WorldWideScience

Sample records for primary battery development

  1. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    International Nuclear Information System (INIS)

    Patrício, João; Kalmykova, Yuliya; Berg, Per E.O.; Rosado, Leonardo; Åberg, Helena

    2015-01-01

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  2. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    Energy Technology Data Exchange (ETDEWEB)

    Patrício, João, E-mail: joao.patricio@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Kalmykova, Yuliya; Berg, Per E.O.; Rosado, Leonardo [Department of Civil and Environmental Engineering, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Åberg, Helena [The Faculty of Education, University of Gothenburg, 40530 Gothenburg (Sweden)

    2015-05-15

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese

  3. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type.

    Science.gov (United States)

    Patrício, João; Kalmykova, Yuliya; Berg, Per E O; Rosado, Leonardo; Åberg, Helena

    2015-05-01

    In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows - due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996-2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Advanced Carbon Fluorides For Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guérin K.

    2017-01-01

    Full Text Available Li-CFx battery using a specific fluorinated nanocarbon as cathode material exhibits a capacity exceeding the expected theoretical value when used as an electrode material in primary lithium battery. Carbon nanodiscs were partially fluorinated by atomic fluorine released by thermal decomposition of TbF4, and the capacity of this material was up to 1180 mAh.g−1, whereas a theoretical value of 847 mAh.g−1 for the CF0.95 sample was calculated. The obtained value is also higher than the maximum one of 865 mAh.g−1 expected for CF1 carbon fluorides. The discharge mechanism was investigated using mainly SEM and solid state NMR in order to understand this “extracapacity”. Both the unfluorinated carbon and the LiF covering, which is formed outside the carbon lattice during the discharge mechanism, play a key role for the achievement of the extracapacity by the consumption of Li+ to form Li2F+ species stabilized by the carbon host structure formed after the electrochemical defluorination.

  5. Frontier battery development for hybrid vehicles

    OpenAIRE

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-01-01

    Abstract Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used f...

  6. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  7. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  8. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  9. Quality assurance for primary batteries. Qualitaetssicherung fuer Primaerbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Ruedinger, G [Varta AG, Ellwangen (Germany, F.R.)

    1989-11-01

    Apart from a few applications in tube sets, the use of primary batteries was limited until well into the fifties to the current supply of lighting units, predominantly of flashlights. Only with the invention of the transistor and of integrated circuits, the primary battery took an important place among electric components. As a consequence, this component had to meet much different requirements. In order to ensure the quality of an article produced in enormous quantities - several hundred million units per year with a great variety of types, with nine different systems and of approx. 100 different types - it became indispensable to set up a well equipped quality assurance system. (orig.).

  10. New developments in battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J

    1982-01-01

    Practical, high energy density alternatives to the lead-acid battery are considered for both vehicular and utility load-leveling use, in view of year 2000 potential markets. After demonstrating the high costs and low energy densities and life cycles of lead/acid, nickel/iron and nickel/zinc systems, as well as batteries using gaseous electrodes such as the nickel/hydrogen system employed by communication satellites and those taking advantage of light metals like lithium and sodium, a description is given of the design features and operational characteristics of the sodium/sulfur battery. Attention is given to both internal and external sodium volume battery configurations, both of which employ beta alumina as a solid electrolyte with high sodium ion conductivity, and molten sodium and sulfur at 350 C. It is the thermal insulation of the sodium/sulfur battery that makes its application to electric vehicles difficult, despite a very high energy density.

  11. Development of nuclear battery using isotope sources

    International Nuclear Information System (INIS)

    Chang, Won Jun

    2004-02-01

    Until now, the development of the useful micro electromechanical systems has the problems because previous batteries (solar, chemical, etc) did not satisfy the requirements related to power supply. At this point of time, nuclear battery using isotope sources is rising the solution of this problem. Nuclear battery can provide superior out-put power and lifetime. So a new type of micro power source (nuclear battery) for micro electromechanical systems has been designed and analyzed. In this work, I designed the three parts, isotope source, conversion device, and shielding. I chose suitable sources, and designed semiconductor using the chosen isotope sources. Power is generated by radiation exciting electrons in the semiconductor depletion region. The efficiency of the nuclear battery depends upon the pn-junction. In this study the several conceptual nuclear batteries using radioactive materials are described with pn-junction. And for the safety, I designed the shielding to protect the environment by reducing the kinetic energy of beta particles

  12. Active primary lithium thionyl chloride battery for artillery applications

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, A.R.; Delnick, F.M. (Sandia National Labs., Albuquerque, NM (USA)); Miller, D.L. (Eagle-Picher Industries, Inc., Joplin, MO (USA))

    1990-01-01

    Sandia National Laboratories and Eagle Picher Industries have successfully developed an Active Lithium Thionyl Chloride (ALTC) power battery for unique artillery applications. Details of the design and the results of safety and performance will be presented. 1 ref., 5 figs.

  13. Active primary lithium thionyl chloride battery for artillery applications

    Science.gov (United States)

    Baldwin, Arlen R.; Delnick, Frank M.; Miller, David L.

    1990-03-01

    Sandia National Laboratories and Eagle Picher Industries have successfully developed an Active Lithium Thionyl Chloride (ALTC) power battery for unique artillery applications. Details of the design and the results of safety and performance will be presented.

  14. 3-D Nanofilm Primary Li Air Battery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires a new primary battery capable of providing specific energy exceeding 2000Wh/kg over an operating temperature range of 0oC to 35oC with a shelf life...

  15. Metal-air battery research and development

    Science.gov (United States)

    Behrin, E.; Cooper, J. F.

    1982-05-01

    This report summarizes the activities of the Metal-air Battery Program during the calendar year 1981. The principal objective is to develop a refuelable battery as an automotive energy source for general-purpose electric vehicles and to conduct engineering demonstrations of its ability to provide vehicles with the range, acceleration, and rapid refueling capability of current internal-combustion-engine automobiles. The second objective is to develop an electrically-rechargeable battery for specific-mission electric vehicles, such as commuter vehicles, that can provide low-cost transportation. The development progression is to: (1) develop a mechanically rechargeable aluminum-air power cell using model electrodes, (2) develop cost-effective anode and cathode materials and structures as required to achieve reliability and efficiency goals, and to establish the economic competitiveness of this technology, and (3) develop and integrated propulsion system utilizing the power cell.

  16. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries

    Directory of Open Access Journals (Sweden)

    Xingxing Gu

    2016-11-01

    Full Text Available The effects of climate change are just beginning to be felt, and as such, society must work towards strategies of reducing humanity’s impact on the environment. Due to the fact that energy production is one of the primary contributors to greenhouse gas emissions, it is obvious that more environmentally friendly sources of power are required. Technologies such as solar and wind power are constantly being improved through research; however, as these technologies are often sporadic in their power generation, efforts must be made to establish ways to store this sustainable energy when conditions for generation are not ideal. Battery storage is one possible supplement to these renewable energy technologies; however, as current Li-ion technology is reaching its theoretical capacity, new battery technology must be investigated. Lithium–sulphur (Li–S batteries are receiving much attention as a potential replacement for Li-ion batteries due to their superior capacity, and also their abundant and environmentally benign active materials. In the spirit of environmental harm minimization, efforts have been made to use sustainable carbonaceous materials for applications as carbon–sulphur (C–S composite cathodes, carbon interlayers, and carbon-modified separators. This work reports on the various applications of carbonaceous materials applied to Li–S batteries, and provides perspectives for the future development of Li–S batteries with the aim of preparing a high energy density, environmentally friendly, and sustainable sulphur-based cathode with long cycle life.

  17. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  18. Trends in the development of radioisotope batteries

    International Nuclear Information System (INIS)

    Goeldner, R.; Leonhardt, J.W.; Radmaneche, R.; Schlegel, H.

    1978-01-01

    Improved methods for producing radioisotopes by nuclear fuel reprocessing and the rapid development of microelectronics offer new possibilities for utilizing radioisotope batteries. A review is given of the main principles of conversion of decay energy into electric power. The current state of such energy sources is evaluated. Finally, new fields of application and further trends in the development are indicated. (author)

  19. Primary frequency regulation with Li-ion battery energy storage system: A case study for Denmark

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Meeting ambitious goals of transition to distributed and environmentally-friendly renewable energy generation can be difficult to achieve without energy storage systems due to technical and economical challenges. Moreover, energy storage systems have a high potential of not only smoothing and imp...... electricity market. Moreover, in this paper a possible improvement of the Li-ion BESS energy management strategy is shown, which allows for obtaining the higher NPV....... lifetime, which introduces significant risk into the business model. This paper deals with the investigation of the lifetime of LiFeP04/C battery systems when they are used to provide primary frequency regulation service. A semi-empirical lifetime model for these battery cells was developed based...... on the results obtained from accelerated lifetime testing. The developed Li­-ion battery lifetime model is later a base for the analyses of the economic profitability of the investment in the Li-ion battery energy storage system (BESS), which delivers the primary frequency regulation service on the Danish...

  20. Development of lithium-thionyl chloride batteries for Centaur

    Energy Technology Data Exchange (ETDEWEB)

    Halpert, G.; Frank, H.; Lutwack, R.

    1988-04-01

    Lithium thionyl chloride (LiSOCl2) primary cells and batteries have received considerable attention over the last several years because of their high theoretical specific energy and energy density. The objective was to develop a 300 wh/kg cell capable of safe operation at C/2 rate and active storage life for 5 to 10 years. This technology would replace other primary cell technologies in NASA applications mainly the silver zinc (AgZn) batteries presently in use. The LiSOCl2 system exceeds the capabilities of the AgZn in terms of specific energy of 300 wh/kg (compared with 100 wh/kg for AgZn), active storage life of 10 to 20 times the 3 to 6 months active storage and has a significantly lower projected cost.

  1. Development of nickel hydrogen battery expert system

    Science.gov (United States)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  2. Development and characterization of textile batteries

    Science.gov (United States)

    Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.

    2017-02-01

    During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.

  3. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  4. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    Science.gov (United States)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  5. Data-driven battery product development: Turn battery performance into a competitive advantage.

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal [Voltaiq, Inc.

    2016-04-19

    Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.

  6. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode

    Science.gov (United States)

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-01

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g-1 (S) capacity at sulfur loading of 6 ~ 14 mg cm-2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg-1 (654 Wh L-1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.

  7. Development and standardization of Indian aphasia battery

    Directory of Open Access Journals (Sweden)

    Harsimarpreet Kaur

    2017-01-01

    Full Text Available Background: Aphasia is a language disorder which may disrupt an individual's functioning. To plan a mode of therapeutic/rehabilitative work, it is important to assess problems from a neuropsychological perspective focused on remediation of the impaired processes or compensation through the intact processes or both. Aim: Due to the paucity of tests available for the assessment of aphasia in the Indian population with specific colloquial expression, the aim of the present study was to develop an aphasia test for Hindi-speaking population and to provide evidence with its reliability and validity. Methods: The conception of the test took place in two phases: Phase 1 was the development of Indian Aphasia Battery (IAB and Phase 2 was its standardization. IAB was administered along the Hindi adaptation of the Western Aphasia Battery (WAB-H on participants with aphasia, probable aphasia, and healthy volunteers. Outcomes and Results: Based on the results of this study, IAB has a high concurrent validity and test–retest reliability in comparison to WAB-H. The subtests are sensitive enough to contribute to global aphasia quotient as a functional measure of aphasia in Indian brain-damaged patients. Conclusion: IAB is a quick and easy to administer measure for assessment of aphasia in Hindi-speaking population with high reliability and validity.

  8. Bipolar zinc/oxygen battery development

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schlatter, C [Swiss Federal Inst. of Technology, Lausanne (Switzerland)

    1997-06-01

    A bipolar electrically rechargeable Zn/O{sub 2} battery has been developed. Reticulated copper foam served as substrate for the zinc deposit on the anodic side, and La{sub 0.6}Ca{sub 0.4}CoO{sub 3}-catalyzed bifunctional oxygen electrodes were used on the cathodic side of the cells. The 100 cm{sup 2} unit cell had an open circuit voltage of 1,4 V(O{sub 2}) in moderately alkaline electrolyte. The open circuit voltage and the peak power measured for a stack containing seven cells were ca. 10V and 90W, respectively. The current-potential behaviour was determined as a function of the number of bipolar cells, and the maximum discharge capacity was determined at different discharge rates. (author) 4 figs., 1 ref.

  9. Bipolar nickel-hydrogen battery development - A program review

    Science.gov (United States)

    Manzo, Michelle; Lenhart, Stephen; Hall, Arnold

    1989-01-01

    An overview of spacecraft power system design trends, focusing on higher power bus voltages and improved energy storage systems, is followed by a discussion of bipolar Ni/H2 battery development efforts. Several 10-cell batteries and one 50-cell battery are described, and performance results are presented. A comparison of individual-pressure-vessel and bipolar Ni/H2 technologies is used to suggest a new direction for bipolar Ni/H2 battery development efforts, toward a large number of passively cooled cells in parallel.

  10. A primary battery-on-a-chip using monolayer graphene

    Science.gov (United States)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  11. Bipolar nickel-hydrogen battery development

    Science.gov (United States)

    Koehler, C. W.; Applewhite, A. Z.; Hall, A. M.; Russell, P. G.

    1985-01-01

    A comparison of the bipolar Ni-H2 battery with other energy systems to be used in future high-power space systems is presented. The initial design for the battery under the NASA-sponsored program is described and the candidate stack components are evaluated, including electrodes, separator, electrolyte reservoir plate, and recombination sites. The compressibility of the cell elements, electrolyte activation, and thermal design are discussed. Manufacturing and prototype test results are summarized.

  12. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Jung, H. K.; Cheong, Y. M.; Lee, N. H.; Choi, Y. S.; Joo, Y. S.; Lee, J. S.; Jeon, B. H.

    2007-06-01

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  13. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  14. Advancement of technology towards developing Na-ion batteries

    Science.gov (United States)

    Jamesh, Mohammed Ibrahim; Prakash, A. S.

    2018-02-01

    The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.

  15. Nickel hydrogen common pressure vessel battery development

    Science.gov (United States)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  16. Non-polluting disposal of spent primary batteries. Varta-Spezial-Report

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F

    1982-01-01

    Reflections on non-polluting disposal of spent primary batteries result in the following: Mercury content of battery systems which are either available on or being introduced to the market varies extremely. Coal/zinc cells, i.e. Leclanche cells and lithium cells, contain practically no mercury. A system for collecting and recycling cells with an increased mercury content (HgO/Zn cells) has existed for year. The mercury content of a cell does not mean ony hazard for the user. The following strategy, therefore, appears to be applicable for spent batteries: - collection and recycling of mercury oxide and silver oxide button cells, - disposal of zinc/coal batteries with domestic refuse, - quantitative reduction of alkaline zinc/manganese dioxide cells through substitution.

  17. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  18. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  19. Towards identifying dyslexia in Standard Indonesian: : the development of a reading assessment battery

    NARCIS (Netherlands)

    Jap, Bernard Amadeus Jaya; Borleffs, Elisabeth; Maassen, Bernardus

    2017-01-01

    With its transparent orthography, Standard Indonesian is spoken by over 160 million inhabitants and is the primary language of instruction in education and the government in Indonesia. An assessment battery of reading and reading-related skills was developed as a starting point for the diagnosis of

  20. Field tests experience from 1.6MW/400kWh Li-ion battery energy storage system providing primary frequency regulation service

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    Lithium-ion battery energy storage systems (BESSs) represent suitable alternatives to conventional generating units for providing primary frequency regulation on the Danish market. This paper presents aspects concerning the operation of the BESSs in the Danish energy market while providing upwards...... on the BESS demonstrator located in Western Denmark and initial results are introduced and discussed. These measurements can be used to validate models for battery ageing during realistic operation or to develop the diagnostic tools for the BESS....

  1. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  2. Control mechanisms for battery energy storage system performing primary frequency regulation and self-consumption optimization

    NARCIS (Netherlands)

    Pliatskas Stylianidis, A.

    2016-01-01

    This report contains the design of a model for the integration of a battery energy system in a household level and its use for primary frequency regulation and self-consumption optimization. The main goal of this project was to investigate what are the possible applications and the most suitable for

  3. Development of the lithium polymer battery for the GM Precept

    Energy Technology Data Exchange (ETDEWEB)

    Rouillard, R.; Richard, M.; Pomerleau, D.; St-Germain, P.; St-Pierre, C. [Argo-Tech Productions Inc., Boucherville, PQ (Canada); Gastonguay, L.; Choquette, Y. [Hydro-Quebec, Montreal, PQ (Canada). Research Inst

    2000-07-01

    The role that Hydro-Quebec and Argo-Tech played in the development of the GM Precept was discussed. The prototype hybrid electric-powered vehicle is a 5-passenger family sedan developed by General Motors. It is expected to achieve 80 mpg efficiency and emit fewer exhaust gases. The car's energy storage system uses lithium polymer battery (LPB) technology developed jointly by Hydro-Quebec and Argo-Tech. The development team had to meet the objectives of the GM Precept program using a unique electrochemical configuration, module and pack design. This included battery management and thermal management systems. The performance targets and parameters for the prototype were established by the Partnership for a New Generation of Vehicles (PNGV) program. In 1993, the United States Advanced Battery Consortium (USABC) issued a contract to Hydro-Quebec to further develop their ongoing research on the LPB for EV applications. This included improvements in base chemistry as well as in the development processes and manufacturing technologies needed to produce a high-performance, low-cost electric-vehicle battery, under a series of USABC cost-shared contracts. The design and performance data of the LPB in addition to tests at the cell level suggest that the commercialization of the LPB battery is achievable. Focus is now being placed on reproducibility and robustness. Commercialization is planned for 2005. refs., tabs., figs.

  4. Sustainability and in situ monitoring in battery development

    Science.gov (United States)

    Grey, C. P.; Tarascon, J. M.

    2017-01-01

    The development of improved rechargeable batteries represents a major technological challenge for this new century, as batteries constitute the limiting components in the shift from petrol (gasoline) powered to electric vehicles, while also enabling the use of more renewable energy on the grid. To minimize the ecological implications associated with their wider use, we must integrate sustainability of battery materials into our research endeavours, choosing chemistries that have a minimum footprint in nature and that are more readily recycled or integrated into a full circular economy. Sustainability and cost concerns require that we greatly increase the battery lifetime and consider second lives for batteries. As part of this, we must monitor the state of health of batteries continuously during operation to minimize their degradation. It is thus important to push the frontiers of operando techniques to monitor increasingly complex processes. In this Review, we will describe key advances in both more sustainable chemistries and operando techniques, along with some of the remaining challenges and possible solutions, as we personally perceive them.

  5. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany

    Directory of Open Access Journals (Sweden)

    Alexander Zeh

    2016-09-01

    Full Text Available The application of stationary battery storage systems to German electrical grids can help with various storage services. This application requires controlling the charge and discharge power of such a system. For example, photovoltaic (PV home storage, uninterruptible power supply, and storage systems for providing ancillary services such as primary control reserves (PCRs represent battery applications with positive profitability. Because PCRs are essential for stabilizing grid frequency and maintaining a robust electrical grid, German transmission system operators (TSOs released strict regulations in August 2015 for providing PCRs with battery storage systems as part of regulating the International Grid Control Cooperation (IGCC region in Europe. These regulations focused on the permissible state of charge (SoC of the battery during nominal and extreme conditions. The concomitant increased capacity demand oversizing may result in a significant profitability reduction, which can be attenuated only by using an optimal parameterization of the control algorithm for energy management of the storage systems. In this paper, the sizing optimization is achieved and a recommendation for a control algorithm that includes the appropriate parameters for the requirements in the German market is given. Furthermore, the storage cost is estimated, including battery aging simulations for different aging parameter sets to allow for a realistic profitability calculation.

  6. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  7. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  8. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  9. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  10. Exploratory battery technology development and testing report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  11. Progress and challenges in bipolar lead-acid battery development

    Science.gov (United States)

    Bullock, Kathryn R.

    1995-05-01

    Bipolar lead-acid batteries have higher power densities than any other aqueous battery system. Predicted specific powers based on models and prototypes range from 800 kW/kg for 100 ms discharge times to 1.6 kW/kg for 10 s. A 48 V automotive bipolar battery could have 2 1/2 times the cold cranking rate of a monopolar 12 V design in the same size. Problems which have precluded the development of commercial bipolar designs include the instability of substrate materials and enhanced side reactions. Design approaches include pseudo-bipolar configurations, as well as true bipolar designs in planar and tubular configurations. Substrate materials used include lead and lead alloys, carbons, conductive ceramics, and tin-oxide-coated glass fibers. These approaches are reviewed and evaluated.

  12. Prototype Lithium-Ion Battery Developed for Mars 2001 Lander

    Science.gov (United States)

    Manzo, Michelle A.

    2000-01-01

    In fiscal year 1997, NASA, the Jet Propulsion Laboratory, and the U.S. Air Force established a joint program to competitively develop high-power, rechargeable lithium-ion battery technology for aerospace applications. The goal was to address Department of Defense and NASA requirements not met by commercial battery developments. Under this program, contracts have been awarded to Yardney Technical Products, Eagle- Picher Technologies, LLC, BlueStar Advanced Technology Corporation, and SAFT America, Inc., to develop cylindrical and prismatic cell and battery systems for a variety of NASA and U.S. Air Force applications. The battery systems being developed range from low-capacity (7 to 20 A-hr) and low-voltage (14 to 28 V) systems for planetary landers and rovers to systems for aircraft that require up to 270 V and for Unmanned Aerial Vehicles that require capacities up to 200 A-hr. Low-Earth-orbit and geosynchronousorbit spacecraft pose additional challenges to system operation with long cycle life (>30,000 cycles) and long calendar life (>10 years), respectively.

  13. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    Science.gov (United States)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  14. Multiphysics Based Thermal Modeling of a Pouch Lithium-Ion Battery Cell for the Development of Pack Level Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    2016-01-01

    The research is focused on the development of a three-dimensional cell level multiphysics battery thermal model. The primary aim is to represent the cooling mechanism inside the unit cell battery pack. It is accomplished through the coupling of heat transfer and computational fluid dynamics (CFD......) physics. A lumped value of heat generation (HG) inside the battery cell is used. It stems from isothermal calorimeter experiment. HG depends on current rate and the corresponding operating temperature. It is demonstrated that the developed model provides a deeper understanding of the thermal spatio......-temporal behavior of Li-ion battery in different operating conditions....

  15. Development of prismatic sealed nickel-cadmium battery, 2000PF

    Energy Technology Data Exchange (ETDEWEB)

    Arahi,; Kazuo,; Yoshimura, Hideaki; Takeshima, Kenji; Kawamura, Chiaki

    1988-10-21

    Though, as for the sealed Ni-Cd battery, that of cylindrical form has been majorly used, that of prismatic form is heightened in needs, with the portable electronic appliances made smaller and thinner, for which needs a new type battery 2000 PF, by new production process technology and components, was developed. As compared with the past cylindrical sealed Ni-Ca batter, generally less than 100Wh/l in energy density, the new one is higher and 133Wh/l in it, with the achievement of a 17 to 34% lightening in weight. That heightening in energy density was realized by the optimized design of lamination structure, availing of the advantage not to necessitate the electrode to be wound in a spiral form, as necessary in the cylindrical battery. While as the sealing by caulking can not be adopted like the cylindrical battery, a precise welding technique by laser was established. The assembly line is of an almost unmanned on-line computer control system. The charge and discharge characteristics, etc. were indicated in detail. 11 figures, 1 table.

  16. Batteries

    Directory of Open Access Journals (Sweden)

    Yang Lijuan

    2016-01-01

    Full Text Available Fe3O4/carbon microspheres (Fe3O4/C were prepared by a facile hydrothermal reaction using cellulose and ferric trichloride as precursors. The resultant composite spheres have been investigated as anode materials for the lithium-ion batteries, and they show high capacity and good cycle stability (830mAhg−1 at a current density of 0.1C up to 70 cycles, as well as enhanced rate capability. The excellent electrochemical performance is attributed to the high structural stability and high rate of ionic/electronic conduction arising from the porous character and the synergetic effect of the carbon coated Fe3O4 structure and conductive carbon coating.

  17. Battery algorithm verification and development using hardware-in-the-loop testing

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  18. Battery algorithm verification and development using hardware-in-the-loop testing

    Science.gov (United States)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  19. NIH EXAMINER: conceptualization and development of an executive function battery.

    Science.gov (United States)

    Kramer, Joel H; Mungas, Dan; Possin, Katherine L; Rankin, Katherine P; Boxer, Adam L; Rosen, Howard J; Bostrom, Alan; Sinha, Lena; Berhel, Ashley; Widmeyer, Mary

    2014-01-01

    Executive functioning is widely targeted when human cognition is assessed, but there is little consensus on how it should be operationalized and measured. Recognizing the difficulties associated with establishing standard operational definitions of executive functioning, the National Institute of Neurological Disorders and Stroke entered into a contract with the University of California-San Francisco to develop psychometrically robust executive measurement tools that would be accepted by the neurology clinical trials and clinical research communities. This effort, entitled Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (EXAMINER), resulted in a series of tasks targeting working memory, inhibition, set shifting, fluency, insight, planning, social cognition and behavior. We describe battery conceptualization and development, data collection, scale construction based on item response theory, and lay the foundation for studying the battery's utility and validity for specific assessment and research goals.

  20. Recent developments in organic redox flow batteries: A critical review

    Science.gov (United States)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  1. Development of a thin-shaped lightweight MF battery for motorcycles. Nirinshayo usugata keiryo maintenance free battery no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Onozuka, T. (Honda Motor Co. Ltd., Tokyo (Japan)); Uemichi, S. (Yuasa Battery Co. Ltd., Osaka (Japan))

    1992-08-01

    This paper describes a thin-shaped lightweight maintenance free motorcycle battery used in a motor scooter, a new product from Honda Motors launching its sales in 1992, as well as the related structural development thereof. The points aimed at in the development include more utilization of available space in a vehicle, improved maintainability, and adoption of perfect instant activation system (dry-charged system) which makes a battery serviceable upon initial filling of electrolyte. Attentions have been given on reducing the battery volume by 30% and weight by 20% compared with the conventional batteries, and ensuring interchangeability, leakage-free performance, and free and easy replacement. Contrivances for practical application have been given on assuring low-temperature high-rate discharge performance for reliable engine starting. Devised also are the thinner battery plates, better vibration resistance, longer life, uniformed plate thickness, higher separator porosity, and better stability in plate group pressurization. Better performance than the conventional batteries was realized by improving parts construction and mounting systems, including one-touch terminal connection, fast coupling of terminal posts, soldering, and fuse built-in couplers. The battery has superior appearance and design. 18 figs.

  2. High-rate lithium thionyl-chloride battery development

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, W.R.; Weigand, D.E.

    1993-12-31

    We have developed a lithium thionyl-chloride cell for use in a high rate battery application to provide power for a missile computer and stage separation detonators. The battery pack contains 20 high surface area ``DD`` cells wired in a series-parallel configuration to supply a nominal 28 volts with a continuous draw of 20 amperes. The load profile also requires six squib firing pulses of one second duration at a 20 ampere peak. Performance and safety of the cells were optimized in a ``D`` cell configuration before progressing to the longer ``DD` cell. Active surface area in the ``D`` cell is 735 cm{sup 2}, and 1650 cm{sup 2} in the ``DD`` cell. The design includes 1.5M LiAlCl{sub 4}/SOCl{sub 2} electrolyte, a cathode blend of Shawinigan Acetylene Black and Cabot Black Pearls 2000 carbons, Scimat ETFE separator, and photoetched current collectors.

  3. Advances in development and application of aluminium batteries

    DEFF Research Database (Denmark)

    Qingfeng, Li; Zhuxian, Qiu

    2001-01-01

    Aluminium has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer at aluminium surface is however detrimental to its performance to achieve its reversible potential, and also causing the delayed activation o...... aluminium batteres, especially aluminium-air batteries, and a wide range of their applications from emergency power supplies, reserve batteries field portable batteries, to batteries for electric vehicles and underwater propulsion....

  4. The Construction of a Muscular Strength Test Battery for Girls in the Primary Grades.

    Science.gov (United States)

    DiNucci, James M.; Pelton, Elois B.

    This study was designed to construct a gross muscular strength test battery for girls 6-9 years of age in grades 1-3. The subjects for this investigation were a random sample of 183 girls in grades 1-3 of the public schools of Natchitoches, Louisiana. The variables selected were 22 cable tension strength tests developed by Clarke and associates.…

  5. Testing and development of electric vehicle batteries for EPRI Electric Transportation Program

    Science.gov (United States)

    1985-11-01

    Argonne National Laboratory conducted an electric-vehicle battery testing and development program for the Electric Power Research Institute. As part of this program, eighteen battery modules previously developed by Johnson Controls, Inc. were tested. This type of battery (EV-2300 - an improved state-of-the-art lead-acid battery) was designed specifically for improved performance, range, and life in electric vehicles. In order to obtain necessary performance data, the batteries were tested under various duty cycles typical of normal service. This program, supported by the Electric Power Research Institute, consisted of three tasks: determination of the effect of cycle life vs peak power and rest period, determination of the impact of charge method on cycle life, and evaluation of the EV-2300 battery system. Two supporting studies were also carried out: one on thermal management of electric-vehicle batteries and one on enhanced utilization of active material in lead-acid batteries.

  6. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  7. Advanced solid state batteries

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, A; Delmas, C; Menetrier, M; Hagenmuller, P

    1984-01-01

    Direct electrochemical storage of electricity is attractive because of its adaptability to vehicle traction as well as to stationary applications. Important advancements are necessary to improve primary or secondary batteries so far used. The aim of this study was to develop and to characterize materials for the next generation of advanced, rechargeable solid state batteries for vehicle transport and stationary storage applications. One of the best electricity storage systems was the lithium/intercalation compound secondary battery, though up to now the behavior of liquid organic electrolytes did not allow for good recycling in such systems. The research program for these batteries is described.

  8. Towards identifying dyslexia in Standard Indonesian: the development of a reading assessment battery.

    Science.gov (United States)

    Jap, Bernard A J; Borleffs, Elisabeth; Maassen, Ben A M

    2017-01-01

    With its transparent orthography, Standard Indonesian is spoken by over 160 million inhabitants and is the primary language of instruction in education and the government in Indonesia. An assessment battery of reading and reading-related skills was developed as a starting point for the diagnosis of dyslexia in beginner learners. Founded on the International Dyslexia Association's definition of dyslexia, the test battery comprises nine empirically motivated reading and reading-related tasks assessing word reading, pseudoword reading, arithmetic, rapid automatized naming, phoneme deletion, forward and backward digit span, verbal fluency, orthographic choice (spelling), and writing. The test was validated by computing the relationships between the outcomes on the reading-skills and reading-related measures by means of correlation and factor analyses. External variables, i.e., school grades and teacher ratings of the reading and learning abilities of individual students, were also utilized to provide evidence of its construct validity. Four variables were found to be significantly related with reading-skill measures: phonological awareness, rapid naming, spelling, and digit span. The current study on reading development in Standard Indonesian confirms findings from other languages with transparent orthographies and suggests a test battery including preliminary norm scores for screening and assessment of elementary school children learning to read Standard Indonesian.

  9. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  10. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  11. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  12. Development of a battery of functional tests for low vision.

    Science.gov (United States)

    Dougherty, Bradley E; Martin, Scott R; Kelly, Corey B; Jones, Lisa A; Raasch, Thomas W; Bullimore, Mark A

    2009-08-01

    We describe the development and evaluation of a battery of tests of functional visual performance of everyday tasks intended to be suitable for assessment of low vision patients. The functional test battery comprises-Reading rate: reading aloud 20 unrelated words for each of four print sizes (8, 4, 2, & 1 M); Telephone book: finding a name and reading the telephone number; Medicine bottle label: reading the name and dosing; Utility bill: reading the due date and amount due; Cooking instructions: reading cooking time on a food package; Coin sorting: making a specified amount from coins placed on a table; Playing card recognition: identifying denomination and suit; and Face recognition: identifying expressions of printed, life-size faces at 1 and 3 m. All tests were timed except face and playing card recognition. Fourteen normally sighted and 24 low vision subjects were assessed with the functional test battery. Visual acuity, contrast sensitivity, and quality of life (National Eye Institute Visual Function Questionnaire 25 [NEI-VFQ 25]) were measured and the functional tests repeated. Subsequently, 23 low vision patients participated in a pilot randomized clinical trial with half receiving low vision rehabilitation and half a delayed intervention. The functional tests were administered at enrollment and 3 months later. Normally sighted subjects could perform all tasks but the proportion of trials performed correctly by the low vision subjects ranged from 35% for face recognition at 3 m, to 95% for the playing card identification. On average, low vision subjects performed three times slower than the normally sighted subjects. Timed tasks with a visual search component showed poorer repeatability. In the pilot clinical trial, low vision rehabilitation produced the greatest improvement for the medicine bottle and cooking instruction tasks. Performance of patients on these functional tests has been assessed. Some appear responsive to low vision rehabilitation.

  13. Development of a Digital and Battery-Free Smart Flowmeter

    Directory of Open Access Journals (Sweden)

    Wang Song Hao

    2014-06-01

    Full Text Available To effectively manage and save energy and natural resources, the measurement and monitoring of gas/fluid flows play extremely important roles. The objective of this study was to incorporate an efficient power generation and a power management system for a commercial water flow meter thus eliminating the usage of batteries. Three major technologies have made this possible: a low power consumption metering unit, a cog-resistance-free generator with high efficiency; and an effective methodology to extract/store energy. In this system, a new attempt and simple approach was developed to successfully extract a portion of the kinetic energy from the fluid/air, store it in a capacitor and used it efficiently. The resistance to the flow was negligible because of the very low power consumption as well as the application of the coreless generator technology. Feasibility was demonstrated through repeated experiments: for air flowing in an 11 mm diameter pipe, 18 s of energy harvesting at 10 revolution-per-second (RPS turbine speeds generated enough power for the flowmeter to operate for 720 s with a flowrate of 20 RPS, without battery or any external power. The pipeline monitoring in remote areas such as deep sea oil drilling; geothermal power plants and even nuclear power plants could benefit greatly from this self-power metering system design.

  14. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  15. Development of a Battery-Free Solar Refrigerator

    Science.gov (United States)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls

  16. Recent Development of Nanocomposite Membranes for Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Sang-Ho Cha

    2015-01-01

    Full Text Available The vanadium redox flow battery (VRB has received considerable attention due to its long cycle life, flexible design, fast response time, deep-discharge capability, and low pollution emissions in large-scale energy storage. The key component of VRB is an ion exchange membrane that prevents cross mixing of the positive and negative electrolytes by separating two electrolyte solutions, while allowing the conduction of ions. This review summarizes efforts in developing nanocomposite membranes with reduced vanadium ion permeability and improved proton conductivity in order to achieve high performance and long life of VRB systems. Moreover, functionalized nanocomposite membranes will be reviewed for the development of next-generation materials to further improve the performance of VRB, focusing on their properties and performance of VRB.

  17. Simulation on the optimum thickness of Ni-63 for nuclear battery development

    International Nuclear Information System (INIS)

    Kang, S. K.; Kang, Y. R.; Lim, H. J.; Rhee, D. J.; Jeong, D. H.; Son, K. J.; Choi, B. G.

    2013-01-01

    A nuclear battery is an electrical device to obtain the electrical power using radiations from a radioisotope. The beta-ray emitting radioisotopes such as H-3, Ni-63, Pm-147, Tc-99 were used for producing the nuclear battery. Specifically, long half-life (>50 years) radioisotopes were preferred for developing a long-life battery. Recently, the nuclear battery is considered to be an alternate energy source. The efficiency of the output power of the nuclear battery can be improved by changing the fabrication process. Designing the shape of the radioisotope and the semiconductor structures, and determining the type of the elements in the battery in manufacturing process were required before the production of the nuclear battery. In this study, the flat Ni-63 sources with various thicknesses were simulated to maximize the efficiency of the transfer of the total energy of beta-rays into the electrical power. The minimum thicknesses of the silicon layer and the Ni-63 source in the nuclear battery for the optimized efficiency were determined to be 16 μm and 2.0 μm respectively. This simulation results would be applied to the development in the high efficiency nuclear battery. Further study to determine the geometry and the shape of the radioisotopes and the semiconductors for developing the more efficient nuclear battery would be desired

  18. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    Science.gov (United States)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  19. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  20. Development of a Test Battery to Select Navy Recruiters

    National Research Council Canada - National Science Library

    Penney, Lisa M; Borman, Walter C; Bearden, Ronald M

    2007-01-01

    .... the students were administered a trial predictor battery while at the school, and performance ratings and production data were collected after participants had been assigned to recruiting duty...

