WorldWideScience

Sample records for primary beam line

  1. High intensity beam profile monitors for the LAMPF primary beam lines

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; van Dyck, O.; Lee, D.; Harvey, A.; Bridge, J.; Cainet, J.

    1979-01-01

    Two types of beam profile monitors are in use at LAMPF to measure the properties of the 800 MeV, 500 μA proton beam external to the linac. Both types use secondary electron emission from a wire to produce a current signal proportional to the amount of proton beam that intercepts the wire. The wire scanner system uses a pair of orthogonal wires which are passed through the beam and the harp system uses two fixed planes of parallel wires. Most of the harps are not retractable and are exposed continuously to the primary beam. The high beam intensities available lead to a number of technical problems for instruments that intercept the beam or are close to primary beam targets. The thermal, electrical, radiation-damage, and material selection problems encountered, and some solutions which have been implemented are discussed

  2. The Challenge of Interfacing the Primary Beam Lines for the AWAKE Project at CERN

    CERN Document Server

    Bracco, C; Gschwendtner, E; Meddahi, M; Petrenko, A; Velotti, FM

    2014-01-01

    The Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN foresees the simultaneous operation of a proton, a laser and an electron beam. The first stage of the experiment will consist in proving the self-modulation, in the plasma, of a long proton bunch into micro-bunches. The success of this experiment requires an almost perfect concentricity of the proton and laser beam, over the full length of the plasma cell. The complexity of integrating the laser into the proton beam line and fulfilling the strict requirements in terms of pointing precision of the proton beam at the plasma cell are described. The second stage of the experiment foresees also the injection of electron bunches to probe the accelerating wakefields driven by the proton beam. Studies were performed to evaluate the possibility of injecting the electron beam parallel and with an offset to the beam axis. This option would imply that protons and electrons will have to share the last few meters of a common beam line. Issues and po...

  3. SLIA beam line design

    International Nuclear Information System (INIS)

    Petillo, J.; Chernin, D.; Kostas, C.; Mondelli, A.

    1990-01-01

    The Spiral Line Induction Accelerator (SLIA) is a multi-kiloampere compact electron accelerator. It uses linear induction accelerator modules on the straight sections of a racetrack spiral, with strong-focusing bends to recirculate the electrons. The strong focusing is provided by stellarator windings on the bends. Stellarator coils are used to provide the strong focusing on the bends. The matching of the electron beam from a diode through a series of accelerator modules and stellarator bends is a major issue in the design of this accelerator. The beam line design for a proof-of-concept SLIA experiment (10 kA, 7 MeV) to be carried out at Pulse Sciences, Inc. will be presented. The design will demonstrate beam matching from element to element in the focusing system, the design of an achromatic bend, and the requirements for avoiding collective instabilities

  4. Status of ACCULINNA beam line

    CERN Document Server

    Rodin, A M; Bogdanov, D D; Golovkov, M S; Fomichev, A S; Sidorchuk, S I; Slepnev, R S; Wolski, R; Ter-Akopian, G M; Oganessian, Yu T; Yukhimchuk, A A; Perevozchikov, V V; Vinogradov, Yu I; Grishenchkin, S K; Demin, A M; Zlatoustovskii, S V; Kuryakin, A V; Filchagin, S V; Ilkaev, R I

    2003-01-01

    The separator ACCULINNA was upgraded to achieve new experimental requirements. The beam line was extended by new ion-optical elements beyond the cyclotron hall. The new arrangements yield much better background conditions. The intensities of sup 6 He and sup 8 He radioactive beams produced in fragmentation of 35 A MeV sup 1 sup 1 B ions were increased up to a factor of 10. The upgraded beam line was used in experiments to study the sup 5 H resonance states populated in the t+t reaction. A cryogenic liquid tritium target was designed and installed at the separator beam line.

  5. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  6. Standardization of beam line representations

    International Nuclear Information System (INIS)

    Carey, David C.

    1998-01-01

    Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT will be discussed

  7. Standardization of beam line representations

    International Nuclear Information System (INIS)

    Carey, David C.

    1999-01-01

    Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT will be discussed

  8. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  9. Modification of beam lines at VEC

    Energy Technology Data Exchange (ETDEWEB)

    Shoor, Bivas; Chakraborty, P S; Mallik, C; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1997-12-01

    From the experience of light ion beam transportation through the Variable Energy Cyclotron beam line, it was observed that the beam line performance has to be improved in view of heavy ion acceleration program at the centre. The aim of this work was to study the feasibility of reducing the number of operational parameters without hampering the beam transmission and at the same time, to improve the vacuum of the beam line by reducing the hardware 2 refs., 1 fig.

  10. A specialized bioengineering ion beam line

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangyuenyongpipat, S.; Sriprom, C.; Thongleurm, C.; Suwanksum, R.; Tondee, N.; Prakrajang, K.; Vilaithong, T.; Brown, I.G.; Wiedemann, H.

    2007-01-01

    A specialized bioengineering ion beam line has recently been completed at Chiang Mai University to meet rapidly growing needs of research and application development in low-energy ion beam biotechnology. This beam line possesses special features: vertical main beam line, low-energy (30 keV) ion beams, double swerve of the beam, a fast pumped target chamber, and an in-situ atomic force microscope (AFM) system chamber. The whole beam line is situated in a bioclean environment, occupying two stories. The quality of the ion beam has been studied. It has proved that this beam line has significantly contributed to our research work on low-energy ion beam biotechnology

  11. The appearance of beam lines

    International Nuclear Information System (INIS)

    Carey, D.C.

    1993-05-01

    The combination of an existing graphics package with a large program like TRANSPORT has often resulted in considerable modification to the large program. Use of other graphics package has resulted in essentially having to repeat the work. This difficulty has been avoided in a modification of TRANSPORT which produce layouts of beam lines. Drawings of the reference trajectory and three-dimensional images of all magnets are made by the graphics package TOP DRAWER. Nothing specific to TOP DRAWER or any other graphics has been incorporated into TRANSPORT. If a user is with a different graphics package he or she can then begin usage of this alternate package essentially immediately

  12. Beam line design for a low energy electron beam

    International Nuclear Information System (INIS)

    Arvind Kumar; Mahadevan, S.

    2002-01-01

    The design of a beam line for transport of a 70 keV electron beam from a thermionic gun to the Plane Wave Transformer (PWT) linac incorporating two solenoid magnets, a beam profile monitor and drift sections is presented. We used beam dynamics codes EGUN, PARMELA and compare simulated results with analytical calculations. (author)

  13. Characteristics of Sissi primary beam

    International Nuclear Information System (INIS)

    Nghiem, P.; Payet, J.; Tkatchenko, A.

    1994-01-01

    This study concerns the definition of the Sissi primary beam characteristics. The calculations have been carried out in two steps : -a study of primary and secondary order with the help of BETA matrix code -a study of superior orders with the help of ZGOUBI code which is able to take into consideration the measured fields and in which the movement equations are integrated numerically. (O.L.). 9 figs., 3 tabs

  14. Beam line to S155

    CERN Multimedia

    1977-01-01

    The experiment S155 was designed by the Orsay (CSNM-CNRS) Collaboration to observe the properties of exotic light nuclei. It was installed in the PS neutrino tunnel. The photo shows a mass spectrometer (in the background) on line with the PS proton beam which arrives (bottom, right) from the fast extraction FE74. Roger Fergeau stands on the left. The alkaline isotopes produced in the carbon-uranium target heated at 2000°C were swiftly extracted, mass separated, and brought to a detector behind the shielding. Sodium 34 (11 protons and 23 neutrons) was observed and its half-life of only 5 ms was measured. The excited levels 2+ of Magnesium 30 and Magnesium 32 (Sodium descendants) were localised, and the magic number 20 was found to vanish. Thus, the discovery made earlier for Sodium 30 and Sodium 32, with the same apparatus, was confirmed. (See also photo 7706511.)

  15. Water-cooled beam line components at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1981-01-01

    The beam line components that comprise the main experimental beam at the Clinton P. Anderson Meson Physics Facility (LAMPF) have been operating since February 1976. This paper will define the functions of the primary water-cooled elements, their design evolution, and our operating experience to the present time

  16. Beam Optics for Typical Part of ISOL Beam Lines

    International Nuclear Information System (INIS)

    Jang, Ji Ho; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub

    2013-01-01

    KOMAC (Korea Multi-purpose Accelerator Complex) is doing a project, the detailed design of the ISOL beam lines for the heavy ion accelerator project of IBS (Institute of Basic Science) from August 2013 to February 2014. The heavy ion beams are transported by using the electrostatic quadrupoles and electrostatic benders between the equipment. The work-scope of the project is the beam optics design of the beam lines and the detailed design of the beam optics components, the electrostatic quadrupoles and the electrostatic bender. This work summarized the initial result of beam optics design of the beam line. We performed the beam optics simulation in two regions of ISOL beam lines and found that beam envelope is less than 2 cm. We will check that the poletip file values are reasonable or not in near future, and we also applied this method to the other parts of the ISOL beam line and optimize them. The result will be used the detailed design of the electrostatic quadrupoles and benders

  17. Vaccum and beam diagnostic controls for ORIC beam lines

    International Nuclear Information System (INIS)

    Tatum, B.A.

    1991-01-01

    Vacuum and beam diagnostic equipment on beam lines from the Oak Ridge Isochronous Cyclotron, ORIC, is now controlled by a new dedicated system. The new system is based on an industrial programmable logic controller with an IBM AT personal computer providing control room operator interface. Expansion of this system requires minimal reconfiguration and programming, thus facilitating the construction of additional beam lines. Details of the implementation, operation, and performance of the system are discussed. 2 refs., 2 figs

  18. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  19. Some aspects of VUV beam line design

    International Nuclear Information System (INIS)

    Gaupp, A.; Peatman, W.

    1997-01-01

    Some aspects of the design and usage of vacuum ultraviolet beam lines are discussed. Fermat's principle for imaging is introduced and applied to grating monochromators. Some typical vacuum ultraviolet beam lines are presented, and some further topics believed to be of importance today and in the future are mentioned. (author)

  20. The IFUSP microtron accelerator beam transport line

    International Nuclear Information System (INIS)

    Rios, Paulo Beolchi

    2002-01-01

    In this work, the electron optical project of the IFUSP microtron beam transport line is presented, including the operational values for the parameters of the dipolar and quadrupolar electromagnets, as well as their location along the beam line. Analytical calculations and computer simulations were performed to obtain these results, and a programming tool was developed in order to analyze the beam parameters and to help studying racetrack microtrons. The electron optical simulations were split into two different study cases: the microtron booster, and the transfer line. In the first case, it was determined the main operational parameters of a microtron working far from its usual stability conditions. In the latter, it was done the basic design of the linking line between the booster and main (not yet built) microtrons, and between them and the experimental hall, with a total path length of approximately 32 m including large horizontal and vertical deflections with variable beam energy. (author)

  1. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  2. The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line

    International Nuclear Information System (INIS)

    Ma, Y.; Cui, B.; Ma, R.; Tang, B.; Chen, L.; Huang, Q.; Jiang, W.

    2014-01-01

    The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will be installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article

  3. The elettra beam line control system

    International Nuclear Information System (INIS)

    Mignacco, M.; Abrami, A.; Dequal, Z.

    1994-01-01

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  4. Beam line for Schools: beyond expectations

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    Out of 292 proposals for CERN's first ever "Beam line for Schools" contest, two teams of high-school students – Odysseus' Comrades from Varvakios Pilot School in Athens, Greece and Dominicuscollege from Dominicus College in Nijmegen in the Netherlands – were selected to spend 10 days conducting their proposed experiments at the fully equipped T9 beam line on CERN's Meyrin site. Dedicated CERN staff and users from across the departments have put in a huge effort to ensure the success of the project.   Detector physicist Cenk Yidriz (centre, white helmet) explains the setup of the "Beamline for schools" experiment at the T9 beamline. It's finally beam time. After months of organisation, coding, engineering and even painting the experimental area, the T9 beam line is ready to deliver protons to experiments devised and built by high-school students. “They are here to collect data and experience the l...

  5. Diode line scanner for beam diagnostics

    International Nuclear Information System (INIS)

    Gustov, S.A.

    1987-01-01

    The device-scanning diode line is described. It is applied for beam profile measuring with space precision better than ± 0.5 mm and with discreteness of 3 mm along Y-axis and 0.25 mm along X-axis. The device is easy in construction, reliable and has a small time of information acquisition (2-5 min). The working range is from 100 to 10 6 rad/min (10 6 -10 10 part/mm 2 /s for 660 MeV protons). Radioresistance is 10 7 rad. The device can be applied for precise beam line element tuning at beam transporting and emittance measuring. The fixed diode line (a simplified device version) has smaller dimensions and smaller time of data acquisition (2-5 s). It is applied for quick preliminary beamline tuning. The flowsheet and different variants of data representation on beam profile are given

  6. Design of the ESCAR injection beam line

    International Nuclear Information System (INIS)

    Tanabe, J.; Staples, J.; Yourd, R.

    1975-01-01

    The design features of the elements of the ESCAR (Experimental Superconducting Accelerator Ring) injection beam line are described. The junction of the proton transport system with the ESCAR injection straight section requires the design of mechanical elements compatible with the 10 -11 torr vacuum requirements of the main ring. These elements include a novel septum magnet whose salient design features include a current-carrying septum of tapered thicknesses to reduce the overall power requirements and total enclosure of the magnet coil in a metal can for vacuum compatibility. Other elements are a wire electro-static septum and several fast-rise ''bump magnets''. A transition cryopump is designed to separate the main ring vacuum from the relatively poor 10 -6 torr vacuum of the conventional beam transport line. A brief description of the conventional beam transport line from the 50 MeV proton linac, recently installed for Bevatron injection,is also included. (U.S.)

  7. Doppler-shifted neutral beam line shape and beam transmission

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Grisham, L.R.; Kokatnur, N.; Lagin, L.J.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.

    1994-04-01

    Analysis of Doppler-shifted Balmer-α line emission from the TFTR neutral beam injection systems has revealed that the line shape is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the broad portion of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e- divergence of 1.3 degrees (based on fits to the beam shape on the calorimeter), the broad part has a divergence of 6.9 degrees. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9 degrees. Up to now, fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An average angle of incidence for beam loss at the exit of the neutralizer is 2.2 degrees, rather than the 4.95 degrees subtended by the center of the ion source. This average angle of incidence, which is used in computing power densities on collimators, is shown to be a function of beam divergence

  8. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  9. Beam line from straight-section 16

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The start of a long trail. The beam line from straight-section 16, where protons are fast ejected, is seen at the point where it crosses the Linac shielding wall as it leaves the PS en route to the ISR.

  10. New wiggler beam line for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.

    1982-08-01

    A new high-intensity-beam line with a wiggler magnet source is described. This project, in final stages of design, is a joint effort between Lawrence Berkeley Laboratory (LBL), the Exxon Research and Engineering Company (EXXON), and the Stanford Synchrotron Radiation Laboratory (SSRL). Installation at SSRL will begin in the summer of 1982. The goal of this project is to provide extremely high-brightness synchrotron radiation beams over a broad spectral range from 50 eV to 40 keV. The radiation source is a 27 period (i.e., 55 pole) permanent magnet wiggler of a new design. The wiggler utilizes rare-earth cobalt (REC) material in the steel hybrid configuration to achieve high magnetic fields with short periods. An analysis has been made of the polarization, angular distribution and power density of the radiation produced by the wiggler. Details of the wiggler design are presented. The magnet is outside a thin walled (1mm) variable gap stainless steel vacuum chamber. The chamber gap will be opened to 1.8 cm for beam injection into SPEAR and then closed to 1.0 cm (or less) for operation. Five remotely controlled drives are provided; to change the wiggler gap, to change the vacuum chamber aperture and to position the wiggler. Details of the beam line optics and end stations are presented. Thermal loading on beam line components is severe. The peak power density at 7.5 m is 5 kW/cm 2 for the nominal wiggler field and present SPEAR beam currents and will approach 20 kW/cm 2 with the maximum wiggler field and projected SPEAR beam currents

  11. Thermal problems on high flux beam lines

    International Nuclear Information System (INIS)

    Avery, R.T.

    1983-09-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler Beam Line VI now nearing operation will be able to provide up to approx. 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 meters from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2 . Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2 ) and is comparable to that of welding torches. Clearing, cooling and configuration are of critical importance. Configurations for the first fixed mask, the movable mask, and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on heating of crystals and mirrors is also presented

  12. Beam dynamics calculations for the linac booster beam line

    International Nuclear Information System (INIS)

    Lu, J.Q.; Cramer, J.G.; Storm, D.W.

    1987-01-01

    Beam optics focusing characteristics both in the transverse and longitudinal directions of the superconducting linac booster beam line are calculated for different particles. Three computer programs, which are TRANSPORT, LYRA and ENTIME, are used to simulate particle motions. The first one is used to simulate the particle radial motions. The effects of energy increase on to the transverse phase space area are considered by putting in accelerating matrices of each resonators. The second program is used to simulate particle longitudinal motions. Beam longitudinal motions are calculated with program ENTIME also, with which visual pictures in the Energy-Time phase space can be displayed on the terminal screen. Besides, the stability of the particle periodic motions in the radial directions are considered and calculated

  13. Characteristics of Sissi beams in the transport lines of Ganil

    International Nuclear Information System (INIS)

    Nghiem, P.; Payet, J.; Tkatchenko, A.

    1994-01-01

    This study is the following of the Sissi primary beam characteristics definition. Its aim is to determine the performances in resolution and in transmission of transport lines which guide the secondary beams until the experimentation rooms. The first part concerns the study of the secondary order characteristics with the help of BETA matrix code for the nominal case. The second part is the same study but but of superior orders carried out with the Zgoubi program. The third part consists to search new regulating to minimise the losses of particles due to the effect of non-linearity. (O.L.). 3 refs., 34 figs., 5 tabs

  14. On a laser beam fiducial line application for metrological purposes

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, J.; Lyablin, M.; Rusakovich, N.; Sisakyan, A.; Topilin, N.; Khubua, J.; Lasseur, C.

    2008-01-01

    The possibility of a collimated one-mode laser beam used as a fiducial line is considered. The technology of an 'extended' laser beam formation and application for a much extended fiducial line is proposed

  15. High field superconducting beam transport in a BNL primary proton beam

    International Nuclear Information System (INIS)

    Allinger, J.; Brown, H.N.; Carroll, A.S.; Danby, G.; DeVito, B.; Glenn, J.W.; Jackson, J.; Keith, W.; Lowenstein, D.; Prodell, A.G.

    1979-01-01

    Construction of a slow external beam switchyard at the BNL AGS requires a rapid 20.4 0 bend in the upstream end of the beam line. Two curved superconducting window dipole magnets, operating at 6.0 T and about 80% of short sample magnetic field, will be utilized with two small superconducting sextupoles to provide the necessary deflection for a 28.5 GeV/c primary proton beam. Because the magnets will operate in a primary proton beam environment, they are designed to absorb large amounts of radiation heating from the beam without quenching. The field quality of the superconducting magnets is extremely good. Computer field calculations indicate a field error, ΔB/B 0 , equivalent to approx. = 1 x 10 -4 up to 75% of the 8.26 cm full aperture diameter in the magnet

  16. 750 keV beam line construction at the KEK

    International Nuclear Information System (INIS)

    Ishimaru, H.; Anami, S.; Inagaki, T.; Sakaue, T.; Itoh, K.; Fukumoto, S.

    1976-01-01

    The construction of 750 keV beam line of the KEK injector of the 12 GeV proton synchrotron was described. The beam line consists of the beam focusing quadrupoles, vacuum system, the electrostatic chopper and the various beam monitors. (author)

  17. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  18. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  19. Synthesis of Beam Lines with Necessary Properties

    CERN Document Server

    Andrianov, Serge

    2005-01-01

    In this paper a new approach to the problem of synthesis of beam lines is discussed. Usually this problem can be overcome by the use of numerical simulation and optimal control theory methods. But this results in sufficiently great number of variable parameters and functions. Obviously, that this degrades quality of a modeling procedure. The suggested approach is demonstrated on a problem of a microprobe design problem. Essence of the problem is that necessary to design a high precision focusing system which satisfies some additional conditions. For solution of this problem we use an algebraic treatment based on Lie algebraic methods and computer algebra techniques. Using the symmetry ideology this approach allows rewriting beam properties to enough simple conditions for control parameters and functions. This leads a set of desired solutions and show results in some most suitable form. Moreover, this approach decreases the number of variable parameters.

  20. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  1. Characterization of the Goubau line for testing beam diagnostic instruments

    Science.gov (United States)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  2. Design process and modeling studies of SSRL beam line wunder

    International Nuclear Information System (INIS)

    Bachrach, R.Z.; Bringans, R.D.

    1984-01-01

    SSRL Beam Line Wunder will be the first soft X-ray energy range synchrotron radiation beam line specifically designed to exploit the unique aspects of periodic insertion devices in the wiggler-undulator (wunder) regime. Aspects of the development of this beam line are described in this paper and in particular, we discuss the design methodology adopted and emphasize the joint optical, thermal and mechanical optimization studies that were required. (orig.)

  3. Magnet power supply and beam line control for a secondary beam line K6

    International Nuclear Information System (INIS)

    Suzuki, Y.; Takasaki, M.; Minakawa, M.; Ishii, H.; Kato, Y.; Ieiri, M.; Tanaka, K.H.; Noumi, H.; Yamanoi, Y.

    1992-01-01

    K6 is a secondary separated-beam line with momentum range up to 2.0 GeV/c in the north experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS). On the construction, newly developed magnet power supplies (MPSs), in each of them a microprocessor is embedded, are introduced. The features of the MPS are as follows: 1, The MPS is connected to an upper-level beam line controller (BLC) by GPIB highway for exchanging simple messages. 2, All the operations of the MPS are supervised by the microprocessor, which has its individual parameters and fault messages. It reduces the load of the upper-level controller. 3, The MPS has functions to inspect itself and to report the result. It saves much time and labor of maintenance. (author)

  4. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  5. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  6. Initial Beam Test of the Prototype Strip Line BPM

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Ryu, Jin Yeong; Jang, Ji Ho; Cho, Yong Sub

    2011-01-01

    A beam position monitor (BPM) was developed which would be used for the Proton Engineering Frontier Project (PEFP) beam line. It is a strip line BPM which is commonly used one for the proton beam. The BPM cross section was designed with the SUPERFISH code and the matching section to the feed through was designed by the MWS code. The design parameters of the BPM are shown in Table 1. The designed BPM was fabricated to verify the manufacturing process and check its electrical performance. After the low power test at the test stand, the BPM was installed at the 20-MeV proton accelerator beam line as shown in Fig. 1

  7. Beam instrumentation for the BNL Heavy Ion Transfer Line

    International Nuclear Information System (INIS)

    Witkover, R.L.; Buxton, W.; Castillo, V.; Feigenbaum, I.; Lazos, A.; Li, Z.G.; Smith, G.; Stoehr, R.

    1987-01-01

    The Heavy Ion Transfer Line (HITL) was constructed to transport beams from the BNL Tandem Van de Graaff (TVDG) to be injected into the AGS. Because the beam line is approximately 2000 feet long and the particle rigidity is so low, 20 beam monitor boxes were placed along the line. The intensity ranges from 1 to 100 nanoAmps for the dc trace beam used for line set-up, to over 100 μA for the pulsed beam to be injected into the AGS. Profiles are measured using multiwire arrays (HARPS) while Faraday cups and beam transformers monitor the intensity. The electronics stations are operated through 3 Instrumentation Controllers networked to Apollo workstations in the TVDG and AGS control rooms. Details of the detectors and electronics designs and performance will be given

  8. Commissioning of the LHC Beam Transfer Line TI 8

    International Nuclear Information System (INIS)

    Uythoven, J.A.; Arduini, G.; Goddard, B.; Jacquet, D.; Kain, V.; Lamont, M.; Mertens, V.; Spinks, A.; Wenninger, J.; Chao, Y.-C.

    2005-01-01

    The first of the two LHC transfer lines was commissioned in autumn 2004. Beam reached an absorber block located some 2.5 km downstream of the SPS extraction point at the first shot, without the need of any threading. The hardware preparation and commissioning phase will be summarized, followed by a description of the beam tests and their results regarding optics and other line parameters, including the experience gained with beam instrumentation, the control system and the machine protection equipment

  9. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  10. Beam diagnostics and data acquisition system for ion beam transport line used in applied research

    International Nuclear Information System (INIS)

    Skuratov, V.A.; Didyk, A.Yu.; Arkhipov, A.V.; Illes, A.; Bodnar, K.; Illes, Z.; Havancsak, K.

    1999-01-01

    Ion beam transport line for applied research on U-400 cyclotron, beam diagnostics and data acquisition system for condensed matter studies are described. The main features of Windows-based real time program are considered

  11. Evaluation of beam-line components for use in a large neutral-beam injector

    International Nuclear Information System (INIS)

    Fink, J.H.

    1977-01-01

    A conceptual model of a neutral-beam injector was used to examine the effect of beam-line components on reactor performance. Criteria were established to optimize a reactor's reliability and minimize its cost

  12. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Romano, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Scuderi, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Amato, A. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Candiano, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Cuttone, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Giove, D. [INFN Sezione di Milano, Via Celoria 16, Milano (Italy); Korn, G.; Krasa, J. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Leanza, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Maggiore, M. [INFN-LNL, Viale dell' Universitá 2 - 35020 Legnaro (PD) (Italy); Marchese, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Milluzzo, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Petringa, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Sabini, M.G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Azienda Ospedaliera Cannizzaro, Via Messina 829 - 95100 Catania (Italy); Schillaci, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); and others

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  13. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  14. On-line spectroscopy with thermal atomic beams

    International Nuclear Information System (INIS)

    Thibault, C.; Guimbal, P.; Klapisch, R.; Saint Simon, M. de; Serre, J.M.; Touchard, F.; Duong, H.T.; Jacquinot, P.; Juncar, P.

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a cw tunable dye laser interacts at right angles with a thermal atomic beam. sup(76-98)Rb, sup(118-145)Cs and sup(208-213)Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while sup(20-31)Na and sup(38-47)K have been studied by setting the apparaturs directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. (orig.)

  15. Beam line for experiments with coherent soft x-rays

    International Nuclear Information System (INIS)

    Howells, M.R.; Kirz, J.; Krinsky, S.

    1982-12-01

    The advantages of coherent soft x-rays for three-dimensional imaging of biological specimens are discussed, the x-ray source requirements are described, and the general design of the beam line and its optical system are given

  16. Generalized emittance measurements in a beam transport line

    International Nuclear Information System (INIS)

    Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.

    1991-01-01

    Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab

  17. Collider detector beam line test table: a structural analysis

    International Nuclear Information System (INIS)

    Leininger, M.B.

    1983-01-01

    The apparatus which sweeps calorimeter and endwall modules through the beam during testing is called a beam line test table. Because of rather stringent requirements for the physical positioning of the modules an analysis is done here to determine the modifications to the current test table design which will minimize deflections of the table under load

  18. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. ATS Department

    2018-01-01

    In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.

  19. A line beam electron gun for rapid thermal processing

    Science.gov (United States)

    Pauli, M.; Müller, J.; Hartkopf, K.; Barth, T.

    1992-04-01

    A line beam electron gun based on the Pierce gun type was developed. The line cathode was realized by a directly heated tungsten rod. The temperature distribution along the tungsten rod was simulated numerically. The simulation shows a flat temperature across 2/3 of the cathode length and it agrees with appropriate measurable parameters. The beam profiles of the electron gun perpendicular to the line direction were examined as a function of electrical and geometrical parameters: The space-charge distribution in front of the cathode was found to be responsible for the shape of the beam profile. The shape of the beam profile is weakly influenced by the acceleration to the anode. The heating current induced voltage drop along the cathode was found to be responsible for the nonuniform emission in line direction. A model for the emission behavior of the line beam electron gun was developed. The model is based on the results of the measurements and on a numerical simulation of the potential distribution in the area between Pierce reflectors and anode. The emission model shows a solution to homogenize the emission by a suitable variation of geometrical parameters in line direction. A linear variation was realized in experiment which enables a uniform emission across 2/3 of the cathode length. The beam profile is adjustable by a bias voltage between the cathode and the Pierce reflectors.

  20. Investigation of Beam Emittance and Beam Transport Line Optics on Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew [Northern Illinois U.; Syphers, Michael [Fermilab

    2017-10-06

    Effects of beam emittance, energy spread, optical parameters and magnet misalignment on beam polarization through particle transport systems are investigated. Particular emphasis will be placed on the beam lines being used at Fermilab for the development of the muon beam for the Muon g-2 experiment, including comparisons with the natural polarization resulting from pion decay, and comments on the development of systematic correlations among phase space variables.

  1. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  2. Development of slow positron beam lines and applications

    Science.gov (United States)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  3. Analysis of particle species evolution in neutral beam injection lines

    International Nuclear Information System (INIS)

    Kim, J.; Haselton, H.H.

    1978-07-01

    Analytic solutions to the rate equations describing the species evolution of a multispecies positive ion beam of hydrogen due to charge exchange and molecular dissociation are derived as a function of the background gas (H 2 ) line density in the neutralizing gas cell and in the drift tube. Using the solutions, calculations are presented for the relative abundance of each species as a function of the gas cell thickness, the reionization loss rates in the drift tube, and the neutral beam power as a function of the beam energy and the species composition of the original ion beam

  4. An electromagnetically focused electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e-

    2003-01-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180 deg., with cathode to work site distance of 130 mm. Dimensions of the beam (1.25x120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment

  5. Capacitive beam position monitors and automatic beam centering in the transfer lines of Ganil

    International Nuclear Information System (INIS)

    Gudewicz, P.; Petit, E.

    1991-01-01

    A non-interceptive beam position monitor, made of four capacitive electrodes, has been designed at GANIL in order to allow a permanent measurement of the ion beam position over a large intensity range (50 enA to 10 eμA). Signal processing is based on a 10 kHz heterodyne and on an amplitude to phase conversion in order to measure the beam position. An immediate application of these monitors is the automatic beam centering. For this, two algorithms have been developed using the information on the center of gravity given by the beam position monitors which is then fed back to the steerers, an iterative method and a variational method. Both methods have been used on a section of beam line and have given similar and encouraging results. The next step is to center the beam on the completely equipped line. (author) 4 refs., 2 figs., 1 tab

  6. Phase II beam lines at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1984-06-01

    The expansion of the National Synchrotron Light Source has been funded by the US Department of Energy. The Phase II program consists of both increased conventional facilities and six new beam lines. In this paper, an overview of the six beam lines which will be constructed during Phase II is presented. For five of the lines special radiation sources are necessary and the designs of four of the devices are complete. The relevant parameters of the insertion devices under construction and development are presented

  7. A beam position feedback system for beam lines at the photon factory

    International Nuclear Information System (INIS)

    Katsura, T.; Kamiya, Y.; Haga, K.; Mitsuhashi, T.

    1987-01-01

    The beam position of the synchrotron radiation produced from the Storage Ring was stabilized by a twofold position feedback system. A digital feedback system was developed to suppress the diurnal beam movement (one cycle of sin-like drifting motion per day) which became a serious problem in low-emittance operation. The feedback was applied to the closed-orbit-distortion (COD) correction system in order to cancel the position variation at all the beam lines proportionately to the variation monitored at one beam line. An analog feedback system is also used to suppress frequency components faster than the slow diurnal movement

  8. Realization of compact tractor beams using acoustic delay-lines

    Science.gov (United States)

    Marzo, A.; Ghobrial, A.; Cox, L.; Caleap, M.; Croxford, A.; Drinkwater, B. W.

    2017-01-01

    A method for generating stable ultrasonic levitation of physical matter in air using single beams (also known as tractor beams) is demonstrated. The method encodes the required phase modulation in passive unit cells into which the ultrasonic sources are mounted. These unit cells use waveguides such as straight and coiled tubes to act as delay-lines. It is shown that a static tractor beam can be generated using a single electrical driving signal, and a tractor beam with one-dimensional movement along the propagation direction can be created with two signals. Acoustic tractor beams capable of holding millimeter-sized polymer particles of density 1.25 g/cm3 and fruit-flies (Drosophila) are demonstrated. Based on these design concepts, we show that portable tractor beams can be constructed with simple components that are readily available and easily assembled, enabling applications in industrial contactless manipulation and biophysics.

  9. A beam optics study of the biomedical beam line at a proton therapy facility

    International Nuclear Information System (INIS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-01-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam

  10. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  11. Construction of a pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  12. Bending magnets for the CBA beam-transport line

    International Nuclear Information System (INIS)

    Thern, R.E.

    1983-01-01

    The beam-transport line from the AGS to CBA requires 68 large bending magnets, consisting of pure dipoles and two types of combined function gradient magnets. All three types were designed with magnetic-field calculation program POISSON, using the same exterior dimensions and coil package. The design goal of +-1% momentum acceptance for the transport line required a wide horizontal aperture, with a much-smaller vertical aperture for economy. Two prototypes of one gradient magnet were built, and a facility constructed to measure them and the later production magnets. Measurements were done using both a long coil and a point coil (Rawson-Lush gaussmeter). Preliminary results show δB/B - 3 , δG/G - 2 , and δB 2 /B - 4 cm - 2 over the beam aperture. Due to end effects, the actual gradient differs from the design gradient by 1%, which has been compensated for in the beam-line design

  13. Note: Characteristic beam parameter for the line electron gun

    Science.gov (United States)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm2), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  14. Note: Characteristic beam parameter for the line electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z.; Chi, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2013-11-15

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm{sup 2} at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm{sup 2}), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  15. Note: Characteristic beam parameter for the line electron gun

    International Nuclear Information System (INIS)

    Iqbal, M.; Islam, G. U.; Zhou, Z.; Chi, Y.

    2013-01-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm 2 at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm 2 ), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful

  16. Note: Characteristic beam parameter for the line electron gun.

    Science.gov (United States)

    Iqbal, M; Islam, G U; Zhou, Z; Chi, Y

    2013-11-01

    We have optimized the beam parameters of line source electron gun using Stanford Linear Accelerator Centre electron beam trajectory program (EGUN), utilizing electrostatic focusing only. We measured minimum beam diameter as 0.5 mm that corresponds to power density of 68.9 kW/cm(2) at 13.5 mm in the post-anode region which is more than two-fold (33 kW/cm(2)), of the previously reported results. The gun was operated for the validation of the theoretical results and found in good agreement. The gun is now without any magnetic and electrostatic focusing thus much simpler and more powerful.

  17. Beam transfer line for food irradiation microtron at CAT

    International Nuclear Information System (INIS)

    Kant, Pradeep; Singh, Gurnam

    2003-01-01

    A 10 MeV microtron is being developed at CAT for irradiation of food products. A beam transfer line comprising a 90 deg bending magnet, a quadrupole doublet and a rectangular scanning magnet has been designed to irradiate food products from the upper side. The bending magnet has an edge angle of 22.5 deg. The length of the beam transfer line has been minimized to keep the whole unit as compact as possible. The beam optics has been optimized keeping in view the requirement of a small beam pipe aperture (25mm radius) and a large range of circular as well as elliptical beam sizes on the food product. The speed of the conveyor belt has been assumed to be very small. The results of the beam optics chosen and the variation of the linear charge density on a food product during the scanning are presented in this paper. The effects of path length variation within the scanning magnet and beam size variation during a scanning are also discussed

  18. Beam Dump Design for the Rare Isotope Accelerator Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Reyes, S

    2006-05-02

    Beam dumps for the heavy ion beams of the fragmentation line of the Rare Isotope Accelerator have been designed. The most severe operational case involves a continuous U beam impacting the beam dump with a power of 295 kW and a nominal spot diameter size of 5 cm. The dump mechanically consists of two rotating barrels with a water cooled outer wall of 2 mm thick aluminum. The barrels are 70 cm in diameter and axially long enough to intercept a variety of other beams. The aluminum wall absorbs approximately 15% of the U beam power with the rest absorbed in the water downstream of the wall. The water acts as an absorber of the beam and as a coolant for the 2 mm aluminum wall. The barrel rotates at less than 400 RPM, maximum aluminum temperatures are less than 100 C and maximum thermal fatigue stresses are low at 3.5 x 10{sup 7} Pa (5 ksi). Rotation of the dump results in relatively low radiation damage levels with an operating lifetime of years for most beams.

  19. FIRST BEAM TESTS OF THE MUON COLLIDER TARGET TEST BEAM LINE AT THE AGS

    International Nuclear Information System (INIS)

    BROWN, K.A.; GASSNER, D.; GLENN, J.W.; PRIGL, R.; SIMOS, N.; SCADUTO, J.; TSOUPAS, N.

    2001-01-01

    In this report we will describe the muon collider target test beam line which operates off one branch of the AGS switchyard. The muon collider target test facility is designed to allow a prototype muon collider target system to be developed and studied. The beam requirements for the facility are ambitious but feasible. The system is designed to accept bunched beams of intensities up to 1.6 x 10 13 24 GeV protons in a single bunch. The target specifications require beam spot sizes on the order of 1 mm, 1 sigma rms at the maximum intensity. We will describe the optics design, the instrumentation, and the shielding design. Results from the commissioning of the beam line will be shown

  20. E-line: A new crystal collimator beam line for source size measurements at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeffrey A. [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)], E-mail: jaw7@cornell.edu; Revesz, Peter; Finkelstein, Ken [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)

    2007-11-11

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring.

  1. E-line: A new crystal collimator beam line for source size measurements at CHESS

    International Nuclear Information System (INIS)

    White, Jeffrey A.; Revesz, Peter; Finkelstein, Ken

    2007-01-01

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring

  2. On setting magnets in the PEP beam-transport line

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1979-01-01

    This paper discusses magnets in the PEP beam-transport line. Topics discussed are: conditioning, direction of excitation, rate of excitation; determination of the excitation current for the principal bend magnets; steering mechanisms; bump magnets; and determination of excitation currents of the quadrupole magnets

  3. A polarized beam for the M-3 line

    International Nuclear Information System (INIS)

    Underwood, D.; Colton, E.; Halpern, H.

    1978-01-01

    A beamline is proposed for polarized protons to be built in the M-3 line of the Meson Laboratory utilizing lambda decays. This beamline would provide a clean source of polarized protons or an enriched beam of antiprotons or polarized antiprotons

  4. Optical design of beam lines at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Ieiri, M.; Noumi, H.; Minakawa, M.; Yamanoi, Y.; Kato, Y.; Ishii, H.; Suzuki, Y.; Takasaki, M.

    1995-01-01

    A new counter experimental hall [K.H. Tanaka et al., IEEE Trans. Magn. 28 (1992) 697] was designed and constructed at the KEK 12-GeV Proton Synchrotron (KEK-PS). The extracted proton beam from the KEK-PS is introduced to the new hall through the newly-prepared primary beam line, EP1, and hits two production targets in cascade. The upstream target provides secondary particles to the low momentum (0.4-0.6 GeV/c) separated beam line, K5, and the downstream target is connected to the medium momentum (0.6-2.0 GeV/c) separated beam line, K6. Several new ideas were employed in the beam optical designs of EP1, K5 and K6 in order to increase the number and the purity of the short-lived secondary particles, such as kaons and pions, under the limited energy and intensity of the primary protons provided by the KEK-PS. These new ideas are described in this paper as well as the first commissioning results. (orig.)

