. Strontium is determined in the presence of calcium at a wavelength of 4607 A. The intensity of the strontium emission from the sample is increased if n-butanol is added to a solution of the sample in water. With a 6 vol% solution of n-butanol in water, an optimum intensity of 3.5 times that obtained with pure water solution is obtained. Anions and alkali metals which might interfere with the flame spectrophotometric determination are separated from the sample by a simple ion exchange operation. The method allows determination of strontium in solutions down to 0.1μg/ml. In this case the standard deviation is 3.1 % and with a strontium concentration of 1 μg/ml the deviation is 0.9 %. This method has been used for the determination of strontium in samples of varying composition such as bone, meat and skin from fishes, samples of human bones, shell-fish, milk, and water, in which case Sr quantities of 5μg were determined with an analytical error of less than 5 % and Sr q uantities greater than 10 μg with an error of less than 3 %

  8. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Science.gov (United States)

    Deschênes, Georges; Fila, Marc

    2011-01-01

    Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures. PMID:21941653

  9. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Directory of Open Access Journals (Sweden)

    Georges Deschênes

    2011-01-01

    Full Text Available Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures.

  10. Organization and diffusion in biological and material fabrication problems

    Science.gov (United States)

    Mangan, Niall Mari

    This thesis is composed of two problems. The first is a systems level analysis of the carbon concentrating mechanism in cyanobacteria. The second presents a theoretical analysis of femtosecond laser melting for the purpose of hyperdoping silicon with sulfur. While these systems are very distant, they are both relevant to the development of alternative energy (production of biofuels and methods for fabricating photovoltaics respectively). Both problems are approached through analysis of the underlying diffusion equations. Cyanobacteria are photosynthetic bacteria with a unique carbon concentrating mechanism (CCM) which enhances carbon fixation. A greater understanding of this mechanism would offer new insights into the basic biology and methods for bioengineering more efficient biochemical reactions. The molecular components of the CCM have been well characterized in the last decade, with genetic analysis uncovering both variation and commonalities in CCMs across cyanobacteria strains. Analysis of CCMs on a systems level, however, is based on models formulated prior to the molecular characterization. We present an updated model of the cyanobacteria CCM, and analytic solutions in terms of the various molecular components. The solutions allow us to find the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) where carbon fixation is maximized and oxygenation is minimized. Saturation of RuBisCO, maximization of the ratio of CO2 to O2, and staying below or at the saturation level for carbonic anhydrase are all needed for maximum efficacy. These constraints limit the parameter regime where the most effective carbon fixation can occur. There is an optimal non-specific carboxysome shell permeability, where trapping of CO2 is maximized, but HCO3 - is not detrimentally restricted. The shell also shields carbonic anhydrase activity and CO2 → HCO3- conversion at the thylakoid and cell membrane from one another. Co-localization of carbonic

  11. Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2012-12-01

    Full Text Available As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS was operated for continuous measurements of fluorescent biological aerosol particles (FBAP. In the coarse particle size range (> 1 μm the campaign median and quartiles of FBAP number and mass concentration were 7.3 × 104 m−3 (4.0–13.2 × 104 m−3 and 0.72 μg m−3 (0.42–1.19 μg m−3, respectively, accounting for 24% (11–41% of total particle number and 47% (25–65% of total particle mass. During the five-week campaign in February–March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 μm, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM, light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP mode between 0.5 and 1.0 μm was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine

  12. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  13. DART, a BCA code to assess and compare primary irradiation damage in nuclear materials submitted to neutron and ion flux - 02002

    International Nuclear Information System (INIS)

    Luneville, L.; Simeone, D.

    2016-01-01

    When a material is subjected to a flux of high-energy particles, its constituent atoms can be knocked from their equilibrium positions with a wide range of energies, depending on the exact nature of the collision. The spectrum of damage energy, derived from the exact knowledge of the recoil spectra for each nuclear reaction occurring in the solid, constitutes a vital data set required for understanding how materials evolve under irradiation. The knowledge of such damage energy is relevant to compare the impact of different facilities on the structural behavior and relevant properties of materials. The DART code was developed for two distinct reasons: the first one was a correct determination of the Primary Knocked on Atoms (PKA) spectrum from reliable cross section data libraries and the second was a crude estimation of the damage energy induced by different irradiations. This last term can be a quick estimation of radiation damage produced in the same material by different nuclear plants and particle accelerators. Based on the Binary Collision Approximation, this code allows computing the primary spectra produced by neutrons, ions and electrons as well as the damage energy deposited by these particles in a poly atomic material. It is then a tool to compare radiation damage induced in nuclear reactors as well as in ion beam facilities. This brief paper is followed by the slides of the presentation

  14. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  15. Review of behavior of plutonium in soils and other geologic materials

    International Nuclear Information System (INIS)

    Nishita, H.

    1979-10-01

    Available information on the physical and chemical reactions of Pu in soils and other geologic materials is reviewed. The primary intent of this review was to bring together information that may be helpful in assessing the movement and biological availability of Pu in terrestrial environment. The review is divided into two general categories, e.g., studies of chemical reactions of Pu in aqueous solutions and studies of Pu reactions in the more complex systems of soils and other geologic materials. The latter category is further divided into studies of Pu in materials that were freshly contaminated in the laboratory and of Pu in materials that had been contaminated in natural environments and had resided there for varying numbers of years. After the discussion of physical and chemical reactions of Pu, several reported examples of the actual movement of Pu in terrestrial environments are given

  16. American Society for Radiation Oncology (ASTRO) Survey of Radiation Biology Educators in U.S. and Canadian Radiation Oncology Residency Programs

    International Nuclear Information System (INIS)

    Rosenstein, Barry S.; Held, Kathryn D.; Rockwell, Sara; Williams, Jacqueline P.; Zeman, Elaine M.

    2009-01-01

    Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educators whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.

  17. Biological treatment of Crohn's disease

    DEFF Research Database (Denmark)

    Nielsen, Ole Haagen; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    Introduction of biological agents for the treatment of Crohn's disease (CD) has led to a transformation of the treatment paradigm. Several biological compounds have been approved for patients with CD refractory to conventional treatment: infliximab, adalimumab and certolizumab pegol (and...... natalizumab in several countries outside the European Union). However, despite the use of biologics for more than a decade, questions still remain about the true efficacy and the best treatment regimens - especially about when to discontinue treatment. Furthermore, a need for optimizing treatment...... with biologics still exists, as 20-40% of patients with CD (depending on selection criteria) do not have any relevant response to the current biological agents (i.e. primary failures). A better patient selection might maximize the clinical outcome while minimizing the complications associated with this type...

  18. BIOLOGICAL AND SYNTHETIC MATERIALS IN RECONSTRUCTIVE SURGERY FOR BREAST CANCER TREATMENT (LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    A. D. Zikiryakhodzhaev

    2018-01-01

    Full Text Available During the last years has been a worldwide trend towards rejuvenating breast cancer, and the evolution of reconstructive breast surgery is proceeding at a rapid pace. The surgical method is the primary method in the combined and complex treatment of breast cancer, and radical mastectomy is still the main option for surgical treatment in most Russian clinics. Most women who need a mastectomy prefer a one-stage breast reconstruction, because the woman is quickly rehabilitated psychologically and physically after this operation. Nevertheless, the use of silicone endoprostheses did not solve the problems of breast reconstruction in combined treatment in oncology. The issue remains unresolved of various complications, related not only to infections, but also to the development of capsular contracture after radiotherapy. Many patients with a one-stage breast reconstruction using a silicone endoprostheses lack the volume of their own tissues for reliable shelter of the endoprosthesis. In such cases, synthetic reticulated implants, biological implants or autologous flaps are used to cover and strengthen the lower slope of the reconstructed breast.

  19. Chemistry and biology by new multiple choice

    International Nuclear Information System (INIS)

    Seo, Hyeong Seok; Kim, Seong Hwan

    2003-02-01

    This book is divided into two parts, the first part is about chemistry, which deals with science of material, atom structure and periodic law, chemical combination and power between molecule, state of material and solution, chemical reaction and an organic compound. The second part give description of biology with molecule and cell, energy in cells and chemical synthesis, molecular biology and heredity, function on animal, function on plant and evolution and ecology. This book has explanation of chemistry and biology with new multiple choice.

  20. Simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Damsgaard, E.; Heydorn, K.

    1976-08-01

    A method for the simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological material was developed by the incorporation of separation procedures for copper and zinc into an existing procedure. Investigation of the performance characteristics of the method was carried out with reference to copper and zinc. For certain materials characterized by a high Cu/Zn ratio, or a high zinc content, or both, such as liver, copper ihterferes in the determination of zinc thus requiring a small correction by an iterative procedure. Blank values for copper depend on the rinsing of the irradiation container, and a single rinsing with redistilled water was found superior to other rinsing procedures. Nuclear interference was negligible. The accuracy of the method was checked by analysis of Standard Reference Materials and the precision verified by analysis of Intercomparison Samples. Results are presented for 5 male foetuses of 3-5 months' gestational age. The distribution of arsenic, manganese and selenium is similar to that previously reported for adults. With the exception of liver, concentrations of copper in foetal organs were lower than values in the literature indicate. (author)

  1. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  2. [Alternative biological materials to detect prenatal exposure to drugs of abuse in the third trimester of pregnancy].