  1. Progress and recent developments in sodium, metal chloride batteries

    International Nuclear Information System (INIS)

    Ratnakumar, B.V.; Attia, A.I.; Halpert, G.

    1991-01-01

    A new class of rechargeable sodium batteries emerged in the last decade mainly due to the efforts in South Africa and the United Kingdom. These systems include solid transition metal chlorides in sodium tetrachloroaluminates as cathodes. Significant developments have been made on two systems, i.e., Na/NiCl 2 and Na/FeCl 2 ; high energy densities of the order of 130 Wh/Kg have been demonstrated at the cell level both with FeCl 2 and NiCl 2 cathodes. Long cycle life of over 2000 cycles was demonstrated with NiCl 2 , especially with a sulfur additive to the electrolyte to retain the sintered structure of the NiCl 2 electrode. Various environmental and safety tests have been successfully performed on the cells. Scale up efforts resulted in cells of 40 - 100 Ah, which were evaluated in an electric vehicle application. Additionally, it appears from a recent evaluation study carried out by European Space Agency on Na/NiCl 2 for GEO and LEO applications that energy densities of the order of 120 Wh/Kg and 100 Wh/Kg respectively at the cell level are feasible and long cycle lives (beyond 2800 cycles are possible). Several fundamental and developmental studies have been carried out at other laboratories aimed at understanding the reaction mechanisms, determining the kinetics and identifying various rate governing processes, and screening various other metal chlorides. Finally, the specific energies and especially the power densities projected for Na/FeCl 2 and Na/NiCl 2 systems based on alternate designs for beta alumina solid electrolyte, i.e., multiple tubes and flat plates are very attractive for electric vehicle and space applications. In this paper, the authors propose to present a detailed account of the developments made hither to as well as the key research issues being addressed in the sodium - metal chloride battery technology

  2. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Activities in a program to develop a Ni/Zn battery for electric vehicle propulsion are reported. Aspects discussed include battery design and development, nickel cathode study, and basic electrochemistry. A number of engineering drawings are supplied. 61 figures, 11 tables. (RWR)

  3. Development and Validation of the Cognition Test Battery for Spaceflight.

    Science.gov (United States)

    Basner, Mathias; Savitt, Adam; Moore, Tyler M; Port, Allison M; McGuire, Sarah; Ecker, Adrian J; Nasrini, Jad; Mollicone, Daniel J; Mott, Christopher M; McCann, Thom; Dinges, David F; Gur, Ruben C

    2015-11-01

    Sustained high-level cognitive performance is of paramount importance for the success of space missions, which involve environmental, physiological, and psychological stressors that may affect brain functions. Despite subjective symptom reports of cognitive fluctuations in spaceflight, the nature of neurobehavioral functioning in space has not been clarified. We developed a computerized cognitive test battery (Cognition) that has sensitivity to multiple cognitive domains and was specifically designed for the high-performing astronaut population. Cognition consists of 15 unique forms of 10 neuropsychological tests that cover a range of cognitive domains, including emotion processing, spatial orientation, and risk decision making. Cognition is based on tests known to engage specific brain regions as evidenced by functional neuroimaging. Here we describe the first normative and acute total sleep deprivation data on the Cognition test battery as well as several efforts underway to establish the validity, sensitivity, feasibility, and acceptability of Cognition. Practice effects and test-retest variability differed substantially between the 10 Cognition tests, illustrating the importance of normative data that both reflect practice effects and differences in stimulus set difficulty in the population of interest. After one night without sleep, medium to large effect sizes were observed for 3 of the 10 tests addressing vigilant attention (Cohen's d = 1.00), cognitive throughput (d = 0.68), and abstract reasoning (d = 0.65). In addition to providing neuroimaging-based novel information on the effects of spaceflight on a range of cognitive functions, Cognition will facilitate comparing the effects of ground-based analogues to spaceflight, increase consistency across projects, and thus enable meta-analyses.

  4. Development and Validation of the Cognition Test Battery for Spaceflight

    Science.gov (United States)

    Basner, Mathias; Savitt, Adam; Moore, Tyler M.; Port, Allison M.; McGuire, Sarah; Ecker, Adrian J.; Nasrini, Jad; Mollicone, Daniel J.; Mott, Christopher M.; McCann, Thom; Dinges, David F.; Gur, Ruben C.

    2015-01-01

    Background Sustained high-level cognitive performance is of paramount importance for the success of space missions, which involve environmental, physiological and psychological stressors that may affect brain functions. Despite subjective symptom reports of cognitive fluctuations in spaceflight, the nature of neurobehavioral functioning in space has not been clarified. Methods We developed a computerized cognitive test battery (Cognition) that has sensitivity to multiple cognitive domains and was specifically designed for the high-performing astronaut population. Cognition consists of 15 unique forms of 10 neuropsychological tests that cover a range of cognitive domains including emotion processing, spatial orientation, and risk decision making. Cognition is based on tests known to engage specific brain regions as evidenced by functional neuroimaging. Here we describe the first normative and acute total sleep deprivation data on the Cognition test battery as well as several efforts underway to establish the validity, sensitivity, feasibility, and acceptability of Cognition. Results Practice effects and test-retest variability differed substantially between the 10 Cognition tests, illustrating the importance of normative data that both reflect practice effects and differences in stimulus set difficulty in the population of interest. After one night without sleep, medium to large effect sizes were observed for 3 of the 10 tests addressing vigilant attention (Cohen’s d=1.00), cognitive throughput (d=0.68), and abstract reasoning (d=0.65). Conclusions In addition to providing neuroimaging-based novel information on the effects of spaceflight on a range of cognitive functions, Cognition will facilitate comparing the effects of ground-based analogs to spaceflight, increase consistency across projects, and thus enable meta-analyses. PMID:26564759

  5. Carbon-Coated CFx Nanocomposite Cathodes for High Rate Lithium Primary Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA planetary exploration missions require batteries that can operate in deep-space environments, including high radiation and extreme temperatures, and...

  6. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    Science.gov (United States)

    Chen, Honghao; Cartmell, Samuel; Wang, Qiang; Lozano, Terence; Deng, Z. Daniel; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-01

    The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

  7. USABC Development of 12 Volt Battery for Start-Stop Application: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tataria, H.; Gross, O.; Bae, C.; Cunningham, B.; Barnes, J. A.; Deppe, J.; Neubauer, J.

    2015-02-01

    Global automakers are accelerating the development of fuel efficient vehicles, as a part of meeting regional regulatory CO2 emissions requirements. The micro hybrid vehicles with auto start-stop functionality are considered economical solutions for the stringent European regulations. Flooded lead acid batteries were initially considered the most economical solution for idle-stop systems. However, the dynamic charge acceptance (DCA) at lower state-of-charge (SOC) was limiting the life of the batteries. While improved lead-acid batteries with AGM and VRLA features have improved battery longevity, they do not last the life of the vehicle. The United States Advanced Battery Consortium (or USABC, a consortium of GM, Ford, and Chrysler) analyzed energy storage needs for a micro hybrid automobile with start-stop capability, and with a single power source. USABC has analyzed the start-stop behaviors of many drivers and has developed the requirements for the start-stop batteries (Table 3). The testing procedures to validate the performance and longevity were standardized and published. The guideline for the cost estimates calculations have also been provided, in order to determine the value of the newly developed modules. The analysis effort resulted in a set of requirements which will help the battery manufacturers to develop a module to meet the automotive Original Equipment Manufacturers (OEM) micro hybrid vehicle requirements. Battery developers were invited to submit development proposals and two proposals were selected for 50% cost share with USABC/DOE.

  8. Development of Nanoporous Carbide-Derived Carbon Electrodes for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    2011-09-01

    applications in regenerative braking in electric vehicles or to power emergency actuation systems for doors and evacuation slides in airliners. In...sodium-beta, nickel-hydrogen, and regenerative fuel cells. Primary batteries are the energy source of choice for a variety of portable consumer...hybrid electric vehicles. Applications of secondary batteries can be grouped into two categories : 1. Applications used as an energy storage device, such

  9. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  10. Development of diode junction nuclear battery using 63Ni

    International Nuclear Information System (INIS)

    Ulmen, B.; Miley, G.H.; Desai, P.D.; Moghaddam, S.; Masel, R.I.

    2009-01-01

    The diode junction nuclear battery is a long-lived, high-energy-density, but low electrical current power source with many specialized applications. In this type of battery, nuclear radiation is directly converted to electric power. A model is described and used to design the device configuration. Details of fabrication and testing of a planar geometry battery with 63 Ni radiation source are described. The electron beam induced current (EBIC) measurement technique and CASINO Monte Carlo simulation code were employed to analyze the device performance. Finally, an improved design with 3-dimensional surface microstructures that will provide improved performance is presented. (author)

  11. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  12. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The progress and status of Eltra's Electric Vehicle Battery Program during FY-80 are presented under five divisional headings: Research on Components and Processes; Development of Cells and Modules for Electric Vehicle Propulsion; Sub-Systems; Pilot Line Production of Electric Vehicle Battery Prototypes; and Program Management.

  13. Development of Gel Polymer Electrolytes Using Radiation for Lithium Secondary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Ki; Lee, Jun Young; Lee, Dong Jin [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    Recently, demands of high performance lithium battery are increased. Development of battery materials for high power, high capacity, high safety are also needed. This project deals with the new gel polymer electrolyte based on the microporous matrix with specific functions using radiation techniques.

  14. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the

  15. Further development of pyrometallurgical IME recycling process for Li-ion batteries from electric vehicles

    International Nuclear Information System (INIS)

    Vest, Matthias

    2016-01-01

    Li-ion batteries are increasingly used in hybrid electric vehicles (HEV), electric vehicles (EV) and stationary storage applications. Those applications are significantly different in terms of storage capacity, life cycles and charging times from consumer type batteries such as mobile phones and handheld tools. Naturally, those HEV and EV Li-ion batteries also differ significantly in chemical composition and size. Coherently, a recycling concept has been developed for HEV, EV and stationary storage Li-ion batteries. This concept is based on the existing IME-ACCUREC recycling process for consumer type batteries. This work describes the whole process development including slag design, test series in a lab-scale electric arc furnace and a 1 t scale trial in a top blown rotary converter.

  16. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Science.gov (United States)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  17. Liquefied Gas Catholytes for UItra-Low Temperature Lithium Primary Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ocean Worlds exploration missions require batteries which operate as low as -100 C (defined here are "Ultra-Low Temperatures") and lower, a critically...

  18. Overcurrent Abuse of Primary Prismatic Zinc–Air Battery Cells Studying Air Supply Effects on Performance and Safety Shut-Down

    Directory of Open Access Journals (Sweden)

    Fredrik Larsson

    2017-01-01

    Full Text Available Overcurrent abuse has been performed on commercial 48 Ah primary prismatic zinc (Zn–Air battery cells with full air supply as well as with shut-off air supply. Compared to other battery technologies, e.g., lithium-ion batteries, metal–air batteries offer the possibility to physically stop the battery operation by stopping its air supply, thus offering an additional protection against severe battery damage in the case of, e.g., an accidental short circuit. This method may also reduce the electrical hazard in a larger battery system since, by stopping the air supply, the voltage can be brought to zero while maintaining the energy capacity of the battery. Measurements of overdischarge currents and current cut-off by suffocation have been performed to assess the safety of this type of Zn–air battery. The time to get to zero battery voltage is shown to mainly be determined by the volume of air trapped in the cell.

  19. Tendencies of Development of Global Battery Market with Emphasis on Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Miloloža

    2013-07-01

    Full Text Available Starter and traction batteries are build in vehicles with internal combustion engine or electric engine. Similar, stationary batteries supply power to communication or computer centres. The use of these products indicates the specific market for them, because the battery producer is not often in connection with the final consumer, almost always there is someone between them, connecting them. Thus, between the user and the battery manufacturer intermediate distributors, service installations in which this product are build in or vehicle producers (OEM – original equipment of the manufacturer, first installation of the starter battery.Battery production is a strategic industry branch, because starting a vehicle depends on the availability of fuel and the availability of the starter or traction batteries. This paper contains a review of the battery manufacturing industry, as a industry branch, on global and Croatian market.The development has been reviewed by the structure, but also by the sources of applied technologies, especially modern technologies. The paper has been focused mainly on the development of Croatian battery industry and its only representative, company Munja d.d. Zagreb. Beginnings of the Munja d.d. company are correlated with the beginnings of the automobile industry at all.Business activity of any company cannot be considered in isolation from the environment. Therefore, the business of the Munja d.d. company has been observed with regards to the technological development in the last century, but compared to other battery manufacturers, in the former two common states, and also compared with the world manufacturers.

  20. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  1. Development and characterization of a high capacity lithium/thionyl chloride battery

    Science.gov (United States)

    Boyle, Gerald H.; Goebel, Franz

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 °C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm 2. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements.

  2. Development and characterization of a high capacity lithium/thionyl chloride battery

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G.H. [Yardney Technical Products, Inc., Pawcatuck, CT (United States); Goebel, F. [Yardney Technical Products, Inc., Pawcatuck, CT (United States)

    1995-04-01

    A 30 V lithium/thionyl chloride battery with 320 Ah capacity capable of operating at currents of 14 to 75 A has been developed and tested over a temperature range from 15 to 71 C. The 81 lb battery consists of nine series connected cylindrical cells in a three-by-three arrangement within an aluminum case. The cells are of a parallel disc electrode design with a total active surface area of 10 200 cm{sup 2}. Cells and batteries have each been tested for safety, performance and to a space environment. The battery has clearly performed in excess of the specification requirements. The cell design is very adaptable to many battery design requirements. (orig.)

  3. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    Science.gov (United States)

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The state-of-the-art and prospects for the development of rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Skundin, Aleksandr M; Efimov, Oleg N; Yarmolenko, Ol'ga V

    2002-01-01

    The state-of-the-art of investigations into the development and perfection of the most promising class of chemical power sources, namely, rechargeable lithium batteries, is considered. The main problems of designing the batteries with a metallic lithium electrode are formulated and the use of alternative negative electrodes is substantiated. Special attention is paid to the studies dealing with the principles of the performance of lithium-ion batteries as well as the key directions for the perfection of these devices, which mainly concern the elaboration of new materials for lithium-ion batteries. A separate section is devoted to the consideration of polymeric electrolytes for lithium and lithium-ion batteries. The bibliography includes 390 references.

  5. Development of new anodes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sandi, G. [Argonne National Laboratory, Argonne, IL (United States)

    2001-10-01

    Lithium ion batteries have been introduced in the early 1990s by Sony Corporation. Ever since their introduction carbonaceous materials have received considerable attention for use as anodes because of their potential safety and reliability advantages. Natural graphite, cokes, carbon fibres, non-graphitizable carbon, and pyrolytic carbon have been used as sources for carbon materials. Recently metal alloys and metal oxides have been studied as alternatives to carbon as negative electrodes in lithium-ion cells. This paper reviews the performance of some of the carbonaceous materials used in lithium-ion batteries as well as some of the new metallic alloys of aluminum, silica, selenium, lead, bismuth, antimony and arsenic, as alternatives to carbon as negative electrodes in lithium-ion batteries. It is concluded that while some of these materials are promising, practical applications will continue to be limited until after the volume expansion and the irreversibility problems are resolved. 50 refs., 5 figs.

  6. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  7. Eco-friendly preparation of large-sized graphene via short-circuit discharge of lithium primary battery.

    Science.gov (United States)

    Kang, Shaohong; Yu, Tao; Liu, Tingting; Guan, Shiyou

    2018-02-15

    We proposed a large-sized graphene preparation method by short-circuit discharge of the lithium-graphite primary battery for the first time. LiC x is obtained through lithium ions intercalation into graphite cathode in the above primary battery. Graphene was acquired by chemical reaction between LiC x and stripper agents with dispersion under sonication conditions. The gained graphene is characterized by Raman spectrum, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Atomic force microscope (AFM) and Scanning electron microscopy (SEM). The results indicate that the as-prepared graphene has a large size and few defects, and it is monolayer or less than three layers. The quality of graphene is significant improved compared to the reported electrochemical methods. The yield of graphene can reach 8.76% when the ratio of the H 2 O and NMP is 3:7. This method provides a potential solution for the recycling of waste lithium ion batteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of a battery-free solar refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, Michael K; Bergeron, David J. III [Houston, TX (United States)

    2000-07-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well-insulated refrigerator cabinet and by developing a microprocessor-based control system that allows direct connection of a PV panel to a variable-speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric., Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, and integral evaporator/thermal storage tank, two 77 watt PV panels, and the novel controller mentioned above. The system's only moving part was the variable-speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as a little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor, and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, vacuum insulation and the stainless steel thermal storage tank were not used in order to reduce cost and make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor

  9. Current developments at Giprokoks for coke-battery construction and reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    V.I. Rudyka; Y.E. Zingerman; V.B. Kamenyuka; O.N. Surenskii; G.E. Kos' kova; V.V. Derevich; V.A. Gushchin [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Approaches developed at Giprokoks for coke-battery construction and reconstruction are considered. Recommendations regarding furnace construction and reconstruction are made on the basis of Ukrainian and world experience.

  10. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  11. In situ methods for Li-ion battery research: A review of recent developments

    Science.gov (United States)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  12. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  13. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  14. Accelerating Development of EV Batteries Through Computer-Aided Engineering (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.

    2012-12-01

    The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

  15. Primary frequency regulation supported by battery storage systems in power systems dominated by renewable energy sources

    DEFF Research Database (Denmark)

    Turk, Ana; Sandelic, Monika; Noto, Giancarlo

    2018-01-01

    replaced by intermittent renewable generators. Therefore, maintaining system quality and stability in terms of power system frequency control is one of the major challenges that requires new resources and their system integration. Battery energy storage systems (BESS), as fast-acting energy storage systems...

  16. Nickel hydrogen multicell common pressure vessel battery development update

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1992-01-01

    The technology background and design qualification of the multicell common pressure vessel nickel hydrogen battery are described. The results of full flight qualification, including random vibration at 19.5 g for two minutes in each axis, electrical characterization in a thermal vacuum chamber, and mass spectroscopy vessel leak detection are reviewed and 12.7 cm qualification and 25.4 cm design adaptation are discussed.

  17. The development of aluminum-air batteries for application in electric vehicles

    Science.gov (United States)

    Rudd, E. J.; Lott, S.

    1990-12-01

    The recently concluded program, jointly funded by ELTECH Research Corporation and the Department of Energy, focused upon the development of an aluminum-air battery system for electric vehicle applications. The operation of the aluminum-air battery involves the dissolution of aluminum to produce a current and aluminate. Initially the objectives were to evaluate and optimize the battery design that was developed prior to this program (designated as the B300 cell) and to design and evaluate the components of the auxiliary system. During the program, three additional tasks were undertaken, addressing needs identified by ELTECH and by Sandia National Laboratories. First, the capability to produce aluminum alloys as relatively large ingots (100 to 150 lbs), with the required electrochemical performance, was considered essential to the development of the battery. The second additional task was the adoption of an advanced cell (designated as the AT400 cell), designed by ELTECH in a different program. Finally, it was recognized that a system model would allow evaluation of the interactions of the several unit operations involved in the battery. Therefore, the development of a mathematical model, based upon material and energy balances for the battery, was undertaken. At a systems level, sufficient information was obtained in the completion of this program to support the design, fabrication and operation of a batch or solids-free battery system. For the first time, the components of the auxiliary system, i.e., a heat exchanger, carbon dioxide scrubber and hydrogen disposal technology, have been defined for a vehicle battery. Progress on each component or system is summarized in the following sections.

  18. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The objective of this program is to develop a nickel-iron battery suitable for use in electric vehicles. Ultimately, it is expected that a number of these batteries will be demonstrated under the Electric and Hybrid Vehicle Act of 1976. The report presents the technical approach and a summary of the progress that was achieved under the contract. Work began 1 May 1978. The report covers the period through September 1978. (TFD)

  19. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This report describes work performed from October 1, 1978 to September 30, 1979. The approach for development of both the Improved State-of-the-Art (ISOA) and Advanced lead-acid batteries is three pronged. This approach concentrates on simultaneous optimization of battery design, materials, and manufacturing processing. The 1979 fiscal year saw the achievement of significant progress in the program. Some of the major accomplishments of the year are outlined. 33 figures, 13 tables. (RWR)

  20. Developments in lithium-ion battery technology in the Peoples Republic of China.

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  1. Electric vehicle batteries. Development status for the promising candidates; Elbilsbatterier. Utvecklingsstatus foer de fraemsta kandidaterna

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Johansson, Arne [Catella Generics AB, Jaerfaella (Sweden)

    2000-04-01

    One driver for the EV and HEV programme of KFB is to study the effects of a large scale introduction of electric vehicles in the future. Catella Generics was contracted to investigate and report on the development status for EV batteries and the success potential for the different candidates, their development obstacles and alternative usage and on the links between different players. The batteries studied in greater detail have been evaluated according to special criteria like performance, cost, ruggedness, resource efficiency, safety and environmental impact and how that will influence their likely success. Models for the evaluation of EV batteries have been developed by the car manufacturers and authorities. We have based our investigation on the criteria established by USABC and the modifications made by PNGV for the energy storage in hybrid electric vehicles. Some basic conclusions reported as a result of this investigation are listed below: Lead-acid may have a role as energy storage in HEVs. Ni/Cd batteries are attractive from a technical standpoint, but questioned based on the environmental concern for cadmium. Ni/MH batteries are attracting a great attention in the medium term. Na/NiCl{sub 2} batteries have been successful in the German demonstration programme. Lithium batteries have a great potential in the long term. Metal/air batteries have been operated without problems, however there need for a special infrastructure is a major draw-back. Fuel cells and ultra capacitors are new alternative power sources for propulsion of EVs, however these are not included in this report.

  2. Development of single cell lithium ion battery model using Scilab/Xcos

    Science.gov (United States)

    Arianto, Sigit; Yunaningsih, Rietje Y.; Astuti, Edi Tri; Hafiz, Samsul

    2016-02-01

    In this research, a lithium battery model, as a component in a simulation environment, was developed and implemented using Scicos/Xcos graphical language programming. Scicos used in this research was actually Xcos that is a variant of Scicos which is embedded in Scilab. The equivalent circuit model used in modeling the battery was Double Polarization (DP) model. DP model consists of one open circuit voltage (VOC), one internal resistance (Ri), and two parallel RC circuits. The parameters of the battery were extracted using Hybrid Power Pulse Characterization (HPPC) testing. In this experiment, the Double Polarization (DP) electrical circuit model was used to describe the lithium battery dynamic behavior. The results of simulation of the model were validated with the experimental results. Using simple error analysis, it was found out that the biggest error was 0.275 Volt. It was occurred mostly at the low end of the state of charge (SOC).

  3. Challenges in developing drugs for primary headaches

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther; Hargreaves, Richard; Ashina, Messoud

    2017-01-01

    This review considers the history of drug development in primary headaches and discusses challenges to the discovery of innovative headache therapeutics. Advances in headache genetics have yet to translate to new classes of therapeutics and there are currently no clear predictive human biomarkers...... for any of the primary headaches that can guide preventative drug discovery and development. Primary headache disorder subtypes despite common phenotypic presentation are undoubtedly heterogeneous in their pathophysiology as judged by the variability of response to headache medicines. Sub......, despite having promising effects in basic pain models, have not delivered efficacy in the clinic. Future efforts may triage novel physiological mediators using human experimental models of headache pain to support drug discovery strategies that target active pathways pharmacologically....

  4. Design Safety Used in NASA's Human-rated Primary Lithium Batteries

    Science.gov (United States)

    Jeevarajan, J.

    2013-01-01

    Single cell tests were benign for external short, inadvertent charge and overdischarge into reversal up to 4.5 A. At lower current loads cells die (may be due to excessive dendrite formation) benignly. String level external short circuits lead to an unbalanced overdischarge, with one cell going into reversal. The result is catastrophic violent venting. Unbalanced string overdischarges at different currents causes catastrophic violent venting also. Heat-to-vent is very dramatic displaying violent venting Simulated internal short is also catastrophic and displays violent venting. Battery is not UL-rated; hence does not have dual-fault tolerance or tolerance to inherent cell tolerance to failures Battery Design for NASA JSC's human-rated application for use on ISS was changed to include two bypass diodes per cell to provide for two-failure tolerance to overdischarge into reversal (and external short) hazards.

  5. Career Planning: Developing the Nation's Primary Resource.

    Science.gov (United States)

    Jarvis, Phillip S.

    Career planning is the most critical ingredient in developing a nation's primary resource, its workers. A 1988 Gallup Poll showed that 62 percent of U.S. workers had no career goal when they began their first job, and more than 50 percent felt they were in the wrong job. The same results probably could be applied to Canada. Career planning skills…

  6. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion

    Science.gov (United States)

    1980-06-01

    The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.

  7. Application of a LiFePO4 Battery Energy Storage System to Primary Frequency Control: Simulations and Experimental Results

    Directory of Open Access Journals (Sweden)

    Fabio Massimo Gatta

    2016-10-01

    Full Text Available This paper presents an experimental application of LiFePO4 battery energy storage systems (BESSs to primary frequency control, currently being performed by Terna, the Italian transmission system operator (TSO. BESS performance in the primary frequency control role was evaluated by means of a simplified electrical-thermal circuit model, taking into account also the BESS auxiliary consumptions, coupled with a cycle-life model, in order to assess the expected life of the BESS. Numerical simulations have been carried out considering the system response to real frequency measurements taken in Italy, spanning a whole year; a parametric study taking into account different values of governor droop and of BESS charge/discharge rates (C-rates was also performed. Simulations, fully validated by experimental results obtained thus far, evidenced a severe trade-off between expected lifetime and overall efficiency, which significantly restricts the choice of operating parameters for frequency control.

  8. Radioisotope battery for particular application

    International Nuclear Information System (INIS)

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  9. Product development strategy with quality function deployment approach: A case study in automotive battery

    Directory of Open Access Journals (Sweden)

    Heru Darmawan

    2017-12-01

    Full Text Available Customer satisfaction is one of the main factors in determining the competitiveness of every industry. Along with the technological advances, it will impact on the increasingly intense competition in the business of providing great opportunities to the consumer to find a quality product at competi-tive rates. The purpose of this study is to develop the quality of automotive battery products that meet consumer needs by using Quality Function Deployment (QFD method. The application is then analyzed and its results produced a proposal for product development according to the weight and priority development on product attributes that are considered important by customers. There are two main priorities that are most desired by customers, among others for improving the quality of products maintenance free battery in automotive battery industry with quality function deployment according to consumers. Consumers need a car battery with a good durability and great performance, low price, and environment friendly features, which can be achieved by using absorbent glass mat and expanded machine technology. Based on relative weight in House of Quality, Ab-sorbent Glass Mat receives the highest percentage of technical priority that is equal to 31% whereas technology expanded gets the second highest percentage of technical priority that is equal to 19%. It means that both technologies are more important to develop this product. Therefore, the maintenance free battery products are expected to be attractive for consumers and extensive marketing.

  10. Development of nickel/metal-hydride batteries for EVs and HEVs

    Science.gov (United States)

    Taniguchi, Akihiro; Fujioka, Noriyuki; Ikoma, Munehisa; Ohta, Akira

    This paper is to introduce the nickel/metal-hydride (Ni/MH) batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs) developed and mass-produced by our company. EV-95 for EVs enables a vehicle to drive approximately 200 km per charge. As the specific power is extremely high, more than 200 W/kg at 80% depth of discharge (DOD), the acceleration performance is equivalent to that of gasoline fuel automobiles. The life characteristic is also superior. This battery gives the satisfactory result of more than 1000 cycles in bench tests and approximately 4-year on-board driving. EV-28 developed for small EVs comprises of a compact and light battery module with high specific power of 300 W/kg at 80% DOD by introducing a new technology for internal cell connection. Meanwhile, our cylindrical battery for the HEV was adopted into the first generation Toyota Prius in 1997 which is the world's first mass-product HEV, and has a high specific power of 600 W/kg. Its life characteristic was found to be equivalent to more than 100,000 km driving. Furthermore, a new prismatic module in which six cells are connected internally was used for the second generation Prius in 2000. The prismatic battery comprises of a compact and light battery pack with a high specific power of 1000 W/kg, which is approximately 1.7 times that of conventional cylindrical batteries, as a consequence of the development of a new internal cell connection and a new current collection structure.

  11. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    CLARK,NANCY H.; EIDLER,PHILLIP

    1999-10-01

    This report documents Phase 2 of a project to design, develop, and test a zinc/bromine battery technology for use in utility energy storage applications. The project was co-funded by the U.S. Department of Energy Office of Power Technologies through Sandia National Laboratories. The viability of the zinc/bromine technology was demonstrated in Phase 1. In Phase 2, the technology developed during Phase 1 was scaled up to a size appropriate for the application. Batteries were increased in size from 8-cell, 1170-cm{sup 2} cell stacks (Phase 1) to 8- and then 60-cell, 2500-cm{sup 2} cell stacks in this phase. The 2500-cm{sup 2} series battery stacks were developed as the building block for large utility battery systems. Core technology research on electrolyte and separator materials and on manufacturing techniques, which began in Phase 1, continued to be investigated during Phase 2. Finally, the end product of this project was a 100-kWh prototype battery system to be installed and tested at an electric utility.

  12. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    Science.gov (United States)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  13. Development of nickel-hydrogen battery for electric vehicle; Denki jidoshayo nickel-suiso denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of battery, a main part of electric vehicle, have been promoted. Various batteries, such as lead battery, nickel-cadmium battery, nickel-hydrogen battery, lithium ion battery and so on, have been investigated for electric vehicles. Among these, nickel-hydrogen battery is superior to the others from the points of energy density, lifetime, low-temperature properties, and safety. It is one of the most prospective batteries for electric vehicle. Research and development of the nickel-hydrogen battery with higher energy density and longer lifetime have been promoted for the practical application by Tohoku Electric Power Co., Inc. This article shows main performance of the developed nickel-hydrogen battery for electric vehicle. The nominal voltage is 12 V, the rated capacity is 125 Ah, the outside dimension is L302{times}W170{times}H245 mm, the weight is 25.5 kg, the energy density is 60 Wh/kg, the output density is 180 W/kg, and the available environment temperature is between -20 and 60 {degree}C. 1 fig., 1 tab.

  14. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  15. The development of hydrogen storage electrode alloys for nickel hydride batteries

    Science.gov (United States)

    Hong, Kuochih

    The development of hydrogen storage electrode alloys in the 1980s resulted in the birth and growth of the rechargeable nickel hydride (Ni/MH) battery. In this paper we describe briefly a semi-empirical electrochemical/thermodynamic approach to develop/screen a hydrogen storage alloy for electrochemical application. More specifically we will discuss the AB x Ti/Zr-based alloys. Finally, the current state of the Ni/MH batteries including commercial manufacture processes, cell performance and applications is given.

  16. Microporous polyethylene separators — today and tomorrow. Separator development trends for modern automotive batteries

    Science.gov (United States)

    Böhnstedt, Werner

    During the past decade, the design of modern automotive batteries has undergone a fundamental change. The introduction of microporous polyethylene pocket separators has resulted in an approximately 8% better volume utilization. Besides increasing the energy density, the polyethylene envelope has enalbed an improvement in cold-cranking performance and has raised the production efficiency. A first failure-mode analysis of pocket-separated automotive batteries in Europe with respect to leaf separation is presented. For comparable service life, a shift in failure mode has been found. Although corrosion of the positive electrode still dominates, a significant increase in positive active-material shedding is noted. This is certainly a consequence of the general trend towards lower antimony contents. Shorting through the separator is only found in cases of severe battery mistreatment. This positive, intermediary result is supplemented by an outlook on emerging development trends. Future automotive batteries will experience elevated operating temperatures, higher cycling loads, and maintenance freedom. Battery tests at temperatures up to 75 °C with various alloy combinations show that the hybrid design is best suited to meet the expected requirements. Microporous polyethylene pocket separation is not expected to be a limiting factor; the trend to lower antimony alloy content and increased cycling load will demonstrate the advantage of this separation even more clearly than in the past. Optimization of the already achieved, balanced separator characteristics profile with the reference parameters of electrical performance, water loss, durability and machinability will stimulate further development work.

  17. Primary Frequency Regulation with Li-Ion Battery Energy Storage System - Evaluation and Comparison of Different Control Strategies

    DEFF Research Database (Denmark)

    Thorbergsson, Egill; Knap, Vaclav; Swierczynski, Maciej Jozef

    2013-01-01

    devices is becoming more attractive, the aim of this paper is to analyse the viability of providing primary frequency regulation with Lithium-ion based energy storage systems. Three control strategies of the energy storage system are analysed and compared in terms of economic benefits on the Danish energy...... market. The revenues and degradation of the Lithium-ion batteries are obtained by simulations. Furthermore, an energy management strategy based on variable state-of-charge (SOC) set-point is evaluated. Preliminary, the influence of different state-of-charge levels on the cycle lifetime is estimated......The increased grid penetration levels of renewable sources are at the expense of the conventional power plants. This means that the grid support functions, traditionally achieved by the conventional power plants, need to be provided by new technologies. Since grid support with energy storage...

  18. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    International Nuclear Information System (INIS)

    Li, Gaoran; Li, Zhoupeng; Zhang, Bin; Lin, Zhan

    2015-01-01

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg −1 ), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  19. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoran; Li, Zhoupeng [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China); Zhang, Bin [Anhui Academy for Environmental Science Research, Hefei, Anhui (China); Lin, Zhan, E-mail: zhanlin@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China)

    2015-02-11

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg{sup −1}), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  20. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  1. Environmental assessment of batteries for photovoltaic systems

    International Nuclear Information System (INIS)

    Brouwer, J.M.; Lindeijer, E.W.

    1993-10-01

    A life cycle analysis (LCA) on 4 types of batteries for PV systems has been performed. in order to assess the environmental impacts of the various battery types, leading to recommendations for improvements in the production and use of batteries. The different battery types are compared on the basis of a functional unit: 240 kWh electric energy from PV modules delivered for household applications by one flat-plate lead-acid battery. An important product characteristic is the performance; in the study a Ni-Cd battery is taken to deliver 4 times as much energy as a flat plate battery (Pb-flat), a rod plate battery (Pb-rod) 3.4 times as much and a tubular plate battery (Pb-tube) 2.8 times as much. Environmental data was gathered from recent primary and secondary data in a database under internal quality control. Calculations were performed with an updated version of SIMAKOZA, a programme developed by the Centre of Environmental Science (CML), University of Leiden, Leiden, Netherlands. Of the types investigated, the Pb tube battery is to be preferred environmentally. Using one allocation method for recycling, the NiCd battery scores best on ozone depletion since no PVC is used (PVC production demands cooling with CFCs), on non-toxic waste and on disruption of ecosystems. The lead-bearing batteries score better on other aspects due to lower energy consumption during production and no emissions of cadmium. Using another allocation method for recycling the NiCd battery scores best on almost all environmental topics. Both allocation methods supplement each other. For resource depletion, regarding cadmium as an unavoidable by-product of zinc production renders NiCd batteries as much less problematic than lead/acid batteries, but taking account of the physical resources available would make the use of cadmium much more problematic than the use of lead. 37 figs., 20 tabs., 8 appendices, 109 refs

  2. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

  3. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  4. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in developing nickel-zinc batteries for propelling electric vehicles is reported. Information is included on component design, battery fabrication, and module performance testing. Although full scale hardware performance has fallen short of the contract cycle life goals, significant progress has been made to warrant further development. (LCL)

  5. Advances in the development of ovonic nickel metal hydride batteries for industrial and electric vehicles

    International Nuclear Information System (INIS)

    Venkatesan, S.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R.