  5. Preliminary design of electrostatic sensors for MITICA beam line components

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, S., E-mail: spagnolo@igi.cnr.it; Spolaore, M.; Dalla Palma, M.; Pasqualotto, R.; Sartori, E.; Serianni, G.; Veltri, P. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, 35127 Padova (Italy)

    2016-02-15

    Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.

  6. VT VEC Primary Overhead and Underground Distribution Lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Vermont Electric Cooperative, Inc. (VEC) Primary Overhead and Underground Distribution Lines. VEC’s Distribution lines were drawn from pole to...

  7. High resolution beam line of the U400M cyclotron and RIB accumulation and cooling in the K4 storage ring

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    The high resolution beam line ACCULINNA put into operation on a primary beam line of the JINR U400M cyclotron is discussed in the framework of the TREBLE project. The capability of the beam line for producing radioactive ion beams is demonstrated by means of nuclear fragmentation of the primary 14 N beam, with the energy of 51 MeV · A, on the 170 mg/cm 2 carbon target. Characteristics of the obtained 6 He, 8 He and 8 B radioactive beams are presented. A scheme of accumulation and cooling on the orbit of the storage ring K4 is proposed for a low intensity radioactive beam obtained from this beam line. 8 refs., 6 figs., 1 tab

  8. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  9. Beam position measurement in transport line-1 of Indus accelerator

    International Nuclear Information System (INIS)

    Ojha, Avanish; Yadav, Surendra; Holikatti, Anil C.; Puntambekar, T.A.; Pithawa, C.K.

    2011-01-01

    In Indus Accelerator Complex at RRCAT Indore, 20 MeV electron beam is transported from injector Microtron to Booster Synchrotron through Transport Line-1 (TL-1). This beam has nominal pulse width of 500 ns with repetition rate of 1 Hz. A split electrode type beam position Indicator (BPI) is planned to be used to detect position of beam in TL-1, for which a four-channel processing electronics has been designed and developed. The circuit consists of microcontroller based four-channel peak detector circuit followed by multiplexer and ADC. The microcontroller is triggered from the timing system of microtron, which enables microcontroller to control and synchronize various parts of electronics. Microcontroller also sends the digitized data to a PC on serial link. During development, a problem of overcharging of capacitor was faced, which was resulting in false peak detection. Circuit was simulated and necessary modifications were incorporated in the circuit to solve this problem. A test setup with provision to simulate the beam signal using an antenna was used for testing the circuit in lab and a suitable Graphical User Interface (GUI) program was developed in LabVIEW. This GUI can also be used to calibrate the BPI. The prototype BPI was tested under simulated beam condition, which gave positional accuracy of ± 200 microns. (author)

  10. The H line: a brand new beam line for fundamental physics at the J-PARC muon facility

    International Nuclear Information System (INIS)

    Kawamura, N; Shimomura, K; Miyake, Y; Toyoda, A; Saito, N; Mihara, S; Aoki, M

    2013-01-01

    The muon facility, J-PARC (Muon Science Establishment; MUSE), has been operated since first beam in 2008. Starting with a 200 kW proton beam, the beam intensity has reached 3×10 6 / muons/s, the most intense pulsed muon beam in the world. A 2 cm thick graphite target permits the extraction of four secondary muon beams. A brand new beam line, the H line, is planned to be constructed. The new beam line is designed to have a large acceptance, will provide the ability to tune the momentum, and use a kicker magnet and/or Wien filter. This beam line will provide an intense beam for experiments that require high statistics and must occupy the experimental areas for a relatively long period.

  11. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Northern Illinois Univ., DeKalb, IL (United States)

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  12. The Imaging and Medical Beam Line at the Australian Synchrotron

    Science.gov (United States)

    Hausermann, Daniel; Hall, Chris; Maksimenko, Anton; Campbell, Colin

    2010-07-01

    As a result of the enthusiastic support from the Australian biomedical, medical and clinical communities, the Australian Synchrotron is constructing a world-class facility for medical research, the `Imaging and Medical Beamline'. The IMBL began phased commissioning in late 2008 and is scheduled to commence the first clinical research programs with patients in 2011. It will provide unrivalled x-ray facilities for imaging and radiotherapy for a wide range of research applications in diseases, treatments and understanding of physiological processes. The main clinical research drivers are currently high resolution and sensitivity cardiac and breast imaging, cell tracking applied to regenerative and stem cell medicine and cancer therapies. The beam line has a maximum source to sample distance of 136 m and will deliver a 60 cm by 4 cm x-ray beam1—monochromatic and white—to a three storey satellite building fully equipped for pre-clinical and clinical research. Currently operating with a 1.4 Tesla multi-pole wiggler, it will upgrade to a 4.2 Tesla device which requires the ability to handle up to 21 kW of x-ray power at any point along the beam line. The applications envisaged for this facility include imaging thick objects encompassing materials, humans and animals. Imaging can be performed in the range 15-150 keV. Radiotherapy research typically requires energies between 30 and 120 keV, for both monochromatic and broad beam.

  13. Beam line design for synchrotron spectroscopy in the VUV

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M R

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  14. Beam line design for synchrotron spectroscopy in the VUV

    International Nuclear Information System (INIS)

    Howells, M.R.

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection

  15. Bending magnets for the CBA beam-transport line

    Energy Technology Data Exchange (ETDEWEB)

    Thern, R.E.

    1983-01-01

    The beam-transport line from the AGS to CBA requires 68 large bending magnets, consisting of pure dipoles and two types of combined function gradient magnets. All three types were designed with magnetic-field calculation program POISSON, using the same exterior dimensions and coil package. The design goal of +-1% momentum acceptance for the transport line required a wide horizontal aperture, with a much-smaller vertical aperture for economy. Two prototypes of one gradient magnet were built, and a facility constructed to measure them and the later production magnets. Measurements were done using both a long coil and a point coil (Rawson-Lush gaussmeter). Preliminary results show ..delta..B/B < 0.2 x 10/sup -3/, ..delta..G/G < 0.3 x 10/sup -2/, and ..delta..B/sub 2//B < 0.3 x 10/sup -4/ cm/sup -2/ over the beam aperture. Due to end effects, the actual gradient differs from the design gradient by 1%, which has been compensated for in the beam-line design.

  16. On- and off-line monitoring of ion beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Katia, E-mail: katia.parodi@lmu.de

    2016-02-11

    Ion beam therapy is an emerging modality for high precision radiation treatment of cancer. In comparison to conventional radiation sources (photons, electrons), ion beams feature major dosimetric advantages due to their finite range with a localized dose deposition maximum, the Bragg peak, which can be selectively adjusted in depth. However, due to several sources of treatment uncertainties, full exploitation of these dosimetric advantages in clinical practice would require the possibility to visualize the stopping position of the ions in vivo, ideally in real-time. To this aim, different imaging methods have been proposed and investigated, either pre-clinically or even clinically, based on the detection of prompt or delayed radiation following nuclear interaction of the beam with the irradiated tissue. However, the chosen or ad-hoc developed instrumentation has often relied on technologies originally conceived for different applications, thus compromising on the achievable performances for the sake of cost-effectiveness. This contribution will review major examples of used instrumentation and related performances, identifying the most promising detector developments for next generation devices especially dedicated to on-line monitoring of ion beam treatment. Moreover, it will propose an original combination of different techniques in a hybrid detection scheme, aiming to make the most of complementary imaging methods and open new perspectives of image guidance for improved precision of ion beam therapy.

  17. Diagnostic tools used in the calibration and verification of protein crystallography synchrotron beam lines and apparatus

    International Nuclear Information System (INIS)

    Rotella, F.J.; Alkire, R.W.; Duke, N.E.C.; Molitsky, M.J.

    2011-01-01

    Diagnostic tools have been developed for use at the Structural Biology Center beam lines at the Advanced Photon Source. These tools are used in the calibration and operating verification of these synchrotron X-ray beam lines and constituent equipment.

  18. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  19. Molecular-beam studies of primary photochemical processes

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser

  20. Molecular-beam studies of primary photochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T.

    1982-12-01

    Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.

  1. Secondary beam line phase space measurement and modeling at LAMPF

    International Nuclear Information System (INIS)

    Floyd, R.; Harrison, J.; Macek, R.; Sanders, G.

    1979-01-01

    Hardware and software have been developed for precision on-line measurement and fitting of secondary beam line phase space parameters. A system consisting of three MWPC planes for measuring particle trajectories, in coincidence with a time-of-flight telescope and a range telescope for particle identification, has been interfaced to a computer. Software has been developed for on-line track reconstruction, application of experimental cuts, and fitting of two-dimensional phase space ellipses for each particle species. The measured distributions have been found to agree well with the predictions of the Monte Carlo program DECAY TURTLE. The fitted phase space ellipses are a useful input to optimization routines, such as TRANSPORT, used to search for superior tunes. Application of this system to the LAMPF Stopped Muon Channel is described

  2. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W; Ahle, L E; Conner, D L

    2005-04-28

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 70 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an adjacent air space. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 15% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 3 ksi. Rotating the wheel also results in low radiation damage levels by spreading the damage out over the whole perimeter of the wheel. For some of the other beams, a stationary dump consisting of a thin aluminum window with water acting as a coolant and absorber appears to be feasible.

  3. Beam optics of the AmPS extraction line

    International Nuclear Information System (INIS)

    Hoekstra, R.

    1991-01-01

    The design of the Amsterdam Pulse Stretcher includes a feasibility study of part of the extraction trajectory. The latter includes some proposed curves projected through the hall of the beam switch yard. Since extraction is performed in the north line of the ring and the connection to the trajectory of the spectrometers is planned in a trajectory parallel to the east line of the ring the curves contain bending magnets for bending 90 degrees either by only two magnets or by making use of ring bending magnets in the same way as the ring curves are constructed. The bending through 90 degrees has optimal imaging properties of a unit cell much the same as the curves in the ring. This one-to-one (or one-to-minus-one) property is intended to shift the known required beam dimensions stream upwards from a defined point in the trajectory of the spectrometers to be able to create the dimensions at this shifted point by means of a so called beam transformer, placed in between the extraction point and this position. This report deals with the further developments with respect to the extraction trajectory. (author). 5 refs.; 9 figs.; 3 tabs

  4. Sensitivity of the PEP beam transport line to perturbations

    International Nuclear Information System (INIS)

    Peterson, J.M.; Brown, K.L.

    1979-03-01

    The sensitivity of a beam-transport line to various perturbations determines the extent to which one can simplify component design and relax tolerances. For the PEP injection lines, effects of various fabrication errors, magnet misalignments, and residual gas scattering were studied. Using the TURTLE ray-tracing program, it is found that magnetic-field errors corresponding to a relative sextupole strength in the dipoles of 0.5% and/or a relative sextupole or octupole strength in the quadrupoles of 5% are permissible. This allows relatively loose tolerances in magnet fabrication. Transverse misalignment of a quadrupole by a distance x causes the beam centroid to be displaced downstream by as much as 5x. This requires a quadrupole alignment accuracy of +- 0.5 mm or better. No compensation for the earth's field is necessary because an integral number of optical wavelengths and a short wavelength were used for the design. Analysis shows that beam broadening from multiple coulomb scattering is insignificant for pressures of less than 1/10 torr

  5. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  6. Issues for Bringing Electron Beam Irradiators On-Line

    International Nuclear Information System (INIS)

    Kaye, R.J.; Turman, B.N.

    1999-01-01

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined

  7. Beam Line VI REC-steel hybrid wiggler for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.; Chan, T.; Chin, J.W.G.; Halbach, K.; Kim, K.J.; Winick, H.; Yang, J.

    1983-03-01

    A wiggler magnet with 27 periods, each 7 cm long which reaches 1.21 T at a 1.2 cm gap and 1.64 T at 0.8 cm gap has been designed and is in fabrication. Installation in SPEAR is scheduled for mid 1983. This new wiggler will be the radiation source for a new high intensity synchrotron radiation beam line at SSRL. The magnet utilizes rare-earth cobalt (REC) material and steel in a hybrid configuration to achieve simultaneously a high magnetic field with a short period. The magnet is external to a thin walled variable gap stainless steel vacuum chamber which is opened to provide beam aperture of 1.8 cm gap at injection and then closed to a smaller aperture (< 1.0 cm). Five independent drive systems are provided to adjust the magnet and chamber gaps and alignment. Magnetic design, construction details and magnetic measurements are presented

  8. Beam profile monitor system for the bevalac transfer line

    International Nuclear Information System (INIS)

    Stover, G.

    1985-01-01

    Incorporated in the current Bevalac transfer line upgrade project is a proposal for a new electronic beam monitoring system. It will be designed to amplify, convert, and transmit the signals of twelve 16 by 16 multi-wire grids to a central computer located in the Bevatron control room. Each station will contain interface amplifiers and a local microprocessor to convert wire grid currents into digitized values which will then be transmitted via a serial data channel to the main computer. The system will have a large dynamic range (1 nano to 1 milli-ampere of beam current), be designed for distributed operation, and will be easily expandable. This paper describes the basic electronic hardware and software components of the proposed system

  9. Issues for Bringing Electron Beam Irradiators On-Line

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.J.; Turman, B.N.

    1999-04-20

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined.

  10. Design of Database System of HIRFL-CSR Beam Line

    International Nuclear Information System (INIS)

    Li Peng; Li Ke; Yin Dayu; Yuan Youjin; Gou Shizhe

    2009-01-01

    This paper introduces the database design and optimization for the power supply system of Lanzhou Heavy Ion Accelerator CSR (HIRFL-CSR) beam line. Based on HIFEL-CSR main Oracle database system, the interface was designed to read parameters of the power supply while achieving real-time monitoring. A new database system to store the history data of power supplies was established at the same time, and it realized the data exchange between Oracle database system and Access database system. Meanwhile, the interface was designed conveniently for printing and query parameters. (authors)

  11. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  12. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    International Nuclear Information System (INIS)

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures

  13. Development of BPM/BLM DAQ System for KOMAC Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Song, Young-Gi; Kim, Jae-Ha; Yun, Sang-Pil; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The KOMAC installed 10 beam lines, 5 for 20-MeV beams and 5 for 100-MeV beams. The proton beam is transmitted to two target room. The KOMAC has been operating two beam lines, one for 20 MeV and one for 100 MeV. New beam line, RI beam line is under commissioning. A Data Acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. A data acquisition (DAQ) system is essential to monitor beam signals in an analog front-end circuitry from BPM and BLM at beam lines. The DAQ digitizes beam signal and the sampling is synchronized with a reference signal which is an external trigger for beam operation. The digitized data is accessible by the Experimental Physics and Industrial Control System (EPICS)-based control system, which manages the whole accelerator control. The beam monitoring system integrates BLM and BPM signals into the control system and offers realtime data to operators. The IOC, which is implemented with Linux and a PCI driver, supports data acquisition as a very flexible solution.

  14. RFQ Cooler and Buncher (and beam line section associated)

    CERN Document Server

    Podadera-Aliseda, I

    2003-01-01

    Developing a new RFQ cooler and buncher for ISOLDE. Such a device combines an energy loss in buffer gas atom-ion collisions with confinement provided by RF-field in transverse plane. Optional confinement in longitudinal direction is provided by static potential dwell. Then, an improvement of the beam line is achieved for all the experiments at ISOLDE. The RFQ operates inside a high voltage cage of 60 kV, and with a system of turbomulecular pumps both to keep the high vacuum before/after the RFQ and to keep a low pressure (around 0,1 mbar) inside the RFQ. The project is to be thought not only as a mechanical design and construction project, unless as a project of research and development, since it is about improving (operationally and technically) the existing RFQ cooler and buncher placed around the world. Due to ion optical reasons whole beam line section has to be redesigned and constructed as a part of this project.

  15. An Energy-Stabilized Varied-Line-Space-Monochromator Undulator Beam Line for PEEM Illumination and Magnetic Circular Dichroism

    International Nuclear Information System (INIS)

    Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

    2006-01-01

    A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy

  16. Construction of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Ajima, Y.; Araoka, O.; Fujii, Y.; Hastings, N.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Sakashita, K.; Sugawara, S.; Suzuki, S.; Tanaka, K.; Tomaru, T.; Terashima, A.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; gupta, R.; Jain, A.; Muratore, J.; Parker, B.; Boussuge, T.; Charrier, J.-P.; Arakawa, M.; Ichihara, T.; Minato, T.; Okada, Y.; Itou, A.; Kumaki, T.; Nagami, M.; Takahashi, T.

    2009-10-18

    Following success of a prototype R&D, construction of a superconducting magnet system for J-PARC neutrino beam line has been carried out since 2005. A new conceptual beam line with the superconducting combined function magnets demonstrated the successful beam transport to the neutrino production target.

  17. Operating instructions for ORELA [Oak Ridge Electron Linear Accelerator] positron beam line

    International Nuclear Information System (INIS)

    Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

    1990-11-01

    This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented

  18. The expert system OPTRAN (Ver 1.0) and its application to beam transportation line design

    International Nuclear Information System (INIS)

    Xiao Meiqin; Lu Hongyou; Fan Mingwu

    1994-01-01

    The expert system OPTRAN (Ver 1.0) used for beam transportation line design is introduced. The knowledge storage and reasoning principle, of which the intelligence part of OPTRAN are composed, have been described in detail. By using OPTRAN (Ver 1.0), the design of a beam transportation line for extracted ion beam of Cyclone 30 was completed

  19. Computer controlled vacuum control system for synchrotron radiation beam lines

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Wang, C.; Yang, J.

    1983-01-01

    The increasing number and complexity of vacuum control systems at the Stanford Synchrotron Radiation Laboratory has resulted in the need to computerize its operations in order to lower costs and increase efficiency of operation. Status signals are transmitted through digital and analog serial data links which use microprocessors to monitor vacuum status continuously. Each microprocessor has a unique address and up to 256 can be connected to the host computer over a single RS232 data line. A FORTRAN program on the host computer will request status messages and send control messages via only one RS232 line per beam line, signal the operator when a fault condition occurs, take automatic corrective actions, warn of impending valve failure, and keep a running log of all changes in vacuum status for later recall. Wiring costs are thus greatly reduced and more status conditions can be monitored without adding excessively to the complexity of the system. Operators can then obtain status reports at various locations in the lab quickly without having to read a large number of meter and LED's

  20. submitter Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    CERN Document Server

    Scisciò, M; Migliorati, M; Mostacci, A; Palumbo, L; Papaphilippou, Y; Antici, P

    2016-01-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupo...

  1. Grasshopper beam line for utilization of synchrotron radiation

    International Nuclear Information System (INIS)

    Saito, Norio; Suzuki, I.H.; Onuki, Hideo; Nishi, Morotake

    1989-01-01

    Optical characteristics of a new beam line consisting of a pre-mirror, a Grasshopper monochromator and a re-focusing mirror have been investigated. A ray-tracing calculation was performed for designing the mirrors so as to optimize the photon intensity and the spot size at the sample point. The intensity of the monochromatic soft x-ray was about 10 8 photons/(sec·100mA) at 25 A under the storage electron energy of 600 MeV with the minimum slit width which corresponded to a resolution of about 500. The sum of stray light and higher order components was less than 10% of the total intensity except around the C-K edge. Using an appropriate filter, it was reduced to less than a few percent. (author)

  2. Report of the accelerator and beam line options working group

    International Nuclear Information System (INIS)

    Ankenbrandt, C.; Bogacz, A.; Bogert, D.; Bossert, R.C.; Brown, B.; Childress, S.; Crawford, C.; Dugan, G.; Even, L.; Finley, D.; Gelfand, N.; Gerig, R.; Goderre, G.; Gourlay, S.; Griffin, J.; Hahn, A.; Holmes, S.; Jackson, G.; Johnson, R.; Johnson, D.; Kerby, J.; Koepke, K.; Koizumi, G.; Koul, R.; Lamm, M.; MacLachlan, J.; Malamud, E.; Malensek, A.; Mantsch, P.; Marriner, J.; Marsh, B.; Martin, P.; Hills, F.; Moore, C.; Murphy, T.; Nicol, T.; Peterson, T.; Pruss, S.; Rameika, G.; Riddiford, A.; Rosenzweig, J.; Russell, A.; Saritepe, S.; Stahl, S.; Strait, J.; Trbojevic, D.; Visnjic, V.; Volk, J.; Johnson, D.; Syphers, M.; Mohl, D.; Ruggiero, S.; Collins, T.

    1990-01-01

    This report summarizes work done before, during, and after the conference. The group was broken down into six subgroups. Subgroup 1 considered collider aspects of the phase 1 and phase 2 upgrade plans. Also considered were the collider aspects of a specific example of Phase 3, namely the replacement of the Tevatron with a new ring providing 1.8 TeV per beam. Subgroup 2 considered specific improvements to the proposed Main Injector (MI) which will enhance the performance of Phase 2. Also considered were improvements which may be made to the present Main Ring (MR) which will enchance performance of Phase 1. Subgroup 3 considered fixed target aspects of the Phase 1 and 2 upgrade plans and a specific example of Phase 3, namely the replacement of the Tevatron with a new ring providing 1.5 TeV fixed target operation. Subgroup 4 considered the external beam lines associated with the upgrades. Subgroup 5 considered the new designs of the superconducting magnets and associated large cryogenic systems connected with the accelerator systems proposed by the other groups. Subgroup 6 assumed the existence of Phase 1 and 2 upgrades and considered new possibilities for Phase 3 such as new accelerators in new tunnels

  3. Design and Status of the ELIMED Beam Line for Laser-Driven Ion Beams

    Directory of Open Access Journals (Sweden)

    G. A. Pablo Cirrone

    2015-08-01

    Full Text Available Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. The peculiarities of laser-driven beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles, due to the wide energy spread, the angular divergence and the extremely intense pulses. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical applications beamline, developed by INFN-LNS (Catania, Italy and installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams in multidisciplinary applications. ELIMED will represent the first user’s open transport beam line where a controlled laser-driven ion beam will be used for multidisciplinary and medical studies. In this paper, an overview of the beamline, with a detailed description of the main transport elements, will be presented. Moreover, a description of the detectors dedicated to diagnostics and dosimetry will be reported, with some preliminary results obtained both with accelerator-driven and laser-driven beams.

  4. New magnet transport system for the LHC beam transfer lines

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The first of 700 magnets has been installed in one of the two transfer tunnels built to transfer the SPS beam into the LHC. The start of this first installation phase of the LHC transfer lines provides the opportunity to launch a new and highly original modular system for transporting and installing all kinds of magnets in very narrow tunnels. The system (pictured here in one of the tunnels) is based on very compact bogies, up to four of which can be coupled together to form a convoy. The wheels are fitted with individual motors enabling them to swivel through an angle of 90° and the convoy to move laterally. The lead vehicle is powered by an electric rail set into the roof of the tunnel. The system is backed up by electrical batteries that enable it to operate in the absence of an outside power source or in the event of power failure. Last but not least, for the long-distance transport of magnets, it can be optically guided by a line traced on the tunnel floor. The convoy moves through the particularly narr...

  5. Cryogenic supplies for the TFTR neutral beam line cryopanels

    International Nuclear Information System (INIS)

    Pinter, G.

    1977-01-01

    Cryocondensing panels will be used for the Neutral Beam Lines of the TFTR to satisfy a pumping speed requirement of 2.5 x 10 6 l/s. The cryocondensing panels are fed by liquid helium (LHe), boiling at selectable temperatures of 4.5 0 K or 3.8 0 K. Liquid nitrogen (LN 2 ) panels and chevrons thermally shield the LHe panel. The closed-loop LHe supply system and the open loop LN 2 system are discussed. The helium refrigerator of minimum 1070-W capacity, together with its distribution system, and the nitrogen distribution system in the ton/hour LN 2 range is presented. Problems and their solutions in connection with the LHe system, including the distribution over a distance of 500 feet of large quantities of liquid/gas mixtures with load variations over the range of about 3 : 1, and the economies of various types of distribution lines (passive, pumped, shielded, combined), are described. The system design passed the preliminary phase. Design features and auxiliary equipment to assure dispersion of large quantities of nitrogen into the atmosphere and to permit operation under degraded cryogenic helium refrigerator performance are also discussed in Design Considerations

  6. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  7. Neutron beam-line shield design for the protein crystallography instrument at the Lujan Center

    International Nuclear Information System (INIS)

    Russell, G.J.; Pitcher, E.J.; Muhrer, G.; Ferguson, P.D.

    2001-01-01

    We have developed a very useful methodology for calculating absolute total (neutron plus gamma-ray) dose equivalent rates for use in the design of neutron beam line shields at a spallation neutron source. We have applied this technique to the design of beam line shields for several new materials science instruments being built at the Manuel Lujan Jr. Neutron Scattering Center. These instruments have a variety of collimation systems and different beam line shielding issues. We show here some specific beam line shield designs for the Protein Crystallography Instrument. (author)

  8. An automatic beam steering system for the NSLS X-17T beam line using closed orbit feedback

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Ma, Li; Rarback, H.M.; Singh, O.V.; Yu, L.H.

    1987-01-01

    Initial observations of motion of the undulator radiation in the NSLS X-17T beam line clearly indicated that the beam had to be stabilized in both directions to be usable for the planned soft x-ray imaging experiments. The low frequency spectra of beam motion contained peaks in the range from dc to 60 Hz and at higher frequencies. A beam steering system employing closed orbit feedback has been designed and installed to stabilize the beam in both planes. In each plane of motion, beam position is measured with a beam position detector and a correction signal is fed back to a local four magnet orbit bump to dynamically control the angle of the radiation at the source. This paper describes the design and performance of the beam steering system

  9. Beam transport radiation shielding for branch lines 2-ID-B and 2-ID-C

    International Nuclear Information System (INIS)

    Feng, Y.P.; Lai, B.; McNulty, I.; Dejus, R.J.; Randall, K.J.; Yun, W.

    1995-01-01

    The x-ray radiation shielding requirements beyond the first optics enclosure have been considered for the beam transport of the 2-ID-B and 2-ID-C branch lines of Sector 2 (SRI-CAT) of the APS. The first three optical components (mirrors) of the 2-ID-B branch are contained within the shielded first optics enclosure. Calculations indicate that scattering of the primary synchrotron beam by beamline components outside the enclosure, such as apertures and monochromators, or by gas particles in case of vacuum failure is within safe limits for this branch. A standard 2.5-inch-diameter stainless steel pipe with 1/16-inch-thick walls provides adequate shielding to reduce the radiation dose equivalent rate to human tissue to below the maximum permissible limit of 0.25 mrem/hr. The 2-ID-C branch requires, between the first optics enclosure where only two mirrors are used and the housing for the third mirror, additional lead shielding (0.75 mm) and a minimum approach distance of 2.6 cm. A direct beam stop consisting of at least 4.5 mm of lead is also required immediately downstream of the third mirror for 2-ID-C. Finally, to stop the direct beam from escaping the experimental station, a beam stop consisting of at least 4-mm or 2.5-mm steel is required for the 2-ID-B or 2-ID-C branches, respectively. This final requirement can be met by the vacuum chambers used to house the experiments for both branch lines

  10. Focused ion-beam line profiles: A study of some factors affecting beam broadening

    International Nuclear Information System (INIS)

    Templeton, I.M.; Champion, H.G.

    1995-01-01

    The current--density profile of a focused ion beam (FIB) has a central peak accompanied by broader ''wings'' that, while unimportant in lithographic applications, can lead to unwanted effects during an implantation operation. The origin of the wings, and hence the best way to minimize them, is not clear and needs further study. We have measured the line profiles of several of the ions available in our FIB machine as a function of a number of variables, under ultrahigh vacuum (UHV) conditions. No effects are observed from changes in emission current or deliberate defocusing of the objective lens. There are some changes with beam aperture and/or current, but the biggest differences seem to be associated with a change of source type and hence, possibly, with a change in the source/extractor configuration or in the alloy and the emission process. The wing amplitudes are appreciably lower than many previously observed, and their profiles, at least for the lighter ions studied (Be ++ , Be + , and B + ), are Gaussian rather than exponential. It seems possible that our UHV conditions may have eliminated a scattering mechanism responsible for the larger, exponential wings previously observed. The corresponding beam and rectangle-edge profiles have been calculated. copyright 1995 American Vacuum Society

  11. Designing of the Low Energy Beam Lines with Achromatic Condition in the RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O [Institute for Basic Science, Daejeon (Korea, Republic of)

    2017-01-15

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the Korea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  12. MIRKO - An interactive program for beam lines and synchrotrons

    International Nuclear Information System (INIS)

    Franczak, B.

    1984-01-01

    The ion-optical design of beam lines and synchrotrons is usually not done by a single run of one program. It takes many iterations of calculation, examination of results, and modification of input data. In most cases the first order design has to be followed by the investigation of higher order effects, i.e. chromatic and geometrical aberrations or resonance phenomena. The interactive computer program MIRKO is operated from a terminal and has a command structure, which enables the user to edit data, perform calculations, and to obtain alpha or graphics output on the terminal in any desired sequence. With graphics one can recognize the properties of an optical system much faster than with numbers only. Thus modifications of input data depending on the results of calculations can be made easily without stopping and restarting the program. Higher order effects can sometimes influence the first order design. Therefore, particle tracking capability was included in MIRKO as well as the calculation of stop band widths for synchrotrons. Consequently a large variety of phenomena can be studied with one program in one session based upon exactly the same data for the optical system and the possibility of fast switching between the different features

  13. Electromagnetic design and development of a combined function horizontal and vertical dipole steerer magnet for medium energy beam transport line

    International Nuclear Information System (INIS)

    Singh, Kumud; Itteera, Janvin; Ukarde, Priti; Teotia, Vikas; Kumar, Prashant; Malhotra, Sanjay; Taly, Y.K.

    2013-01-01

    Medium Energy Beam Transport (MEBT) line is required to match the optical functions between the RFQ and SRF cavities/DTL cavities.The primary function of the MEBT lines is to keep the emittance growth of the output beam as low as possible in a highly space charge environment at low energies. The transverse focusing of the beam is achieved by strong focusing quadrupoles and the longitudinal dynamics is achieved by the buncher cavities. The Dipole Steerers serve the function of a control element to achieve the desired transverse beam position. To minimize the emittance growth high magnetic field rigidity is required in a highly constrained longitudinal space for these corrector magnets. The design and development of an air-cooled dipole steerer magnet has been done for an integral dipole field of 2.1mT-m in a Good Field Region (GFR) of 23 mm diameter with Integral Field homogeneity better than 0.5%. Electromagnetic field simulations were done using 3D-FEM simulation software OPERA. Error sensitivity studies have been carried out to specify the manufacturing tolerances to estimate and minimize the beam transmission loss due to likely misalignments and rotation of the magnet. A combined function dipole corrector magnet has been designed and fabricated at the Control Instrumentation Division, BARC. This paper discusses measurement results of a combined function dipole steerer for MEBT line for Proton (H + ) beam at 2.5 MeV. (author)

  14. Beam transfer lines for the Tandem-superconducting cyclotron at Lab. Nazionale del Sud

    International Nuclear Information System (INIS)

    Calabretta, L.; Cuttone, G.; DiBernardo, P.; Giove, D.; Raia, G.; Yan, C.; Cao, L.; Liu, K.

    1988-01-01

    At the L.N.S. an MP-Tandem will be used as injector for the Superconducting Cyclotron. This paper describes the handling beam system for the Superconducting Cyclotron. All the lines are designed to be achromatic. Home made beam profile monitor is the main diagnostic device and its design and preliminary tests are presented. The distributed computer control for all the beam lines and bunching system is described too. The status of beam transfer line from tandem to S.C. and of bunching system is presented

  15. SLC beam line error analysis using a model-based expert system

    International Nuclear Information System (INIS)

    Lee, M.; Kleban, S.

    1988-02-01

    Commissioning particle beam line is usually a very time-consuming and labor-intensive task for accelerator physicists. To aid in commissioning, we developed a model-based expert system that identifies error-free regions, as well as localizing beam line errors. This paper will give examples of the use of our system for the SLC commissioning. 8 refs., 5 figs

  16. Final design of the neutral beam lines for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Pittenger, L.C.; Valby, L.E.; Stone, R.R.; Pedrotti, L.R.; Denhoy, B.; Yoard, R.

    1979-01-01

    Final design of the neutral beam lines for TFTR has been completed. A prototype has been assembled at Lawrence Berkeley Laboratory and is undergoing testing as part of the Neutral Beam System Test Facility (NBSTF). The final neutral beam line (NBL) configuration differs in several details from that previously reported upon; certain components have been added; and testing of the cryopump system has led to some design simplification. It is these developments which are reported herein

  17. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  18. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  19. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    International Nuclear Information System (INIS)

    Friedman, Alex

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy

  20. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    Energy Technology Data Exchange (ETDEWEB)

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware

  1. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B

    International Nuclear Information System (INIS)

    FOERSTER, C.

    1999-01-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of ∼ 1 x 10 -10 Torr without beam and ∼ 1 x 10 -9 Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not

  2. Computer system for the beam line data processing at JT-60 prototype neutral beam injector

    International Nuclear Information System (INIS)

    Horiike, Hiroshi; Kawai, Mikito; Ohara, Yoshihiro

    1987-08-01

    The present report describes the hard and soft wares of the data acquisition computer system for the prototype neutral injector unit for JT-60. In order to operate the unit, more than hundreds of signals of the beam line components have to be measured. These are mainly differential thermometers for the coolant waters and thermocouples for the beam dump components but not include those for the cryo system. Since the unit operates in a series of pulses, the measurement should be conducted very quickly in order to ensure the simultaneity of large number of the measured data. The present system actualize fast data acquisition using a small computer of 128 kB and measuring instruments connected through the bus. The system is connected to the JAERI computer center since the data capacity is fairly large to completely process them by the small computer. Therefore the measured data can be transferred to the computer center to calculate there, and the results can be received. After the system was completed the computer quickly print out the power flow data, which needed much work to calculate with hands. This system was very useful. It enhanced the experiments at the unit and reduced the labor. It enables us to early demonstrate the rated operation of the unit and to accurately estimate such operation data of the JT-60 NBI as the injection power. (author)

  3. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  4. The Experimental Verification of Gaussian Beam Coupling for ECH Transmission Line at 400 GHz

    Directory of Open Access Journals (Sweden)

    Choe Mun Seok

    2017-01-01

    Full Text Available We design a quasi-optical transmission line system for a 400 GHz gyrotron beam. The 400GHz Gaussian beam is injected to a corrugated waveguide bounced from a quasi-optical mirror. From detailed 2D field patterns of the output beam emitted from the corrugated waveguide, we analyze the mode contents and the source of non-ideal beam expansion

  5. An after-market, five-port vertical beam line extension for the PETtrace

    DEFF Research Database (Denmark)

    Barnhart, T. E.; Engle, J. W.; Severin, Gregory

    2012-01-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target...... positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates. © 2012 American Institute of Physics...

  6. Monitoring beam position in the TRISTAN AR-to-MR transport lines

    International Nuclear Information System (INIS)

    Ieiri, Takao; Arinaga, Mitsuhiro

    1994-01-01

    A beam-position monitor (BPM) has been installed in the transport lines between the Accumulation Ring (AR) and the Main Ring (MR) of TRISTAN. This monitor can detect the beam position and its charge every passage of the beam. Variations of the beam position have been observed during the routine operation. An investigation into the AR extraction components has been carried out in order to clarify a source of the variations. (author)

  7. An after-market, five-port vertical beam line extension for the PETtrace

    Science.gov (United States)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-01

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port ♯2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  8. An after-market, five-port vertical beam line extension for the PETtrace

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J. [Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Los Alamos National Lab, Los Alamos, NM (United States); Hevesy Laboratory, Danish Technical University, Riso (Denmark); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Department of Radiology, University of Washington, Seattle, WA (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States)

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  9. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.

    Science.gov (United States)

    Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N

    2014-05-01

    The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of

  10. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  11. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  12. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  13. Workshop on a project for a FZR-beam line at ESRF

    International Nuclear Information System (INIS)

    Matz, W.

    1993-10-01

    The Research Center Rossendorf (FZR) investigates the possibilities to install its own beam line as a Cooperate Research Group-project (CRG) at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The main interests for the FZR to use high brillant synchrotron radiation are in the Institute of Radiochemistry and the Institute of Ion Beam Physics and Materials Research. This workshop was organized by these two institutes together with the FZR Study group Synchrotron. The purpose of the workshop was to achieve a better understanding for the technical needs of the projected beam line for the planned research projects. Experts with experience in beam line design met with the Rossendorf groups to discuss the best layout for such a beam line. The summary of this workshop and the copies of transparencies of the lectures that were given are published in this booklet. (orig.)

  14. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  15. A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac

    Science.gov (United States)

    Miura, A.; Tamura, J.; Kawane, Y.

    2017-07-01

    In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.

  16. The on-line beam control and diagnosis system of TARN

    International Nuclear Information System (INIS)

    Takanaka, M.; Watanabe, S.; Chiba, K.; Katayama, T.; Noda, A.

    1982-04-01

    The computer network in TARN is composed of a central main frame computer, two different minicomputers and several microprocessors. It has been used for the beam control and the beam diagnosis; support for adjustment of elements of the transport line and the ring, generation of RF voltage function, measurement of beam profile at RF stacking, on-line measurement of ν:value, and observation of Schottky signal. By the use of this computer system, the operation of TARN has been effectively and steadily performed, and additionally it has contributed to measuring the beam characteristics precisely in the ring. (author)

  17. The Brookhaven ATF low-emittance beam line

    International Nuclear Information System (INIS)

    Wang, X.J.; Kirk, H.G.

    1991-01-01

    One component of the experimental program at the Brookhaven Accelerator Test Facility (ATF) consists of a class of experiments which will study the acceleration of electrons through micron-size structures which are exposed in coincidence to a 100 GW CO 2 laser beam. These experiments require the development and control of an electron beam with geometric emittances on the order of 10 -10 m-rad and intensities on the order of 10 6 electrons. In this paper, the authors describe the strategies for producing such beams and the effects of higher-order aberrations. Particle tracking results are presented for the final-focus system

  18. The Brookhaven ATF low-emittance beam line

    International Nuclear Information System (INIS)

    Wang, X.J.