    Science.gov (United States)

    García-Serra, J; Ramis, J; Simó, S; Joya, X; Pichini, S; Vall, O; García-Algar, O

    2012-11-01

    Detection of prenatal drug abuse exposure is essential to ensure an appropriate monitoring of affected children. A maternal questionnaire is not an efficient screening tool. The usefulness of maternal hair and meconium as biological materials to assess this exposure has been described in last few years. The aim of this study was to compare both these alternative biological materials for prenatal drug exposure detection in the third trimester of pregnancy, in order to assess its use as a screening tool. Between January and March 2010, samples of maternal hair and meconium from 107 mother-infant dyads were collected in Can Misses Hospital, Ibiza. The presence of opiates, cocaine, cannabis, and amphetamines, was determined in both materials, using standard chromatographic techniques. Maternal hair analysis showed a 15.9% positivity for drugs of abuse (17 cases): 11 cannabis, 7 cocaine, 1 cannabis and ecstasy, and 1 cannabis and cocaine. Only one mother reported cannabis consumption and another one, cocaine. Of the 7 cocaine positive cases in hair, 6 were confirmed in meconium analysis, while of 11 cannabis positive cases, only 3 were confirmed in meconium. Two different consumer profiles were defined: cocaine consumers and cannabis consumers (with only 2 cases of multiple drug use). The highest level of cocaine ever published was detected (1.582ng/g) in one case. This study reveals a high prevalence of drug abuse in this cohort during pregnancy. Improved screening methods may optimize prevention and monitoring of exposed infants. Maternal hair seems to be more sensitive than meconium to detect prenatal exposure to cannabis during the third trimester, so it might become a good screening tool. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  3. Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance

    Directory of Open Access Journals (Sweden)

    Olof Forsén

    2017-10-01

    Full Text Available The primary production of sulfide concentrates includes smelting to copper matte or blister copper, conversion of matte to blister copper, and refining to copper. Smelting, converting, and fire-refining can use a limited amount of secondary materials. Molten copper can effectively dissolve many metals, from valuable noble metals to harmful impurities such as bismuth. However, some of the impurity metals in copper are valuable in other applications. In this paper, we outline the main material flows in copper smelting and electrorefining and describe how minor metals can be recovered from secondary raw materials using copper as a carrier material. We will use a system integrated approach to define the factors that affect the recovery of different metals and copper quality. Metals typical in copper production are used as examples, like noble metals, As, Bi, Se, and Te, including metals in the EU critical raw materials list like PGM and Sb.

  4. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  5. The relative biological effectiveness of antiprotons

    DEFF Research Database (Denmark)

    Holzscheiter, Michael H.; Alsner, Jan; Bassler, Niels

    2016-01-01

    Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase of the re......Background and purpose: Aside from the enhancement of physical dose deposited by antiprotons annihilating in tissue-like material compared to protons of the same range a further increase of biological effective dose has been demonstrated. This enhancement can be expressed in an increase...... of the relative biological effectiveness (RBE) of antiprotons near the end of range. We have performed the first-ever direct measurement of the RBE of antiprotons both at rest and in flight. Materials and methods: Experimental data were generated on the RBE of an antiproton beam entering a tissue-like target...

  6. Status of LWR primary pressure boundary structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Byun, Taek Sang; Kang, Sung Sik; Ryu, Woo Seog; Lee, Bong Sang; Kook, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The integrity of major systems, structures and components is a prerequisite to the economy and safety of an existing light water reactor and also for the next generation reactors. As few reactor structural materials are being manufactured by domestic companies, based on economic and safety reasons, a new demand to improve the quality of domestic reactor structural materials and to develop reactor structural steels has arisen. Investigations on the state-of-the-art of the materials specifications, performance and current state of structural materials development were performed as a first step to domestic reactor structural steel development and summarized the result in the present report. (Author) 10 refs., 10 figs., 21 tabs.

  7. Influence of hydrazine primary water chemistry on corrosion of fuel cladding and primary circuit components

    International Nuclear Information System (INIS)

    Iourmanov, V.; Pashevich, V.; Bogancs, J.; Tilky, P.; Schunk, J.; Pinter, T.

    1999-01-01

    Earlier at Paks 1-4 NPP standard ammonia chemistry was in use. The following station performance indicators were improved when hydrazine primary water chemistry was introduced: occupational radiation exposures of personnel; gamma-radiation dose rates near primary system components during refuelling and maintenance outages. The reduction of radiation exposures and radiation fields were achieved without significant expenses. Recent results of experimental studies allowed to explain the mechanism of hydrazine dosing influence on: corrosion rate of structure materials in primary coolant; behaviour of soluble and insoluble corrosion products including long-life corrosion-induced radionuclides in primary system during steady-state and transient operation modes; radiolytic generation of oxidising radiolytic products in core and its corrosion activity in primary system; radiation situation during refuelling and maintenance outages; foreign material degradation and removal (including corrosion active oxidant species) from primary system during abnormal events. Operational experience and experimental data have shown that hydrazine primary water chemistry allows to reduce corrosion wear and thereby makes it possible to extend the life-time of plant components in primary system. (author)

  8. Materials with structural hierarchy

    Science.gov (United States)

    Lakes, Roderic

    1993-01-01

    The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.

  9. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1994-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  10. Biologically resistant contaminants, primary treatment with ozone

    Energy Technology Data Exchange (ETDEWEB)

    Echegaray, Diego F. [White Martins Gases Industriais do Nordeste S.A., Salvador, BA (Brazil); Olivieri, Nadja F. [White Martins Gases Industriais S.A., Cordovil, RJ (Brazil)

    1993-12-31

    Organic effluent oxidation tests were conducted in petrochemical companies, in Camacari Petrochemical Complex (Northeast Brazil), to reduce treatment costs and improve the primary treatment efficiency in each industrial process. Ozone achieved 99.96 percent benzene reduction and 100 percent ethyl benzene and toluene reduction. Process efficiency is strongly dependent on the wastewater chemical composition and concentration. For this reason it is necessary to run pilot trials for each specific case. Ozone was obtained feeding commercial oxygen through a corona discharge generator and dissolved in the effluent with a bubble column. Commercial oxygen was used instead of air to increase 250 percent the ozone production, using the same ozone generator. (author). 4 figs., 2 tabs.

  11. Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms

    Directory of Open Access Journals (Sweden)

    Hidemichi Fujii

    2016-04-01

    Full Text Available Biological technology allows us to invent new medical approaches, create effective food production methods and reserves and develop new materials for industrial production. There is a diversity of biological technology types, and different technologies have different priorities for invention. This study examines the factors that are important for the invention of biology-related technologies in Japan using patent application data and a decomposition analysis framework. As the results show, patent applications related to biochemistry and biotechnology increased until 1995 because of the expanded scale of R&D activities and the high priority assigned to biological technology. However, the number of patent applications stagnated after 1995, because the importance of biochemistry, especially waste-gas treatment technologies, decreased. Additionally, patent applications for medicines and disease-related technologies increased rapidly from 1971 to 1995. The primary determinant of rapid growth is an increase in research priority, especially among firms in the chemical industry whose technologies are related to supplemental foods and foods with health-promoting benefits. Finally, patent applications involving foodstuff- and agriculture-related technologies increased from 1971 to 1995 due to increased R&D and the increased priority of biological technology.

  12. Primary Tumor Thickness is a Prognostic Factor in Stage IV Melanoma: A Retrospective Study of Primary Tumor Characteristics.

    Science.gov (United States)

    Luen, Stephen; Wong, Siew Wei; Mar, Victoria; Kelly, John W; McLean, Catriona; McArthur, Grant A; Haydon, Andrew

    2018-01-01

    Stage IV melanoma exhibits a diverse range of tumor biology from indolent to aggressive disease. Many important prognostic factors have already been identified. Despite this, the behavior of metastatic melanoma remains difficult to predict. We sought to determine if any primary tumor characteristics affect survival following the diagnosis of stage IV melanoma. All patients diagnosed with stage IV melanoma between January 2003 and December 2012 were identified from the Victorian Melanoma Service database. Retrospective chart review was performed to collect data on primary tumor characteristics (thickness, ulceration, mitotic rate, melanoma subtype, or occult primary). Known and suspected prognostic factors were additionally collected (time to diagnosis of stage IV disease, age, sex, stage, receipt of chemotherapy, and era of recurrence). The effect of primary tumor characteristics on overall survival from the date of diagnosis of stage IV disease was assessed. A total of 227 patients with a median follow-up of 5 years from diagnosis of stage IV disease were identified. Median overall survival of the cohort was 250 days.Of the primary tumor characteristics assessed, only tumor thickness affected survival from diagnosis of stage IV disease, hazard ratio=1.09 (1.02 to 1.16), P=0.008. This remained significant in multivariate analysis, P=0.007. Other primary tumor characteristics did not significantly influence survival. Primary tumor thickness is a significant prognostic factor in stage IV melanoma. Our data suggest that the biology of the primary melanoma may persist to influence the behavior of metastatic disease.