    1991-01-01

    This paper reports that increasing concerns over urban pollution and continued uncertainties about oil supplies have forced the government and industry to refocus their attention on electric vehicles. Despite enormous expenditures in research and development for the ideal battery system, no commercially viable candidate has emerged. The battery systems being considered today due to renewed environmental concerns are still the same systems that were so extensively tested over the last 15 years. For immediate application, an electric vehicle designer has very little choice other than the lead-acid battery despite the fact that energy density is so low as to make vehicle range inadequate, as well as the need for replacement every 20,000 miles. The high energy density projections of Na-S and other so-called high energy batteries have proven to be significantly less in practical modules and there are still concern over cycle life which can be attained under aggressive conditions, reliability under freeze/thaw cycling and consequences resulting from high temperature operation. The conventional nickel-based systems (Ni- Zn, Ni-Fe, Ni-Cd) provide near term higher energy density as compared to lead-acid, but still do not address other important issues such as long life, the need for maintenance-free operation, the use of nontoxic materials and low cost. Against this background, the development of Ovonic Nickel-Metal Hydride (Ni-MH) batteries for electric vehicles has been rapid and successful. Ovonic No-Mh battery technology is uniquely qualified for electric vehicles due to its high energy density, high discharge rate capability, non-toxic alloys, long cycle life. low cost, tolerance to abuse and ability to be sealed for totally maintenance free operation

  6. New developments in nickel-hydrogen cell and battery design for commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, D.B.; Fox, C.L.; Miller, L.E. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1997-12-31

    Nickel-hydrogen (NiH{sub 2}) battery systems were first developed for space applications more than 20 years ago. Currently, they are being manufactured for commercial, terrestrial applications. The battery is ideal for commercial terrestrial energy storage applications because it offers a better potential cycle life than any other battery system and is maintenance free. A selection of low-cost components, electrodes, cell designs and battery designs are being tested to determine their feasibility for commercial applications. The dependent pressure vessel (DPV) design, developed by Eagle-Picher Industries, is the newest step in the continued development and evolution of the NiH{sub 2} system. The unique feature of the DPV cell design is the prismatic electrode stack which is more efficient than the cylindrical electrode stack. The electrode stack is the electrochemically active part of the cell. It contains nickel and hydrogen electrodes interspersed with an absorbent separator. DPV cells of two sizes, 40 and 60 Ah cells, have been developed. The DPV cell offers high specific energy at a reduced cost. The advanced DPV design also offers an efficient mechanical, electrical and thermal configuration and a reduced parts count. The design promotes compact, minimum volume packaging and weight efficiency. 8 refs., 7 figs.

  7. The Development and Validation of the Transition Competence Battery for Adolescents and Young Adults with Deafness.

    Science.gov (United States)

    Reiman, John; Bullis, Michael

    1988-01-01

    The lack of appropriate assessment tools designed for deaf adolescents and young adults making the transition from educational programs to adult life is cited as one of the most glaring deficits in the field of deafness. The Transition Competence Battery (TCB) is being developed as an assessment tool that will guide individual training decisions…

  8. Research and development of advanced batteries and supercapacitors at the CSIR

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2015-10-01

    Full Text Available such materials as part of efforts to advance the development of manganese oxide-based lithium-ion batteries and supercapacitors for electric vehicles, portable electronics, home and grid-scale storage. South Africa is richly endowed with the key raw materials...

  9. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  10. Advancing electric-vehicle development with pure-lead-tin battery technology

    Science.gov (United States)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  11. Primary care workforce development in Europe.

    NARCIS (Netherlands)

    Groenewegen, P.; Heinemann, S.; Gress, S.; Schäfer, W.

    2014-01-01

    Background: There is a large variation in the organization of primary care in Europe. In some health care systems, primary care is the gatekeeper to more specialized care, whilst in others patients have the choice between a wide range of providers. Primary care has increasingly become teamwork.

  12. The battery market

    International Nuclear Information System (INIS)

    Deshpande, S.L.

    1991-01-01

    The worldwide battery market is estimated to be $21 billion annually at present. The geographical distribution of this market is shown in this paper. The American (North and South), Western Europe and Africa, and Asian and Australia represent equal markets of $6 billion each. The communist block countries (including Russia and China) are estimated to represent a $3 billion market. Automotive and consumer batteries constitute more than 80% of the world battery market. Industrial batteries make up the rest. Secondary (rechargeable) batteries (automotive, for example) have only 60% share of the world battery consumption. Primary batteries (most toy batteries that are the throw away type) exceed rechargeables by far in units. However, the larger size of rechargeable batteries makes their total value larger despite the small number of units

  13. Program Development for Primary School Teachers' Critical Thinking

    Science.gov (United States)

    Boonjeam, Waraporn; Tesaputa, Kowat; Sri-ampai, Anan

    2017-01-01

    The objectives of this research were: 1) to study the elements and indicators of primary school teachers' critical thinking, 2) to study current situation, desirable situation, development technique, and need for developing the primary school teachers' critical thinking, 3) to develop the program for developing the primary school teachers'…

  14. Development, content validity and test-retest reliability of the Lifelong Physical Activity Skills Battery in adolescents.

    Science.gov (United States)

    Hulteen, Ryan M; Barnett, Lisa M; Morgan, Philip J; Robinson, Leah E; Barton, Christian J; Wrotniak, Brian H; Lubans, David R

    2018-03-28

    Numerous skill batteries assess fundamental motor skill (e.g., kick, hop) competence. Few skill batteries examine lifelong physical activity skill competence (e.g., resistance training). This study aimed to develop and assess the content validity, test-retest and inter-rater reliability of the "Lifelong Physical Activity Skills Battery". Development of the skill battery occurred in three stages: i) systematic reviews of lifelong physical activity participation rates and existing motor skill assessment tools, ii) practitioner consultation and iii) research expert consultation. The final battery included eight skills: grapevine, golf swing, jog, push-up, squat, tennis forehand, upward dog and warrior I. Adolescents (28 boys, 29 girls; M = 15.8 years, SD = 0.4 years) completed the Lifelong Physical Activity Skills Battery on two occasions two weeks apart. The skill battery was highly reliable (ICC = 0.84, 95% CI = 0.72-0.90) with individual skill reliability scores ranging from moderate (warrior I; ICC = 0.56) to high (tennis forehand; ICC = 0.82). Typical error (4.0; 95% CI 3.4-5.0) and proportional bias (r = -0.21, p = .323) were low. This study has provided preliminary evidence for the content validity and reliability of the Lifelong Physical Activity Skills Battery in an adolescent population.

  15. Development of cathode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rustam Mukhtaruly Turganaly

    2014-08-01

    Full Text Available The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material. 

  16. Current status of the development of the refuelable aluminum-air battery

    Science.gov (United States)

    Cooper, J. F.; Kraftick, K. A.; McKinley, B. J.

    1983-05-01

    The technical status of a refuelable aluminum air battery using flowing caustic aluminate electrolyte at 50 to 700 C is reviewed. Four distinct designs for rapidly refuelable cells were evaluated in single or multicell modules on an engineering scale (167 to 1000 cm(2)/cell). Consideration is given to cells of the wedge configuration, which allow partial recharge, high anode utilization, and rapid refueling. Kinetic models developed for aluminum trihydroxide precipitation are used to predict the behavior of integrated cell/crystallizer systems. Drive cycle life and polarization data are reviewed for air electrodes under simulated vehicle operating conditions. Problems in the development of cost effective anode alloys are described. These results are interpreted from the perspective of the potential of an aluminum air battery to provide an electric vehicle with the range, acceleration and rapid refueling capabilities of common automobiles.

  17. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  18. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  19. 13 CFR 108.120 - Economic development primary mission.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Economic development primary mission. 108.120 Section 108.120 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS... Economic development primary mission. The primary mission of a NMVC Company must be economic development of...

  20. Development of high temperature secondary Li-Al/FeS/sub x/ batteries at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Battles, J E; Gay, E C; Steunenberg, R K; Barney, D L

    1980-01-01

    A general introduction to the battery program is given first. Subsequent sections discuss cell development, results of cell testing, and materials and component development - electrical feedthrough, electrode separators, materials for current collectors, and post-test cell examination (cell failure mechanisms, copper deposition in electrode separators, lithium gradient in negative electrodes). The Mark IA battery developed a short circuit in one of the modules that resulted in complete failure of the module; the other module was unaffected. 10 tables. (RWR)

  1. From battery modeling to battery management

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.

    2011-01-01

    The principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. These electronic network models are based on

  2. Hydrogen battery car developed in Matsuda; Matsuda suiso nenryo denchisha wo kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Matsuda announced that the hydrogen battery car 'Demio FCEV' was developed by the company. This new type car not only does not need an air humidifying machine, but also supplies the necessary electricity with an ultra capacitor of a large scale condenser. Its maximum output is 40 kw, the highest speed is 90 km per hour, and the accelerating time from the stop state to 40 m is about 5 seconds, the same level as a gasoline car. One time of hydrogen charging serves for 170 km running. As a hydrogen battery car, it is the third one in the world, following the DAIMURA in Germany and TOYOTA. (translated by NEDO)

  3. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    International Nuclear Information System (INIS)

    Ustinov, A; Khayrullina, A; Khmelik, M; Sveshnikova, A; Borzenko, V

    2016-01-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia. (paper)

  4. Battery for ECT Related Cognitive Deficits (B4ECT-ReCoDe): development and validation.

    Science.gov (United States)

    Viswanath, Biju; Harihara, Shashidhara N; Nahar, Abhinav; Phutane, Vivek Haridas; Taksal, Aarati; Thirthalli, Jagadisha; Gangadhar, Bangalore N

    2013-06-01

    The use of electroconvulsive therapy (ECT) in treatment of psychiatric disorders is associated with adverse cognitive effects. There is a need to develop a short assessment tool of cognitive functions during the course of ECT. This study aimed at developing and validating a short, sensitive battery to assess cognitive deficits associated with ECT in India. Battery for ECT Related Cognitive Deficits (B4ECT-ReCoDe), a brief cognitive battery (20-30 min) to assess verbal, visual, working and autobiographic memory, sustained attention, psychomotor speed and subjective memory impairment, was administered to 30 in-patients receiving bilateral ECT, one day after the 1st, 3rd and 6th ECT. Data was analysed using repeated measures analysis of variance and Pearson's correlation. Significant deficits were found in verbal, visual and autobiographic memory, psychomotor speed. Subjective experience of memory loss correlated positively with verbal memory impairment. B4ECT-ReCoDe, a brief, sensitive measure of cognitive impairments associated with ECT can be used in routine clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  6. Review of material research and development for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Parasuraman, Aishwarya; Lim, Tuti Mariana; Menictas, Chris; Skyllas-Kazacos, Maria

    2013-01-01

    The vanadium redox flow battery (VRB) is one of the most promising electrochemical energy storage systems deemed suitable for a wide range of renewable energy applications that are emerging rapidly to reduce the carbon footprint of electricity generation. Though the Generation 1 Vanadium redox flow battery (G1 VRB) has been successfully implemented in a number of field trials and demonstration projects around the world, it suffers from low energy density that limits its use to stationary applications. Extensive research is thus being carried out to improve its energy density and enhance its performance to enable mobile applications while simultaneously trying to minimize the cost by employing cost effective stack materials and effectively controlling the current operating procedures. The vast bulk of this research was conducted at the University of New South Wales (UNSW) in Sydney during the period 1985–2005, with a large number of other research groups contributing to novel membrane and electrode material development since then. This paper presents a historical overview of materials research and development for the VRB at UNSW, highlighting some of the significant findings that have contributed to improving the battery's performance over the years. Relevant work in this field by other research groups in recent times has also been reviewed and discussed

  7. Primary and Secondary Lithium Batteries Capable of Operating at Low Temperatures for Planetary Exploration

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; West, W. C.; Brandon, E. J.

    2011-01-01

    Objectives and Approach: (1) Develop advanced Li ]ion electrolytes that enable cell operation over a wide temperature range (i.e., -60 to +60 C). Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (2) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (3) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.

  8. Development of Educational Management System in Small Primary School

    Science.gov (United States)

    Alsammarry, Yupayao; Sirisuthi, Chaiyuth; Duangcharthom, Surat

    2016-01-01

    The purposes of the research were: (1) to study the factors of Educational Management System in Small Primary School; (2) to investigate current situations problems and guidelines of developing educational management in small primary school; (3) to develop Educational Management System in Small Primary School; and (4) to examine the results of…

  9. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  10. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  11. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  12. SBIR reports on the chemistry of lithium battery technology

    Science.gov (United States)

    Kilroy, W. P.

    1989-11-01

    The following contents are included: Identification of an Improved Mixed Solvent Electrolyte for a Lithium Secondary Battery; Catalyzed Cathodes for Lithium-Thionyl Chloride Batteries; Improved Lithium/Thionyl Chloride Cells Using New Electrolyte Salts; Development of Calcium Primary Cells With Improved Anode Stability and Energy Density.

  13. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were used in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.

  14. THE DEVELOPMENT OF FREE PRIMARY EDUCATION SCHEME ...

    African Journals Online (AJOL)

    user

    Education scheme in Western Region and marked a radical departure from the hitherto ... academic symposia, lectures, debates, reputable journals and standard .... Enrolment in Primary Schools in the Western Region by Sex, 1953 – 1960. Year Boys .... “Possibly no single decision of the decade prior to independence had.

  15. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries

    Directory of Open Access Journals (Sweden)

    Xu Bi

    2018-06-01

    Full Text Available Fluorinated graphene (FG has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C–N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g−1 and a discharge plateau of 2.35 V at a current density of 10 mA g−1, corresponding to a high energy density of 1485 Wh kg−1.

  16. Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-04-01

    This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

  17. The role of nanotechnology in the development of battery materials for electric vehicles.

    Science.gov (United States)

    Lu, Jun; Chen, Zonghai; Ma, Zifeng; Pan, Feng; Curtiss, Larry A; Amine, Khalil

    2016-12-06

    A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles.

  18. Development of a Fe-Ni battery for electric vehicle use. Denki jidoshayo tetsu nickel denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Okuda, K. (The Tohoku Electric Power Co. Inc., Sendai (Japan))

    1993-08-11

    Development has been made on an iron-nickel battery as a low polluting electric vehicle battery that is superior in low-temperature performance to lead-acid batteries. This paper summarizes the battery. The battery uses NiOOH for positive electrodes, Fe for negative electrodes, and alkaline aqueous solution for electrolyte. The battery was manufactured in the following manners to make it suit the electric vehicle application: The iron electrode was manufactured by mixing reduced iron powder having grain sizes from 5[mu] to 6[mu] with electrolyzed iron powder with grain sizes from 20[mu] to 30[mu] in a bonding agent, and sintered at temperatures from 750[degree]C to 800[degree]C in H2 atmosphere; iron electrodes that have superior life and material utilization factor were found to have reduced iron powder ratios from 20% to 30%; the nickel electrode consists of a substrate obtained by coating metallic Ni powder on a sheet and sintering it and filling it with NiOH; the electrolyte is composed of KOH containing LiOH and KS; the separator uses a ribbed PVC porous sheet; the container is made of PP; performance evaluation tests were conducted on discharge performance, energy density, output density, temperature characteristics, charge efficiency, and cycle life; and the results of vehicle driving tests surpassed those from lead-acid batteries. 6 refs., 18 figs., 6 tabs.

  19. The Development of Visionary Leadership Administrators in Thai Primary School

    Science.gov (United States)

    Yordsala, Suwit; Tesaputa, Kowat; Sri-Ampai, Anan

    2014-01-01

    This research aimed: 1) to investigate the current situations and needs in developing visionary leadership of Thai primary school administrators; 2) to develop visionary leadership development program of Thai primary school administrators, and; 3) to evaluate the implementation of the developed program of administrators visionary leadership…

  20. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The proceedings volume contains the wording of the following 15 papers presented at the symposium: 'The physical chemistry of power sources'; 'Conventional and sealed maintenance-free Pb batteries'; 'Open and gas-tight Ni/Cd batteries'; 'Advances in the development and acceptance of primary and secondary lithium systems'; 'Metal-hydrogen, especially nickel oxide-hydrogen, a new battery system'; 'The storage systems zinc-bromine and zinc-chlorine'; 'High temperature batteries'; 'Material problems of lead batteries and fuel cells'; 'DIN/VDE 0510, safety specifications for batteries and battery systems'; 'Frequency control, immediate reserve and peak load compensation with large battery systems in electric utilities'; 'Versatile emergency power supply at the Bundesanstalt fuer Flugsicherung'; 'Batteries used by the Bundeswehr'; 'Batteries in the service of the Deutsche Bundesbahn'; 'State of the art and development of opto- and micro-electronics and their power supply'; 'Experience and requirements of the Deutsche Bundespost on central and decentralized battery systems'. The proceedings also contain the wording of the discussions following the papers.

  1. The nuclear battery

    International Nuclear Information System (INIS)

    Kozier, K.S.; Rosinger, H.E.

    1988-01-01

    This paper reviews the evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work. 19 refs

  2. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Work performed during Oct. 1, 1979 to Sept. 30, 1980 for the development of lead-acid batteries for electric vehicle propulsion is described. During this report period many of the results frpm Globe Battery's design, materials and process development programs became evident in the achievement of the ISOA (Improved State of Art) specific energy, specific power, and energy efficiency goals while testing in progress also indicates that the cycle life goal can be met. These programs led to the establishment of a working pilot assembly line which produced the first twelve volt ISOA modules. Five of these modules were delivered to the National Battery Test Laboratory during the year for capacity, power and life testing, and assembly is in progress of three full battery systems for installation in vehicles. In the battery subsystem area, design of the acid circulation system for a ninety-six volt ISOA battery pack was completed and assembly of the first such system was initiated. Charger development has been slowed by problems encountered with reliability of some circuits but a prototype unit is being prepared which will meet the charging requirements of our ninety-six volt pack. This charger will be available during the 1981 fiscal year.

  3. Development of a Woven-Grid Quasi-BiPolar Battery

    National Research Council Canada - National Science Library

    Tokumaru, P

    1998-01-01

    .... Even so, quasi-bipolar batteries can be designed, with ten times better thermal uniformity, that meet or exceed current state of the art hybrid electric vehicle battery pack performance, even using...

  4. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    International Nuclear Information System (INIS)

    Shi Siqi; Zhao Yan; Wu Qu; Gao Jian; Liu Yue; Ju Wangwei; Ouyang Chuying; Xiao Ruijuan

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. (topical review)

  5. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  6. Development and Testing of an UltraBattery-Equipped Honda Civic

    Energy Technology Data Exchange (ETDEWEB)

    Donald Karner

    2012-04-01

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  7. Development of a large scale bipolar NiH2 battery

    Science.gov (United States)

    Adler, E.; Perez, F.

    1983-01-01

    The bipolar battery concept, developed in cooperation with NASA, is described in the context of the advantages afforded by near-term IPV and CVP cell technology. The projected performance, development requirements, and a possible approach to bipolar battery design are outlined. Consideration is given to packaging electrodes within a common hydrophobic plastic frame, electrode technology that involves a photochemically etched 0.1 mm thick nickel substrate coated with a 10 mg/sq cm mixture of platinum powder and TFE30, and an electrode design that eliminates the screen and doubles the electrode thickness (from the currently used 0.8 mm) while retaining the active material loading of 1.6-1.8 gm/cu cm. Also covered are thermal management, and electrolyte and oxygen management. It is concluded that a high voltage, high capacity, bipolar NiH2 cell can be configured with proper development for use in large power systems, and that it can provide considerable weight savings.

  8. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  9. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  10. Facile Synthesis of Defect-Rich and S/N Co-Doped Graphene-Like Carbon Nanosheets as an Efficient Electrocatalyst for Primary and All-Solid-State Zn-Air Batteries.

    Science.gov (United States)

    Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui

    2017-07-26

    Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.

  11. Development of powder diffraction anomalous fine structure method and applications to electrode materials for rechargeable batteries

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Oishi, Masatsugu; Ichitsubo, Tetsu; Matsubara, Eiichiro; Mizuki, Jun'ichiro

    2015-01-01

    A powder diffraction anomalous fine structure (P-DAFS) method is developed both in analytical and experimental techniques and applied to cathode materials for lithium ion batteries. The DAFS method, which is an absorption spectroscopic technique through a scattering measurement, enables us to analyze the chemical states and the local structures of a certain element at different sites, thanks to the nature of x-ray diffraction, where the contributions from each site are different at each diffraction. Electrode materials for rechargeable batteries frequently exhibit the interchange between Li and a transition metal, which is known as the cation mixing phenomena. This cation mixing significantly affects the whole electrode properties; therefore, the site-distinguished understanding of the roles of the transition metal is essential for further material design by controlling and positively utilizing this cation mixing phenomenon. However, the developments of the P-DAFS method are required for the applications to the practical materials such as the electrode materials. In the present study, a direct analysis technique to extract the absorption spectrum from the scattering without using the conventional iterative calculations, fast and accurate measurement techniques of the P-DAFS method, and applications to a typical electrode material of Li 1-x Ni 1+x O 2 , which exhibits the significant cation mixing, are described. (author)

  12. Precise chronology of differentiation of developing human primary dentition.

    Science.gov (United States)

    Hu, Xuefeng; Xu, Shan; Lin, Chensheng; Zhang, Lishan; Chen, YiPing; Zhang, Yanding

    2014-02-01

    While correlation of developmental stage with embryonic age of the human primary dentition has been well documented, the available information regarding the differentiation timing of the primary teeth was largely based on the observation of initial mineralization and varies significantly. In this study, we aimed to document precise differentiation timing of the developing human primary dentition. We systematically examined the expression of odontogenic differentiation markers along with the formation of mineralized tissue in each developing maxillary and mandibular teeth from human embryos with well-defined embryonic age. We show that, despite that all primary teeth initiate development at the same time, odontogenic differentiation begins in the maxillary incisors at the 15th week and in the mandibular incisors at the 16th week of gestation, followed by the canine, the first primary premolar, and the second primary premolar at a week interval sequentially. Despite that the mandibular primary incisors erupt earlier than the maxillary incisors, this distal to proximal sequential differentiation of the human primary dentition coincides in general with the sequence of tooth eruption. Our results provide an accurate chronology of odontogenic differentiation of the developing human primary dentition, which could be used as reference for future studies of human tooth development.

  13. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun

    2015-01-01

    Thermal modeling is the key issue in thermal management of lithium-ion battery system, and cooling strategies need to be carefully investigated to guarantee the temperature of batteries in operation within a narrow optimal range as well as provide cost effective and energy saving solutions for cooling system. This article reviews and summarizes the past cooling methods especially forced air cooling and introduces an empirical heat source model which can be widely applied in the battery module/pack thermal modeling. In the development of empirical heat source model, three-dimensional computational fluid dynamics (CFD) method is employed, and thermal insulation experiments are conducted to provide the key parameters. A transient thermal model of 5 × 5 battery module with forced air cooling is then developed based on the empirical heat source model. Thermal behaviors of battery module under different air cooling conditions, discharge rates and ambient temperatures are characterized and summarized. Varies cooling strategies are simulated and compared in order to obtain an optimal cooling method. Besides, the battery fault conditions are predicted from transient simulation scenarios. The temperature distributions and variations during discharge process are quantitatively described, and it is found that the upper limit of ambient temperature for forced air cooling is 35 °C, and when ambient temperature is lower than 20 °C, forced air-cooling is not necessary. - Highlights: • An empirical heat source model is developed for battery thermal modeling. • Different air-cooling strategies on module thermal characteristics are investigated. • Impact of different discharge rates on module thermal responses are investigated. • Impact of ambient temperatures on module thermal behaviors are investigated. • Locations of maximum temperatures under different operation conditions are studied.

  14. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  15. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  16. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    International Nuclear Information System (INIS)

    Guo, Guilue; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu; Yao, Xin

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O 2 batteries. It has been discovered that during discharge, Li 2 O 2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g −1 at a current density of 100 mA g −1 . When they were cycled at a limited capacity of 800 mAh g −1 at current densities of 200 or 400 mA g −1 , these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O 2 battery cathodes. (paper)

  17. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  18. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  19. The development of an all copper hybrid redox flow battery using deep eutectic solvents

    International Nuclear Information System (INIS)

    Lloyd, David; Vainikka, Tuomas; Kontturi, Kyösti

    2013-01-01

    Highlights: • A novel redox flow battery based on a deep eutectic solvent is reported. • Favourable kinetics of the positive electrode reaction are shown. • The cell potential is 0.7 V. • Coulombic and energy efficiency are 95% and 62% respectively. • A separator based on jellifying the electrolyte using polyvinyl alcohol is reported. -- Abstract: The performance of a redox flow battery based on chlorocuprates dissolved in an ionic liquid analogue is reported at 50 °C. The kinetics of the positive electrode reaction at a graphite electrode are favourable with a heterogeneous rate constant, k 0 , of 9.5 × 10 −4 cm s −1 . Coulombic efficiency was typically 94% and independent of current density. The small cell potential of 0.75 V and slow mass transport result in energy efficiencies of only 52% and 62% at current densities of 10 and 7.5 mA/cm 2 respectively. The successful development of a separator by jellifying the electrolyte using polyvinyl alcohol is reported

  20. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.; Takada, T.; Monma, D. [The Furukawa Battery Co., Ltd., R and D Division, 23-6 Kuidesaku, Shimofunao-machi, Joban, Iwaki-city, 972-8501 (Japan); Lam, L.T. [CSIRO Energy Technology, Bayview Avenue, Clayton South, Vic. 3169 (Australia)

    2010-02-15

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO{sub 2} emissions (cf., 98.8 with 96 g km{sup -1}) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack

  1. Musicality Development Among Primary School Pupils in Music Studies

    OpenAIRE

    Vilde, Ilze

    2013-01-01

    Abstract Research goal. To explore the structure of musicality, to examine components that characterize musicality among primary school pupils and the pedagogic logic of its development during music lessons in primary school. As a result of the theoretical study, characterizing components and criteria of musicality among primary school pupils were researched and described and the description of musicality was broadened. The created model for music studies for facilitating the developme...

  2. Multi-scale computation methods: Their applications in lithium-ion battery research and development

    Science.gov (United States)

    Siqi, Shi; Jian, Gao; Yue, Liu; Yan, Zhao; Qu, Wu; Wangwei, Ju; Chuying, Ouyang; Ruijuan, Xiao

    2016-01-01

    Based upon advances in theoretical algorithms, modeling and simulations, and computer technologies, the rational design of materials, cells, devices, and packs in the field of lithium-ion batteries is being realized incrementally and will at some point trigger a paradigm revolution by combining calculations and experiments linked by a big shared database, enabling accelerated development of the whole industrial chain. Theory and multi-scale modeling and simulation, as supplements to experimental efforts, can help greatly to close some of the current experimental and technological gaps, as well as predict path-independent properties and help to fundamentally understand path-independent performance in multiple spatial and temporal scales. Project supported by the National Natural Science Foundation of China (Grant Nos. 51372228 and 11234013), the National High Technology Research and Development Program of China (Grant No. 2015AA034201), and Shanghai Pujiang Program, China (Grant No. 14PJ1403900).

  3. Research, development, and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in the development of nickel-zinc batteries for electric vehicles is reported. Information is presented on nickel electrode preparation and testing; zinc electrode preparation with additives and test results; separator development and the evaluation of polymer-blend separator films; sealed Ni-Zn cells; and the optimization of electric vehicle-type Ni-Zn cells. (LCL)

  4. Development of a Standard Test Scenario to Evaluate the Effectiveness of Portable Fire Extinguishers on Lithium-ion Battery Fires

    Science.gov (United States)

    Juarez, Alfredo; Harper, Susan A.; Hirsch, David B.; Carriere, Thierry

    2013-01-01

    Many sources of fuel are present aboard current spacecraft, with one especially hazardous source of stored energy: lithium ion batteries. Lithium ion batteries are a very hazardous form of fuel due to their self-sustaining combustion once ignited, for example, by an external heat source. Batteries can become extremely energetic fire sources due to their high density electrochemical energy content that may, under duress, be violently converted to thermal energy and fire in the form of a thermal runaway. Currently, lithium ion batteries are the preferred types of batteries aboard international spacecraft and therefore are routinely installed, collectively forming a potentially devastating fire threat to a spacecraft and its crew. Currently NASA is developing a fine water mist portable fire extinguisher for future use on international spacecraft. As its development ensues, a need for the standard evaluation of various types of fire extinguishers against this potential threat is required to provide an unbiased means of comparing between fire extinguisher technologies and ranking them based on performance.

  5. Validation of battery-alternator model against experimental data - a first step towards developing a future power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Boulos, A.M.; Burnham, K.J.; Mahtani, J.L. [Coventry University (United Kingdom). Control Theory and Applications Centre; Pacaud, C. [Jaguar Cars Ltd., Coventry (United Kingdom). Engineering Centre

    2004-01-01

    The electric power system of a modern vehicle has to supply enough electrical energy to drive numerous electrical and electronic systems and components. The electric power system of a vehicle consists of two major components: an alternator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands and the operating environment, such as road conditions and vehicle laden weight, is required when the capacities of the generator and the battery are to be determined for a vehicle. In this study, a battery-alternator system has been developed and simulated in MATLAB/Simulink, and data obtained from vehicle tests have been used as a basis for validating the models. This is considered to be a necessary first step in the design and development of a new 42 V power supply system. (author)

  6. Continuing Professional Development and Learning in Primary Science Classrooms

    Science.gov (United States)

    Fraser, Christine A.

    2010-01-01

    This article explores the effects of continuing professional development (CPD) on teachers' and pupils' experiences of learning and teaching science in primary classrooms. During 2006-2007, quantitative and qualitative data were elicited from two primary teachers in Scotland using questionnaires, semi-structured interviews and video-stimulated…

  7. Development of battery management systems (BMS) for electric vehicles (EVs) in Malaysia

    OpenAIRE

    Salehen P.M.W.; Su’ait M.S.; Razali H.; Sopian K.

    2017-01-01

    Battery Management Systems (BMS) is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV) systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the...

  8. Development of a lead acid battery suitable for electric vehicle propulsion. Final report. [96 V, 20 kWh, 50 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Schlotter, W J

    1977-08-26

    This report contains two detailed designs, and the design rationale, for an improved state-of-the-art electric vehicle battery incorporating expanded metal grids. The nominal 96-volt and 20-kWh battery incorporating this improved design is expected to cost about 25% less when manufactured in a mature plant. This report also contains detailed estimates for the capital cost and operating cost of a pilot plant to produce electric vehicle battery plates incorporating expanded metal grids. It is expected that the first electric vehicle batteries incorporating expanded metal grids can be available fifteen months after approval of this program. An additional program to improve lead acid batteries for electric vehicles further is also described. The advanced batteries resulting from this program are expected to incorporate either expanded metal grids and/or composite lead/plastic grids. In addition, these batteries are expected to contain low-density active materials. It is anticipated that those additional developments will result in an advanced battery capable of delivering 45 to 50 watt-hours/kg. As a result of the design and cost study, a ''First Buy'' improved state-of-the art vehicle battery proposed is included as part of this report. Eltra proposes to manufacture and deliver the required 2500 vehicle batteries within the time limits set forth by the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. 20 figures, 13 tables.

  9. Optimisation of the FeMn and ZnO production from spent pyrolised primary batteries. Feasibility of a DC-submerged arc furnace process

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alvarado, R.; Friedrich, B. [RWTH Aachen (Germany). IME Process Metallurgy and Metal Recycling

    2008-07-01

    In the present work the feasibility to produce a Fe-Mn-alloy and a ZnO-concentrate from spent pyrolised primary batteries has been investigated based on fundamental research, already reported in 'World of Metallurgy' - ERZ-METALL 1/2007. Through a carbothermic reduction in a Direct Current Submerged Arc Furnace process (DC-SAF) at IME Aachen, several laboratory-scale as well as semi-pilot scale tests were conducted with three different slag-compositions using solid- and hollow-electrode technique. The process was theoretically modelled with the thermochemical package FactSage 5.3.1. The effect of the process parameters temperature, slag composition and carbon addition were analysed. The results show that it is possible to recycle spent primary batteries through the submerged arc route to obtain a Fe-Mn alloy with a ratio Mn/Fe>1 and a ZnO concentrate as a separated product, reaching recycling quotes for Mn between 44 and 62%, for Fe between 56 and 96% and for zinc of more than 90%. (orig.)

  10. New and future developments in catalysis batteries, hydrogen storage and fuel cells

    CERN Document Server

    Suib, Steven L

    2013-01-01

    New and Future Developments in Catalysis is a package of seven books that compile the latest ideas concerning alternate and renewable energy sources and the role that catalysis plays in converting new renewable feedstock into biofuels and biochemicals. Both homogeneous and heterogeneous catalysts and catalytic processes will be discussed in a unified and comprehensive approach. There will be extensive cross-referencing within all volumes. Batteries and fuel cells are considered to be environmentally friendly devices for storage and production of electricity, and they are gaining considerable attention. The preparation of the feed for fuel cells (fuel) as well as the catalysts and the various conversion processes taking place in these devices are covered in this volume, together with the catalytic processes for hydrogen generation and storage. An economic analysis of the various processes is also part of this volume and enables an informed choice of the most suitable process. Offers in-depth coverage of all ca...

  11. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.

    Science.gov (United States)

    De, Bibekananda; Yadav, Amit; Khan, Salman; Kar, Kamal K

    2017-06-14

    Development of printable and flexible energy storage devices is one of the most promising technologies for wearable electronics in textile industry. The present work involves the design of a printable and flexible all-solid-state rechargeable battery for wearable electronics in textile applications. Copper-coated carbon fiber is used to make a poly(ethylene oxide) (PEO)-based polymer nanocomposite for a flexible and conductive current collector layer. Lithium iron phosphate (LiFePO 4 ) and titanium dioxide (TiO 2 ) are utilized to prepare the cathode and anode layers, respectively, with PEO and carbon black composites. The PEO- and Li salt-based solid composite separator layer is utilized for the solid-state and safe electrolyte. Fabrication of all these layers and assembly of them through coating on fabrics are performed in the open atmosphere without using any complex processing, as PEO prevents the degradation of the materials in the open atmosphere. The performance of the battery is evaluated through charge-discharge and open-circuit voltage analyses. The battery shows an open-circuit voltage of ∼2.67 V and discharge time ∼2000 s. It shows similar performance at different repeated bending angles (0° to 180°) and continuous bending along with long cycle life. The application of the battery is also investigated for printable and wearable textile applications. Therefore, this printable, flexible, easily processable, and nontoxic battery with this performance has great potential to be used in portable and wearable textile electronics.

  12. Recent Developments of Photovoltaics Integrated with Battery Storage Systems and Related Feed-In Tariff Policies: A Review

    Directory of Open Access Journals (Sweden)

    Angel A. Bayod-Rújula

    2017-01-01

    Full Text Available The paper presents a review of the recent developments of photovoltaics integrated with battery storage systems (PV-BESs and related to feed-in tariff policies. The integrated photovoltaic battery systems are separately discussed in the regulatory context of Germany, Italy, Spain, United Kingdom, Australia, and Greece; the attention of this paper is focused on those integrated systems subject to incentivisation policies such as feed-in tariff. Most of the contributions reported in this paper consider already existing incentive schemes; the remaining part of the contributions proposes interesting and novel feed-in tariff schemes. All the contributions provide an important resource for carrying out further research on a new era of incentive policies in order to promote storage technologies and integrated photovoltaic battery systems in smart grids and smart cities. Recent incentive policies adopted in Germany, Italy, Spain, and Australia are also discussed.

  13. The developments and challenges of cerium half-cell in zinc–cerium redox flow battery for energy storage

    International Nuclear Information System (INIS)

    Xie, Zhipeng; Liu, Qingchao; Chang, Zhiwen; Zhang, Xinbo

    2013-01-01

    Zinc–cerium redox flow batteries (ZCBs) are emerging as a very promising new technology with the potential to store a large amount of energy economically and efficiently, thanking to its highest thermodynamic open-circuit cell voltage among all the currently studied aqueous redox flow batteries. However, there are numerous scientific and technical challenges that must be overcome if this alluring promise is to turn into reality, from designing the battery structure, to optimizing the electrolyte compositions and elucidating the complex chemical reactions that occur during charge and discharge. This review article is the first summary of the most significant developments and challenges of cerium half-cell and the current understanding of their chemistry. We are certain that this review will be of great interest to audience over a broad range, especially in fields of energy storage, electrochemistry, and chemical engineering

  14. High rate lithium-thionyl chloride battery development for undersea weapon propulsion applications. Revised. Final report 1 Sep 77-30 Jun 78

    Energy Technology Data Exchange (ETDEWEB)

    Merz, W.C.; Walk, C.R.

    1978-08-23

    This report describes the experimental results obtained in the development of a high rate lithium, thionyl chloride battery system. Initially, cell optimization studies were conducted with so-called neutral electrolyte, i.e., thionyl chloride containing equimolar quantities of LiCl and AlCl/sup 3/. This report is divided into four sections, Section I - Cell Performance in Neutral Electrolyte, Section II - Cell Performance in Acid Electrolyte, Section III - Discussions of Battery Characteristics and Section IV - Active Battery Considerations.

  15. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The work carried out under the Yardney Contract with ANL for R, D and D on nickel zinc batteries over the past year was directed in three major areas: (1) elucidating the failure modes of the nickel-zinc battery system; (2) improving performance of the system; and (3) effecting a cost reduction program. Progress on the three areas is reported. (TFD)

  16. Development of automotive battery systems capable of surviving modern underhood environments

    Science.gov (United States)

    Pierson, John R.; Johnson, Richard T.

    The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.