    1991-01-01

    One component of the experimental program at the Brookhaven Accelerator Test Facility (ATF) consists of a class of experiments which will study the acceleration of electrons through micron-size structures which are exposed in coincidence to a 100 GW CO 2 laser beam. These experiments require the development and control of an electron beam with geometric emittances on the order of 10 -10 m-rad and intensities on the order of 10 6 electrons. In this paper, we describe the strategies for producing such beams and the effects of high-order aberrations. Particle tracking results are presented for the final-focus system. 9 refs., 6 figs., 2 tabs

  19. Physics with primary beams of the KEK-PS

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro; Yoshii, Masahito

    1993-08-01

    The 12-GeV Proton Synchrotron (PS) at the National Laboratory for High Energy Physics (KEK) has provided great opportunities to high-energy-physics and related communities as a unique high-energy hadron machine, since its operation in 1976. Activities of the KEK-PS are indispensable for the rapid development in the field. Six experimental subjects are proposed in this Report; (1) media effects in φ meson decay, (2) multifragmentation in high-energy reactions, (3) mechanism of high-energy reactions by means of radio-chemical methods, (4) physics with polarized high-energy neutrons, (5) physics with polarized high-energy deuterons, and (6) hypernucleus with high-energy heavy-ion beams. As a summary, new facilities (a new injector, a new beamline and a new experimental area) and physics programs with primary beams, proposed in this Report are themselves unique and valuable. Moreover, technical developments and physics outcomes stimulated with those new facilities are indispensable for future plans of the KEK-PS. (J.P.N.)

  20. NSLS infra-red beam line (U3) conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1984-02-09

    We describe the conceptual design of an infrared (I-R) beam line on the vacuum-ultra-violet storage ring of the National Synchrotron Light Source. The beam line forms part of the Phase II expansion of the NSLS. Consistent with the implementation of the current design is the extraction of hitherto wasted radiation and the establishment of a mezzanine floor or platform to make full use of the available headroom. This means that the I-R beam line, once established, does not interfere with any existing operations on the VUV floor.

  1. Developing an expert system to control a beam line at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Clearwater, S.H.; Papcun, G.; Clark, D.A.

    1985-01-01

    High energy particle experiments require an accelerator as a source of high energy particles. To increase the productivity of an accelerator facility, we wish to develop an expert system to control beam lines. Expert Systems are a branch of Artificial Intelligence where a computer program performs tasks requiring human expertise. Unlike most expert systems we have a physical model underlying our beam line and this model can be used with the expert system to improve performance. The development of the expert system will lead to an increased understanding of the beam line as well as the possibility of state-of-the-art expert system building

  2. Engineering Design of Electrostatic Quadrupole for ISOL Beam Lines

    International Nuclear Information System (INIS)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S.

    2014-01-01

    In the ISOL system, the RI beam should be transported from the target ion source to post accelerator through various analyzing and charge-breeding systems such as PS (pre-seperator), HRMS (High Resolution Mass Seperator), RF cooler and A/q separator. A reference particle for the beam dynamics calculation is 132 Sn 1+ . After charge breeder system, the charge state is boosted from +1 to +19 with ECR charge breeder and to +33 with EBIS charge breeder. Because the beam energy is as low as 50 keV, the electrostatic optics was adopted rather than the magnetic optics. The electrostatic quadrupole triplets were used for the beam focusing and the electrostatic bender is used for 90-degree bending. In this paper, the design procedure and engineering design of the electrostatic quadrupole are presented

  3. Optics calculations and beam line design for the JANNuS facility in Orsay

    International Nuclear Information System (INIS)

    Chauvin, N.; Henry, S.; Flocard, H.; Fortuna, F.; Kaitasov, O.; Pariset, P.; Pellegrino, S.; Ruault, M.O.; Serruys, Y.; Trocelier, P.

    2007-01-01

    JANNuS (Joint Accelerators for Nano-Science and Nuclear Simulation) will be a unique user facility in Europe dedicated to material modification by ion beam implantation and irradiation. The main originality of the project is that it will be possible to perform implantation and irradiation with simultaneous multiple ions beams and in situ characterization by transmission electron microscopy (TEM) observation or ion beam analysis. This facility will be composed of two experimental platforms located in two sites: the CEA-SRMP in Saclay and the CNRS-CSNSM in Orsay. This paper will focus on the design of two new transport beam lines for the Orsay site. One of the most challenging parts of the JANNuS project (Orsay site) is to design two new beam lines in order to inject, into a 200 kV TEM, two different ion beams (low and medium energy) coming from two existing pieces of equipment: a 2 MV Tandem accelerator and a 190 kV ion implanter. For these new beam lines, first order beam calculations have been done using transfer matrix formalism. A genetic algorithm has been written and adapted to perform the optimization of the beam line parameters. Then, using the SIMION code, field maps of the electrostatic elements (quadrupoles, spherical sectors) have been calculated and ion trajectories have been simulated. We studied specifically the optical aberrations induced by the electrostatic spherical deflectors. Finally, the results of the first order calculations and the field map simulations show a good agreement

  4. Design and initial tests of beam current monitoring systems for the APS transport lines

    International Nuclear Information System (INIS)

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included

  5. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  6. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bogomilov, M. [University of Sofia (Bulgaria); et al.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.

  7. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    CERN Document Server

    Bogomilov, M.; Kolev, D.; Russinov, I.; Tsenov, R.; Vankova-Kirilova, G.; Wang, L.; Xu, F.Y.; Zheng, S.X.; Bertoni, R.; Bonesini, M.; Ferri, F.; Lucchini, G.; Mazza, R.; Paleari, F.; Strati, F.; Palladino, V.; Cecchet, G.; de Bari, A.; Capponi, M.; Cirillo, A.; Iaciofano, A.; Manfredini, A.; Parisi, M.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Mori, Y.; Kuno, Y.; Sakamoto, H.; Sato, A.; Yano, T.; Yoshida, M.; Ishimoto, S.; Suzuki, S.; Yoshimura, K.; Filthaut, F.; Garoby, R.; Gilardoni, S.; Gruber, P.; Hanke, K.; Haseroth, H.; Janot, P.; Lombardi, A.; Ramberger, S.; Vretenar, M.; Bene, P.; Blondel, A.; Cadoux, F.; Graulich, J.S.; Grichine, V.; Gschwendtner, E.; Masciocchi, F.; Sandstrom, R.; Verguilov, V.; Wisting, H.; Petitjean, C.; Seviour, R.; Alexander, J.; Charnley, G.; Collomb, N.; Griffiths, S.; Martlew, B.; Moss, A.; Mullacrane, I.; Oates, A.; Owens, P.; White, C.; York, S.; Adams, D.; Apsimon, R.; Barclay, P.; Baynham, D.E.; Bradshaw, T.W.; Courthold, M.; Drumm, P.; Edgecock, R.; Hayler, T.; Hills, M.; Ivaniouchenkov, Y.; Jones, A.; Lintern, A.; MacWaters, C.; Nelson, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rochford, J.H.; Rogers, C.; Spensley, W.; Tarrant, J.; Tilley, K.; Watson, S.; Wilson, A.; Forrest, D.; Soler, F.J.P.; Walaron, K.; Cooke, P.; Gamet, R.; Alekou, A.; Apollonio, M.; Barber, G.; Clark, D.; Clark, I.; Dobbs, A.; Dornan, P.; Fish, A.; Hare, R.; Greenwood, S.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K.; McKigney, E.; Matsushita, T.; Pasternak, J.; Sashalmi, T.; Savidge, T.; Takahashi, M.; Blackmore, V.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.; Tunnell, C.D.; Witte, H.; Yang, S.; Booth, C.N.; Hodgson, P.; Howlett, L.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.; Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Ellis, M.; Kyberd, P.; Littlefield, M.; Nebrensky, J.J.; Bross, A.D.; Geer, S.; Neuffer, D.; Moretti, A.; Popovic, M.; Cummings, M.A.C.; Roberts, T.J.; DeMello, A.; Green, M.A.; Li, D.; Virostek, S.; Zisman, M.S.; Freemire, B.; Hanlet, P.; Huang, D.; Kafka, G.; Kaplan, D.M.; Snopok, P.; Torun, Y.; Blot, S.; Kim, Y.K.; Bravar, U.; Onel, Y.; Cline, D.; Fukui, Y.; Lee, K.; Yang, X.; Rimmer, R.A.; Cremaldi, L.M.; Gregoire, G.; Hart, T.L.; Sanders, D.A.; Summers, D.J.; Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C.; Gallardo, J.; Kahn, S.; Kirk, H.; Palmer, R.B.

    2012-01-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam.

  8. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    Science.gov (United States)

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  9. Preparation of a primary argon beam for the CERN fixed target physics.

    Science.gov (United States)

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  10. Preparation of a primary argon beam for the CERN fixed target physics

    Energy Technology Data Exchange (ETDEWEB)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R. [CERN, BE Department, 1211 Geneva 23 (Switzerland); Thomae, R. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa)

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  11. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, F., E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Maggiore, M. [INFN-LNL, Legnaro (Italy); Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F. [INFN-LNS, Catania (Italy); Scuderi, V. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2016-11-21

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  12. Time Resolved Spectrometry on the Test Beam Line at CTF3

    CERN Document Server

    Olvegård, M; Lefèvre, T; Döbert, S; Adli, E

    2009-01-01

    The CTF3 provides a high current (28 A) high frequency (12 GHz) electron beam, which is used to generate high power radiofrequency pulses at 12 GHz by decelerating the electrons in resonant structures. A Test Beam Line (TBL) is currently being built in order to prove the efficiency and the reliability of the RF power production with the lowest level of particle losses. As the beam propagates along the line, its energy spread grows up to 60%. For instrumentation, this unusual characteristic implies the development of new and innovative techniques. One of the most important tasks is to measure the beam energy spread with a fast time resolution. The detector must be able to detect the energy transient due to beam loading in the decelerating structures (nanosecond) but should also be capable to measure bunch-to-bunch fluctuations (12 GHz). This paper presents the design of the spectrometer line detectors.

  13. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    International Nuclear Information System (INIS)

    Wang, Guimei

    2011-01-01

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q ext with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy

  14. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  15. Operational experience with synchrotron light interferometers for CEBAF experimental beam lines

    Energy Technology Data Exchange (ETDEWEB)

    Pavel Chevtsov

    2006-10-24

    Beam size and energy spread monitoring systems based on Synchrotron Light Interferometers (SLI) have been in operations at Jefferson Lab for several years. A non-invasive nature and a very high (a few mm) resolution of SLI make these instruments valuable beam diagnostic tools for the CEBAF accelerator. This presentation describes the evolution of the Synchrotron Light Interferometer at Jefferson Lab and highlights our extensive experience in the installation and operation of the SLI for CEBAF experimental beam lines.

  16. A GIF++ Gamma Irradiation Facility at the SPS H4 Beam Line

    CERN Document Server

    Capéans-Garrido, M; Linssen, L; Moll, M; Rembser, C

    2009-01-01

    The current document describes a proposal to implement a new gamma irradiation facility, combined with a high-energy particle beam in the SPS H4 beam line in hall EHN1. This new GIF++ facility is motivated by strong needs from the LHC and sLHC detector and accelerator communities for the tests of LHC components and systems.

  17. Faraday cup: absolute dosimetry for ELIMED beam line

    International Nuclear Information System (INIS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A.G.; Cuttone, G.; Larosa, G.; Milluzzo, G.; Petringa, G.; Pipek, J.; Cirrone, G.A.P.; Margarone, D.; Schillaci, F.

    2017-01-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  18. An interactive beam line simulator module for RHIC

    International Nuclear Information System (INIS)

    MacKay, W.W.

    1997-01-01

    This paper describes the interactive simulation engine, bl, designed for the RHIC project. The program tracks as output to shared memory the central orbit, Twiss and dispersion functions, as well as the 6 x 6 beam hyperellipsoid. Transfer matrices between elements are available via interactive requests. Using a 6-d model, optical elements are modeled with a linear transfer matrix and a vector. The vector allows simulation of misalignments, shifts in field strengths, and beam rigidity. Currently only a linear model is used for elements. In addition to the usual magnets, a foil element is included which can shift the beam's rigidity (resulting from a change of charge and energy loss), as well as increase the momentum spread and emittance. Running as a Glish client, bl can be interfaced to other programs, such as an orbit plotter and a power supply application to give a quick prediction of the beam orbit from actual operating currents in the accelerator. Various strengths and offsets may be changed by sending Glish events to bl

  19. Interleaving of beam lines inside the PS tunnel

    CERN Multimedia

    1983-01-01

    View against the direction of the proton beams. The PS ring (section 26) is on the left. The injection tunnel for LEAR leaving from here has increased the trafic in this already busy area where the two Linacs and the transfer tunnel leading to the SPS, ISR and AA join the PS ring (cf. photo 7802260, 7802261, Annual Report 1981, p. 89, fig. 12).

  20. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Capista, D. [Fermilab; Adams, P. [Fermilab; Morris, D. [Fermilab; Yang, M. J. [Fermilab; Hazewood, K. [Fermilab

    2016-10-03

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.

  1. Design and Construction of a Beam Position Monitor Prototype for the Test Beam Line of the CTF3

    CERN Document Server

    Garcia Garrigos, Juan Jose

    2008-01-01

    A prototype of Beam Position Monitor (BPM) for the Test Beam Line (TBL) of the 3rd CLIC Test Facility (CTF3) at CERN has been designed and constructed at IFIC in collaboration with the CERN CTF3 team. The design is a scaled version of the BPMs of the CTF3 linac. The design goals are a resolution of 5 μm, an overall precision of 50 μm, in a circular vacuum chamber of 24 mm, in a frequency bandwidth between 10 kHz and 100MHz.The BPMis an inductive type BPM. Beam positions are derived from the image current created by a high frequency electron bunch beam into four electrodes surrounding the vacuum chamber. In this work we describe the mechanical design and construction, the description of the associated electronics together with the first calibration measurements performed in a wire test bench at CERN.

  2. Beam Line and Associated Work: Operational Phase 1985-1987

    Science.gov (United States)

    1988-08-26

    ENEA FEL experiment. F. Cicci, E. Fiorentino. A. Ranieri, E. Sabie. Centro Ricerche Energia Frascati (Italy?. ....................... 169 582.25...C) knife-edge pinhole bracket (cf. Fig. 14); (D) beam stop; (E) calorimeter with an attached Si solar cell detector; (F) paddle with tilted platforms...used for T real-time signal pickup behind the slit was a standard Si solar cell, epoxied to the calorimeter case (detail . in Fig. 5). The experimental

  3. Optimum steering of photon beam lines in SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Fong, B.; Lee, M.; Ziemann, V.

    1993-04-01

    A common operational requirement for many synchrotron light sources is to maintain steered photon beamlines with minimum corrector strength values. To solve this problem for SPEAR, we employed the Singular Value Decomposition (SVD) matrix-inversion technique to minimize corrector strengths while constraining the photon beamlines to remain on target. The result was a reduction in corrector strengths, yielding increased overhead for the photon-beam position feedback systems

  4. Emittance Measurements For Future LHC Beams Using The PS Booster Measurement Line

    CERN Document Server

    Abelleira, Jose; Mikulec, Bettina; Di Giovanni, Gian Piero; CERN. Geneva. ATS Department

    2017-01-01

    The CERN PS Booster measurement line contains three pairs of SEM grids separated by drift space that measures the beam size in both planes. The combined analysis of these grids allows calculating a value for the transverse beam emittances. The precision of such a measurement depends on the ratio of RMS beam size and wire spacing. Within the LIU-PSB upgrade the extraction kinetic energy of the PSB will be increased from the current 1.4 GeV to 2.0 GeV. This will result in smaller transverse beam sizes for some of the future beams. The present layout of the transverse emittance measurement line is reviewed to verify if it will satisfy future requirements.

  5. Status of the ELIMED multidisciplinary and medical beam-line at ELI-Beamlines

    International Nuclear Information System (INIS)

    Romano, F; Cirrone, G A P; Cuttone, G; Schillaci, F; Scuderi, V; Amico, A; Candiano, G; Larosa, G; Leanza, R; Manna, R; Marchese, V; Milluzzo, G; Petringa, G; Pipek, J; Giordanengo, S; Guarachi, L F; Marchetto, F; Sacchi, R; Korn, G; Margarone, D

    2017-01-01

    Nowadays, one of the biggest challenges consists in using high intensity laser-target interaction to generate high-energy ions for medical purposes, eventually replacing the old paradigm of acceleration characterized by huge and complex machines. In order to investigate the feasibility of using laser-driven ion beams for multidisciplinary application, a dedicated beam transport line will be installed at the ELI-Beamlines facility in Prague (CZ), as a part of the User-oriented ELIMAIA beam-line dedicated to ion acceleration and their potential applications. The beam-line section dedicated to transport and dosimetric endpoints is called ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) and will be developed by the INFN-LNS. (paper)

  6. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  7. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  8. Optimum field size and choice of isodose lines in electron beam treatment

    International Nuclear Information System (INIS)

    Das, Indra J.; Cheng, Chee W.; Healey, Glenn A.

    1995-01-01

    Purpose: A method is provided for the optimum field size and the choice of isodose line for the dose prescription in electron beam therapy. Methods and Materials: Electron beam dose uniformity was defined in terms of target coverage factor (TCF) which is an index of dose coverage of a given treatment volume. The TCF was studied with respect to the field size, the beam energy, and the isodose level for prescription from the measured data for various accelerators. The effect of the TCF on air gap between electron applicator/cone and the surface was investigated. Electron beams from scattering foil and scanned beam units were analyzed for the target coverage. Results: A mathematical method is provided to optimize a field size for target coverage by a given isodose line in terms of TCF which is strongly dependent on the type of accelerator and the design of the collimator. For a given type of collimating system, the TCF does not depend on the type of electron beam production (scattering foil or swept scanned beam). Selection of isodose line for dose prescription is very critical for the value of the TCF and the dose coverage. The TCF is inversely proportional to the isodose value selected for the treatment and nearly linear with field size and beam energy. Air gap between applicator and the surface reduces the dose uniformity. Tertiary collimator moderately improves the lateral coverage for high energy beams. Conclusions: To adequately cover the target volume in electron beam treatment, lateral and depth coverage should be considered. The coverage at depth is strongly dependent on the choice of isodose line or beam normalization. If the dose prescription is at d max (i.e., the 100% isodose line is selected), the choice of beam energy is not critical for depth coverage since d max is nearly independent of energy for smaller fields. The 100% isodose line should not be chosen for treatment because of the significant constriction of this isodose line and inadequate

  9. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  10. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  11. The Joint Structural Biology Group beam lines at the ESRF: Modern macromolecular crystallography

    CERN Document Server

    Mitchell, E P

    2001-01-01

    Macromolecular crystallography has evolved considerably over the last decade. Data sets in under an hour are now possible on high throughput beam lines leading to electron density and, possibly, initial models calculated on-site. There are five beam lines currently dedicated to macromolecular crystallography: the ID14 complex and BM-14 (soon to be superseded by ID-29). These lines handle over five hundred projects every six months and demand is increasing. Automated sample handling, alignment and data management protocols will be required to work efficiently with this demanding load. Projects developing these themes are underway within the JSBG.

  12. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  13. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  14. Use of primary beam filtration in estimating mass attenuation coefficients by Compton scattering

    International Nuclear Information System (INIS)

    O'Connor, B.H.; Chang, W.J.

    1985-01-01

    Mass attenuation coefficients (MACs) are frequently estimated over a range of wavelengths in x-ray spectrometry from the intensity of the Compton peak I /SUB C/ associated with a prominent tube line. The MAC μ /SUB ll/ at wavelength lambda is estimated from the MAC at the Compton wavelength lambda /SUB C/ with the approximations μ /SUB ll/ α μ /SUB C/ and μ /SUB C/ α l/I /SUB C/ , Systematic errors may introduce absorption edge bias (AEB) effects into the results, caused by sample components with absorption edges between lambda /SUB C/ and lambda. A procedure is described which eliminates AEB effects by measuring I /SUB C/ using emission radiation from a primary beam filter

  15. Insertion device and beam line plans for the Advanced Photon Source: A report and recommendations by the Insertion Device and Beam Line Planning Committee

    International Nuclear Information System (INIS)

    1988-02-01

    In the 7-GeV Advanced Photon Source (APS) Conceptual Design Report (CDR), fifteen complete experimental beam lines were specified in order to establish a representative technical and cost base for the components involved. In order to optimize the composition of the insertion devices and the beam line, these funds are considered a ''Trust Fund.'' The present report evaluates the optimization for the distribution of these funds so that the short- and long-term research programs will be most productive, making the facility more attractive from the user's point of view. It is recommended that part of the ''Trust Fund'' be used for the construction of the insertion devices, the front-end components, and the first-optics, minimizing the cost to potential users of completing a beam line. In addition, the possibility of cost savings resulting from replication and standardization of high multiplicity components (such as IDs, front ends, and first-optics instrumentation) is addressed. 2 refs., 5 tabs

  16. Beam current monitoring in the AGS Booster and its transfer lines

    International Nuclear Information System (INIS)

    Witkover, R.L.; Zitvogel, E.; Castillo, V.

    1991-01-01

    The new AGS Booster is designed to accelerate low intensity polarized protons and heavy ions, and high intensity protons. The wide range of beam parameters and the vacuum, thermal and radiation environment, presented challenges in the instrumentation design. This paper describes the problems and solutions for the beam current monitors in the Booster and its transport lines. Where available, results of the initial operation will be presented. 11 refs., 3 figs

  17. Materials research and beam line operation utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1987-10-01

    MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs

  18. Beam position monitoring in the AGS Linac to Booster transfer line

    International Nuclear Information System (INIS)

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper provides a system overview and report results from the commissioning experience

  19. 1 to 2 GeV/c beam line for hypernuclear and kaon research

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    A kaon beam line operating in the range from 1.0 to 2.0 GeV/c is proposed. The line is meant for kaon and pion research in a region hitherto inaccessible to experimenters. Topics in hypernuclear and kaon physics of high current interest include the investigation of doubly strange nuclear systems with the K - ,K + reaction, searching for dibaryon resonances, hyperon-nucleon interactions, hypernuclear γ rays, and associated production of excited hypernuclei. The beam line would provide separated beams of momentum analyzed kaons at intensities greater than 10 6 particles per spill with a momentum determined to one part in a thousand. This intensity is an order of magnitude greater than that currently available. 63 references

  20. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  1. Successful beam test of the SPS-to-LHC transfer line TI2

    CERN Multimedia

    2007-01-01

    Image of the first beam spot on the last BTV screen traversed by the beam during the TI 2 test.At 12:03:47 on 28 October a beam passed down the 2.7 km of the new SPS-to-LHC transfer line TI 2 at the first attempt, to within some 50 m of the LHC tunnel. After initial tuning, a range of measurements was carried out with a low intensity proton beam and preliminary analyses look good. After the test, no increase in radiation levels was found in either the LHC or ALICE, and the zones were rapidly opened again for access. As from next year TI 2 will regularly transport a beam from the SPS to the LHC injection point of Ring 1, near Point 2 (ALICE). The TI 8 transfer line, which will bring particles from the SPS to the injection point in Ring 2, near Point 8 (LHCb), was commissioned successfully with low intensity beam in 2004. The two LHC injection lines have a combined length of 5.6 km and comprise some seven hundred warm magnets. While a...

  2. On-line Observation Of Electron Beam Bunches In The Large Storage Ring Of Kurchatov Srs

    CERN Document Server

    Ioudin, L I; Krylov, Y V; Rezvov, V A; Stirin, A I; Valentinov, A G; Yupinov, Y L

    2004-01-01

    A complex of instrumentation for visual quantitative estimation of electron beam bunches in the big storage ring of Kurchatov Synchrotron Radiation Centre (KSRC) is tested. The bunches pass through a cylindrical electrostatic sensor whose signal is recorded by a wide-band oscillograph. The TV camera reads the optical image of the signal from the oscillograph screen. The TV signal numbering board inputs the video image to the computer memory. The monitor displays the beam bunch structure. A special program provides on-line visualisation of bunch behaviour on the beam orbit. The images of beam structure and a series of images showing the beam behaviour in the regimes of accumulation, acceleration and in the stationary regime a full power are numbered and stored.

  3. Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities

    International Nuclear Information System (INIS)

    Macek, R.J.

    1994-01-01

    The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D)

  4. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  5. One primary collimator with optional crystal feature, tested with beam

    CERN Document Server

    EuCARD, Collaboration

    2014-01-01

    The WP8 of EuCARD aims at the design of more advanced materials and collimator concepts for high beam power in particle accelerators like LHC and FAIR. Deliverable 8.3.1 concerned the production and the validation by beam tests of an advanced collimator prototype to improve various aspects of the LHC collimation system, such as the accuracy of the collimator jaw alignment to the circulating beam, the duration of collimator setup time and the overall halo cleaning performance. A collimator prototype was built and installed in the SPS for beam tests in the running period between 2010 and 2012. Crystal collimation aspects were dealt with in a dedicated SPS experiment, which also profited from EuCARD contributions.

  6. Conceptual design report for the UNI-CAT beam line proposal

    International Nuclear Information System (INIS)

    Budai, J.D.; Ice, G.E.; Sparks, C.J.; Zschack, P.; Chen, H.; Chiang, T.C.; Nelson, M.C.; Salamon, M.B.; Simmons, R.O.; Robota, H.

    1992-08-01

    The overall thrusts of UNI-CAT (University-National Laboratory- Industry Collaborative Access Team) are research at the cutting edge of physics, chemistry, biology, materials science, chemical engineering, polymer science, and geology; and education of a new generation of scientists in the use of synchrotron radiation to probe the structure, chemistry, and dynamic behavior of materials. The UNI-CAT proposal is to develop an APS sector that includes a bending magnet beam line and an insertion device beam line. The APS type-A undulator is the preferred choice for the insertion device. 8 figs, 6 refs

  7. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    International Nuclear Information System (INIS)

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  8. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Bambade, P; Amann, J; Angal-Kalinin, D; Apsimon, R; Araki, S; Aryshev, A; Bai, S; Bellomo, P; Bett, D; Blair, G; Bolzon, B; Boogert, S; Boorman, G; Burrows, P N; Christian, G; Coe, P; Constance, B; Delahaye, J P; Deacon, L; Elsen, E; Faus-Golfe, A; Fukuda, M; Gao, J; Geffroy, N; Gianfelice-Wendt, E; Guler, H; Hayano, H; Heo, A Y; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jeremie, A; Jones, J; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lyapin, A; Masuzawa, M; McCormick, D; Molloy, S; Naito, T; Nakamura, T; Nelson, J; Okamoto, D; Okugi, T; Oroku, M; Park, Y J; Parker, B; Paterson, E; Perry, C; Pivi, M; Raubenheimer, T; Renier, Y; Resta-Lopez, J; Rimbault, C; Ross, M; Sanuki, T; Scarfe, A; Schulte, D; Seryi, A; Spencer, C; Suehara, T; Sugahara, R; Swinson, C; Takahashi, T; Tauchi, T; Terunuma, N; Tomas, R; Urakawa, J; Urner, D; Verderi, M; Wang, M H; Warden, M; Wendt, M; White, G; Wittmer, W; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, Y; Yoda, H; Yokoya, K; Zhou, F; Zimmermann, F; 10.1103/PhysRevSTAB.13.042801

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  9. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    Energy Technology Data Exchange (ETDEWEB)

    Perry, A., E-mail: aperry4@hawk.iit.edu [Argonne National Laboratory, Argonne, IL 60439, USA and Illinois Institute of Technology, Chicago, IL 60616 (United States); Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  10. An analysis model of the secondary tunnel lining considering ground-primary support-secondary lining interaction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seong-Ho; Chang, Seok-Bue [Yooshin Engineering Corporation, Seoul(Korea); Lee, Sang-Duk [Ajou University, Suwon(Korea)

    2002-06-30

    It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads, and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel. the reasons of the load for secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rock bolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required for the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves for the theoretical solution of a circular tunnel, And also, the application of this proposed model to numerical analysis is verified in order to check the potential for the tunnel with the complex analysis conditions. (author). 8 refs., 2 tabs., 7 figs.

  11. Upgrades to the SPS-to-LHC Transfer Line Beam Stoppers for the LHC High-Luminosity Era

    CERN Document Server

    Kain, Verena; Fraser, Matthew; Goddard, Brennan; Meddahi, Malika; Perillo Marcone, Antonio; Steele, Genevieve; Velotti, Francesco

    2016-01-01

    Each of the 3 km long transfer lines between the SPS and the LHC is equipped with two beam stoppers (TEDs), one at the beginning of the line and one close to the LHC injection point, which need to absorb the full transferred beam. The beam stoppers are used for setting up the SPS extractions and transfer lines with beam without having to inject into the LHC. Energy deposition and thermo-mechanical simulations have, however, shown that the TEDs will not be robust enough to safely absorb the high intensity beams foreseen for the high-luminosity LHC era. This paper will summarize the simulation results and limitations for upgrading the beam stoppers. An outline of the hardware upgrade strategy for the TEDs together with modifications to the SPS extraction interlock system to enforce intensity limitations for beam on the beam stoppers will be given.

  12. Design considerations for primary neutron beam collimation on the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Howells, W.S.

    1980-09-01

    A scheme for the design of primary neutron beam collimation is presented which is based on ray diagrams. The practical application of the ideas is outlined and the influence of various constraints such as beam shutters is discussed. The ideas are illustrated with examples which include the layouts for some typical instruments. (author)

  13. High beam current shut-off systems in the APS linac and low energy transfer line

    International Nuclear Information System (INIS)

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-01-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ''real'' beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS

  14. The Fluka Linebuilder and Element Database: Tools for Building Complex Models of Accelerators Beam Lines

    CERN Document Server

    Mereghetti, A; Cerutti, F; Versaci, R; Vlachoudis, V

    2012-01-01

    Extended FLUKA models of accelerator beam lines can be extremely complex: heavy to manipulate, poorly versatile and prone to mismatched positioning. We developed a framework capable of creating the FLUKA model of an arbitrary portion of a given accelerator, starting from the optics configuration and a few other information provided by the user. The framework includes a builder (LineBuilder), an element database and a series of configuration and analysis scripts. The LineBuilder is a Python program aimed at dynamically assembling complex FLUKA models of accelerator beam lines: positions, magnetic fields and scorings are automatically set up, and geometry details such as apertures of collimators, tilting and misalignment of elements, beam pipes and tunnel geometries can be entered at user’s will. The element database (FEDB) is a collection of detailed FLUKA geometry models of machine elements. This framework has been widely used for recent LHC and SPS beam-machine interaction studies at CERN, and led to a dra...

  15. In situ baking method for degassing of a kicker magnet in accelerator beam line

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu; Yasuda, Yuichi

    2016-01-01

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small

  16. In situ baking method for degassing of a kicker magnet in accelerator beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu [Japan Atomic Energy Agency, J-PARC Center, Ooaza Shirakata 2-4, Tokai, Naka, Ibaraki 319-1195 (Japan); Yasuda, Yuichi [SAKAGUCHI E.H VOC CORP., Sakura Dai-san Kogyodanchi 1-8-6, Osaku, Sakura, Chiba 285-0802 (Japan)

    2016-03-15

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.

  17. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging

    NARCIS (Netherlands)

    Zhang, Ye; Knopf, A; Tanner, Colby; Boye, Dirk; Lomax, Antony J.

    2013-01-01

    Organ motion is a major problem for any dynamic radiotherapy delivery technique, and is particularly so for spot scanned proton therapy. On the other hand, the use of narrow, magnetically deflected proton pencil beams is potentially an ideal delivery technique for tracking tumour motion on-line. At

  18. A very sensitive nonintercepting beam average velocity monitoring system for the TRIUMF 300-keV injection line

    International Nuclear Information System (INIS)

    Yin, Y.; Laxdal, R.E.; Zelenski, A.; Ostroumov, P.

    1997-01-01

    A nonintercepting beam velocity monitoring system has been installed in the 300-keV injection line of the TRIUMF cyclotron to reproduce the injection energy for beam from different ion sources and to monitor any beam energy fluctuations. By using a programmable beam signal leveling method the system can work with a beam current dynamic range of 50 dB. Using synchronous detection, the system can detect 0.5 eV peak-to-peak energy modulation of the beam, sensitivity is 1.7x10 -6 . The paper will describe the principle and beam measurement results. copyright 1997 American Institute of Physics

  19. Beam-line considerations for experiments with highly-charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.

    1990-01-01

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations

  20. Beam-line considerations for experiments with highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.M.

    1990-01-01

    The APS offers exciting possibilities for a bright future in x-ray research. For example, measurements on the inner-shell photoionization of ions will be feasible using stored ions in ions traps or ion beams from an electron-cyclotron-resonance ion source, or perhaps even a heavy-ion storage ring. Such experiments with ionic targets are the focus for the discussion given here on the optimization of photon flux on a generic beamline at the APS. The performance of beam lines X26C, X26A, and X17 on the x-ray ring of the National Synchrotron Light Source will be discussed as specific examples of beam-line design considerations.

  1. New development of hadron physics at new laser electron beam line (LEP2) of SPring-8

    International Nuclear Information System (INIS)

    Muramatsu, Norihito; Niiyama, Masayuki; Yosoi, Masaru

    2015-01-01

    This paper introduces the outline of LEPS2 beam line and two types of large detectors (electromagnetic calorimeter BGOegg and solenoid spectrometer), LEPS2/BGOegg experiment, and the target physics using LEPS2 solenoid spectrometer. In LEPS2 beam line, experiments are performed with the improvement of beam intensity by nearly one digit due to the simultaneous incidence of multiple lasers of high output, as well as with the installation of a large solid angle high-resolution detector. In LEPS2/BGOegg experiment, direct observation with a large solid angle of mesons such as π 0 , η, η', and ω has become possible, which has given expectation for new physics. As one of the physics at the core of BGOegg experiments, there is the systematic examination of interaction between η' and nucleus/nucleon. In the physics using a solenoid spectrometer, the first target is the measurement of penta-quark particle Θ + . (A.O.)

  2. Physics design of heavy-ion irradiation beam line on HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Zhu Fei; Peng Zhaohua; Hu Yueming; Jiao Xuesheng; Chen Dongfeng; Cao Yali

    2014-01-01

    Background: Heavy-ion microporous membrane is a new kind of filter material, which has prosperous application in the fields of medical and biological agents, electronic, food, environmental science, materials science, etc. Purpose: Polyester membranes were irradiated with 32 S produced by HI-13 tandem accelerator to develop a microporous membrane at CIAE, and the irradiation uniformity is determined by the beam distribution, also the microporous uniformity is required higher than 90%. Methods: An octupole magnet was used to correct the beam distribution from Gauss to uniform. Meanwhile, main parameters of beam line were given, and the alignment tolerances for optical elements were also analyzed. Results: Alignment tolerance of the optical elements could cause great influence on the beam center deviation in the process of correction, which would destroy the irradiation uniformity. Steering magnet was applied to meet with the design requirements. Conclusion: This study provides a practical and feasible way for industrial production of heavy-ion microporous membrane. (authors)

  3. Characterization of electron beams generated in a high-voltage pulse-line-driven pseudospark discharge

    International Nuclear Information System (INIS)

    Ramaswamy, K.; Destler, W.W.; Segalov, Z.; Rodgers, J.

    1994-01-01

    Emittance and energy measurements have been performed on a high-brightness electron beam (>10 10 A/m 2 rad 2 ) with diameter in the range 1--3 mm and energy in the range 150--170 keV. This electron beam is generated by the mating of a hollow-cathode discharge device operating in the pseudospark regime to the output of a high-power pulse line accelerator. The measured effective emittance lies in the range between 30 and 90 mm mrad and increases with axial distance. Electron energy measurements indicate that the high-energy electrons are generated during the first 20--30 ns of the discharge. Both the emittance and energy experiments were performed at two different ambient argon gas pressures (92 and 152 mtorr). Beam expansion as a function of axial position has also been studied and a lower bound on the beam brightness has been obtained

  4. Evolution of a beam dynamics model for the transport line in a proton therapy facility

    Science.gov (United States)

    Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.

    2017-12-01

    During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.

  5. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  6. Magnetically insulated transmission line used for relativistic electron beam injection into SPAC-VI

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya; Narihara, Kazumichi; Tomita, Yukihiro; Mohri, Akihiro.

    1980-10-01

    For the purpose to inject the electron beam with energy of about 1.5 MeV and current of about 100 kA into the SPAC-6 (torus device), a magnetically insulated transmission line was designed and constructed. The motion of electrons in the line was theoretically analyzed. The requirements for the design of the transmission line were as follows-: (a) condition of magnetic insulation, (b) suppression against reverse gas flow from the beam source to the torus, (c) care to minimize the influence of strong torus magnetic field, (d) reduction of inductance and (e) safety engineering measures, e.g., separation valve in the MITL between the beam source and the SPAC-6. The transmission line of 2.4 m long was designed and constructed. The wave forms of electric potential and current were measured. The transmission efficiency of current along the axis and the efficiency as a function of current at the end of the line were also measured. The reason of the loss of current is discussed. (J.P.N.)

  7. Beam line 4: A dedicated surface science facility at Daresbury Laboratory

    International Nuclear Information System (INIS)

    Dhanak, V.R.; Robinson, A.W.; van der Laan, G.; Thornton, G.

    1992-01-01

    We describe a beam line currently under construction at the Daresbury Laboratory which forms part of a surface science research facility for the Interdisciplinary Research Centre in Surface Science. The beam line has three branches, two of which are described here. The first branch covers the high-energy range 640 eV≤hν≤10 keV, being equipped with a double-crystal monochromator and a novel multicoated premirror system. The second branch line is optimized for the energy range 15≤hν≤250 eV, using cylindrical focusing mirrors, a spherical diffraction grating and an ellipsoidal refocusing mirror to achieve high resolution with a small spot size

  8. Powerloads on the front end components and the duct of the heating and diagnostic neutral beam lines at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. J.; Boilson, D.; Hemsworth, R. S.; Geli, F.; Graceffa, J.; Urbani, M.; Schunke, B.; Chareyre, J. [ITER Organisation, 13607 St. Paul-Lez-Durance Cedex (France); Dlougach, E.; Krylov, A. [RRC Kurchatov institute, 1, Kurchatov Sq, Moscow, 123182 (Russian Federation)

    2015-04-08

    The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths results in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER

  9. Beam line optics technologies series (7). Orthopedic treatment of sharp of light (reflecting mirror)

    International Nuclear Information System (INIS)

    Uruga, Tomoya; Nomura, Masaharu

    2006-01-01

    A reflecting mirror (mirror) is the most popular light device for orthopedic treatment of the shape of light. The paper explains the kinds of mirror for hard X-ray field and its applications in order to think the objects of mirror and how to adjust it when user experiment on the beam-line. The basic knowledge of reflection of X-ray, a use of mirror, the kinds of condenser mirror, the influence factors on the condenser size, arrangement of mirror in the hard X-ray beam-line, what kinds of mirror are necessary, evaluation of performance of mirror and adjustment, and troubles and measures are described. Layout in optics hutch at BL01B1 at SPring-8, refraction and total reflection of X-rays at surface, reflectivity of Rh and Pt with ideal surface as a function of photon energy, effects of surface roughness on reflectivity of Rh, calculated beam sizes for typical SPring-8 mirror as a function of magnification, schematic drawing of mirror, standard mirror system for vertical deflection in bending magnet beam-line, and observed and calculated reflectivity of Rh double mirror at BL01B1 at SPring-8 are illustrated. (S.Y)

  10. Transmission line analysis of beam deflection in a BPM stripline kicker

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Chen, Yu Ju; Poole, B.