  13. Materials science

    International Nuclear Information System (INIS)

    2002-01-01

    the document is a collection of papers on different aspects of materials science. It discusses many items such as semiconductors, surface properties and interfaces, construction and civil engineering, metallic materials, polymers and composites, biology and biomaterials, metallurgy etc.. - 1 - Document1 Document1

  14. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    Science.gov (United States)

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  15. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  16. The standardisation of trace elements in international biological standard reference materials with neutron activation analysis and atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Pieterse, H.

    1981-12-01

    An investigation was undertaken into the analytical procedures and the identification of problem areas, for the certification of a new biological standard reference material supplied by the International Atomic Energy Agency, namely, a human hair sample designated as HH-I. The analyses comprised the determination of the elements As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, Se, and Zn in the hair sample by using two analytical techniques, namely, Instrumental Neutron Activation Analysis and Atomic Absorption. Three other certified biological reference materials, namely, Orchard Leaves (ORCH-L), Sea Plant Material (SPM-I) and Copepod (MAA-I) were used as control standards. Determinations were made of the moisture content of the samples, using varying conditions of drying, and the necessary corrections were applied to all analytical results so that the final elemental values related to dry weight of samples. Attention was also given to the possible loss of specific elements during ashing of the samples prior to the actual instrumental analysis. The results obtained for the hair sample by the two techniques were in good agreement for the elements Co, Fe, Mn, and Zn, but did not agree for the elements Cr and Sb. As, Hg and Se could only be determined with Instrumental Neutron Activation Analysis, and Cd, Cu and Ni only with Atomic Absorption. Most of the results obtained for the three control standard reference materials were within the ranges specified for the individual elements in each sample. The analytical procedures used for determining Cd, Cr, Cu, Ni and Sb with Instrumental Neutron Activation Analysis and As, Cr, Sb and Se with Atomic Absorption, need further investigation. The measurement of the moisture content and the ashing of samples also require further investigation with a view to improving accuracy

  17. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  18. Profile of accidents with biological material at a dental school

    Directory of Open Access Journals (Sweden)

    Sandra Aragão de Almeida Sasamoto

    2014-09-01

    Full Text Available http://dx.doi.org/10.4025/actascihealthsci.v36i1.14976 Current research characterizes the epidemiological profile of accidents with biological material (BM that occurred in a government-run dental school and identifies the post-exposure behavior taken by the injured subjects. The cross-sectional retrospective study comprises professors, students and technical-administration personnel who worked in the laboratory from 2001 to 2008 (n = 566. An electronic questionnaire, prepared by software developed for this purpose, was sent to subjects between May and August 2008 for data collection. Ninety-one (34.2% out of 266 participants reported some type of exposure to BM. There was no difference between the occurrence of accidents according to the subjects’ category (p = 0.496 and sex (p = 0.261. Most of the subjects reported cutaneous exposure (76.9% comprising saliva (68.1% and blood (48.3%. The fingers were the body members most affected. Accidents occurred mostly during clinical (34.1% and surgical (30.8% procedures. Although the use of protection equipments was high (82.9%, only 26.4% of subjects reported the accident and only 28.6% sought immediate help. Most of the injured subjects failed to report the accidents and did not comply with the guidelines. Others trivialized basic behavior such as the interruption of the procedure to seek medical assistance.

  19. Primary intracerebral lymphoma: Case report

    Directory of Open Access Journals (Sweden)

    Olcay Eser

    2012-09-01

    Full Text Available We describe a case of primary central nervous lymphoma (PCNSL that may be confused with magnetic resonance imaging (MRI findings of high grade glioma. Primary central nervous lymphoma is a rare tumour and it account for 0.3-3% of intracranial tumours. A 61 year’s old woman was admitted to our clinic with a severe headache, vomiting, left hemiparesia and transient loss of consciousness. Primary central nervous lymphoma may show various biological and radiological characteristics. We herein emphasized being confused with MRI findings of PCNSL and high grade glioma. J Clin Exp Invest 2012; 3 (3: 409-411Key words: Primary central nervous lymphoma, high grade glioma, B-cell, diagnosis

  20. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials; Eskalation des Terrors? Ueber das Anschlagsrisiko mit chemischen, biologischen, radiologischen und nuklearen Waffen oder Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    Nass, Jens

    2010-07-01

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  1. Marine Biology

    Science.gov (United States)

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  2. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  3. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas; Chang, Donald Choy; Gong, Xiuqing; Wen, Weijia; Wu, Jinbo; Xiao, Kang; Yi, Xin

    2010-01-01

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  4. Hybrid materials engineering in biology, chemistry and physics

    NARCIS (Netherlands)

    Leroux, F; Rabu, P; Sommerdijk, N.A.J.M.; Taubert, A.

    The Guest Editors emphasize the rapidly growing research in advanced materials. "Telecommunication, health and environment, energy and transportation, and sustainability are just a few examples where new materials have been key for technological advancement."

  5. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  6. Analysis of students’ incorrect answers at triangle materials in the fifth-grade of primary school

    Science.gov (United States)

    Shintawati, E.; Jupri, Al

    2018-05-01

    This research aims to analyse the comparison of the predictions made by the author between learning methods with the reality that occur in the class and to analyse students' responses toward questions given by teachers at triangle materials. The method used in this research is the descriptive-qualitative method. The subjects of this research are all fifth-grade students from a primary school in the city of Bandung. The results of this research indicated that there are some influences between learning methods and students' responses shown by the way students answer the question. In reality, there are many students’ responses produced beyond the predictions of the author. It shows that as the good teachers, besides setting up learning methods, they should also make predictions toward the responses of the students in answering the questions given. The results of the predictions could be used as a lesson for teachers to run the learning processes as good as possible so the students' responses could being accordance with the concept of materials presented and could also achieve the expected learning goals. Based on this research’s results, as a teacher must have techniques and strategies to overcome things that are not expected during the learning so that learning can be conducive so that students can focus on learning and enjoy learning so that learning outcomes is the ability of students to increase in understanding the material and can construct the concept of material provided.

  7. Novel primary amine diazeniumdiolates-Chemical and biological characterization.

    Science.gov (United States)

    Puglisi, Melany P; Bradaric, Michael J; Pontikis, John; Cabai, Jonathan; Weyna, Theodore; Tednes, Patrick; Schretzman, Robert; Rickert, Karl; Cao, Zhao; Andrei, Daniela

    2018-05-02

    Hit, Lead & Candidate Discovery Diazeniumdiolates, also known as NONOates, are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release nitric oxide (NO . ) and/or their congeneric nitroxyl (HNO). The purpose of this work was to synthesize a series of primary amine-based diazeniumdiolates as HNO/NO donors and to determine their efficacy as anticancer and antifungal agents in vivo. The seven compounds (3a-3g) were successfully synthesized and characterized, one of which had been previously reported in the literature (3g). Two compounds showed anti-proliferative effects against ovarian (ES2 and SKOV3) and AML monocyte-derived cancer cells (THP-1) when tested with standard MTT assays. Compounds 3a and 3g demonstrated reduced ovarian cancer cell proliferation when treated at doses from 0.033 to 1.0 mg/mL at the 24 hr time point. These compounds also exhibited moderate and selective antifungal activity against Fusarium oxysporum f.sp. lycopersici, one cause of opportunistic infections of immunocompromised patients, inhibiting the growth of the fungi at LD 50 at 10 mg/mL. A third compound (3e) did not exhibit similar activities, possibly due to the alkyl chain. Our results suggest that the primary amine diazeniumdiolates may offer a versatile platform for the development of HNO/NO donors for biomedical applications. © 2018 Wiley Periodicals, Inc.

  8. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Pamela [Harvard Univ., Cambridge, MA (United States); SEED 2015 Conference Chair; Flach, Evan [American Institute of Chemical Engineers; SEED 2015 Conference Organizer

    2016-10-27

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek to move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international

  9. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  10. Mechanical Biological Treatment

    DEFF Research Database (Denmark)

    Bilitewski, B-; Oros, Christiane; Christensen, Thomas Højlund

    2011-01-01

    The basic processes and technologies of composting and anaerobic digestion, as described in the previous chapters, are usually used for specific or source-separated organic waste flows. However, in the 1990s mechanical biological waste treatment technologies (MBT) were developed for unsorted...... or residual waste (after some recyclables removed at the source). The concept was originally to reduce the amount of waste going to landfill, but MBT technologies are today also seen as plants recovering fuel as well as material fractions. As the name suggests the technology combines mechanical treatment...... technologies (screens, sieves, magnets, etc.) with biological technologies (composting, anaerobic digestion). Two main technologies are available: Mechanical biological pretreatment (MBP), which first removes an RDF fraction and then biologically treats the remaining waste before most of it is landfilled...