  17. Developing an electromobile future. Battery research is key.; Elektromobil in die Zukunft. Batterieforschung als Schluessel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document describes the goals of the German federal government in making Germany a lead market for electromobility. It is divided into three chapters: 1. Batteries for electromobiles (research institutions, companies); 2. Strategies for battery research in Germany (building competence, creating networks, forming European alliances); and 3. Challenges in strategy implementation (a focus on battery materials, electrochemistry, research in the fields of battery production and battery systems integration). [German] In diesem Dokument werden die Ziele der Bundesregierung beschrieben wie sie Deutschland zu einem Leitmarkt fuer Elektromobilitaet machen will. Es ist in drei Kapitel aufgeteilt: 1. Batterien fuer Elektrofahrzuege (Forschungseinrichtungen, Unternehmen); 2. Strategie fuer die Batterieforschung in Deutschland (Kompetenzen aufbauen, Netzwerke knuepfen, europaeische Allianzen bilden) und 3. Herausforderungen bei der Umsetzung der Strategie (Fokus auf Batteriematerialien, Elektrochemie, Forschung fuer die Batterieproduktion sowie Batteriesystemintegration).

  18. Development of reliable lithium microreference electrodes for long-term in situ studies of lithium-based battery systems

    NARCIS (Netherlands)

    Zhou, J.; Notten, P.H.L.

    2004-01-01

    An in situ method to prepare lithium microreference electrodes has been developed. The microreference electrodes are made by electrochemical deposition of metallic lithium from both the positive and negative electrodes onto a copper wire positioned in-between the two Li-based battery electrodes. The

  19. New developments in seismic analysis of primary and secondary systems

    International Nuclear Information System (INIS)

    Gupta, A.K.

    1984-01-01

    Primary and secondary systems often must be analyzed using decoupled models. This paper presents recent advances made at NCSU in the seismic analysis of these systems. Algorithms are presented by which coupled mode shapes and frequencies can be evaluated without performing a new eigenvalue solution, given the mode shapes and frequencies of the decoupled models. Simple and accurate equations are presented to predict changes in frequencies and responses. With the coupled mode shapes and frequencies, one can obtain any primary or secondary response directly from the input spectrum. Alternatively, one can develop instructure spectra at various locations in the primary system accounting for the primary-secondary system interaction. Correlation between the support motions is also generated. Equations are presented for evaluating complex mode shapes and frequencies of coupled systems when due to unequal damping values of primary and secondary systems, the coupled system becomes nonproportionally damped. Recent progress, in case of tuned systems is also reported

  20. A material flow of lithium batteries in Taiwan

    International Nuclear Information System (INIS)

    Chang, T.C.; You, S.J.; Yu, B.S.; Yao, K.F.

    2009-01-01

    Li batteries, including secondary and cylindrical/button primary Li batteries, are used worldwide in computers, communications and consumer electronics products. However, there are several dangerous issues that occur during the manufacture, shipping, and storage of Li batteries. This study analyzes the material flow of lithium batteries and their valuable heavy metals in Taiwan for the year 2006 by material flow analysis. According to data from the Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, Bureau of Foreign Trade, Directorate General of Customs, and the Li batteries manufactures/importers/exporters. It was found that 2,952,696 kg of Li batteries was input into Taiwan for the year 2006, including 2,256,501 kg of imported Li batteries and 696,195 kg of stock Li batteries in 2005. In addition, 1,113,867 and 572,215 kg of Li batteries was domestically produced and sold abroad, revealing that 3,494,348 kg of different types of Li batteries was sold in Taiwan. Of these domestically sold batteries, 504,663 and 146,557 kg were treated domestically and abroad. Thus, a total of 2,843,128 kg of Li batteries was stored by individual/industry users or illegally disposed. In addition, it was also observed that 2,120,682 kg of heavy metals contained in Li batteries, including Ni, Co, Al, Cu and Ni, was accumulated in Taiwan, with a recycled value of 38.8 million USD. These results suggest that these heavy metals should be recovered by suitable collection, recycling and reuse procedures

  1. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

  2. The joint center for energy storage research: A new paradigm for battery research and development

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA and University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607 (United States)

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  3. The joint center for energy storage research: A new paradigm for battery research and development

    International Nuclear Information System (INIS)

    Crabtree, George

    2015-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments

  4. Development of Learning to Learn Skills in Primary School

    Science.gov (United States)

    Vainikainen, Mari-Pauliina; Wüstenberg, Sascha; Kupiainen, Sirkku; Hotulainen, Risto; Hautamäki, Jarkko

    2015-01-01

    In Finland, schools' effectiveness in fostering the development of transversal skills is evaluated through large-scale learning to learn (LTL) assessments. This article presents how LTL skills--general cognitive competences and learning-related motivational beliefs--develop during primary school and how they predict pupils' CPS skills at the end…

  5. Developing Children's Language Learner Strategies at Primary School

    Science.gov (United States)

    Kirsch, Claudine

    2012-01-01

    This article discusses the strategy repertoires and strategy development of six English children who learned foreign languages at primary school. My study differs from mainstream research, in that it focuses on young children and on the development of their strategies, draws on sociocultural theory and uses ethnographic methods. My findings show…

  6. Development of novel strategies for enhancing the cycle life of lithium solid polymer electrolyte batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Digby D.; Urquidi-Macdonald, Mirna; Allcock, Harry; Engelhard, George; Bomberger, N.; Gao, L.; Olmeijer, D.

    2001-04-30

    Lithium/solid polymer electrolyte (Li/SPE) secondary batteries are under intense development as power sources for portable electronic devices as well as electric vehicles. These batteries offer high specific energy, high energy density, very low self-discharge rates, and flexibility in packaging; however, problems have inhibited their introduction into the marketplace. This report summarizes findings to examine processes that occur with Li/SPE secondary batteries upon cyclic charging/discharging. The report includes a detailed analysis of the impedance measured on the Li/SPE/IC and IC/SPE/IC systems. The SPE was a derivative of methoxyethoxyethoxyphosphazene (MEEP) with lithium triflate salt as the electrolyte, while the intercalated cathodes (IC) comprised mixtures of manganese dioxide, carbon powder, and MEEP as a binder. Studies on symmetrical Li/SPE/Li laminates show that cycling results in a significant expansion of the structure over the first few tens of cycles; however, no corresponding increase in the impedance was noted. The cycle life of the intercalation cathode was found to be very sensitive to the method of fabrication. Results indicate that the cycle life is due to the failure of the IC, not to the failure of the lithium/SPE interface. A pattern recognition neural network was developed to predict the cycle life of a battery from the charge/discharge characteristics.

  7. The progress of the electrode materials development for lithium ion battery

    International Nuclear Information System (INIS)

    Kang Kai; Dai Shouhui; Wan Yuhua

    2001-01-01

    The structure and the charge-discharge principle of Li-ion battery are briefly discussed; the progress of electrode materials for Li-ion battery is reviewed in detail. Graphite has found wide applications in commercial Li-ion batteries, however, the hard carbon, especially the carbon with hydrogen is the most promising anode material for Li-ion battery owing to its high capacity, which has now become hot spot of investigation. Following the LiCoO 2 , LiMn 2 O 4 spinel compound becomes the most powerful contestant. On the basis of the authors' results, the synthesis methods of LiMn 2 O 4 and its characterizations are compared. Moreover, the structural properties of intercalation electrode materials that are related to the rechargeable capacity and stability during cycling of lithium ions are also discussed

  8. An overview of the development of lead/acid traction batteries for electric vehicles in India

    Science.gov (United States)

    Sivaramaiah, G.; Subramanian, V. R.

    Electric vehicles (EVs) made an entry into the Indian scene quite recently in the area of passenger transportation, milk floats and other similar applications. The industrial EV market, with various models of fork-lift trucks and platform trucks already in wide use all over India, is a better understood application of EV batteries. The lead/acid traction batteries available in India are not of high-energy density. The best available indigenous lead/acid traction battery has an energy density ( C/5 rate) of 30 W h kg -1 as against 39 W h kg -1 available abroad. This paper reviews the developmental efforts relating to lead/acid traction batteries for electric vehicle applications in India, such as prototype road vehicles, commercial vehicles, rail cars, and locomotives. Due to the need for environmental protection and recognition of exhaustible, finite supplies of petroleum fuel, the Indian government is presently taking active interest in EV projects.

  9. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion

    Science.gov (United States)

    1984-06-01

    Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.

  10. Lithium Batteries

    Science.gov (United States)

    National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional thin-film lithium batteries for a variety of technological applications. These batteries have high essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for

  11. 0.20-m (8-in.) primary burner development report

    International Nuclear Information System (INIS)

    Stula, R.T.; Young, D.T.; Rode, J.S.

    1977-12-01

    High-Temperature Gas-Cooled Reactors (HTGRs) utilize graphite-base fuels. Fluidized-bed burners are being employed successfully in the experimental reprocessing of these fuels. The primary fluidized-bed burner is a unit operation in the reprocessing flowsheet in which the graphite moderator is removed. A detailed description of the development status of the 0.20-m (8-in.) diameter primary fluidized-bed burner as of July 1, 1977 is presented. Experimental work to date performed in 0.10; 0.20; and 0.40-m (4, 8, and 16 in.) diameter primary burners has demonstrated the feasibility of the primary burning process and, at the same time, has defined more clearly the areas in which additional experimental work is required. The design and recent operating history of the 0.20-m-diameter burner are discussed, with emphasis placed upon the evolution of the current design and operating philosophy

  12. A review of laser electrode processing for development and manufacturing of lithium-ion batteries

    Science.gov (United States)

    Pfleging, Wilhelm

    2018-02-01

    Laser processes for cutting, annealing, structuring, and printing of battery materials have a great potential in order to minimize the fabrication costs and to increase the electrochemical performance and operational lifetime of lithium-ion cells. Hereby, a broad range of applications can be covered such as micro-batteries, mobile applications, electric vehicles, and stand-alone electric energy storage devices. Cost-efficient nanosecond (ns)-laser cutting of electrodes was one of the first laser technologies which were successfully transferred to industrial high-energy battery production. A defined thermal impact can be useful in electrode manufacturing which was demonstrated by laser annealing of thin-film electrodes for adjusting of battery active crystalline phases or by laser-based drying of composite thick-film electrodes for high-energy batteries. Ultrafast or ns-laser direct structuring or printing of electrode materials is a rather new technical approach in order to realize three-dimensional (3D) electrode architectures. Three-dimensional electrode configurations lead to a better electrochemical performance in comparison to conventional 2D one, due to an increased active surface area, reduced mechanical tensions during electrochemical cycling, and an overall reduced cell impedance. Furthermore, it was shown that for thick-film composite electrodes an increase of electrolyte wetting could be achieved by introducing 3D micro-/nano-structures. Laser structuring can turn electrodes into superwicking. This has a positive impact regarding an increased battery lifetime and a reliable battery production. Finally, laser processes can be up-scaled in order to transfer the 3D battery concept to high-energy and high-power lithium-ion cells.

  13. Latest position in battery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Staeger, H J

    1960-03-17

    A short survey of the development of electrochemical properties as batteries is followed by an account of the construction, properties, and fields of application of lead, iron--nickel, and silver--zinc batteries, and their more recent developments, such as the hollow-rod plates in lead batteries, sintered plates, and sealed batteries. The work in progress on fuel cells is discussed and different practical cells are compared. There is no battery which is the best for all applications, each system has its own advantages or disadvantages. The lead battery in its different forms still remains the most universally applied.

  14. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    Science.gov (United States)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  15. Design development of graphite primary structures enables SSTO success

    Science.gov (United States)

    Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.

  16. Artificial neural network simulation of battery performance

    Energy Technology Data Exchange (ETDEWEB)

    O`Gorman, C.C.; Ingersoll, D.; Jungst, R.G.; Paez, T.L.

    1998-12-31

    Although they appear deceptively simple, batteries embody a complex set of interacting physical and chemical processes. While the discrete engineering characteristics of a battery such as the physical dimensions of the individual components, are relatively straightforward to define explicitly, their myriad chemical and physical processes, including interactions, are much more difficult to accurately represent. Within this category are the diffusive and solubility characteristics of individual species, reaction kinetics and mechanisms of primary chemical species as well as intermediates, and growth and morphology characteristics of reaction products as influenced by environmental and operational use profiles. For this reason, development of analytical models that can consistently predict the performance of a battery has only been partially successful, even though significant resources have been applied to this problem. As an alternative approach, the authors have begun development of a non-phenomenological model for battery systems based on artificial neural networks. Both recurrent and non-recurrent forms of these networks have been successfully used to develop accurate representations of battery behavior. The connectionist normalized linear spline (CMLS) network has been implemented with a self-organizing layer to model a battery system with the generalized radial basis function net. Concurrently, efforts are under way to use the feedforward back propagation network to map the {open_quotes}state{close_quotes} of a battery system. Because of the complexity of battery systems, accurate representation of the input and output parameters has proven to be very important. This paper describes these initial feasibility studies as well as the current models and makes comparisons between predicted and actual performance.

  17. The negative electrode development for a Ni-MH battery prototype

    International Nuclear Information System (INIS)

    Cuscueta, D.J.; Ghilarducci, A.A.; Salva, H.R.; Milocco, R.H.; Castro, E.B.

    2009-01-01

    The negative electrode development for a nickel-metal hydride battery (Ni-MH) prototype was performed with the following procedure: (1) the Lm 0.95 Ni 3.8 Co 0.3 Mn 0.3 Al 0.4 (Lm=lanthanum rich mischmetal) intermetallic alloy was elaborated by melting the pure elements in an induction furnace inside a boron nitride crucible under an inert atmosphere, (2) the obtained alloy was crushed and sieved between 44 and 74 μm and mixed with teflonized carbon; (3) the compound was assembled together with a current collector and pressed in a cylindrical matrix. The obtained electrode presented a disc shape, with 11 mm diameter and approximately 1 mm thickness. The crystalline structure of the hydrogen storage alloy was examined using X-ray diffractometry. The measured hcp lattice volume was 1.78% larger than the precursor LaNi 5 intermetallic alloy, increasing the available space for hydrogen movement. Energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM) measurements were used before and after hydriding in order to verify the alloy sample homogeneity. The negative electrode was electrochemically tested by using a laboratory cell. It activates almost totally in its first cycle, which is an excellent characteristic from the commercial point of view. The maximum discharge capacity reached was 314.2 mA h/g in the 10th cycle.

  18. Development of a Novel Iodine-Vitamin C/Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Chen, Mei-Ling; Huang, Shu-Ling; Hsieh, Chin-Lung; Lee, Jan- Yen; Tsai, Tz-Jiun

    2014-01-01

    A novel (I + /I 2 )/vitamin C vs. V 4+ /V 5+ semi-vanadium redox flow battery (semi-VRFB) with iodine, vitamin C, and V 4+ /V 5+ redox couples, using multiple electrodes was investigated. The electrodes, Ni-P/carbon paper and Ni-P/TiO 2 /carbon paper, were modified by the electroless plating method and sol-gel process. The electrochemical characteristics and the performance of the semi-VRFB were verified by the cyclic voltammetry method and a charge-discharge test. This study shows modified electrodes can improve the reversibility and symmetry of the oxidation-reduction reaction of the semi-VRFB system, and effectively raise its storage ability. The coulomb efficiency of the semi-VRFB system is close to 96%, which is higher than the all-VRFB. The semi-VRFB system can reduce the amount of vanadium salt, therefore, it is not only a reduction in cost, but also has a great potential for the development of energy storage systems

  19. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The program has progressed to the stage of evaluating full-sized (220 Ah) cells, multicell modules, and 22 kWh batteries. Nickel electrodes that display stable capacities of up to 24 Ah/plate (at C/3 drain rate) at design thickness (2.5 mm) in tests at 200/sup +/ test cycles. Iron electrodes of the composite-type are also delivering 24 Ah/plate (at C/3) at target thickness (1.0 mm). Iron plates are displaying capacity stability for 300/sup +/ test cycles in continuing 3 plate cell tests. Best finished cells are delivering 57 to 63 Wh/kg at C/3, based on cell weights of the finished cells, and in the actual designed cell volume. 6-cell module (6-1) performance has demonstrated 239 Ah, 1735 Wh, 53 WH/kg at the C/3 drain rate. This module is now being evaluated at the National Battery Test Laboratory. The 2 x 4 battery has been constructed, tested, and delivered for engineering test and evaluation. The battery delivered 22.5 kWh, as required (199 Ah discharge at 113 V-bar) at the C/3 drain rate. The battery has performed satisfactorily under dynamometer and constant current drain tests. Some cell problems, related to construction, necessitated changing 3 modules, but the battery is now ready for further testing. Reduction in nickel plate swelling (and concurrent stack electrolyte starvation), to improve cycling, is one area of major effort to reach the final battery objectives. Pasted nickel electrodes are showing promise in initial full-size cell tests and will continue to be evaluated in finished cells, along with other technology advancements. 30 figures, 14 tables.

  20. Developing primary health care and public health competencies in ...

    African Journals Online (AJOL)

    Stephen E Knight

    community-based programme within the undergraduate medical curriculum, which aims to develop primary ... educational imperatives, namely improving medical students' ... Selectives is an innovative longitudinal, ... assessments of students in the Selectives module is the collective .... health and well-being of individuals,.

  1. Pubertal breast development in primary school girls in Sokoto, North ...

    African Journals Online (AJOL)

    Background. There is wide variation in normal pubertal timing among various populations. Objectives. To determine the mean age of pubertal stages of breast development and menarche, and the influence of nutrition and ethnicity on pubertal onset in primary school girls in Sokoto, North-Western Nigeria. Methods.

  2. Piagetian Cognitive Development and Primary Process Thinking in Children

    Science.gov (United States)

    Wulach, James S.

    1977-01-01

    Thirty-seven middle-class white children, ages 5-8, were tested on eight Piagetian tasks and the Rorschach test, and divided into preoperational, transitional, and concrete operational groups. Measures of primary process vs. secondary process thinking were found to be related to the Piagetian stages of development. (GDC)

  3. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  4. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  5. Mnemonic abilities of primary school children with delayed mental development.

    Directory of Open Access Journals (Sweden)

    Murafa S.V.

    2015-07-01

    Full Text Available This paper presents the results of research regarding the mnemonic abilities of primary school children with developmental delays. Empirical studies of impaired mental development offer an opportunity to elucidate the psychological mechanisms underlying the process of normal development and enable us to consider at a micro level the formation of mental processes in ontogeny, which would, under normal conditions, be nondescript and not always amenable to psychological analysis. The research addresses an experimental investigation of productivity and qualitative characteristics of mnemonic abilities among primary school students with developmental delays. V.D. Shadrikov’s Theory of Abilities, developed in a systemic approach framework, is the theoretical basis of the research. The method of deploying a memorization activity, as elaborated by V.D. Shadrikov and L.V. Cheremoshkina, was the investigation tool used. The sample included students in grades 1 to 4 between ages 7 to 12 and included a total of 100 children (66 boys and 34 girls. The control group of primary school students with typical development included 105 children (50 boys and 55 girls. The research consisted of several stages: a pilot study, experimental research (the test task was to memorize card #1; the basic task was to memorize cards #2 and #3; to reproduce cards #2 and #3; and to poll the students, mathematical data processing, and a description of the levels of mnemonic ability development among primary students with developmental delays. The following procedures were employed during statistical analysis: Spearman r3, Mann-Whitney U-test, Jonckheere-Terpstra test, and Kruskal-Wallis test. The structure of mnemonic abilities in primary schoolchildren with developmental delays was determined to vary according to the underdevelopment of their operational mechanisms. For example, memory functions are based on the use of inborn mechanisms, and a portion of children differ in the

  6. Research, development and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Research progress in the development of Ni/Fe batteries (electrodes in particular) for the period is described. The negative plate demonstrated a reliable lifetime of almost 1000 cycles; 20 mm positive plates were proved feasible; prototype cells yielded output at about 50 Wh/kg and 100 Wh/liter; program goals of 20% greater than these figures appear feasible. 27 figures, 20 tables. (RWR)

  7. Fiscal 1999 report. Development of an electric power storage system using new type batteries, and development of a discrete type electric power storage technology (Survey on trend in developing batteries for electric power storage); 1999 nendo shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu hokokusho. Denryoku chozoyo denchi no kaihatsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Demand is increasing in recent years in Japan on batteries for electric power storage to respond to load variation in electric power supply. If electric power storage batteries are applied for practical use, nighttime excess power can be stored appropriately, which can be discharged during day time when the demand is increased, so that the demand variation can be handled adequately. Secondary batteries, if used, are characterized by having much greater energy density and output density because of storing the electric energy as chemical energy than in pumped-storage power generation which stores the energy as the positional energy of water. Therefore, this paper describes the surveys performed on the trend of developing the power storage batteries inside and outside the country. Section 1 shows the current status of annual load rates in other countries, and the current conception on power storage in these countries. Section 2 states the current status of practical application of power storage batteries having been developed in Germany and the U.S.A. and performed of demonstration tests. Section 3 reports the current status of developing new type power storage batteries. Section 4 describes the current status of developing the power storage batteries for power users. (NEDO)

  8. Advanced secondary batteries: Their applications, technological status, market and opportunity

    Science.gov (United States)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  9. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    Science.gov (United States)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  10. Development of 63Ni-voltaic nuclear micro-battery prototype

    International Nuclear Information System (INIS)

    Zhang Huaming; Hu Rui; Wang Guanquan; Gao Hui; Liu Guoping; Luo Shunzhong

    2013-01-01

    Crystal silicon based energy-conversion unit was prepared using the parameters from theoretical simulation. A battery prototype was assembled through ascertaining the process of 63 Ni deposition, the formula of sealing materials and the sealing technique. The electric output properties were assessed with accelerating ageing and changing the temperatures. The results show that the open circuit voltage and short circuit current of the manufactured nuclear micro-battery prototype are 88.0 mV and 5.97 nA, and the maximum power output and the energy conversion efficiency are 0.255 nW and 0.561%, respectively. It preserves steadily over 220 days. (authors)

  11. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  12. Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID E.

    2000-11-14

    The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

  13. Development, test-retest reliability, and construct validity of the resistance training skills battery.

    Science.gov (United States)

    Lubans, David R; Smith, Jordan J; Harries, Simon K; Barnett, Lisa M; Faigenbaum, Avery D

    2014-05-01

    The aim of this study was to describe the development and assess test-retest reliability and construct validity of the Resistance Training Skills Battery (RTSB) for adolescents. The RTSB provides an assessment of resistance training skill competency and includes 6 exercises (i.e., body weight squat, push-up, lunge, suspended row, standing overhead press, and front support with chest touches). Scoring for each skill is based on the number of performance criteria successfully demonstrated. An overall resistance training skill quotient (RTSQ) is created by adding participants' scores for the 6 skills. Participants (44 boys and 19 girls, mean age = 14.5 ± 1.2 years) completed the RTSB on 2 occasions separated by 7 days. Participants also completed the following fitness tests, which were used to create a muscular fitness score (MFS): handgrip strength, timed push-up, and standing long jump tests. Intraclass correlation (ICC), paired samples t-tests, and typical error were used to assess test-retest reliability. To assess construct validity, gender and RTSQ were entered into a regression model predicting MFS. The rank order repeatability of the RTSQ was high (ICC = 0.88). The model explained 39% of the variance in MFS (p ≤ 0.001) and RTSQ (r = 0.40, p ≤ 0.001) was a significant predictor. This study has demonstrated the construct validity and test-retest reliability of the RTSB in a sample of adolescents. The RTSB can reliably rank participants in regards to their resistance training competency and has the necessary sensitivity to detect small changes in resistance training skill proficiency.

  14. Development and evolution of the vertebrate primary mouth

    Science.gov (United States)

    Soukup, Vladimír; Horácek, Ivan; Cerny, Robert

    2013-01-01

    The vertebrate oral region represents a key interface between outer and inner environments, and its structural and functional design is among the limiting factors for survival of its owners. Both formation of the respective oral opening (primary mouth) and establishment of the food-processing apparatus (secondary mouth) require interplay between several embryonic tissues and complex embryonic rearrangements. Although many aspects of the secondary mouth formation, including development of the jaws, teeth or taste buds, are known in considerable detail, general knowledge about primary mouth formation is regrettably low. In this paper, primary mouth formation is reviewed from a comparative point of view in order to reveal its underestimated morphogenetic diversity among, and also within, particular vertebrate clades. In general, three main developmental modes were identified. The most common is characterized by primary mouth formation via a deeply invaginated ectodermal stomodeum and subsequent rupture of the bilaminar oral membrane. However, in salamander, lungfish and also in some frog species, the mouth develops alternatively via stomodeal collar formation contributed both by the ecto- and endoderm. In ray-finned fishes, on the other hand, the mouth forms via an ectoderm wedge and later horizontal detachment of the initially compressed oral epithelia with probably a mixed germ-layer derivation. A very intriguing situation can be seen in agnathan fishes: whereas lampreys develop their primary mouth in a manner similar to the most common gnathostome pattern, hagfishes seem to undergo a unique oropharyngeal morphogenesis when compared with other vertebrates. In discussing the early formative embryonic correlates of primary mouth formation likely to be responsible for evolutionary–developmental modifications of this area, we stress an essential role of four factors: first, positioning and amount of yolk tissue; closely related to, second, endoderm formation during

  15. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  16. Contemporary Trends in Research and Development of Lead-Acid Batteries

    Czech Academy of Sciences Publication Activity Database

    Micka, Karel

    2004-01-01

    Roč. 8, - (2004), s. 932-933 ISSN 1432-8488 R&D Projects: GA ČR GA102/02/0794 Institutional research plan: CEZ:AV0Z4040901 Keywords : lead-acid batteries * electrical system * trends Subject RIV: CG - Electrochemistry Impact factor: 0.984, year: 2004

  17. Development of battery management systems (BMS for electric vehicles (EVs in Malaysia

    Directory of Open Access Journals (Sweden)

    Salehen P.M.W.

    2017-01-01

    Full Text Available Battery Management Systems (BMS is an electronic devices component, which is a vital fundamental device connected between the charger and the battery of the hybrid or electric vehicle (EV systems. Thus, BMS significantly enable for safety protection and reliable battery management by performing of monitoring charge control, state evaluation, reporting the data and functionalities cell balancing. To date, 97.1% of Malaysian CO2 emissions are mainly caused by transportation activities and the numbers will keep rising as numbers of registered car increase close up to 1 million yearly; double the amounts in the last two decades. The uncertainty of a battery’s performance poses a challenge to predict the extended range of EVs, which need BMS implementation of optimization of optimum power management. Hence, using MATLAB/SIMULINK software is one of the potential methods of BMS optimization with power generated by Hybrid Energy Storage system of lithium-ion battery. Therefore, this paper address through reviewing previous literatures initially focuses on the BMS optimization for EVs (car in Malaysia as prognostic technology model improvement on performance management of EVs.

  18. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  19. Developments in the application of underground battery vehicles in the UK coal mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Fortune, J A.B.; Crawshaw, S A.M. [Long-Airdox International Ltd. (United Kingdom)

    1996-10-01

    Trackless battery powered haulage vehicles have been in operation in British coal mines principally for longwall face transfer and personnel transportation. Changes within the industry have resulted in the introduction of room and pillar coal mining methods and the introduction of increasingly heavier longwall roof supports. This has resulted in the introduction of: battery powered coal haulage machines, which, without the need for trailing cables, increase productivity within room and pillar mining; and battery powered longwall shield haulers which are capable of carrying the heaviest shield supports currently being utilised within the British coal mining industry. The conventional machines have been adapted from an American design to meet the requirements of European legislation. This has seen the emphasis being placed upon the supplier with the European Machinery Directive being introduced, necessitating the assigning of a `CE` mark to each vehicle. Battery vehicle technology has advanced to meet the demands of the ever changing market and will no doubt be further adapted to meet the requirement of the British coal mining industry. 1 ref., 12 figs., 3 tabs.

  20. Development and Preliminary Psychometric Properties of the Transition Competence Battery for Deaf Adolescents and Young Adults.

    Science.gov (United States)

    Bullis, Michael; Reiman, John

    1992-01-01

    The Transition Competence Battery for Deaf Adolescents and Young Adults (TCB) measures employment and independent living skills. The TCB was standardized on students (N from 180 to 230 for the different subtests) from both mainstreamed and residential settings. Item statistics and subtest reliabilities were adequate; evidence of construct validity…

  1. Assessment of the development of a battery charging infrastructure for a redox flow battery based electromobility concept; Bewertung des Aufbaus einer Ladeinfrastruktur fuer eine Redox-Flow-Batteriebasierte Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Arpad Funke, Simon; Wietschel, Martin [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energietechnologien und Energiesysteme

    2012-07-01

    Apart from the high acquisition cost, the major obstacles to widespread use of electric-powered vehicles today are long battery charging times and limited mileage. Rechargeable batteries might be a solution. The publication investigates a potential infrastructure for electric-powered vehicles based on so-called redox flow batteries. Redox flow batteries are characterized in that active materials are dissolved in liquid electrolyte and are stored outside the cell. Batteries are recharged by exchanging charged electrolyte for discharged electrolyte, which can be done in fuel stations. Redox flow batteries have the drawback of low energy and power density and were hardly ever considered for mobile applications so far. A technical analysis of RFB technology identified the vanadium oxygen redox flow fuel cell (VOFC) as a promising version. It provides higher energy density than conventional redox flow batteries, but development is still in an early stage. Assuming a 'best case' scenario, a refuelling infrastructure for VOFC vehicles was developed and compared with battery-powered vehicles (BEV) and fuel cell vehicles (FVEV). It was found that electromobility based on VOFC may be a promising alternative to current electromobility concepts. (orig./AKB) [German] Neben den Anschaffungsausgaben stehen lange Ladezeiten und eine beschraenkte Reichweite dem heutigen Einsatz von Elektrofahrzeugen oft entgegen. Eine moegliche Abhilfe koennten betankbare Batterien leisten. In der vorliegenden Arbeit soll ein moeglicher Infrastrukturaufbau fuer Elektrofahrzeuge mit sogenannten Redox-Flow-Batterien untersucht werden. Redox-Flow-Batterien besitzen die Eigenschaft, dass aktive Materialien geloest in Fluessigelektrolyten ausserhalb der Zelle gespeichert werden. Dieser Aufbau ermoeglicht das Aufladen der Batterie, indem der entladene Elektrolyt durch geladenen ausgetauscht wird. Dieser Tausch kann an einer Tankstelle durchgefuehrt werden. Ein wesentlicher Nachteil von Redox

  2. Recycling of batteries after storage

    International Nuclear Information System (INIS)

    Posthumus, W.

    1997-06-01

    An overview is given of the types and composition of batteries and their waste processing techniques that are operational or under development. Attention is paid to the demands of the waste processing techniques with respect to the quality of the collected batteries. Finally the storage of batteries is discussed. 18 refs

  3. Improved rapidly-quenched hydrogen-absorbing alloys for development of improved-capacity nickel metal hydride batteries

    Science.gov (United States)

    Ise, Tadashi; Hamamatsu, Takeo; Imoto, Teruhiko; Nogami, Mitsuzo; Nakahori, Shinsuke

    The effects of annealing a rapidly-quenched hydrogen-absorbing alloy with a stoichiometric ratio of 4.76 were investigated concerning its hydrogen-absorbing properties, crystal structure and electrochemical characteristics. Annealing at 1073 K homogenized the alloy microstructure and flattened its plateau slope in the P-C isotherms. However, annealing at 1273 K segregated a second phase rich in rare earth elements, increased the hydrogen-absorbing pressure and decreased the hydrogen-absorbing capacity. As the number of charge-discharge cycles increases, the particle size distribution of the rapidly-quenched alloy became broad due to partial pulverization. However, particle size distribution of the rapidly-quenched, annealed, alloy was sharp, since the annealing homogenized the microstructure, thereby improving the cycle characteristics. A high-capacity rectangular nickel metal hydride battery using a rapidly-quenched, annealed, surface-treated alloy for the negative electrode and an active material coated with cobalt compound containing sodium for the positive electrode was developed. The capacity of the resulting battery was 30% greater than that of a conventional battery.

  4. Development and Application of a Fuzzy Control System for a Lead-Acid Battery Bank Connected to a DC Microgrid

    Directory of Open Access Journals (Sweden)

    Juan José Martínez

    2018-01-01

    Full Text Available This study presents the development and application of a fuzzy control system (FCS for the control of the charge and discharge process for a bank of batteries connected to a DC microgrid (DC-MG. The DC-MG runs on a maximum power of 1 kW with a 190 V DC bus using two photovoltaic systems of 0.6 kW each, a 1 kW bidirectional DC-AC converter to interconnect the DC-MG with the grid, a bank of 115 Ah to 120 V lead-acid batteries, and a general management system used to define the operating status of the FCS. This FCS uses a multiplexed fuzzy controller, normalizing the controller’s inputs and outputs in each operating status. The design of the fuzzy controller is based on a Mamdani inference system with AND-type fuzzy rules. The input and output variables have two trapezoidal membership functions and three triangular membership functions. LabVIEW and the NI myRIO-1900 embedded design device were used to implement the FCS. Results show the stability of the DC bus of the microgrid when the bank of batteries is in the charging and discharging process, with the bus stabilized in a range of 190 V ± 5%, thus demonstrating short response times to perturbations considering the microgrid’s response dynamics.

  5. Development of new positive-grid alloy and its application to long-life batteries for automotive industry

    Science.gov (United States)

    Furukawa, Jun; Nehyo, Y.; Shiga, S.

    Positive-grid corrosion and its resulting creep or growth is one of the major causes of the failure of automotive lead-acid batteries. The importance of grid corrosion and growth is increasing given the tendency for rising temperatures in the engine compartments of modern vehicles. In order to cope with this situation, a new lead alloy has been developed for positive-grids by utilizing an optimized combination of lead-calcium-tin and barium. In addition to enhanced mechanical strength at high temperature, the corrosion-resistance of the grid is improved by as much as two-fold so that the high temperature durability of batteries using such grids has been demonstrated in both hot SAE J240 tests and in field trials in Japan and Thailand. A further advantage of the alloy is its recycleability compared with alloys containing silver. The new alloy gives superior performance in both 12-V flooded and 36-V valve-regulated lead-acid (VRLA) batteries.

  6. Development and validation of the primary care team dynamics survey.

    Science.gov (United States)

    Song, Hummy; Chien, Alyna T; Fisher, Josephine; Martin, Julia; Peters, Antoinette S; Hacker, Karen; Rosenthal, Meredith B; Singer, Sara J

    2015-06-01

    To develop and validate a survey instrument designed to measure team dynamics in primary care. We studied 1,080 physician and nonphysician health care professionals working at 18 primary care practices participating in a learning collaborative aimed at improving team-based care. We developed a conceptual model and administered a cross-sectional survey addressing team dynamics, and we assessed reliability and discriminant validity of survey factors and the overall survey's goodness-of-fit using structural equation modeling. We administered the survey between September 2012 and March 2013. Overall response rate was 68 percent (732 respondents). Results support a seven-factor model of team dynamics, suggesting that conditions for team effectiveness, shared understanding, and three supportive processes are associated with acting and feeling like a team and, in turn, perceived team effectiveness. This model demonstrated adequate fit (goodness-of-fit index: 0.91), scale reliability (Cronbach's alphas: 0.71-0.91), and discriminant validity (average factor correlations: 0.49). It is possible to measure primary care team dynamics reliably using a 29-item survey. This survey may be used in ambulatory settings to study teamwork and explore the effect of efforts to improve team-based care. Future studies should demonstrate the importance of team dynamics for markers of team effectiveness (e.g., work satisfaction, care quality, clinical outcomes). © Health Research and Educational Trust.

  7. [Primary health care and the millennium development goals].