    1997-05-01

    In the usual treatment of impedances of beamline structures the electromagnetic response is computed under the assumption that the source charge trajectory is parallel to the propagation axis and is unaffected by the wake of the structure. For high energy beams of relatively low current this is generally a valid assumption. Under certain conditions the assumption of a parallel source charge trajectory is no longer valid and the effects of the changing trajectory must be included in the analysis. Here the usual transmission line analysis that has been applied to BPM type transverse kickers is extended to include the self-consistent motion of the beam in the structure

  11. An EXAFS spectrometer on beam line 10B at the Photon Factory

    International Nuclear Information System (INIS)

    Oyanagi, Hiroyuki; Matsushita, Tadashi; Ito, Masahisa; Kuroda, Haruo.

    1984-03-01

    An EXAFS spectrometer installed on the beam line 10B at the Photon Factory is designed to cover the photon energy between 4 and 30 keV. Utilizing either a channel-cut or two flat silicon crystals as a monochromator, a beam intensity between 10 8 and 10 9 photons/sec is obtained at 9 keV with a resolution of 1 eV. The performance of the spectrometer, such as a signal-to-noise ratio or an energy resolution is demonstrated with examples of K edge absorption spectra of bromine, germanium, gallium arsenide, and zinc selenide. (author)

  12. Status and Plans for the SPS to LHC Beam Transfer Lines TI 2 and TI 8

    CERN Document Server

    Goddard, B; Risselada, Thys

    2004-01-01

    Beam transfer from the CERN Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC) will be done through the two transfer lines TI 2 and TI 8, presently under construction, with a combined length of about 5.6 km. The final layout, optics design and correction scheme for these lines will be presented. The requirement of simultaneously matching their geometry and optics with that of the LHC will be treated, including the methodology for alignment of the elements along the line and a proposed solution in the final matching section. After the commissioning of the short transfer line TT40 just upstream of TI 8 in 2003, beam tests of the whole of TI 8 are scheduled for autumn 2004, with the aim to validate many of the new features and mechanisms involved in the future control and operation of these lines. The status of the installation will be described, comprising the progress with infrastructure, services and line elements. An outlook will be given for the work remaining until 2007.

  13. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Usero, Antonio [Observatorio Astronmico Nacional (IGN), C/Alfonso XII, 3, E-28014 Madrid (Spain); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching (Germany); Bigiel, Frank [Institute für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Kruijssen, J. M. Diederik; Schinnerer, Eva [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, D-69120 Heidelberg (Germany); Kepley, Amanda [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Blanc, Guillermo A. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Bolatto, Alberto D. [Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Cormier, Diane; Jiménez-Donaire, Maria J. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Hughes, Annie [CNRS, IRAP, 9 av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada)

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  14. Proposal for characterization of muon spectrometers for neutrino beam lines with the Baby MIND

    CERN Document Server

    Noah, E

    2015-01-01

    Neutrino detectors based on state-of-the-art plastic scintillators read out with solid state photo-sensors, as well as new magnetization schemes, have been developed in the framework of AIDA. Meaningful size prototypes are under construction. In the framework of the CERN neutrino platform, we propose to test a Totally Active Scintillator Detector (TASD) and a prototype of a Magnetized Iron Neutrino Detector (MIND), called Baby MIND in the H8 beam line in 2016-2018. The design of the detectors and the purpose and plans for the beam tests are presented. An opportunity to use the Baby MIND detector in a real neutrino beam at JPARC for the measurement of the cross-section ratio between Water and scintillator (WAGASCI experiment) is described.

  15. Power electron beam front shortening in magnetically insulated transmission line with inner coaxial dielectric insert

    International Nuclear Information System (INIS)

    Galstjan, E.A.; Kazanskiy, L.N.

    1995-01-01

    By now the technology of high-power high-current relativistic electron beams with microsecond duration has been developed. The same technology is used in high-power electric pulse generation. However at present the high-power beams of subnanosecond duration are necessary for some investigations and applications. The maximum power parameter achieved by means of the usual technology is limited by a value in the range of 100-300 MW. For this reason a search for new ways to generate high-power REB (relativistic electron beam) is a topical problem. It is obvious that this problem may be reduced to the generation of pulses with a subnanosecond front duration. There are many methods to shorten a pulse duration to its front duration for instance, by using parts of short-circuited transmission lines

  16. High power, high brightness electron beam generation in a pulse-line driven pseudospark discharge

    International Nuclear Information System (INIS)

    Destler, W.W.; Segalov, Z.; Rodgers, J.; Ramaswamy, K.; Reiser, M.

    1993-01-01

    High brightness (∼10 10 A/m 2 rad 2 ), high power density (∼10 10 W/cm 2 ) electron beams have been generated by the mating of a hollow-cathode discharge device operating in the pseudospark regime to the output of a high power pulse line accelerator. Very small diameter (∼1 mm) electron beams with currents in the range 500--1000 A and energies in the range 150--300 keV have been generated with effective emittances estimated to be at or below 170 mm mrad. Such emittances are comparable to those achieved in conventional electron beam sources at current densities several orders of magnitude lower than those observed in these experiments

  17. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with 44 beam-lines of Nike KrF Laser^*

    Science.gov (United States)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.

    2009-11-01

    With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  18. Application of object oriented techniques in the TRIUMF beam line 2C control system

    International Nuclear Information System (INIS)

    Wilkinson, N.A.; Ludgate, G.A.

    1992-07-01

    The KAON Factory central control system study employed a uniform approach to requirements analysis, architectural design and programming based on well established object oriented principles. These principles were applied to the successful analysis, design and implementation of the control system for the TRIUMF Beam Line 2C Solid Target Facility. The specification for this control system was created in collaboration with Beam Line 2C equipment management experts and, once the analysis models were validated, an approach was developed for the direct translation of these models into C code. A commercial real time database was central to this translation, as inter-object data and control flows are implemented by channels in the database. This paper focuses on the experience gained in the use of object oriented techniques during the complete analysis-design-implementation cycle of a working control system and on the utility of implementing such a system using a commercial real time database and graphical interface. (author)

  19. The Beam Line X NdFe-steel hybrid wiggler for SSRL

    International Nuclear Information System (INIS)

    Hoyer, E.; Halbach, K.; Humphries, D.; Marks, S.; Plate, D.; Shuman, D.; Karpenko, V.P.; Kulkarni, S.; Tirsell, K.G.

    1987-01-01

    A wiggler magnet with 15 periods, each 12.85 cm long, which achieves 1.40 T at a 2.1 cm gap (2.26T at 0.8 cm) has been designed and is now in fabrication at LBL. This wiggler will be the radiation source of the high intensity synchrotron radiation beam line for the Beam Line X PRT facility at SSRL. The magnet utilizes Neodymium-Iron (NdFe) material and Vanadium Permendur (steel) in the hybrid configuration to achieve simultaneously a high magnetic field and short period. Magnetic field adjustment is with a driven chain and ball screw drive system. The magnetic structure is external to an s.s. vacuum chamber which has thin walls, 0.76 mm thickness, at each pole tip for higher field operation. Magnetic design, construction details and magnetic measurements are presented

  20. Selection and evaluation of an ultra high vacuum gate valve for Isabelle beam line vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; McCafferty, D.

    1980-01-01

    A minimum of eighty-four (84) Ultra High Vacuum Gate Valves will be utilized in ISABELLE to protect proton beam lines from catastrophic vacuum failure and to provide sector isolation for maintenance requirements. The valve to be selected must function at less than 1 x 10 -11 Torr pressure and be bakeable to 300 0 C in its open or closed position. In the open position, the valve must have an RF shield to make the beam line walls appear continuous. Several proposed designs were built and evaluated. The evaluation consisted mainly of leak testing, life tests, thermal cycling, mass spectrometer analysis, and 10 -12 Torr operation. Problems with initial design and fabrication were resolved. Special requirements for design and construction were developed. This paper describes the tests on two final prototypes which appear to be the best candidates for ISABELLE operation

  1. Development of an Ethernet enabled microcontroller based module for Superconducting Cyclotron ECR beam line control

    International Nuclear Information System (INIS)

    Chatterjee, M.; Koley, D.; Nabhiraj, P.Y.

    2012-01-01

    An Ethernet enabled control and data acquisition module is developed for remote control and monitoring of the ECR beam line equipment of the Superconducting Cyclotron. The PIC microcontroller based module supports multiple general purpose analog and digital inputs and outputs for interfacing with various equipments and an embedded web server. The remote monitoring and control of the equipment are achieved through the web based user interface. The user authenticated access to control parameters and module configuration parameters ensures the operational safety of the equipment under control. This module is installed in Superconducting Cyclotron ECR beam line for the control and monitoring of vacuum pumping modules, comprising of pumps, gate valves and dual vacuum gauges. The installation of these modules results in a distributed control with localised field cabling and hence better fault diagnosis. (author)

  2. Automated Sample Exchange Robots for the Structural Biology Beam Lines at the Photon Factory

    International Nuclear Information System (INIS)

    Hiraki, Masahiko; Watanabe, Shokei; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Gaponov, Yurii; Wakatsuki, Soichi

    2007-01-01

    We are now developing automated sample exchange robots for high-throughput protein crystallographic experiments for onsite use at synchrotron beam lines. It is part of the fully automated robotics systems being developed at the Photon Factory, for the purposes of protein crystallization, monitoring crystal growth, harvesting and freezing crystals, mounting the crystals inside a hutch and for data collection. We have already installed the sample exchange robots based on the SSRL automated mounting system at our insertion device beam lines BL-5A and AR-NW12A at the Photon Factory. In order to reduce the time required for sample exchange further, a prototype of a double-tonged system was developed. As a result of preliminary experiments with double-tonged robots, the sample exchange time was successfully reduced from 70 seconds to 10 seconds with the exception of the time required for pre-cooling and warming up the tongs

  3. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  4. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Directory of Open Access Journals (Sweden)

    J. C. T. Thangaraj

    2012-11-01

    Full Text Available One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  5. Experimental studies on coherent synchrotron radiation at an emittance exchange beam line

    Science.gov (United States)

    Thangaraj, J. C. T.; Thurman-Keup, R.; Ruan, J.; Johnson, A. S.; Lumpkin, A. H.; Santucci, J.

    2012-11-01

    One of the goals of the Fermilab A0 photoinjector is to investigate experimentally the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy-chirped beam.

  6. The new vertical neutron beam line at the CERN n-TOF facility design and outlook on the performance

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, C., E-mail: christina.weiss@cern.ch [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Barros, S. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa (Portugal); Bergström, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay – Irfu, Gif-sur-Yvette (France); Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Guerrero, C.; Sabaté-Gilarte, M. [Universidad de Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA) (Greece); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, Orsay (France); Bacak, M. [Atominstitut, Technische Universität Wien (Austria); Balibrea-Correa, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); and others

    2015-11-01

    At the neutron time-of-flight facility n-TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.

  7. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities

    International Nuclear Information System (INIS)

    Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo

    2008-01-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (α max ) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining α max , which is a function of the thickness of the barrier (t E ) and the equilibrium tenth-value layer (TVL e ) of the shielding material for the nominal energy of the beam. It can be seen that α max increases for increasing TVL e (hence, beam energy) and decreases for increasing t E , with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation

  8. Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.

    Science.gov (United States)

    Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

    2008-05-01

    Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

  9. Design of active feedback controller used in the infrared beam line of SSRF

    International Nuclear Information System (INIS)

    Zhang Yongli; Tong Yajun; Zhang Zhaohong; Chen Min; Jiang Jianguo; Gong Peirong

    2014-01-01

    Background: The infrared beam line consists of many kinds of optical components that are susceptible to the external mechanical vibration, which will be further amplified by the long optical paths to seriously destroy the stability of infrared beam position. Purpose: The active feedback controller is used to stabilize the infrared beam position disturbed by the external environment. Methods: The design of the active feedback controller used in the infrared beam line of SSRF was proposed in this paper firstly, which included its background, light-path layout and operating process. Subsequently, the selections of the crucial components such as detector and actuator were discussed in details. Finally, the correction compensator design and its experimental test were also presented. The correction compensator design was realized by utilizing the frequency response method, and tested in time domain, frequency domain and mathematical model simulation of the controlled object. Results: The experimental tests included time domain step response signal of the controller, the time domain signal and its relevant magnitude spectrum in frequency domain due to the light source simulation vibration. Conclusion: The results show that the maximum effective operating band is 250 Hz and the maximum steady error is 5 μm. (authors)

  10. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  11. The development of an expert system to tune a beam line

    International Nuclear Information System (INIS)

    Schultz, D.E.; Brown, P.A.; British Columbia Univ., Vancouver, BC

    1989-01-01

    The experience of developing an Expert System to aid in the tuning of the Ion Source Injection beam line at TRIUMF is described. The challenging and complex task of introducing Expert System technology into an established accelerator operation is outlined. Success in this environment depends strongly on the choice of project, the choice of experts, the choice of tools, and the methods used to represent the expertise. All these choices are discussed

  12. Design of x-ray diagnostic beam line for a synchrotron radiation source and measurement results

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Akash Deep, E-mail: akash-deep@rrcat.gov.in; Karnewar, A.K.; Ojha, A.; Shrivastava, B.B.; Holikatti, A.C.; Puntambekar, T.A.; Navathe, C.P.

    2014-08-01

    Indus-2 is a 2.5 GeV synchrotron radiation source (SRS) operational at the Raja Ramanna Centre for Advanced Technology (RRCAT) in India. We have designed, developed and commissioned x-ray diagnostic beam line (X-DBL) at the Indus-2. It is based on pinhole array imaging (8–18 keV). We have derived new equations for online measurements of source position and emission angle with pinhole array optics. Measured values are compared with the measurements at an independent x-ray beam position monitor (staggered pair blade monitor) installed in the X-DBL. The measured values are close to the theoretical expected values within ±12 µm (or ±1.5 μrad) for sufficiently wide range of the beam movements. So, beside the beam size and the beam emittance, online information for the vertical position and angle is also used in the orbit steering. In this paper, the various design considerations of the X-DBL and online measurement results are presented.

  13. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  14. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  15. Imaging and characterization of primary and secondary radiation in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Opalka, Lukas [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Martisikova, Maria; Gwosch, Klaus [German Cancer Research Center, Heidelberg (Germany); Jakubek, Jan [Advacam, Prague (Czech Republic)

    2016-07-07

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  16. Imaging and characterization of primary and secondary radiation in ion beam therapy

    International Nuclear Information System (INIS)

    Granja, Carlos; Opalka, Lukas; Martisikova, Maria; Gwosch, Klaus; Jakubek, Jan

    2016-01-01

    Imaging in ion beam therapy is an essential and increasingly significant tool for treatment planning and radiation and dose deposition verification. Efforts aim at providing precise radiation field characterization and online monitoring of radiation dose distribution. A review is given of the research and methodology of quantum-imaging, composition, spectral and directional characterization of the mixed-radiation fields in proton and light ion beam therapy developed by the IEAP CTU Prague and HIT Heidelberg group. Results include non-invasive imaging of dose deposition and primary beam online monitoring.

  17. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  18. In-beam PET imaging for on-line adaptive proton therapy: an initial phantom study

    Science.gov (United States)

    Shao, Yiping; Sun, Xishan; Lou, Kai; Zhu, Xiaorong R.; Mirkovic, Dragon; Poenisch, Falk; Grosshans, David

    2014-07-01

    We developed and investigated a positron emission tomography (PET) system for use with on-line (both in-beam and intra-fraction) image-guided adaptive proton therapy applications. The PET has dual rotating depth-of-interaction measurable detector panels by using solid-state photomultiplier (SSPM) arrays and LYSO scintillators. It has a 44 mm diameter trans-axial and 30 mm axial field-of-view (FOV). A 38 mm diameter polymethyl methacrylate phantom was placed inside the FOV. Both PET and phantom axes were aligned with a collimated 179.2 MeV beam. Each beam delivered ˜50 spills (0.5 s spill and 1.5 s inter-spill time, 3.8 Gy at Bragg peak). Data from each beam were acquired with detectors at a given angle. Nine datasets for nine beams with detectors at nine different angles over 180° were acquired for full-tomographic imaging. Each dataset included data both during and 5 min after irradiations. The positron activity-range was measured from the PET image reconstructed from all nine datasets and compared to the results from simulated images. A 22Na disc-source was also imaged after each beam to monitor the PET system's performance. PET performed well except for slight shifts of energy photo-peak positions (<1%) after each beam, due mainly to the neutron exposure of SSPM that increased the dark-count noise. This minor effect was corrected offline with a shifting 350-650 keV energy window for each dataset. The results show a fast converging of activity-ranges measured by the prototype PET with high sensitivity and uniform resolution. Sub-mm activity-ranges were achieved with minimal 6 s acquisition time and three spill irradiations. These results indicate the feasibility of PET for intra-fraction beam-range verification. Further studies are needed to develop and apply a novel clinical PET system for on-line image-guided adaptive proton therapy.

  19. A high intensity beam line of γ-rays up to 22MeV energy based on Compton backscattering

    International Nuclear Information System (INIS)

    Guo, W.; Xu, W.; Chen, J.G.; Ma, Y.G.; Cai, X.Z.; Wang, H.W.; Xu, Y.; Wang, C.B.; Lu, G.C.; Tian, W.D.; Yuan, R.Y.; Xu, J.Q.; Wei, Z.Y.; Yan, Z.; Shen, W.Q.

    2007-01-01

    Shanghai Laser Electron Gamma Source, a high intensity beam line of γ-ray, has been proposed recently. The beam line is expected to generate γ-rays up to the maximum energy of 22MeV by Compton backscattering between a CO 2 laser and electrons in the 3.5 GeV storage ring of the Shanghai Synchrotron Radiation Facility. The flux of non-collimated γ-rays is estimated to be 10 9 -10 10 s -1 when a CO 2 laser of several hundred Watt power is employed. We will discuss physics issues in the design and optimization of the beam line

  20. Primary beam ionizing radiation for patients during coronary cineangiography

    International Nuclear Information System (INIS)

    Ramirez, Alfredo; Leyton, Fernando; Gamarra, Jorge; Oyarzun C, Carlos; Silva, Ana Maria; Ugalde, Hector; Dussaillant, Gaston

    2001-01-01

    Current cardiology practice incorporates hemodynamic and angiographic studies as normal procedures. Clinical actions have to be taken in interventionist cardiology that demand prolonged exposure times to radiation, which implies submitting patients to quantitatively significant doses. This work is a preliminary phase for clinical studies involving long procedures in hemodynamic and electrophysiological interventionist cardiology to show the magnitude of the radiation doses received by the patients after a proper diagnosis. The aim is to improve the patient's radiological protection as well as that of the staff involved. The study group consisted of 18 patients who underwent coronary angiography procedures with Siemens Angioskop D equipment and a Siemens Polidoros 80 generator. Four TLD Crystal detectors were used for the patient's dosimetry, which were located in the dorsal region along the left para scapular line, on the mid line of the thyroid region and a detector on the mid point between the umbilical zone and the pubis symphysis. For procedure times of 14±4.3 min., with fluoroscope times of 3.6±2.5 min., connection techniques of 87±15 kV. and 126±24 mA, the radiations recorded in the left inter scapular and right inter scapular regions were 215±199 mGy (1-710 mGy range) and 255±212 mGy ( 22 - 791mGy range ). The radiations in the pubic and thyroid regions were 0.23±0.07 mGy and 3.62±2.44 mGy, respectively (CO)

  1. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    2010-04-01

    Full Text Available ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  2. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams.

    Science.gov (United States)

    Kuess, Peter; Georg, Dietmar; Palmans, Hugo; Lechner, Wolfgang

    2016-08-01

    For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFFM (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFFU beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. For the 6 MV FFFM beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFFM and FF beams, only %dd(10)x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFFU beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFFM beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR20,10 and %dd(10)x. In contrast to that, the DPBQS's two parameters of the 10 MV FFFM beam were substantially higher compared to those for the 10 MV FF beam. PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of 0.8% for 6 MV FF and 6 MV FFFM beams, while for 10 MV

  3. Technical Note: On the impact of the incident electron beam energy on the primary dose component of flattening filter free photon beams

    International Nuclear Information System (INIS)

    Kuess, Peter; Georg, Dietmar; Lechner, Wolfgang; Palmans, Hugo

    2016-01-01

    Purpose: For commercially available linear accelerators (Linacs), the electron energies of flattening filter free (FFF) and flattened (FF) beams are either identical or the electron energy of the FFF beam is increased to match the percentage depth dose curve (PDD) of the FF beam (in reference geometry). This study focuses on the primary dose components of FFF beams for both kinds of settings, studied on the same Linac. Methods: The measurements were conducted on a VersaHD Linac (Elekta, Crawley, UK) for both FF and FFF beams with nominal energies of 6 and 10 MV. In the clinical setting of the VersaHD, the energy of FFF M (Matched) beams is set to match the PDDs of the FF beams. In contrast the incident electron beam of the FFF U beam was set to the same energy as for the FF beam. Half value layers (HVLs) and a dual parameter beam quality specifier (DPBQS) were determined. Results: For the 6 MV FFF M beam, HVL and DPBQS values were very similar compared to those of the 6 MV FF beam, while for the 10 MV FFF M and FF beams, only %dd(10) x and HVL values were comparable (differences below 1.5%). This shows that matching the PDD at one depth does not guarantee other beam quality dependent parameters to be matched. For FFF U beams, all investigated beam quality specifiers were significantly different compared to those for FF beams of the same nominal accelerator potential. The DPBQS of the 6 MV FF and FFF M beams was equal within the measurement uncertainty and was comparable to published data of a machine with similar TPR 20,10 and %dd(10) x . In contrast to that, the DPBQS’s two parameters of the 10 MV FFF M beam were substantially higher compared to those for the 10 MV FF beam. Conclusions: PDD-matched FF and FFF beams of both nominal accelerator potentials were observed to have similar HVL values, indicating similarity of their primary dose components. Using the DPBQS revealed that the mean attenuation coefficient was found to be the same within the uncertainty of

  4. A technique for transferring a patient's smile line to a cone beam computed tomography (CBCT) image.

    Science.gov (United States)

    Bidra, Avinash S

    2014-08-01

    Fixed implant-supported prosthodontic treatment for patients requiring a gingival prosthesis often demands that bone and implant levels be apical to the patient's maximum smile line. This is to avoid the display of the prosthesis-tissue junction (the junction between the gingival prosthesis and natural soft tissues) and prevent esthetic failures. Recording a patient's lip position during maximum smile is invaluable for the treatment planning process. This article presents a simple technique for clinically recording and transferring the patient's maximum smile line to cone beam computed tomography (CBCT) images for analysis. The technique can help clinicians accurately determine the need for and amount of bone reduction required with respect to the maximum smile line and place implants in optimal positions. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Expanded beam spectro-ellipsometry for big area on-line monitoring

    Science.gov (United States)

    Fried, M.; Major, C.; Juhasz, G.; Petrik, P.; Horvath, Z.

    2015-05-01

    Non-destructive analysing tools are needed at all stages of thin film process-development, especially photovoltaic (PV) development, and on production lines. In the case of thin films, layer thicknesses, micro-structure, composition, layer optical properties, and their uniformity are important parameters. An important focus is to express the dielectric functions of each component material in terms of a handful of wavelength independent parameters whose variation can cover all process variants of that material. With the resulting database, spectroscopic ellipsometry coupled with multilayer analysis can be developed for on-line point-by-point mapping and on-line line-by-line imaging. Off-line point-by-point mapping can be effective for characterization of non-uniformities in full scale PV panels or big area (even 450 mm diameter) Si-wafers in developing labs but it is slow in the on-line mode when only 15 points can be obtained (within 1 min) as a 120 cm long panel moves by the mapping station. Last years [M. Fried et al, Thin Solid Films 519, 2730 (2011)], a new instrumentation was developed that provides a line image of spectroscopic ellipsometry (wl=350- 1000 nm) data. Earlier a single 30 point line image could be collected in 10 s over a 15 cm width of PV material. Recent years we have built a 30, a 45 and a 60 cm width expanded beam ellipsometer which speed is increased by 10x. Now, 1800 points can be mapped in a 1 min traverse of a 60*120 cm PV panel or flexible roll-to-roll substrate.

  6. Heat flux estimation for neutral beam line components using inverse heat conduction procedures

    International Nuclear Information System (INIS)

    Bharathi, P.; Prahlad, V.; Quereshi, K.; Bansal, L.K.; Rambabu, S.; Sharma, S.K.; Parmar, S.; Patel, P.J.; Baruah, U.K.; Patel, Ravi

    2015-01-01

    In this work, we describe and compare the analytical IHCP methods such-as semi-infinite method, finite slab method and a numerical method called Stolz method for estimating the incident heat flux from the experimentally measured temperature data. In case of analytical methods, the finite time response of the sensor is needed to be accounted for an accurate power density estimations. The modified models corrected for the response time of the sensors are also discussed in this paper. Application of these methods using example temperature waveforms obtained on the SST1-NBI test stand is presented and discussed. For choosing the suitable method for the calorimetry on beam line components, the estimated results are also validated using the ANSYS analysis done on these beam Iine components. As a conclusion, the finite slab method corrected for the influence of the sensor response time found out to be the most suitable method for the inversion of temperature data in case of neutral beam line components

  7. Proposed particle-beam characterizations for the APS undulator test line

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Borland, M.; Milton, S.

    1993-09-01

    A research and development effort is underway at the Advanced Photon Source (APS) to use an rf gun as a low-emittance electron source for injection into the 100- to 650-MeV linac subsystem and subsequently to an undulator test area. This configuration would combine the acceleration capability of the 200-MeV S-band electron linac and the in-line 450-MeV positron linac that normally provide positrons to the positron accumulator ring (PAR). A transport line that bypasses the PAR will bring the electrons to the undulator test area. Characterization techniques will be discussed for the electron beam with a normalized, rms emittance of <10 {pi} mm mrad (1{sigma}) at micropulse charges of up to 350 pC and micropulse durations of {approximately}5 ps (FWHM). Tests proposed include measurement of particle beam transport effects (at one-tenth the storage ring beam rigidity) caused by small undulator field errors as well as operations intended to produce coherent, short wavelength radiation (<200 nm).

  8. Experimental verification of the CLIC Decelerator with the test Beam Line in the CLIC test facility 3

    CERN Document Server

    Lillestøl, R L; Olvegård, M; Rabiller, A N; Sterbini, G; Adli, E

    2012-01-01

    The Test Beam Line in the CLIC Test Facility 3 is the first prototype of the CLIC drive beam decelerator. The main purpose of the experiment is to demonstrate efficient 12 GHz rf power production and stable transport of an electron drive beam during deceleration. The Test Beam Line consists of a FODO structure with high precision BPMs and quadrupoles mounted on mechanical movers for precisebeam alignment. Nine out of the planned 16 Power Extraction and Transfer Structures have currently been installed and commissioned. We correlate rf power production measurements with the drive beam deceleration measurements, and compare the two measurements to the theoretical predictions. We also discuss the impact of the drive beam bunch length and bunch combination on the measurements.

  9. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  10. Alignment of dipole magnet in micro-beam line of HIRFL

    International Nuclear Information System (INIS)

    Wang Shaoming; Chen Wenjun; Yang Shengli; Cai Guozhu; Guo Yizhen; Zhou Guangming; Man Kaidi; Song Mingtao

    2010-01-01

    Microbeam irradiation facility is an experiment platform, which can reduce the beam-spot on the irradiated sample to micrometer level, and can accurately locate and count the radioactive particles. It is a powerful research tool for the irradiation material science, irradiation biology, irradiation biomedicine and micro mechanical machining. The microbeam irradiation facility requires the precise work for installation and alignment. These conditions make magnet's change for directions and positions because the location space of dipole magnets in micro-beam line of HIRFL (Heavy Ion Research Facility in Lanzhou) is very small. It is a challenge for the installation and alignment work of magnets. It was solved by transforming coordinates of benchmarks of magnets, which controlled the error of magnet setup within error tolerance range. (authors)

  11. Target and orbit feedback simulations of a muSR beam line at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  12. First on-line results for As and F beams from HRIBF target/ion sources

    International Nuclear Information System (INIS)

    Carter, H.K.; Kormicki, J.; Stracener, D.W.; Breitenbach, J.B.; Blackmon, J.C.; Smith, M.S.; Bardayan, D.W.

    1996-01-01

    The first on-line tests of the ion sources to provide radioactive ion beams of 69,70 As and 17,18 F for the Holifield Radioactive Ion Beam Facility have been performed using the UNISOR facility at HRIBF. For 70 As the measured efficiency is 0.8 ± 0.3% with a hold-up time of 3.6 ± 0.3 hours as measured with 72 As at a target temperature of 1,270 C. For 17 F the efficiency for Al 17 F is 0.0024 ± 0.0008% with a hold-up time of 16.4 ± 0.8 m as measured with Al 18 F at a target temperature of 1,470 C

  13. Implementation of a Direct Link between the LHC Beam Interlock System and the LHC Beam Dumping System Re-Triggering Lines

    CERN Document Server

    Gabourin, S; Denz, R; Magnin, N; Uythoven, J; Wollmann, D; Zerlauth, M; Vatansever, V; Bartholdt, M; Bertsche, B; Zeiler, P

    2014-01-01

    To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump blocks must be guaranteed at all times. When a beam dump is demanded, the Beam Interlock System communicates this request to the Trigger Synchronisation and Distribution System of the LHC Beam Dumping System. Both systems were built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the Trigger Synchronisation and Distribution System, a new direct link from the Beam Interlock System to the re-triggering lines of the LHC Beam Dumping System will be implemented for the start-up with beam in 2015. The link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called asynchronous beam dumps nor compromise machine availability. This paper describes the implementation choices of this link. Furthermore the results of a rel...

  14. Development of highly polished, grazing incidence mirrors for synchrotron radiation beam lines at SSRL

    Energy Technology Data Exchange (ETDEWEB)

    Tirsell, K.G.; Berglin, E.J.; Fuchs, B.A.; Holdener, F.R.; Humpal, H.H.; Karpenko, V.P.; Kulkarni, S.; Fantone, S.D.

    1987-08-01

    New platinum-coated grazing incidence mirrors with low surface roughnesses have been developed to focus bending magnet radiation from the SSRL/SLAC SPEAR storage ring on the entrance slits of two Beam Line VIII grating monochromators. The first mirror in the toroidal grating monochromator (TGM) branch is a cooled SiC cylinder capable of absorbing synchrotron radiation power levels of up to 260 watts without excessive distortion. This mirror deflects the beam vertically through a 12/degree/ angle and focuses it sagitally on the TGM entrance slit plane. The second TGM optical element is a fused-silica spherical mirror with a large radius of curvature that deflects the beam vertically through an additional 12/degree/ and focuses it tangentially with 3/1 demagnification. The first mirror in our spherical grating branch is a 5/degree/-vertically deflecting, cooled SiC toroid designed to focus tangentially on the monochromator entrance slits and sagitally in the exit slits. A 4/degree/-deflecting fused silica mirror is used after the exit sites in each beam line to refocus on to the sample. For this application a thin cylinder is bent to approximate an ellipsoid. The mirrors are now installed at SSRL and performance measurements are planned. Qualitatively the focus of the TGM optics at the entrance slit plane appears very good. In this paper we discuss considerations leading to the choice of SiC for each of the two first mirrors. We present highlights of the development of these mirrors with some emphasis on SiC polishing techniques. In addition, the specialized metrology developed to produce the more difficult figure of the toroid will be described. Measured surface roughness and figure results will be presented. 19 refs., 11 figs.

  15. Development of highly polished, grazing incidence mirrors for synchrotron radiation beam lines at SSRL

    International Nuclear Information System (INIS)

    Tirsell, K.G.; Berglin, E.J.; Fuchs, B.A.; Holdener, F.R.; Humpal, H.H.; Karpenko, V.P.; Kulkarni, S.; Fantone, S.D.

    1987-08-01

    New platinum-coated grazing incidence mirrors with low surface roughnesses have been developed to focus bending magnet radiation from the SSRL/SLAC SPEAR storage ring on the entrance slits of two Beam Line VIII grating monochromators. The first mirror in the toroidal grating monochromator (TGM) branch is a cooled SiC cylinder capable of absorbing synchrotron radiation power levels of up to 260 watts without excessive distortion. This mirror deflects the beam vertically through a 12/degree/ angle and focuses it sagitally on the TGM entrance slit plane. The second TGM optical element is a fused-silica spherical mirror with a large radius of curvature that deflects the beam vertically through an additional 12/degree/ and focuses it tangentially with 3/1 demagnification. The first mirror in our spherical grating branch is a 5/degree/-vertically deflecting, cooled SiC toroid designed to focus tangentially on the monochromator entrance slits and sagitally in the exit slits. A 4/degree/-deflecting fused silica mirror is used after the exit sites in each beam line to refocus on to the sample. For this application a thin cylinder is bent to approximate an ellipsoid. The mirrors are now installed at SSRL and performance measurements are planned. Qualitatively the focus of the TGM optics at the entrance slit plane appears very good. In this paper we discuss considerations leading to the choice of SiC for each of the two first mirrors. We present highlights of the development of these mirrors with some emphasis on SiC polishing techniques. In addition, the specialized metrology developed to produce the more difficult figure of the toroid will be described. Measured surface roughness and figure results will be presented. 19 refs., 11 figs

  16. FLOC: Field Line and Orbit Code for the study of ripple beam injection into tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, R. H.; Lee, D. K.; Gaffney, P. W.; Rome, J. A.

    1978-06-01

    The computer code described is used to study ripple beam injection into a tokamak plasma. The collisionless guiding center equations of motion are integrated to find the orbits of single particles in realistic magnetic fields for ripple injection. In order to determine if the ripple is detrimental to the plasma, the magnetic flux surfaces are constructed by integration of the field line equations. The numerical techniques are described, and use of the code is outlined. A program listing is provided, and the results of sample cases are presented.

  17. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  18. Design of the beam profile monitor system for the RHIC injection line

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1995-01-01

    A video profile monitor (VPM) system will be used in the AGS-to-RHIC (ATR) transfer line to acquire single bunches transferred at 30 Hz. An array of 12 video cameras will be connected to 4 frame grabbers through a wide-band flux. Fast VME image processing boards will analyze a 120 x 120 subset of the image, generated by a 4 x 4 convolution or an ROI computation and sent over the network during the AGS recycle time. Details of the design, results of lab tests and studies with ion and proton beams will be presented

  19. FLOC: Field Line and Orbit Code for the study of ripple beam injection into tokamaks

    International Nuclear Information System (INIS)

    Fowler, R.H.; Lee, D.K.; Gaffney, P.W.; Rome, J.A.

    1978-06-01

    The computer code described is used to study ripple beam injection into a tokamak plasma. The collisionless guiding center equations of motion are integrated to find the orbits of single particles in realistic magnetic fields for ripple injection. In order to determine if the ripple is detrimental to the plasma, the magnetic flux surfaces are constructed by integration of the field line equations. The numerical techniques are described, and use of the code is outlined. A program listing is provided, and the results of sample cases are presented

  20. SCADA for microtron and beam transport line radio therapy machine subsystem

    International Nuclear Information System (INIS)

    Deshpande, Praveen; Palod, Shradha; Bhujle, Ashok

    2003-01-01

    Centre for Advanced Technology is developing a Radio Therapy Machine (RTM) to be used for cancer treatment. The radiotherapy machine has a Microtron consisting of a RF system, main and auxiliary magnets. It has a Beam transport line (BTL) consisting of fourteen magnets. This paper describes a PC based supervisory control and data acquisition system (SCADA) developed for controlling mainly the power supplies for the above sub systems from a remote location. It offers a graphic user interface (GUI) at the control room PC for RTM operation in engineering mode

  1. 100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-04-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.

  2. 100 years of elementary particles [Beam Line, vol. 27, number 1, Spring 1997

    International Nuclear Information System (INIS)

    Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia

    1997-01-01

    This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe

  3. Characteristic analysis of coupled transmission lines in stripline-type beam position monitor

    International Nuclear Information System (INIS)

    Suwada, T.

    2013-01-01

    Signal transmission characteristics in stripline electrodes of a stripline-type beam position monitor (BPM) are discussed on the basis of a coupled-mode analysis in electromagnetically coupled transmission lines. The physical prospect in the calibration procedure of stripline electrodes is improved in terms of signal transmission characteristics in the frequency domain. It is demonstrated that in the signal transmission with electromagnetic coupling between the stripline electrodes, the magnetic- and electric-coupling parameters play an important role depending upon the spatial configuration and mechanical structure of the stripline electrodes. In this report, a theoretical analysis, and experimental investigation into signal transmission characteristics and performance in a standard stripline-type BPM are described in detail on the basis of a coupled-mode analysis in uniform transmission lines

  4. Design and construction of UVSOR-BL4A2 beam line for nano-structure processing

    CERN Document Server

    Takezoe, N; Tanaka, T; Kurosawa, K; Nonogaki, Y; Noda, H; Mekaru, H; Urisu, T

    2001-01-01

    We have designed and constructed a new beam line BL4A2 at UVSOR mainly for nano-structure fabrication based on synchrotron radiation stimulated surface photochemical reactions. In order to obtain high-photon flux, we use white ray beam focused with only one mirror. The beam line is connected with ultra-high vacuum scanning tunneling microscope for in-situ atomic scale observations, low energy electron diffraction and Auger electron spectroscope for surface crystal structure characterization, and photo-stimulated surface reaction chamber. In order to monitor the optical properties with atomic scale, a near field optical microscope is planned to be installed.

  5. Design and construction of UVSOR-BL4A2 beam line for nano-structure processing

    International Nuclear Information System (INIS)

    Takezoe, N.; Yanagida, H.; Tanaka, T.; Kurosawa, K.; Nonogaki, Y.; Noda, H.; Mekaru, H.; Urisu, T.

    2001-01-01

    We have designed and constructed a new beam line BL4A2 at UVSOR mainly for nano-structure fabrication based on synchrotron radiation stimulated surface photochemical reactions. In order to obtain high-photon flux, we use white ray beam focused with only one mirror. The beam line is connected with ultra-high vacuum scanning tunneling microscope for in-situ atomic scale observations, low energy electron diffraction and Auger electron spectroscope for surface crystal structure characterization, and photo-stimulated surface reaction chamber. In order to monitor the optical properties with atomic scale, a near field optical microscope is planned to be installed

  6. Parametric Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Prost, Lionel Robert

    2007-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K + ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (∼80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics

  7. Capecitabine and oxaliplatin as second-line treatment in patients with carcinoma of unknown primary site

    DEFF Research Database (Denmark)

    Møller, Anne Kirstine Hundahl; Pedersen, Karen Damgaard; Abildgaard, Julie Rafn

    2010-01-01

    tumours may be overrepresented. These patients could be candidates for GI tract-directed therapy. We here report the results obtained with oxaliplatin and capecitabine as second-line therapy in 25 recurrent/refractory CUP patients following first-line treatment with paclitaxel, cisplatin and gemcitabine.......Treatment of patients with carcinoma of unknown primary site (CUP) remains a challenge, and no effective second-line treatment has been identified. In CUP patients who are non-responsive or relapse early after first-line platinum/taxane-based regimens, it is likely that gastrointestinal (GI) tract...