  11. Mineral trioxide aggregate as a pulpotomy agent in primary molars: An in vivo study

    Directory of Open Access Journals (Sweden)

    Naik S

    2005-03-01

    Full Text Available The retention of pulpally involved deciduous tooth in a healthy state until the time of normal exfoliation remains to be one of the challenges for Pedodontists. A scientific noise has been generated about several materials some of which have been popular pulpotomy medicaments. Concerns have been raised about the toxicity and potential carcinogenicity of these materials, and alternatives have been proposed to maintain the partial pulp vitality, however to date no material has been accepted as an ideal pulpotomy agent. Mineral trioxide aggregate (MTA is a biocompatible material which provides a biological seal. MTA has been proposed as a potential medicament for various pulpal procedures like pulp capping with reversible pulpitis, apexification, repair of root perforations, etc. Hence the present study was done to evaluate the efficacy of MTA as a pulpotomy medicament. A clinical and radiographic evaluation was done on children where MTA was used as pulpotomy medicament in primary molars for a period of 6 months and it was found to be a successful material.

  12. Determination of Sr, Ba, Rb, and Cs in biological reference materials using a radiochemical NAA group separation procedure

    International Nuclear Information System (INIS)

    Mizera, J.; Randa, Z.

    2008-01-01

    Strontium, barium, rubidium, and cesium in selected, predominantly biological, reference materials (NIST 1515, 1547, 1549, 1566a, 1571, 1577b, 2704, CTA-OTL-1, and Bowen's Kale) were determined using neutron activation analysis (NAA) in two different analytical modes - instrumental NAA with epithermal neutrons (ENAA), and NAA with radiochemical group separation of Sr-Ba and Rb-Cs (RNAA). The ENAA mode was based on long-term (5 h) irradiation of samples in a Cd shielding. The RNAA procedure was based on long-term (20 h) irradiation of samples, their decomposition / dissolution by alkaline-oxidative fusion, and precipitation of Sr and Ba sulfates, and sorption of Rb and Cs onto ammonium phosphomolybdate (APM). Both methods provided element contents in the analyzed reference materials consistent with certified and/or literature values. (author)

  13. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  14. Niobium pentoxide as radiopacifying agent of calcium silicate-based material: evaluation of physicochemical and biological properties.

    Science.gov (United States)

    Silva, Guilherme F; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S

    2015-11-01

    The physicochemical properties and the tissue reaction promoted by microparticulated or nanoparticulated niobium pentoxide (Nb2O5) added to calcium silicate-based cement (CS), compared to MTA-Angelus™, were evaluated. Materials were submitted to the tests of radiopacity, setting time, pH, and calcium ion release. Polyethylene tubes filled with the materials were implanted into rats subcutaneously. After 7, 15, 30, and 60 days, the specimens were fixed and embedded in paraffin. Hematoxylin & eosin (H&E)-stained sections were used to compute the number of inflammatory cells (IC). Interleukin-6 (IL-6) detection was performed, and the number of immunolabeled cells was obtained; von Kossa method was also carried out. Data were subjected to ANOVA and Tukey test (p ≤ 0.05). Nb2O5micro and Nb2O5nano provided to the CS radiopacity values (3.52 and 3.75 mm Al, respectively) superior to the minimum recommended. Groups containing Nb2O5 presented initial setting time significantly superior than mineral trioxide aggregate (MTA). All materials presented an alkaline pH and released calcium ions. The number of IC and IL-6 immunolabeled cells in the CS + Nb2O5 groups was significantly reduced in comparison to MTA in all periods. von Kossa-positive structures were observed adjacent to implanted materials in all periods. The addition of Nb2O5 to the CS resulted in a material biocompatible and with adequate characteristics regarding radiopacity and final setting time and provides an alkaline pH to the environment. Furthermore, the particle size did not significantly affect the physicochemical and biological properties of the calcium silicate-based cement. Niobium pentoxide can be used as radiopacifier for the development of calcium silicate-based materials.

  15. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  16. Mechanical Treatment: Material Recovery Facilities

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bilitewski, B.

    2011-01-01

    A wide variety of mechanical treatment unit processes, including manual sorting, is described in Chapter 7.1. These unit processes may be used as a single separate operation (e.g. baling of recyclable cardboard) or as a single operation before or after biological and thermal treatment processes (e.......g. shredding prior to incineration or screening after composting). The mechanical treatment unit process is in the latter case an integrated part of the overall treatment usually with the purpose of improving the quality of the input material, or the efficiency or stability of the biological or thermal process......, or improving the quality of the output material. Examples hereof appear in the chapters on biological and thermal treatment. Mechanical treatment unit processes may also appear at industries using recycled material as part of their feedstock, for example, for removing impurities and homogenizing the material...

  17. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  18. Possibility of Localized Corrosion of PWR primary side materials in oxidative decontamination condition

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Jung, Jun Young; Won, Huijun; Kim, Seon Byeong; Choi, Wangkyu; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Primary circuit of a PWR (radionuclides uptake in the inner oxide layer and oxide/metal interface occurred inevitably. Therefore, it is necessary to remove the inner oxide layer as well as the outer oxide layer to achieve excellent decontamination effects. It is known that the outer oxide layers are typically composed of Fe{sub 3}O{sub 4} and NiFe{sub 2}O{sub 4}. On the other hand, the inner oxide layers are composed of Cr{sub 2}O{sub 3}, (Ni{sub 1-x}Ni{sub x})(Cr{sub 1-y}Fe{sub y}){sub 2}O{sub 4}, and FeCr{sub 2}O{sub 4}. Because of chromium in the trivalent oxidation state which is difficult to dissolve, the oxide layer has an excellent protectiveness and is hard to decontaminate. For the dissolution of chromium-rich oxide, there have been developed an alkaline permanganate (AP) or nitric permanganate (NP). A disadvantage of the AP process is the generation of a large volume of secondary waste. On the other hand, NP process is highly incompatible to the corrosion of the structure materials. In this study as a part of developing decontamination process, we investigated the corrosion behavior of the structure materials such as Inconel-600 and type 304 stainless steel in NP and AP oxidative decontamination conditions for the safe use of an oxidative phase in PWR system decontamination. The corrosion behavior was analyzed through the potential-pH equilibrium for the system of Cr-H{sub 2}O / Mn-H{sub 2}O at 90 .deg. C and potentiodynamic polarization in a typical AP and NP solution were evaluated. The AP or NP treated specimen surface was observed using an optical microscope and scanning electron microscopy (SEM) for an evaluation of the localized corrosion. The possibility of localized corrosion of PWR primary side materials under oxidative decontamination condition was evaluated using a potentiodynamic polarization technique, observation of localized corrosion morphology, and consideration of potential-pH diagrams at 90 .deg. C. From the results of these tests, we

  19. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  20. The relative importance of physical and biological energy in landscape evolution

    Science.gov (United States)

    Turowski, J. M.; Schwanghart, W.

    2017-12-01

    Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary

  1. Biological digestion

    International Nuclear Information System (INIS)

    Rosevear, A.

    1988-01-01

    This paper discusses the biological degradation of non-radioactive organic material occurring in radioactive wastes. The biochemical steps are often performed using microbes or isolated enzymes in combination with chemical steps and the aim is to oxidise the carbon, hydrogen, nitrogen and sulphur to their respective oxides. (U.K.)

  2. New Primary Standards for Establishing SI Traceability for Moisture Measurements in Solid Materials

    Science.gov (United States)

    Heinonen, M.; Bell, S.; Choi, B. Il; Cortellessa, G.; Fernicola, V.; Georgin, E.; Hudoklin, D.; Ionescu, G. V.; Ismail, N.; Keawprasert, T.; Krasheninina, M.; Aro, R.; Nielsen, J.; Oğuz Aytekin, S.; Österberg, P.; Skabar, J.; Strnad, R.

    2018-01-01

    A European research project METefnet addresses a fundamental obstacle to improving energy-intensive drying process control: due to ambiguous reference analysis methods and insufficient methods for estimating uncertainty in moisture measurements, the achievable accuracy in the past was limited and measurement uncertainties were largely unknown. This paper reports the developments in METefnet that provide a sound basis for the SI traceability: four new primary standards for realizing the water mass fraction were set up, analyzed and compared to each other. The operation of these standards is based on combining sample weighing with different water vapor detection techniques: cold trap, chilled mirror, electrolytic and coulometric Karl Fischer titration. The results show that an equivalence of 0.2 % has been achieved between the water mass fraction realizations and that the developed methods are applicable to a wide range of materials.

  3. [Accidents with biological materials among nurses in a training hospital: case-control study].