    Science.gov (United States)

    Faye, A; Bob, M; Fall, A; Fall, C

    2012-01-01

    Member countries of the World Health Organization (WHO) met in Alma Ata (8-12 September 1978) to define and advocate the implementation of primary health care (PHC) worldwide, above all, in developing countries, which had a real need to review their strategies for meeting the health needs of their populations. They did not suspect that 20 years later the vision they displayed would remain undeniably relevant. Here we examine the similarities and points of convergence of their declaration about PHC with the Millennium Development Goals that seek today to reduce poverty across the world. An exhaustive and analytic literature review was conducted to collect those similarities. Further analysis of the definitions, objectives, principles and recommendations of the Alma Ata Declaration and the Millennium Declaration reveals multiple dependencies and fundamental points of similarity between these two representations. Almost all states have pledged to achieve the eight MDG by 2015: to eradicate extreme poverty and hunger, achieve universal primary education, promote gender equality and empower women, reduce child mortality, improve maternal health, combat HIV/AIDS, malaria and other diseases, ensure environmental sustainability, and develop a global partnership for development. The Alma Ata conference defined primary health care as essential health care, based on practical methods and techniques that are both scientifically sound and socially acceptable, universally accessible to all individuals and all families of the community, through their full participation and at a cost that the community and countries can afford at all stages of their development in the spirit of self-reliance and self-determination. It is an integral part of economic and social development. The following principles are involved in the achievement of both primary health care and the MDG: social equity, community participation, and intersectorality. Public health is an essential condition of poverty

  8. Development of an allergy management support system in primary care

    Directory of Open Access Journals (Sweden)

    Flokstra - de Blok BMJ

    2017-03-01

    Full Text Available Bertine MJ Flokstra - de Blok,1,2 Thys van der Molen,1,2 Wianda A Christoffers,3 Janwillem WH Kocks,1,2 Richard L Oei,4 Joanne NG Oude Elberink,2,4 Emmy M Roerdink,5 Marie Louise Schuttelaar,3 Jantina L van der Velde,1,2 Thecla M Brakel,1,6 Anthony EJ Dubois2,5 1Department of General Practice, 2GRIAC Research Institute, 3Department of Dermatology, 4Department of Allergology, 5Department of Pediatric Pulmonology and Pediatric Allergy, University of Groningen, University Medical Center Groningen, 6Teaching Unit, Department of Social Psychology, University of Groningen, Groningen, The Netherlands Background: Management of allergic patients in the population is becoming more difficult because of increases in both complexity and prevalence. Although general practitioners (GPs are expected to play an important role in the care of allergic patients, they often feel ill-equipped for this task. Therefore, the aim of this study was to develop an allergy management support system (AMSS for primary care. Methods: Through literature review, interviewing and testing in secondary and primary care patients, an allergy history questionnaire was constructed by allergists, dermatologists, GPs and researchers based on primary care and specialists’ allergy guidelines and their clinical knowledge. Patterns of AMSS questionnaire responses and specific immunoglobulin E (sIgE-test outcomes were used to identify diagnostic categories and develop corresponding management recommendations. Validity of the AMSS was investigated by comparing specialist (gold standard and AMSS diagnostic categories. Results: The two-page patient-completed AMSS questionnaire consists of 12 (mainly multiple choice questions on symptoms, triggers, severity and medication. Based on the AMSS questionnaires and sIgE-test outcome of 118 patients, approximately 150 diagnostic categories of allergic rhinitis, asthma, atopic dermatitis, anaphylaxis, food allergy, hymenoptera allergy and other

  9. Development of Hyperthyroidism Following Primary Hypothyroidism: A Case Report

    Directory of Open Access Journals (Sweden)

    Yueh-Hua Chung

    2004-04-01

    Full Text Available Development of hyperthyroidism following primary hypothyroidism is uncommon, and only a few documented cases have been reported. Alterations in thyroid-stimulating hormone receptor antibodies in serum are currently considered to play the main role in the pathophysiology, but the exact mechanism is still unknown. Here, we report the case of a 60-year-old man with disturbed consciousness due to hyponatremia. Thyroid function tests showed primary hypothyroidism with a high anti-microsomal antibody titer (1:6,400. The patient experienced weight loss and exophthalmos 6 years later. Serum thyroid hormone levels were increased and thyroxine treatment was discontinued, but the patient remained thyrotoxic 2 months later. 131I thyroid uptake was 40.9% at 24 hours, and bilateral thyroid lobes were not enlarged with diffuse radioactivity. Six months later, the patient was still thyrotoxic and therapy with methimazole 10 mg/day was started. He is now taking methimazole and is euthyroid.

  10. Electric batteries and the environment. Die Batterie und die Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, F; Hartinger, L; Kiehne, H A; Niklas, H; Schiele, R; Steil, H U

    1987-01-01

    The book deals with the production, use and waste management of batteries (accumulators and primary batteries), with regard to protection of the environment. Legal, technical and medical aspects are shown. There are numerous electro-chemical systems, but only few proved to be really good in practice. Most batteries contain lead, cadmium or mercury and must therefore be eliminated in a way doing no harm to the environment. Large quantities of the above named heavy metals are today already being recovered by means of appropriate procedures. The reduction of these heavy metals in batteries is also described to be a contribution to the protection of the environment. (orig.) With 67 figs.

  11. Development and application of a NaNiCl{sub 2}-battery for industrial trucks regarding the requirements cycle life, safety and reliability. Final report; Entwicklung und Erprobung einer NaNiCl{sub 2}-Batterie fuer Flurfoerderzeuge unter besonderer Beruecksichtigung der Aspekte Lebensdauer, Sicherheit und Zuverlaessigkeit. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1996-07-01

    Two NaNiCl{sub 2}-battery types including the battery controller and peripheral equipment have been developed for the application in fork lift trucks and driverless transportation. The batteries have been tested and evaluated on bench testing as well as in fork lift trucks and driverless trucks in practical application. The field tests have been performed by the subcontractors Still, Mercedes-Benz and Indumat. All test results have shown that the NaNiCl{sub 2}-battery (ZEBRA-battery) is well suited for the application in industrial traction. A series development together with a cost reduction programme have to be performed ahead of the introduction of the ZEBRA-battery into the market for industrial traction batteries. (orig.) [Deutsch] Im Rahmen des Vorhabens wurden zwei NaNiCl{sub 2}-Batterietypen, eine fuer die Anwendung in Gabelstaplern, die andere fuer den Einsatz in fahrerlosen Transportsystemen (FTS), einschliesslich des Batteriesteuergeraetes und der Batterieperipherie entwickelt. Die Batterien wurden auf Teststaenden im Labor sowie in Gabelstaplern und FTS unter Praxisbedingungen erprobt. Der praktische Einsatz erfolgte bei den Unterauftragnehmern Still, Mercedes-Benz und Indumat. Die Ergebnisse haben gezeigt, dass die NaNiCl{sub 2}-Batterie (ZEBRA-Batterie) fuer die Anwendung in Gabelstaplern und FTS geeignet ist. Insbesondere wurde nachgewiesen, dass die NaNiCl{sub 2}-Batterie im Gegensatz zu anderen Batteriesystemen einen Zweischichtbetrieb von Gabelstaplern ohne Batteriewechsel ermoeglicht. Vor Einfuehrung der ZEBRA-Batterie in den Flurfoerdermarkt muss die Serienentwicklung bei gleichzeitiger Senkung der Herstellkosten durchgefuehrt werden. (orig.)

  12. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, J.B. (comp.)

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  13. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  14. Leadership theory: implications for developing dental surgeons in primary care?

    Science.gov (United States)

    Willcocks, S

    2011-02-12

    The development of leadership in healthcare has been seen as important in recent years, particularly at the clinical level. There have been various specific initiatives focusing on the development of leadership for doctors, nurses and other health care professions: for example, a leadership competency framework for doctors, the LEO programme and the RCN clinical leadership programme for nurses. The NHS has set up a Leadership Council to coordinate further developments. However, there has not been the same focus in dentistry, although the recent review of NHS dental services (Steele review) has proposed a need for leadership initiatives in NHS dentistry as a medium-term action. Central to this will be a need to focus on the leadership role for dental surgeons. Leadership is all the more important in dentistry, given the change of government and the policy of retrenchment, major public sector reform, the emergence of new organisations such as new commissioning consortia, possible changes to the dental contract, new ways of working, and changes to the profession such as the requirements for the revalidation of dental surgeons. The question is: which leadership theory or approach is best for dental surgeons working in primary care? This paper builds on earlier work exploring this question in relation to doctors generally, and GPs, in particular, and planned work on nurses. It will seek to address this question in relation to dental surgeons working in primary care.

  15. Cost reductions in nickel-hydrogen battery

    Science.gov (United States)

    Beauchamp, Richard L.; Sindorf, Jack F.

    1987-01-01

    Significant progress was made toward the development of a commercially marketable hydrogen nickel oxide battery. The costs projected for this battery are remarkably low when one considers where the learning curve is for commercialization of this system. Further developmental efforts on this project are warranted as the H2/NiO battery is already cost competitive with other battery systems.

  16. Developing primary care in Hong Kong: evidence into practice and the development of reference frameworks.

    Science.gov (United States)

    Griffiths, Sian M; Lee, Jeff P M

    2012-10-01

    Enhancing primary care is one of the proposals put forward in the Healthcare Reform Consultation Document "Your Health, Your Life" issued in March 2008. In 2009, the Working Group on Primary Care, chaired by the Secretary for Food and Health, recommended the development of age-group and disease-specific primary care conceptual models and reference frameworks. Drawing on international experience and best evidence, the Task Force on Conceptual Model and Preventive Protocols of the Working Group on Primary Care has developed two reference frameworks for the management of two common chronic diseases in Hong Kong, namely diabetes and hypertension, in primary care settings. Adopting a population approach for the prevention and control of diabetes and hypertension across the life course, the reference frameworks aim to provide evidence-based and appropriate recommendations for the provision of continuing and comprehensive care for patients with chronic diseases in the community.

  17. Experimental Lithium-Ion Battery Developed for Demonstration at the 2007 NASA Desert Research and Technology Studies (D-RATS) Program

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2010-01-01

    The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.

  18. Research, development, and demonstration of nickel-zinc batteries for electric-vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    Progress in work at Exide in three main development areas, i.e., battery design and development, nickel cathode study, and electrochemical studies is reported. Battery design and development concentrated on the optimization of design parameters, including electrode spacing, charging methods, electrolyte concentration, the design and fabrication of prototype cells and modules, and testing to verify these parameters. Initial experiments indicated that an interelectrode spacing of 2.5 mm was optimum when normal (D.C.) charging is used. It was during these experiments that a high rate charging technique was developed to deposit a dense active zinc which did not shed during vibration. A 4 cell - 300 Ah experimental module was built and sent to NBTL for testing. Initial testing on this module and a 300 Ah cell are reported. Experiments on electrolyte concentration indicate that higher concentrations of KOH (8M, 9M or 10M) are beneficial to capacity maintenance. Available nickel cathodes were evaluated for possible use in the VIBROCEL. These included pocket, sintered plaque impregnated, nickel plated steel wool impregnated, plastic bonded and CMG (multifoil) electrodes. These electrodes have Coulombic densities ranging from 70 Ah/Kg for pocket plates to 190 Ah/Kg for CMG electrodes. Detailed test data are presented for each type including rate capability, effect of zincate on performance, and capacity maintenance with cycling. Work on zinc deposition emphasized the special charging technique. This is a deposition using special waveforms of charging current, to deposit dense crystalline zinc on the anode substrate.

  19. FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Burton, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Smith, Kandler [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center; Pesaran, Ahmad [National Renewable Energy Lab. (NREL), Golden, CO (United States). Transportation and Hydrogen Systems Center

    2014-09-01

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

  20. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    Science.gov (United States)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will

  1. Process development report: 0.40-m primary burner system

    International Nuclear Information System (INIS)

    Young, D.T.

    1978-04-01

    Fluidized bed combustion is required in reprocessing the graphite-based fuel elements from high-temperature gas-cooled reactor (HTGR) cores. This burning process requires combustion of beds containing both large particles and very dense particles, and also of fine graphite particles which elutriate from the bed. This report documents the successful long-term operation of the 0.40-m primary burner in burning crushed fuel elements. The 0.40-m system operation is followed from its first short heatup test in September 1976 to a > 40-h burning campaign that processed 20 LHTGR blocks in September 1977. The 0.40-m perforated conical gas distributor, scaled up from the 0.20-m primary burner, has proven reliable in safely burning even the largest, densest adhered graphite/fuel particle clusters originating from the crushing of loaded fuel elements. Such clusters had never been fed to the 0.20-m system. Efficient combustion of graphite fines using the pressurized recycle technique was demonstrated throughout the long-duration operation required to reduce a high carbon fresh feed bed to a low carbon particle bed. Again, such operation had never been completed on the 0.20-m system from which the 0.40-m burner was scaled. The successful completion of the tests was due, in part, to implementation of significant equipment revisions which were suggested by both the initial 0.40-m system tests and by results of ongoing development work on the 0.2-m primary burner. These revisions included additional penetrations in the burner tube side-wall for above-bed fines recycle, replacement and deletion of several metal bellows with bellows of more reliable design, and improvements in designs for burner alignment and feeder mechanisms. 76 figures, 8 tables

  2. Developing a Model of Teaching English to Primary School Students

    Directory of Open Access Journals (Sweden)

    Suwarsih Madya

    2004-01-01

    Full Text Available Under the auspices of the Centre for Curriculum Decelopment, a three-cycle action research study was carried out in three primary schools in Yogyakarta with the aim of developing a model of teaching English to primary school students. The model consists of five parts: Opening, Content Focus, Language Focus, Communication Focus, and Closing. The model, requiring that learning tasks involve active participation of students, both physically and mentally, supported by the use of media suitable for young learners, was developmentally fully implemented. The results showed that efforts were mostly made to establish teacher-student rapport in the first cycle, in which success in classroom management was gradually reached. This led to the easier second cycle, which was characterized by increasing teacher talk (classroom English, the use of interesting media, and more active students' participation in the tasks involving various games which successfully elicited students' English. All of this was solidified in the third cycle. The conclusion is that with the three aspects being focused successively, teacher-student good rapport being established, various media being used, and competing and cooperative tasks being assigned in balance, joyful and effective learning is likely to occur.

  3. Raising Awareness of Urban Environment Development in Primary Schools

    Directory of Open Access Journals (Sweden)

    Rosi Maja

    2016-12-01

    Full Text Available In the past few years, excessive efforts have been made to increase the city’s attractiveness and its international positioning. Also studies on the so-called city destination branding are on the rise. Theorists, as Ramirez (2001, Marzano and Scott (2009, among many others, are discussing different aspects of this complex process. Many approaches and strategies are dealing with the positioning of urban environments and city destinations, trying to provide at least some partial answers about achieving this objective. With proper marketing and branding, cities can do a lot to attract tourists and visitors. For successful city marketing and branding and for the successful long-term positioning of the destination in general, it is necessary to involve the key stakeholders and collaborate with as many as possible despite the fact that the branding of a city destination (or any destination for that matter is a complex process. It is significant that all the stakeholders, who are always carriers of different interests, are invited to collaborate in the planning of the tourism development and tourism development strategies, from the government, the private sector, schools etc. It is also important to involve the citizens, who can provide a valuable opinion about the environment they live in – what they like about their environment, what suggestion would they give to tourists about gastronomy, attractions, shops, events, etc. It is significant that citizens are proud of their urban environment, that they know their own environment, and that they have the motivation for the involvement in the process of improvement of their home environment (through projects, discussions, etc.. It is impossible to create attractive urban environments or cities if residents do not have a positive opinion about the place they live in. That is why it is essential for the education institutions at all levels, but especially for the institutions at the primary levels to

  4. Construction Of A Computerised Information-Processing Test Battery

    Directory of Open Access Journals (Sweden)

    Johann M. Schepers

    2002-09-01

    Full Text Available The primary goal of the study was to construct a computerised information-processing test battery to measure choice reaction time for up to and including six bits of information, to measure discrimination reaction time with regard to colour patterns and form patterns, to measure rate of information processing with regard to perceptual stimuli and conceptual reasoning, and to develop a suitable scoring system for the respective tests. The battery of tests was applied to 58 pilots. Opsomming Die hoofdoel van die studie was om ‘n gerekenariseerde inligtingverwerkingstoets-battery te konstrueer om keusereaksietyd tot en met ses bis inligting te meet, om diskriminasie-reaksietyd ten opsigte van kleurpatrone en vormpatrone te meet, om tempo van inligtingverwerking ten opsigte van perseptuele stimuli en konseptuele redenering te meet en om ‘n gepaste nasienstelsel vir die onderskeie toetse te ontwikkel. Die battery toetse is op 58 vlieëniers toegepas

  5. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  6. Oxygen, hydrogen, ethylene and CO 2 development in lithium-ion batteries

    Science.gov (United States)

    Holzapfel, M.; Würsig, A.; Scheifele, W.; Vetter, J.; Novák, P.

    Gas evolution has been examined for different types of battery-related electrode materials via in situ differential electrochemical mass spectrometry (DEMS). Besides standard graphite also a novel silicon-based negative electrode was examined and it was shown that the evolution of hydrogen and ethylene is considerably reduced on this material compared to graphite. Oxygen evolution was proven to happen on the oxidative reaction of a Li 2O 2 electrode, besides a certain oxidation of the electrolyte. The 4.5 V plateau upon the oxidation of Li[Ni 0.2Li 0.2Mn 0.6]O 2 was likewise proven to be linked to oxygen evolution. Also in this case electrolyte oxidation was shown to be a side reaction. Layered positive electrode materials Li(Ni,Co,Al)O 2 and Li(Ni,Mn,Co)O 2 were also examined. The influence of different parameters on the CO 2 evolution in lithium-ion batteries was shown up. The amount of CO 2 formation is increased by high temperatures and cell voltages, while the addition of vinylene carbonate (VC) decreases it. Li(Ni,Mn,Co)O 2 shows much less CO 2 evolution than Li(Ni,Co,Al)O 2.

  7. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  8. Development of mini-LIA and primary experiments

    International Nuclear Information System (INIS)

    Cheng Cheng; Liao Shuqing; Zheng Shuxin; Lin Yuzheng; Tang Chuanxiang; Jing Xiaobing; Mu Fan; Pan Haifeng; Zhang Kaizhi; Shi Jinshui; Deng Jianjun

    2009-01-01

    Mini-LIA is a miniature of a linear induction accelerator developed by China Academy of Engineering Physics and Tsinghua University in 2007. It has been constructed with a thermionic cathode in an electron injector and a metglas core in the induction accelerator cavities. A double-pulsed electron beam was produced for the first time in China on the Mini-LIA with a thermionic cathode in the electron gun and a metglas core in the induction accelerator cavities. A double-pulsed beam current of more than 1.1A was obtained on condition of 80 kV double-pulsed high voltage produced by pulsed power system supplying to the injector and accelerating modules. Some primary experiments for measuring the parameters of Mini-LIA has been performed, and some beam characterizations of Mini-LIA are presented. Further improvement is underway. (authors)

  9. Nonpropulsive power systems for missiles and space vehicles. [State of development

    Energy Technology Data Exchange (ETDEWEB)

    Breaux, D K; Schultz, R L

    1960-05-01

    Characteristics, applications and state of development are discussed for so-called primary conversion (batteries, cells, reactors, gas generators) and secondary conversion (heat engines, turbines, pumps, engines) methods.

  10. The DELTA 181 lithium thionyl chloride battery

    Science.gov (United States)

    Sullivan, Ralph M.; Brown, Lawrence E.; Leigh, A. P.

    In 1986, the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) undertook the development of a sensor module for the DELTA 181 spacecraft, a low earth orbit (LEO) mission of less than two months duration. A large lithium thionyl chloride battery was developed as the spacecraft's primary power source, the first known such use for this technology. The exceptionally high energy density of the lithium thionyl chloride cell was the primary driver for its use, resulting in a completed battery with a specific energy density of 120 Wh/lb. Safety requirements became the primary driver shaping all aspects of the power system design and development due to concerns about the potential hazards of this relatively new, high-energy technology. However, the program was completed without incident. The spacecraft was launched on February 8, 1988, from Kennedy Space Center (KSC) with over 60,000 Wh of battery energy. It reentered on April 2, 1988, still operating after 55 days, providing a successful, practical, and visible demonstration of the use of this technology for spacecraft applications.

  11. The typology and development of attitude to primary science education

    Science.gov (United States)

    Gray, Adelaide

    The introduction and development of science within the primary curriculum has been a challenge to teachers, parents and children and a highly politicised decision. Augmenting any difficulties are the images of science within popular culture and the traditions of scientific inquiry that have maintained the Western, male elitist hierarchy of the Vienna circle throughout the last millennium. The Royal Society's committee on the public understanding of science has recognised the difficulty in recruiting students to higher-level science study and embarked on a programme of sponsorship to address this. At the same time major governmental policy changes have provided a new 'market' model of education that has encouraged parental involvement in schools and enforced a new 'transparency' of evaluation on schools through league tables and Ofsted. Set against this backdrop, this research explores the development of attitudes to science and science education in the parent's of primary school aged children. It examines the perceptions of science and science education through the narrative of the parent's and their understanding of the interaction between different areas of science. The use of key events within narrative as a method of exploring attitude and conceptual development is novel to this research and through this exploration the concept of attitude itself is examined and criticised developing a new concept of attitude as process-based rather than static or crystallised. This reconceptualisation allows a more operational understanding of attitude that overcomes the difficulties of the traditional concept, which has only a limited theoretical basis on which to examine behaviour. The research generates a typology for views of science and the more operational compliment to this, stance to science. This framework allows a greater understanding of attitude formation, how science is perceived and how this perception is actualised. It is particularly interesting given the

  12. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  13. The effectiveness of development programming strength in primary school children

    Directory of Open Access Journals (Sweden)

    O.M. Khudolii

    2013-07-01

    Full Text Available The problems of optimizing development strength in primary school children. The purpose of the program is to validate the technology development strength abilities in the classroom physical education at school. A program of strength training by taking into account the effects of power loads. Found that the use of the combined method (option I makes it possible to obtain positive results in force readiness school classes 2-4 through 3-9 sessions. The combined method (option II significantly affects the dynamics of the forces of the local group of muscles. The use of mobile gaming allows for a higher level of emotional strength to develop the ability of students. The dynamics of power indices (option II significantly affects operation: dynamic method - 25-45 reps (rest interval between sets 30-60 seconds, the method of maximum effort - 18-30 reps (rest interval between sets 30-60 seconds method of isometric effort - 15-25 reps (rest interval between sets 30-60 seconds, the method of repeated efforts - 36-60 reps (rest interval between sets 30-60 seconds.

  14. Child development in primary care: a surveillance proposal.

    Science.gov (United States)

    Coelho, Renato; Ferreira, José Paulo; Sukiennik, Ricardo; Halpern, Ricardo

    2016-01-01

    To evaluate a child development surveillance tool proposal to be used in primary care, with simultaneous use of the Denver II scale. This was a cross-sectional study of 282 infants aged up to 36 months, enrolled in a public daycare in a countryside community in Rio Grande do Sul/Brazil. Child development was assessed using the surveillance tool and the Denver II scale. The prevalence of probable developmental delay was 53%; most of these cases were in the alert group and 24% had normal development, but with risk factors. At the Denver scale, the prevalence of suspected developmental delay was 32%. When risk factors and sociodemographic variables were assessed, no significant difference was observed. The evaluation of this surveillance tool resulted in objective and comparable data, which were adequate for a screening test. It is easily applicable as a screening tool, even though it was originally designed as a surveillance tool. The inclusion of risk factors to the scoring system is an innovation that allows for the identification of children with suspected delay in addition to developmental milestones, although the definition of parameters and choice of indicators should be thoroughly studied. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  15. The effectiveness of development programming strength in primary school children

    Directory of Open Access Journals (Sweden)

    Khudolii O.M.

    2013-06-01

    Full Text Available The problems of optimizing development strength in primary school children. The purpose of the program is to validate the technology development strength abilities in the classroom physical education at school. A program of strength training by taking into account the effects of power loads. Found that the use of the combined method (option I makes it possible to obtain positive results in force readiness school classes 2-4 through 3-9 sessions. The combined method (option II significantly affects the dynamics of the forces of the local group of muscles. The use of mobile gaming allows for a higher level of emotional strength to develop the ability of students. The dynamics of power indices (option II significantly affects operation: dynamic method - 25-45 reps (rest interval between sets 30-60 seconds, the method of maximum effort - 18-30 reps (rest interval between sets 30-60 seconds method of isometric effort - 15-25 reps (rest interval between sets 30-60 seconds, the method of repeated efforts - 36-60 reps (rest interval between sets 30-60 seconds.

  16. Canadian consumer battery baseline study : final report

    International Nuclear Information System (INIS)

    2007-02-01

    This report provided information about the estimated number of consumer and household batteries sold, re-used, stored, recycled, and disposed each year in Canada. The report discussed the ways in which different batteries posed risks to human health and the environment, and legislative trends were also reviewed. Data used in the report were obtained from a literature review as well as through a series of interviews. The study showed that alkaline batteries are the most common primary batteries used by Canadians, followed by zinc carbon batteries. However, lithium primary batteries are gaining in popularity, and silver oxide and zinc air button cell batteries are also used in applications requiring a flat voltage and high energy. Secondary batteries used in laptop computers, and cell phones are often made of nickel-cadmium, nickel-metal-hydroxide, and lithium ion. Small sealed lead batteries are also commonly used in emergency lighting and alarm systems. Annual consumption statistics for all types of batteries were provided. Results of the study showed that the primary battery market is expected to decline. Total units of secondary batteries are expected to increase to 38.6 million units by 2010. The report also used a spreadsheet model to estimate the flow of consumer batteries through the Canadian waste management system. An estimated 347 million consumer batteries were discarded in 2004. By 2010, it is expected that an estimated 494 million units will be discarded by consumers. The study also considered issues related to lead, cadmium, mercury, and nickel disposal and the potential for groundwater contamination. It was concluded that neither Canada nor its provinces or territories have initiated legislative or producer responsibility programs targeting primary or secondary consumer batteries. 79 refs., 37 tabs., 1 fig

  17. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report of progress achieved under ANL Contract 31-109-38-4248. It covers the report period from 15 March 1978 to 15 August 1978. The nickel electrode development program is directed at the optimization of the electrical performance, specifically, in terms of increased cycle life. The work concentrated upon both the development of pilot plant facilities to produce nickel hydroxide and upon optimizing the manufacturing processes to produce nickel hydroxide which has high electrochemical utilization. The primary goal of the zinc electrode studies is to increase the cycle life of this electrode. This effort is primarily concentrating on the effect of additives upon shape change and cycle performance and on the mechanistic processes involved in the shape change. The separator effort has as its major goal the development of a low-cost separator which exhibits stability in the electrolyte, has uniform pores which are of a sufficiently small size to impede the growth of zinc dendrites, and exhibits low electrical resistance and good flexibility. The process itself is now optimized for pilot plant manufacture; hundreds of formulations have been produced and subsequently screened in both the laboratory and in actual cells. Promising formulations are presently being subjected to additional characterization tests and life cycles. The goal of the sealed cell studies is to determine the feasibility of sealed-cell operation. Large numbers of 20-Ah cells have been subjected to accelerated testing. These cells incorporated separator variations, active material additives, and internal design variations. Cycle lives up to 150 deep cycles were achieved. Cell failure modes are analyzed. 51 figures, 20 tables.

  18. Evolution of strategies for modern rechargeable batteries.

    Science.gov (United States)

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  19. Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Ghannoum, AbdulRahman; Nieva, Patricia; Yu, Aiping; Khajepour, Amir

    2017-11-29

    The development, fabrication, and embedment of fiber-optic evanescent wave sensors (FOEWSs) to monitor the state of charge (SOC) and the state of health (SOH) of lithium-ion batteries (LIBs) are presented. Etching of FOEWSs is performed using a solution of 40 wt % ammonium fluoride (NH 4 F) and 49 wt % hydrofluoric acid (HF) (6:1), which is found to be superior to an etching solution containing just 49 wt % HF. FOEWSs were characterized using glycerol and found to have the highest sensitivity in a lithium-ion battery when they lose 92% of their transmittance in the presence of glycerol on their sensing region. The physical effect that the FOEWS has on the graphite anode is also investigated and is found to be much more significant in Swagelok cells compared to that in in-house-fabricated pouch cells, mainly due to pressure variation. The FOEWS was found to be most sensitive to the changes in the LIB when it was completely embedded using a slurry of graphite anode material within a pouch cell. The optimized fabrication process of the embedded FOEWS demonstrates the potential of using such sensors commercially for real-time monitoring of the SOC and SOH of LIBs while in operation.

  20. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  1. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  2. Primary care in Caribbean Small Island Developing States

    Directory of Open Access Journals (Sweden)

    J.D. Kranenburg

    2015-05-01

    Full Text Available Caribbean Small Island Developing States (SIDS made good process on improving the health of their populations; but concerns exist when it comes to meeting changing health needs. Due to remoteness and limited resources it is difficult to respond to high rates of non-communicable diseases (NCDs. Furthermore, little is known about how primary care (PC is organised and how this responds to current health issues. This study focused on gaining insights in the organisation of PC of Caribbean SIDS based on currently available literature. This literature review was an explorative multiple case study, where structure of PC and health status of 16 Caribbean SIDS were reviewed using available scientific and grey literature between the years 1997 and 2014. Thirty documents were used to analyse 20 indicators for the dimensions “Structure of Primary Care” and “Health Status”. Results were mapped in order to identify if there is a possible relation between structures of PC to the health of the populations. When reviewing the structure of PC, the majority of information was available for “Economic conditions of PC” (78% and the least information was available for “Governance of PC” (40%. With regards to health status, all islands show improvements on “Life expectancy at birth” since 2007. In contrast, on average, the mortality due to NCDs did not improve. Saint Lucia performs best on “Structure of PC”. The British Virgin Islands have the best health status. When both dimensions were analysed, Saint Lucia performs best. There is still little known on the responsiveness of PC of Caribbean SIDS to NCDs. There is a need for elaborate research on: (1 If and how the functioning of these health systems relate to the health status; (2 What islands can learn from an analysis over time and what they can learn from cross-island analysis; and (3 Filling the gaps of knowledge which currently exist within this field of research.

  3. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  4. Overview of ENEA's Projects on lithium batteries

    Science.gov (United States)

    Alessandrini, F.; Conte, M.; Passerini, S.; Prosini, P. P.

    The increasing need of high performance batteries in various small-scale and large-scale applications (portable electronics, notebooks, palmtops, cellular phones, electric vehicles, UPS, load levelling) in Italy is motivating the R&D efforts of various public and private organizations. Research of lithium batteries in Italy goes back to the beginning of the technological development of primary and secondary lithium systems with national know-how spread in various academic and public institutions with a few private stakeholders. In the field of lithium polymer batteries, ENEA has been dedicating significant efforts in almost two decades to promote and carry out basic R&D and pre-industrial development projects. In recent years, three major national projects have been performed and coordinated by ENEA in co-operation with some universities, governmental research organizations and industry. In these projects novel polymer electrolytes with ceramic additives, low cost manganese oxide-based composite cathodes, environmentally friendly process for polymer electrolyte, fabrication processes of components and cells have been investigated and developed in order to fulfill long-term needs of cost-effective and highly performant lithium polymer batteries.

  5. Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries

    Science.gov (United States)

    Lu, Wei; Liang, Longwei; Sun, Xuan; Sun, Xiaofei; Wu, Chen; Hou, Linrui; Sun, Jinfeng

    2017-01-01

    Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs). However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD) methodology has attracted enormous attention in advanced LIBs. This review mainly focuses upon the up-to-date progress and development of the ALD in high-performance LIBs. The significant roles of the ALD in rational design and fabrication of multi-dimensional nanostructured electrode materials, and finely tailoring electrode-electrolyte sur-/interfaces are comprehensively highlighted. Furthermore, we clearly envision that this contribution will motivate more extensive and insightful studies in the ALD to considerably improve Li-storage behaviors. Future trends and prospects to further develop advanced ALD nanotechnology in next-generation LIBs were also presented. PMID:29036916

  6. Nuclear battery materials and application of nuclear batteries

    International Nuclear Information System (INIS)

    Hao Shaochang; Lu Zhenming; Fu Xiaoming; Liang Tongxiang

    2006-01-01

    Nuclear battery has lots of advantages such as small volume, longevity, environal stability and so on, therefore, it was widely used in aerospace, deep-sea, polar region, heart pacemaker, micro-electromotor and other fields etc. The application of nuclear battery and the development of its materials promote each other. In this paper the development and the latest research progress of nuclear battery materials has been introduced from the view of radioisotope, electric energy conversion and encapsulation. And the current and potential applications of the nuclear battery are also summarized. (authors)

  7. Development of softcopy environment for primary color banding visibility assessment

    Science.gov (United States)

    Min, Byungseok; Pizlo, Zygmunt; Allebach, Jan P.

    2008-01-01

    Fine-pitch banding is one of the most unwanted artifacts in laser electrophotographic (EP) printers. It is perceived as a quasiperiodic fluctuation in the process direction. Therefore, it is essential for printer vendors to know how banding is perceived by humans in order to improve print quality. Monochrome banding has been analyzed and assessed by many researchers; but there is no literature that deals with the banding of color laser printers as measured from actual prints. The study of color banding is complicated by the fact that the color banding signal is physically defined in a three-dimensional color space, while banding perception is described in a one-dimensional sense such as more banding or less banding. In addition, the color banding signal arises from the independent contributions of the four primary colorant banding signals. It is not known how these four distinct signals combine to give rise to the perception of color banding. In this paper, we develop a methodology to assess the banding visibility of the primary colorant cyan based on human visual perception. This is our first step toward studying the more general problem of color banding in combinations of two or more colorants. According to our method, we print and scan the cyan test patch, and extract the banding profile as a one dimensional signal so that we can freely adjust the intensity of banding. Thereafter, by exploiting the pulse width modulation capability of the laser printer, the extracted banding profile is used to modulate a pattern consisting of periodic lines oriented in the process direction, to generate extrinsic banding. This avoids the effect of the halftoning algorithm on the banding. Furthermore, to conduct various banding assessments more efficiently, we also develop a softcopy environment that emulates a hardcopy image on a calibrated monitor, which requires highly accurate device calibration throughout the whole system. To achieve the same color appearance as the hardcopy

  8. Development of an optimization tool for the dimensioning and positioning of a battery storage in micro grids; Entwicklung eines Optimierungstools zur Dimensionierung und Platzierung eines Batteriespeichers in Mikronetzen

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Mohsen [Stuttgart Univ. (Germany); Ramold, Mathias; Mueller, Holger [Siemens AG, Erlangen (Germany); Braun, Martin [Stuttgart Univ. (Germany); Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany); Kassel Univ. (Germany)

    2012-07-01

    This paper considers the most important aspects of battery storage dimensioning and placement from the perspective of distribution networks and microgrids with decentralized supply to avoid voltage deviations and equipments overloading. The use cases of battery storages define how they should be designed and installed in microgrids. This can be done through simulating different scenarios for the operation of batteries in microgrids. In this paper a developed optimization tool is introduced. Using this optimizing tool in together with PSS registered SINCAL enables the user to analyze different application areas of battery storage systems in microgrids for different purposes such as minimization of equipment loading, voltage deviation and electrical losses. The introduced program is capable of evaluating and integrating different existing solutions, so that they could be extended to an easy-to-use optimization tool. Finally, a typical microgrid will be demonstrated, where a battery for the purpose of network support has been installed. This microgrid is used for testing and verification of the developed tool. (orig.)

  9. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2016-01-01

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes

  10. [Primary care: A definition of the field to develop research].

    Science.gov (United States)

    Verga-Gérard, A

    2018-03-01

    Research in the field of primary care has dramatically increased in France in recent years, especially since 2013 with the introduction of primary care as a thematic priority for research proposals launched by the Ministry of Health (Direction générale de l'offre de soins). The RECaP (Research in Clinical Epidemiology and Public Health) network is a French research network supported by Inserm, which recently implemented a specific working group focusing on research in primary care, based on a multidisciplinary approach. Researchers from different specialties participate in this group. The first aim of the group was to reach a common definition of the perimeter and of the panel of healthcare professionals and structures potentially involved in the field of primary care. For this purpose, a selection of different data sets of sources defining primary care was analyzed by the group, each participant collecting a set of sources, from which a synthesis was made and discussed. A definition of primary care at different levels (international, European and French) was summarized. A special attention was given to the French context in order to adapt the perimeter to the characteristics of the French healthcare system, notably by illustrating the different key elements of the definition with the inclusion of primary care actors and the type of practice premises. In conclusion, this work illustrates the diversity of primary care in France and the potential offered for research purposes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Developing a prioritisation framework in an English Primary Care Trust

    Directory of Open Access Journals (Sweden)

    Fordham Richard J

    2006-02-01

    Full Text Available Abstract Background In the English NHS, Primary Care Trusts (PCTs are required to commission health services, to maximise the well-being of the population, subject to the available budget. There are numerous techniques employed to make decisions, some more rational and transparent than others. A weighted benefit score can be used to rank options but this does not take into account value for money from investments. Methods We developed a weighted benefit score framework for use in an English PCT which ranked options in order of 'cost-value' or 'cost per point of benefit'. Our method differs from existing techniques by explicitly combining cost and a composite weighted benefit score into the cost-value ratio. Results The technique proved readily workable, and was able to accommodate a wide variety of data and competing criteria. Participants felt able to assign scores to proposed services, and generate a ranked list, which provides a solid starting point for the PCT Board to discuss and make funding decisions. Limitations included potential for criteria to be neither exhaustive nor mutually exclusive and the lack of an interval property in the benefit score limiting the usefulness of a cost-value ratio. Conclusion A technical approach to decision making is insufficient for making prioritisation decisions, however our technique provides a very valuable, structured and informed starting point for PCT decision making.