  8. Doppler-shift spectra of Hα lines from negative-ion-based neutral beams for large helical device neutral beam injection

    International Nuclear Information System (INIS)

    Oka, Y.; Ikeda, K.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Grisham, L.; Umeda, N.; Honda, A.; Ikeda, Y.; Yamamoto, T.

    2006-01-01

    The velocity spectra of the negative-ion-(H - ) based neutral beams are studied in high-performance large-area ion sources during injection into large helical device fusion plasmas. We are conducting systematic observations in standard neutral beam injection to correlate beam spectra with source operating conditions. Almost all of the transmitted beam power was at full acceleration energy (∼170 keV). The small stripping beam component which was produced in the extraction gap was evaluated to be about 9%-22% by amplitude of the measured spectra for the sources in beam lines 1 and 2. H - production uniformity from the spectrum profile was 86%-90% for three sources. For the longest pulse injection during 74 and 128 s, a full energy component tended to decrease with time, while the accelerator gap stripping tail tended to increase slightly with time, which is attributed to beam-induced outgassing in the accelerator. A higher conductance multislot ground grid accelerator appeared to show little growth in the accelerator gap beam stripping during long pulses compared to the conventional multiaperture ground grid. The beam uniformity appeared to vary in part with the Cs uniformity on the plasma grid

  9. Design of the extraction arc for the 2nd beam line of the free-electron laser FLASH

    International Nuclear Information System (INIS)

    Scholz, Matthias

    2014-01-01

    In this thesis, I deal with the design of the extraction arc for the second beam line of FLASH, an FEL (Free-Electron Laser) user facility at DESY Hamburg. Both beam lines will use the same linear accelerator and their separation will take place behind the last accelerating module. I present the constraints for the extraction arc given by the beam line layout of the existing machine, by the building environment of the new beam line and in particular, by coherent synchrotron radiation (CSR). The impact from CSR is presented, and I show how to mitigate these effects and what that means for the beam line design. The optimization of the extraction arc was done applying the downhill simplex algorithm which is presented, first in its basic form to explain the operation principle and then in a more advanced version as used in the applied program. I introduce in this thesis the final layout of the extraction arc including the following matching section. This layout fulfills all given constraints and can provide the required electron beam quality for FEL operation. In order to prove this, I present start-to-end simulations for different bunch charges and for two different wavelengths.

  10. Superconducting magnet system for the J-PARC neutrino beam line. Development, construction and operation of superconducting magnets

    International Nuclear Information System (INIS)

    Sasaki, Ken-ichi; Nakamoto, Tatsushi; Ajima, Yasuo; Okamura, Takahiro; Ogitsu, Toru; Kimura, Nobuhiro; Terashima, Akio; Tomaru, Takayuki; Higashi, Norio

    2010-01-01

    Superconducting combined-function magnets have been utilized for the 50-GeV, 750-kW proton beam line in the J-PARC neutrino experiment. The magnets are designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7,345 A. Following the success of a prototype R and D project, a superconducting magnet system for the J-PARC neutrino beam line has been constructed since 2005. Using a new conceptual beam line with the superconducting combined-function magnets has demonstrated successful beam transport to the target neutrino production. (author)

  11. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    International Nuclear Information System (INIS)

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-01-01

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd 2 O 2 S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision TM image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p -8 ), 1.64 (p -13 ), 2.66 (p -9 ), respectively. For all imaging doses, soft tissue contrast was more

  12. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1993-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently the authors used a MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r b < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. The authors' success with the MITL technology led them to investigate the application to higher energy accelerator designs. They have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30-50-ns FWHM output pulse

  13. Electron beam effects on the spectroscopy of satellite lines in aluminum X-pinch experiments

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Csanak, G.; Clark, R.E.H.; Faenov, A.Ya.; Hammer, D.A.; Pikuz, S.A.; Romanova, P.N.; Shelkovenko, T.A.

    1996-01-01

    Aluminum wire X-pinch experiments performed at the Cornell University XP pulsed power generator and at the Lebedev Institute BIN generator show detailed high resolution spectra for satellite lines of Li-like, Be-like, B-like, and C-like ions. These lines, which correspond to transitions originating from autoionizing levels, are observed in the direction of the anode with respect to the bright X-pinch cross point. The intensities of these satellites are much smaller or absent in the direction of the cathode. Such transitions are caused by collisions of ions with energetic electrons (5-15 keV) which are created by the inductive voltage drop between the cross point and the anode. A collisional-radiative model was constructed using a non-Maxwellian electron energy distribution consisting of a thermal Maxwellian part plus a Gaussian part to represent the high energy electron beam. The shapes of the observed satellite structures are consistent with the calculated spectrum for electron temperatures between 30-100 eV, and beam densities of about 10 -7 times the plasma electron density. (author). 3 figs., 7 refs

  14. Application of Magnetically Insulated Transmission Lines for high current, high voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Frost, C.A.; Poukey, J.W.; Turman, B.N.

    1991-01-01

    Self Magnetically Insulated Transmission Lines (MITL) adders have been used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r ρ < 2 cm), 11 to 15 MeV, 50 to 100-kA beams with a small transverse velocity v perpendicular/c = β perpendicular ≤ 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30--50 ns FWHM output pulse. 10 refs

  15. Application of magnetically insulated transmission lines for high current, high voltage electron beam accelerators

    Science.gov (United States)

    Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.

    Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.

  16. Electron beam effects on the spectroscopy of satellite lines in aluminum X-pinch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J Jr; Csanak, G; Clark, R E.H. [Los Alamos National Laboratory, NM (United States); Faenov, A Ya [VNIIFTRI, Mendeleevo (Russian Federation); Hammer, D A [Cornell Univ., Ithaca, NY (United States); Pikuz, S A; Romanova, P N; Shelkovenko, T A [P.N. Lebedev Physical Inst., Moscow (Russian Federation)

    1997-12-31

    Aluminum wire X-pinch experiments performed at the Cornell University XP pulsed power generator and at the Lebedev Institute BIN generator show detailed high resolution spectra for satellite lines of Li-like, Be-like, B-like, and C-like ions. These lines, which correspond to transitions originating from autoionizing levels, are observed in the direction of the anode with respect to the bright X-pinch cross point. The intensities of these satellites are much smaller or absent in the direction of the cathode. Such transitions are caused by collisions of ions with energetic electrons (5-15 keV) which are created by the inductive voltage drop between the cross point and the anode. A collisional-radiative model was constructed using a non-Maxwellian electron energy distribution consisting of a thermal Maxwellian part plus a Gaussian part to represent the high energy electron beam. The shapes of the observed satellite structures are consistent with the calculated spectrum for electron temperatures between 30-100 eV, and beam densities of about 10{sup -7} times the plasma electron density. (author). 3 figs., 7 refs.

  17. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  18. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    International Nuclear Information System (INIS)

    Cirrone, G.A.P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M.G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility

  19. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  20. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Cuttone, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Di Rosa, F. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Raffaele, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Russo, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, Catania (Italy); Guatelli, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genova (Italy); Pia, M.G. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, Genova (Italy)

    2006-01-15

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  1. Development of apparatus for high-intensity beam lines at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    The new counter experimental hall was constructed at the KEK 12 GeV Proton Synchrotron (the KEK-PS) in order to handle high-intensity primary proton beams of up to 1 x 10 13 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1 x 10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the new hall construction. A part of our R/D work on handling high intensity beam is briefly reported. (author)

  2. Peculiar time dependence of unexpected lines in delayed beam-foil X-ray spectra of V, Fe and Ni

    International Nuclear Information System (INIS)

    Ahmad, Nissar; Karn, Ranjeet K.; Marketos, Pan; Nandi, T.

    2005-01-01

    Delayed beam-foil X-ray spectra of highly charged ions of V, Fe and Ni show a few lines at energies higher than the H-like Lyman α-line of the respective projectile ions. These can only be attributed to heavier ions. Further the time dependence of such unexpected lines display a peculiar behavior. This work presents the experimental observations systematically

  3. The response of an RC line MWPC to primary cosmic rays. [Multi-Wire Proportional Counter

    Science.gov (United States)

    Gregory, J. C.; Selig, W. J.; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.

    1978-01-01

    A simple 50 x 50 sq cm MWPC plane was arranged as an RC-line and flown on a balloon flight with the MSFC-UAH Cosmic Ray experiment. Positions of primary cosmic ray tracks in the RC-line were determined by the risetime method and compared with the expected position as indicated by a best line fitted through four planes of the conventional MWPC hodoscope. Mean errors were estimated for sea-level muons, and CNO group and iron group particles. It is believed that the delta-rays accompanying the primaries degraded the position resolution. Measured standard deviations allowing for uncertainty in the true track position are of the order of 1 cm or less in the primary charge region between 7 and 26.

  4. Contrast of HOLZ lines in energy-filtered convergent-beam electron diffraction patterns from silicon

    International Nuclear Information System (INIS)

    Lehmpfuhl, G.; Krahl, D.; Uchida, Y.

    1995-01-01

    Higher-order Laue-zone (HOLZ) lines were investigated in convergent-beam electron diffraction patterns from silicon near the low-indexed zone axes [100], [110] and [111]. The visibility of these lines depends on the effective structure potentials of the reflections from the first Laue zone depending on their Debye-Waller factor. The contrast of the HOLZ lines is strongly reduced by inelastically scattered electrons. They can be excluded by an imaging Ω filter for energy losses above 2 eV. The diffraction patterns were compared with many-beam calculations. Without absorption, an excellent agreement could be achieved for the [111] and [100] zone axes, while the simulation of the [110] zone-axis pattern needed a calculation with absorption. The reason for this observation is explained in the Bloch-wave picture. Calculations with absorption, however, lead to artefacts in the intensity distribution of the [100] HOLZ pattern. In order to obtain agreement with the experiment, the Debye-Waller factor had to be modified in different ways for the different zone axes. This corresponds to a strong anisotropy of the Debye-Waller factor. To confirm this observation, the temperature dependence of the itensity distributions of the HOLZ patterns was investigated between 50 and 680 K. At room temperature, the parameter D in the Debye-Waller factor exp(-Ds 2 ) was determined as 0.13, 0.26 and 0.55 A 2 for the zone axes [100], [111] and [110], respectively. The reliability of the conclusions is discussed. (orig.)

  5. IDENTIFIKASI PROFIL DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DENGAN METODE BEAM PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY

    Directory of Open Access Journals (Sweden)

    Muhammad Zainuddin Lubis

    2017-05-01

    Full Text Available Laut Punggur merupakan laut yang terletak di Batam, Kepulauan Riau yang mempunyai beragam habitat objek,dan bentuk struktur bawah laut yang memiliki dinamika laut yang sangat tinggi. Side scan sonar (SSS merupakan instrumen pengembangan sistem sonar yang mampu menunjukkan dalam gambar dua dimensional permukaan dasar laut dengan kondisi kontur, topografi, dan target secara bersamaan. Metode Beam Pattern Discrete-Equi-Spaced Unshaded Line Array digunakan untuk menghitung beam pattern dua dimensi yang tergantung pada sudut dari gelombang suara yang masuk dari sumbu array yang diterima tergantung pada sudut di mana sinar suara pada array. Penelitian ini dilakukan pada Desember 2016 di laut Punggur,Batam, Kepulauan Riau-Indonesia, dengan koordinat 104 ° 08,7102 E dan 1° 03,2448 N sampai 1 ° 03.3977 N dan 104 ° 08,8133 E, menggunakan instrumen Side Scan Sonar C-Max CM2 Tow fish dengan frekuensi 325 kHz. Hasil yang diperoleh dari perekaman terdapat 7 target, dan Beam pattern dari metode Beam Discrete-Equi-Spaced Unshaded Line Array target 4 memiliki nilai tertinggi pada directivity Pattern yaitu 21.08 dB. Hasil model beam pattern ini memiliki nilai pusat pada incidence angle (o terhadap Directivity pattern (dB tidak berada di nilai 0 ataupun pada pusat beam pattern yang dihasilkan pada target 6 dengan nilai incident angle -1.5 o dan 1.5o mengalami penurunan hingga -40 dB. Karakteristik sedimen dasar perairan di laut punggur ditemukan lebih banyak pasir. Hasil metode Beam Discrete-Equi-Spaced Unshaded Line Array ditemukan bangkai kapal tenggelam.Kata Kunci: Side Scan Sonar, Beam Pattern Discrete-Equi-Spaced Unshaded Line Array, Incidence angle, Directivity pattern IDENTIFICATION OF SEABED PROFILE USING SIDE SCAN SONAR INSTRUMENT WITH PATTERN DISCRETE-EQUI-SPACED UNSHADED LINE ARRAY METHODRiau Islands is an island that has a variety of habitat objects, and forms of submarine structures that have a very high ocean dynamics, Punggur Sea is the sea

  6. Beam diagnostics

    International Nuclear Information System (INIS)

    Bogaty, J.; Clifft, B.E.; Zinkann, G.P.; Pardo, R.C.

    1995-01-01

    The ECR-PII injector beam line is operated at a fixed ion velocity. The platform high voltage is chosen so that all ions have a velocity of 0.0085c at the PII entrance. If a previous tune configuration for the linac is to be used, the beam arrival time must be matched to the previous tune as well. A nondestructive beam-phase pickup detector was developed and installed at the entrance to the PII linac. This device provides continuous phase and beam current information and allows quick optimization of the beam injected into PII. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum interface where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam-induced radiofrequency signals are summed against an offset frequency generated by our master oscillator. The resulting kilohertz difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop which stabilizes phase readings if beam is unstable. The other channel uses a linear full wave active rectifier circuit which converts kilohertz sine wave signal amplitude to a D.C. voltage representing beam current. A prototype set of electronics is now in use with the detector and we began to use the system in operation to set the arrival beam phase. A permanent version of the electronics system for the phase detector is now under construction. Additional nondestructive beam intensity and phase monitors at the open-quotes Boosterclose quotes and open-quotes ATLASclose quotes linac sections are planned as well as on some of the high-energy beam lines. Such a monitor will be particularly useful for FMA experiments where the primary beam hits one of the electric deflector plates

  7. Generation of iPSC lines from primary human chorionic villi cells

    Directory of Open Access Journals (Sweden)

    Björn Lichtner

    2015-11-01

    Full Text Available Primary human chorionic villi (CV cells were used to generate the iPSC line by retroviral transduction of the four Yamanaka-factors OCT4, SOX2, KLF4 and c-MYC. Pluripotency was confirmed both in vivo and in vitro. The transcriptomes of the CV-derived iPSC lines and the human embryonic stem cell lines—H1 and H9 have a Pearson correlation of 0.929 and 0.943 respectively.

  8. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  9. MTN magnet for the SPS extracted beam.

    CERN Document Server

    CERN PhotoLab

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  10. The validity of the density scaling method in primary electron transport for photon and electron beams

    International Nuclear Information System (INIS)

    Woo, M.K.; Cunningham, J.R.

    1990-01-01

    In the convolution/superposition method of photon beam dose calculations, inhomogeneities are usually handled by using some form of scaling involving the relative electron densities of the inhomogeneities. In this paper the accuracy of density scaling as applied to primary electrons generated in photon interactions is examined. Monte Carlo calculations are compared with density scaling calculations for air and cork slab inhomogeneities. For individual primary photon kernels as well as for photon interactions restricted to a thin layer, the results can differ significantly, by up to 50%, between the two calculations. However, for realistic photon beams where interactions occur throughout the whole irradiated volume, the discrepancies are much less severe. The discrepancies for the kernel calculation are attributed to the scattering characteristics of the electrons and the consequent oversimplified modeling used in the density scaling method. A technique called the kernel integration technique is developed to analyze the general effects of air and cork inhomogeneities. It is shown that the discrepancies become significant only under rather extreme conditions, such as immediately beyond the surface after a large air gap. In electron beams all the primary electrons originate from the surface of the phantom and the errors caused by simple density scaling can be much more significant. Various aspects relating to the accuracy of density scaling for air and cork slab inhomogeneities are discussed

  11. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Science.gov (United States)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  12. Operating experience with LAMPF main beam lines instrumentation and control system

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Harvey, A.; Howard, H.H.; Roeder, D.L.

    1975-01-01

    Instrumentation and control (I and C) for the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) main beam line is based upon central computer control through remote stations which provide input and output to most devices. Operating experience shows that the ability of the computer to give high-quality graphical presentation of the measurements enhances operator performance and instrument usefulness. Experience also shows that operator efficiency degrades rapidly with increasing instrument response time, that is, with increasing delay between the time a control is changed and the result can be observed. For this reason, instrumentation upgrade includes speeding up data acquisition and display times to under 10 s. Similarly, television-viewed phosphors are being retained where possible since their instantaneous response is very useful. Other upgrading of the instrumentation system is planned to improve data accuracy, reliability, redundancy, and instrument radiation tolerance. Past experience is being applied in adding or relocating devices to simplify tuning procedures. (U.S.)

  13. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  14. Multiobjective optimization design of an rf gun based electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2017-03-01

    Full Text Available Multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line comprised of a 100  MV/m 1.6-cell normal conducting rf (NCRF gun, as well as a nine-cell 2π/3 bunching cavity placed between two solenoids, have been performed. These include optimization of the normalized transverse emittance as a function of bunch charge, as well as optimization of the transverse coherence length as a function of the rms bunch length of the beam at the sample location for a fixed charge of 10^{6} electrons. Analysis of the resulting solutions is discussed in terms of the relevant scaling laws, and a detailed description of one of the resulting solutions from the coherence length optimizations is given. For a charge of 10^{6} electrons and final beam sizes of σ_{x}≥25  μm and σ_{t}≈5  fs, we found a relative coherence length of L_{c,x}/σ_{x}≈0.07 using direct optimization of the coherence length. Additionally, based on optimizations of the emittance as a function of final bunch length, we estimate the relative coherence length for bunch lengths of 30 and 100 fs to be roughly 0.1 and 0.2  nm/μm, respectively. Finally, using the scaling of the optimal emittance with bunch charge, for a charge of 10^{5} electrons, we estimate relative coherence lengths of 0.3, 0.5, and 0.92  nm/μm for final bunch lengths of 5, 30 and 100 fs, respectively.

  15. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    International Nuclear Information System (INIS)

    Wang Tiegu; Huang Qunce; Feng Weisen

    2007-01-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning

  16. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Science.gov (United States)

    Wang, Tiegu; Huang, Qunce; Feng, Weisen

    2007-10-01

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  17. RAPD and SSR Polymorphisms in Mutant Lines of Transgenic Wheat Mediated by Low Energy Ion Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tiegu, Wang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Qunce, Huang [Henan Provincial Key Laboratory of Ion Beam Bio-Engineering, Zhengzhou University, Zhengzhou 450052 (China); Weisen, Feng [Luoyang Institute of Agricultural Science, Luoyang 471022 (China)

    2007-10-15

    Two types of markers-random amplified polymorphic DNA (RAPD) and simple sequence repeat DNA (SSR)-have been used to characterize the genetic diversity among nine mutant lines of transgenic wheat intermediated by low energy ion beam and their four receptor cultivars. The objectives of this study were to analyze RAPD-based and SSR-based genetic variance among transgenic wheat lines and with their receptors, and to find specific genetic markers of special traits of transgenic wheat lines. 170 RAPD primers were amplified to 733 fragments in all the experimental materials. There were 121 polymorphic fragments out of the 733 fragments with a ratio of polymorphic fragments of 16.5%. 29 SSR primer pairs were amplified to 83 fragments in all the experiment materials. There were 57 polymorphic fragments out of the 83 fragments with a ratio of polymorphic fragments of 68.7%. The dendrograms were prepared based on a genetic distance matrix using the UPGMA (Unweighted Pair-group Method with Arithmetic averaging) algorithm, which corresponded well to the results of the wheat pedigree analysis and separated the 13 genotypes into four groups. Association analysis between RAPD and SSR markers with the special traits of transgenic wheat mutant lines discovered that three RAPD markers, s1, opt-16, and f14, were significantly associated with the muticate trait, while three SSR markers, Rht8 (Xgwm261), Rht-B1b, and Rht-D1b, highly associated with the dwarf trait. These markers will be useful for marker-assistant breeding and can be used as candidate markers for further gene mapping and cloning.

  18. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  19. Mechanical design and development of analyzing magnet for the RIB charge breeder beam line

    International Nuclear Information System (INIS)

    Bhattacharyya, Pranab; Ghosh, Sundeep; Bhattacharya, Mahuwa; Gupta, Anjan Dutta; Pal, Gautam; Naik, Vaishali

    2015-01-01

    An iron dominated analyzing magnet of uniform peak field 0.6 T has been developed for Radioactive Ion Beam (RIB) charge breeder beam line at VECC, Kolkata. It has two room temperature coils made of copper having channels for passage of cooling water. The other important parts of the magnet includes two yokes, two poles, vacuum chamber, view port, iron plates and the support structures. The most important properties of magnets designed and fabricated for this application is the need for high field quality. The magnet assembly has got overall dimensions of 1.1 metres x 0.91 metres x 0.63 metres and the required field uniformity is 6 x 10 -4 over pole width of ± 2.5 cm. The most critical parameter that has to be maintained to achieve the desired magnetic field is the pole gap of 80 ± 0.25 rom.This paper describes in detail about the mechanical design, coil cooling analysis, development and assembly of this magnet. (author)

  20. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2016-09-01

    Full Text Available We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200  μm, for two final bunch charges: 10^{5} electrons (16 fC and 10^{6} electrons (160 fC. Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of L_{c,x}/σ_{x}=0.27  nm/μm was obtained for a final bunch charge of 10^{5} electrons and final bunch length of σ_{t}≈100  fs. For a final charge of 10^{6} electrons the cryogun produces L_{c,x}/σ_{x}≈0.1  nm/μm for σ_{t}≈100–200  fs and σ_{x}≥50  μm. These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  1. Homozygous deletion and expression of PTEN and DMBT1 in human primary neuroblastoma and cell lines.

    Science.gov (United States)

    Muñoz, Jorge; Lázcoz, Paula; Inda, María Mar; Nistal, Manuel; Pestaña, Angel; Encío, Ignacio J; Castresana, Javier S

    2004-05-01

    Neuroblastoma is the most common pediatric solid tumor. Although many allelic imbalances have been described, a bona fide tumor suppressor gene for this disease has not been found yet. In our study, we analyzed 2 genes, PTEN and DMBT1, mapping 10q23.31 and 10q25.3-26.1, respectively, which have been found frequently altered in other kinds of neoplasms. We screened both genes for homozygous deletions in 45 primary neuroblastic tumors and 12 neuroblastoma cell lines. Expression of these genes in cell lines was assessed by RT-PCR analysis. We could detect 2 of 41 (5%) primary tumors harboring PTEN homozygous deletions. Three of 41 (7%) primary tumors and 2 of 12 cell lines presented homozygous losses at the g14 STS on the DMBT1 locus. All cell lines analyzed expressed PTEN, but lack of DMBT1 mRNA expression was detected in 2 of them. We tried to see whether epigenetic mechanisms, such as aberrant promoter hypermethylation, had any role in DMBT1 silencing. The 2 cell lines lacking DMBT1 expression were treated with 5-aza-2'-deoxycytidine; DMBT1 expression was restored in only one of them (MC-IXC). From our work, we can conclude that PTEN and DMBT1 seem to contribute to the development of a small fraction of neuroblastomas, and that promoter hypermethylation might have a role in DMBT1 gene silencing. Copyright 2004 Wiley-Liss, Inc.

  2. Optics measurements and transfer line matching for the SPS injection of the CERN Multi-Turn Extraction beam

    CERN Document Server

    Benedetto, E; Cettour Cave, S; Follin, F; Gilardoni, S; Giovannozzi, M; Roncarolo, F

    2010-01-01

    Dispersion and beam optics measurements were carried out in the transfer line between the CERN PS and SPS for the new Multi-Turn Extraction beam. Since the extraction conditions of the four islands and the core are different and strongly dependent on the non-linear effects used to split the beam in the transverse plane, a special care was taken during the measurement campaigns. Furthermore, an appropriate strategy was devised to minimize the overall optical mismatch at SPS injection. All this led to a new optical configuration that will be presented in the paper.

  3. An extended range soft X-ray beam line for the 1 GeV storage ring Aladdin

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Stott, J.P.; Brown, F.C.

    1983-01-01

    The design and implementation of a soft X-ray beam line on the new 1 GeV storage ring Aladdin in Stoughton, Wisconsin is discussed. The beam line consists of a long horizontally focussing collection mirror, an extended range (50-1500 eV) grasshopper monochromator, an ellipsoidal refocussing mirror, and a photoemission chamber. Also discussed are the factors considered in matching the monochromator to the storage ring, flux and performance expectations, and the results of a ray tracing analysis. (orig.)

  4. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    Science.gov (United States)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  5. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    Science.gov (United States)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, I.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  6. Choice of primary transducers of beam parameters for measuring and control systems of charged particle accelerators

    International Nuclear Information System (INIS)

    Rybin, V.M.

    1981-01-01

    Investigations on classification of primary transducers (pT) of the main parameters of charged particle beams are conducted for development of the common series on the base of program- controlled module systems for measuring the parameters of charged particle beams. The PT classification is exercised by: the physical principle of single transformation, the degree of effect on the beam, principle of operation, design, performance, location. It is shown that the optimal choice of PT and their parameters should be necessarily executed in several stages: estimation of the limiting possibilities of PT; choice of PT by time and metrological characteristics as well as sensitivity for the determined operation conditions; choice of the PT by the degree of effect on the beam: choice of the PT type with account of its design performance and location, determination of PT parameters with account of possibility of information, energy and design compatibility of the used standard. The classification results of magnetoinduction and acoustic transducers have shown that the number of their modifications does not exceed 100 [ru

  7. Classification and calculation of primary failure modes in bread production line

    International Nuclear Information System (INIS)

    Tsarouhas, Panagiotis H.

    2009-01-01

    In this study, we describe the classification methodology over a 2-year period of the primary failure modes in categories based on failure data of bread production line. We estimate the probabilities of these categories applying the chi-square goodness of fit test, and we calculate their joint probabilities of mass function at workstation and line level. Then, we present numerical examples in order to predict the causes and frequencies of breakdowns for workstations and for the entire bread production line that will occur in the future. The methodology is meant to guide bread and bakery product manufacturers, improving the operation of the production lines. It can also be a useful tool to maintenance engineers, who wish to analyze and improve the reliability and efficiency of the manufacturing systems

  8. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  9. An alternative beam line at the U-400 M cyclotron for RIB separation and transport to the FOBOS spectrometer (The technical proposal)

    International Nuclear Information System (INIS)

    Majdikov, V.Z.; Bashevoj, V.V.

    1998-01-01

    The first order ion-optic calculations performed together with the graphical modeling permits us to propose a new variant of the beam-transport line from the backside of the U-400M cyclotron to the FOBOS spectrometer. This beam line could be built in a rather short time without large financial expenditures from available magnetic and vacuum elements. The new beam line could even be considered as an economic alternative to the existing beam line and as a RIB separator. This work is the result of the pre-design R and D aimed to develop the U-400M cyclotron facilities for the RIB experiments performance with the FOBOS spectrometer

  10. Coronary cineangiography and ionizing radiation exposure to patients: analysis of primary and secondary beam

    International Nuclear Information System (INIS)

    Ramirez, Alfredo; Leyton, Fernando; Silva, Ana Maria; Farias, Eric

    2001-01-01

    The purpose of this work was to determine the level of exposure dose to patients during coronariographies in different areas of body. This study has presented the medical surveillance of 18 cases and the radiation monitoring of these patients by TLD in thyroid and pelvis (secondary beam) and, in the right and left scapular region (primary beam) for each one of these procedures. The ionizing radiation received was 215 ± 200 mGy in left scapular region (range 1-710) and 255±213 mGy in the right scapular region (range 22-635) p=NS. In the pelvic region the ionizing radiation was 0,22±0,06 mGy and in the thyroid region was 3,62±2,44 mGy

  11. The tension adjuster used at the work line of electron beam radiation cross-linking wire and cable

    International Nuclear Information System (INIS)

    Zhang Yingfa; Liu Zhenhao; Yin Xuejun

    1999-01-01

    The tension adjuster is an important equipment in the transport system at the work line of electron beam radiation cross-linking wire and cable to realize the velocity synchronism. There are many kinds of the adjuster. By putting various adjusters together properly, the authors can keep the line work stable and raise the quality of the product. Two kinds of standing adjuster and their mechanism are introduced. Also the corresponding figures and formulas are shown

  12. Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array

    Science.gov (United States)

    Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.

    2017-11-01

    The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.

  13. GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

    CERN Multimedia

    2004-01-01

    GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

  14. Improvement in dose escalation using off-line and on-line image feedback in the intensity modulated beam design for prostate cancer treatment

    International Nuclear Information System (INIS)

    Yan, D.; Birkner, M.; Nuesslin, F.; Wong, J.; Martinez, A.

    2001-01-01

    Purpose: To test the capability of dose escalation in the IMRT process where the organ/patient temporal geometric variation, measured using either off-line or on-line treatment CT and portal images, are adapted for the optimal design of intensity modulated beam. Materials and Methods: Retrospective study was performed on five prostate cancer patients with multiple CT scans (14∼17/patient) and daily portal images obtained during the treatment course. These images were used to determine the displacements of each subvolume in the organs of interest caused by the daily patient setup and internal organ motion/deformation. The temporal geometric information was processed in order of treatment time and fed into an inverse planning system. The inverse planning engine was specifically implemented to adapt the design of intensity modulated beam to the temporal subvolume displacement and patient internal density changes. Three image feedback strategies were applied to each patient and evaluated with respect to the capability of safe dose escalation. The first one is off-line image feedback, which designs the beam intensity based on the patient images measured within the first week of treatment. The second is an on-line 'the target of the day' strategy, which designs the beam intensity in daily bases by using 'the image of the day' alone. The last one is also the on-line based. However, it designs the instantaneous beam intensity based on also dose distribution in each organ of interest received prior to the current treatment. For each of the treatment strategies, the minimum dose delivered to the CTV was determined by applying the identical normal tissue constraints of partial dose/volumes. This minimum dose was used to represent the treatment dose for each patient. Results: The off-line strategy appears feasible after 5 days of image feedback. The average treatment dose among the patients can be 10% higher than the one in the conventional IMRT treatment where the inverse

  15. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  16. A dedicated beam line for Rutherford backscattering analysis at IFIN-HH cyclotron

    International Nuclear Information System (INIS)

    Ivanov, E. A.; Dudu, D.; Plostinaru, D.; Catana, D.; Vata, I.

    2003-01-01

    Rutherford back-scattering technique (RBS) is an analytical tool that uses elastic scattering of 1-5 MeV charged particles for analysis of the surface and the outer few micrometers of solids. IFIN-HH RBS system consists of the U-120 Cyclotron, a dedicated beam line and a scattering chamber with sample manipulators and particle detectors. In our RBS system the samples are bombarded with 2-5 alpha particles accelerated by U-120 Cyclotron (in 3-rd subharmonic regime) while the scattered particles are detected by a surface barrier detector. The signal from the detector is processed by common nuclear electronics and the particle energy spectra are stored in a computer based multichannel analyser. The data evaluation is accomplished using standard procedures and computer codes. The necessary vacuum inside chamber is obtained with an oil-free turbo pump. The beam spot dimension on the target is 1x1 mm. The standard measurement are done at Θ = 165 angle. The samples are electrically insulated and can be rotated around a vertical axis. The advantage of the RBS technique lies in the quantitative analysis of major and minor constituents lying in the first 0.5 to 2.0 micrometers of a material. Depending on the sample structure and composition, the detection limits vary from 10 11 to 10 15 at. cm -2 for heavy and light elements, respectively. The depth distribution of constituents can be reconstructed with a depth resolution of 10-20 nm. The RBS technique is non-destructive since the erosion and the radiation degradation of the sample material by the particle impact is negligible. The most extensive use of the RBS technique is in the field of electronic and optical materials, special coatings and in the study of various physico-chemical processes on the solid surfaces. (authors)

  17. Simulations of the BNL/SLAC/UCLA 1.6 cell emittance compensated photocathode RF gun low energy beam line

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Winick, H.

    1995-01-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratories Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. The design of the experimental line, using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. Detailed beam dynamics simulations were performed for the 1.6 cell RF gun injector using a solenoidal emittance compensation technique. An experimental program for testing the 1.6 cell RF gun is presented. This program includes beam loading caused by dark current, higher order mode field measurements, integrated and slice emittance measurements using a pepper-pot and RF kicker cavity

  18. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10 MeV

    Directory of Open Access Journals (Sweden)

    S. Busold

    2014-03-01

    Full Text Available We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 10^{9} particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E_{0} at FWHM. A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf field is applied via a rf cavity for energy compression at a synchronous phase of -90  deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  19. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    Science.gov (United States)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  20. Measurements of refractive index and size of a spherical drop from Gaussian beam scattering in the primary rainbow region

    Science.gov (United States)

    Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron

    2018-03-01

    The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.

  1. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  2. Geometrical reasoning in the primary school, the case of parallel lines

    OpenAIRE

    Sinclair, Nathalie; Jones, Keith

    2009-01-01

    During the primary school years, children are typically expected to develop ways of explaining their mathematical reasoning. This paper reports on ideas developed during an analysis of data from a project which involved young children (aged 5-7 years old) in a whole-class situation using dynamic geometry software (specifically Sketchpad). The focus is a classroom episode in which the children try to decide whether two lines that they know continue (but cannot see all of the continuation) will...

  3. A new concept for the control of a slow-extracted beam in a line with rotational optics: Part II

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    The current trend in hadrontherapy is towards high-precision, conformal scanning of tumours with a 'pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow-extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer-pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from 'hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined phase shifter and 'stepper', at a point close to ...

  4. A new concept for the control of a slow-extracted beam in a line with rotational optics, 2

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    For pt.I see ibid., vol.430, p.512-22, 1999. The current trend in hadron therapy is towards high-precision, conformal scanning of tumours with a `pencil' beam of light ions or protons, delivered by a synchrotron using slow extraction. The particular shape of the slow- extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer- pi phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from `hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined p...

  5. A New Concept for the Control of a Slow-Extracted Beam in a Line with Rotational Optics, 2

    CERN Document Server

    Benedikt, Michael; Pullia, M

    1999-01-01

    The current trend in hadrontherapy is towards high-precision, conformal scanning of tumours with a 'pencil' beam of light ions, or protons, delivered by a synchrotron using slow-extraction. The particular shape of the slow-extracted beam segment in phase space and the need to vary the beam size in a lattice with rotating optical elements create a special problem for the design of the extraction transfer line and gantry. The design concept presented in this report is based on telescope modules with integer-p phase advances in both transverse planes. The beam size in the plane of the extraction is controlled by altering the phase advance and hence the rotation of the extracted beam segment in phase space. The vertical beam size is controlled by stepping the vertical betatron amplitude function over a range of values and passing the changed beam size from 'hand-to-hand' through the telescope modules to the various treatment rooms. In the example given, a combined phase-shifter and 'stepper', at a point close to ...

  6. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Energy Technology Data Exchange (ETDEWEB)

    Makhloufi, M., E-mail: makhloufi_8m@yahoo.fr [Centre de Recherche Nucléaire de Birine (Algeria); Salah, H. [Centre de Recherche Nucléaire d' Alger (Algeria)

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  7. Discrimination of Charged Particles in a Neutral Beam Line by Using a Solid Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Kwan; Ko, Jewou; Liu, Dong [Jeju National University, Jeju (Korea, Republic of)

    2017-01-15

    In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a charged particle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.

  8. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    International Nuclear Information System (INIS)

    Makhloufi, M.; Salah, H.

    2017-01-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway. - Highlights: • Permit to evaluate the feasibility of a polarized neutron scattering instrument prior to its implementation. • Help to understand the origin of instrumental imperfections and offer an optimized set up configuration. • Provide the possibility to use the FeSi and CoCu supermirrors, designed to polarize spin up cold neutron, to polarize thermal neutron.

  9. Performance test for implantation of a primary standard of low energy X-ray beams

    International Nuclear Information System (INIS)

    Cardoso, Ricardo de Souza; Bossio, Francisco; Peixoto, Jose Guilherme P.

    2005-01-01

    The implementation of a standard laboratory of calibration chambers that will serve to radiotherapy activities, radiodiagnosis and radioprotection, depends on the knowledge of physical and dosimetric parameters that characterize the quality of the radiation beam. With the aim of verifying the reliability of the ionizing free-air chamber with variable volume manufactured by Victoreen Instruments, model 481, as a primary standard, a study of the performance of the chamber to x-rays qualities of low energy was developed in this work. These qualities are the ones recommended by 'Bureau International des Poids et Mesures' - BIPM, for daily routine of the calibration service performed by the 'Laboratorio Nacional de Metrologia das Radiacoes Ionizantes - LNMRI/IRD, for calibration of this secondary standard chambers that serve to the control in hospitals, clinics and industries. The results obtained at the present work show that the Victoreen chamber model 481 behaves as a primary standard, being easy to handle and having simple mechanical construction, and showing an expanded uncertainty equal to 0,26%, regarding the quality of the radiation beam of 30 kV. However, some of the equipment used at the present study need to be submitted to a strict routine calibration, in order for the laboratory to be in accordance with the recommendations of the standard ABNT -NBR ISO/IEC 17025 (2003). (author)

  10. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  11. Design of UHV chamber assembly and mirror mounts for high resolution VUV beam line at INDUS-1

    International Nuclear Information System (INIS)

    Saksena, G.D.; Sinha, A.K.; Bhattacharya, S.S.

    1993-01-01

    The reflecting optical system is designed for the high resolution VUV spectroscopy facility to be installed at INDUS-1. The fore-optics system consists of three cylindrical mirrors (M1, M2 and M3) to accept a 60 mrad (horizontal) x 6 mrad (vertical) diverging synchrotron beam from the storage ring in order to focus the image on the entrance slit of the vacuum spectrometer located at 13 m from the source point. In this paper we present some important details regarding mechanical design of the high resolution beam line consisting of mirror mounts, UHV chambers, associated mechanisms and beam pipes. The mirrors are mounted in an adjustable three point kinematic holder. In addition, these mounts are provided with a multi-plane alignment provision. Mirror mounts are placed inside VHV chambers which are provided with three translational and two rotational movements to facilitate initial as well as final on-line fine-tuned alignments. Beam pipes are connected to the VHV chambers through flanged bellows. Chambers, associated mechanisms, beam pipes with its non-rigid support and related pumping stations are positioned in the support structure rigidly. (author). 2 figs

  12. Optics Measurements and Matching of TT2-TT10 Line for Injection of the LHC Beam in the SPS

    CERN Document Server

    Benedetto, E; Guerrero, A; Jacquet, D

    2008-01-01

    A well matched injection in the SPS is very important for preserving the emittance of the LHC beam. The paper presents the algorithms used for the analysis and the results of the optics measurements done in the transfer line TT2-TT10 and in the SPS. The dispersion is computed by varying the beam momentum and recording the offsets at the BPMs, while the Twiss parameters and emittance measurements in TT2-TT10 are performed with beam profile monitors equipped with OTR screens. These results are completed by those obtained with a matching monitor installed in the SPS as a prototype for the LHC. This device makes use of an OTR screen and a fast acquisition system, to get the turn by turn beam profiles right at injection in the ring, from which the beam mismatch is computed and compared with the results obtained in the line. Finally, on the basis of such measurements, a betatron and dispersion matching of TT2-TT10 for injection in the SPS has been performed and successfully put in operation.