    Science.gov (United States)

    Dalarosa, Micheline Gisele; Lautert, Liana

    2009-03-01

    This case-control study aimed at analyzing the association between occupational stress and disagreement between chronotype and the work shift of nurses who suffered accidents with biological materials in a hospital of Porto Alegre, Rio Grande do Sul, Brazil. A number of 99 workers who suffered accidents (cases) and 232 that had not suffered accidents (controls) were interviewed. Data were collected through the Job Stress Scale according to Karasek's model and the Horne-Ostberg scale The occurrence of accident was not statistically associated with high work requirement scores (p = 0.317), with a chronobiological profile discordant with work shift (p = 0.563), or with other labor variables associated to accidents--overtime, having two jobs (p = 1.000). In addition, there was no significant difference (chi2 Pearson; p = 1.00) among the scores of professionals with high work requirements who work in shifts discordant with their chronotype, both in the case group and in the control group as well.

  4. Innovative solutions for the extraction of technology metals from complex primary and secondary raw materials

    Directory of Open Access Journals (Sweden)

    Kamberović Željko J.

    2016-01-01

    Full Text Available Presented compilation of scientific, theoretical and experimental results, promotes an innovative synergy of various metals and industrial activities in metallurgy, resulting in profitable transformation of by­products and waste materials into resources. Focusing on treatment of specific by-products from zinc and copper primary production, as well on specific waste streams like WEEE and waste automotive catalysts, group is actively contribute to the Serbia, region and EU sustainability policies. In terms of sustainable development, metallurgy is a traditional part of the solution rather than part of the problem, so it is necessary to take the chance and centuries-old tradition.

  5. Biological composting of petroleum waste organics using the white rot fungus Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    McFarland, M.J.; Xiu J, Qiu; Aprill, W.A.; Sims, R.C.

    1990-01-01

    Environmental enrichment of the white rot fungus Phanerochaete chrysosporium in biological compost soil reactors was effective in enhancing the rates of Benzo(a)pyrene removal over that observed under natural soil conditions. In contaminated soil compost systems amended with fungal inoculum and primary substrate, maximum Benzo(a)pyrene removal rates of 0.31 mg B(a)p/kg compost material-day (0.25 mgB(a)p/kg soil-day) were observed while in unamended soil conditions, maximum removal rates of 0.13 mg B(a)p/kg soil-day were recorded. Additions of primary substrate without any fungal inoculum gave compound removal rates similar to soil only conditions (i.e., 14 mg B(a)p/kg soil-day). Differences in contaminant and radioactivity ( 14 C) removal rates indicated that Benzo(a)pyrene derived carbon was being incorporated into nonvolatile materials within the compost environment. Contaminated soil pH had a significant effect on Benzo(a)pyrene removal rates during composting treatment. With acid soils (pH-4.8), a maximum Benzo(a)pyrene removal rate of 0.11 mg B(a)p/kg compost material-day was determined compared to 0.31 mg B(a)p/kg compost material-day in alkaline (pH-8.0) soil. Oxygen availability appeared to be one of the most important process variables influencing both fungal growth and Benzo(a)pyrene removal. Periodic pulses of oxygen equivalent to a three volume turnover of reactor headspace every three days resulted in increasing the Benzo(a)pyrene removal rate from 0.31 mg B(a)p/kg compost material-day to 0.85 mg B(a)p/kg compost material day

  6. Workshop on High-Field NMR and Biological Applications

    Science.gov (United States)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  7. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  8. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  9. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Patterson, K.Y.; Veillon, Claude

    1992-01-01

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g -1 . The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  10. Analytical scheme for group separation of the lanthanides from biological materials before their determination by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Danko, B.; Samczynski, Z.; Dybczynski, R.

    2006-01-01

    The analytical procedure for the selective and quantitative isolation of the lanthanides as a group from biological materials has been developed on the basis of experiments with radio-tracers. Ion exchange and extraction column chromatography were used for the isolation of elements of interest from matrix and the other trace elements prior to irradiation in a nuclear reactor. The method enables quantitative separation of the lanthanide fraction, free from highly activating macro components, as well as from other trace elements including uranium, which can be the source of serious errors due to uranium 235 U fission reaction (n,f). In order to minimize the potential spectrometric interferences lanthanide fraction after neutron irradiation was divided into two sub-fractions, taking advantage of the different anion exchange affinities of individual lanthanide complexes with EDTA to strongly basic anion exchanger. The effective microwave digestion procedures for ca 500 mg biological samples was elaborated and the new, original method for checking the yield of the entire analytical procedure - including mineralization of the sample - was applied. Neutron activation analysis (NAA) of BCR 670 Aquatic Plant ? one of the only two CRMs of biological origin available on the market, which offers the certified values for all lanthanides was used for verification of performance of the proposed analytical scheme. (authors)

  11. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    International Nuclear Information System (INIS)

    Cimpan, Ciprian; Wenzel, Henrik

    2013-01-01

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ primary /100 MJ input waste. • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ primary /100 MJ input waste , in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS

  12. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat

  13. Decontamination of chemical and biological warfare agents with a single multi-functional material.

    Science.gov (United States)

    Amitai, Gabi; Murata, Hironobu; Andersen, Jill D; Koepsel, Richard R; Russell, Alan J

    2010-05-01

    We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity. Generation of free bromine and iodine was observed in the combined material resulting in bactericidal activity of the enzymatically formed free halogens that caused complete kill of E. coli (>6 log units reduction) within 1 h at 37 degrees C. Detoxification of diisopropylfluorophosphate (DFP) by the polyDMAA MA-4-PAM iodide component was dose-dependent reaching 85% within 30 min. A subset of 4-PAM-halide co-polymers was designed to serve as a controlled release reservoir for N-hydroxyethyl 4-PAM (HE 4-PAM) molecules that reactivate nerve agent-inhibited acetylcholinesterase (AChE). Release rates for HE 4-PAM were consistent with hydrolysis of the HE 4-PAM from the polymer backbone. The HE 4-PAM that was released from the polymer reactivated DFP-inhibited AChE at a similar rate to the oxime antidote 4-PAM. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. PENGEMBANGAN BUKU AJAR BIOLOGI SEL

    Directory of Open Access Journals (Sweden)

    Ritia Rahmawati

    2016-09-01

    Matakuliah Biologi Sel merupakan salah satu matakuliah wajib yang ditempuh oleh mahasiswa tingkat S1 Pendidikan Biologi Universitas Negeri Malang Referensi yang digunakan dalam pembelajaran matakuliah Biologi Sel belum ada referensi yang berbasis penelitian virtual screening dengan bahasa Indonesia sebagai bahasa pengantar. Tujuan penelitian ini yaitu pengembangan buku ajar biologi sel berbasis penelitian bioinformatika. Metode penelitian yang digunakan adalah metode pengembangan Dick and Carey (2009. Hasil penelitian ini yaitu produk berupa buku ajar yang berbasis penelitian virtual screening yang telah dilakukan validasi ahli (ahli materi dan ahli media pembelajaran dengan nilai 80% dan pengguna buku dengan nilai 89%.

  15. Determination of trace elements in Brazilian rice grains and in biological reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Maihara, V.A.; Vasconcellos, M.B.A.

    1989-01-01

    Instrumental neutron activation analysis was applied to the determination of the elements Na, K, Br, As, Rb, Zn, Co, Fe and Sc in Brazilian rice samples and in biological standards. Hg and Se concentrations were determined by using a simple radiochemical separation. The chemical procedure was carried out by means of distillation of Hg and Se in HBr medium and subsequent precipitation of selenium by sodium methabissulfide and mercury by thioacetamide. The accuracy of the instrumental and radiochemical methods was evaluated by means of analysis of the Reference Materials NBS-Bovine Liver, Bowen's Kale and NBS-Rice Flour. (author) [pt

  16. Determination of trace elements in Brazilian rice grains and in biological reference materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Maihara, V.A.; Vasconcellos, M.B.A.

    1989-01-01

    INAA was applied to the determination of the elements Na, K, Br, As, Rb, Zn, Co, Fe and Sc in Brazilian rice samples and in biological standards. Hg and Se concentrations were determined using a simple radiochemical separation. The chemical procedure was carried out by means of distillation of Hg and Se in HBr medium and subsequent precipitation of Se by sodium metabisulfite and Hg by thioacetamide. The accuracy of the instrumental and radiochemical methods was evaluated by means of analysis of the Reference Materials NBS-Bovine Liver, Bowen's Kale and NBS-Rice Flour. (author) 15 refs.; 5 tabs

  17. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    International Nuclear Information System (INIS)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. (topical review)

  18. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  19. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Science.gov (United States)

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  20. Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology.