  12. Emotion Regulation Characteristics Development in Iranian Primary School Pupils

    Directory of Open Access Journals (Sweden)

    Asghar Dadkhah

    2014-12-01

    Full Text Available Objectives: Emotion regulations refer to the ability of experiencing emotions as a basic human capacity and the experience of the basic emotions happiness, anger, sadness and fear are considered as reular characteristics among nations. In school-age children, problems in socioemotional development typically shows themselves as challenging, socially disruptive paterns of behavior. The purpose of the present study was to understand Emotion Regulation characteristics in Iranian primary school pupils and whether Iranian children enable to identify common emotions. Methods: Participants included 900 children, 9 to 10 years, from elementary schools from 21 provinces in Iran. In pilot work we presented 200 children with four hypothetical vignettes of the kind typically used in display rule research. In the main study children’s knowledge regarding hiding their emotions was assessed through a structured interview. The participants were presented with the interview questions after the vignettes. The answers were coded by two people and the interrater reliability was high. The children were assessed on the basis of four common emotions:Happiness, Anger,Fear,and, Sadness. Results: The analysis of the data indicated that: 1 all children were enabled to identify and differentiate all four emotions from each other, most of students hide their happiness, anger, fear and sadness, they hide their emotions in specific situation such as school and home, hide happiness and anger against peers and hide fear and sadness in front of adults. Discussion: The study indicates that Iranian children not only differ from other culture peers in the amount of display rule use in daily life, but also in the situations they report using it and their motives for doing so they suppress their overall emotions more frequently, especially in presence of family and for pro-social and self-protective reasons. These findings provides the basic knowledge about Iranian children

  13. Model-Based Battery Management Systems: From Theory to Practice

    Science.gov (United States)

    Pathak, Manan

    Lithium-ion batteries are now extensively being used as the primary storage source. Capacity and power fade, and slow recharging times are key issues that restrict its use in many applications. Battery management systems are critical to address these issues, along with ensuring its safety. This dissertation focuses on exploring various control strategies using detailed physics-based electrochemical models developed previously for lithium-ion batteries, which could be used in advanced battery management systems. Optimal charging profiles for minimizing capacity fade based on SEI-layer formation are derived and the benefits of using such control strategies are shown by experimentally testing them on a 16 Ah NMC-based pouch cell. This dissertation also explores different time-discretization strategies for non-linear models, which gives an improved order of convergence for optimal control problems. Lastly, this dissertation also explores a physics-based model for predicting the linear impedance of a battery, and develops a freeware that is extremely robust and computationally fast. Such a code could be used for estimating transport, kinetic and material properties of the battery based on the linear impedance spectra.

  14. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979. [165 Ah, 36. 5 Wh/kg

    Energy Technology Data Exchange (ETDEWEB)

    Bodamer, G.W.; Branca, G.C.; Cash, H.R.; Chrastina, J.R.; Yurick, E.M.

    1980-06-01

    Progress during the 1979 fiscal year is reported. All the tooling and capital equipment required for the pilot line production has been installed. A limited amount of plate production has been realized. A highly automated and versatile testing facility was established. The fabrication and testing of the initial calculated design is discussed. Cell component adjustments and the trade-offs associated with those changes are presented. Cells are being evaluated at the 3-hour rate. They have a capacity of 165 Ah and an energy density of 36.5 Wh/kg, and have completed 105 cycles to date. Experimental results being pursued under the advanced battery development program to enhance energy density and cycle life are presented. Data on the effects of different electrolyte specific gravity, separators, retainers, paste densities, battery additives and grid alloy composition on battery performance are presented and evaluated. Advanced battery prototype cells are under construction. Quality Assurance activities are summarized. They include monitoring the cell and battery fabrication and testing operations as well as all relevant documentation procedures. 12 figures, 28 tables.

  15. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Chang

    2016-05-01

    Full Text Available All-vanadium redox flow batteries (VRBs are potential energy storage systems for renewable power sources because of their flexible design, deep discharge capacity, quick response time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional design, a flow field is machined on two electrically insulated frames with a graphite plate in between. A traditional bipolar plate (BP of a VRB consists of many components, and thus, the assembly process is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize the manufacturing cost. First, the effects of the mold design and injection parameters on frame formability were analyzed by simulation. Second, a new graphite plate design for integral molding was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show that gate position significantly affects air traps and the maximum volume shrinkage occurs at the corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within the frame.

  16. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra; Kumar, Binod [Electrochemical Power Group, Metals and Ceramics Division, University of Dayton Research Institute, OH 45469-0171 (United States)

    2009-12-01

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li{sub 1+x}Al{sub x}Ge{sub 2-x}(PO{sub 4}){sub 3} (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si{sub 3}N{sub 4}) and PC(Li{sub 2}O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li{sub 2}O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity. (author)

  17. Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2014-10-01

    Full Text Available An electrically rechargeable zinc-air battery stack consisting of three single cells in series was designed using a novel structured bipolar plate with air-breathing holes. Alpha-MnO2 and LaNiO3 severed as the catalysts for the oxygen reduction reaction (ORR and oxygen evolution reaction (OER. The anodic and cathodic polarization and individual cell voltages were measured at constant charge-discharge (C-D current densities indicating a uniform voltage profile for each single cell. One hundred C-D cycles were carried out for the stack. The results showed that, over the initial 10 cycles, the average C-D voltage gap was about 0.94 V and the average energy efficiency reached 89.28% with current density charging at 15 mA·cm−2 and discharging at 25 mA·cm−2. The total increase in charging voltage over the 100 C-D cycles was ~1.56% demonstrating excellent stability performance. The stack performance degradation was analyzed by galvanostatic electrochemical impedance spectroscopy. The charge transfer resistance of ORR increased from 1.57 to 2.21 Ω and that of Zn/Zn2+ reaction increased from 0.21 to 0.34 Ω after 100 C-D cycles. The quantitative analysis guided the potential for the optimization of both positive and negative electrodes to improve the cycle life of the cell stack.

  18. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  19. A study on the Development of Zr-Ti-Mn-V-Ni hydrogen Storage Alloy for Ni-MH Rechargeable Battery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Myung; Jung, Jae Han; Lee, Sang Min; Lee, Jae Young [Department of Meterial Science and Engineering, Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-12-15

    The Zr-based AB{sub 5} type Laves phase hydrogen storage alloys have some promising properties, long cycle life, high discharge capacity, as electrode materials in reversible metal hydride batteries. However, when these alloys are used as negative electrode for battery, there is a problem that their rate capabilities are worse than those of commercialized AB{sub 5} type hydrogen storage alloys. In this work, we tried to develop the Zr-based AB type Laves phase hydrogen storage alloys which have high capacity and, especially, high rate capability (author). 21 refs., 2 tabs., 13 figs.

  20. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Li, Lain-Jong

    2016-01-01

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we

  1. The refining of secondary lead for use in advanced lead-acid batteries

    International Nuclear Information System (INIS)

    Ellis, Timothy W.; Mirza, Abbas H.

    2010-01-01

    Secondary lead, i.e. material produced by the recycling of lead-acid batteries has become the primary source of lead in much of the world. This has been important to the secondary lead industry as other uses have dwindled, e.g. lead based pigments, chemicals, fuel additives, solders and CRT glasses. Presently, battery manufacturing accounts for greater than 80% of lead consumption while recycled lead accounts for approximately the same market share of lead supply. These two facts strongly demonstrate the battery manufacturing and recycled lead are intimately coupled in everyday life. In this paper we will explore how recycled lead has become the material of choice for battery construction through the development of a recovery and refining process that exceeds the industries requirements. Particular focus will be on addressing the results presented by Prengaman on the effects of contaminant or tramp elements on gassing in lead-acid batteries. (author)

  2. International Space Station Lithium-Ion Main Battery Thermal Runaway Propagation Test

    Science.gov (United States)

    Dalton, Penni J.; North, Tim

    2017-01-01

    In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the aging Ni-H2 batteries on the primary Electric Power System (EPS). After the Boeing 787 Li-Ion battery fires, the NASA Engineering and Safety Center (NESC) Power Technical Discipline Team was tasked by ISS to investigate the possibility of Thermal Runaway Propagation (TRP) in all Li-Ion batteries used on the ISS. As part of that investigation, NESC funded a TRP test of an ISS EPS non-flight Li-Ion battery. The test was performed at NASA White Sands Test Facility in October 2016. This paper will discuss the work leading up to the test, the design of the test article, and the test results.

  3. Development of USES Specific Aptitude Test Battery for Waiter/Waitress, Informal (hotel & rest.) 311.477-030.

    Science.gov (United States)

    Oregon State Dept. of Human Resources, Salem.

    The United States Employment Service (USES) Specific Aptitude Test Battery (SATB) for Waiter/Waitress (Informal) is evaluated from three points of view: (1) technical adequacy of the research, (2) fairness to minorities, and (3) usefulness of the battery to Employment Service staff and employers in selecting individuals for training as…

  4. Redox-flow battery of actinide complexes

    International Nuclear Information System (INIS)

    Yamamura, Tomoo; Shiokawa, Yoshinobu

    2006-01-01

    Np battery and U battery were developed. We suggested that Np redox-flow battery should be (-)|Np 3+ ,Np 4+ ||NpO 2 + ,NpO 2 2+ |(+), and U battery (-)|[U III T 2 ] - ,[U IV T 2 ] 0 ||[U V O 2 T] - ,[U VI O 2 T] 0 |(+). The electromotive force at 50 % charge of Np and U battery is 1.10 V and 1.04 V, respectively. The energy efficiency of 70 mA/cm 2 of Np and U battery shows 99 % and 98 %, respectively. V redox-flow battery, electrode reactions of An battery, Np battery, U battery and future of U battery are described. The concept of V redox-flow battery, comparison of energy efficiency of Np, U and V battery, oxidation state and ionic species of 3d transition metals and main An, Purbe diagram of Np and U aqueous solution, shift of redox potential of β-diketones by pKa, and specifications of three redox-flow batteries are reported. (S.Y.)

  5. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  6. A low pressure bipolar nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  7. Lithium-thionyl chloride battery design concepts for maximized power applications

    Science.gov (United States)

    Kane, P.; Marincic, N.

    The need for primary batteries configured to deliver maximized power has been asserted by many different procuring activities. Battery Engineering Inc. has developed some specific design concepts and mastered some specialized techniques utilized in the production of this type of power source. The batteries have been successfully bench tested during the course of virtually all of these programs, with ultimate success coming in the form of two successful test launches under the USAF Plasma Effects Decoy Program. This paper briefly discusses some of these design concepts and the rationale behind them.

  8. Literature Circles and Primary Pupils' Literacy Development for ...

    African Journals Online (AJOL)

    The literacy goal of primary education system appears to be eluding Nigerians in spite of government's consistent reforms in the sector. Educators are worried about the increasingly low literacy attainment of school leavers, some of whom cannot read, write or converse meaningfully in the English Language. A few of them ...

  9. The development of metacognition in primary school learning environments

    NARCIS (Netherlands)

    de Jager, B; Jansen, M; Reezigt, G; Jansen, G.G.H.

    Constructivist ideas have influenced recent major innovations in Dutch secondary education and new curricula for reading and math in primary education, for example, pay much more attention to metacognition than before. In our study, we compared the growth of student metacognition in varying learning

  10. Developing Pedagogical Practices in Myanmar Primary Schools: Possibilities and Constraints

    Science.gov (United States)

    Hardman, Frank; Stoff, Christian; Aung, Wan; Elliott, Louise

    2016-01-01

    This paper presents the findings of a baseline study of pedagogic practices used by Myanmar primary teachers in the teaching of mathematics and Myanmar language at Grades 3 and 5. The main purpose of the baseline study was to inform the design of teacher education programmes and allow for subsequent evaluations of interventions designed to improve…

  11. Developing classroom formative assessment in dutch primary mathematics education

    NARCIS (Netherlands)

    van den Berg, M.; Harskamp, E.G.; Suhre, C.J.M.

    2016-01-01

    In the last two decades Dutch primary school students scored below expectation in international mathematics tests. An explanation for this may be that teachers fail to adequately assess their students’ understanding of learning goals and provide timely feedback. To improve the teachers’ formative

  12. Collaborative Lesson Planning as Professional Development for Beginning Primary Teachers

    Science.gov (United States)

    Bauml, Michelle

    2014-01-01

    This qualitative case study describes how one beginning primary grade teacher benefited from collaborative lesson-planning meetings with her grade-level colleagues. The teacher accumulated knowledge of curriculum, pedagogy, and professional contexts as she participated in planning meetings each week during her first year of teaching. Furthermore,…

  13. Batteries: Polymers switch for safety

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil

    2016-01-11

    Ensuring safety during operation is a major issue in the development of lithium-ion batteries. Coating the electrode current collector with thermoresponsive polymer composites is now shown to rapidly shut the battery down when it overheats, and to quickly resume its function when normal operating conditions return

  14. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  15. Occupational Stress and Professional Development of Primary School Teachers

    Directory of Open Access Journals (Sweden)

    Mateja Modrej

    2015-12-01

    Full Text Available The occupation of primary school teachers is considered one of the most stressful professions. The survey was used to determine the incidence of stress in 110 primary school teachers in urban and rural schools in Slovenia, depending on seniority. Its aim was to learn about stress symptoms, stressful situations and strategies to manage stress among teachers. The results show that teachers evaluate their work as a very responsible one and in majority do not think about changing their job. Teachers most often perceive physical and emotional symptoms of stress. They are faced with stressful situations when working with pupils, at their professional work, and in relations with colleagues, school management, and parents. When difficulties arise in their work, teachers most often turn for help to a colleague or the school management; and they manage their stress by going for a walk and talking to their friends.

  16. Development of units for change measurement of batteries at photovoltaic plant. Final report; Entwicklung von Einheiten zur Ladezustandserfassung von Batterien in PV-Anlagen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rothert, M.; Knorr, R.; Willer, B.

    1996-12-31

    The aim of the project was to contribute to enhanced service life and reliability of batteries in photovoltaic systems by developing further processes and components for charge measurement. The essential basic information in charge determination is the direct measurement of acid concentration in the electrolyte compartment of lead batteries and the evaluation and processing of this signal. Within the framework of this project, operative acidity sensors were developed and tested. They are accurate within an error margin of 0.5 per cent for short periods and of 2 per cent for long periods. A charge measurement unit based on the acid concentration reading was built and special algorithms for measuring charge were developed and tested. This unit stands out particularly because of the following: determination of dynamic charge, long-term stability, and automatic and regular adaptation to the type, size and age of the battery. Using this unit in combination with the acid concentration sensor in photovoltaic plant will permit more efficient plant operation and reliable protection of the battery. (orig./MM) [Deutsch] Ziel des Vorhabens war es, Massnahmen zur Verbesserung der Lebensdauer und Zuverlaessigkeit von Batterien in PV-Anlagen durch die konkrete Weiterentwicklung von Verfahren und Komponenten zur Ladezustandserfassung aufzuzeigen, durchzufuehren und zu demonstrieren. Die direkte Messung der Saeuredichte im Elektrolytraum von Bleibatterien sowie die Auswertung und Weiterverarbeitung dieses Signals bildet dabei die wesentliche Basisinformation. Im Rahmen des Vorhabens wurden funktionstuechtige Saeuredichtesensoren entwickelt und erprobt. Die dabei erreichte Genauigkeit betraegt im Kurzzeitbereich 0,5% und im Langzeitbereich ca. 2%. Eine Ladezustandseinheit basierend auf dem Saeuredichtesignal wurde aufgebaut und spezielle Algorithmen zur Ladezustandserfassung entwickelt und getestet. Besonders die Bestimmung des dynamischen Ladezustands, die Langzeitstabilitaet sowie

  17. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  18. Primary health care: a necessity in developing countries?

    Directory of Open Access Journals (Sweden)

    Evaezi Okpokoro

    2013-12-01

    Full Text Available Resource limited countries continue to be plagued with rising prevalence of malaria, tuberculosis, HIV/AIDS as well as other emerging diseases despite the huge financial support provided by bilateral and multilateral agencies to combat these diseases. While progress may have been made in reducing the global burden caused by these diseases on one hand, there has also been a weakening of the primary health care facility on the other hand which was the hallmark to the Alma Ata declaration of 1978. More attention has been placed on our global health needs while the diverse health needs of every community have been neglected. This fatal neglect at the community level highlights the need for the provision of specialize primary health care (PHC facilities which should not only be affordable, accessible and available, but be appropriate to the priority health needs of the community, especially at the rural level. Hence specialized PHC facilities will be tailored to meet the most pressing health needs of the communities it covers among other diseases. Consequently, this innovative approach will not only strengthen the primary health care system by improving wellbeing especially at the rural level but will also improve the outcome of vertical program at communities where it is most needed.

  19. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    Directory of Open Access Journals (Sweden)

    Oscar Rodrigo López-Vaca

    2012-01-01

    Full Text Available We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13 and vascular endothelial growth factor (VEGF. It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.

  20. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  1. Lithium-Ion Battery Management System: A Lifecycle Evaluation Model for the Use in the Development of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Sisodia Ayush

    2018-01-01

    Full Text Available The use of Lithium-ion batteries in the automobile sector has expanded drastically in the recent years. The foreseen increment of lithium to power electric and hybrid electric vehicles has provoked specialists to analyze the long term credibility of lithium as a transportation asset. To give a better picture of future accessibility, this paper exhibits a life cycle model for the key procedures and materials associated with the electric vehicle lithium-ion battery life cycle, on a worldwide scale. This model tracks the flow of lithium and energy sources from extraction, to generation, to on road utilization, and the role of reusing and scrapping. This life cycle evaluation model is the initial phase in building up an examination model for the lithium ion battery production that would enable the policymakers to survey the future importance of lithium battery recycling, and when in time setting up a reusing foundation be made necessary.

  2. Development and Exemplification of a Model for Teacher Assessment in Primary Science

    Science.gov (United States)

    Davies, D. J.; Earle, S.; McMahon, K.; Howe, A.; Collier, C.

    2017-01-01

    The Teacher Assessment in Primary Science project is funded by the Primary Science Teaching Trust and based at Bath Spa University. The study aims to develop a whole-school model of valid, reliable and manageable teacher assessment to inform practice and make a positive impact on primary-aged children's learning in science. The model is based on a…

  3. Modeling Temperature Development of Li-Ion Battery Packs in Hybrid Refuse Truck Operating at Different Ambient Conditions

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures.......This paper presents a dynamic model for simulating the heat dissipation and the impact of Phase Change Materials (PCMs) on the peak temperature in Lithium-ion batteries during discharging operation of a hybrid truck under different ambient temperatures....

  4. Development of Effective Academic Affairs Administration System in Thai Primary Schools

    Science.gov (United States)

    Thongnoi, Niratchakorn; Srisa-ard, Boonchom; Sri-ampai, Anan

    2013-01-01

    This research aimed to: 1) study current situations and problems of academic affairs administration system in Primary Schools. 2) develop an effective academic affairs administration system, and 3) evaluate the implementation of the developed system in the primary school, Thailand. Research and Development (R&D) was employed which consisted of…

  5. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  6. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  7. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Progress achieved under ANL Contract No. 31-109-38-4248 from 16 August 1978 to 16 August 1979 is reported. The first segment of the overall program, component development, consists of four basic tasks proceeding in parallel: nickel electrode development, zinc electrode development, separator development, and sealed cell development. Each of these tasks is reported herein on a self-contained basis. System engineering is the second major subdivision of the effort. It includes the design and testing of all cells, the investigation of charge control devices and techniques, and the complete analysis of all cells for failure modes. It also encompasses the accelerated testing of 20-Ah cells. To date, large numbers of these cells (incorporating separator variations, active material additives and internal design variations) have been subjected to this type of testing. 48 figures, 47 tables. (RWR)

  8. Process development report: 0.20-m primary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1978-09-01

    HTGR reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite, separating the fissile and fertile particles, crushing and burning the SiC-coated fuel particles to remove the remainder of the carbon, dissolution and separation of the particles from insoluble materials, and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel elements is accomplished in a primary burner. This is a batch-continuous, fluidized-bed process utilizing above-bed gravity fines recycle. In gas-solid separation, a combination of a cyclone and porous metal filters is used. This report documents operational tests performed on a 0.20-m primary burner using crushed fuel representative of both Fort St. Vrain and large high-temperature gas-cooled reactor cores. The burner was reconstructed to a gravity fines recycle mode prior to beginning these tests. Results of two separate and successful 48-hour burner runs and several short-term runs have indicated the operability of this concept. Recommendations are made for future work

  9. Developing consumer involvement in rural HIV primary care programmes.

    Science.gov (United States)

    Mamary, Edward M; Toevs, Kim; Burnworth, Karla B; Becker, Lin

    2004-06-01

    As part of a broader medical and psychosocial needs assessment in a rural region of northern California, USA, five focus groups were conducted to explore innovative approaches to creating a system of consumer involvement in the delivery of HIV primary care services in the region. A total of five focus groups (n = 30) were conducted with clients from three of five counties in the region with the highest number of HIV patients receiving primary care. Participants were recruited by their HIV case managers. They were adults living with HIV, who were receiving health care, and who resided in a rural mountain region of northern California. Group discussions explored ideas for new strategies and examined traditional methods of consumer involvement, considering ways they could be adapted for a rural environment. Recommendations for consumer involvement included a multi-method approach consisting of traditional written surveys, a formal advisory group, and monthly consumer led social support/informal input groups. Specific challenges discussed included winter weather conditions, transportation barriers, physical limitations, confidentiality concerns, and needs for social support and education. A multiple-method approach would ensure more comprehensive consumer involvement in the programme planning process. It is also evident that methods for incorporating consumer involvement must be adapted to the specific context and circumstances of a given programme.

  10. Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP)

    Science.gov (United States)

    Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.

    2017-10-01

    In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.

  11. Shutdown Chemistry Process Development for PWR Primary System

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.B. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This study report presents the shutdown chemistry of PWR primary system to reduce and remove the radioactive corrosion products which were deposited on the nuclear fuel rods surface and the outside of core like steam generator channel head, RCS pipings etc. The major research results are the follows ; the deposition radioactive mechanism of corrosion products, the radiochemical composition, the condition of coolant chemistry to promote the dissolution of radioactive cobalt and nickel ferrite, the control method of dissolved hydrogen concentration in the coolant by the mechanical and chemical methods. The another part of study is to investigate the removal characteristics of corrosion product ions and particles by the demineralization system to suggest the method which the system could be operate effectively in shut-down purification period. (author). 19 refs., 25 figs., 48 tabs.

  12. Progress in aqueous rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Jilei Liu

    2018-01-01

    Full Text Available Over the past decades, a series of aqueous rechargeable batteries (ARBs were explored, investigated and demonstrated. Among them, aqueous rechargeable alkali-metal ion (Li+, Na+, K+ batteries, aqueous rechargeable-metal ion (Zn2+, Mg2+, Ca2+, Al3+ batteries and aqueous rechargeable hybrid batteries are standing out due to peculiar properties. In this review, we focus on the fundamental basics of these batteries, and discuss the scientific and/or technological achievements and challenges. By critically reviewing state-of-the-art technologies and the most promising results so far, we aim to analyze the benefits of ARBs and the critical issues to be addressed, and to promote better development of ARBs.

  13. Development and validation of a primary sclerosing cholangitis-specific patient-reported outcomes instrument: The PSC PRO.

    Science.gov (United States)

    Younossi, Zobair M; Afendy, Arian; Stepanova, Maria; Racila, Andrei; Nader, Fatema; Gomel, Rachel; Safer, Ricky; Lenderking, William R; Skalicky, Anne; Kleinman, Leah; Myers, Robert P; Subramanian, G Mani; McHutchison, John G; Levy, Cynthia; Bowlus, Christopher L; Kowdley, Kris; Muir, Andrew J

    2017-11-20

    Primary sclerosing cholangitis (PSC) is a chronic liver disease associated with inflammation and biliary fibrosis that leads to cholangitis, cirrhosis, and impaired quality of life. Our objective was to develop and validate a PSC-specific patient-reported outcome (PRO) instrument. We developed a 42-item PSC PRO instrument that contains two modules (Symptoms and Impact of Symptoms) and conducted an external validation. Reliability and validity were evaluated using clinical data and a battery of other validated instruments. Test-retest reliability was assessed in a subgroup of patients who repeated the PSC PRO after the first administration. One hundred two PSC subjects (44 ± 13 years; 32% male, 74% employed, 39% with cirrhosis, 14% with a history of decompensated cirrhosis, 38% history of depression, and 68% with inflammatory bowel disease [IBD]) completed PSC PRO and other PRO instruments (Short Form 36 V2 [SF-36], Chronic Liver Disease Questionnaire [CLDQ], Primary Biliary Cholangitis - 40 [PBC-40], and five dimensions [5-D Itch]). PSC PRO demonstrated excellent internal consistency (Cronbach alphas, 0.84-0.94) and discriminant validity (41 of 42 items had the highest correlations with their own domains). There were good correlations between PSC PRO domains and relevant domains of SF-36, CLDQ, and PBC-40 (R = 0.69-0.90; all P 0.05). Test-retest reliability was assessed in 53 subjects who repeated PSC PRO within a median (interquartile range) of 37 (27-47) days. There was excellent reliability for most domains with intraclass correlations (0.71-0.88; all P < 0.001). PSC PRO is a self-administered disease-specific instrument developed according to U.S. Food and Drug Administration guidelines. This preliminary validation study suggests good psychometric properties. Further validation of the instrument in a larger and more diverse sample of PSC patients is needed. (Hepatology 2017). © 2017 by the American Association for the Study of Liver Diseases.

  14. Development of Software and Strategies for Battery Management System Testing on HIL Simulator

    DEFF Research Database (Denmark)

    Fleischer, Christian; Sauer, Dirk Uwe; Barreras, Jorge Varela

    2016-01-01

    of complexity of the tests, the higher the demands for ad hoc development of SW and strategies. With regard to the latter, there is not a universal definition and there are different points of view. Therefore different strategies may be followed, which can be classified into many different ways according...

  15. Slim Battery Modelling Features

    Science.gov (United States)

    Borthomieu, Y.; Prevot, D.

    2011-10-01

    Saft has developed a life prediction model for VES and MPS cells and batteries. The Saft Li-ion Model (SLIM) is a macroscopic electrochemical model based on energy (global at cell level). The main purpose is to predict the battery performances during the life for GEO, MEO and LEO missions. This model is based on electrochemical characteristics such as Energy, Capacity, EMF, Internal resistance, end of charge voltage. It uses fading and calendar law effects on energy and internal impedance vs. time, temperature, End of Charge voltage. Based on the mission profile, satellite power system characteristics, the model proposes the various battery configurations. For each configuration, the model gives the battery performances using mission figures and profiles: power, duration, DOD, end of charge voltages, temperatures during eclipses and solstices, thermal dissipations and cell failures. For the GEO/MEO missions, eclipse and solstice periods can include specific profile such as plasmic propulsion fires and specific balancing operations. For LEO missions, the model is able to simulate high power peaks to predict radar pulses. Saft's main customers have been using the SLIM model available in house for two years. The purpose is to have the satellite builder power engineers able to perform by themselves in the battery pre-dimensioning activities their own battery simulations. The simulations can be shared with Saft engineers to refine the power system designs. This model has been correlated with existing life and calendar tests performed on all the VES and MPS cells. In comparing with more than 10 year lasting life tests, the accuracy of the model from a voltage point of view is less than 10 mV at end Of Life. In addition, thethe comparison with in-orbit data has been also done. b This paper will present the main features of the SLIM software and outputs comparison with real life tests. b0

  16. Bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Schmal, D.; Saakes, M.; Veen, W.R. ter; Raadschelders, J.W.; Have, P.T.J.H. ten

    2000-01-01

    In hybrid electric vehicles (HEV) the requirements on batteries are very different from those for battery electric vehicles (BEV). A high power (bipolar) lead-acid battery could be a good alternative for other types of batteries under development for this application. It is potentially cheap and

  17. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2012-11-15

    ... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal... primary and secondary lithium cells or lithium batteries internationally, or to and from an APO, FPO, or... prohibited the mailing of lithium batteries and cells internationally and when sent to and from any Army Post...

  18. Development of forging technology for PWR primary piping

    International Nuclear Information System (INIS)

    Morin, F.; Badeau, J.P.; Lambs, R.

    1996-01-01

    The purpose of this presentation is to give information on the changes in the design and manufacture of Primary Piping for electronuclear boilers of the Pressurized Water Reactor type (PWR) which has resulted in the making of one-piece forged lines including stub pipes and arcs. The optimization of these items is aimed at improving the life of the new power stations as well as guaranteeing their safety, while reducing inspection and maintenance requirements in service. The demonstration of the manufacturing feasibility has just been completed. It has taken material form in the installation, on the CIVAUX 1 section, of the first one-piece cold leg in the world. It will shortly be followed by the installation on the CIVAUX 2 section of a complete loop of bent forged pipes. Therefore, this new know-how is going to be incorporated in the French Rules (RCC-M) and can be directly taken into consideration both in the next work to be done and in the design and definition of a future nuclear reactor

  19. Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency

    OpenAIRE

    Francoise Nemry; Guillaume Leduc; Almudena Muñoz

    2009-01-01

    This technical note is a first contribution from IPTS to a JRC more integrated assessment of future penetration pathways of new vehicles technologies in the EU27 market and of their impacts on energy security, GHG emissions and on the economy. The present report focuses on battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). It provides a general overview of the current state of the research and development about the concerned technologies and builds some first estim...

  20. Lithium-thionyl chloride batteries - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    McCartney, J.F.; Lund, T.J.; Sturgeon, W.J.

    1980-02-01

    Lithium based batteries have the highest theoretical energy density of known battery types. Of the lithium batteries, the lithium-thionyl chloride electrochemistry has the highest energy density of those which have been reduced to practice. The characteristics, development status, and performance of lithium-thionyl chloride batteries are treated in this paper. Safety aspects of lithium-thionyl chloride batteries are discussed along with impressive results of hazard/safety tests of these batteries. An orderly development plan of a minimum family of standard cells to avoid a proliferation of battery sizes and discharge rates is presented.

  1. Developing a facilitation model to promote organisational development in primary care practices.

    Science.gov (United States)

    Rhydderch, Melody; Edwards, Adrian; Marshall, Martin; Elwyn, Glyn; Grol, Richard

    2006-06-19

    The relationship between effective organisation of general practices and health improvement is widely accepted. The Maturity Matrix is an instrument designed to assess organisational development in general practice settings and to stimulate quality improvement. It is undertaken by a practice team with the aid of a facilitator. There is a tradition in the primary care systems in many countries of using practice visitors to educate practice teams about how to improve. However the role of practice visitors as facilitators who enable teams to plan practice-led organisational development using quality improvement instruments is less well understood. The objectives of the study were to develop and explore a facilitation model to support practice teams in stimulating organisational development using a quality improvement instrument called the Maturity Matrix. A qualitative study based on transcript analysis was adopted. A model of facilitation was constructed based on a review of relevant literature. Audio tapes of Maturity Matrix assessment sessions with general practices were transcribed and facilitator skills were compared to the model. The sample consisted of two facilitators working with twelve general practices based in UK primary care. The facilitation model suggested that four areas describing eighteen skills were important. The four areas are structuring the session, obtaining consensus, handling group dynamics and enabling team learning. Facilitators effectively employed skills associated with the first three areas, but less able to consistently stimulate team learning. This study suggests that facilitators need careful preparation for their role and practices need protected time in order to make best use of practice-led quality improvement instruments. The role of practice visitor as a facilitator is becoming important as the need to engender ownership of the quality improvement process by practices increases.

  2. Developing a facilitation model to promote organisational development in primary care practices

    Directory of Open Access Journals (Sweden)

    Elwyn Glyn

    2006-06-01

    Full Text Available Abstract Background The relationship between effective organisation of general practices and health improvement is widely accepted. The Maturity Matrix is an instrument designed to assess organisational development in general practice settings and to stimulate quality improvement. It is undertaken by a practice team with the aid of a facilitator. There is a tradition in the primary care systems in many countries of using practice visitors to educate practice teams about how to improve. However the role of practice visitors as facilitators who enable teams to plan practice-led organisational development using quality improvement instruments is less well understood. The objectives of the study were to develop and explore a facilitation model to support practice teams in stimulating organisational development using a quality improvement instrument called the Maturity Matrix. A qualitative study based on transcript analysis was adopted. Method A model of facilitation was constructed based on a review of relevant literature. Audio tapes of Maturity Matrix assessment sessions with general practices were transcribed and facilitator skills were compared to the model. The sample consisted of two facilitators working with twelve general practices based in UK primary care. Results The facilitation model suggested that four areas describing eighteen skills were important. The four areas are structuring the session, obtaining consensus, handling group dynamics and enabling team learning. Facilitators effectively employed skills associated with the first three areas, but less able to consistently stimulate team learning. Conclusion This study suggests that facilitators need careful preparation for their role and practices need protected time in order to make best use of practice-led quality improvement instruments. The role of practice visitor as a facilitator is becoming important as the need to engender ownership of the quality improvement process by

  3. Pubertal breast development in primary school girls in Sokoto, North ...

    African Journals Online (AJOL)

    conducted on African children living in Africa.[13,14] The influence of ... breast development and menarche, and to determine the influence of nutrition and ethnicity ... 5 University of Nigeria Teaching Hospital, Enugu, Nigeria. Corresponding ...

  4. Resilience and professional development for primary school teachers

    OpenAIRE

    Dulc, Tjaša

    2016-01-01

    A teacher’s professional role is becoming more and more demanding, therefore resiliency has become one of the important aspects of the quality of a teacher’s work and their professional development. Resiliency in the teaching environment means not only resistance from stress but also knowing how to face it. Despite teachers’ taking part in several courses that help them grow professionally and develop themselves, there remains a question in what extent and in what way these courses help teach...

  5. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  6. Report on achievements in technological development in fiscal 1999. Development of technology to put photovoltaic power generation system into practical use (Research and development of high reliability storage batteries for photovoltaic power generation use); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Kenkyu kaihatsu kanri (taiyoko hatsuden'yo chikudenchi kaihatsu bukai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Storage batteries used in household photovoltaic systems must be free of electrolyte leakage and maintenance, and be readily installable in residential houses. Lead-acid batteries that can meet these requirements and have been put into practical use may include the sealed storage batteries. However, these batteries currently in use have drawbacks in life performance and price. Therefore, development is under way on lead-acid batteries for household photovoltaic systems by improving said sealed lead-acid batteries. The targeted batteries should have as long life as passing 3,000 cycles under a condition of 0.1 to 1 CA discharge (at depth of discharge of 50%), energy density of more than 70 Wh per liter, and cost of 12 yen or lower per watt-hour. A prototype battery as the final candidate was fabricated, that uses silica powder as the electrolyte retainer (silica powder filled between plates, and into clearance between plate groups), pasted plates made of expanded metal grids for positive plates, and micro conductive network plates with increased addition amount of carbon to micro active material (PbO{sub 2}) as negative plates. Life performance testes thereon are being performed. This lead-acid battery is estimated to be capable of satisfying the intended performance based on the result of discussions having been made so far. (NEDO)

  7. Testing ESL pragmatics development and validation of a web-based assessment battery

    CERN Document Server

    Roever, Carsten

    2014-01-01

    Although second language learners' pragmatic competence (their ability to use language in context) is an essential part of their general communicative competence, it has not been a part of second language tests. This book helps fill this gap by describing the development and validation of a web-based test of ESL pragmalinguistics. The instrument assesses learners' knowledge of routine formulae, speech acts, and implicature in 36 multiple-choice and brief-response items. The test's quantitative and qualitative validation with 300 learners showed high reliability and provided strong evidence of

  8. Testing ESL sociopragmatics development and validation of a web-based test battery

    CERN Document Server

    Roever, Carsten; Elder, Catherine

    2014-01-01

    Testing of second language pragmatics has grown as a research area but still suffers from a tension between construct coverage and practicality. In this book, the authors describe the development and validation of a web-based test of second language pragmatics for learners of English. The test has a sociopragmatic orientation and strives for a broad coverage of the construct by assessing learners'' metapragmatic judgments as well as their ability to co-construct discourse. To ensure practicality, the test is delivered online and is scored partially automatically and partially by human raters.

  9. Development of an educational tool to teach primary school pupils multiplication tables

    CSIR Research Space (South Africa)

    Smith, S

    2015-11-01

    Full Text Available This work addresses the need for the development of skills and interest in mathematics, particularly for students in the early years of primary school where core mathematical knowledge is formed. The development and implementation of Maths Mat...