  13. Protocol of image guided off-line using cone beam CT megavoltage; Protocolo de imagen guiada off-line mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Perez Moreno, J. M.; Zucca Aparicio, D.; Minambres Moro, A.

    2013-07-01

    The goal of image guided protocols offline is to reduce systematic errors in positioning of the patient in the treatment unit, being more important than the random errors, since the systematic have one contribution in the margin of the CTV to the PTV. This paper proposes a protocol for image guided offline with the different actions to take with their threshold values evaluated previously by anatomic location in a sample of 474 patients and 4821Cone beam Megavoltaje CT (CBCT). (Author)

  14. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  15. Longitudinal development of number line estimation and mathematics performance in primary school children.

    Science.gov (United States)

    Friso-van den Bos, Ilona; Kroesbergen, Evelyn H; Van Luit, Johannes E H; Xenidou-Dervou, Iro; Jonkman, Lisa M; Van der Schoot, Menno; Van Lieshout, Ernest C D M

    2015-06-01

    Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the current study, different models were applied to children's longitudinal number placement data to get more insight into the development of number line representations in kindergarten and early primary school years. In addition, longitudinal developmental relations between number line placements and mathematical achievement, measured with a national test of mathematics, were investigated using cross-lagged panel modeling. A group of 442 children participated in a 3-year longitudinal study (ages 5-8 years) in which they completed a number-to-position task every 6 months. Individual number line placements were fitted to various models, of which a one-anchor power model provided the best fit for many of the placements at a younger age (5 or 6 years) and a two-anchor power model provided better fit for many of the children at an older age (7 or 8 years). The number of children who made linear placements also grew with age. Cross-lagged panel analyses indicated that the best fit was provided with a model in which number line acuity and mathematics performance were mutually predictive of each other rather than models in which one ability predicted the other in a non-reciprocal way. This indicates that number line acuity should not be seen as a predictor of math but that both skills influence each other during the developmental process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Status of the SPES-charge breeder (SPES-CB) and its beam line at INFN-LNL

    International Nuclear Information System (INIS)

    Galatá, Àlessio; Comunian, M.; Bellan, L.; Maggiore, M.; Patti, G.; Roncolato, C.; Bisoffi, G.; Russo, A.D.; Calabretta, L.; Angot, J.; Lamy, T.

    2016-01-01

    The Selective Production of Exotic Species (SPES) facility is under construction at INFN-LNL: aim of this project is the production, ionization and post-acceleration of radioactive ions to perform forefront research in nuclear physics. Radioactive species will be produced by fissions induced by a proton beam impinging on an UC_x target: the proton beam will be delivered by a room temperature cyclotron (built by the Best Company) with a maximum energy of 40 MeV and 0.25 mA of maximum current. The radioactive species produced in the Target-Ion-Source system, extracted as a 1+ beam, cooled in a RFQ-cooler and purified from the isobars contaminants through a High Resolution Mass Spectrometer (HRMS). In order to allow post acceleration with the superconducting linac ALPI at INFN-LNL (up to 10 MeV/A for A/q = 7), an ECR-based charge breeding technique (ECR-CB) was chosen: in particular the SPES-CB was developed by the LPSC Grenoble on the basis of the Phoenix booster. The SPES-CB will be equipped with a complete test bench, totally integrated with the SPES beam line: in particular, in order to avoid beam contaminations induced by the impurities present inside the SPES-CB, and to have high transmission for a beam of very low intensity, special attention was paid not only to the transport efficiency but also to the resolution of the spectrometer downstream the charge breeder, with the design of a Medium Resolution Mass Spectrometer (MRMS). In the following paper the technical aspects connected with SPES-CB, its beam line and the transport of highly charged radioactive ions will be described.

  17. Status of the SPES-charge breeder (SPES-CB) and its beam line at INFN-LNL

    Energy Technology Data Exchange (ETDEWEB)

    Galatá, Àlessio; Comunian, M. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Bellan, L. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Dipartimento di Fisica e Astronomia, Universitá degli Studi di Padova e Sezione INFN, Padova (Padova) (Italy); Maggiore, M.; Patti, G.; Roncolato, C.; Bisoffi, G. [INFN-Laboratori Nazionali di Legnaro, Viale dell’Universitá 2, 35020 Legnaro, Padova (Italy); Russo, A.D.; Calabretta, L. [INFN-Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Angot, J.; Lamy, T. [LPSC – Université Grenoble Alpes – CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France)

    2016-06-01

    The Selective Production of Exotic Species (SPES) facility is under construction at INFN-LNL: aim of this project is the production, ionization and post-acceleration of radioactive ions to perform forefront research in nuclear physics. Radioactive species will be produced by fissions induced by a proton beam impinging on an UC{sub x} target: the proton beam will be delivered by a room temperature cyclotron (built by the Best Company) with a maximum energy of 40 MeV and 0.25 mA of maximum current. The radioactive species produced in the Target-Ion-Source system, extracted as a 1+ beam, cooled in a RFQ-cooler and purified from the isobars contaminants through a High Resolution Mass Spectrometer (HRMS). In order to allow post acceleration with the superconducting linac ALPI at INFN-LNL (up to 10 MeV/A for A/q = 7), an ECR-based charge breeding technique (ECR-CB) was chosen: in particular the SPES-CB was developed by the LPSC Grenoble on the basis of the Phoenix booster. The SPES-CB will be equipped with a complete test bench, totally integrated with the SPES beam line: in particular, in order to avoid beam contaminations induced by the impurities present inside the SPES-CB, and to have high transmission for a beam of very low intensity, special attention was paid not only to the transport efficiency but also to the resolution of the spectrometer downstream the charge breeder, with the design of a Medium Resolution Mass Spectrometer (MRMS). In the following paper the technical aspects connected with SPES-CB, its beam line and the transport of highly charged radioactive ions will be described.

  18. Intensity and bunch length measurement for lepton beam in the injection lines of the SPS and LEP

    CERN Document Server

    Boccard, C; Papis, J P; Vos, L

    1995-01-01

    We describe a system which is used operationally to measure the absolute intensity of single lepton bunches in a beam transfer line. It is based on the detailed knowledge of every single item of a complex measuring chain that comprises a beam coupler on one end and an acquisition system on the other end. This knowledge can be acquired by a well tested theoretical model and careful measurement of the transfer function of each processing module. A precision better than 3 % can be obtained and no external calibration is required. A value for the bunch length can be deduced from a spectral intensity measurement at two well chosen frequencies.

  19. Dark currents and their effect on the primary beam in an X-band linac

    Directory of Open Access Journals (Sweden)

    Karl L. F. Bane

    2005-06-01

    Full Text Available We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC we first perform a fairly complete (with some approximations calculation of dark-current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65  MV/m, considering two very different assumptions about dark-current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent ∼1%. Considering that ∼1  mA outgoing dark current is seen in measurement, this implies that ∼100  mA (or 10 pC per period is emitted within the structure itself. Using the formalism of the Liénard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is ∼1   V kick per mA (or per 0.1  pC per period dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be ∼15   V. For the NLC linac this translates to a ratio of (final vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made—particularly the number of emitters and their distribution within a structure—the accuracy of this result may be limited to the order of magnitude.

  20. X-ray diffraction using synchrotron radiation on the G.I.L.D.A. beam line at the E.S.R.F

    Energy Technology Data Exchange (ETDEWEB)

    Balerna, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Meneghini, C [INFN, Laboratori Nazionali di Frascati, Rome (Italy); [INFM, Genoa (Italy); Bordoni, S [Rome Univ. ` Tor Vergata` (Italy). Dip. di Fisica; Mobilio, S [Rome Univ. III (Italy). Dip. di Fisica ` E. Amaldi`

    1996-09-01

    The aim of this lecture is to make a short introduction on Synchrotron radiation, its history and main properties. The main components of a synchrotron radiation beam line will be described. The Italian beam line, General purpose Italian beam line Line for Diffraction and Absorption (G.I.L.D.A.) at the European Synchrotron Radiation Facility (E.S.R.F.) in Grenoble will be used as an example. The G.I.L.D.A. diffractometer will be described in detail reporting also some experimental results.

  1. Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma.

    Science.gov (United States)

    Uchida, Akifumi; Samukawa, Takuya; Kumamoto, Tomohiro; Ohshige, Masahiro; Hatanaka, Kazuhito; Nakamura, Yoshihiro; Mizuno, Keiko; Higashimoto, Ikkou; Sato, Masami; Inoue, Hiromasa

    2017-12-12

    It is crucial to develop novel diagnostic approaches for determining if peripheral lung nodules are malignant, as such nodules are frequently detected due to the increased use of chest computed tomography scans. To this end, we evaluated levels of napsin A in epithelial lining fluid (ELF), since napsin A has been reported to be an immunohistochemical biomarker for histological diagnosis of primary lung adenocarcinoma. In consecutive patients with indeterminate peripheral lung nodules, ELF samples were obtained using a bronchoscopic microsampling (BMS) technique. The levels of napsin A and carcinoembryonic antigen (CEA) in ELF at the nodule site were compared with those at the contralateral site. A final diagnosis of primary lung adenocarcinoma was established by surgical resection. We performed BMS in 43 consecutive patients. Among patients with primary lung adenocarcinoma, the napsin A levels in ELF at the nodule site were markedly higher than those at the contralateral site, while there were no significant differences in CEA levels. Furthermore, in 18 patients who were undiagnosed by bronchoscopy and finally diagnosed by surgery, the napsin A levels in ELF at the nodule site were identically significantly higher than those at the contralateral site. In patients with non-adenocarcinoma, there were no differences in napsin A levels in ELF. The area under the receiver operator characteristic curve for identifying primary lung adenocarcinoma was 0.840 for napsin A and 0.542 for CEA. Evaluation of napsin A levels in ELF may be useful for distinguishing primary lung adenocarcinoma.

  2. High-radiance LDP source for mask inspection and beam line applications (Conference Presentation)

    Science.gov (United States)

    Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Bergmann, Klaus; Yabuta, Hironobu; Nagano, Akihisa; Ashizawa, Noritaka; Taniguchi, Yuta; Yamatani, Daiki; Shirai, Takahiro; Kasama, Kunihiko

    2017-04-01

    High-throughput actinic mask inspection tools are needed as EUVL begins to enter into volume production phase. One of the key technologies to realize such inspection tools is a high-radiance EUV source of which radiance is supposed to be as high as 100 W/mm2/sr. Ushio is developing laser-assisted discharge-produced plasma (LDP) sources. Ushio's LDP source is able to provide sufficient radiance as well as cleanliness, stability and reliability. Radiance behind the debris mitigation system was confirmed to be 120 W/mm2/sr at 9 kHz and peak radiance at the plasma was increased to over 200 W/mm2/sr in the recent development which supports high-throughput, high-precision mask inspection in the current and future technology nodes. One of the unique features of Ushio's LDP source is cleanliness. Cleanliness evaluation using both grazing-incidence Ru mirrors and normal-incidence Mo/Si mirrors showed no considerable damage to the mirrors other than smooth sputtering of the surface at the pace of a few nm per Gpulse. In order to prove the system reliability, several long-term tests were performed. Data recorded during the tests was analyzed to assess two-dimensional radiance stability. In addition, several operating parameters were monitored to figure out which contributes to the radiance stability. The latest model that features a large opening angle was recently developed so that the tool can utilize a large number of debris-free photons behind the debris shield. The model was designed both for beam line application and high-throughput mask inspection application. At the time of publication, the first product is supposed to be in use at the customer site.

  3. On-line cone beam CT image guidance for vocal cord tumor targeting

    International Nuclear Information System (INIS)

    Osman, Sarah O.S.; Boer, Hans C.J. de; Astreinidou, Eleftheria; Gangsaas, Anne; Heijmen, Ben J.M.; Levendag, Peter C.

    2009-01-01

    Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation.

  4. Simulation and beam line experiments for the superconducting ECR ion source VENUS

    International Nuclear Information System (INIS)

    Todd, Damon S.; Leitner, Daniela; Grote, David P.; Lyneis, ClaudeM.

    2007-01-01

    The particle-in-cell code Warp has been enhanced to incorporate both two- and three-dimensional sheath extraction models giving Warp the capability of simulating entire ion beam transport systems including the extraction of beams from plasma sources. In this article we describe a method of producing initial ion distributions for plasma extraction simulations in electron cyclotron resonance (ECR) ion sources based on experimentally measured sputtering on the source biased disc. Using this initialization method, we present preliminary results for extraction and transport simulations of an oxygen beam and compare them with experimental beam imaging on a quartz viewing plate for the superconducting ECR ion source VENUS

  5. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Czech Academy of Sciences Publication Activity Database

    Schillaci, F.; Maggiore, M.; Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, Valentina

    2016-01-01

    Roč. 837, Nov (2016), s. 80-87 ISSN 0168-9002 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606; GA MŠk LM2015065 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : particle acceleration * quadrupoles * dipoles * magnetic lens * beam dynamics Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.362, year: 2016

  6. Optics Measurements and Matching of TT2-TT10 Line for Injection of the LHC Beam in the SPS

    CERN Document Server

    Benedetto, E

    2008-01-01

    A well matched injection in the SPS is very important for preserving the emittance of the LHC beam. The paper presents the algorithms used for the analysis and the results of the 2007 optics measurements campaign done in the transfer line TT2-TT10 and in the SPS. The dispersion is computed by varying the beam momentum and recording the offsets at the BPMs, while the Twiss parameters and emittance measurements in TT2-TT10 are performed with beam profile monitors equipped with OTR screens. Finally, on the basis of such measurements, a betatron and dispersion matching of TT2-TT10 for injection in the SPS has been performed and successfully put in operation since October 2007.

  7. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  8. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  9. Production of neutron deficient rare isotope beams at IGISOL; on-line and off-line studies

    NARCIS (Netherlands)

    Huikari, J; Dendooven, P; Jokinen, A; Nieminen, A; Penttila, H; Perajarvi, K; Popov, A; Rinta-Antila, S; Aysto, J

    This article reports on recent on-line yield measurements employing the light-ion and heavy-ion reaction-based ion guide systems and new results on a-recoil ion transport properties in ion guides with and without electric fields. In addition, the presently used ion guide designs for fusion

  10. First-line tracheal resection and primary anastomosis for postintubation tracheal stenosis.

    Science.gov (United States)

    Elsayed, H; Mostafa, A M; Soliman, S; Shoukry, T; El-Nori, A A; El-Bawab, H Y

    2016-07-01

    Introduction Tracheal stenosis following intubation is the most common indication for tracheal resection and reconstruction. Endoscopic dilation is almost always associated with recurrence. This study investigated first-line surgical resection and anastomosis performed in fit patients presenting with postintubation tracheal stenosis. Methods Between February 2011 and November 2014, a prospective study was performed involving patients who underwent first-line tracheal resection and primary anastomosis after presenting with postintubation tracheal stenosis. Results A total of 30 patients (20 male) were operated on. The median age was 23.5 years (range: 13-77 years). Seventeen patients (56.7%) had had previous endoscopic tracheal dilation, four (13.3%) had had tracheal stents inserted prior to surgery and one (3.3%) had undergone previous tracheal resection. Nineteen patients (63.3%) had had a tracheostomy. Eight patients (26.7%) had had no previous tracheal interventions. The median time of intubation in those developing tracheal stenosis was 20.5 days (range: 0-45 days). The median length of hospital stay was 10.5 days (range: 7-21 days). The success rate for anastomoses was 96.7% (29/30). One patient needed a permanent tracheostomy. The in-hospital mortality rate was 3.3%: 1 patient died from a chest infection 21 days after surgery. There was no mortality or morbidity in the group undergoing first-line surgery for de novo tracheal lesions. Conclusions First-line tracheal resection with primary anastomosis is a safe option for the treatment of tracheal stenosis following intubation and obviates the need for repeated dilations. Endoscopic dilation should be reserved for those patients with significant co-morbidities or as a temporary measure in non-equipped centres.

  11. Contribution to the development of a primary standard for high energy neutron beams

    International Nuclear Information System (INIS)

    Mancaux, M.

    1983-12-01

    A tissue equivalent calorimeter, made of Shonka A-150 plastic, has been constructed in order to create a primary standard for high energy neutrons and to establish a calibration procedure for ionization chambers used in neutrontherapy. After a detailed description of the calorimeter and the associated measuring system, the preliminary tests are presented, in particular, the evolution of the response as a function of accumulated dose. The measurements of the total absorbed dose (n + γ) by calorimetry in a neutron beam, in order to determine chambers' calibration factors in terms of absorbed dose to A-150 plastic, have been performed at the Neutrontherapy Unit of the Centre Hospitalier Regional d'Orleans. The uncertainty in the determination of the total absorbed dose to the tissu equivalent material using the new procedure is 3% lower than that obtained with the usual procedure, derived from an exposure calibration [fr

  12. Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2012-08-15

    Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

  13. Design study of the ESS-Bilbao 50 MeV proton beam line for radiobiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Huerta-Parajon, M., E-mail: mhuerta@essbilbao.org; Martinez-Ballarin, R., E-mail: rmartinez@essbilbao.org; Abad, E., E-mail: eabad@essbilbao.org

    2015-02-01

    The ESS-Bilbao proton accelerator facility has been designed fulfilling the European Spallation Source (ESS) specifications to serve as the Spanish contribution to the ESS construction. Furthermore, several applications of the ESS-Bilbao proton beam are being considered in order to contribute to the knowledge in the field of radiobiology, materials and aerospace components. Understanding of the interaction of radiation with biological systems is of vital importance as it affects important applications such as cancer treatment with ion beam therapy among others. ESS-Bilbao plans to house a facility exclusively dedicated to radiobiological experiments with protons up to 50 MeV. Beam line design, optimisation and initial calculations of flux densities and absorbed doses were undertaken using the Monte Carlo simulation package FLUKA. A proton beam with a flux density of about 10{sup 6} protons/cm{sup 2} s reaches the water sample with a flat lateral distribution of the dose. The absorbed dose at the pristine Bragg peak calculated with FLUKA is 2.4 ± 0.1 Gy in 1 min of irradiation time. This value agrees with the clinically meaningful dose rates, i.e. around 2 Gy/min, used in hadrontherapy. Optimisation and validation studies in the ESS-Bilbao line for radiobiological experiments are detailed in this article.

  14. Guidelines for remote handling maintenance of ITER neutral beam line components: Proposal of an alternate supporting system

    International Nuclear Information System (INIS)

    Cordier, J.J.; Bayetti, P.; Hemsworth, R.; David, O.; Friconneau, J.P.

    2007-01-01

    Remote handling (R/H) maintenance of ITER components is one of the main challenges of the ITER project. This type of maintenance shall be operational for the assembly and nuclear phase of exploitation of ITER. It must be considered at a very early stage since it significantly impacts on the components design, interfaces management, assembly, maintenance and integration aspects. A large part of the R/H equipment will be procured by the EU Participating Team, including the whole Neutral Beam R/H Equipment. The Neutral Beam Heating and Current Drive system (NB and CD) design is being revisited by the ITER project. A vertical maintenance scheme is presently considered which may significantly impact on the reference design and associated components and lead to a new design of the NB and CD vacuum tank. In addition, NB line components remote handling solutions are being studied. The neutral beam test facility ITER to be built in Europe in the near future is also based on the vertical NB maintenance scheme of beam line components. New design guidelines compliant for both the ITER NB and CD system and the NB test facility proposed by the CEA association are described in the paper

  15. Design and performance of an in situ high vacuum STM in beam line at 15 UD pelletron accelerator

    International Nuclear Information System (INIS)

    Singh, J.P.; Tripathi, A.; Ahuja, R.; Dutt, R.N.; Kanjilal, D.; Mehta, G.K.; Raychoudhuri, A.K.

    2000-01-01

    The design, installation and performance of an in situ high vacuum STM in the materials science beam line of 15 UD tandem Pelletron accelerator, NSC are reported. The scanning tunneling microscope (STM) has imaged highly oriented pyrolytic graphite (HOPG) surfaces with atomic resolution. Local current-voltage spectroscopy has also been performed on p-type Si (111) samples. A band gap of 1.09 ± 0.1 eV was calculated. (author)

  16. On-line and precise measurement of iron wear using thin layer activation reactions by proton beam

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nishimura, Kazuo.

    1990-01-01

    For the purpose of the on-line measurement of iron wear, thin layer activation (TLA) method or surface layer activation (SLA) method has been carried out since early 1970s. This method uses the irradiation of charged particle beam like protons from an accelerator onto a metal surface to produce a thin activated layer of several tens μm. The wear of this activated layer is measured by nondestructive on-line method with a radiation detector. There are two methods of the measurement. One is the activity loss measurement on the surface, and the other is the activity measurement of the metal debris collected in a filter. The former method is considered here. The purpose it to measure the wear of engine cam noses to help the development of good engine oil. Proton beam irradiation with a tandem van de Graaff accelerator, wear calibration using a gamma ray spectrometer, on-line wear measurement of cam noses of car engines by TLA method and so on are reported. The 7.00 MeV proton beam from a van de Graaff accelerator was used for activation, and Co-56, Co-57 and Co-58 were obtained in thin layers. (K.I.)

  17. ISOL based radioactive nuclear beam facilities

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-07-01

    High-intensity and high-quality unstable nuclear beams can be realized by coupling an isotope separator on-line and a proper post accelerator in various primary beams. Some technical features and problems in the production of such beams are discussed. A brief description is given on 'Exotic Nuclei Arena' in Japanese Hadron Project. (author)

  18. Volume phase holographic grating used for beams combination of RGB primary colors

    Science.gov (United States)

    Liu, Hui; Zhang, Xizhao; Tang, Minxue

    2013-12-01

    Volume phase holographic grating (VPHG) has the characteristics of high diffraction efficiency, high signal to noise ratio, high wavelength and angular selectivity, low scattering , low absorption and low cost. It has been widely used in high resolution spectrometer, wavelength division multiplexing and pulse compression technique. In this paper, a novel kind of RGB primary colors beams combiner which is consisted of a transmission VPHG and a reflection VPHG as core components is proposed. The design idea of the element is described in detail. Based on the principle of VPHG, the rigorous coupled wave analysis (RCWA) and Kogelnik's coupled wave theory, diffraction properties of the transmission and reflection VPHG are studied theoretically. As an example, three primary colors at wavelengths of 632.8nm, 532nm and 476.5nm are taken into account. Dichromated gelatin (DCG) is used as the holographic recording material. The grating parameters are determined by the Bragg conditions. The TE and TM wave diffraction efficiency, the wavelength selectivity and the angular selectivity of the transmission and reflection VPHG are calculated and optimized by setting the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d) by applying Kogelnik's coupled wave theory and G-solver software, respectively. The theoretical calculating results give guidance for further manufacture of the element.

  19. Impact of Primary Tumor Location on First-line Bevacizumab or Cetuximab in Metastatic Colorectal Cancer.

    Science.gov (United States)

    Snyder, Matthew; Bottiglieri, Sal; Almhanna, Khaldoun

    2018-01-01

    Colorectal cancer is one of the most common malignancies in the United States, with a large proportion of patients presenting with metastatic disease or developing a recurrence. Systemic chemotherapy is the mainstay of therapy in this setting. There is a clear benefit in the addition of bevacizumab or cetuximab (for rat sarcoma [RAS] wild type tumors) to oxaliplatin- and irinotecan-based regimens which can be considered for first-line therapy. However, many significant questions remain as to which agent reflects best practice. Our review aimed to elucidate the benefit of adding bevacizumab and cetuximab to initial therapy for metastatic colorectal cancer based on primary tumor location and a variety of other disease- and patient-related factors, addressing the paucity of evidence that currently exists in this area and contributing to current literature and clinical practices. The primary endpoints of the study were first Progression-Free Survival (PFS) and Overall Survival (OS). Secondary endpoints included best response to first- and second-line therapies, Treatment- Related Adverse Events (TRAEs), second PFS, cost of therapy, and an assessment of other patient- and disease-related factors affecting PFS and OS. While there were trends towards improved OS in patients with left-sided primary tumors (n=57) compared to those with right-sided disease (n=23), there were no significant differences between the two groups in either primary endpoint. While no differences were found for patients with left- or right- sided tumors stratified by add-on agent, these analyses were limited by the small number of patients receiving cetuximab with first-line therapy (n=4). However, the bevacizumab cohort (n=76) was sizable enough to provide ample data and produce clinically relevant results. Add-on therapy with bevacizumab in our study achieved impressive survival outcomes in both left-sided (median first PFS = 13 months, 95% CI 11-15 months; median OS = 37 months, 95% CI 21

  20. Gas Transport and Density Control in the HYLIFE Heavy-Ion Beam Lines

    International Nuclear Information System (INIS)

    Debonnel, Christophe S.; Welch, Dale R.; Rose, David V.; Lawrence, Simon S.Yu; Peterson, Per F.

    2003-01-01

    The effective propagation and focusing of heavy-ion beams in the final-focus magnet region of inertial fusion target chambers require controlling the background gas density and pressure in the beam tubes. Liquid vortexes will coat the inside of the tubes next to the beam ports and will help eliminate the need for mechanical shutters to mitigate the venting of target chamber background gas into the final-focus magnet region. Before the neutralizing region, the beam space charge is high, and ablation and target debris deposition in the final-focus magnet region may cause voltage breakdown. Previous studies focused on evaluating the amount of target chamber debris reaching the entrance of the beam ports. The TSUNAMI code has now been used to assess the density, temperature, and velocity of the vortex debris transported ∼3 m up the beam tubes and reaching the final-focus magnet region, assuming that the liquid vortexes are perfectly absorbing surfaces. To further mitigate debris deposition in the final-focus magnet region, and prevent voltage breakdown, a 'magnetic shutter' has been envisaged to divert the debris out of the final-focus region. This shutter will prevent the hot ablation debris from reaching the magnet region and, coupled to some ionizing scheme, will conveniently suppress early ingression of debris into the final-focus magnet region

  1. Implementing a Lean Management System in Primary Care: Facilitators and Barriers From the Front Lines.

    Science.gov (United States)

    Hung, Dorothy; Martinez, Meghan; Yakir, Maayan; Gray, Caroline

    2015-01-01

    Although Lean management techniques are increasingly used in health care to improve quality and reduce costs, lessons about how to successfully implement this approach on the front lines of care delivery are not well documented. In this study, we highlight key facilitators and barriers to implementing Lean among frontline primary care providers. This case study took place at a large, ambulatory care delivery system serving nearly 1 million patients. In-depth interviews were conducted with primary care physicians, staff, and administrators to identify key factors impacting Lean redesigns in primary care. Overall, staff engagement and performance management, sensitivity to the professional values and culture of medicine, and perceived adequacy of organizational resources were critical when introducing Lean changes. Specific drivers of change included empowerment of staff at all levels, visual display of performance metrics, and a culture of innovation and collaboration. Barriers included physician resistance to standardized work, difficulty transferring management responsibilities to non-physician staff, and time and staffing required for participating in improvement efforts. Although Lean offers a new approach to delivering care, the implementation process itself is both complex and crucial to success. Understanding early facilitators and barriers can maximize Lean's, potential to improve health care delivery.

  2. Primary orbit and the absorption lines of HDE 226868 (Cygnus X-1)

    International Nuclear Information System (INIS)

    Ninkov, Z.; Walker, G.A.H.; Yang, S.

    1987-01-01

    From Reticon spectra of about 1 A resolution taken between 1980 and 1984, the radial velocity curve of HDE 226868 is found to be characteristic of a single-line spectroscopic binary with K = 75.0 + or - 1.0 km/s and e = 0.0. Combining historical velocities from the literature with present data and applying a period-folding analysis, a period of 5.59964 + or - 0.00001 days is found. These values agree well with those published by Gies and Bolton (1982). The value of v sin i is estimated to be 94.3 + or - 5 km/s from CFHT Reticon spectra taken at 0.1 A resolution. Assuming that the rotation of the primary is synchronized to the orbital revolution of the secondary gives a primary to secondary mass ratio between 1.5 and 2.3. An absolute magnitude of -6.5 + or - 0.2 is derived from the equivalent width of H-gamma (1.5 + or - 0.1 A) and the calibration of Walker and Millward (1985), which is consistent with the spectral classification of O9.7 Iab. Assuming 20 solar masses as a reasonable estimate for the mass of the primary implies a mass of 10 + or - 1 solar masses for the secondary. 62 references

  3. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  4. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  5. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  6. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    Y. Renier

    2013-06-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs, it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  7. Off-line production of a sup 7 Be radioactive ion beam

    CERN Document Server

    Gialanella, L; De Cesare, N; D'Onofrio, A; Romano, M; Campajola, L; Formicola, A; Fülöp, Z; Gyürky, G; Imbriani, G; Lubritto, C; Ordine, A; Roca, V; Rogalla, D; Rolfs, C; Russo, M; Sabbarese, C; Somorjai, E; Strieder, F; Terrasi, F; Trautvetter, H P

    2002-01-01

    A sup 7 Be ion beam of several particle pA at 8 MeV has been produced at the TTT3 tandem of the University 'Federico II' in Naples. The sup 7 Be nuclides were formed via the sup 7 Li(p,n) sup 7 Be reaction using a metallic Li target and an 11.4 MeV proton beam of 20 mu A intensity, delivered by the cyclotron in Debrecen. Methods of hot chemistry were used to extract the sup 7 Be nuclides from the Li matrix and to prepare the sup 7 Be cathodes for the ion sputter source of the tandem. Examples of sup 7 Be beam applications are given.

  8. Progress in computer-assisted diagnosis and control of neutral beam lines

    International Nuclear Information System (INIS)

    Theil, E.; Elischer, V.; Fiddler, J.; Jacobs, N.J.D.; Jacobson, V.; Lawhorn, R.; Uber, D.; Wilner, D.

    1980-09-01

    This paper discusses the principles that have guided the development of a computerized diagnostic and control system for both the Neutral Beam Systems Test Facility at Lawrence Berkeley Laboratory and the Doublet III neutral beams at the General Atomic Company. The emphasis is not on the particular details of the implementation, but on general considerations which have influenced the design criteria for the system. Foremost among these are the requirements of an appropriate human interface to the system, and effective use of a relational data base. Examples are used to illustrate how these principles are carried out in practice. A systems view of diagnostic programs is suggested in the light of our experience

  9. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C., E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  10. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    International Nuclear Information System (INIS)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C.

    2017-01-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  11. X-ray section topographs under various coherence properties of the primary beam

    International Nuclear Information System (INIS)

    Borowski, J.; Gronkowski, J.

    2001-01-01

    The aim of this work is to study to what extent a typical section-topography setup can supply information about the degree of coherence of the incident x-ray beam. In real experiments, the incident beam is partially coherent, with the degree of coherence described by the shape of the correlation function. In this paper the correlation functions for the outgoing beam are calculated by solving the Takagi-Taupin equations, assuming a truncated Gauss correlation function for the incident beam with the correlation length determined by the van Cittert-Zernike theorem. Its influence on the measured intensity of the diffracted beam in section topography is investigated. (author)

  12. Improving the output voltage waveform of an intense electron-beam accelerator based on helical type Blumlein pulse forming line

    Directory of Open Access Journals (Sweden)

    Xin-Bing Cheng

    2010-07-01

    Full Text Available The Blumlein pulse forming line (BPFL consisting of an inner coaxial pulse forming line (PFL and an outer coaxial PFL is widely used in the field of pulsed power, especially for intense electron-beam accelerators (IEBA. The output voltage waveform determines the quality and characteristics of the output beam current of the IEBA. Comparing with the conventional BPFL, an IEBA based on a helical type BPFL can increase the duration of the output voltage in the same geometrical volume. However, for the helical type BPFL, the voltage waveform on a matched load may be distorted which influences the electron-beam quality. In this paper, an IEBA based on helical type BPFL is studied theoretically. Based on telegrapher equations of the BPFL, a formula for the output voltage of IEBA is obtained when the transition section is taken into account, where the transition section is between the middle cylinder of BPFL and the load. From the theoretical analysis, it is found that the wave impedance and transit time of the transition section influence considerably the main pulse voltage waveform at the load, a step is formed in front of the main pulse, and a sharp spike is also formed at the end of the main pulse. In order to get a well-shaped square waveform at the load and to improve the electron-beam quality of such an accelerator, the wave impedance of the transition section should be equal to that of the inner PFL of helical type BPFL and the transit time of the transition section should be designed as short as possible. Experiments performed on an IEBA with the helical type BPFL show reasonable agreement with theoretical analysis.

  13. Xylose-rich polysaccharides from the primary walls of embryogenic cell line of Pinus caribaea.

    Science.gov (United States)

    Mollard, A; Domon, J M; David, H; Joseleau, J P

    1997-08-01

    Embryogenic cell lines of Pinus caribaea were isolated from somatic embryogenesis from zygotic embryos. Previous studies showed that the proteins and glycoproteins were characteristic of the embryogenic state. In the present work we were seeking typical feature in the polysaccharide from the cell walls of embryogenic calli at nine days of culture. Sequential extraction with water, ammonium oxalate, dimethyl sulfoxide, sodium borohydride and 4.3 M potassium hydroxide revealed that the extracted polysaccharides contained high proportions of arabinose and significant amounts of xylose. Fractionation of the hydrosoluble polymers on DEAE cellulose afforded a xylose-rich fraction (80% xylose, 24% glucose and lower properties of fucose and mannose). Methylation analysis and 13C-NMR spectra showed that the glycan backbone consisted of beta 1 --> 4 linked xylosyl residues Similar study of the fractions extracted respectively with DMSO and 4.3 M KOH showed the presence of polydisperse glycoxylans but excluded the presence of xyloglucan in significant amount. This could be a characteristic feature of embryogenic cells walls of Pinus caribaea or could be typical of cells grown as calluses. In the various fractions obtained from DEAE cellulose chromatography of the alkaline extract the infrequent occurrence of fucoxylans beside an arabinogalactan showed again the unusual nature of the cell wall polymers of this embryogenic lines, which seems to differ greatly from those found in the primary wall of cells from suspension cultures.

  14. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  15. Calibration artefacts in radio interferometry - III. Phase-only calibration and primary beam correction

    Science.gov (United States)

    Grobler, T. L.; Stewart, A. J.; Wijnholds, S. J.; Kenyon, J. S.; Smirnov, O. M.

    2016-09-01

    This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of this series, we developed a mathematical framework which enabled us to study the ghosting mechanism itself. An interesting concomitant of the second paper was that ghosts appear in symmetrical pairs. This could possibly account for spurious symmetrization. Spurious symmetrization refers to the appearance of a spurious source (the antighost) symmetrically opposite an unmodelled source around a modelled source. The analysis in the first two papers indicates that the antighost is usually very faint, in particular, when a large number of antennas are used. This suggests that spurious symmetrization will mainly occur at an almost undetectable flux level. In this paper, we show that phase-only calibration produces an antighost that is N-times (where N denotes the number of antennas in the array) as bright as the one produced by phase and amplitude calibration and that this already bright ghost can be further amplified by the primary beam correction.

  16. Identification of dental root canals and their medial line from micro-CT and cone-beam CT records

    Directory of Open Access Journals (Sweden)

    Benyó Balázs

    2012-10-01

    Full Text Available Abstract Background Shape of the dental root canal is highly patient specific. Automated identification methods of the medial line of dental root canals and the reproduction of their 3D shape can be beneficial for planning endodontic interventions as severely curved root canals or multi-rooted teeth may pose treatment challenges. Accurate shape information of the root canals may also be used by manufacturers of endodontic instruments in order to make more efficient clinical tools. Method Novel image processing procedures dedicated to the automated detection of the medial axis of the root canal from dental micro-CT and cone-beam CT records are developed. For micro-CT, the 3D model of the root canal is built up from several hundred parallel cross sections, using image enhancement, histogram based fuzzy c-means clustering, center point detection in the segmented slice, three dimensional inner surface reconstruction, and potential field driven curve skeleton extraction in three dimensions. Cone-beam CT records are processed with image enhancement filters and fuzzy chain based regional segmentation, followed by the reconstruction of the root canal surface and detecting its skeleton via a mesh contraction algorithm. Results The proposed medial line identification and root canal detection algorithms are validated on clinical data sets. 25 micro-CT and 36 cone-beam-CT records are used in the validation procedure. The overall success rate of the automatic dental root canal identification was about 92% in both procedures. The algorithms proved to be accurate enough for endodontic therapy planning. Conclusions Accurate medial line identification and shape detection algorithms of dental root canal have been developed. Different procedures are defined for micro-CT and cone-beam CT records. The automated execution of the subsequent processing steps allows easy application of the algorithms in the dental care. The output data of the image processing procedures

  17. A high-energy double-crystal fixed exit monochromator for the X17 superconducting wiggler beam line at the NSLS

    International Nuclear Information System (INIS)

    Garrett, R.F.; Dilmanian, F.A.; Oversluizen, T.; Lenhard, A.; Berman, L.E.; Chapman, L.D.; Stoeber, W.

    1992-01-01

    A high-energy double-crystal x-ray monochromator has been constructed for use on the X-17 beam line at the National Synchrotron Light Source (NSLS). Its design is based on the ''boomerang'' right angle linkage, and features a fixed exit beam, a cooled first crystal, and an energy range of 8--92 keV. The entire mechanism is UHV compatible. The design is described and performance details, obtained in testing at the X17 beam line, are presented

  18. High-power, high-brightness pseudospark-produced electron beam driven by improved pulse line accelerator

    International Nuclear Information System (INIS)

    Junbino Zhu; Mingchang Wang; Zhijiang Wang

    1995-01-01

    A high power (200KV), intense current density, low emittance (71mmmrad), high brightness (8x10 10 A/m rad) electron beam was generated in the 10cm long, high-voltage-resistive multi-gap hollow cathode pseudospark chamber filled with 15pa nitrogen and driven by an improved pulse line accelerator. The beam was ejected with the 1mm diameter, the 2.2KA beam current, and the 400ns pulse length, and could propagated 20cm in the drift tube. At a distance of 5cm from the anode it penetrated consecutively an acid-sensitive discoloring film and a 0.05mm-thick copper foil both stuck closely, left 0.6mm and 0.3mm holes on them, respectively. That 10 shots on an acid-sensitive film produced a hole of 1.6mm at 7cm downstream of anode showed its good repeatability. After 60 shots the pseudospark discharge chamber was disassembled and observed that almost no destructive damage traces left on the surfaces of its various electrodes and insulators. But on almost all the surfaces of changeable central hole parts installed on intermediate electrodes there are traces of electron emission from the sides facing the anode and of bombardment on the sides facing the cathode, in contrast with which on the front- and back-surfaces of hollow cathode no visible traces of electron emission from then was observed. In addition, there were different tints, strip-like regions on the side of anode facing the cathode. Another interesting phenomenon was that there were a set of concentric circular or elliptical ring pattern on the acid-sensitive discoloring film got at 5cm from the anode and observed tinder a metallograph. It seems that the pseudospark electron beam is Laminar beam i.e, being possessed of a multi-layer structure, at least in the case of multi-gap pseudospark discharge chamber. It was found experimentally that the quality of pseudospark electron beam is much better than that of the cold-cathode electron beam

  19. Development of a New RF Finger concept for vacuum beam line interconnections

    CERN Document Server

    Garion, C; Rambeau, H

    2012-01-01

    RF contact fingers are primarily used as a transition element to absorb the thermal expansion of vacuum chambers during bake-out and also to compensate for mechanical tolerances. They have to carry the beam image current to avoid the generation of Higher Order Modes and to reduce beam impedances. They are usually made out of copper beryllium thin sheets and are therefore very fragile and critical components. In this paper, a robust design based on a deformable finger concept is proposed. It allows the compensation of large longitudinal movements and also defaults such as transverse offset, twist or bending. The concept of this new RF fingers is first explained, then the design of the component is presented. The mechanical study based on a highly non-linear Finite Element model is shown as well as preliminary tests, including fatigue assessment, carried out on prototypes.