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; Caminada de Toledo, Silvia Regina; Mara de Oliveira, Daniela; Cabral, Francisco Romero; Gabriel de Souza, Jean; Boufleur, Pamela; Marti, Luciana C; Malheiros, Jackeline Moraes; Ferreira da Cruz, Edgar; Paiva, Fernando F; Malheiros, Suzana M F; de Paiva Neto, Manoel A; Tannús, Alberto; Mascarenhas de Oliveira, Sérgio; Silva, Nasjla Saba; Cappellano, Andrea Maria; Petrilli, Antonio Sérgio; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2018-04-24

    Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients ( n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

  1. Preliminary assessment of geologic materials to minimize biological intrusion of low-level waste trench covers and plans for the future

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.; Gladney, E.S.; Muller, M.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause radionuclide transport from a waste site. Preliminary results demonstrate that a sandy backfill material offers little resistance to root and animal intrusion through the cover profile. However, bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion through cover profiles compared with sandy backfill soil. However, bentonite clay barrier systems appear to be degraded by plant roots through time. Desiccation of the clay barrier by invading plant roots may limit the usefulness of bentonite clay as a moisture and/or biological carrier unless due consideration is given to this interaction. Future experiments are described that further examine the effect of plant roots on clay barrier systems and that determine the effectiveness of proposed biological barriers on larger scales and under various stress conditions

  2. Microleakage of conventional, resin-modified, and nano-ionomer glass ionomer cement as primary teeth filling material

    Directory of Open Access Journals (Sweden)

    Dita Madyarani

    2014-12-01

    Full Text Available Background: Glass ionomer cements are one of many dental materials that widely used in pediatric dentistry due to their advantage of fluoride release and chemical bond to tooth structure. Adherence of the filling material to the cavity walls is one of the most important characteristic that need to be examined its effect on microleakage. Purpose: This study was conducted to examine the microleakage of nano-ionomer glass ionomer cement compared with the conventional and resin-modified glass ionomer cements. Methods: Standard class V cavities sized 3 mm x 2 mm x 2 mm were made on a total of 21 extracted maxillary primary canine teeth and restored with the conventional, resin-modified, dan nano-ionomer glass ionomer cements. All the teeth were immersed in a 2% methylene blue dye for 4 hours. The depth of dye penetration was assessed using digital microscope after sectioning the teeth labio-palatally. The results were statistically analyzed using Kruskal-Wallis test. Results: All type of glass ionomer material showed microleakage. Conventional glass ionomer cement demonstrated the least microleakage with mean score 1.29. the resin-modified glass ionomer cements (mean score 1.57 and nano-ionomer glass ionomer cement (mean score 2.57. Conclusion: The conventional glassionomer, resin modified glassionomer, and nano-ionomer glassionomer showed micro leakage as filling material in primary teeth cavity. The micro leakage among three types was not significant difference. All three material were comparable in performance and can be used for filling material but still needs a coating material to fill the microleakage.Latar belakang: Semen ionomer kaca adalah salah satu dari banyak bahan gigi yang banyak digunakan dalam praktek kedokteran gigi anak karena bahan tersebut merilis fluoride dan berikatan kimia dengan struktur gigi. Perlekatan bahan tumpatan pada dinding kavitas adalah salah satu karakteristik paling penting yang perlu diteliti efeknya terhadap

  3. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  4. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  5. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    Science.gov (United States)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  6. Multicentric primary extramammary Paget disease: a Toker cell disorder?

    Science.gov (United States)

    Hashemi, Pantea; Kao, Grace F; Konia, Thomas; Kauffman, Lisa C; Tam, Christine C; Sina, Bahram

    2014-07-01

    Toker cells are epithelial clear cells found in the areolar and nipple areas of the breast, vulvar region, and other apocrine gland-bearing areas of the skin. Toker cells have been implicated in the pathogenesis of clear cell papulosis, cutaneous hamartoma with pagetoid cells, and rare cases of primary extramammary Paget disease (EMPD) but not in secondary EMPD with underlying adenocarcinoma. The pathogenesis of primary EMPD is not well defined. We report a case of multicentric primary EMPD with evidence of Toker cell proliferation and nonaggressive biologic behavior in a 63-year-old white man. A detailed description of the morphologic and biologic features of Toker cells and their possible carcinogenetic links also are discussed. Based on the observation and follow-up of our patient, we hypothesize that multicentric primary EMPD starts with Toker cell hyperplasia and can potentially evolve to carcinoma in the genital region.

  7. Primary and acquired resistance to biologic therapies in gastrointestinal cancers.

    Science.gov (United States)

    Lubner, Sam J; Uboha, Nataliya V; Deming, Dustin A

    2017-06-01

    Improvements in the understanding of cancer biology have led to therapeutic advances in the treatment of gastrointestinal cancers. Drugs which target the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) pathways have led the way in colon cancer. Monoclonal antibodies (mAbs) such as bevacizumab, ramucirumab, cetuximab, and panitumumab, have improved progression free survival and overall survival (OS) for colorectal cancers and were quickly adopted. Human epidermal growth factor receptor 2 (HER2) has demonstrated significant benefit for gastroesophageal cancers and in the setting of HER2 amplification, trastuzumab in combination with chemotherapy has become the standard of care. However, responses have not been as durable nor as robust as once hoped. Mechanisms of resistance for each of these biologic compounds have been hypothesized and are in the process of being better elucidated. This review will approach the innate and acquired mechanisms of resistance of the above compounds. Additionally, we will explore some ongoing clinical trials to capitalize on the mechanisms of resistance in the hopes of retaining the promise of targeting these pathways.

  8. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    2009-07-31

    Jul 31, 2009 ... The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and. R2 at 20oC) fed with primary sewage sludge and sulphate ...

  9. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and R2 at 20oC) fed with primary sewage sludge and sulphate was investigated ...

  10. DEPRESSION IN PRIMARY CARE. PART 2: MANAGEMENT

    Directory of Open Access Journals (Sweden)

    XV Pereira

    2007-01-01

    Full Text Available The management of depression in the primary care setting should ideally take a biological, psychological, and sociologicalapproach. Antidepressants are the most commonly used biological agents in the treatment of depression. Psychologicaltherapies and psychosocial interventions improve the outcome of treatment when combined with pharmacotherapy.Clinical depression is treatable and thus efforts should be made to alleviate the suffering of patients with depression.

  11. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  12. Databases, Repositories, and Other Data Resources in Structural Biology.

    Science.gov (United States)

    Zheng, Heping; Porebski, Przemyslaw J; Grabowski, Marek; Cooper, David R; Minor, Wladek

    2017-01-01

    Structural biology, like many other areas of modern science, produces an enormous amount of primary, derived, and "meta" data with a high demand on data storage and manipulations. Primary data come from various steps of sample preparation, diffraction experiments, and functional studies. These data are not only used to obtain tangible results, like macromolecular structural models, but also to enrich and guide our analysis and interpretation of various biomedical problems. Herein we define several categories of data resources, (a) Archives, (b) Repositories, (c) Databases, and (d) Advanced Information Systems, that can accommodate primary, derived, or reference data. Data resources may be used either as web portals or internally by structural biology software. To be useful, each resource must be maintained, curated, as well as integrated with other resources. Ideally, the system of interconnected resources should evolve toward comprehensive "hubs", or Advanced Information Systems. Such systems, encompassing the PDB and UniProt, are indispensable not only for structural biology, but for many related fields of science. The categories of data resources described herein are applicable well beyond our usual scientific endeavors.

  13. Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons

    International Nuclear Information System (INIS)

    Sayre, D.; Feder, R.; Spiller, E.; Kirz, J.; Kim, D.M.

    1977-01-01

    The minimum radiation dosage in a specimen consistent with transmission microscopy at resolution d and specimen thickness t is calculated for model specimens resembling biological materials in their natural state. The calculations cover 10 4 -10 7 eV electrons and 1.3-90 A photons in a number of microscopy modes. The results indicate that over a considerable part of the (t,d)-plane transmission microscopy on such specimens can be carried out at lower dosage with photons than with electrons. Estimates of the maximum resolutions obtainable with electrons and photons, consistent with structural survival of the specimen, are obtained, as are data on optimal operating conditions for microscopy with the two particles

  14. Using Fourier transform IR spectroscopy to analyze biological materials

    Science.gov (United States)

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  15. Evaluation of radiochemical neutron activation analysis methods for determination of arsenic in biological materials.

    Science.gov (United States)

    Paul, Rick L

    2011-01-01

    Radiochemical neutron activation analysis (RNAA) with retention on hydrated manganese dioxide (HMD) has played a key role in the certification of As in biological materials at NIST. Although this method provides very high and reproducible yields and detection limits at low microgram/kilogram levels, counting geometry uncertainties may arise from unequal distribution of As in the HMD, and arsenic detection limits may not be optimal due to significant retention of other elements. An alternate RNAA procedure with separation of arsenic by solvent extraction has been investigated. After digestion of samples in nitric and perchloric acids, As(III) is extracted from 2 M sulfuric acid solution into a solution of zinc diethyldithiocarbamate in chloroform. Counting of (76)As allows quantitation of arsenic. Addition of an (77)As tracer solution prior to dissolution allows correction for chemical yield and counting geometries, further improving reproducibility. The HMD and solvent extraction procedures for arsenic were compared through analysis of SRMs 1577c (bovine liver), 1547 (peach leaves), and 1575a (pine needles). Both methods gave As results in agreement with certified values with comparable reproducibility. However, the solvent extraction method yields a factor of 3 improvement in detection limits and is less time-consuming than the HMD method. The new method shows great promise for use in As certification in reference materials.