  10. Nickel-hydrogen battery; Nikkeru/suiso batteri

    Energy Technology Data Exchange (ETDEWEB)

    Kuwajima, S. [National Space Development Agency, Tokyo (Japan)

    1996-07-01

    In artificial satellites, electric power is supplied from batteries loaded on them, when sun light can not be rayed on the event of equinoxes. Thus, research and development was started as early as 1970s for light and long-life batteries. Nickel-hydrogen batteries have been used on practical satellites since middle of 1980s. Whereas the cathode reaction of this battery is the same as that of a conventional nickel-cadmium battery, the anode reaction is different in that it involves decomposition and formation of water, generating hydrogen and consuming it. Hydrogen is stored in a state of pressurized gas within the battery vessel. The shape of this vessel is of a bomb, whose size for the one with capacity of 35 Ah is 8cm in diameter and 18cm in length. On a satellite, this one is assembled into a set of 16 ones. National Space Development Agency of Japan has been conducting the evaluation test for nickel-hydrogen batteries in a long term range. It was made clear that the life-determinant factor is related to the inner electrode, not to the vessel. Performance data on long-term endurance of materials to be used have been accumulated also in the agency. 2 figs.

  11. Intelligent automotive battery systems

    Science.gov (United States)

    Witehira, P.

    A single power-supply battery is incompatible with modern vehicles. A one-cmbination 12 cell/12 V battery, developed by Power Beat International Limited (PBIL), is described. The battery is designed to be a 'drop in' replacement for existing batteries. The cell structures, however, are designed according to load function, i.e., high-current shallow-discharge cycles and low-current deep-discharge cycles. The preferred energy discharge management logic and integration into the power distribution network of the vehicle to provide safe user-friendly usage is described. The system is designed to operate transparent to the vehicle user. The integrity of the volatile high-current cells is maintained by temperature-sensitive voltage control and discharge management. The deep-cycle cells can be fully utilized without affecting startability under extreme conditions. Electric energy management synchronization with engine starting will provide at least 6% overall reduction in hydrocarbon emissions using an intelligent on-board power-supply technology developed by PBIL.

  12. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  13. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  14. Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report for 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This is the first annual report describing progress in the 33-month cooperative program between Argonne National Laboratory and Gould Inc.'s Nickel-Zinc/Electric Vehicle Project. The purpose of the program is to demonstrate the technical and economic feasibility of the nickel-zinc battery for electric vehicle propulsion. The successful completion of the program will qualify the nickel-zinc battery for use in the Department of Energy's demonstration program under the auspices of Public Law 94-413.

  15. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding ageing...... of degradation processes. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in EV. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary...

  16. Research and development of peripheral technology for photovoltaic power systems. Research and development of redox flow battery for photovoltaic power generation; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo redox denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of redox flow battery for photovoltaic power generation in fiscal 1994. (1) On the production method of electrolyte, silica reduction treatment was attempted to use ammonium metavanadate recovered from boiler as electrolyte of redox flow battery. Silica removal rates more than 90% were achieved by crystallizing V as polyvanadate while keeping molten silica. It was ascertained in minicell experiment that trivalent and quadrivalent V electrolytes produced from recovered V are applicable to continuous charge/discharge operation for one week. (2) On development of battery systems, the relation between battery characteristics and physicochemical properties of carbon fiber electrodes was studied to improve carbon fiber electrodes. The efficiency of 80% was achieved at current density of 160mA/cm{sup 2} by use of layered electrodes, resulting in considerable cost reduction. Performance evaluation operation of the 2kW battery prepared in the last fiscal year was also carried out. 4 figs.

  17. Nickel - iron battery. Nikkel - jern batteri

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H. A.

    1989-03-15

    A newer type of nickel-iron battery, (SAFT 6v 230 Ah monobloc), which could possibly be used in relation to electrically driven light road vehicles, was tested. The same test methods used for lead batteries were utilized and results compared favourably with those reached during other testings carried out, abroad, on a SAFT nickle-iron battery and a SAB-NIFE nickel-iron battery. Description (in English) of the latter-named tests are included in the publication as is also a presentation of the SAFT battery. Testing showed that this type of battery did not last as long as had been expected, but the density of energy and effect was superior to lead batteries. However energy efficiency was rather poor in comparison to lead batteries and it was concluded that nickel-iron batteries are not suitable for stationary systems where recharging under a constant voltage is necessary. (AB).

  18. Features of Graphomotor Skills Development in Primary School Children

    Directory of Open Access Journals (Sweden)

    Kuzeva O.V.

    2017-08-01

    Full Text Available The results of the study of serial graphic skills and writing formation in elementary school children are represented in the article. Special characteristics of the development of these skills in 7 and 9 years old children in norm and with learning disabilities (LD were found using computerized experimental methods and general neuropsychological diagnostics. Third-formers in norm achieve significant results in the development of graphomotor skills and writing while children with LD have difficulties in its automating. 1st grade students with LD show complex cognitive difficulties that influence the formation of graphomotor skills and handwriting, in the 3d grade tempo characteristics and quality of writing primarily suffer. The main reason of such dysfunction is the decrease of serial organization of movements, planning and control functions, as well as the deficit of neurodynamic components of activity.

  19. Developing supplemental activities for primary health care maternity services.

    Science.gov (United States)

    Panitz, E

    1990-12-01

    Supplemental health care activities are described in the context of the augmented product. The potential benefits of supplemental services to recipients and provider are discussed. The author describes a study that was the basis for (re)developing a supplemental maternity service. The implementation of the results in terms of changes in the marketing mix of this supplemental program is discussed. The effects of the marketing mix changes on program participation are presented.

  20. Development and application of an actively controlled hybrid proton exchange membrane fuel cell - Lithium-ion battery laboratory test-bed based on off-the-shelf components

    Energy Technology Data Exchange (ETDEWEB)

    Yufit, V.; Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College, London SW7 2AZ (United Kingdom)

    2011-01-15

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system. (author)

  1. Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems

    NARCIS (Netherlands)

    Notten, P.H.L.; Danilov, D.L.

    Fundamental physical and (electro) chemical principles of rechargeable battery operation form the basis of the electronic network models developed for Nickel-based aqueous battery systems, including Nickel Metal Hydride (NiMH), and non-aqueous battery systems, such as the well-known Li-ion. Refined

  2. Development, modeling and research of the system of automatic control and equalization of the charge state of a battery pack of a hybrid engine of a vehicle

    Science.gov (United States)

    Bakhmutov, S.; Sizov, Y.; Kim, M.

    2018-02-01

    The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.

  3. Analysis of lithium/thionyl chloride batteries

    Science.gov (United States)

    Jain, Mukul

    The lithium/thionyl chloride battery (Li/SOClsb2) has received considerable attention as a primary energy source due to its high energy density, high operating cell voltage, voltage stability over 95% of the discharge, large operating temperature range (-55sp°C to 70sp°C), long storage life, and low cost of materials. In this dissertation, a one-dimensional mathematical model of a spirally wound lithium/thionyl chloride primary battery has been developed. Mathematical models can be used to tailor a battery design to a specific application, perform accelerated testing, and reduce the amount of experimental data required to yield efficient, yet safe cells. The Model was used in conjunction with the experimental data for parameter estimation and to obtain insights into the fundamental processes occurring in the battery. The diffusion coefficient and the kinetic parameters for the reactions at the anode and the cathode are obtained as a function of temperature by fitting the simulated capacity and average cell voltage to experimental data over a wide range of temperatures (-55 to 49sp°C) and discharge loads (10 to 250 ohms). The experiments were performed on D-sized, cathode-limited, spirally wound lithium/thionyl chloride cells at Sandia National Laboratories. The model is also used to study the effect of cathode thickness and current and temperature pulsing on the cell capacity. Thionyl chloride reduction in the porous cathode is accompanied with a volume reduction. The material balance used previously in one-dimensional mathematical models of porous electrodes is invalid when the volume occupied by the reactants and the products is not equal. It is shown here how the material balance has to be modified to either account for the loss in volume, or to account for the inflow of electrolyte from the header into the active pores. The one-dimensional mathematical model of lithium/thionyl chloride primary battery is used to illustrate the effect of this material balance

  4. Genetics of primary ovarian insufficiency: new developments and opportunities.

    Science.gov (United States)

    Qin, Yingying; Jiao, Xue; Simpson, Joe Leigh; Chen, Zi-Jiang

    2015-01-01

    Primary ovarian insufficiency (POI) is characterized by marked heterogeneity, but with a significant genetic contribution. Identifying exact causative genes has been challenging, with many discoveries not replicated. It is timely to take stock of the field, outlining the progress made, framing the controversies and anticipating future directions in elucidating the genetics of POI. A search for original articles published up to May 2015 was performed using PubMed and Google Scholar, identifying studies on the genetic etiology of POI. Studies were included if chromosomal analysis, candidate gene screening and a genome-wide study were conducted. Articles identified were restricted to English language full-text papers. Chromosomal abnormalities have long been recognized as a frequent cause of POI, with a currently estimated prevalence of 10-13%. Using the traditional karyotype methodology, monosomy X, mosaicism, X chromosome deletions and rearrangements, X-autosome translocations, and isochromosomes have been detected. Based on candidate gene studies, single gene perturbations unequivocally having a deleterious effect in at least one population include Bone morphogenetic protein 15 (BMP15), Progesterone receptor membrane component 1 (PGRMC1), and Fragile X mental retardation 1 (FMR1) premutation on the X chromosome; Growth differentiation factor 9 (GDF9), Folliculogenesis specific bHLH transcription factor (FIGLA), Newborn ovary homeobox gene (NOBOX), Nuclear receptor subfamily 5, group A, member 1 (NR5A1) and Nanos homolog 3 (NANOS3) seem likely as well, but mostly being found in no more than 1-2% of a single population studied. Whole genome approaches have utilized genome-wide association studies (GWAS) to reveal loci not predicted on the basis of a candidate gene, but it remains difficult to locate causative genes and susceptible loci were not always replicated. Cytogenomic methods (array CGH) have identified other regions of interest but studies have not shown

  5. Hybrid wind–photovoltaic–diesel–battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland

    International Nuclear Information System (INIS)

    Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.

    2015-01-01

    Highlights: • Methods of sizing a hybrid wind–photovoltaic–diesel–battery system is described. • The hybrid system components are modelled using empirical data. • Twenty years lifecycle cost of the hybrid system is considered. • The trade-offs between battery storage capacity and diesel fuel usage is studied. • A hybrid system sizing tool has been developed as a graphical user interface (GUI). - Abstract: The concept of off-grid hybrid wind energy system is financially attractive and more reliable than stand-alone power systems since it is based on more than one electricity generation source. One of the most expensive components in a stand-alone wind-power system is the energy storage system as very often it is oversized to increase system autonomy. In this work, we consider a hybrid system which consists of wind turbines, photovoltaic panels, diesel generator and battery storage. One of the main challenges experienced by project managers is the sizing of components for different sites. This challenge is due to the variability of the renewable energy resource and the load demand for different sites. This paper introduces a sizing model that has been developed and implemented as a graphical user interface, which predicts the optimum configuration of a hybrid system. In particular, this paper focuses on seeking the optimal size of the batteries and the diesel generator usage. Both of these components are seen to be trade-offs from each other. The model simulates real time operation of the hybrid system, using the annual measured hourly wind speed and solar irradiation. The benefit of using time series approach is that it reflects a more realistic situation; here, the peaks and troughs of the renewable energy resource are a central part of the sizing model. Finally, load sensitivity and hybrid system performance analysis are demonstrated.

  6. Development of affective modelling competencies in primary school learners

    Directory of Open Access Journals (Sweden)

    Piera Biccard

    2011-09-01

    Full Text Available Learner affect and beliefs about mathematics are complex and multifaceted aspects of mathematical learning. Traditional teaching and learning approaches in mathematics education often result in problematic beliefs about mathematics. Since beliefs influence what learners learn and how they deal with learning mathematics, it is essential that the roles of beliefs and affect in mathematics classrooms are carefully examined. In solving modelling problems, learners and teachers take on new roles in the classroom: learners are placed in an active, self-directing situation in which they solve real-world problems. When learners engage in modelling tasks, they display and integrate cognitive, meta-cognitive and affective competencies. A modelling approach therefore allows one to detect learner beliefs in an authentic learning environment. Will this environment lead to students having more positive and productive dispositions towards mathematics? This article presents partial results of a study documenting the development of modelling competencies in learners working in groups over a period of 12 weeks. Through a design research approach, 12 learners working in groups solved three modelling problems, and transcriptions of learner interactions, questionnaires and informal interviews revealed that learner beliefs improved over this short period when exposed to modelling tasks. The results are encouraging, and may provide mathematics education with an avenue to develop more positive learner beliefs in mathematics.

  7. Vision first? The development of primary visual cortical networks is more rapid than the development of primary motor networks in humans.

    Directory of Open Access Journals (Sweden)

    Patricia Gervan

    Full Text Available The development of cortical functions and the capacity of the mature brain to learn are largely determined by the establishment and maintenance of neocortical networks. Here we address the human development of long-range connectivity in primary visual and motor cortices, using well-established behavioral measures--a Contour Integration test and a Finger-tapping task--that have been shown to be related to these specific primary areas, and the long-range neural connectivity within those. Possible confounding factors, such as different task requirements (complexity, cognitive load are eliminated by using these tasks in a learning paradigm. We find that there is a temporal lag between the developmental timing of primary sensory vs. motor areas with an advantage of visual development; we also confirm that human development is very slow in both cases, and that there is a retained capacity for practice induced plastic changes in adults. This pattern of results seems to point to human-specific development of the "canonical circuits" of primary sensory and motor cortices, probably reflecting the ecological requirements of human life.

  8. Various Occupations in the Iron and Steel Industry. Technical Report on Development of USTES Aptitude Test Batteries.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  9. Cutting-and-Creasing Pressman (paper goods) 649.782--Technical Report on Development of USTES Aptitude Test Battery.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  10. Modeling Temperature Development of Li-ion Battery Packs using Phase Change Materials (PCM) and Fluid Flow

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat generation and the impact of Phase Change Materials (PCMs) on the maximum temperature in LiFePO4 battery cells. The model is constructed by coupling a one-dimensional electro-chemical model with a two-dimensional thermal model and fluid...

  11. Shaping the future: a primary care research and development strategy for Scotland.

    Science.gov (United States)

    Hannaford, P; Hunt, J; Sullivan, F; Wyke, S

    1999-09-01

    Primary care is at the centre of the National Health Service (NHS) in Scotland; however, its R & D capacity is insufficiently developed. R&D is a potentially powerful way of improving the health and well-being of the population, and of securing high quality care for those who need it. In order to achieve this, any Scottish strategy for primary care R&D should aim to develop both a knowledge-based service and a research culture in primary care. In this way, decisions will be made based upon best available evidence, whatever the context. Building on existing practice and resources within primary care research, this strategy for achieving a thriving research culture in Scottish primary care has three key components: A Scottish School of Primary Care which will stimulate and co-ordinate a cohesive programme of research and training. A comprehensive system of funding for training and career development which will ensure access to a range of research training which will ensure that Scotland secures effective leadership for its primary care R&D. Designated research and development practices (DRDPs) which will build on the work of existing research practices, in the context of Local Health Care Co-operatives (LHCCs) and Primary Care Trusts (PCTs), to create a co-operative environment in which a range of primary care professionals can work together to improve their personal and teams' research skills, and to support research development in their areas. A modest investment will create substantial increases in both the quality and quantity of research being undertaken in primary care. This investment should be targeted at both existing primary care professionals working in service settings in primary care, LHCCs and PCTs, and at centres of excellence (including University departments). A dual approach will foster collaboration and will allow existing centres of excellence both to undertake more primary care research and to support the development of service based primary care

  12. Development of CANDU 6 Primary Heat Transport System Modeling Program

    International Nuclear Information System (INIS)

    Seo, Hyung-beom; Kim, Sung-min; Park, Joong-woo; Kim, Kwang-su; Ko, Dae-hack; Han, Bong-seob

    2007-01-01

    NUCIRC is a steady-state thermal-hydraulic code used for design and performance analyses of CANDU Heat Transport System. The code is used to build PHT model in Wolsong NPP and to calculate channel flow distribution. Wolsong NPP has to calculate channel flow distribution and quality of coolant at the ROH header after every outage by OPP (Operating Policy and Principal). PHT modeling work is time consuming which need a lot of operation experience and specialty. It is very difficult to build PHT model as plant operator in two weeks which is obligate for plant operation after every outage. That is why Wolsong NPP develop NUMODEL (NUcirc MODELing) with many-years experience and a know-how of using NUCIRC code. NUMODEL is computer program which is used to create PHT model based on utilizing NUCIRC code

  13. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  14. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  15. Batteries for energy storage. Examples, strategies, solutions

    International Nuclear Information System (INIS)

    Fahlbusch, Eckhard

    2015-01-01

    This book presents the variety of battery technologies and describes their mobile and stationary applications and uses. The major social project of the energy transition requires a holistic approach that takes into account especially the issues of energy saving and efficiency in addition to the power generation and distribution from renewable resources. In addition, the book provides an outlook on the further development possibilities of battery technology and battery applications. Improved battery technology is an important factor to help electromobility and stationary applications of batteries as distributed energy storage breakthrough. Not least, the importance and the need for the recycling of batteries and the variety of battery technologies are presented that have the greatest importance in terms of resource conservation and resource security. [de

  16. Identification and modelling of Lithium ion battery

    International Nuclear Information System (INIS)

    Tsang, K.M.; Sun, L.; Chan, W.L.

    2010-01-01

    A universal battery model for the charging process has been identified for Lithium ion battery working at constant temperature. Mathematical models are fitted to different collected charging profiles using the least squares algorithm. With the removal of the component which is related to the DC resistance of the battery, a universal model can be fitted to predict profiles of different charging rates after time scaling. Experimental results are included to demonstrate the goodness of fit of the model at different charging rates and for batteries of different capacities. Comparison with standard electrical-circuit model is also presented. With the proposed model, it is possible to derive more effective way to monitor the status of Lithium ion batteries, and to develop a universal quick charger for different capacities of batteries to result with a more effective usage of Lithium ion batteries.

  17. Children Literature Based Program for Developing EFL Primary Pupils' Life Skills and Language Learning Strategies

    Science.gov (United States)

    Abdelhalim, Safaa M.

    2015-01-01

    This study examines the effectiveness of a proposed English language program based on integrating two forms of children literature, mainly short stories and songs, in developing the needed life skills and language learning strategies of primary school students. Besides, it emphasized the importance of providing EFL fifth year primary students with…

  18. Developments in motivation and achievement during primary school: A longitudinal study on group-specific differences

    NARCIS (Netherlands)

    Hornstra, L.; van der Veen, I.; Peetsma, T.; Volman, M.

    2013-01-01

    To gain insight in developmental trajectories of motivation during upper primary school, the present study focused on how different aspects of students' motivation, i.e., task-orientation, self-efficacy, and school investment develop from grade three to six of primary school and how these

  19. Calling for the Development of Children's Number Sense in Primary Schools in Malaysia

    Science.gov (United States)

    Kuldas, Seffetullah; Sinnakaudan, Santi; Hashim, Shahabuddin; Ghazali, Munirah

    2017-01-01

    Although the early development of children's number sense is a strong predictor of their later mathematics achievements, it has been overlooked in primary schools in Malaysia. Mainly attributable to underdeveloped number sense of Malaysian primary and secondary school children, their inability to handle simple mathematics tasks, which require the…

  20. Effects of Continuing Professional Development on Group Work Practices in Scottish Primary Schools

    Science.gov (United States)

    Thurston, A.; Christie, D.; Howe, C. J.; Tolmie, A.; Topping, K. J.

    2008-01-01

    The present study investigated the effects of a continuing professional development (CPD) initiative that provided collaborative group work skills training for primary school teachers. The study collected data from 24 primary school classrooms in different schools in a variety of urban and rural settings. The sample was composed of 332 pupils,…

  1. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  2. Radioactive battery

    International Nuclear Information System (INIS)

    Deaton, R.L.; Silver, G.L.

    1975-01-01

    A radioactive battery is described that is comprised of a container housing an electrolyte, two electrodes immersed in the electrolyte and insoluble radioactive material disposed adjacent one electrode. Insoluble radioactive material of different intensity of radioactivity may be disposed adjacent the second electrode. If hydrobromic acid is used as the electrolyte, Br 2 will be generated by the radioactivity and is reduced at the cathode: Br 2 + 2e = 2 Br - . At the anode Br - is oxidized: 2Br - = Br 2 + 2e. (U.S.)

  3. Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery

    International Nuclear Information System (INIS)

    Obara, Shin'ya; Kikuchi, Yoshinobu; Ishikawa, Kyosuke; Kawai, Masahito; Yoshiaki, Kashiwaya

    2015-01-01

    In this study, an independent energy system for houses in cold regions was developed using a small-scale natural gas CGS (cogeneration), air-source heat pump, heat storage tank, and GHB (gas hydrate battery). Heat sources for the GHB were the ambient air and geothermal resources of the cold region. The heat cycle of CO 2 hydrate as a source of energy was also experimentally investigated. To increase the formation speed of CO 2 hydrates, a ferrous oxide–graphite system catalyst was used. The ambient air of cold regions was used as a heat source for the formation process (electric charge) of the GHB, and the heat supplied by a geothermal heat exchanger was used for the dissociation process (electric discharge). Using a geothermal heat source, fuel consumption was halved because of an increased capacity for hydrate formation in the GHB, a shortening of the charging and discharging cycle, and a decrease in the freeze rate of hydrate formation space. Furthermore, when the GHB was introduced into a cold region house, the application rate of renewable energy was 47–71% in winter. The spread of the GHB can greatly reduce fossil fuel consumption and the associated greenhouse gases released from houses in cold regions. - Highlights: • Compound energy system for cold region houses by a gas hydrate battery was proposed. • Heat sources of a gas hydrate battery are exhaust heat of the CGS and geothermal. • Drastic reduction of the fossil fuel consumption in a cold region is realized

  4. Development program of electrical vehicles of batteries in the UNAM; Programa de desarrollo de vehiculos electricos de baterias en la UNAM

    Energy Technology Data Exchange (ETDEWEB)

    Carmona Paredes, G.; Chicurel Uziel, R.; Chicurel Uziel, E.; Gutierrez Martinez, F. [Instituto de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2002-09-01

    Eight years ago, project to develop a small battery powered electric bus, known today as UNAM's Electric Vehicle, was started at the Engineering Institute. This project was followed by the design and construction, under an agreement with the Mexico City Government, of the Electrobus, a public transport vehicle that was recently put in operation and is being evaluated by the City's Electric Transportation Service. Two other projects, within the scope of UNAM's Electric Vehicle Development Program refer to light trucks: the Electrovira, characterized by exceptional maneuverability, and the Electric Delivery Vehicle. These projects are being carried out respectively by the Engineering Institute and the School of Engineering's Center for Design and Manufacture. Other parties that have collaborated in the program are: the School of Architecture's Center for Research in Industrial Design, the Instruments Center, and the School of Chemistry. Work is also being done on complementary aspects which include the development of an intelligent charger for large battery packs and of a dual electronic controller, a study of the dynamic performance of lead-acid batteries, the design of a battery monitoring system, and the search for new battery alternatives. [Spanish] Hace ocho anos, el Instituto de Ingenieria inicio el proyecto de desarrollo de un minibus electrico de baterias, conocido ahora como el Vehiculo Electrico UNAM. Este proyecto fue seguido de un convenio con el Gobierno del Distrito Federal para el diseno y construccion del Electrobus, un vehiculo para transporte publico que recientemente fue puesto en operacion para ser evaluado por el Servicio de Transporte Electrico del DF. Dos proyectos mas, enmarcados dentro del Programa de Desarrollo de Vehiculos Electricos, se refieren a vehiculos ligeros de carga como el Electrovira, caracterizado por su gran maniobrabilidad y el Vehiculo Electrico de Reparto. Estos proyectos se realizan respectivamente

  5. Development and optimization of a modified process for producing the battery grade LiOH: Optimization of energy and water consumption

    International Nuclear Information System (INIS)

    Grágeda, Mario; González, Alonso; Alavia, Wilson; Ushak, Svetlana

    2015-01-01

    LiOH·H 2 O is used for preparation of alkaline batteries. The required characteristics of this compound are low levels of impurities and a specific particle size distribution. LiOH·H 2 O is produced from ore and brines. In northern Chile, lithium is produced from brines. This region presents particular desert climate conditions where water and energy are scarce. To help solve this problem, the conventional production process for battery grade LiOH·H 2 O was simulated and a modified process was developed, with an efficient consumption of energy and water, to improve the environmental sustainability of the plant, and greater process yield and product purity. Different configurations of the equipments were studied and for the best configurations the behavior of the modified process at different scenarios were simulated. It was found that the purity is independent of concentration used in feed to thickeners. The process yield increases in average 2.4% for modified process due to recycling operation. In modified process is obtained 28% more product mass, specific energy consumption decreases up to 4.8% and losses of Li/kg of product decreased by 83% compared to conventional process. The water consumption per kg of product in modified process is 1%–6.3%, being lower than in conventional process. The results presented can be considered as guidelines to address the optimization of the industrial process for obtaining the battery grade LiOH. - Highlights: • Water and energy are important resources in any sustainable industrial process. • High purity LiOH·H 2 O is a material for producing of lithium batteries. • Conventional and modified optimized processes for LiOH·H 2 O production were simulated. • Energy and water consumptions decrease for the modified process. • Optimal operational conditions of H 2 O, feed, pressure and energy were established

  6. FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR) part 2, Battery500 Innovation Centers project summaries, and appendices.

  7. Problem Space Matters: The Development of Creativity and Intelligence in Primary School Children

    Science.gov (United States)

    Welter, Marisete Maria; Jaarsveld, Saskia; Lachmann, Thomas

    2017-01-01

    Previous research showed that in primary school, children's intelligence develops continually, but creativity develops more irregularly. In this study, the development of intelligence, measured traditionally, i.e., operating within well-defined problem spaces (Standard Progressive Matrices) was compared with the development of intelligence…

  8. Modeling for Battery Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick

    2017-01-01

    For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient

  9. The development and evaluation of an online dementia resource for primary care based health professionals

    Directory of Open Access Journals (Sweden)

    Aisling A. Jennings

    2018-03-01

    Conclusion: This study provides a prototype for the development of an online dementia educational resource and demonstrates the value of a dementia-specific services and supports directory for primary care based health professionals.

  10. Developing a decision support system for tobacco use counselling using primary care physicians

    Directory of Open Access Journals (Sweden)

    Theodore Marcy

    2008-07-01

    Conclusions A multi-method evaluation process utilising primary care physicians proved useful for developing a CDSS that was acceptable to physicians and patients, and feasible to use in their clinical environment.

  11. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  12. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells

    OpenAIRE

    Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.

    2017-01-01

    Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring...

  13. Optimized batteries for cars with dual electrical architecture

    Science.gov (United States)

    Douady, J. P.; Pascon, C.; Dugast, A.; Fossati, G.

    During recent years, the increase in car electrical equipment has led to many problems with traditional starter batteries (such as cranking failure due to flat batteries, battery cycling etc.). The main causes of these problems are the double function of the automotive battery (starter and service functions) and the difficulties in designing batteries well adapted to these two functions. In order to solve these problems a new concept — the dual-concept — has been developed with two separate batteries: one battery is dedicated to the starter function and the other is dedicated to the service function. Only one alternator charges the two batteries with a separation device between the two electrical circuits. The starter battery is located in the engine compartment while the service battery is located at the rear of the car. From the analysis of new requirements, battery designs have been optimized regarding the two types of functions: (i) a small battery with high specific power for the starting function; for this function a flooded battery with lead-calcium alloy grids and thin plates is proposed; (ii) for the service function, modified sealed gas-recombinant batteries with cycling and deep-discharge ability have been developed. The various advantages of the dual-concept are studied in terms of starting reliability, battery weight, and voltage supply. The operating conditions of the system and several dual electrical architectures have also been studied in the laboratory and the car. The feasibility of the concept is proved.

  14. Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The FY 1980 program continued to involve full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas. Improved Electroprecipitation Process (EPP) nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities of 23 to 25 Ah for the C/3 drain rate at 200+ test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes are displaying capacity stability for > 1000 test cycles in continuing 3 plate cell tests. Finished cells have delivered 57 to 61 Wh/kg at C/3, and have demonstrated cyclic stability to 500+ cycles at 80% depth of discharge profiles at Westinghouse. A 6-cell module that demonstrated 239 Ah, 1735 Wh, 48 Wh/kg at the C/3 drain rate has also been evaluated at the National Battery Test Laboratory, ANL. It operated for 327 test cycles, to a level of 161 Ah at the C/3 rate, before being removed from test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives. Pasted nickel electrodes continue to show promise for meeting the life objectives while, simultaneously, providing a low manufacturing cost. Refinements have occurred in the areas of cell hardware, module manifolding and cell interconnections. These improvements have been incorporated into the construction and testing of the cells and modules for this program. Temperature tests at 0/sup 0/C were performed on a 6-cell module and showed a decrease in capacity of only 25% in Ah and .29% in Wh as compared to 25/sup 0/C performance. Additional tests are planned to demonstrate performance at -15/sup 0/C and 40/sup 0/C.

  15. Development of a Physical Employment Testing Battery for Infantry Soldiers: 11B Infantryman and 11C Infantryman - Indirect Fire

    Science.gov (United States)

    2015-12-01

    quickly as possible and ran around the course in the direction indicated, without knocking over the cones. Time to complete the course was recorded (14...in order to reduce the cost of collecting equipment. Additionally, all the tests used may be readily purchased at a sporting goods store. The third...a sporting goods store. The third model resulted in a test battery that included the medicine ball put, squat lift, Illinois agility test (lower

  16. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  17. Batteries. Fundamentals and theory, present state of the art of technology and trends of developments. 5. ed.; Batterien. Grundlagen und Theorie, aktueller technischer Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Kiehne, H.A.; Berndt, D.; Fischer, W.; Franke, H.; Koenig, W.; Koethe, H.K.; Preuss, P.; Sassmannshausen, G.; Stahl, U.C.; Wehrle, E.; Will, G.; Willmes, H.

    2003-07-01

    This volume gives a comprehensive survey of the present state of the electrochemical power storage with special consideration of their technical characteristics of application. The volume is structured as follows: 1) Electrochemical energy storage, general fundamentals; 2) Batteries for electric-powered industrial trucks; 3) Energy supply concepts for driverless industrial trucks; 4) Batteries for electric-powered road vehicles; 5) Battery-fed electric drive from the user's point of view (=charging, maintenance); 6) Safety standards for stationary batteries and battery systems; 7) Batteries for stationary power supplies; 8) Battery operation from the user's point of view; 9) Starter batteries of vehicles; 10) High-energy batteries (e.g. Zn/Br{sub 2}-, Na/S-, Li/FeS-cells, fuel cells); 11) Solar-electric power supply with batteries; 12) Charging methods and charging technique; 13) Technology of battery chargers and current transformer, monitoring methods; 14) Standards and regulations for batteries and battery systems.

  18. Batteries. Fundamentals and theory, present state of the art of technology and trends of development. 4. compl. rev. ed.; Batterien. Grundlagen und Theorie, aktueller technischer Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Kiehne, H.A.; Berndt, D.; Fischer, W. [and others

    2000-07-01

    This volume gives a comprehensive survey of the present state of the electrochemical power storage with special consideration of their technical characteristics of application. The volume is structured as follows: 1) Electrochemical energy storage, general fundamentals; 2) Batteries for electric-powered industrial trucks; 3) Energy supply concepts for driverless industrial trucks; 4) Batteries for electric-powered road vehicles; 5) Battery-fed electric drive from the user's point of view (=charging, maintenance); 6) Safety standards for stationary batteries and battery systems; 7) Batteries for stationary power supplies; 8) Battery operation from the user's point of view; 9) Starter batteries of vehicles; 10) High-energy batteries (e.g. Zn/Br{sub 2}-, Na/S-, Li/FeS-cells, fuel cells); 11) Solar-electric power supply with batteries; 12) Charging methods and charging technique; 13) Technology of battery chargers and current transformer, monitoring methods; 14) Standards and regulations for batteries and battery systems.

  19. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  20. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  1. Thermal battery automated assembly station conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, D

    1988-08-01

    Thermal battery assembly involves many operations which are labor- intense. In August 1986, a project team was formed at GE Neutron Devices to investigate and evaluate more efficient and productive battery assembly techniques through the use of automation. The result of this study was the acceptance of a plan to automate the piece part pellet fabrication and battery stacking operations by using computerized pellet presses and robots which would be integrated by a main computer. This report details the conceptual design and development plan to be followed in the fabrication, development, and implementation of a thermal battery automated assembly station. 4 figs., 8 tabs.

  2. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  3. MAIL1 is essential for development of the primary root but not of anchor roots.

    Science.gov (United States)

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor roots show similar defects in the organization of the stem cell niche as the primary root. In contrast, differentiation processes are not impaired and thus anchor roots seem to be able to compensate for the loss of primary root function. Our data show that MAIL1 is essential for specification of cell fate in the primary root but not in anchor roots.

  4. Batteries not included

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.

    2001-09-08

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge.

  5. Batteries not included

    International Nuclear Information System (INIS)

    Cooper, M.

    2001-01-01

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  6. Exploring the effects of developing collaboration in a primary science teacher community

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe

    2010-01-01

    This paper presents findings from a qualitative study to explore factors that may facilitate sustainable changes of collaboration in a primary science teacher community in one school. The context for this study is a development project aimed at improving science teaching by changing teacher......’s collective work in schools and developing network between schools. The objective is to improve the collaboration within primary science teacher communities on sharing best practice and developing new ways of teaching. This study represents an in-depth approach to explore possibilities and constraints for how...... a development project can facilitate sustainable change in primary science teachers’ collaboration. The purpose of the research project introduced here is to examine closer, why many development projects fail to produce sustainable results. The framework of McLaughlin and Talbert (2006) on building teacher...

  7. Primer on lead-acid storage batteries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  8. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  10. Battery waste management status

    International Nuclear Information System (INIS)

    Barnett, B.M.; Sabatini, J.C.; Wolsky, S.

    1993-01-01

    The paper consists of a series of slides used in the conference presentation. The topics outlined in the slides are: an overview of battery waste management; waste management of lead acid batteries; lead acid recycling; typical legislation for battery waste; regulatory status in European countries; mercury use in cells; recent trends in Hg and Cd use; impact of batteries to air quality at MSW incinerators; impact of electric vehicles; new battery technologies; and unresolved issues

  11. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.

    Science.gov (United States)

    Hvoslef-Eide, M; Mar, A C; Nilsson, S R O; Alsiö, J; Heath, C J; Saksida, L M; Robbins, T W; Bussey, T J

    2015-11-01

    The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.

  12. Evaluation of different operational strategies for lithium ion battery systems connected to a wind turbine for primary frequency regulation and wind power forecast accuracy improvement

    Energy Technology Data Exchange (ETDEWEB)

    Swierczynski, Maciej; Stroe, Daniel Ioan; Stan, Ana Irina; Teodorescu, Remus; Andreasen, Soeren Juhl [Aalborg Univ. (Denmark). Dept. of Energy Technology

    2012-07-01

    High penetration levels of variable wind energy sources can cause problems with their grid integration. Energy storage systems connected to wind turbine/wind power plants can improve predictability of the wind power production and provide ancillary services to the grid. This paper investigates economics of different operational strategies for Li-ion systems connected to wind turbines for wind power forecast accuracy improvement and primary frequency regulation. (orig.)

  13. Primary cilia and coordination of signaling pathways in heart development and tissue Homeostasis

    DEFF Research Database (Denmark)

    Clement, Christian Alexandro

    of primary cilia in coordinating Hh signaling in human pancreatic development and postnatal tissue homeostasis. In cultures of human pancreatic duct adenocarcinoma cell lines PANC-1 and CFPAC-1, Ptc in addition to Gli2 and Smo localize to primary cilia. These findings are consistent with the idea...... that the primary cilium continues to coordinate Hh signaling in cells derived from the mature pancreas. The fact that the Hh signaling pathway is active in the CFPAC-1 and PANC-1 cell lines without Hh stimulation suggests that ciliary Hh signaling plays a potential role in tumorigenesis. In conclusion, this thesis...

  14. Developing a study orientation questionnaire in Mathematics for primary school students

    OpenAIRE

    Van Der Walt, Martha

    2009-01-01

    The Study Orientation Questionnaire in Mathematics (Primary) is being developed as a diagnostic measure for South African teachers and counsellors to help primary school students improve their orientation towards the study of mathematics. In this study, participants were primary school students in the North-West Province of South Africa. During the standardisation in 2007, 1,013 students (538 boys: M age = 12.61; SD = 1.53; 555 girls: M age = 11.98; SD = 1.35; 10 missing values) were assessed...

  15. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  16. MAIL1 is essential for development of the primary root but not of anchor roots

    OpenAIRE

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor root...