  20. Progress in computer-assisted diagnosis and control of neutral beam lines

    International Nuclear Information System (INIS)

    Theil, E.; Elischer, V.; Fiddler, J.; Jacobs, N.J.D.; Jacobson, V.; Lawhorn, R.; Uber, D.; Wilner, D.

    1981-01-01

    This paper discusses the principles that have guided the development of a computerized diagnostic and control system for both the Neutral Beam Systems Test Facility at Lawrence Berkeley Laboratory and the Doublet III neutral beams at the General Atomic Company. The emphasis is not on the particular details of the implementation, but on general considerations which have influenced the design criteria for the system. Foremost among these are the requirements of an appropriate human interface to the system, and effective use of a relational data base. Examples are used to illustrate how these principles are carried out in practice. A systems view of diagnostic programs is suggested in the light of our experience. (author)

  1. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    International Nuclear Information System (INIS)

    Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen

    2016-01-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  2. Tertiary particle production and target optimization of the H2 beam line in the SPS North Area

    CERN Document Server

    AUTHOR|(CDS)2079540; Tellander, Felix; CERN. Geneva. ATS Department

    2016-01-01

    In this note, the tertiary particle yield from secondary targets of different materials placed at the ‘filter’ position of the H2 beam line of SPS North Area are presented. The production is studied for secondary beams of different momenta in the range of 50-250 GeV/c. More specifically, we studied six different targets: two copper cylinders with a radius of 40 mm and lengths of 100 and 300 mm, one solid tungsten cylinder with a radius of 40 mm and a length of 150 mm and three polyethylene cylinders with radius of 40 mm and lengths of 550, 700 and 1000 mm. Eight different momenta of the secondary beam (50, 60, 70, 100, 120, 150, 200 and 250 GeV/c) as well as two different physics lists (QGSP_BIC and FTFP_BERT) have been extensively studied. The purpose of this study is (a) to optimize (using the appropriate filter target) the particle production from the secondary targets as demanded by the experiments (b) investigate the proton production (with respect to the pion production) in the produced tertiary bea...

  3. Beam Cherenkov counter conception for in line identification of 270 GeV/c Σ- Ξ- and Ω-

    International Nuclear Information System (INIS)

    Touillon, R.

    1991-06-01

    The purpose of this thesis is to design a beam Cerenkov counter. This counter will provide an on line identification of the Σ - , Ξ - and Ω - hyperons (270 GeV/c) in the experiment WA89 at CERN. The acceptance of the detector should allow tagging these hyperons in a large momentum range (± 25%) and for a beam divergence up to 250 microrad. The first part of this report is devoted to the physical goals such as the study of charmed baryons, the search of multiquark states, and the determination of hadronic and electromagnetic hyperon radii. The experimental WA89 setup is also presented. The major part deals with the design of the Cerenkov counter. The dimension of the detector, the Cerenkov angle value, the focal length of the spherical mirror, etc... are derived from a Monte-Carlo simulation. Various methods of simple photon detection (gaz detector: TEA, TMAE; solid detectors: PM and Image Intensifier) are investigated. The most performing solution uses two conical mirrors in order to reduce the size of the Cerenkov circles and an image intensifier (which detects the single photon) followed by an optical fiber matrix transmitting the luminous signal to 160 photomultipliers. The on line procedure for calculating the radius of each circle (identification of the particle) is studied in detail. Finally, the optimization of the optical system to achromatize the Cerenkov light is discussed [fr

  4. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil

    International Nuclear Information System (INIS)

    Ne, F.; Zemb, T.

    1998-01-01

    This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  5. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    Science.gov (United States)

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  6. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Bhattacharyya, D.; Sinha, A.K.; Mishra, V.K.; Verma, Vishnu; Ghosh, A.K.

    2002-11-01

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  7. The effects of primary beam filters on the analysis of rhodium and cadmium using a rhodium target x-ray tube

    International Nuclear Information System (INIS)

    Anzelmo, J.A.; Boyer, B.W.

    1986-01-01

    Since its introduction in 1964, the thin end-window rhodium target x-ray tube has been considered to be an excellent general purpose source of excitation. Heavy elements are efficiently excited by high Bremsstrahlung and the K lines of rhodium while the light elements are excited by the L lines of rhodium. The ability to efficiently excite both heavy and light elements is essential to special applications such as auto catalysts, which are composed of precious metals in a clay-like matrix. Close control of the light elements, including sodium, phosphorous, aluminum and silicon, and the heavy element precious metals, such as rhodium, are necessary to keep operating characteristics and manufacturing expense at desired levels. A quick survey of typical x-ray tube targets shows that some targets are more efficient for light elements while others are more efficient for heavy elements. The few general purpose x-ray tubes that are available have characteristic lines which overlap on elements to be determined. The rhodium target, which is a good excitation source for most of the elements mentioned, contains line overlaps on cadmium (RHKB) and rhodium (RHKA). When using a sequential wavelength dispersive XRF spectrometer, the characteristic lines of the tube scattered from the sample can be removed by a programmable primary beam filter having an absorption edge just higher in wavelength than the wavelengths to be removed. The thickness and composition of the filter, as well as the choice of KV and MA, will determine the operating parameter necessary to achieve the optimum precision and lowest limits of detection. For this study, synthetic samples are made up using Kaolin as the matrix

  8. Slit x-ray beam primary dose profiles determined by analytical transport of Compton recoil electrons

    NARCIS (Netherlands)

    van't Veld, AA; van Luijk, P; Praamstra, F; van der Hulst, PC

    Accurate measurement of radiation beam penumbras is essential for conformal radiotherapy. For this purpose a detailed knowledge of the dosimeter's spatial response is required. However, experimental determination of detector spatial response is cumbersome and restricted to the specific detector type

  9. Primary study for boron neutron capture therapy uses the RSG-GAS beam tube facility

    International Nuclear Information System (INIS)

    Suroso

    2000-01-01

    The minimum epithermal neutron flux as one of the prerequisite of Boron Neutron Capture Therapy (BNCT) is 1.0 x 10 9 n/(cm 2 s) RSG-GAS have 6 beam tube facilities for neutron source, which is one of the beam tube S-2 has a possibility to utilization for BNCT facility. The totally flux neutron measurement in the front of S-2 beam tube is 1.8 x 10 7 n/(cm 2 s). The neutron flux measurement was less than for BNCT minimum prerequisite. Concerning to the flux neutron production in the reactor, which is reach to 2.5 x 10 14 n/(cm 2 s), there for the S-2 beam tube could be used beside collimator modification

  10. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Czech Academy of Sciences Publication Activity Database

    Cirrone, G.A.P.; Romano, F.; Scuderi, Valentina; Amato, A.; Candiano, G.; Cuttone, G.; Giove, D.; Korn, Georg; Krása, Josef; Leanza, R.; Manna, R.; Maggiore, M.; Marchese, V.; Margarone, Daniele; Milluzzo, G.; Petringa, G.; Sabini, M.G.; Schillaci, F.; Tramontana, A.; Valastro, L.; Velyhan, Andriy

    2015-01-01

    Roč. 796, Oct (2015), s. 99-103 ISSN 0168-9002 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE2.3.30.0057 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-driven ion * beam-transport * Faraday cup dosimetry * absolute dosimetry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.200, year: 2015

  11. Single-bunch beam breakup in a dielectric-lined waveguide

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1992-08-01

    We examine beam breakup of a 100 nC I mm-long (rms) source bunch inside a cylindrical dielectric waveguide, with dielectric ε = 2.65 filling the radius between 7.5 and 9.0 mm. Only ∼ 78% of the bunch with an initial offset of 0.3 mm survives the passage of the 3.75 m waveguide. The loss is mainly due to the large deflections of some particles that are slowed down to nearly zero velocity. As a result, quadrupole focussing of any sort will not help. However, if the waveguide is shortened to 3.3 m, the loss reduces to only 5.5%

  12. Application of robot kinematics methods to the simulation and control of neutron beam line positioning systems

    Energy Technology Data Exchange (ETDEWEB)

    James, Jonathan A. [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)]. E-mail: j.a.j.james@open.ac.uk; Edwards, Lyndon [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)

    2007-02-11

    Neutron stress measurements require specimens of complex geometry to be speedily and accurately positioned and oriented with respect to the neutron beam. Recognition that a majority of the specimen positioning systems in use at strain scanning facilities are effectively serial robot manipulators, suggests that the methods of serial robot kinematic modelling may be applied to advantage. The adoption of robotics methods provides a simple and reliable framework for controlling positioning systems of arbitrary geometry and complexity. In addition the numerical solution of the inverse kinematic problem is facilitated, allowing specimens to be automatically positioned and orientated so that pre-determined strain components are measured. It is also shown that, given sufficient degrees of freedom, a secondary characteristic of the measurement position such as the measurement count time may be simultaneously optimised.

  13. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  14. Total Skin Electron Beam for Primary Cutaneous T-cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Elsayad, Khaled; Kriz, Jan; Moustakis, Christos; Scobioala, Sergiu; Reinartz, Gabriele; Haverkamp, Uwe; Willich, Normann [Department of Radiation Oncology, University Hospital of Muenster, Muenster (Germany); Weishaupt, Carsten [Department of Dermatology, University Hospital of Muenster, Muenster (Germany); Stadler, Rudolf [Department of Dermatology, Johannes-Wesling-Klinikum Minden, Minden (Germany); Sunderkötter, Cord [Department of Dermatology, University Hospital of Muenster, Muenster (Germany); Eich, Hans Theodor, E-mail: Hans.Eich@ukmuenster.de [Department of Radiation Oncology, University Hospital of Muenster, Muenster (Germany)

    2015-12-01

    Purpose: Recent trials with low-dose total skin electron beam (TSEB) therapy demonstrated encouraging results for treating primary cutaneous T-cell lymphoma (PCTCL). In this study, we assessed the feasibility of different radiation doses and estimated survival rates of different pathologic entities and stages. Methods and Materials: We retrospectively identified 45 patients with PCTCL undergoing TSEB therapy between 2000 and 2015. Clinical characteristics, treatment outcomes, and toxicity were assessed. Results: A total of 49 courses of TSEB therapy were administered to the 45 patients. There were 26 pathologically confirmed cases of mycosis fungoides (MF) lymphoma, 10 cases of Sézary syndrome (SS), and 9 non-MF/SS PCTCL patients. In the MF patients, the overall response rate (ORR) was 92% (50% complete remission [CR]), 70% ORR in SS patients (50% CR), and 89% ORR in non-MF/SS patients (78% CR). The ORR for MF/SS patients treated with conventional dose (30-36 Gy) regimens was 92% (63% CR) and 75% (25% CR) for low-dose (<30-Gy) regimens (P=.09). In MF patients, the overall survival (OS) was 77 months with conventional dose regimens versus 14 months with low-dose regimens (P=.553). In SS patients, the median OS was 48 versus 16 months (P=.219), respectively. Median event-free survival (EFS) for MF in conventional dose patients versus low-dose patients was 15 versus 8 months, respectively (P=.264) and 19 versus 3 months for SS patients (P=.457). Low-dose regimens had shorter treatment time (P=.009) and lower grade 2 adverse events (P=.043). A second TSEB course was administered in 4 MF patients with 100% ORR. There is a possible prognostic impact of supplemental/boost radiation (P<.001); adjuvant treatment (P<.001) and radiation tolerability (P=.021) were detected. Conclusions: TSEB therapy is an efficacious treatment modality in the treatment of several forms of cutaneous T-cell lymphoma. There is a nonsignificant trend to higher and longer clinical benefit

  15. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  16. The Two-Beam-Line Ion Implanter and Review of its Application to Creation of Complex Layers by the IBAD Method

    International Nuclear Information System (INIS)

    Rajchel, B.; Drwiega, M.; Lipinska, E.; Hajduk, R.

    1998-12-01

    The present status of the two-beam-line ion implanter its basic specifications after the upgrading and the possibilities of its application to ion engineering methods is presented. The examples of created layers (DLC, TiN x , SiC x ) and research methods applied to find out the features of the ion beam assisted deposited coatings are presented in order to prove the suitability of the device to scientific studies

  17. Experimental Observations of In-Situ Secondary Electron Yield Reduction in the PEP-II Particle Accelerator Beam Line

    International Nuclear Information System (INIS)

    Pivi, Mauro

    2010-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  18. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    International Nuclear Information System (INIS)

    Pivi, M

    2008-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II

  19. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  20. The Insulation Structure of the 1 Megavolt Transmission Line for the ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Lorenzi, A. de; Grando, L.; Gobbo, R; Pesavento, G.; Bettini, P.; Specogna, R.; Trevisan, F.

    2006-01-01

    The paper describes the studies and the tests for the development of the insulation structure of the 1 MV-50 A Gas Insulated (SF 6 ) Line of the ITER NBI in the SINGAP configuration. Basically, the Transmission Line for the SinGap configuration consists of a coaxial conductor with the inner electrode polarized at the negative value of 1 MV dc. Despite Transmission Line belongs to the Gas Insulated Switchgear (GIS) family, whose technology is nowadays mature, the design of spacers (usually epoxy post and conical type) for High Voltage DC with the same degree of reliability of spacer for High Voltage AC is far away to be attained, due to the substantial difference between AC and DC voltage electric field configuration and insulation behavior at Epoxy-SF 6 interface. Furthermore, the occurrence of very frequent short circuits during the NBI operation introduces further elements of uncertainty in the design of the insulation structure. The first step was then to assess the capability of standard epoxy spacers to withstand DC voltage with frequent short circuits, in order to determine if the choice of the material is suitable for such an application; a test circuit was set up, with the possibility to generate 200 kV DC and to produce a short-circuit every 15'. The system with the spacers was pressurized with SF 6 at 0.3 MPa. For the interpretation of the experimental results, the spacer has been modeled with commercial (ANSYS TM FEM) and research (Cell Method) numerical codes in order to evaluate both the capacitive and resistive electric field distributions. Once assessed the possibility of using epoxy compounds for the spacer construction, the post and cone spacers have been designed taking into consideration various cases, like electrostatic field configuration, resistive distribution for homogeneous and skin conductivity of the spacer, and for high SF 6 conductivity. In these cases the optimization of the triple point screening has been evaluated, leading to

  1. Primary beam-loading tests on DC-SC photoinjector at Peking University

    International Nuclear Information System (INIS)

    Hao Jiankui; Lu Xiangyang; Ding, Yuantao; Quan Shengwen; Huang Senlin; Zhao Kui; Zhang Baocheng; Wang Lifang; Lin Lin; Jiao Fei; Wang Guimei; Xie Datao; Zhu Feng; Xiao Binping; Xiang Rong; Chen Jia'er

    2006-01-01

    The DC-SC photoinjector is a compact electron gun integrating a DC pierce gun with a 1.3 GHz 1+1/2 cell superconducting cavity. A test facility of the DC-SC photoinjector had been installed in Peking University and beam-loading tests at 4.4 K have been finished. To date the gradient of 6 MV/m has been achieved. The maximum energy gain is 1.1 MeV at 4.4 K. With average beam current of 270 μA, the measured rms emittance is about 5 mm mrad at the beam energy of 500 keV. In this paper some of the experimental results are summarized

  2. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    International Nuclear Information System (INIS)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-01

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated β-galactosidase (SA-β-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21 WAF1/CIP1 in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells ( WAF1/CIP1 was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  3. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    International Nuclear Information System (INIS)

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S.

    2006-01-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents

  4. Longitudinal development of number line estimation and mathematics performance in primary school children

    NARCIS (Netherlands)

    Friso-van den Bos, I.; Kroesbergen, E.H.; van Luit, J.E.H.; Xenidou-Dervou, I.; Jonkman, L.M.; van der Schoot, M.; van Lieshout, E.C.D.M.

    2015-01-01

    Children's ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children's placements are distributed on this number line across development. In the

  5. Longitudinal development of number line estimation and mathematics performance in primary school children

    NARCIS (Netherlands)

    Friso - van den Bos, Ilona; Kroesbergen, Evelyn; van Luit, Hans; Xenidou-Dervou, Iro; Jonkman, Lisa M.; Van der Schoot, Menno; Van Lieshout, Ernest C. D. M.

    2015-01-01

    Children’s ability to relate number to a continuous quantity abstraction visualized as a number line is widely accepted to be predictive of mathematics achievement. However, a debate has emerged with respect to how children’s placements are distributed on this number line across development. In the

  6. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  7. The insulation structure of the 1 MV transmission line for the ITER neutral beam injector

    International Nuclear Information System (INIS)

    De Lorenzi, A.; Grando, L.; Gobbo, R.; Pesavento, G.; Bettini, P.; Specogna, R.; Trevisan, F.

    2007-01-01

    The paper describes the studies and the tests for the development of the insulation structure of the 1 MV-50 A gas insulated (SF 6 ) line of the ITER NBI in the SinGap configuration characterized by two kinds of spacers: at least a couple of disk-shaped spacers, designed to be gas tight, and a larger number (several tens) of inner conductor post spacers. To this aim a test campaign has been carried out to assess the capability of standard epoxy spacers to withstand a high dc voltage with frequent short circuits, simulating the operational condition for the ITER NBI. Two computational tools, the first for the epoxy spacer shape optimization under electrostatic distribution and the other for the nonlinear time variant evolution of the electric field and surface charge, have been developed specifically for designing epoxy spacer under dc voltage stress. The results on the optimization of the disk spacer and on the electric field-surface charge time evolution of the post spacer are reported and discussed. The effects of the SF 6 radiation induced conductivity on the post spacer are also reported

  8. The insulation structure of the 1 MV transmission line for the ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzi, A. [Consorzio RFX, Associazione Euratom-Enea sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)], E-mail: antonio.delorenzi@igi.cnr.it; Grando, L. [Consorzio RFX, Associazione Euratom-Enea sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DIE, Universita di Padova, Via Gradenigo 6A, I-35100 Padova (Italy); Bettini, P.; Specogna, R.; Trevisan, F. [DIEGM, Universita di Udine, Via delle Scienze 208, I-33100 Udine (Italy)

    2007-10-15

    The paper describes the studies and the tests for the development of the insulation structure of the 1 MV-50 A gas insulated (SF{sub 6}) line of the ITER NBI in the SinGap configuration characterized by two kinds of spacers: at least a couple of disk-shaped spacers, designed to be gas tight, and a larger number (several tens) of inner conductor post spacers. To this aim a test campaign has been carried out to assess the capability of standard epoxy spacers to withstand a high dc voltage with frequent short circuits, simulating the operational condition for the ITER NBI. Two computational tools, the first for the epoxy spacer shape optimization under electrostatic distribution and the other for the nonlinear time variant evolution of the electric field and surface charge, have been developed specifically for designing epoxy spacer under dc voltage stress. The results on the optimization of the disk spacer and on the electric field-surface charge time evolution of the post spacer are reported and discussed. The effects of the SF{sub 6} radiation induced conductivity on the post spacer are also reported.

  9. Cytotoxic effects of denture adhesives on primary human oral keratinocytes, fibroblasts and permanent L929 cell lines.

    Science.gov (United States)

    Chen, Fengying; Wu, Tianfu; Cheng, Xiangrong

    2014-03-01

    To date, there have been very little data on the cytotoxic responses of different cell lines to denture adhesives. To determine the cytotoxicity of three denture adhesives on primary human oral keratinocytes (HOKs), fibroblasts (HOFs) and permanent mouse fibroblasts cell lines (L929). Three commercial denture adhesives (two creams and one powder) were prepared for indirect contact using the agar diffusion test, as well as extracts in MTT assay. The results of the MTT assay were statistically analysed by one-way anova and Tukey's test (p adhesives showed mild to moderate cytotoxicity to primary HOKs (p  0.05) in both assays. For primary HOFs cultures, slight cytotoxicity was observed for one of the products from the agar diffusion test and undiluted eluates of all tested adhesives with MTT assay (p adhesives are toxic to the primary HOKs and HOFs cultures, whereas non-toxic to L929 cells. The results suggest that primary human oral mucosal cells may provide more valuable information in toxicity screening of denture adhesives. © 2012 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  10. TIGER/Line Shapefile, 2017, nation, U.S., Primary Roads National Shapefile

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master...

  11. TIGER/Line Shapefile, 2015, nation, U.S., Primary Roads National Shapefile

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master...

  12. TIGER/Line Shapefile, 2016, nation, U.S., Primary Roads National Shapefile

    Data.gov (United States)

    US Census Bureau, Department of Commerce — The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master...

  13. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Held, M; Morin, O; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  14. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  15. The transmission theory of electrostatic analyzer in six dimensional phase space and the concept design of a supersensitive mass spectrometer beam line for HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Guan Xialing; Cao Qingxi; Zhang Jie; Ye Jingping

    1986-01-01

    It follows from the motion equations of charged particle in curvilinear coordinates system that the transfer matrix of electrostatic analyzer was derived in six dimensional phase space. In accordance with these matrixes, the concept design of the supersensitive mass spectrometer beam line for HI-13 tandem accelerator was calculated

  16. THE PRIMARY TARGET FACILITY FOR A NEUTRINO FACTORY BASED ON MUON BEAMS

    International Nuclear Information System (INIS)

    HASSENEIN, A.; KAHN, S.A.; KING, B.J.; KIRK, H.G.; LUDEWIG, H.; PALMER, R.B.; PEARSON, C.E.; SAMULYAK, R.; SIMOS, N.; STUMER, I.; THIEBERGER, P.; WEGGEL, R.J.

    2001-01-01

    Neutrino beams from the decay of muons in a storage ring offer the prospect of very high flux, well-understood spectra, and equal numbers of electron and muon neutrinos, as desirable for detailed exploration of neutrino oscillations via long baseline detectors [1]. Such beams require. large numbers of muons, and hence a high performance target station at which a 1-4 MW proton beam of 16-24 GeV impinges on a compact target, all inside a high field solenoid channel to capture as much of the phase volume of soft pions as possible. A first concept was based on a carbon target, as reported in 2000 the Neutrino Factory Study-I [2]. A higher performance option based on a free mercury jet has been studied in 2001 as part of the Neutrino Factory Feasibility Study-II [3,4]. An overview of a mercury jet target facility is presented here, including requirements, design concept and summaries of simulated performance. Further details are presented in related papers at this conference

  17. Research and development activity for the construction of beam lines in spring-8 (a new 8GeV SR ring)

    International Nuclear Information System (INIS)

    Watanabe, Tsutomu; Ohno, Hideo; Iwasaki, Hitoshi; Sasaki, Teikichi

    1990-01-01

    A research and development activity for a new large-scale synchrotron radiation facility started in Japan in 1987. The Institute of Physical and Chemical Research (RIKEN) and Japan Atomic Energy Research Institute (JAERI) have been participating this project. In particular, a joint team for this SR project was formed in 1988 to perform efficient research and development activities in cooperation. The new facility is scheduled to be in normal operation in 1998. The maximum energy of the electron or positron beams in the storage ring (SPring-8) is planned to be 8 GeV. The present report particularly describes the beam line front-end, research and development of optical components, beam lines for radioactive materials, insertion devices, activities of the atomic physics group, double focusing monochromator for macromolecular crystallography, preceding studies on magnetic and Compton scattering, EXAFS and XANES studies of biopolymers, studies on surface properties, and applications. (N.K.)

  18. Depth profiling of residual activity of ^{237}U fragments as a range verification technique for ^{238}U primary ion beam

    Directory of Open Access Journals (Sweden)

    I. Strašík

    2012-07-01

    Full Text Available Experimental and simulation data concerning fragmentation of ^{238}U ion beam in aluminum, copper, and stainless-steel targets with the initial energy 500 and 950  MeV/u are collected in the paper. A range-verification technique based on depth profiling of residual activity is presented. The irradiated targets were constructed in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. One of the purposes of these experiments was depth profiling of residual activity of induced nuclides and projectile fragments. Among the projectile fragments, special attention is paid to the ^{237}U isotope that has a range very close to the range of the primary ^{238}U ions. Therefore, the depth profiling of the ^{237}U isotope can be utilized for experimental verification of the ^{238}U primary-beam range, which is demonstrated and discussed in the paper. The experimental data are compared with computer simulations by FLUKA, SRIM, and ATIMA, as well as with complementary experiments.

  19. An EPID response calculation algorithm using spatial beam characteristics of primary, head scattered and MLC transmitted radiation

    International Nuclear Information System (INIS)

    Rosca, Florin; Zygmanski, Piotr

    2008-01-01

    We have developed an independent algorithm for the prediction of electronic portal imaging device (EPID) response. The algorithm uses a set of images [open beam, closed multileaf collimator (MLC), various fence and modified sweeping gap patterns] to separately characterize the primary and head-scatter contributions to EPID response. It also characterizes the relevant dosimetric properties of the MLC: Transmission, dosimetric gap, MLC scatter [P. Zygmansky et al., J. Appl. Clin. Med. Phys. 8(4) (2007)], inter-leaf leakage, and tongue and groove [F. Lorenz et al., Phys. Med. Biol. 52, 5985-5999 (2007)]. The primary radiation is modeled with a single Gaussian distribution defined at the target position, while the head-scatter radiation is modeled with a triple Gaussian distribution defined downstream of the target. The distances between the target and the head-scatter source, jaws, and MLC are model parameters. The scatter associated with the EPID is implicit in the model. Open beam images are predicted to within 1% of the maximum value across the image. Other MLC test patterns and intensity-modulated radiation therapy fluences are predicted to within 1.5% of the maximum value. The presented method was applied to the Varian aS500 EPID but is designed to work with any planar detector with sufficient spatial resolution

  20. Consumer opinions about print and on-line pay contents according to primary research results

    Directory of Open Access Journals (Sweden)

    Katalin Jäckel

    2014-07-01

    Full Text Available In this paper we present the sub results of a primer research project process. Themain objective of survey was to explore the effectof the digitalization onto themedia consumption habits, with a strange look ontothe print and the on-line paycontents. During the research we applied qualitative and quantitative methods. Weanalysed the most important changes of the media consumption preferences withthe help of expert interviews and consumers surveystaking the influencing role ofthe international trends onto consideration. Basedon the results of the researchcan be characterised the main target groups of on-line pay contents and the printmediums.

  1. Study of different registration methods for on-line kilovoltage cone-beam CT guided lung cancer radiation

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Wu Zhengqin; Fan Min; Yang Huanjun; Xu Zhiyong; Jiang Guoliang

    2009-01-01

    Objective: To select the optimal registration method for on-line kilovoltage cone-beam CT (KVCBCT) guided lung cancer radiation and evaluate the reproducibility of the selected method. Methods: Sixteen patients with non-small cell lung cancer were enrolled into this study. A total of 96 pretreatment KVCBCT images from the 16 patients were available for the analysis. Image registration methods were bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration. All registrations were accomplished by one physician. Another physician blindly evaluated the results of each registration, then selected the optimal registration method and evaluated its reproducibility. Results: The average score of the bone-based automatic registration, gray-based automatic registration, manual registration and semi-automatic registration methods was 2.4, 2.7, 3.0 and 3.7, respectively. The score of the four different groups had statistics significant difference (F=42.20, P<0.001). Using the semi-automatic registration method, the probability of the difference between two registration results more than 3 mm in the left-right, superior-inferior, and anterior-posterior directions was 0, 3% and 6% by the same physician, 0, 14% and 0 by different physicians, and 8%, 14% and 8% by physician and radiation therapist. Conclusions: Semi-automatic registration method, possessing the highest score and accepted reproducibility, is appropriate for KVCBCT guided lung cancer radiation. (authors)

  2. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.

    Science.gov (United States)

    Alshihabi, Firas; Vandamme, Thierry; Betz, Gabriele

    2013-02-01

    Fluidized bed granulation is a commonly used unit operation in the pharmaceutical industry. But still to obtain and control the desired granule size is challenging due to many process variables affecting the final product. Focused beam reflectance measurement (FBRM, Mettler-Toledo, Switzerland) is an increasingly popular particle growth analysis technique. FBRM tool was installed in two different locations inside a fluidized bed granulator (GPCG2, Glatt, Binzen) in order to monitor the granulation growth kinetics. An experimental design was created to study the effect of process variables using FBRM probe and comparing the results with the one's measured by sieve analysis. The probe location is of major importance to get smooth and robust curves. The excess feeding of binder solution might lead to agglomeration and thus to process collapse, however this phenomenon was clearly detected with FBRM method. On the other hand, the process variables at certain levels might affect the FBRM efficiency by blocking the probe window with sticky particles. A good correlation was obtained (R(2) = 0.95) between FBRM and sieve analysis mean particle size. The proposed in-line monitoring tool enables the operator to select appropriate process parameters and control the wet granulation process more efficiently.

  3. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    An Quanzhang; Li Liuhe; Hu Tao; Xin Yunchang; Fu, Ricky K.Y.; Kwok, D.T.K.; Cai Xun; Chu, Paul K.

    2009-01-01

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 10 17 ions cm -2 and 5 x 10 16 ions cm -2 , respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  4. Development of 'SKYSHINE-CG' code. A line-beam method code equipped with combinatorial geometry routine

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Takahiro; Ochiai, Katsuharu [Plant and System Planning Department, Toshiba Corporation, Yokohama, Kanagawa (Japan); Uematsu, Mikio; Hayashida, Yoshihisa [Department of Nuclear Engineering, Toshiba Engineering Corporation, Yokohama, Kanagawa (Japan)

    2000-03-01

    A boiling water reactor (BWR) plant has a single loop coolant system, in which main steam generated in the reactor core proceeds directly into turbines. Consequently, radioactive {sup 16}N (6.2 MeV photon emitter) contained in the steam contributes to gamma-ray skyshine dose in the vicinity of the BWR plant. The skyshine dose analysis is generally performed with the line-beam method code SKYSHINE, in which calculational geometry consists of a rectangular turbine building and a set of isotropic point sources corresponding to an actual distribution of {sup 16}N sources. For the purpose of upgrading calculational accuracy, the SKYSHINE-CG code has been developed by incorporating the combinatorial geometry (CG) routine into the SKYSHINE code, so that shielding effect of in-building equipment can be properly considered using a three-dimensional model composed of boxes, cylinders, spheres, etc. Skyshine dose rate around a 500 MWe BWR plant was calculated with both SKYSHINE and SKYSHINE-CG codes, and the calculated results were compared with measured data obtained with a NaI(Tl) scintillation detector. The C/E values for SKYSHINE-CG calculation were scattered around 4.0, whereas the ones for SKYSHINE calculation were as large as 6.0. Calculational error was found to be reduced by adopting three-dimensional model based on the combinatorial geometry method. (author)

  5. Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography

    Science.gov (United States)

    Harp, G. R.; Ackermann, R. F.; Nadler, Z. J.; Blair, Samantha K.; Davis, M. M.; Wright, M. C. H.; Forster, J. R.; Deboer, D. R.; Welch, W. J.; Atkinson, Shannon; Backer, D. C.; Backus, P. R.; Barott, William; Bauermeister, Amber; Blitz, Leo; Bock, D. C.-J.; Bower, Geoffrey C.; Bradford, Tucker; Cheng, Calvin; Croft, Steve; Dexter, Matt; Dreher, John; Engargiola, Greg; Fields, E. D.; Heiles, Carl; Helfer, Tamara; Jordan, Jane; Jorgensen, Susan; Kilsdonk, Tom; Gutierrez-Kraybill, Colby; Keating, Garrett; Law, Casey; Lugten, John; MacMahon, D. H. E.; McMahon, Peter; Milgrome, Oren; Siemion, Andrew; Smolek, Ken; Thornton, Douglas; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Tarter, J. C.; Urry, Lynn; Werthimer, Dan; Williams, Peter K. G.; Whysong, David

    2011-06-01

    The Allen Telescope Array (ATA) is a cm-wave interferometer in California, comprising 42 antenna elements with 6-m diameter dishes. We characterize the antenna optical accuracy using two-antenna interferometry and radio holography. The distortion of each telescope relative to the average is small, with RMS differences of 1% of beam peak value. Holography provides images of dish illumination, characterizing as-built mirror surfaces. Maximal distortions across ~ 2 meter lengths appear to result from mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at night and 3 mm under worst-case solar illumination. For frequencies 4, 10, and 15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20%, respectively. ATA's wide-bandwidth receiver permits observations over a continuous range 0.5-11.2 GHz. We probe the antenna optical gain and beam pattern stability as a function of focus position and observation frequency, concluding that ATA can produce high fidelity images over a decade of simultaneous observation frequencies. We quantify solar heating effects on antenna sensitivity and pointing accuracy. We find that during the day, observations >=5 GHz will suffer some sensitivity loss and it may be necessary to make antenna pointing corrections on a 1-2 hourly basis.

  6. Determination of the saturation curve of a primary standard for low energy X-ray beams

    International Nuclear Information System (INIS)

    Cardoso, Ricardo de Souza; Poledna, Roberto; Peixoto, Jose Guilherme P.

    2003-01-01

    Thr free air is the well recognized as the primary standard for the measurement of kerma in the air due to his characteristics to perform the absolute measurements of that entity according to definitions. Therefore, the Institute for Radioprotection and dosimetry - IRD, Brazil used for his implantation a free air cylindrical ionization chamber. Initially, a mechanical characterization was performed for verification as a primary standard. This paper will proceed a full detailed description the point operation of 2000 V found for that chamber and her saturation coefficient

  7. Measurements of radiation near an atomic spectral line from the interaction of a 30 GeV electron beam and a long plasma

    International Nuclear Information System (INIS)

    Catravas, P.E.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C; Joshi, C.; Marsh, K.A.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2000-01-01

    Emissions produced or initiated by a 30 GeV electron beam propagating through a ∼ 1 m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creating of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured

  8. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Bassler, Niels; Grzanka, Leszek

    2017-01-01

    profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis...... and angiogenesis. RESULTS: Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated...... fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy....

  9. Establishment and Characterization of New Canine and Feline Osteosarcoma Primary Cell Lines

    Directory of Open Access Journals (Sweden)

    Florian R. L. Meyer

    2016-06-01

    Full Text Available Osteosarcomas are the most abundant form of bone malignancies in multiple species. Canine osteosarcomas are considered a valuable model for human osteosarcomas because of their similar features. Feline osteosarcomas, on the other hand, are rarely studied but have interesting characteristics, such as a better survival prognosis than dogs or humans, and less likelihood of metastasis. To enable experimental approaches to study these differences we have established five new canine osteosarcoma cell lines out of three tumors, COS_1186h, COS_1186w, COS_1189, and COS_1220, one osteosarcoma-derived lung metastasis, COS_1033, and two new feline osteosarcoma cell lines, FOS_1077 and FOS_1140. Their osteogenic and neoplastic origin, as well as their potential to produce calcified structures, was determined by the markers osteocalcin, osteonectin, tissue unspecific alkaline phosphatase, p53, cytokeratin, vimentin, and alizarin red. The newly developed cell lines retained most of their markers in vitro but only spontaneously formed spheroids produced by COS_1189 showed calcification in vitro.

  10. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  11. FLI1 Expression in Breast Cancer Cell Lines and Primary Breast Carcinomas is Correlated with ER, PR and HER2

    Directory of Open Access Journals (Sweden)

    Inam Jasim Lafta

    2017-12-01

    Full Text Available FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2 was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinomas, FLI1 is significantly under expressed in all of the stages of breast cancer upon using 18S as an internal control. This FLI1 expression was correlated with ER, PR and HER2 status. In conclusion FLI1 can be exploited as a preliminary marker that can predict the status of ER, PR and HER2 in primary breast tumors.

  12. Gemcitabine and irinotecan as first-line therapy for carcinoma of unknown primary: results of a multicenter phase II trial.

    Directory of Open Access Journals (Sweden)

    Shernan G Holtan

    Full Text Available Metastatic carcinoma of unknown primary (CUP has a very poor prognosis, and no standard first-line therapy currently exists. Here, we report the results of a phase II study utilizing a combination of gemcitabine and irinotecan as first-line therapy. Treatment was with gemcitabine 1000 mg/m(2 and irinotecan 75 mg/m(2 weekly times four on a six week cycle (Cohort I. Due to excessive toxicity, the dose and schedule were modified as follows: gemcitabine 750 mg/m(2 and irinotecan 75 mg/m(2 given weekly times three on a four week cycle (Cohort II. The primary endpoint was the confirmed response rate (CR + PR. Secondary endpoints consisted of adverse events based upon the presence or absence of the UDP glucuronosyltransferase 1 family, polypeptide A1*28 (UGT1A1*28 polymorphism, time to progression, and overall survival. Thirty-one patients were enrolled with a median age of 63 (range: 38-94, and 26 patients were evaluable for efficacy. Significant toxicity was observed in Cohort 1, characterized by 50% (7/14 patients experiencing a grade 4+ adverse event, but not in cohort II. The confirmed response rate including patients from both cohorts was 12% (95% CI: 2-30%, which did not meet the criteria for continued enrollment. Overall median survival was 7.2 months (95% CI: 4.0 to 11.6 for the entire cohort but notably longer in cohort II than in cohort I (9.3 months (95% CI: 4.1 to 12.1 versus 4.0 months (95% CI: 2.2 to 15.6. Gemcitabine and irinotecan is not an active combination when used as first line therapy in patients with metastatic carcinoma of unknown primary. Efforts into developing novel diagnostic and therapeutic approaches remain important for improving the outlook for this heterogeneous group of patients.ClinicalTrials.gov NCT00066781.

  13. A Retrospective Analysis of Hemostatic Techniques in Primary Total Knee Arthroplasty: Traditional Electrocautery, Bipolar Sealer, and Argon Beam Coagulation.