  16. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  17. Processing scarce biological samples for light and transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    P Taupin

    2008-06-01

    Full Text Available Light microscopy (LM and transmission electron microscopy (TEM aim at understanding the relationship structure-function. With advances in biology, isolation and purification of scarce populations of cells or subcellular structures may not lead to enough biological material, for processing for LM and TEM. A protocol for preparation of scarce biological samples is presented. It is based on pre-embedding the biological samples, suspensions or pellets, in bovine serum albumin (BSA and bis-acrylamide (BA, cross-linked and polymerized. This preparation provides a simple and reproducible technique to process biological materials, present in limited quantities that can not be amplified, for light and transmission electron microscopy.

  18. Amines as extracting agents for the quantitative determinations of actinides in biological samples

    International Nuclear Information System (INIS)

    Singh, N.P.

    1987-01-01

    The use of amines (primary, secondary and tertiary chains and quaternary ammonium salts) as extracting agents for the quantitative determination of actinides in biological samples is reviewed. Among the primary amines, only Primene JM-T is used to determine Pu in urine and bone. No one has investigated the possibility of using secondary amines to quantitatively extract actinides from biological samples. Among the tertiary amines, tri-n-octylamine, tri-iso-octylamine, tyricaprylamine (Alamine) and trilaurylamine (tridodecylamine) are used extensively to extract and separate the actinides from biological samples. Only one quaternary ammonium salt, methyltricapryl ammonium chloride (Aliquat-336), is used to extract Pu from biological samples. (author) 28 refs

  19. Electron Transfer in Chemistry and Biology – The Primary Events in ...

    Indian Academy of Sciences (India)

    molecular unit to another. This reaction, accompanied by proton and hydrogen atom trans- fers, occurs in a cascade in many biological processes, includ- ing photosynthesis. The key chemical steps involved in photo- synthesis and the many ...

  20. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  1. Review: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol Particles (PBAP

    Directory of Open Access Journals (Sweden)

    Mehael J. Fennelly

    2017-12-01

    Full Text Available Primary biological aerosol particles (PBAP encompass many particle types that are derived from several biological kingdoms. These aerosol particles can be composed of both whole living units such as pollen, bacteria, and fungi, as well as from mechanically formed particles, such as plant debris. They constitute a significant proportion of the overall atmospheric particle load and have been linked with adverse health issues and climatic effects on the environment. Traditional methods for their analysis have focused on the direct capture of PBAP before subsequent laboratory analysis. These analysis types have generally relied on direct optical microscopy or incubation on agar plates, followed by time-consuming microbiological investigation. In an effort to address some of these deficits, real-time fluorescence monitors have come to prominence in the analysis of PBAP. These instruments offer significant advantages over traditional methods, including the measurement of concentrations, as well as the potential to simultaneously identify individual analyte particles in real-time. Due to the automated nature of these measurements, large data sets can be collected and analyzed with relative ease. This review seeks to highlight and discuss the extensive literature pertaining to the most commonly used commercially available real-time fluorescence monitors (WIBS, UV-APS and BioScout. It discusses the instruments operating principles, their limitations and advantages, and the various environments in which they have been deployed. The review provides a detailed examination of the ambient fluorescent aerosol particle concentration profiles that are obtained by these studies, along with the various strategies adopted by researchers to analyze the substantial data sets the instruments generate. Finally, a brief reflection is presented on the role that future instrumentation may provide in revolutionizing this area of atmospheric research.

  2. Transcatheter Arterial Embolization for Primary Postpartum Hemorrhage: Predictive Factors of Need for Embolic Material Conversion of Gelatin Sponge Particles to N-Butyl Cyanoacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Tanahashi, Yukichi; Goshima, Satoshi, E-mail: gossy@par.odn.ne.jp [Gifu University Hospital, Department of Radiology (Japan); Kondo, Hiroshi [Teikyo University School of Medicine, Department of Radiology (Japan); Ando, Tomohiro; Noda, Yoshifumi; Kawada, Hiroshi; Kawai, Nobuyuki [Gifu University Hospital, Department of Radiology (Japan); Kotoku, Junichi [Teikyo University School of Medicine, Department of Radiological Technology, Faculty of Medical Technology (Japan); Furui, Shigeru [Teikyo University School of Medicine, Department of Radiology (Japan); Matsuo, Masayuki [Gifu University Hospital, Department of Radiology (Japan)

    2017-02-15

    PurposeTo identify predictive factors for embolic material conversion to N-butyl cyanoacrylate (NBCA) for the treatment of primary postpartum hemorrhage (PPH) after failed transcatheter arterial embolization (TAE) using gelatin sponge (GS).Materials and MethodsInstitutional review board approval was obtained. We retrospectively studied 62 consecutive women with primary PPH who underwent TAE between January 2006 and March 2015. Five of them were excluded for the following: cardiopulmonary arrest at arrival (n = 1), uterine inversion (n = 1), and hysterectomy after TAE (n = 3). Remaining 57 women (age range, 21–43 years; mean, 32.6 years) comprised study population. TAE was initially performed using GS in all cases and then converted to NBCA after two embolizations using GS with persistent hemodynamic instability or vaginal bleeding. The patients’ background, uterine height, vital signs, laboratory tests, disseminated intravascular coagulation score, and details of procedure were reviewed. Univariate and multivariate analyses were performed to determine factors related to embolic material conversion.ResultsTechnical success rate was 100%. Fourteen patients (25%) needed embolic material conversion to NBCA. Univariate analysis showed that uterine height, systolic blood pressure (sBP), and hemoglobin level were significantly related to embolic material conversion to NBCA (P = 0.029, 0.030, and 0.042). Logistic regression analysis showed that uterine height (odds ratio, 1.37; P = 0.025) and sBP (odds ratio, 0.96; P = 0.003) were associated with embolic material conversion to NBCA.ConclusionUterine height and sBP can be predictive factors for embolic material conversion to NBCA for the treatment of PPH.Level of EvidenceLevel 4, Case Control Study.

  3. Transcatheter Arterial Embolization for Primary Postpartum Hemorrhage: Predictive Factors of Need for Embolic Material Conversion of Gelatin Sponge Particles to N-Butyl Cyanoacrylate

    International Nuclear Information System (INIS)

    Tanahashi, Yukichi; Goshima, Satoshi; Kondo, Hiroshi; Ando, Tomohiro; Noda, Yoshifumi; Kawada, Hiroshi; Kawai, Nobuyuki; Kotoku, Junichi; Furui, Shigeru; Matsuo, Masayuki

    2017-01-01

    PurposeTo identify predictive factors for embolic material conversion to N-butyl cyanoacrylate (NBCA) for the treatment of primary postpartum hemorrhage (PPH) after failed transcatheter arterial embolization (TAE) using gelatin sponge (GS).Materials and MethodsInstitutional review board approval was obtained. We retrospectively studied 62 consecutive women with primary PPH who underwent TAE between January 2006 and March 2015. Five of them were excluded for the following: cardiopulmonary arrest at arrival (n = 1), uterine inversion (n = 1), and hysterectomy after TAE (n = 3). Remaining 57 women (age range, 21–43 years; mean, 32.6 years) comprised study population. TAE was initially performed using GS in all cases and then converted to NBCA after two embolizations using GS with persistent hemodynamic instability or vaginal bleeding. The patients’ background, uterine height, vital signs, laboratory tests, disseminated intravascular coagulation score, and details of procedure were reviewed. Univariate and multivariate analyses were performed to determine factors related to embolic material conversion.ResultsTechnical success rate was 100%. Fourteen patients (25%) needed embolic material conversion to NBCA. Univariate analysis showed that uterine height, systolic blood pressure (sBP), and hemoglobin level were significantly related to embolic material conversion to NBCA (P = 0.029, 0.030, and 0.042). Logistic regression analysis showed that uterine height (odds ratio, 1.37; P = 0.025) and sBP (odds ratio, 0.96; P = 0.003) were associated with embolic material conversion to NBCA.ConclusionUterine height and sBP can be predictive factors for embolic material conversion to NBCA for the treatment of PPH.Level of EvidenceLevel 4, Case Control Study

  4. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    Science.gov (United States)

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  5. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    Science.gov (United States)

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  6. Analisis Aplikasi Konsep Gaya dalam Fisika yang Berkaitan dengan Bidang Biologi

    Directory of Open Access Journals (Sweden)