  17. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  18. Design and Development of a Geography Module for First-year Primary Student Teachers

    NARCIS (Netherlands)

    Blankman, M.; van der Schee, J.; Boogaard, M.; Volman, M.

    2016-01-01

    This paper describes the result of a design study in which a geography course was developed and tested aiming to develop the Pedagogical Content Knowledge (PCK) of first-year primary student teachers. This resulted in a course called ‘Consciously Teaching Geography’ with characteristics as (1)

  19. Design and Development of a Geography Module for First-Year Primary Student Teachers

    Science.gov (United States)

    Blankman, Marian; van der Schee, Joop; Boogaard, Marianne; Volman, Monique

    2016-01-01

    This paper describes the result of a design study in which a geography course was developed and tested aiming to develop the Pedagogical Content Knowledge (PCK) of first-year primary student teachers. This resulted in a course called "Consciously Teaching Geography" with characteristics as (1) starting from students' preconceptions and…

  20. Primary Schools Eco-Friendly Education in the Frame of Education for Sustainable Development

    Science.gov (United States)

    Prabawani, Bulan; Hanika, Ita Musfirowati; Pradhanawati, Ari; Budiatmo, Agung

    2017-01-01

    A research on primary school education in the frame of education for sustainable development, as known as ESD, is important because the awareness of eco-friendly activities and environment empowerment cannot be developed in a short time. Meanwhile, human activities have caused significant environmental degradation. This is an exploratory study…

  1. The Development of Anti-Corruption Education Course for Primary School Teacher Education Students

    Science.gov (United States)

    Indawati, Ninik

    2015-01-01

    The purpose of this research was to develop learning tools as well as test the effectiveness of the implementation of anti-corruption education course for Primary School Teacher Education students, who must be able to transfer anti-corruption values to learners. The research method refers to the development of procedural models, which is…

  2. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  3. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  4. LithoRec. Recycling of lithium-ion batteries. Within the R and D program ''Promotion of research and development in the field of electric mobility''. Final report

    International Nuclear Information System (INIS)

    Kwade, Arno; Baerwaldt, Gunnar

    2012-01-01

    In the project ''LithoRec - Recycling of lithium-ion batteries'' several methods were evaluated for recycling of traction batteries. The planning of dismantling of the battery systems in LithoRec comprised besides the pure system planning also first investigations of the automation of dismantling steps, inter alia, with the prototypical realization of a gripper system for the removal of the battery cells. Processes for disassembling the cells and separating the active materials of the metal foils has been investigated in the laboratory and established with respect to the shredding of the cells in the pilot-plant scale. For hydrometallurgical treatment of separated coating powder of lithium-ion batteries in LithoRec a pilot plant has been realized. Ecological and economical balances on the basis of investigations carried out in the laboratory or pilot plant scale showed positive results. For the separation of the battery systems to the levels of the cathodic active material powder, a consistent approach was developed, which showed very good results in laboratory equipment. [de

  5. Development of sealed nickel-cadmium battery for linear motor car (Maglev). Linear motor car yo Ni-Cd denchi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kono, K; Yoshimura, H; Yufu, H [Yuasa Corp., Osaka (Japan)

    1993-10-29

    Development was made of a linear motor car use battery which is strong in repetition of quick charging/discharging and characterized as follows: Its volumetric energy density is 42Wh/kg which is 1.3 times as high as the conventional one. It excels in high efficiency charging/discharging characteristics. High tension steel sheet is used for it, which is incombustible. To lighten the weight, paste type electrodes and high yield point materials were used for the positive and negative electrodes, and jar materials, respectively. To heighten the charging/discharging characteristics, used were electrodes heightened in current collecting effect. To lengthening the life, unwoven nylon cloth was used as a separator. Also to heighten the thermal discharge characteristics, the electrodes were made metallic with a fitting of cooling fins. The battery characteristics as tested gave the following result: At a capacity ratio of 100%, the discharging factor cleared its target value of development also with a high discharging voltage. The charging/discharging characteristics hardly fall in the high temperature region. The charging characteristics include quick charging made possible. As a result of cyclic simulation presuming the linear motor car, the fall in capacity per cycle was as good as 1.5%. 11 figs., 2 tabs.

  6. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  7. FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Applied Batteries Research for Transportation Projects part 1.

  8. FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Applied Batteries Research for Transportation Projects part 2.

  9. FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR) part 1.

  10. Developing a Study Orientation Questionnaire in Mathematics for primary school students.

    Science.gov (United States)

    Maree, Jacobus G; Van der Walt, Martha S; Ellis, Suria M

    2009-04-01

    The Study Orientation Questionnaire in Mathematics (Primary) is being developed as a diagnostic measure for South African teachers and counsellors to help primary school students improve their orientation towards the study of mathematics. In this study, participants were primary school students in the North-West Province of South Africa. During the standardisation in 2007, 1,013 students (538 boys: M age = 12.61; SD = 1.53; 555 girls: M age = 11.98; SD = 1.35; 10 missing values) were assessed. Factor analysis yielded three factors. Analysis also showed satisfactory reliability coefficients and item-factor correlations. Step-wise linear regression indicated that three factors (Mathematics anxiety, Study attitude in mathematics, and Study habits in mathematics) contributed significantly (R2 = .194) to predicting achievement in mathematics as measured by the Basic Mathematics Questionnaire (Primary).

  11. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  12. The development of a server NTP for a primary stallion of time and frequency

    International Nuclear Information System (INIS)

    Abid, Bilel; Dridi, Chaima

    2008-01-01

    Given the recent developments of the measure atomic time, the CNSTN proposes to realize a project that is the first of its kind in our country; this project is to develop a service atomic time - to build an atomic clock. Our objective in this project is to achieve the final task, so we prepared the final step is the release time from an analog signal and the developed an NTP server for a standard primary time and frequency sample. (author)

  13. Analyzing Primary Social Studies Curriculum of Turkey in Terms of UNESCO Educational for Sustainable Development Theme

    OpenAIRE

    Elvan YALÇINKAYA

    2013-01-01

    These three terms have been used at website of UNESCO: Sustainable development(SD), education for sustainable development (ESD) and the United Nations Decade ofEducation for Sustainable Development (DESD). In this website, it is mentioned that thethree terms have the same goal; creating abetter world for this generation and futuregenerations of all living things on planet Earth. The aim of this study is to analyzePrimary Social Studies Curriculum of Turkeyin terms of UNESCO ESD Theme. Datawas...

  14. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  15. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  16. Advances and Future Challenges in Printed Batteries.

    Science.gov (United States)

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This conference volume contains the wording of the following 16 papers given at the symposium: ''Stationary Pb batteries''; ''maintenance-free Pb batteries with antimony-free grid plates or tube plates and dry fit system''; ''stationary alkali, Ag/Zc and gas-tight Ni/Cd batteries''; ''modern Li systems''; ''high-temperature batteries''; ''primary and secondary metal-air cells''; ''peak-load coverage with Pb batteries in distribution networks and industrial plants''; ''Success and problems with national and international standardization''; ''electronic monitoring of batteries'', ''up-to-date charging and converter technology''; ''versatile emergency power supply with the Federal German Railways''; ''emergency lighting''; ''emergency power supply in large-scale industrial plants''; ''battery power supply with the Federal German Post and Telecommunications''; ''Power supply to modern communication facilities''; ''modular d.-c. converter''; ''back-up power supply in the military field''; and it contains the wording of the discussions following the papers.

  18. Developing the Botswana Primary Care Guideline: an integrated, symptom-based primary care guideline for the adult patient in a resource-limited setting

    Directory of Open Access Journals (Sweden)

    Tsima BM

    2016-08-01

    Full Text Available Billy M Tsima,1 Vincent Setlhare,1 Oathokwa Nkomazana2 1Department of Family Medicine and Public Health, 2Department of Surgery, Faculty of Medicine, University of Botswana, Gaborone, Botswana Background: Botswana’s health care system is based on a primary care model. Various national guidelines exist for specific diseases. However, most of the guidelines address management at a tertiary level and often appear nonapplicable for the limited resources in primary care facilities. An integrated symptom-based guideline was developed so as to translate the Botswana national guidelines to those applicable in primary care. The Botswana Primary Care Guideline (BPCG integrates the care of communicable diseases, including HIV/AIDS and noncommunicable diseases, by frontline primary health care workers.Methods: The Department of Family Medicine, Faculty of Medicine, University of Botswana, together with guideline developers from the Knowledge Translation Unit (University of Cape Town collaborated with the Ministry of Health to develop the guideline. Stakeholder groups were set up to review specific content of the guideline to ensure compliance with Botswana government policy and the essential drug list.Results: Participants included clinicians, academics, patient advocacy groups, and policymakers from different disciplines, both private and public. Drug-related issues were identified as necessary for implementing recommendations of the guideline. There was consensus by working groups for updating the essential drug list for primary care and expansion of prescribing rights of trained nurse prescribers in primary care within their scope of practice. An integrated guideline incorporating common symptoms of diseases seen in the Botswana primary care setting was developed.Conclusion: The development of the BPCG took a broad consultative approach with buy in from relevant stakeholders. It is anticipated that implementation of the BPCG will translate into better

  19. Energetics of lithium ion battery failure

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Richard E., E-mail: richard.e.lyon@faa.gov; Walters, Richard N.

    2016-11-15

    Highlights: • First measure of anaerobic failure energy of lithium ion batteries. • Novel and simple bomb calorimeter method developed and demonstrated. • Four different cathode chemistries examined. • Full range of charged capacity used as independent variable. • Failure energy identified as primary safety hazard. - Abstract: The energy released by failure of rechargeable 18-mm diameter by 65-mm long cylindrical (18650) lithium ion cells/batteries was measured in a bomb calorimeter for 4 different commercial cathode chemistries over the full range of charge using a method developed for this purpose. Thermal runaway was induced by electrical resistance (Joule) heating of the cell in the nitrogen-filled pressure vessel (bomb) to preclude combustion. The total energy released by cell failure, ΔH{sub f}, was assumed to be comprised of the stored electrical energy E (cell potential × charge) and the chemical energy of mixing, reaction and thermal decomposition of the cell components, ΔU{sub rxn}. The contribution of E and ΔU{sub rxn} to ΔH{sub f} was determined and the mass of volatile, combustible thermal decomposition products was measured in an effort to characterize the fire safety hazard of rechargeable lithium ion cells.

  20. Handwriting Manual for Primary Teachers in Somalia. African Studies in Curriculum Development & Evaluation No. 61.

    Science.gov (United States)

    Dirie, Mohamed Farah

    Concern over the poor and illegible handwriting of the students in Somalia led to the development of this handwriting manual for primary school teachers to: (1) give teachers guidance in teaching handwriting; (2) help teachers in the methodology of teaching handwriting; (3) let teachers know the easier ways of making cheap and obtainable materials…

  1. The development of an RME-based geometrycourse for Indonesian Primary schools

    NARCIS (Netherlands)

    Fauzan, A.; Plomp, T.; Gravemeijer, K.P.E.; Plomp, T.; Nieveen, N.

    2013-01-01

    The aim of this study was to develop and implement a valid, practical, and effective RME-based geometry course for Indonesian primary schools using design research approach. The research activities were divided into three stages namely front-end analysis, prototyping stage, and assessment stage that

  2. Investigating the Development of Chinese Oral Explanation and Justification in Singapore Primary Students

    Science.gov (United States)

    Yan, Jing

    2016-01-01

    Explanation and justification require cognitive ability which selects and organises relevant information in a logical way, and linguistic ability which enables speakers to encode the information with linguistic knowledge. This study aims to investigate the development of Chinese oral explanation and justification in Singapore primary students. The…

  3. Development of Questionnaire on Emotional Labor among Primary and Secondary School Teachers

    Science.gov (United States)

    Liu, Yanling; Zhang, Dajun

    2015-01-01

    In this study, based on the analysis of existing definitions of emotional labor, operational definition of teachers' emotional labor is given and questionnaire on emotional labor among primary and secondary school teachers is developed. Research results: exploratory factor analysis shows that teacher's emotional labor involves three dimensions…

  4. Evaluation of Articles Related to Program Development in Education Published in the Journal of Primary Education

    Science.gov (United States)

    Guclu, Mustafa

    2013-01-01

    The purpose of this study was to make an overall assessment of articles related to program development in education that appeared in the "Journal of Primary Education," which had been published between 1939 and 1966. For this purpose, the articles in the journal were analyzed by using content analysis, and evaluated in terms of program…

  5. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    NARCIS (Netherlands)

    Ricci, C.; Mota, C.M.; Moscato, S.; D' Alessandro, D.; Ugel, S.; Sartoris, S.; Bronte, V.; Boggi, U.; Campani, D.; Funel, N.; Moroni, Lorenzo; Danti, S.

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl

  6. Improving Primary Teachers' Attitudes toward Science by Attitude-Focused Professional Development

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; van der Molen, Juliette H. Walma

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers' personal attitudes toward science, attitudes toward teaching science, and their science…

  7. Improving primary teachers’ attitudes toward science by attitude-focused professional development

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2015-01-01

    This article provides a description of a novel, attitude-focused, professional development intervention, and presents the results of an experimental pretest-posttest control group study investigating the effects of this intervention on primary teachers’ personal attitudes toward science, attitudes

  8. Semantic Categorization and Reading Skill across Dutch Primary Grades: Development Yes, Relationship No

    Science.gov (United States)

    Gijsel, Martine A. R.; Ormel, Ellen A.; Hermans, Daan; Verhoeven, L.; Bosman, Anna M. T.

    2011-01-01

    In the present study, the development of semantic categorization and its relationship with reading was investigated across Dutch primary grade students. Three Exemplar-level tasks (Experiment 1) and two Superordinate-level tasks (Experiment 2) with different types of distracters (phonological, semantic and perceptual) were administered to assess…

  9. Using an Empowerment Professional Development Model to Support Beginning Primary Mathematics Teachers

    Science.gov (United States)

    Sparrow, Len; Frid, Sandra

    2003-01-01

    This is a case study report from a larger study that focused on how an empowerment professional development model influenced the mathematics pedagogical practices and beliefs of Australian primary school teachers during their first year of teaching. The research used an interpretive approach for analysis of data from interviews, observations,…

  10. The Professional Development Needs of Special Needs Assistants in Irish Post-Primary Schools

    Science.gov (United States)

    Kerins, Pauline; Casserly, Ann Marie; Deacy, Evelyn; Harvey, Deirdre; McDonagh, Dolores; Tiernan, Bairbre

    2018-01-01

    According to government policy in Ireland, special needs assistants (SNAs) may be employed in post-primary schools to support students deemed to have chronic and serious care needs. There is currently no national policy regarding the continuing professional development (CPD) of SNAs, to meet the requirements of their role. This study investigated…

  11. Developing a measure of patient access to primary care: the access response index (AROS).

    NARCIS (Netherlands)

    Elwyn, G.; Jones, W.; Rhydderch, S.M.; Edwards, P.

    2003-01-01

    Access to appointments in primary care is not routinely measured, and there is no one standardized method for doing so. Any measurement tool has to take account of the dynamic status of appointment availability and the definitional problems of appointment types. The aim of this study was to develop

  12. Developing a Questionnaire to Assess the Probability Content Knowledge of Prospective Primary School Teachers

    Science.gov (United States)

    Gómez-Torres, Emilse; Batanero, Carmen; Díaz, Carmen; Contreras, José Miguel

    2016-01-01

    In this paper we describe the development of a questionnaire designed to assess the probability content knowledge of prospective primary school teachers. Three components of mathematical knowledge for teaching and three different meanings of probability (classical, frequentist and subjective) are considered. The questionnaire content is based on…

  13. The Development of Local Private Primary and Secondary Schooling in Hong Kong, 1841-2012

    Science.gov (United States)

    Cheung, Alan C. K.; Randall, E. Vance; Tam, Man Kwan

    2016-01-01

    Purpose: This paper is a historical review of the development of private primary and secondary education in Hong Kong from 1841-2012. The purpose of this paper is to examine the evolving relationship between the state and private schools in Hong Kong. Design/methodology/approach: This paper utilizes sources from published official documents,…

  14. Stories from the Classroom: The Developing Beliefs and Practices of Beginning Primary Mathematics Teachers

    Science.gov (United States)

    Brady, Kathy

    2012-01-01

    This study examines the developing beliefs and practices of six beginning primary teachers. Their accounts reveal practices indicative of contemporary approaches to teaching and learning in mathematics. Additionally, a consistency appears to exist between the beliefs and practices of the beginning teachers, and the ideals for mathematics teaching…

  15. Primary School Heads' Professional Socialization and Leadership Development in Cyprus

    Science.gov (United States)

    Theodosiou, Valentina; Karagiorgi, Yiasemina

    2017-01-01

    This article explores Cypriot primary school heads' professional socialization (PS), in terms of their preparation for headship. A study in three phases involving a survey and interviews indicates that, to "learn what it is to be a head" prior to headship, Cypriot heads resort to personal initiatives for training and development in…

  16. Development of Quality Assurance System in Culture and Nation Character Education in Primary Education in Indonesia

    Science.gov (United States)

    Susilana, Rudi; Asra

    2013-01-01

    The purpose of national education is to develop skills and build dignified national character and civilization in educating nation life (Act No. 20, 2003). The paper describes a system of quality assurance in culture and character education in primary education. This study employs the six sigma model which consists of the formula DMAIC (Define,…

  17. Issues in the Development of Children's Centres on Nursery and Primary School Sites

    Science.gov (United States)

    Lewis, Jane; Finnegan, Cathy; West, Anne

    2011-01-01

    This paper explores the development of children's centres in England between 2004 and 2008, focusing on the newly created centres that have been located on primary and nursery school sites. Using both an analysis of policy documents and interview data from three urban local authorities, we examine the use of premises and the differing priorities…

  18. Development of new design mechanical seal tester for Primary Loop Recirculation Pump (PLR Pump)

    International Nuclear Information System (INIS)

    Fukushima, Naoki; Koshiba, Koremutsu

    1995-01-01

    The mechanical seal for a Primary Loop Recirculation Pump (PLR Pump) is an important part of a BWR plant. This study describes a new mechanical seal tester developed to certify mechanical seal performance before installation in a PLR Pump on site. (author)

  19. The Use of Mathematical Investigations in a Queensland Primary School and Implications for Professional Development

    Science.gov (United States)

    Marshman, Margaret; Clark, Darren; Carey, Michael

    2015-01-01

    With the introduction of Ways of Working in 2008, Queensland teachers received professional development on using investigations to teach mathematics. This case study explores the extent to which teachers in one Queensland Primary School use this pedagogy. To determine teachers' beliefs and teaching approaches, a five point Likert scale…

  20. Development of Communicative Tolerance among Teachers of Primary and Senior Level of the General Education School

    Science.gov (United States)

    Povarenkov, Yury P.; Baranova, Nataly A.; Sidorova, Anna D.; Mitiukov, Nicholas W.

    2018-01-01

    The article is devoted to the study of the influence of the level of development of communicative tolerance on the effectiveness of the teaching and educational activity of primary and senior schoolteachers. In the article the concepts of psychophysiological and communicative tolerance are separated. The psychological content of communicative…

  1. Developing a response to family violence in primary health care: the New Zealand experience.

    Science.gov (United States)

    Gear, Claire; Koziol-McLain, Jane; Wilson, Denise; Clark, Faye

    2016-08-20

    Despite primary health care being recognised as an ideal setting to effectively respond to those experiencing family violence, responses are not widely integrated as part of routine health care. A lack of evidence testing models and approaches for health sector integration, alongside challenges of transferability and sustainability, means the best approach in responding to family violence is still unknown. The Primary Health Care Family Violence Responsiveness Evaluation Tool was developed as a guide to implement a formal systems-led response to family violence within New Zealand primary health care settings. Given the difficulties integrating effective, sustainable responses to family violence, we share the experience of primary health care sites that embarked on developing a response to family violence, presenting the enablers, barriers and resources required to maintain, progress and sustain family violence response development. In this qualitative descriptive study data were collected from two sources. Firstly semi-structured focus group interviews were conducted during 24-month follow-up evaluation visits of primary health care sites to capture the enablers, barriers and resources required to maintain, progress and sustain a response to family violence. Secondly the outcomes of a group activity to identify response development barriers and implementation strategies were recorded during a network meeting of primary health care professionals interested in family violence prevention and intervention; findings were triangulated across the two data sources. Four sites, representing three PHOs and four general practices participated in the focus group interviews; 35 delegates from across New Zealand attended the network meeting representing a wider perspective on family violence response development within primary health care. Enablers and barriers to developing a family violence response were identified across four themes: 'Getting started', 'Building effective

  2. The impact of the new 36 V lead-acid battery systems on lead consumption

    Science.gov (United States)

    Prengaman, R. David

    The production of vehicles utilizing 36 V battery systems has begun with the introduction of the Toyota Crown. Other vehicles with 36 V batteries are in the near horizon. These vehicles may contain single or dual battery systems. These vehicles will most likely contain valve-regulated lead-acid (VRLA) batteries. The battery systems developed to date utilize significantly more lead than conventional 12 V batteries. This paper will evaluate the different proposed 36 V battery systems and estimate the lead requirements for each of the competing systems. It will also project the penetration of and resultant increased lead usage of these new batteries into the future.

  3. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  4. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  5. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  6. Datasheet-based modeling of Li-Ion batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Schaltz, Erik; Andreasen, Søren Juhl

    2012-01-01

    Researchers and developers use battery models in order to predict the performance of batteries depending on external and internal conditions, such as temperature, C-rate, Depth-of-Discharge (DoD) or State-of-Health (SoH). Most battery models proposed in the literature require specific laboratory...

  7. Software Tools for Battery Design | Transportation Research | NREL

    Science.gov (United States)

    Software Tools for Battery Design Software Tools for Battery Design Under the Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) project, NREL has developed software tools to help using CAEBAT software tools. Knowledge of the interplay of multi-physics at varied scales is imperative

  8. Development of an 85,000 gpm (19,303 m3/h) LMFBR primary pump

    International Nuclear Information System (INIS)

    Zerinvary, M.C.; Wagner, E.W.

    1984-01-01

    The development of an 85,000 gpm two-stage primary pump for liquid metal fast breeder reactor (LMFBR) applications is described. The design was supported by air and cavitation model testing of the hyraulics, and development and feature testing of the level control system and the adjustable frequency solid state power supply. Important fabrication and water test items are also discussed, along with some unique assembly tooling requirements

  9. Developing effective child psychiatry collaboration with primary care: leadership and management strategies.

    Science.gov (United States)

    Sarvet, Barry D; Wegner, Lynn

    2010-01-01

    By working in collaboration with pediatric primary care providers, child and adolescent psychiatrists have the opportunity to address significant levels of unmet need for the majority of children and teenagers with serious mental health problems who have been unable to gain access to care. Effective collaboration with primary care represents a significant change from practice-as-usual for many child and adolescent psychiatrists. Implementation of progressive levels of collaborative practice, from the improvement of provider communication through the development of comprehensive collaborative systems, may be possible with sustained management efforts and application of process improvement methodology.

  10. Second annual battery and electrochemical technology conference: agenda and technical presentations. [Arlington, Va. , June 5--7, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Papers were presented at this conference on the following topics: general overview of batteries and battery programs, near-term battery systems, fundamental research, advanced battery development, energy conservation in industrial electrochemical processes, and advanced battery research. This publication contains only the slides and viewgraphs used by the speakers in giving their presentations; there is no text. (RWR)

  11. Development and exemplification of a model for Teacher Assessment in Primary Science

    Science.gov (United States)

    Davies, D. J.; Earle, S.; McMahon, K.; Howe, A.; Collier, C.

    2017-09-01

    The Teacher Assessment in Primary Science project is funded by the Primary Science Teaching Trust and based at Bath Spa University. The study aims to develop a whole-school model of valid, reliable and manageable teacher assessment to inform practice and make a positive impact on primary-aged children's learning in science. The model is based on a data-flow 'pyramid' (analogous to the flow of energy through an ecosystem), whereby the rich formative assessment evidence gathered in the classroom is summarised for monitoring, reporting and evaluation purposes [Nuffield Foundation. (2012). Developing policy, principles and practice in primary school science assessment. London: Nuffield Foundation]. Using a design-based research (DBR) methodology, the authors worked in collaboration with teachers from project schools and other expert groups to refine, elaborate, validate and operationalise the data-flow 'pyramid' model, resulting in the development of a whole-school self-evaluation tool. In this paper, we argue that a DBR approach to theory-building and school improvement drawing upon teacher expertise has led to the identification, adaptation and successful scaling up of a promising approach to school self-evaluation in relation to assessment in science.

  12. Mitigating the Effects of Family Poverty on Early Child Development through Parenting Interventions in Primary Care.

    Science.gov (United States)

    Cates, Carolyn Brockmeyer; Weisleder, Adriana; Mendelsohn, Alan L

    2016-04-01

    Poverty related disparities in early child development and school readiness are a major public health crisis, the prevention of which has emerged in recent years as a national priority. Interventions targeting parenting and the quality of the early home language environment are at the forefront of efforts to address these disparities. In this article we discuss the innovative use of the pediatric primary care platform as part of a comprehensive public health strategy to prevent adverse child development outcomes through the promotion of parenting. Models of interventions in the pediatric primary care setting are discussed with evidence of effectiveness reviewed. Taken together, a review of this significant body of work shows the tremendous potential to deliver evidence-based preventive interventions to families at risk for poverty related disparities in child development and school readiness at the time of pediatric primary care visits. We also addresss considerations related to scaling and maximizing the effect of pediatric primary care parenting interventions and provide key policy recommendations. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  13. Development and implementation of a new onboard diagnosis method for automotive lithium-ion-batteries; Entwicklung und Implementierung einer neuen Onboard-Diagnosemethode fuer Lithium-Ionen-Fahrzeugbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Brill, Michael

    2012-11-01

    The author of the contribution under consideration reports on a onboard diagnosis for lithium ion accumulators which determines the actual state of aging of a high voltage drive battery during the normal usage of hybrid vehicles and electrically driven vehicles. Due to the limited computing time and storages resources in the battery control unit a combined process is shown which analyses the state of aging of the total battery as a unit and additionally the scattering of the battery cells. Furthermore the procedure is design to supply an optimal result with the available measurement signals.

  14. Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Armstrong, Beth L [ORNL; Maxey, L Curt [ORNL; Sabau, Adrian S [ORNL; Wang, Hsin [ORNL; Hagans, Patrick [A123 Systems, Inc.; Babinec, Sue [A123 Systems, Inc.

    2013-08-01

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other

  15. CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

    2012-12-15

    Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System’s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other

  16. {sup 131}I treatment for thyroid cancer and risk of developing primary hyperparathyroidism: a cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Mu [Taipei Medical University - Shuang Ho Hospital, Department of Nuclear Medicine, Taipei (China); Taipei Medical University, Department of Radiology, College of Medicine, Taipei (China); Doyle, Pat [London School of Hygiene and Tropical Medicine, Faculty of Epidemiology and Population Health, London (United Kingdom); Tsan, Yu-Tse [National Taiwan University College of Public Health, Institute of Occupational Medicine and Industrial Hygiene, Taipei (China); Taichung Veterans General Hospital, Department of Emergency Medicine, Taichung (China); Chung Shan Medical University, School of Medicine, Taichung (China); Lee, Chang-Hsing [Ton Yen General Hospital, Department of Occupational Medicine, Hsinchu County (China); Wang, Jung-Der [National Taiwan University College of Public Health, Institute of Occupational Medicine and Industrial Hygiene, Taipei (China); National Cheng Kung University College of Medicine, Department of Public Health, Tainan (China); Chen, Pau-Chung [National Taiwan University College of Public Health, Institute of Occupational Medicine and Industrial Hygiene, Taipei (China); National Taiwan University College of Public Health, Department of Public Health, Taipei (China); National Taiwan University College of Medicine and Hospital, Department of Environmental and Occupational Medicine, Taipei (China); Collaboration: Health Data Analysis in Taiwan (hDATa) Research Group

    2014-02-15

    To evaluate the association between {sup 131}I therapy for thyroid cancer and risk of developing primary hyperparathyroidism. This was a nationwide population-based cohort study of patients with thyroid cancer diagnosed during the period 1997-2008. The data were obtained from the Taiwan National Health Insurance Research dataset. The cumulative {sup 131}I dose in each patient was calculated. Hazard ratios (HRs) were calculated using a proportional hazards model to estimate the effect of {sup 131}I therapy on the risk of developing primary hyperparathyroidism in the cohort. A total of 8,946 patients with thyroid cancer were eligible for the final analysis. Among these patients, 8 developed primary hyperparathyroidism during the follow-up period that represented 38,248 person-years giving an incidence rate of 20.9 per 10{sup 5} person-years. {sup 131}I was used in the treatment of 6,153 patients (68.8 %) with a median cumulative dose of 3.7 GBq. The adjusted HRs were 0.21 (95% CI 0.02-1.86) and 0.46 (95% CI 0.10-2.10) for those receiving a cumulative {sup 131}I dose of 0.1-3.6 GBq and ≥3.7 GBq, respectively, compared to no therapy. The risk of developing primary hyperparathyroidism did not increase with increasing {sup 131}I dose (test for trend p = 0.51). No interaction was found between {sup 131}I dose and age (p = 0.94) or {sup 131}I dose and sex (p = 0.99). {sup 131}I treatment for thyroid cancer did not increase risk of primary hyperparathyroidism during a 10-year follow-up in this study population. Further research with a longer follow-up period is needed to assess late adverse effects beyond 10 years. (orig.)

  17. 131I treatment for thyroid cancer and risk of developing primary hyperparathyroidism: a cohort study

    International Nuclear Information System (INIS)

    Lin, Chien-Mu; Doyle, Pat; Tsan, Yu-Tse; Lee, Chang-Hsing; Wang, Jung-Der; Chen, Pau-Chung

    2014-01-01

    To evaluate the association between 131 I therapy for thyroid cancer and risk of developing primary hyperparathyroidism. This was a nationwide population-based cohort study of patients with thyroid cancer diagnosed during the period 1997-2008. The data were obtained from the Taiwan National Health Insurance Research dataset. The cumulative 131 I dose in each patient was calculated. Hazard ratios (HRs) were calculated using a proportional hazards model to estimate the effect of 131 I therapy on the risk of developing primary hyperparathyroidism in the cohort. A total of 8,946 patients with thyroid cancer were eligible for the final analysis. Among these patients, 8 developed primary hyperparathyroidism during the follow-up period that represented 38,248 person-years giving an incidence rate of 20.9 per 10 5 person-years. 131 I was used in the treatment of 6,153 patients (68.8 %) with a median cumulative dose of 3.7 GBq. The adjusted HRs were 0.21 (95% CI 0.02-1.86) and 0.46 (95% CI 0.10-2.10) for those receiving a cumulative 131 I dose of 0.1-3.6 GBq and ≥3.7 GBq, respectively, compared to no therapy. The risk of developing primary hyperparathyroidism did not increase with increasing 131 I dose (test for trend p = 0.51). No interaction was found between 131 I dose and age (p = 0.94) or 131 I dose and sex (p = 0.99). 131 I treatment for thyroid cancer did not increase risk of primary hyperparathyroidism during a 10-year follow-up in this study population. Further research with a longer follow-up period is needed to assess late adverse effects beyond 10 years. (orig.)

  18. 131I treatment for thyroid cancer and risk of developing primary hyperparathyroidism: a cohort study.

    Science.gov (United States)

    Lin, Chien-Mu; Doyle, Pat; Tsan, Yu-Tse; Lee, Chang-Hsing; Wang, Jung-Der; Chen, Pau-Chung

    2014-02-01

    To evaluate the association between (131)I therapy for thyroid cancer and risk of developing primary hyperparathyroidism. This was a nationwide population-based cohort study of patients with thyroid cancer diagnosed during the period 1997-2008. The data were obtained from the Taiwan National Health Insurance Research dataset. The cumulative (131)I dose in each patient was calculated. Hazard ratios (HRs) were calculated using a proportional hazards model to estimate the effect of (131)I therapy on the risk of developing primary hyperparathyroidism in the cohort. A total of 8,946 patients with thyroid cancer were eligible for the final analysis. Among these patients, 8 developed primary hyperparathyroidism during the follow-up period that represented 38,248 person-years giving an incidence rate of 20.9 per 10(5) person-years. (131)I was used in the treatment of 6,153 patients (68.8%) with a median cumulative dose of 3.7 GBq. The adjusted HRs were 0.21 (95% CI 0.02-1.86) and 0.46 (95% CI 0.10-2.10) for those receiving a cumulative (131)I dose of 0.1-3.6 GBq and ≥3.7 GBq, respectively, compared to no therapy. The risk of developing primary hyperparathyroidism did not increase with increasing (131)I dose (test for trend p = 0.51). No interaction was found between (131)I dose and age (p = 0.94) or (131)I dose and sex (p = 0.99). (131)I treatment for thyroid cancer did not increase risk of primary hyperparathyroidism during a 10-year follow-up in this study population. Further research with a longer follow-up period is needed to assess late adverse effects beyond 10 years.

  19. Bateria Multidimensional de Inteligência Infantil: desenvolvimento de instrumento Multidimensional Battery for Children's Intelligence: development of an instrument

    Directory of Open Access Journals (Sweden)

    Patrícia Waltz Schelini

    2005-12-01

    Full Text Available O estudo objetivou elaborar um conjunto de testes, denominado "Bateria Multidimensional de Inteligência Infantil" ou BMI, para avaliar capacidades do Modelo Cattell-Horn-Carroll. Entre as capacidades avaliadas estão as de inteligência cristalizada, inteligência fluida, velocidade de processamento cognitivo, memória a curto prazo, armazenamento e recuperação associativa a longo prazo e conhecimento quantitativo. A BMI foi composta por nove testes, apresentados a duas amostras de participantes. A primeira foi formada por 240 crianças, com idade entre sete e 12 anos. Constituída para que novos itens fossem testados, a segunda amostra foi formada por outras 206 crianças. Os resultados demonstraram a influência altamente significativa da idade sobre o desempenho dos testes. Os testes Informação Geral, Indução, Desempenho em Matemática, Vocabulário Geral e Vocabulário Ilus-trado apresentaram elevados coeficientes de precisão. A análise dos índices de dificuldade e do poder discriminativo permitiu a seleção do conjunto mais adequado de questões para compor a configuração final da Bateria.The goal of this study was elaborate a set of tests, "Multidimensional Battery for Children's Intelligence" or "BMI", according to the abilities included in the Cattell-Horn-Carroll's Model. Among these abilities are the ability of crystallized intelligence, fluid intelligence, processing speed, short-term memory, long-term storage and retrieval and quantitative knowledge. The BMI was composed by nine tests, presented to two samples of participants. The first sample comprised 240 children whose age ranged from seven to 12 years old. Constituted for the testing of new items, the second sample comprised another 206 children. The results demonstrated that the age had a high influence on the tests performance. Were found high reliability coefficients for the tests General Information, Induction, Mathematics Achievment, General Vocabulary and

  20. Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators

    International Nuclear Information System (INIS)

    Li, Xiaofei; He, Jinlin; Wu, Dazhao; Zhang, Mingzu; Meng, Juwen; Ni, Peihong

    2015-01-01

    Graphical abstract: A composite separator based on plasma-treated fluorinated polypropylene (PP) nonwoven, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and SiO 2 nanoparticles exhibiting enhanced thermal stability, ionic conductivity and electrochemical properties. Display Omitted -- Highlights: •Fluorinated segments are introduced on the surface of PP nonwoven through plasma treatment. •The obtained composite separators exhibit better physical and electrochemical properties. •The capacity of half-cell with composite separator keeps above 150 mA h g −1 after 100 charge–discharge cycles. -- Abstract: Separators have drawn substantial attention because of their important role in achieving the safety and good electrochemical performance of lithium-ion batteries. In this study, we report a new type of composite membrane prepared by a combination of fluorinated polypropylene (PP) nonwoven fabric, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and SiO 2 nanoparticles. 2, 2, 3, 3, 4, 4, 5, 5-Octafluoropentyl methacrylate (OFPMA) is first grafted on the surface of PP nonwoven by plasma treatment to improve the nonwoven’s adhesion with PVdF-HFP. Two kinds of composite separators have been prepared by using the different PP nonwovens together with PVdF-HFP and SiO 2 nanoparticles. They were separately designated as PHS for commercially raw PP nonwoven system and PHS-n for OFPMA-modified PP nonwoven systems (n means plasma treatment time). The morphology, electrolyte uptake, ionic conductivity and electrochemical properties of the composite separators have been analyzed by scanning electron microscope (SEM) analysis, impedance measurement, charge-discharge cycle and C-rate tests, respectively. The results indicate that PHS-10 composite separator using the modified PP nonwoven treated by plasma for 10 min exhibits much better properties than PHS separator, including an improved mechanical property, thermal stability, electrolyte uptake