    Science.gov (United States)

    Rosenthal, Brett D; Haughom, Bryan D; Levine, Brett R

    2016-01-01

    In this retrospective cohort study of 280 primary total knee arthroplasties, clinical outcomes relevant to hemostasis were compared by electrocautery type: traditional electrocautery (TE), bipolar sealer (BS), and argon beam coagulation (ABC). Age, sex, and preoperative diagnosis were not significantly different among the TE, BS, and ABC cohorts. The 3 hemostasis systems were statistically equivalent with respect to estimated blood loss. Wound drainage during the first 48 hours after surgery was equivalent between the BS and ABC cohorts but less for the TE cohort. Transfusion requirements were not significantly different among the cohorts. The 3 hemostasis systems were statistically equivalent with respect to mean change in hemoglobin level during the early postoperative period (levels were measured on postoperative day 1 and on discharge). As BS and ABC are clinically equivalent to TE, their increased cost may not be justified.

  14. Design and development of X Y data logger for on-line recording of ion-beam spectrum

    International Nuclear Information System (INIS)

    Mandi, T.K.; Pandey, H.K.; Basak, S.; Chakrabarti, A.

    2008-01-01

    A microcontroller based beam current spectrum analyzing setup has been developed to measure various heavy ion beam current vs. corresponding magnetic field of dipole magnet. This system permits recording of beam current with respect to magnetic field and send data to personal computer to enable the computer processing of such data. The detail design and development of a 8051 (8-bit) microcontroller based X Y-data logger as well as front end software programming are reported in this paper. (author)

  15. Micronucleus induction and reproductive death in a human cell line exposed to low-energy argon beam

    International Nuclear Information System (INIS)

    Courdi, A.; Mari, D.; Herault, J.; Chauvel, P.

    1995-01-01

    The aim of this study was to measure the biological efficiency of a low-energy argon beam (E=7.1 MeV/nucleon, LET=1590 keV/μm) on a human melanoma cell line (CAL4) established in our Institute. Two different methods were used: the micronucleus (MN) test and the colony-forming assay. MN are scored in binucleate cells (BNC) and are formed from acentric fragments or whole chromosomes that have not been incorporated into daughter nuclei at mitosis. The colony-forming assay quantifies reproductive death. Parallel experiments were run with cobalt gamma-rays for comparison. After Co irradiation, the MN-free BNC dose-response curve coincided with that of the loss of colony-forming ability, suggesting the potential of the former as a predictive test of cell killing. After Ar irradiation, there was a dissociation between the two effects, especially at high doses: cell death was greater than the frequency of BNC with MN. The inactivation cross-section was 74 μm 2 ; it was 39 μm 2 for MN yield. Therefore, the relative biological effectiveness (RBE) was higher for cell killing than for MN yield (0.8 and 0.5, respectively, at a Co dose of 3 Gy). The total MN count in BNC followed the same pattern of response as the fraction of BNC with MN. However, multiple (>2) MN in BNC were more frequently observed after low-dose Ar irradiation than after gamma-ray exposure (RBE > 1). Moreover, the frequency of multiple MN induction exceeded that expected from a Poisson distribution at all dose levels of Ar irradiation. (orig.)

  16. The Eurisol report. A feasibility study for a European isotope-separation-on-line radioactive ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-01

    The Eurisol project aims at a preliminary design study of the next-generation European isotope separation on-line (ISOL) radioactive ion beam (RIB) facility. In this document, the scientific case of high-intensity RIBs using the ISOL method is first summarised, more details being given in appendix A. It includes: 1) the study of atomic nuclei under extreme and so-far unexplored conditions of composition (i.e. as a function of the numbers of protons and neutrons, or the so-called isospin), rotational angular velocity (or spin), density and temperature, 2) the investigation of the nucleosynthesis of heavy elements in the Universe, an important part of nuclear astrophysics, 3) a study of the properties of the fundamental interactions which govern the properties of the universe, and in particular of the violation of some of their symmetries, 4) potential applications of RIBs in solid-state physics and in nuclear medicine, for example, where completely new fields could be opened up by the availability of high-intensity RIBs produced by the ISOL method. The proposed Eurisol facility is then presented, with particular emphasis on its main components: the driver accelerator, the target/ion-source assembly, the mass-selection system and post-accelerator, and the required scientific instrumentation. Special details of these components are given in appendices B to E, respectively. The estimates of the costs of the Eurisol, construction and running costs, have been performed in as much details as is presently possible. The total capital cost (installation manpower cost included) of the project is estimated to be of the order of 630 million Euros within 20%. In general, experience has shown that operational costs per annum for large accelerator facilities are about 10% of the capital cost. (A.C.)

  17. Study of the advantage and drawback of using Cs+ primary ion beam on metal targets

    International Nuclear Information System (INIS)

    Vallerand, P.; Baril, M.

    1977-01-01

    The simplicity of the design of the thermoionic primary ion-source renders its use very easy. Four groups of targets were studied: 1) pure metals (Cu, Cd, Al, Mo, Pb, Zn); 2) various phosphor bronzes of certified composition; 3) four different iron and nickel stainless steels; 4) two kinds of Babbitt alloys. The intensity of the positive spectra is much lower than that of the negative ones. But both contain useful complementary information. Combining the use of a leak of oxygen with the bombardment by Cs + ion enables the detection of many elements at a much lower level of concentration. The easiness of cluster production is another characteristic of Cs + bombardment. (Auth.)

  18. In vitro comparative evaluation of cleaning efficacy and volumetric filling in primary molars: Cone beam computed tomography evaluation

    Directory of Open Access Journals (Sweden)

    Anshula Neeraj Deshpande

    2017-01-01

    Full Text Available Introduction: Pulpectomy of primary teeth is mostly carried out with hand files and broaches which is tricky and time consuming procedure. The development of new design features like varying tapers, non-cutting safety tips and varying length of cutting blades have resulted in new generation of rotary instruments. Aim: To compare and evaluate cleaning efficacy, canal preparation and volumetric filling using conventional files and rotary V Taper files through cone beam computed tomography. Materials and Method: Thirty extracted primary molars were selected. The teeth were randomly divided into three groups each containing 10 teeth i.e. 30 canals in each group. Group A was instrumented with K files; Group B rotary V Taper files and Group C was Hybrid group. Sodium hypochlorite (1% was used for irrigation. Root canal filling was done with Zinc Oxide Eugenol cement in all groups. The volumetric analysis i.e. Percentage of Volume (POV of the root canal filling in primary molars was done through CBCT Software. Result: In present study, p- value was found to be significant (<0.05. Almost 100% of canals of hybrid group were fully filled and 63.3% of canals of hand filing group were partially filled. The filling was found to be dense and no. of voids was least in hybrid group. Conclusion: Clinical time required in primary molar endodontics, especially with unpredictability and difficulty of canal morphology, is inevitable. The study confirms superior ability of rotary-file systems to shape severely curved canals with less time and significant decrease in procedural errors like partial filling, voids and inappropriate canal preparation.

  19. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Holloway, L [Liverpool Hospital and Ingham Institute, Liverpool, NSW (United Kingdom); Gierman, S; Schmerge, J; Tantawi, S; Tremaine, A; Trautwein, A; Scott, B [Stanford Linear Accelerator Facility, Palo Alto, CA (United States); Fahrig, R [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energies up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate

  20. TU-H-BRA-07: Design, Construction, and Installation of An Experimental Beam Line for the Development of MRI-Linac Compatible Electron Accelerator

    International Nuclear Information System (INIS)

    Whelan, B; Keall, P; Holloway, L; Gierman, S; Schmerge, J; Tantawi, S; Tremaine, A; Trautwein, A; Scott, B; Fahrig, R

    2016-01-01

    Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energies up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate

  1. Free vibration analysis of straight-line beam regarded as distributed system by combining Wittrick-Williams algorithm and transfer dynamic stiffness coefficient method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung Soo; Yang, Kyong Uk [Chonnam National University, Yeosu (Korea, Republic of); Kondou, Takahiro [Kyushu University, Fukuoka (Japan); Bonkobara, Yasuhiro [University of Miyazaki, Miyazaki (Japan)

    2016-03-15

    We developed a method for analyzing the free vibration of a structure regarded as a distributed system, by combining the Wittrick-Williams algorithm and the transfer dynamic stiffness coefficient method. A computational algorithm was formulated for analyzing the free vibration of a straight-line beam regarded as a distributed system, to explain the concept of the developed method. To verify the effectiveness of the developed method, the natural frequencies of straight-line beams were computed using the finite element method, transfer matrix method, transfer dynamic stiffness coefficient method, the exact solution, and the developed method. By comparing the computational results of the developed method with those of the other methods, we confirmed that the developed method exhibited superior performance over the other methods in terms of computational accuracy, cost and user convenience.

  2. Dynamic SIMS utilizing SF{sub 5}{sup +} polyatomic primary ion beams for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Christine M.; Roberson, Sonya; Gillen, Greg

    2004-06-15

    The behavior of various biodegradable polymer films (e.g. polylactic acid, polyglycolic acid and polycaprolactone) as well as some model drugs (theophylline and 4-acetamidophenol) under dynamic SF{sub 5}{sup +} primary ion bombardment is explored. A series of polylactic acid films containing varying concentrations of 4-acetamidophenol are also analyzed under similar conditions. The resultant molecular depth profiles obtained from these polymer films doped with drug show very little degradation in molecular signal as a function of SF{sub 5}{sup +} primary ion dose, and it was found that the molecular ion signals of both polymer and drug remained constant for ion doses up to {approx}5x10{sup 15} ions/cm{sup 2}. In addition, the polymer film/Si interface was well defined which may imply that sputter-induced topography formation was not a significant limitation. These results suggest that the structure of the biodegradable polymers studied here which all have the common main chain structural unit, R-CO-O-R, allows for a greater ability to depth profile due to ease of bond cleavage. Most importantly, however, these results indicate that in these particular polymer systems, the distribution of the drug as a function of depth can be monitored.

  3. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    Science.gov (United States)

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  4. Design of mirror and monochromator crystals for a high-resolution multiwavelength anomalous diffraction beam line on a bending magnet at the ESRF

    International Nuclear Information System (INIS)

    Roth, M.; Ferrer, J.; Simon, J.; Geissler, E.

    1992-01-01

    High intensity for diffraction experiments with high-energy resolution on an intense x-ray beam, like the bending magnet beam lines at the ESRF, requires a strict control of the curvature of the optical elements placed in the beam for geometrical focusing and for wavelength monochromatization. Unwanted curvatures can come from nonuniform and variable heating of the optical elements produced by the absorption of x rays. To design the CRG/D2AM beam line described in the accompanying paper, some new techniques were developed to control these effects based on geometrical, i.e., topological, considerations. (1) Cooling of the entrance mirror: longitudinal curvature can be strongly reduced by cooling the mirror from the sides (and not from the rear) and only near the reflecting surface (i.e., not over the whole lateral surface). The cooling can be achieved for instance with an isothermal liquid Ga eutectic bath. (2) Cooling of the first single-crystal Si monochromator: because of the size of the crystal, only cooling from the rear is conceivable in this case. It can be shown by calculation that the curvature due to the front-to-rear gradient can be exactly compensated by the thermal expansion of a metallic layer at the rear of the crystal, having a larger expansion coefficient than Si

  5. Primary stroke prevention and hypertension treatment: which is the first-line strategy?

    Science.gov (United States)

    Ravenni, Roberta; Jabre, Joe F; Casiglia, Edoardo; Mazza, Alberto

    2011-07-05

    Hypertension (HT) is considered the main classic vascular risk factor for stroke and the importance of lowering blood pressure (BP) is well established. However, not all the benefit of antihypertensive treatment is due to BP reduction per se, as the effect of reducing the risk of stroke differs among classes of antihypertensive agents. Extensive evidences support that angiotensin-converting enzyme inhibitors (ACEI), angiotensin II receptor blockers (ARB), dihydropyridine calcium channel blockers (CCB) and thiazide diuretics each reduced risk of stroke compared with placebo or no treatment. Therefore, when combination therapy is required, a combination of these antihypertensive classes represents a logical approach. Despite the efficacy of antihypertensive therapy a large proportion of the population, still has undiagnosed or inadequately treated HT, and remain at high risk of stroke. In primary stroke prevention current guidelines recommend a systolic/diastolic BP goal of market of the fixed-dose combination (FDC) of ACEI or ARB and CCB should provide a better control of BP. However to confirm the efficacy of the FDC in primary stroke prevention, clinical intervention trials are needed.

  6. A test beam upgrade based on the BEPC-LINAC

    International Nuclear Information System (INIS)

    Li Jiacai; Wu Yuanming; Cui Xiangzong; Zhang Liangsheng; Zhou Baoqing; Liu Zhengquan; Zhang Shaoping; Sun Changchun; Zhang Zhuxiang; Zhang Caidi; Zheng Linsheng; Liu Shixing; Shen Ji; Yin Zejie; Zhang Yongming; Chen Ziyu

    2004-01-01

    A total of three beam lines, E1, E2 and E3 have based on the LINAC of BEPC. The E1 beam is to be used for intense slow-positron facility. The E2 is a primary positron or electron beam with an energy of 1.3-1.5 GeV. The E3 is a secondary electron or pion test beam with a momentum can be adjustable continuously. The position accuracy of a detected particle is 0.2-0.4 mm with an event rate of 3 - 4 Hz. This beam has been successfully used for some detectors beam test. (author)

  7. An experimental study on the change of the radiosensitivity of several tumor cell lines and primary cultured gingi cal fibrobrast

    International Nuclear Information System (INIS)

    Lee, Sam Sun; You Dong Soo

    1997-01-01

    Radiation sensitivity data was generated for two human cancer cell lines (KB, RPMI 2650) and human primary gingival fibroblast was tested three times using a viable cell number counting with a hemocytometer, MTT (3-[4,5-dimethylthiazol 2-yl]-2,5-dipheny tetrazolium bromide) assay, and LDH (Lactate dehydrogenase) assay. Single irradiation of 2, 4, 6, 10, 15, 20 Gy were applied to the tumor cell lines and the primary cultured gingical fibroblast. The two fractions of 4 Gy an d 10 Gy were separated with a 4 hour time interval. The irradiation was done with 241.5 cGy/min dose rate using 137 Cs MK cell irradiator at room temperature. The obtained results were as followed : 1. There was significantly different viable cell numbers as the amount of radiation dose on the tested cells were cell number counted with a hemocytometer, In fractions, there were more viable cells remaining. 2. Phase-contrast microscopically, radiation-induced morphologic changes were pronounced on the tumor cells, however, almost no differences on the gingival fibroblast. 3. There was significantly different absorbance at 2 Gy on RPMI 2650, 4 Gy on KB and GF in MTT assay. In fractions, the absorbance was significantly higher on KB. 4. The level of extracellular LDH activity in the experimental group was significantly higher in the 2-4 Gy than the control group. 5. The total level of extracellular and intracellular LDH activity was decreased as increased amounts of radiation dose was applied.

  8. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  9. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  10. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro

    International Nuclear Information System (INIS)

    Johnston, Helinor J.; Semmler-Behnke, Manuela; Brown, David M.; Kreyling, Wolfgang; Tran, Lang; Stone, Vicki

    2010-01-01

    Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptake of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.

  11. Line-Interactive Transformerless Uninterruptible Power Supply (UPS with a Fuel Cell as the Primary Source

    Directory of Open Access Journals (Sweden)

    Muhammad Iftikhar

    2018-03-01

    Full Text Available This paper presents line-interactive transformerless Uninterruptible Power Supply (UPS with a fuel cell as the prime energy source. The proposed UPS consists of three major parts (i.e., an output inverter, a unidirectional DC–DC converter, and a battery charger/discharger. Non-isolated topologies of both the unidirectional converter and battery charger/discharger ensure transformerless operation of the UPS system. A new topology of high gain converter is employed for boosting the low voltage of the fuel cell to a higher DC link voltage, with minimum semiconductor count, and high efficiency. A high-gain battery charger/discharger realizes the bidirectional operation between the DC link and the battery bank. Besides, it regulates the DC link voltage during the cold start of fuel cells and keeps the battery bank voltage to only 24 V. A new inverter control scheme is introduced that regulates the output voltage and minimizes the total harmonic distortion for non-linear loading condition. The proposed control scheme integrates proportional-resonant control with slide mode control, which improves the controller’s performance in transient conditions. The proposed UPS system is validated by developing a 1-kVA experimental prototype.

  12. Presidential laugh lines. Candidate display behavior and audience laughter in the 2008 primary debates.

    Science.gov (United States)

    Stewart, Patrick A

    2010-09-01

    Political humor has long been used by candidates to mobilize supporters by enhancing status or denigrating the opposition. Research concerning laughter provides insight into the building of social bonds; however, little research has focused on the nonverbal cues displayed by the individual making humorous comments. This study first investigates whether there is a relationship between facial display behavior and the presence and strength of laughter. Next, the analysis explores whether specific candidate displays during a humorous comment depend on the target of the comment. This paper analyzes the use of humor by Republican and Democratic candidates during ten 2008 presidential primary debates. Data analyzed here employs laughter as an indicator of a successful humorous comment and documents candidate display behavior in the seconds immediately preceding and during each laughter event. Findings suggest specific facial displays play an important communication role. Different types of smiles, whether felt, false, or fear-based, are related to who laughs as well as how intensely the audience is judged to laugh.

  13. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars

    OpenAIRE

    Acar, Buket; Kamburo?lu, K?van?; Tatar, ?lkan; Ar?kan, Volkan; ?elik, Hakan Hamdi; Y?ksel, Selcen; ?zen, Tuncer

    2015-01-01

    Purpose This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Materials and Methods Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this s...

  14. A study of root canal morphology of human primary incisors and molars using cone beam computerized tomography: An in vitro study

    OpenAIRE

    Vivek Gaurav; Nikhil Srivastava; Vivek Rana; Vivek Kumar Adlakha

    2013-01-01

    Background: Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. Aim: The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT) in assessing the same. Settings and Design: A total ...

  15. Molecular analysis of primary gastric cancer, corresponding xenografts, and 2 novel gastric carcinoma cell lines reveals novel alterations in gastric carcinogenesis

    NARCIS (Netherlands)

    Milne, Anya N. A.; Sitarz, Robert; Carvalho, Ralph; Polak, Mirjam M.; Ligtenberg, Madolijn; Pauwels, Patrick; Offerhaus, G. Johan A.; Weterman, Marian A. J.

    2007-01-01

    We report the molecular characterization of 8 primary gastric carcinomas, corresponding xenografts, and 2 novel gastric carcinoma cell lines. We compared the tumors and cell lines, with respect to histology, immunohistochemistry, copy number, and hypermethylation of up to 38 genes using

  16. Evaluation of the Shielding Performance for the Hot-cell built in 100-MeV Isotope Beam-line of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Min; Park, Sung Kyun; Min, Yi Sub; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study describes the structure of the hot-cell constructed in KOMAC for radioisotope production and evaluates the shielding performance for the hot-cell via the radiation shielding ability test. Korea multi-purpose accelerator complex (KOMAC) is currently operating 20-MeV and 100-MeV beam-line one by on. Additional 100-MeV beam-line and target room (TR101) are planned for the purpose of the radioisotope production in this year. The initial goal of the radioisotope production is to produce the radioactive isotopes, Sr-82 or Cu-67, used widely for the diagnosis and treatment of the cancer. In order to produce these radioisotopes mentioned, the proton beam with the energy between 70-MeV and 100- MeV at a beam current of 300 μA is irradiated into a solid target made of ZnO or RbCl. After the irradiation of the proton beam during approximately 100 hours, the radioisotope Sr-82 with the radioactivity amount of about 3.8 Ci or the Cu-67 with the amount of about 2.7 Ci will be produced. Radioisotopes produced though this process should be conveyed from the TR101 target room to the PR101 processing room and then in order to be delivered into the place for the next process step, a hot-cell is necessary. Result of the shielding performance evaluation of the hot-cell for producing radioisotopes shows the necessity of the shield reinforcement using lead material at side of the lead glass window.

  17. Radioactive ion beam facilities at INFN LNS

    International Nuclear Information System (INIS)

    Rifuggiato, D; Calabretta, L; Celona, L; Chines, F; Cosentino, L; Cuttone, G; Finocchiaro, P; Pappalardo, A; Re, M; Rovelli, A

    2011-01-01

    Radioactive ion beams are produced at INFN- Laboratori Nazionali del Sud (LNS) by means of the two operating accelerators, the Tandem and the Superconducting Cyclotron (CS), originally designed to accelerate stable beams. Both the ISOL (Isotope Separation On Line) and the IFF (In-Flight Fragmentation) methods are exploited to produce RIBs in two different ways at different energies: in the first case, the Cyclotron is the primary accelerator and the Tandem accelerates the secondary beams, while in the second case radioactive fragments are produced by the Cyclotron beam in a thin target with energies comparable to the primary beam energy. The ISOL facility is named EXCYT (Exotics at the Cyclotron and Tandem) and was commissioned in 2006, when the first radioactive beam ( 8 Li) has been produced. The IFF installation is named FRIBs (in Flight Radioactive Ion Beams), and it has started to produce radioactive beams in 2001, placing a thin target in the extraction beam line of the Cyclotron. The development of both facilities to produce and accelerate radioactive ion beams at LNS, is briefly described, with some details on the future prospects that are presently under consideration or realization.

  18. Construction of a laboratory for the implantation of primary standardization of the magnitude kerma in the air for the X-ray beams used in mammography

    International Nuclear Information System (INIS)

    Cardozo, W.L.; Magalhes, L.A.A.M.F.; Peixoto, J.G.P.

    2009-01-01

    Aiming to diminish the uncertainty in each phase of the metrological chain, and the uncertainty in dosimetry processed at the X-ray beam applied in the mammography, is necessary that the LNMRI/IRD to develop a reference primary standard for the absolute form to the magnitude kerma in the air

  19. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  20. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    Science.gov (United States)

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2017-06-01

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab') 2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  1. Induction of polyploidization in leukemic cell lines and primary bone marrow by Src kinase inhibitor SU6656

    Science.gov (United States)

    Lannutti, Brian J.; Blake, Noel; Gandhi, Manish J.; Reems, Jo Anna; Drachman, Jonathan G.

    2005-01-01

    Megakaryocytes (MKs) undergo successive rounds of endomitosis during differentiation, resulting in polyploidy (typically, 16-64N). Previous studies have demonstrated that this occurs through an interruption of normal cell cycle progression during anaphase. However, the molecular mechanism(s) controlling this unique process is undefined. In the present report, we examine the effect of an Src kinase inhibitor, SU6656, on thrombopoietin (TPO)-induced growth and differentiation. Remarkably, when SU6656 (2.5 μM) was added to a megakaryocytic cell line, UT-7/TPO, the cells ceased cell division but continued to accumulate DNA by endomitosis. During this interval, CD41 and CD61 expression on the cell surface increased. Similar effects on polyploidization and MK differentiation were seen with expanded primary MKs, bone marrow from 2 patients with myelodysplastic syndrome, and other cell lines with MK potential. Our data suggest that SU6656 might be useful as a differentiation-inducing agent for MKs and is an important tool for understanding the molecular basis of MK endomitosis. PMID:15677565

  2. The LHC SSS cold mass inside the cryostat. The complexity of the bus-bars for the power supply of the magnets and cryogenic links can be seen. The two apertures in the centre will house the beam lines

    CERN Document Server

    2003-01-01

    The LHC SSS cold mass inside the cryostat. The complexity of the bus-bars for the power supply of the magnets and cryogenic links can be seen. The two apertures in the centre will house the beam lines

  3. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Eide, Marta; Rusten, Marte; Male, Rune; Jensen, Knut Helge Midtbø; Goksøyr, Anders

    2014-01-01

    Highlights: •The ZFL cell line and primary hepatocytes were characterized. •Basic and induced expression of nuclear receptors and target genes were found. •The ZFL cell line expresses very low basic levels of most genes. •The ZFL cells have low induction of gene expression following exposures. •Primary hepatocytes show large sex-dependent differences in gene expression. -- Abstract: The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic

  4. A characterization of the ZFL cell line and primary hepatocytes as in vitro liver cell models for the zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Marta, E-mail: marta.eide@bio.uib.no [Department of Biology, University of Bergen, Bergen (Norway); Rusten, Marte; Male, Rune [Department of Molecular Biology, University of Bergen, Bergen (Norway); Jensen, Knut Helge Midtbø; Goksøyr, Anders [Department of Biology, University of Bergen, Bergen (Norway)

    2014-02-15

    Highlights: •The ZFL cell line and primary hepatocytes were characterized. •Basic and induced expression of nuclear receptors and target genes were found. •The ZFL cell line expresses very low basic levels of most genes. •The ZFL cells have low induction of gene expression following exposures. •Primary hepatocytes show large sex-dependent differences in gene expression. -- Abstract: The zebrafish (Danio rerio) is a widely used model species in biomedical research. The ZFL cell line, established from zebrafish liver, and freshly isolated primary hepatocytes from zebrafish have been used in several toxicological studies. However, no previous report has compared and characterized these two systems at the level of gene expression. The aim of this study was to evaluate the ZFL cell line in comparison to primary hepatocytes as in vitro models for studying effects of environmental contaminants in zebrafish liver. Using quantitative real-time PCR, the basal level and transcriptional induction potential of key genes involved in toxic responses in the ZFL cell line, primary hepatocytes and whole liver from zebrafish were compared. The study showed that the ZFL cells have lower levels of mRNA of most selected genes compared to zebrafish liver. The induced gene transcription following exposure to ligand was much lower in ZFL cells compared to zebrafish primary hepatocytes at the doses tested. Importantly, oestrogen receptor and vitellogenin genes showed low basal transcription and no induction response in the ZFL cell line. In conclusion, it appears that primary hepatocytes are well suited for studying environmental contaminants including xenoestrogens, but may show large sex-dependent differences in gene transcription. The ZFL cell line shows potential in toxicological studies involving the aryl hydrocarbon receptor pathway. However, low potential for transcriptional induction of genes in general should be expected, especially notable when studying estrogenic

  5. Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: Effect on target and normal-structure dose-volume metrics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Mara W. [Broad Institute of MIT and Harvard, Cambridge, MA (United States); Department of Physics, Brandeis University, Waltham, MA (United States); Kato, Catherine M. [Macalester College, St. Paul, MN (United States); Carson, Kelly M.P. [The University of North Carolina, Chapel Hill, NC (United States); Matsunaga, Nathan M. [Santa Clara University, Santa Clara, CA (United States); Arao, Robert F. [Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States); Doss, Emily J. [Department of Internal Medicine, Providence St. Vincent Medical Center, Portland, OR (United States); McCracken, Charles L. [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Meng, Lu Z. [Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA (United States); Chen, Yiyi [Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States); Laub, Wolfram U.; Fuss, Martin [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States); Tanyi, James A., E-mail: tanyij@ohsu.edu [Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States); Department of Nuclear Engineering and Radiation Health Physics, Oregon State University, Corvallis, OR (United States)

    2013-01-01

    To compare 2 beam arrangements, sectored (beam entry over ipsilateral hemithorax) vs circumferential (beam entry over both ipsilateral and contralateral lungs), for static-gantry intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 60 consecutive patients treated using stereotactic body radiation therapy (SBRT) for primary non–small-cell lung cancer (NSCLC) formed the basis of this study. Four treatment plans were generated per data set: IMRT/VMAT plans using sectored (-s) and circumferential (-c) configurations. The prescribed dose (PD) was 60 Gy in 5 fractions to 95% of the planning target volume (PTV) (maximum PTV dose ∼ 150% PD) for a 6-MV photon beam. Plan conformality, R{sub 50} (ratio of volume circumscribed by the 50% isodose line and the PTV), and D{sub 2} {sub cm} (D{sub max} at a distance ≥2 cm beyond the PTV) were evaluated. For lungs, mean doses (mean lung dose [MLD]) and percent V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} Gy were assessed. Spinal cord and esophagus D{sub max} and D{sub 5}/D{sub 50} were computed. Chest wall (CW) D{sub max} and absolute V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} {sub Gy} were reported. Sectored SBRT planning resulted in significant decrease in contralateral MLD and V{sub 10}/V{sub 5} {sub Gy}, as well as contralateral CW D{sub max} and V{sub 10}/V{sub 5} {sub Gy} (all p < 0.001). Nominal reductions of D{sub max} and D{sub 5}/D{sub 50} for the spinal cord with sectored planning did not reach statistical significance for static-gantry IMRT, although VMAT metrics did show a statistically significant decrease (all p < 0.001). The respective measures for esophageal doses were significantly lower with sectored planning (p < 0.001). Despite comparable dose conformality, irrespective of planning configuration, R{sub 50} significantly improved with IMRT

  6. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    International Nuclear Information System (INIS)

    Yu, Zhicong; Noo, Frédéric; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim

    2016-01-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology. (paper)

  7. Commissioning of polarized-proton and antiproton beams at Fermilab

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1988-01-01

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US)

  8. Time-resolved x-ray line emission studies of thermal transport in multiple beam uv-irradiated targets

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Henke, B.L.; Delettrez, J.; Richardson, M.C.

    1984-01-01

    Thermal transport in spherical targets irradiated with multiple, nanosecond duration laser beams, has been a topic of much discussion recently. Different inferences on the level of thermal flux inhibition have been drawn from plasma velocity and x-ray spectroscopic diagnostics. We present new measurements of thermal transport on spherical targets made through time-resolved x-ray spectroscopic measurements of the progress of the ablation surface through thin layers of material on the surface of the target. These measurements, made with 6 and 12 uv (351 nm) nanosecond beams from OMEGA, will be compared to previous thermal transport measurements. Transparencies of the conference presentation are given

  9. Subthreshold diode-laser micropulse photocoagulation as a primary and secondary line of treatment in management of diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Othman IS

    2014-03-01

    Full Text Available Ihab Saad Othman,1 Sherif Ahmed Eissa,1 Mohamed S Kotb,1 Sherin Hassan Sadek21Cairo University, Cairo, 2Fayoum University, Al Fayoum, EgyptBackground: The purpose of this study was to evaluate subthreshold diode-laser micropulse (SDM photocoagulation as a primary and secondary line of treatment for clinically significant diabetic macular edema (CSDME.Methods: In this prospective nonrandomized case series, 220 cases of nonischemic CSDME were managed primarily and secondarily by SDM photocoagulation on a 15% duty cycle with a mean power of 828 mW and a spot size of 75–125 µm. SDM treatment was repeated at 3–4-month intervals if residual leakage was observed. Additional intravitreal pharmacologic therapy was used according to the response. Follow-up varied from 12 to 19 (mean 14±2.8 months. Novel software designed by the authors was used to record the subvisible threshold laser applications and their parameters on the fundus image of the eye. Evaluation of the results of treatment was done using fluorescein angiography and optical coherence tomography (OCT. Primary outcome measures included changes in visual acuity and foveal thickness at OCT. Secondary outcome measures included visual loss of one or more Snellen lines and laser scars detectable on fundus biomicroscopy or fluorescein angiography.Results: In the primary treatment group, there was significant improvement or stabilization of visual acuity after the first 3–4 months, which was stable thereafter. Visual acuity was stable in the secondary treatment group. A corresponding reduction of macular thickness on OCT was noted during the follow-up period in both groups. Additional therapy included repeat SDM photocoagulation, intravitreal injection of triamcinolone, and pars plana vitrectomy. Laser marks seen as changes in retinal pigment epithelium on fundus biomicroscopy and fluorescein angiography were noted in 3.3% and 5.7% of cases. Our novel software could accurately record the

  10. Comparison between measurements of hyperfine structures of Pr II - lines investigated by collinear laser ion beam spectroscopy (CLIBS) ans saturation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Nadeem; Anjum, Naveed [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Optics Labs, Nilore, Islamabad (Pakistan); Huehnermann, Harry [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Fachbereich Physik, Univ. Marburg/Lahn (Germany); Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    Investigation of narrow hyperfine structures needs a reduction of the Doppler broadening of the investigated lines. Here we have used two methods: collinear laser spectroscopy (CLIBS) and laser saturation spectroscopy. In the first method, the Doppler width is reduced by accelerating Pr ions to a high velocity and excitation with a collinear laser beam, while in the second method ions with velocity group zero are selected by nonlinear saturation. In this work the hyperfine spectra of several Pr II lines were investigated using CLIBS. A line width of ca. 60 MHz was measured. The same lines were then investigated in a hollow cathode discharge lamp using intermodulated laser-induced fluorescence spectroscopy. Using this technique a spectral line width of about 200 MHz was achieved. In both methods, the excitation source is a ring dye laser operated with R6G. Using a fit program, magnetic dipole interaction constants A and the electric-quadrupole interaction constants B of the involved levels have been determined in both cases. We discuss advantages and disadvantages of both methods.

  11. Status of beam line detectors for the BigRIPS fragment separator at RIKEN RI Beam Factory. Issues on high rates and resolution

    International Nuclear Information System (INIS)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki

    2015-01-01

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns). (author)

  12. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    Science.gov (United States)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  13. Evaluation of low-dose proton beam radiation efficiency in MIA PaCa-2 pancreatic cancer cell line vitality and H2AX formation

    Directory of Open Access Journals (Sweden)

    Aušra Liubavičiūtė

    2015-11-01

    Conclusions: Our data demonstrate that low-doses proton beam irradiation had an effect on MIA PaCa-2 pancreatic carcinoma cell line. Full extent of irradiation had an impact only 24 h postirradiation, triggering DNA arrested cell cycle in G1/0 phase. Formed DNA DSBs were found to be repaired via the NHEJ pathway mechanism within 72 h. Unsuccessful repaired DSBs induced apoptotic cell death. After 72 h reparation processes were completed, and cell cycle was released from arrest in G1/0 phase.

  14. Accelerator development for a radioactive beam facility based on ATLAS

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed

  15. Accelerator development for a radioactive beam facility based on ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-01-08

    The existing superconducting linac ATLAS is in many respects an ideal secondary beam accelerator for an ISOL (Isotope separator on-line) type radioactive beam facility. Such a facility would require the addition of two major accelerator elements: a low charge state injector for the existing heavy ion linac, and a primary beam accelerator providing 220 MV of acceleration for protons and light ions. Development work for both of these elements, including the option of superconducting cavities for the primary beam accelerator is discussed.

  16. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  17. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2011-01-01

    The objective of this study was to develop a consensus-based guideline to define clinical target volume for primary disease (clinical target volume primary) in external beam radiotherapy for intact uterine cervical cancer. The working subgroup of the Japan Clinical Oncology Group (JCOG) Radiation Therapy Study Group began developing a guideline for primary clinical target volume in November 2009. The group consisted of 10 radiation oncologists and 2 gynecologic oncologists. The process started with comparing the contouring on computed tomographic images of actual cervical cancer cases among the members. This was followed by a comprehensive literature review that included primary research articles and textbooks as well as information on surgical procedures. Extensive discussion occurred in face-to-face meetings (three occasions) and frequent e-mail communications until a consensus was reached. The working subgroup reached a consensus on the definition for the clinical target volume primary. The clinical target volume primary consists of the gross tumor volume, uterine cervix, uterine corpus, parametrium, vagina and ovaries. Definitions for these component structures were determined. Anatomical boundaries in all directions were defined for the parametrium. Examples delineating these boundaries were prepared for the posterior border of the parametrium for various clinical situations (id est (i.e.) central tumor bulk, degree of parametrial involvement). A consensus-based guideline defining the clinical target volume primary was developed for external beam radiotherapy for intact uterine cervical cancer. This guideline will serve as a template for radiotherapy protocols in future clinical trials. It may also be used in actual clinical practice in the setting of highly precise external beam radiotherapy, including intensity-modulated radiotherapy. (author)

  18. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells

    International Nuclear Information System (INIS)

    Kamp, Hennicke G.; Eisenbrand, Gerhard; Schlatter, Josef; Wuerth, Kirsten; Janzowski, Christine

    2005-01-01

    Ochratoxin A (OTA) is a nephrotoxic/-carcinogenic mycotoxin, produced by several Aspergillus- and Penicillium-strains. Humans are exposed to OTA via food contamination, a causal relationship of OTA to human endemic Balkan nephropathy is still under debate. Since DNA-adducts of OTA or its metabolites could not be identified unambiguously, its carcinogenic effectiveness might be related to secondary effects, such as oxidative cell damage or cell proliferation. In this study, OTA mediated induction of (oxidative) DNA damage, cytotoxicity (necrosis, growth inhibition, apoptosis) and modulation of glutathione were investigated in cell lines (V79, CV-1) and primary rat kidney cells. After 24 h incubation, viability of V79 cells was strongly decreased by OTA concentrations >2.5 μmol/L, whereas CV-1 cells were clearly less sensitive. Strong growth inhibition occurred in both cell lines (IC 50 ∼2 μmol/L). Apoptosis, detected with an immunochemical test and with flow cytometry, was induced by >1 μmol/L OTA. Oxidative DNA damage, detected by comet assay after additional treatment with repair enzymes, was induced in all cell systems already at five-fold lower concentrations. Glutathione in CV-1 cells was depleted after 1 h incubation (>100 μmol/L). In contrast, an increase was measured after 24 h incubation (>0.5 μmol/L). In conclusion, OTA induces oxidative DNA damage at low, not yet cytotoxic concentrations. Oxidative DNA damage might initiate cell transformation eventually in connection with proliferative response following cytotoxic cell death. Both events might represent pivotal factors in the chain of cellular events leading into nephro-carcinogenicity of OTA

  19. Determination of average conversion coefficients between kerma in air and H⁎(10) using primary and secondary X-ray beams and transmitted in the diagnostic radiology energy range

    International Nuclear Information System (INIS)

    Santos, Josilene C.; Gonzalez, Alejandro H.L.; Costa, Paulo R.

    2016-01-01

    Brazilian regulation establishes 1.14 Sv/Gy as unique conversion coefficient to convert air-kerma into the operational quantity ambient dose equivalent H⁎(10) disregarding its beam quality dependence. The present study computed mean conversion coefficients from primary, secondary and transmitted X-ray beams through barite mortar plates used in shielding of dedicated chest radiographic facilities in order to improve the current assessment of H⁎(10). To compute the mean conversion coefficients, the weighting of conversion coefficients corresponding to monoenergetic beams with the spectrum energy distribution in terms of air-kerma was considered. The maximum difference between the obtained conversion coefficients and the constant value recommended in national regulation is 53.4%. The conclusion based on these results is that a constant coefficient is not adequate for deriving the H⁎(10) from air-kerma measurements. (author)

  20. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available Lung cancer (LC with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC, large cell carcinoma (LCC, squamous cell carcinoma (SCC and adenocarcinoma (AC. We identified a small population of cells strongly positive for CD44 (CD44(high and a main population which was either weakly positive or negative for CD44 (CD44(low/-. Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44(highCD90(+ sub-population. Moreover, these CD44(highCD90(+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44(highCD90(+ population a good candidate for the lung CSCs. Both CD44(highCD90(+ and CD44(highCD90(- cells in the PLCCL derived from SCC formed spheroids, whereas the CD44(low/- cells were lacking this potential. These results indicate that CD44(highCD90(+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44(high sub-population.