    Toto Toto

    2017-06-01

    Full Text Available Abstract In general, students of Biology faculty study program of Universitas Galuh Ciamis viewed physics as a difficult subject (based on interview result of writer with some students. This statement is reinforced by the acquisition of less satisfactory physics courses. They are less interested in the subject of physics with a variety of reasons including counting material that requires them to memorize many formulas and theories. In the course of physics in the biology program should be equipped application of concepts and principles of physics in the field of biology. It is very important to facilitate students in mastering and enjoying physics courses. In this study, documentation study of biology books in the subjects of General Biology in 1st semester. Based on the analysis there are application of the concept of style in the subject material of General Biology namely: capillarity style on xylem and phloem; Force on muscle tissue; And food peristaltic style. The results of this study are useful as a basis for the preparation of physics-oriented teaching materials of biological science, so that biology students are expected to be interested in physics. As a recommendation that analysis of the application of concepts and principles of physics in biology must be done in a continuous manner. Keywords: Style concept application. Abstrak Pada umumnya  mahasiswa prodi pendidikan biologi FKIP Universitas Galuh Ciamis  memandang fisika sebagai mata kuliah yang sulit (berdasarkan hasil wawancara penulis dengan beberapa mahasiswa. Pernyataan ini diperkuat  dengan perolehan nilai mata kuliah fisika yang kurang memuaskan. Mereka kurang tertarik pada mata kuliah fisika dengan berbagai alasan diantaranya banyak materi hitungan yang mengharuskan mereka menghapal banyak rumus dan teori. Dalam perkuliahan fisika pada prodi biologi seharusnya dilengkapi aplikasi konsep dan prinsip-prinsip fisika dalam bidang biologi. Hal tersebut sangat penting untuk

  7. Events leading to foreign material being left in the primary heat transport system

    International Nuclear Information System (INIS)

    Groom, S.H.; Benton, A.J.

    1996-01-01

    On October 6,1995, following an extensive maintenance outage which had included boiler primary side cleaning, a Primary Heat Transport (PHT) system pump run was started in preparation for ultrasonic feeder flow measurements. Wooden debris in the system resulted in failure of the shaft seals of the PHT Pump 1. The subsequent investigation and assessment of this event provided an understanding of both the pump shaft failure mechanism and the origin of the debris in the PHT system. The pump shaft failed as a result of friction-generated heat resulting from contact between the rotating shaft and the stationary seal housing. This contact was initiated by mechanical and hydraulic imbalance in the pump impeller caused by wooden debris lodged in the impeller. The origin of the wooden debris was a temporary plywood cover which was inadvertently left in a boiler following maintenance. This cover moved from the boiler to the pump impeller when the PHT pumps were started. The cover was not accounted for and verified as being removed prior to boiler closure, although a visual inspection was conducted. A detailed institutional process for component accounting and verification of removal of materials did not exist at the time of this event. Details of the methods used to establish alternative heat sinks, provide debris recovery facilities and to assess the fitness for duty of the heat transport system and fuel channels prior to reactor startup are discussed in detail elsewhere. This report will concentrate on the events leading up to and following the events which ultimately resulted in failure of the PHT pump shaft

  8. Determination of copper in biological materials by neutron activation analysis using short-lived 66Cu

    International Nuclear Information System (INIS)

    Dybczynski, R.; Danko, B.; Kaczorowski, J.

    1989-01-01

    A method for determination of copper traces in biological materials based on neutron activation employing 65 Cu(n, γ) 66 Cu reaction and preconcentration by extraction chromatography has been devised. The 200-500 mg samples after wet digestion and evaporation were dissolved in glycine solution and after pH adjusting to ca. 4.4 were passed through the column with Lix 64N on Bio Beads SM-1 for isolation of copper traces from the matrix elements. Other cations were selectively eluted with 0.1 mol x 1 -1 (glycine-HNO 3 ) buffer, 1 mol x 1 -1 in NH 4 NO 3 (pH = 3.6). The resin bed with quantitatively retained copper was sealed in the PE bag and irradiated together with Cu standards in EWA reactor using pneumatic tube facility. The activity of the short-lived 66 Cu was measured in samples and standard by gamma-ray spectrometry with Ge(Li) detector. Good accuracy of the method was confirmed by analysis of the following certified reference materials: NBS 1571 Orchad leaves, IAEA H-4 Animal muscle, IAEA V-8 Rye flour, IAEA A-11 milk powder. The detection limit amounted to 0.34 mg/kg, for the sample weight of 500 mg. (author)

  9. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    Palagi, Stefano; Mazzolai, Barbara; Beccai, Lucia; Jager, Edwin WH

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  10. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.

    Science.gov (United States)

    Palagi, Stefano; Jager, Edwin W H; Mazzolai, Barbara; Beccai, Lucia

    2013-12-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion.

  11. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  12. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  13. Effect of primary and secondary parameters on analytical estimation of effective thermal conductivity of two phase materials using unit cell approach

    Science.gov (United States)

    S, Chidambara Raja; P, Karthikeyan; Kumaraswamidhas, L. A.; M, Ramu

    2018-05-01

    Most of the thermal design systems involve two phase materials and analysis of such systems requires detailed understanding of the thermal characteristics of the two phase material. This article aimed to develop geometry dependent unit cell approach model by considering the effects of all primary parameters (conductivity ratio and concentration) and secondary parameters (geometry, contact resistance, natural convection, Knudsen and radiation) for the estimation of effective thermal conductivity of two-phase materials. The analytical equations have been formulated based on isotherm approach for 2-D and 3-D spatially periodic medium. The developed models are validated with standard models and suited for all kind of operating conditions. The results have shown substantial improvement compared to the existing models and are in good agreement with the experimental data.

  14. Electron holography of biological samples.

    Science.gov (United States)

    Simon, P; Lichte, H; Formanek, P; Lehmann, M; Huhle, R; Carrillo-Cabrera, W; Harscher, A; Ehrlich, H

    2008-01-01

    In this paper, we summarise the development of off-axis electron holography on biological samples starting in 1986 with the first results on ferritin from the group of Tonomura. In the middle of the 1990s strong interest was evoked, but then stagnation took place because the results obtained at that stage did not reach the contrast and the resolution achieved by conventional electron microscopy. To date, there exist only a few ( approximately 12) publications on electron holography of biological objects, thus this topic is quite small and concise. The reason for this could be that holography is mostly established in materials science by physicists. Therefore, applications for off-axis holography were powerfully pushed forward in the area of imaging, e.g. electric or magnetic micro- and nanofields. Unstained biological systems investigated by means of off-axis electron holography up to now are ferritin, tobacco mosaic virus, a bacterial flagellum, T5 bacteriophage virus, hexagonal packed intermediate layer of bacteria and the Semliki Forest virus. New results of the authors on collagen fibres and surface layer of bacteria, the so-called S-layer 2D crystal lattice are presented in this review. For the sake of completeness, we will shortly discuss in-line holography of biological samples and off-axis holography of materials related to biological systems, such as biomaterial composites or magnetotactic bacteria.

  15. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  16. Primary aromatic amines (PAAs) in black nylon and other food-contact materials, 2004-2009

    DEFF Research Database (Denmark)

    Trier, Xenia Thorsager; Okholm, B.; Foverskov, Annie

    2010-01-01

    Primary aromatic amines (PAAs) were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in migrates from 234 samples of food-contact materials, including black nylon (polyamide) kitchen utensils (n = 136), coloured plastics (28), and clear/printed multilayer film/laminates (41......), from retailers, importers, and food producers. A further 29 utensils in use were obtained from colleagues. Very high PAA migration was found from black nylon kitchen utensils to the food simulant 3% acetic acid: the 'non-detectable' limit (20 mu g aniline equivalents kg-1 food) was exceeded by up...... migration test conditions influenced the final test results. Long-term release of PAAs was fitted by diffusion modelling experiments and long-term release was also seen as expected from used utensils. Toxicologists consider these migration levels of the suspected carcinogenic PAAs as a problem of major...

  17. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  18. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    Science.gov (United States)

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  19. SIMS applications in biological research

    International Nuclear Information System (INIS)

    Prince, K.E.; Burke, P.T.; Kelly, I.J.

    2000-01-01

    Full text: SIMS has been utilised as a tool for biological research since the early 1970's. SIMS' abilities in isotopic detection with high sensitivity, imaging capabilities at a subcellular level, and the possibility of molecular imaging have been the main areas of interest for biological development. However, whilst hundreds of instruments are available in industrial and university laboratories for semiconductor and materials analysis, only a handful successfully perform biological research. For this reason there is generally a lack of awareness of SIMS by the biological community. Biological SIMS analysis requires a working knowledge of both biology and SIMS. Sample preparation is a critical and time consuming prerequisite for any successful biological SIMS study. In addition, for quantification to be possible a homogeneous, matrix matched standard must be available. Once these difficulties are more widely understood and overcome there will be a greater motivation for the biological community to embrace SIMS as a unique tool in their research. This paper provides an overview of some of the more successful biological SIMS application areas internationally, and summarises the types of biological SIMS requests received by ANSTO

  20. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Science.gov (United States)

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic